update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: bart-pt-asqa-ob
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# bart-pt-asqa-ob
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 2.4268
|
18 |
+
- Rougelsum: 24.2407
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 1e-05
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 20
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Rougelsum |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
50 |
+
| No log | 1.0 | 355 | 1.6269 | 19.0683 |
|
51 |
+
| 1.6035 | 2.0 | 710 | 1.6400 | 19.8336 |
|
52 |
+
| 1.3505 | 3.0 | 1065 | 1.6525 | 20.9906 |
|
53 |
+
| 1.3505 | 4.0 | 1420 | 1.7070 | 21.5381 |
|
54 |
+
| 1.1756 | 5.0 | 1775 | 1.7348 | 22.6130 |
|
55 |
+
| 1.0148 | 6.0 | 2130 | 1.8440 | 22.8553 |
|
56 |
+
| 1.0148 | 7.0 | 2485 | 1.8460 | 23.1281 |
|
57 |
+
| 0.8886 | 8.0 | 2840 | 1.9321 | 23.4357 |
|
58 |
+
| 0.7687 | 9.0 | 3195 | 2.0124 | 23.3538 |
|
59 |
+
| 0.6779 | 10.0 | 3550 | 2.0809 | 23.7958 |
|
60 |
+
| 0.6779 | 11.0 | 3905 | 2.1312 | 23.5703 |
|
61 |
+
| 0.5933 | 12.0 | 4260 | 2.2144 | 24.0672 |
|
62 |
+
| 0.5283 | 13.0 | 4615 | 2.2463 | 23.9667 |
|
63 |
+
| 0.5283 | 14.0 | 4970 | 2.3022 | 24.0211 |
|
64 |
+
| 0.4885 | 15.0 | 5325 | 2.3010 | 24.2634 |
|
65 |
+
| 0.4379 | 16.0 | 5680 | 2.3311 | 24.2333 |
|
66 |
+
| 0.4085 | 17.0 | 6035 | 2.4048 | 24.2417 |
|
67 |
+
| 0.4085 | 18.0 | 6390 | 2.4118 | 24.2201 |
|
68 |
+
| 0.3821 | 19.0 | 6745 | 2.4237 | 24.2905 |
|
69 |
+
| 0.3699 | 20.0 | 7100 | 2.4268 | 24.2407 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.23.0.dev0
|
75 |
+
- Pytorch 1.12.1+cu102
|
76 |
+
- Datasets 2.4.0
|
77 |
+
- Tokenizers 0.12.1
|