The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: ReadTimeout Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: c4392bc4-879c-4169-8b04-c50c593af3d0)') Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 164, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1729, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1686, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1024, in get_module standalone_yaml_path = cached_path( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 178, in cached_path resolved_path = huggingface_hub.HfFileSystem( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 175, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 121, in _repo_and_revision_exist self._api.repo_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2682, in repo_info return method( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2539, in dataset_info r = get_session().get(path, headers=headers, timeout=timeout, params=params) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get return self.request("GET", url, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send return super().send(request, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send raise ReadTimeout(e, request=request) requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: c4392bc4-879c-4169-8b04-c50c593af3d0)')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
RT-Pose: A 4D Radar Tensor-based 3D Human Pose Estimation and Localization Benchmark (ECCV 2024)
RT-Pose introduces a human pose estimation (HPE) dataset and benchmark by integrating a unique combination of calibrated radar ADC data, 4D radar tensors, stereo RGB images, and LiDAR point clouds. This integration marks a significant advancement in studying human pose analysis through multi-modality datasets.
Dataset Details
Dataset Description
Sensors
The data collection hardware system comprises two RGB cameras, a non-repetitive horizontal scanning LiDAR, and a cascade imaging radar module.
Data Statics
We collect the dataset in 40 scenes with indoor and outdoor environments.
The dataset comprises 72,000 frames distributed across 240 sequences. The structured organization ensures a realistic distribution of human motions, which is crucial for robust analysis and model training.
Please check the paper for more details.
- Curated by: Yuan-Hao Ho ([email protected]), Jen-Hao(Andy) Cheng([email protected]) from Information Processing Lab at University of Washington
- License: CC BY-NC-SA
Dataset Sources
Uses
- Download the dataset from Hugging Face (Total data size: ~1.2 TB)
- Follow the data processing tool to process radar ADC samples into radar tensors. (Total data size of the downloaded data and saved radar tensors: ~41 TB)
- Check the data loading and baseline method's training and testing codes in the same repo RT-POSE
Citation
BibTeX:
@article{rtpose2024, title={RT-Pose: A 4D Radar Tensor-based 3D Human Pose Estimation and Localization Benchmark}, author={Yuan-Hao Ho and Jen-Hao Cheng and Sheng Yao Kuan and Zhongyu Jiang and Wenhao Chai and Hsiang-Wei Huang and Chih-Lung Lin and Jenq-Neng Hwang}, journal={arXiv preprint arXiv:2407.13930}, year={2024} }
- Downloads last month
- 32,950