metadata
license: apache-2.0
tags:
- distigpt2
- hearthstone
metrics:
- bleu
- dvitel/codebleu
- exact_match
- chrf
datasets:
- dvitel/hearthstone
model-index:
- name: h0
results:
- task:
type: text-generation
name: Python Code Synthesis
dataset:
type: dvitel/hearthstone
name: HearthStone
split: test
metrics:
- type: exact_match
value: 0.30303030303030304
name: Exact Match
- type: bleu
value: 0.8850182403024257
name: BLEU
- type: dvitel/codebleu
value: 0.677852377992836
name: CodeBLEU
- type: chrf
value: 91.00848749530383
name: chrF
h3
This model is a fine-tuned version of distilgpt2 on hearthstone dataset. GitHub repo. It achieves the following results on the evaluation set:
- Loss: 0.2782
- Exact Match: 0.2879
- Bleu: 0.9121
- Codebleu: 0.7482
- Ngram Match Score: 0.7504
- Weighted Ngram Match Score: 0.7583
- Syntax Match Score: 0.7673
- Dataflow Match Score: 0.7169
- Chrf: 93.1064
Model description
DistilGPT2 fine-tuned on HearthStone dataset for 200 epochs.
Related to dvitel/h0 but with preprocessing which anonymizes classes and function variables (Local renaming).
dvitel/h2 implements global renaming where all names are removed. Global renaming showed worse results compared to local renaming.
Example of generated code with mistake on last eval iteration (EV L - gold labels, EV P - prediction):
EV L class CLS0(MinionCard):
def __init__(self):
super().__init__('Darkscale Healer', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Heal(2), CharacterSelector()))
def create_minion(self, v0):
return Minion(4, 5)
EV P class CLS0(MinionCard):
def __init__(self):
super().__init__('Darkscale Healer', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Heal(2), CharacterSelector())
def create_minion(self, v0):
return Minion(4, 5)
EV L class CLS0(WeaponCard):
def __init__(self):
super().__init__('Fiery War Axe', 2, CHARACTER_CLASS.WARRIOR, CARD_RARITY.FREE)
def create_weapon(self, v0):
return Weapon(3, 2)
EV P class CLS0(WeaponCard):
def __init__(self):
super().__init__('Fiery War Axe', 2, CHARACTER_CLASS.WARRIOR, CARD_RARITY.FREE,
def create_weapon(self, v0):
return Weapon(3, 2)
EV L class CLS0(MinionCard):
def __init__(self):
super().__init__('Frostwolf Warlord', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Give([Buff(ChangeAttack(Count(MinionSelector()))), Buff(ChangeHealth(Count(MinionSelector())))]), SelfSelector()))
def create_minion(self, v0):
return Minion(4, 4)
EV P class CLS0(MinionCard):
def __init__(self):
super().__init__('Frostwolf Warlord', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Give([Buff(ChangeAttack(Count(MinionSelector(),), Buff(ChangeHealth(Count(MinionSelector()))))]),), SelfSelector()))
def create_minion(self, v0):
return Minion(4, 4)
EV L class CLS0(SpellCard):
def __init__(self):
super().__init__('Hellfire', 4, CHARACTER_CLASS.WARLOCK, CARD_RARITY.FREE)
def use(self, v0, v1):
super().use(v0, v1)
v2 = copy.copy(v1.other_player.minions)
v2.extend(v1.current_player.minions)
v2.append(v1.other_player.hero)
v2.append(v1.current_player.hero)
for v3 in v2:
v3.damage(v0.effective_spell_damage(3), self)
EV P class CLS0(SpellCard):
def __init__(self):
super().__init__('Hellfire', 4, CHARACTER_CLASS.WARLOCK, CARD_RARITY.FREE,
def use(self, v0, v1):
super().use(v0, v1)
v2 = copy.copy(v1.other_player.minions)
v2.extend(v1.current_player.minions)
for.append(v1.other_player.hero)
for.append(v1.other_player.hero)
for v3 in v2:
.damage(v0.effective_spell_damage(3), self)
Intended uses & limitations
HearthStone card code synthesis.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf |
---|---|---|---|---|---|---|---|---|---|---|---|
0.8612 | 11.94 | 1600 | 0.2725 | 0.0455 | 0.8477 | 0.6050 | 0.6229 | 0.6335 | 0.6203 | 0.5431 | 88.7010 |
0.175 | 23.88 | 3200 | 0.2311 | 0.0909 | 0.8739 | 0.6304 | 0.6566 | 0.6656 | 0.6484 | 0.5508 | 90.7364 |
0.1036 | 35.82 | 4800 | 0.2172 | 0.1818 | 0.8930 | 0.6905 | 0.6976 | 0.7062 | 0.7172 | 0.6409 | 91.9702 |
0.0695 | 47.76 | 6400 | 0.2233 | 0.2424 | 0.8944 | 0.7017 | 0.7148 | 0.7232 | 0.7187 | 0.6499 | 92.0340 |
0.0482 | 59.7 | 8000 | 0.2407 | 0.2879 | 0.9046 | 0.7301 | 0.7387 | 0.7456 | 0.7475 | 0.6885 | 92.6219 |
0.0352 | 71.64 | 9600 | 0.2407 | 0.2424 | 0.9074 | 0.7255 | 0.7371 | 0.7448 | 0.7482 | 0.6718 | 92.8281 |
0.0262 | 83.58 | 11200 | 0.2596 | 0.3030 | 0.9061 | 0.7445 | 0.7415 | 0.7500 | 0.7774 | 0.7091 | 92.6737 |
0.0213 | 95.52 | 12800 | 0.2589 | 0.2879 | 0.9061 | 0.7308 | 0.7409 | 0.7488 | 0.7464 | 0.6873 | 92.7814 |
0.0164 | 107.46 | 14400 | 0.2679 | 0.2879 | 0.9096 | 0.7452 | 0.7510 | 0.7592 | 0.7626 | 0.7079 | 92.9900 |
0.0131 | 119.4 | 16000 | 0.2660 | 0.2879 | 0.9096 | 0.7447 | 0.7480 | 0.7564 | 0.7666 | 0.7079 | 93.0122 |
0.0116 | 131.34 | 17600 | 0.2669 | 0.2727 | 0.9092 | 0.7463 | 0.7445 | 0.7529 | 0.7684 | 0.7194 | 92.9256 |
0.0093 | 143.28 | 19200 | 0.2678 | 0.2879 | 0.9113 | 0.7531 | 0.7496 | 0.7581 | 0.7709 | 0.7336 | 93.0406 |
0.0083 | 155.22 | 20800 | 0.2728 | 0.2879 | 0.9103 | 0.7407 | 0.7462 | 0.7540 | 0.7702 | 0.6924 | 92.9302 |
0.0077 | 167.16 | 22400 | 0.2774 | 0.2879 | 0.9103 | 0.7449 | 0.7449 | 0.7532 | 0.7659 | 0.7156 | 92.9742 |
0.0069 | 179.1 | 24000 | 0.2774 | 0.2879 | 0.9120 | 0.7396 | 0.7463 | 0.7539 | 0.7633 | 0.6950 | 93.1057 |
0.0069 | 191.04 | 25600 | 0.2782 | 0.2879 | 0.9121 | 0.7482 | 0.7504 | 0.7583 | 0.7673 | 0.7169 | 93.1064 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1