File size: 2,865 Bytes
8c4579f 87c52ed 8c4579f 87c52ed 8c4579f 87c52ed 8c4579f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
tags:
- text-classification
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-xsmall-finetuned-DAGPap22
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-xsmall-finetuned-DAGPap22
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0798
- Accuracy: 0.9907
- F1: 0.9934
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 402 | 0.1626 | 0.9477 | 0.9616 |
| 0.4003 | 2.0 | 804 | 0.0586 | 0.9794 | 0.9853 |
| 0.1075 | 3.0 | 1206 | 0.0342 | 0.9907 | 0.9933 |
| 0.0581 | 4.0 | 1608 | 0.1140 | 0.9776 | 0.9838 |
| 0.0245 | 5.0 | 2010 | 0.1409 | 0.9776 | 0.9842 |
| 0.0245 | 6.0 | 2412 | 0.0732 | 0.9832 | 0.9881 |
| 0.0167 | 7.0 | 2814 | 0.1996 | 0.9682 | 0.9778 |
| 0.0139 | 8.0 | 3216 | 0.1219 | 0.9850 | 0.9894 |
| 0.006 | 9.0 | 3618 | 0.0670 | 0.9907 | 0.9934 |
| 0.0067 | 10.0 | 4020 | 0.1036 | 0.9869 | 0.9907 |
| 0.0067 | 11.0 | 4422 | 0.1220 | 0.9776 | 0.9838 |
| 0.0041 | 12.0 | 4824 | 0.1768 | 0.9776 | 0.9839 |
| 0.0007 | 13.0 | 5226 | 0.0943 | 0.9888 | 0.9920 |
| 0.0 | 14.0 | 5628 | 0.0959 | 0.9907 | 0.9934 |
| 0.0054 | 15.0 | 6030 | 0.0915 | 0.9888 | 0.9921 |
| 0.0054 | 16.0 | 6432 | 0.1618 | 0.9794 | 0.9855 |
| 0.0019 | 17.0 | 6834 | 0.0794 | 0.9907 | 0.9934 |
| 0.0 | 18.0 | 7236 | 0.0799 | 0.9907 | 0.9934 |
| 0.0 | 19.0 | 7638 | 0.0797 | 0.9907 | 0.9934 |
| 0.0 | 20.0 | 8040 | 0.0798 | 0.9907 | 0.9934 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|