id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
6 | 1308.4565v2 | 13 | [
75.31724739074707,
53.33697509765625,
270.87100982666016,
76.99033610026042
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
(Setting) Algorithm /$p_r$ & 1 & 0.5 & 0.1 & 0.01 \\
\hline
(Z1,S2) CoS (context is time) error $\%$ & 10 & 13.9 & 36.4 & 47.1 \\
\hline
(Z1,S2) DCZA (context is time) error $\%$ & 4.8 & 4.8 & 16.3 & 56.6 \\
\hline
\end{tabular}
}
\caption{Error percentages of CoS and DCZA as a function of $p_r$ (probability of receiving the label at each time slot) when context is time.}
\vspace{-0.2in}
\label{tab:errorperc}
\end{table} | [
[
"(Setting) Algorithm /pr",
"1",
"0.5",
"0.1",
"0.01"
],
[
"(Z1,S2) CoS (context is time) error %",
"10",
"13.9",
"36.4",
"47.1"
],
[
"(Z1,S2) DCZA (context is time) error %",
"4.8",
"4.8",
"16.3",
"56.6"
]
] | 0.653333 | null | null |
7 | 1308.4565v2 | 13 | [
115.25924873352051,
127.00900268554688,
230.9290008544922,
150.31732177734375
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
$\#$ of learners & 1 & 2 & 3 & 4 \\
\hline
CoS error $\%$ & 49.8 & 49.7 & 50.2 & 22.3 \\
\hline
DCZA error $\%$ & 49.8 & 49.8 & 49.8 & 22.7 \\
\hline
\end{tabular}
}
\caption{Error percentages of CoS and DCZA for learner 1, as a function of the number of learners present in the system.}
\vspace{-0.2in}
\label{tab:nlearn}
\end{table} | [
[
"# of learners",
"1",
"2",
"3",
"4"
],
[
"CoS error %",
"49.8",
"49.7",
"50.2",
"22.3"
],
[
"DCZA error %",
"49.8",
"49.8",
"49.8",
"22.7"
]
] | 0.550336 | null | null |
8 | 1308.4565v2 | 13 | [
321.277837117513,
53.33697509765625,
550.9371643066406,
91.61798095703125
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
d & error $\%$ & training $\%$ & selection (except training/exploration) $\%$ \\
& & of learners 2,3,4 & of learners 1,2,3,4 \\
\hline
0 & 0.9 & 0.27, 0.23, 0.16 & 52.9, 47, 0.1, 0\\
\hline
0.5 & 1 & 0.27, 0.23, 0.16 & 53, 47, 0, 0 \\
\hline
0.7 & 23.7 &0.27, 0.23, 0.16 & 100, 0, 0, 0\\
\hline
\end{tabular}
}
\caption{Error and arm selection percentages as a function of calling cost}
\vspace{-0.25in}
\label{tab:callcost}
\end{table} | [
[
"d",
"error %",
"training %\nof learners 2,3,4",
"selection (except training/exploration) %\nof learners 1,2,3,4"
],
[
"0",
"0.9",
"0.27, 0.23, 0.16",
"52.9, 47, 0.1, 0"
],
[
"0.5",
"1",
"0.27, 0.23, 0.16",
"53, 47, 0, 0"
],
[
"0.7",
"23.7",
"0.27, 0.23, 0.16",
"100, 0, 0, 0"
]
] | 0.747554 | null | null |
9 | 1308.4565v2 | 13 | [
328.08721313476565,
127.00900268554688,
544.1278076171875,
159.4329833984375
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|}
\hline
(Setting) Algorithm & previous label (A1) & srcbytes (A2) & time \\
& is context & is context & is context \\
\hline
(Z1,S1) CoS error $\%$ & 2.68 & 3.64 & 6.43 \\
\hline
(Z1,S2) CoS error $\%$ & 23.8 & 42.6 & 29 \\
\hline
\end{tabular}
}
\caption{Error percentages of CoS for learner 1, when learner 1 only sends its context information to the other learners.}
\vspace{-0.3in}
\label{tab:onlycontext}
\end{table} | [
[
"(Setting) Algorithm",
"previous label (A1)\nis context",
"srcbytes (A2)\nis context",
"time\nis context"
],
[
