metadata
license: creativeml-openrail-m
base_model: black-forest-labs/FLUX.1-dev
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
mp_style, Street scene, 50 figures (many women: colorful dresses, many
men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings
background, water, boats, Italian flag, steps, lamps, crowd ascending
descending bridge, signature bottom-left
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: >-
mp_style, Outdoor setting, 30 figures, mostly women in long dresses, some
men, some children, 14 umbrellas (orange, red, blue), large Gothic arches,
upper facade with decorative patterns, stone pavement, black lamp post,
signature bottom-left.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: >-
mp_style, park scene, fountain, autumn foliage, orange, yellow, red,
trees, people, white chairs, standing, blue sky, clouds, vibrant colors,
peaceful, serene.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: >-
mp_style, Street scene, 50 figures (many women: colorful dresses, many
men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings
background, water, boats, Italian flag, steps, lamps, crowd ascending
descending bridge, signature bottom-left
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
lora-Maurice-Prendergast-Flux
This is a LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left
Validation settings
- CFG:
7.5
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 235
- Training steps: 4000
- Learning rate: 0.0004
- Effective batch size: 6
- Micro-batch size: 6
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Not used
- LoRA Rank: 64
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
MauricePrendergastRedo3
- Repeats: 0
- Total number of images: 102
- Total number of aspect buckets: 1
- Resolution: 1024 px
- Cropped: True
- Crop style: center
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'davidrd123/lora-Maurice-Prendergast-Flux'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "mp_style, Street scene, 50 figures (many women: colorful dresses, many men: suits), 23 umbrellas (orange, red, yellow, green), bridge, buildings background, water, boats, Italian flag, steps, lamps, crowd ascending descending bridge, signature bottom-left"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")