|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: 289.96 +/- 22.59 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
|
|
|
|
```python |
|
import gym |
|
from stable_baselines3 import PPO |
|
from huggingface_sb3 import load_from_hub |
|
|
|
checkpoint = load_from_hub( |
|
repo_id="dmenini/ppo-LunarLander-v2", |
|
filename="ppo-LunarLander-v2.zip" |
|
) |
|
|
|
model = PPO.load(checkpoint) |
|
|
|
env = gym.make("LunarLander-v2") |
|
|
|
# Evaluate the agent and watch it |
|
eval_env = gym.make("LunarLander-v2") |
|
mean_reward, std_reward = evaluate_policy( |
|
model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False |
|
) |
|
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") |
|
|
|
``` |
|
|