"(Z1,S1) CoS error %",
"2.68",
"3.64",
"6.43"
],
[
"(Z1,S2) CoS error %",
"23.8",
"42.6",
"29"
]
] | 0.631111 | null | null |
10 | 1308.4565v2 | 3 | [
49.1465003490448,
53.33697509765625,
305.9354419708252,
162.17901611328125
] | \begin{table}[t]
\centering
{\renewcommand{\arraystretch}{0.6}
{\fontsize{8}{7}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
& \cite{breiman1996bagging, buhlmann2003boosting, lazarevic2001distributed, chen2004channel, perlich2011cross} & \cite{mateos2010distributed, kargupta1999collective} & \cite{zheng2011attribute} & This work \\
\hline
Aggregation & non-cooperative & cooperative & cooperative & \rev{no} \\
\hline
Message & none & data & training & data and label \\
exchange & & & residual & only if improves \\
& & & & performance \\
\hline
Learning & offline/online & offline & offline & Non-bayesian \\
approach&&&& online\\
\hline
Correlation & N/A & no & no & yes\\
exploitation & & & &\\
\hline
Information from & no & all & all & only if improves \\
other learners & & & & accuracy \\
\hline
Data partition & horizontal & horizontal & vertical & horizontal \\
&&&& and vertical \\
\hline
Bound on regret, & no &no &no &yes - sublinear\\
convergence rate &&&&\\
\hline
\end{tabular}
}
}
\caption{Comparison with related work in distributed data mining.}
\label{tab:comparison1}
\vspace{-0.2in}
\end{table} | [
[
"",
"[6], [11], [16]–[18]",
"[10], [12]",
"[8]",
"This work"
],
[
"Aggregation",
"non-cooperative",
"cooperative",
"cooperative",
"no"
],
[
"Message\nexchange",
"none",
"data",
"training\nresidual",
"data and label\nonly if improves\nperformance"
],
[
"Learning\napproach",
"offline/online",
"offline",
"offline",
"Non-bayesian\nonline"
],
[
"Correlation\nexploitation",
"N/A",
"no",
"no",
"yes"
],
[
"Information from\nother learners",
"no",
"all",
"all",
"only if improves\naccuracy"
],
[
"Data partition",
"horizontal",
"horizontal",
"vertical",
"horizontal\nand vertical"
],
[
"Bound on regret,\nconvergence rate",
"no",
"no",
"no",
"yes - sublinear"
]
] | 0.432973 | null | null |
0 | 2306.12964v1 | 5 | [
55.70856475830078,
106.91884803771973,
295.9165344238281,
172.6195182800293
] | \begin{table}[!t]
\centering
\caption{Tokens used in our framework.}
\resizebox{0.48\textwidth}{!}{
\begin{tabular}{c|c}
\toprule[1.5pt]
Category & Examples \\
\midrule[1pt]
Operators & \emph{CS-Log}, \emph{CS-Add}, \emph{TS-Mean}, \emph, $\dotsc$ \\
Features & \emph{\$open}, \emph{\$volume}, $\dotsc$ \\
Constants & $-30, -10, -5, -2, -1, -0.5, -0.01, 0.01, 0.5, 1, 2, 5, 10, 30$ \\
Time Deltas & $10d, 20d, 30d, 40d, 50d$ \\
Sequence Indicator & \emph{BEG}(begin), \emph{SEP}(end of expression) \\
\bottomrule[1.5pt]
\end{tabular}}
\label{tab:tokens}
\end{table} | [
[
"Category Examples",
null
],
[
"Operators\nFeatures\nConstants\nTime Deltas\nSequence Indicator",
"CS-Log, CS-Add, TS-Mean, , . . .\n$open, $volume, . . .\n−30, −10, −5, −2, −1, −0.5, −0.01, 0.01, 0.5, 1, 2, 5, 10, 30\n10𝑑, 20𝑑, 30𝑑, 40𝑑, 50𝑑\nBEG(begin), SEP(end of expression)"
]
] | 0.436533 | null | null |
0 | 2103.02037v2 | 30 | [
133.18419799804687,
96.60797119140625,
478.8158020019531,
128.28900146484375
] | \begin{table}[h!]
