kazRush-kk-ru / README.md
Kartoshkina's picture
corrected typos in readme
3f86b1a verified
---
library_name: transformers
pipeline_tag: translation
tags:
- transformers
- translation
- pytorch
- russian
- kazakh
license: apache-2.0
language:
- ru
- kk
datasets:
- issai/kazparc
---
# kazRush-kk-ru
kazRush-kk-ru is a translation model for translating from Kazakh to Russian. The model was trained with randomly initialized weights based on the T5 configuration on the available open-source parallel data.
## Usage
Using the model requires `sentencepiece` library to be installed.
After installing necessary dependencies the model can be run with the following code:
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
device = 'cuda'
model = AutoModelForSeq2SeqLM.from_pretrained('deepvk/kazRush-kk-ru').to(device)
tokenizer = AutoTokenizer.from_pretrained('deepvk/kazRush-kk-ru')
@torch.inference_mode
def generate(text, **kwargs):
inputs = tokenizer(text, return_tensors='pt').to(device)
hypotheses = model.generate(**inputs, num_beams=5, **kwargs)
return tokenizer.decode(hypotheses[0], skip_special_tokens=True)
print(generate("Анам жақтауды жуды."))
```
You can also access the model via _pipeline_ wrapper:
```python
>>> from transformers import pipeline
>>> pipe = pipeline(model="deepvk/kazRush-kk-ru")
>>> pipe("Иттерді кім шығарды?")
[{'translation_text': 'Кто выпустил собак?'}]
```
## Data and Training
This model was trained on the following data (Russian-Kazakh language pairs):
| Dataset | Number of pairs |
|-----------------------------------------|-------|
| [OPUS Corpora](<https://opus.nlpl.eu/results/ru&kk/corpus-result-table>) | 718K |
| [kazparc](<https://huggingface.co/datasets/issai/kazparc>) | 2,150K |
| [wmt19 dataset](<https://statmt.org/wmt19/translation-task.html#download>) | 5,063K |
| [TIL dataset](<https://github.com/turkic-interlingua/til-mt/tree/master/til_corpus>) | 4,403K |
Preprocessing of the data included:
1. deduplication
2. removing trash symbols, special tags, multiple whitespaces etc. from texts
3. removing texts that were not in Russian or Kazakh (language detection was made via [facebook/fasttext-language-identification](<https://huggingface.co/facebook/fasttext-language-identification>))
4. removing pairs that had low alingment score (comparison was performed via [sentence-transformers/LaBSE](<https://huggingface.co/sentence-transformers/LaBSE>))
5. filtering the data using [opusfilter](<https://github.com/Helsinki-NLP/OpusFilter>) tools
The model was trained for 56 hours on 2 GPUs NVIDIA A100 80 Gb.
## Evaluation
Current model was compared to another open-source translation model, [NLLB](<https://huggingface.co/docs/transformers/model_doc/nllb>). We compared our model to all version of NLLB, excluding nllb-moe-54b due to its size.
The metrics - BLEU, chrF and COMET - were calculated on `devtest` part of [FLORES+ evaluation benchmark](<https://github.com/openlanguagedata/flores>), most recent evaluation benchmark for multilingual machine translation.
Calculation of BLEU and chrF follows the standart implementation from [sacreBLEU](<https://github.com/mjpost/sacrebleu>), and COMET is calculated using default model described in [COMET repository](<https://github.com/Unbabel/COMET>).
| Model | Size | BLEU | chrf | COMET |
|-----------------------------------------|-------|-----------------------------|------------------------|----------|
| [nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) | 600M | 18.0 | 47.3 | 85.6 |
| This model | 197M | 18.8 | 48.7 | 86.7 |
| [nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B) | 1.3B | 20.4 | 49.3 | 87.9 |
| [nllb-200-distilled-1.3B](https://huggingface.co/facebook/nllb-200-distilled-1.3B) | 1.3B | 20.8 | 49.6 | 88.1 |
| [nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B) | 3.3B | **21.5** | **50.7** | **88.7** |
## Examples of usage:
```python
>>> print(generate("Балық көбінесе сулардағы токсиндердің жоғары концентрацияларына байланысты өледі."))
Рыба часто умирает из-за высоких концентраций токсинов в воде.
>>> print(generate("Өткен 3 айда 80-нен астам қамалушы ресми түрде айып тағылмастан изолятордан шығарылды."))
За прошедшие 3 месяца более 80 арестованных были официально извлечены из изолятора без обвинения.
>>> print(generate("Бұл тастардың он бесі өткен шілде айындағы метеориттік жаңбырға жатқызылады."))
Пятнадцать этих камней относят к метеоритным дождям прошлого июля.
```
## Citations
```
@misc{deepvk2024kazRushkkru,
title={kazRush-kk-ru: translation model from Kazakh to Russian},
author={Lebedeva, Anna and Sokolov, Andrey},
url={https://huggingface.co/deepvk/kazRush-kk-ru},
publisher={Hugging Face},
year={2024},
}
```