davidrd123's picture
Model card auto-generated by SimpleTuner
a0a1c98 verified
|
raw
history blame
4.24 kB
---
license: creativeml-openrail-m
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'mp_style, Outdoor setting, 30 figures, mostly women in long dresses, some men, some children, 14 umbrellas (orange, red, blue), large Gothic arches, upper facade with decorative patterns, stone pavement, black lamp post, signature bottom-left.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'mp_style, park scene, fountain, autumn foliage, orange, yellow, red, trees, people, white chairs, standing, blue sky, clouds, vibrant colors, peaceful, serene.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
---
# lora-Maurice-Prendergast-Flux
This is a LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left
```
## Validation settings
- CFG: `7.5`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 235
- Training steps: 4000
- Learning rate: 0.0004
- Effective batch size: 6
- Micro-batch size: 6
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Not used
- LoRA Rank: 64
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### MauricePrendergastRedo3
- Repeats: 0
- Total number of images: 102
- Total number of aspect buckets: 1
- Resolution: 1024 px
- Cropped: True
- Crop style: center
- Crop aspect: square
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'davidrd123/lora-Maurice-Prendergast-Flux'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")
```