metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 289.96 +/- 22.59
name: mean_reward
verified: false
PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
import gym
from stable_baselines3 import PPO
from huggingface_sb3 import load_from_hub
checkpoint = load_from_hub(
repo_id="dmenini/ppo-LunarLander-v2",
filename="ppo-LunarLander-v2.zip"
)
model = PPO.load(checkpoint)
env = gym.make("LunarLander-v2")
# Evaluate the agent and watch it
eval_env = gym.make("LunarLander-v2")
mean_reward, std_reward = evaluate_policy(
model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False
)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")