add Demo usage
Browse files
README.md
CHANGED
@@ -9,7 +9,6 @@ metrics:
|
|
9 |
library_name: transformers
|
10 |
pipeline_tag: text-generation
|
11 |
---
|
12 |
-
|
13 |
<p align="center"><h2 align="center">Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch</h2></p>
|
14 |
|
15 |
# Model Card for Qwen2-Math-7B-ScaleQuest
|
@@ -46,6 +45,38 @@ We release two question generator models and four problem-solving models.
|
|
46 |
|
47 |
Below is an example using `Qwen2-Math-7B-ScaleQuest`
|
48 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
```
|
50 |
|
51 |
## Citation
|
|
|
9 |
library_name: transformers
|
10 |
pipeline_tag: text-generation
|
11 |
---
|
|
|
12 |
<p align="center"><h2 align="center">Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch</h2></p>
|
13 |
|
14 |
# Model Card for Qwen2-Math-7B-ScaleQuest
|
|
|
45 |
|
46 |
Below is an example using `Qwen2-Math-7B-ScaleQuest`
|
47 |
```python
|
48 |
+
import torch
|
49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
50 |
+
|
51 |
+
model_name = "dyyyyyyyy/Qwen2-Math-7B-ScaleQuest"
|
52 |
+
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_name,
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
device_map="auto"
|
57 |
+
)
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
+
|
60 |
+
question = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$."
|
61 |
+
|
62 |
+
sys_prompt="<|im_start|>system\nPlease reason step by step, and put your final answer within \\boxed{{}}.<|im_end|>\n"
|
63 |
+
query_prompt="<|im_start|>user" + "\n"
|
64 |
+
# {query}
|
65 |
+
prompt_after_query="<|im_end|>" + "\n"
|
66 |
+
resp_prompt="<|im_start|>assistant" + "\n"
|
67 |
+
prompt_before_resp=""
|
68 |
+
# {resp}
|
69 |
+
delim="<|im_end|>" + "\n"
|
70 |
+
|
71 |
+
prefix_prompt = f"{query_prompt}{question}{prompt_after_query}{resp_prompt}{prompt_before_resp}".rstrip(" ")
|
72 |
+
full_prompt = sys_prompt + delim.join([prefix_prompt])
|
73 |
+
|
74 |
+
# print(full_prompt)
|
75 |
+
|
76 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
77 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=False)
|
78 |
+
print(tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True))
|
79 |
+
|
80 |
```
|
81 |
|
82 |
## Citation
|