Edit model card

h3

This model is a fine-tuned version of distilgpt2 on hearthstone dataset. GitHub repo. It achieves the following results on the evaluation set:

  • Loss: 0.2782
  • Exact Match: 0.2879
  • Bleu: 0.9121
  • Codebleu: 0.7482
  • Ngram Match Score: 0.7504
  • Weighted Ngram Match Score: 0.7583
  • Syntax Match Score: 0.7673
  • Dataflow Match Score: 0.7169
  • Chrf: 93.1064

Model description

DistilGPT2 fine-tuned on HearthStone dataset for 200 epochs.
Related to dvitel/h0 but with preprocessing which anonymizes classes and function variables (Local renaming).
dvitel/h2 implements global renaming where all names are removed. Global renaming showed worse results compared to local renaming.

Example of generated code with mistake on last eval iteration (EV L - gold labels, EV P - prediction):

EV L class CLS0(MinionCard):
        def __init__(self):
                super().__init__('Darkscale Healer', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Heal(2), CharacterSelector()))
        def create_minion(self, v0):
                return Minion(4, 5)
EV P class CLS0(MinionCard):
        def __init__(self):
                super().__init__('Darkscale Healer', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Heal(2), CharacterSelector())
        def create_minion(self, v0):
                return Minion(4, 5)

EV L class CLS0(WeaponCard):
        def __init__(self):
                super().__init__('Fiery War Axe', 2, CHARACTER_CLASS.WARRIOR, CARD_RARITY.FREE)
        def create_weapon(self, v0):
                return Weapon(3, 2)
EV P class CLS0(WeaponCard):
        def __init__(self):
                super().__init__('Fiery War Axe', 2, CHARACTER_CLASS.WARRIOR, CARD_RARITY.FREE,
        def create_weapon(self, v0):
                return Weapon(3, 2)

EV L class CLS0(MinionCard):
        def __init__(self):
                super().__init__('Frostwolf Warlord', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Give([Buff(ChangeAttack(Count(MinionSelector()))), Buff(ChangeHealth(Count(MinionSelector())))]), SelfSelector()))
        def create_minion(self, v0):
                return Minion(4, 4)
EV P class CLS0(MinionCard):
        def __init__(self):
                super().__init__('Frostwolf Warlord', 5, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, battlecry=Battlecry(Give([Buff(ChangeAttack(Count(MinionSelector(),), Buff(ChangeHealth(Count(MinionSelector()))))]),), SelfSelector()))
        def create_minion(self, v0):
                return Minion(4, 4)

EV L class CLS0(SpellCard):
        def __init__(self):
                super().__init__('Hellfire', 4, CHARACTER_CLASS.WARLOCK, CARD_RARITY.FREE)
        def use(self, v0, v1):
                super().use(v0, v1)
                v2 = copy.copy(v1.other_player.minions)
                v2.extend(v1.current_player.minions)
                v2.append(v1.other_player.hero)
                v2.append(v1.current_player.hero)
                for v3 in v2:
                        v3.damage(v0.effective_spell_damage(3), self)
EV P class CLS0(SpellCard):
        def __init__(self):
                super().__init__('Hellfire', 4, CHARACTER_CLASS.WARLOCK, CARD_RARITY.FREE,
        def use(self, v0, v1):
                super().use(v0, v1)
                v2 = copy.copy(v1.other_player.minions)
                v2.extend(v1.current_player.minions)
                for.append(v1.other_player.hero)
                for.append(v1.other_player.hero)
                for v3 in v2:
                                .damage(v0.effective_spell_damage(3), self)

Intended uses & limitations

HearthStone card code synthesis.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 17
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Exact Match Bleu Codebleu Ngram Match Score Weighted Ngram Match Score Syntax Match Score Dataflow Match Score Chrf
0.8612 11.94 1600 0.2725 0.0455 0.8477 0.6050 0.6229 0.6335 0.6203 0.5431 88.7010
0.175 23.88 3200 0.2311 0.0909 0.8739 0.6304 0.6566 0.6656 0.6484 0.5508 90.7364
0.1036 35.82 4800 0.2172 0.1818 0.8930 0.6905 0.6976 0.7062 0.7172 0.6409 91.9702
0.0695 47.76 6400 0.2233 0.2424 0.8944 0.7017 0.7148 0.7232 0.7187 0.6499 92.0340
0.0482 59.7 8000 0.2407 0.2879 0.9046 0.7301 0.7387 0.7456 0.7475 0.6885 92.6219
0.0352 71.64 9600 0.2407 0.2424 0.9074 0.7255 0.7371 0.7448 0.7482 0.6718 92.8281
0.0262 83.58 11200 0.2596 0.3030 0.9061 0.7445 0.7415 0.7500 0.7774 0.7091 92.6737
0.0213 95.52 12800 0.2589 0.2879 0.9061 0.7308 0.7409 0.7488 0.7464 0.6873 92.7814
0.0164 107.46 14400 0.2679 0.2879 0.9096 0.7452 0.7510 0.7592 0.7626 0.7079 92.9900
0.0131 119.4 16000 0.2660 0.2879 0.9096 0.7447 0.7480 0.7564 0.7666 0.7079 93.0122
0.0116 131.34 17600 0.2669 0.2727 0.9092 0.7463 0.7445 0.7529 0.7684 0.7194 92.9256
0.0093 143.28 19200 0.2678 0.2879 0.9113 0.7531 0.7496 0.7581 0.7709 0.7336 93.0406
0.0083 155.22 20800 0.2728 0.2879 0.9103 0.7407 0.7462 0.7540 0.7702 0.6924 92.9302
0.0077 167.16 22400 0.2774 0.2879 0.9103 0.7449 0.7449 0.7532 0.7659 0.7156 92.9742
0.0069 179.1 24000 0.2774 0.2879 0.9120 0.7396 0.7463 0.7539 0.7633 0.6950 93.1057
0.0069 191.04 25600 0.2782 0.2879 0.9121 0.7482 0.7504 0.7583 0.7673 0.7169 93.1064

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train dvitel/h3

Evaluation results