\caption{Tight binding parameters for h-BN}
\begin{center}
\begin{tabular}{||p{2cm}|p{2cm}|p{2cm}|p{2cm}|p{2cm}||}
\hline
$t_b$ (eV)& $t_n$ (eV)& $t_1$ (eV)& $t_2$ (eV)& $t_3$ (eV)\\
\hline
\hline
2.46 & -2.55 & 2.16 & 0.04 & 0.08\\
\hline
\end{tabular}
\end{center}
\label{Table1}
\end{table} | [
[
"t (eV)\nb",
"t (eV)\nn",
"t (eV)\n1",
"t (eV)\n2",
"t (eV)\n3"
],
[
"2.46",
"-2.55",
"2.16",
"0.04",
"0.08"
]
] | 0.84507 | null | null |
1 | 2103.02037v2 | 31 | [
133.18419799804687,
258.708984375,
478.8158020019531,
290.3909912109375
] | \begin{table}[h!]
\caption{Hubbard model parameters for graphene}
\begin{center}
\begin{tabular}{||p{2cm}|p{2cm}|p{2cm}|p{2cm}|p{2cm}||}
\hline
$t_C$ (eV)& $t_1$ (eV)& $t_2$ (eV)& $t_3$ (eV) & $U$ (eV)\\
\hline
\hline
1.994 & 2.86 & -0.236 & 0.252 & 9.3\\
\hline
\end{tabular}
\end{center}
\label{Table2}
\end{table} | [
[
"t (eV)\nC",
"t (eV)\n1",
"t (eV)\n2",
"t (eV)\n3",
"U (eV)"
],
[
"1.994",
"2.86",
"-0.236",
"0.252",
"9.3"
]
] | 0.867133 | null | null |
0 | 2201.11358v2 | 8 | [
190.78834025065103,
96.67250145806207,
293.19922637939453,
208.20472717285156
] | \begin{table}[ht]
\centering
\caption{An illustrative example of one-hot and target encoding methods over the same data sample.}\label{tab:encoding}
\begin{tabular}{c|c|c}
\textbf{Ethnic} & \textbf{Encoding} & \textbf{Label} \\ \hline
African-American & 1 & 1 \\
Caucasian & $1/3$ & 1\\
Caucasian & $1/3$ & 0\\
Caucasian & $1/3$ & 0 \\
Hispanic & 0 & 0
\end{tabular}
\caption*{$(a)$ Unregularized Mean Target Encoding}
\end{table} | [
[
"",
"",
null,
"",
"EO\nDP\nAA",
"F Caucasian vs\nCaucasian vs Al\nOCaucasian vs A",
"All\nl\nll"
],
[
"",
"",
"",
"",
"",
"",
""
],
[
"",
"",
null,
"",
"",
"",
""
],
[
"",
"",
null,
"",
"",
"",
""
],
[
"",
"",
null,
"",
"",
"",
""
],
[
"",
"",
"",
"",
"",
"",
""
],
[
"",
"",
null,
"",
"",
"",
""
]
] | 0.460829 | null | null |
0 | 2110.01227v1 | 7 | [
136.46099853515625,
147.91497802734375,
478.8949890136719,
488.239013671875
] | \begin{table}[hbt]
\caption{Query instances}
\begin{center}
\begin{tabular}{|c|l l|}
\hline
\textbf{Task} & \multicolumn{2}{|l|}{\textbf{Query}}\\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{Data retrieval}}}\\
\hline
\multirow{3}{*}{\#1} & Q1a & Retrieve documents written in \textit{French} \\
% \hline
& Q1b & Retrieve documents written in \textit{English} and edited in \textit{December} \\
%\hline
& Q1c & Retrieve documents whose domains are \textit{math} or \textit{info},
written in \textit{English} \\&& and edited in \textit{2010}, \textit{2012} or \textit{2014} \\
\hline
\multirow{2}{*}{\#2} & Q2a & Retrieve data files (documents or tables) containing the term \textit{university} \\
& Q2b & Retrieve data files containing the terms \textit{university}, \textit{science} or \textit{research}\\
\hline
\multirow{2}{*}{\#3} & Q3a & Retrieve the top 5 documents similar to any given document \\
& Q3b & Retrieve 5 tables joinable to table $t\_dc9442ed0b52d69c\_\_\_\_c11\_1\_\_\_\_1$\\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{ Textual Document Analysis/Aggregation}}}\\
\hline
\multirow{2}{*}{\#4} & Q4a & Calculate documents scores w.r.t. the terms \textit{university} and \textit{science} \\
& Q4b & Calculate documents scores w.r.t. the terms \textit{university}, \textit{research}, \\
& & \textit{new} and \textit{solution}\\
\hline
