domenicrosati's picture
update model card README.md
87c52ed
metadata
license: mit
tags:
  - text-classification
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: deberta-v3-xsmall-finetuned-DAGPap22
    results: []

deberta-v3-xsmall-finetuned-DAGPap22

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0798
  • Accuracy: 0.9907
  • F1: 0.9934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.5e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 402 0.1626 0.9477 0.9616
0.4003 2.0 804 0.0586 0.9794 0.9853
0.1075 3.0 1206 0.0342 0.9907 0.9933
0.0581 4.0 1608 0.1140 0.9776 0.9838
0.0245 5.0 2010 0.1409 0.9776 0.9842
0.0245 6.0 2412 0.0732 0.9832 0.9881
0.0167 7.0 2814 0.1996 0.9682 0.9778
0.0139 8.0 3216 0.1219 0.9850 0.9894
0.006 9.0 3618 0.0670 0.9907 0.9934
0.0067 10.0 4020 0.1036 0.9869 0.9907
0.0067 11.0 4422 0.1220 0.9776 0.9838
0.0041 12.0 4824 0.1768 0.9776 0.9839
0.0007 13.0 5226 0.0943 0.9888 0.9920
0.0 14.0 5628 0.0959 0.9907 0.9934
0.0054 15.0 6030 0.0915 0.9888 0.9921
0.0054 16.0 6432 0.1618 0.9794 0.9855
0.0019 17.0 6834 0.0794 0.9907 0.9934
0.0 18.0 7236 0.0799 0.9907 0.9934
0.0 19.0 7638 0.0797 0.9907 0.9934
0.0 20.0 8040 0.0798 0.9907 0.9934

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1