kazRush-kk-ru

kazRush-kk-ru is a translation model for translating from Kazakh to Russian. The model was trained with randomly initialized weights based on the T5 configuration on the available open-source parallel data.

Usage

Using the model requires sentencepiece library to be installed.

After installing necessary dependencies the model can be run with the following code:

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch

device = 'cuda'
model = AutoModelForSeq2SeqLM.from_pretrained('deepvk/kazRush-kk-ru').to(device)
tokenizer = AutoTokenizer.from_pretrained('deepvk/kazRush-kk-ru')

@torch.inference_mode
def generate(text, **kwargs):
    inputs = tokenizer(text, return_tensors='pt').to(device)
    hypotheses = model.generate(**inputs, num_beams=5, **kwargs)
    return tokenizer.decode(hypotheses[0], skip_special_tokens=True)

print(generate("Анам жақтауды жуды."))

You can also access the model via pipeline wrapper:

>>> from transformers import pipeline

>>> pipe = pipeline(model="deepvk/kazRush-kk-ru")
>>> pipe("Иттерді кім шығарды?")
[{'translation_text': 'Кто выпустил собак?'}]

Data and Training

This model was trained on the following data (Russian-Kazakh language pairs):

Dataset Number of pairs
OPUS Corpora 718K
kazparc 2,150K
wmt19 dataset 5,063K
TIL dataset 4,403K

Preprocessing of the data included:

  1. deduplication
  2. removing trash symbols, special tags, multiple whitespaces etc. from texts
  3. removing texts that were not in Russian or Kazakh (language detection was made via facebook/fasttext-language-identification)
  4. removing pairs that had low alingment score (comparison was performed via sentence-transformers/LaBSE)
  5. filtering the data using opusfilter tools

The model was trained for 56 hours on 2 GPUs NVIDIA A100 80 Gb.

Evaluation

Current model was compared to another open-source translation model, NLLB. We compared our model to all version of NLLB, excluding nllb-moe-54b due to its size. The metrics - BLEU, chrF and COMET - were calculated on devtest part of FLORES+ evaluation benchmark, most recent evaluation benchmark for multilingual machine translation.
Calculation of BLEU and chrF follows the standart implementation from sacreBLEU, and COMET is calculated using default model described in COMET repository.

Model Size BLEU chrf COMET
nllb-200-distilled-600M 600M 18.0 47.3 85.6
This model 197M 18.8 48.7 86.7
nllb-200-1.3B 1.3B 20.4 49.3 87.9
nllb-200-distilled-1.3B 1.3B 20.8 49.6 88.1
nllb-200-3.3B 3.3B 21.5 50.7 88.7

Examples of usage:

>>> print(generate("Балық көбінесе сулардағы токсиндердің жоғары концентрацияларына байланысты өледі."))
Рыба часто умирает из-за высоких концентраций токсинов в воде.

>>> print(generate("Өткен 3 айда 80-нен астам қамалушы ресми түрде айып тағылмастан изолятордан шығарылды."))
За прошедшие 3 месяца более 80 арестованных были официально извлечены из изолятора без обвинения.

>>> print(generate("Бұл тастардың он бесі өткен шілде айындағы метеориттік жаңбырға жатқызылады."))
Пятнадцать этих камней относят к метеоритным дождям прошлого июля.

Citations

@misc{deepvk2024kazRushkkru,
    title={kazRush-kk-ru: translation model from Kazakh to Russian},
    author={Lebedeva, Anna and  Sokolov, Andrey},
    url={https://huggingface.co/deepvk/kazRush-kk-ru},
    publisher={Hugging Face},
    year={2024},
}
Downloads last month
393
Safetensors
Model size
197M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for deepvk/kazRush-kk-ru

Quantizations
1 model

Dataset used to train deepvk/kazRush-kk-ru