File size: 2,702 Bytes
f509c6f 7c4f0e8 f509c6f 7c4f0e8 3678d40 7c4f0e8 775dc1c 7c4f0e8 775dc1c 7c4f0e8 775dc1c 7c4f0e8 3ec1f6e 7c4f0e8 2d15b4a 7c4f0e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: cc-by-nc-sa-4.0
size_categories:
- 1K<n<10K
---
# RT-Pose: A 4D Radar Tensor-based 3D Human Pose Estimation and Localization Benchmark (ECCV 2024)
RT-Pose introduces a human pose estimation (HPE) dataset and benchmark by integrating a unique combination of calibrated 4D radar tensors, RGB images, and LiDAR point clouds.
This integration marks a significant advancement in studying human pose analysis through multi-modality datasets.
![images](./asset/data_viz.gif)
![images](./asset/annotation.gif)
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
#### Sensors
The data collection hardware system comprises two RGB [cameras](https://www.flir.com/products/blackfly-s-usb3/?model=BFS-U3-16S2C-CS), a non-repetitive
horizontal scanning [LiDAR](https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/assets/horizon/Livox%20Horizon%20user%20manual%20v1.0.pdf), and a cascade imaging [radar module](https://www.ti.com/tool/MMWCAS-RF-EVM).
![images](./asset/device.png)
#### Data Statics
We collect the dataset in 40 scenes with indoor and outdoor environments.
![images](./asset/examples.png)
The dataset comprises 72,000 frames distributed across 240 sequences.
The structured organization ensures a realistic distribution of human motions, which is crucial for robust analysis and model training.
![images](./asset/data_distribution.png)
Please check the paper for more details.
- **Curated by:** Yuan-Hao Ho ([email protected]), Jen-Hao(Andy) Cheng([email protected]) from [Information Processing Lab](https://ipl-uw.github.io/) at University of Washington
- **License:** [CC BY-NC-SA](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository including data processing and baseline method codes:** [RT-POSE](https://github.com/ipl-uw/RT-POSE)
- **Paper:** To be viewed on arxiv.
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
1. Download the dataset from Hugging Face (Total data size: ~1.2 TB)
2. Follow the [data processing tool](https://github.com/ipl-uw/RT-POSE/data_processing) to process radar ADC samples into radar tensors. (Total data size of the downloaded data and saved radar tensors: ~41 TB)
3. Check the data loading and baseline method's training and testing codes in the same repo [RT-POSE](https://github.com/ipl-uw/RT-POSE)
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
To appear on arxiv
## Dataset Card Contact
Jen-Hao (Andy) Cheng, [email protected] |