ppo-LunarLander-v2 / README.md
dmenini's picture
Update README.md
ef53c60
|
raw
history blame
1.2 kB
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 289.96 +/- 22.59
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
```python
import gym
from stable_baselines3 import PPO
from huggingface_sb3 import load_from_hub
checkpoint = load_from_hub(
repo_id="dmenini/ppo-LunarLander-v2",
filename="ppo-LunarLander-v2.zip"
)
model = PPO.load(checkpoint)
env = gym.make("LunarLander-v2")
# Evaluate the agent and watch it
eval_env = gym.make("LunarLander-v2")
mean_reward, std_reward = evaluate_policy(
model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False
)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
```