|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-pt-asqa-ob |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-pt-asqa-ob |
|
|
|
This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.4268 |
|
- Rougelsum: 24.2407 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:| |
|
| No log | 1.0 | 355 | 1.6269 | 19.0683 | |
|
| 1.6035 | 2.0 | 710 | 1.6400 | 19.8336 | |
|
| 1.3505 | 3.0 | 1065 | 1.6525 | 20.9906 | |
|
| 1.3505 | 4.0 | 1420 | 1.7070 | 21.5381 | |
|
| 1.1756 | 5.0 | 1775 | 1.7348 | 22.6130 | |
|
| 1.0148 | 6.0 | 2130 | 1.8440 | 22.8553 | |
|
| 1.0148 | 7.0 | 2485 | 1.8460 | 23.1281 | |
|
| 0.8886 | 8.0 | 2840 | 1.9321 | 23.4357 | |
|
| 0.7687 | 9.0 | 3195 | 2.0124 | 23.3538 | |
|
| 0.6779 | 10.0 | 3550 | 2.0809 | 23.7958 | |
|
| 0.6779 | 11.0 | 3905 | 2.1312 | 23.5703 | |
|
| 0.5933 | 12.0 | 4260 | 2.2144 | 24.0672 | |
|
| 0.5283 | 13.0 | 4615 | 2.2463 | 23.9667 | |
|
| 0.5283 | 14.0 | 4970 | 2.3022 | 24.0211 | |
|
| 0.4885 | 15.0 | 5325 | 2.3010 | 24.2634 | |
|
| 0.4379 | 16.0 | 5680 | 2.3311 | 24.2333 | |
|
| 0.4085 | 17.0 | 6035 | 2.4048 | 24.2417 | |
|
| 0.4085 | 18.0 | 6390 | 2.4118 | 24.2201 | |
|
| 0.3821 | 19.0 | 6745 | 2.4237 | 24.2905 | |
|
| 0.3699 | 20.0 | 7100 | 2.4268 | 24.2407 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.0.dev0 |
|
- Pytorch 1.12.1+cu102 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|