metadata
language: it
license: apache-2.0
widget:
- text: Il [MASK] ha chiesto revocarsi l'obbligo di pagamento
ITALIAN-LEGAL-BERT:A pre-trained Transformer Language Model for Italian Law
ITALIAN-LEGAL-BERT is based on bert-base-italian-xxl-cased with additional pre-training of the Italian BERT model on Italian civil law corpora. It achieves better results than the ‘general-purpose’ Italian BERT in different domain-specific tasks.
Training procedure
We initialized ITALIAN-LEGAL-BERT with ITALIAN XXL BERT and pretrained for an additional 4 epochs on 3.7 GB of preprocessed text from the National Jurisprudential Archive using the Huggingface PyTorch-Transformers library. We used BERT architecture with a language modeling head on top, AdamW Optimizer, initial learning rate 5e-5 (with linear learning rate decay, ends at 2.525e-9), sequence length 512, batch size 10 (imposed by GPU capacity), 8.4 million training steps, device 1*GPU V100 16GBUsage
ITALIAN-LEGAL-BERT model can be loaded like:
from transformers import AutoModel, AutoTokenizer
model_name = "dlicari/Italian-Legal-BERT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT.
from transformers import pipeline
model_name = "dlicari/Italian-Legal-BERT"
fill_mask = pipeline("fill-mask", model_name)
fill_mask("Il [MASK] ha chiesto revocarsi l'obbligo di pagamento")
#[{'sequence': "Il ricorrente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.7264330387115479},
# {'sequence': "Il convenuto ha chiesto revocarsi l'obbligo di pagamento",'score': 0.09641049802303314},
# {'sequence': "Il resistente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.039877112954854965},
# {'sequence': "Il lavoratore ha chiesto revocarsi l'obbligo di pagamento",'score': 0.028993653133511543},
# {'sequence': "Il Ministero ha chiesto revocarsi l'obbligo di pagamento", 'score': 0.025297977030277252}]