\multirow{2}{*}{\#5} & Q5a & Retrieve documents concordance w.r.t. the terms \textit{university} and \textit{science} \\
& Q5b & Retrieve documents concordance w.r.t. the terms \textit{university}, \textit{science} \\
& & \textit{new} and \textit{solution} \\
\hline
\multirow{1}{*}{\#6} & Q6a & Find top 10 keywords from all documents (stopwords excluded) \\
\hline
\multirow{2}{*}{\#7} & Q7a & Run a PCA with documents merged by \textit{domains} \\
& Q7b & Run a 3-cluster KMeans clustering with documents merged by \textit{domains} \\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{Tabular Data Analysis/Queries}}}\\
\hline
\multirow{2}{*}{\#8} & Q8a & Retrieve all tuples from table $t\_e9efd5cda78af711\_\_\_\_c11\_1\_\_\_\_1$ \\
& Q8b & Retrieve tuples from table $t\_e9efd5cda78af711\_\_\_\_c11\_1\_\_\_\_1$ \\
& & whose column \textit{PROVINCE} bears the value \textit{BC} \\
\hline
\multirow{2}{*}{\#9} & Q9a & Calculate the average of columns \textit{Unnamed: 12}, \textit{13}, and \textit{20} \\ & & from table $t\_356fc1eaad97f93b\_\_\_\_c15\_1\_\_\_\_1$ grouped by \textit{Unnamed: 2} \\
& Q9b & Run a left join query between tables $PED\_SK\_DTL\_SNF\_\_\_\_c7\_0\_\_\_\_1$ \\
& & and $t\_285b3bcd52ec0c86\_\_\_\_c13\_1\_\_\_\_1$ w.r.t. columns named \textit{SOILTYPE} \\
\hline
\multirow{2}{*}{\#10} & Q10a & Run a PCA on the result of query \textit{Q9a} \\
& Q10b & Run a 3-cluster KMeans clustering on the result of query \textit{Q9a} \\
\hline
\end{tabular}
\end{center}
\label{tab:query.instances}
\end{table} | [
[
"Task",
"Query"
],
[
"Data retrieval",
null
],
[
"#1",
"Q1a Retrieve documents written in French\nQ1b Retrieve documents written in English and edited in December\nQ1c Retrieve documents whose domains are math or info, written in English\nand edited in 2010, 2012 or 2014"
],
[
"#2",
"Q2a Retrieve data files (documents or tables) containing the term university\nQ2b Retrieve data files containing the terms university, science or research"
],
[
"#3",
"Q3a Retrieve the top 5 documents similar to any given document\nQ3b Retrieve 5 tables joinable to table t dc9442ed0b52d69c c11 1 1"
],
[
"Textual Document Analysis/Aggregation",
null
],
[
"#4",
"Q4a Calculate documents scores w.r.t. the terms university and science\nQ4b Calculate documents scores w.r.t. the terms university, research,\nnew and solution"
],
[
"#5",
"Q5a Retrieve documents concordance w.r.t. the terms university and science\nQ5b Retrieve documents concordance w.r.t. the terms university, science\nnew and solution"
],
[
"#6",
"Q6a Find top 10 keywords from all documents (stopwords excluded)"
],
[
"#7",
"Q7a Run a PCA with documents merged by domains\nQ7b Run a 3-cluster KMeans clustering with documents merged by domains"
],
[
"Tabular Data Analysis/Queries",
null
],
[
"#8",
"Q8a Retrieve all tuples from table t e9efd5cda78af711 c11 1 1\nQ8b Retrieve tuples from table t e9efd5cda78af711 c11 1 1\nwhose column PROVINCE bears the value BC"
],
[
"#9",
"Q9a Calculate the average of columns Unnamed: 12, 13, and 20\nfrom table t 356fc1eaad97f93b c15 1 1 grouped by Unnamed: 2\nQ9b Run a left join query between tables PED SK DTL SNF c7 0 1\nand t 285b3bcd52ec0c86 c13 1 1 w.r.t. columns named SOILTYPE"
],
[
"#10",
"Q10a Run a PCA on the result of query Q9a\nQ10b Run a 3-cluster KMeans clustering on the result of query Q9a"
]
] | 0.952153 | null | null |
0 | 1211.6177v6 | 9 | [
63.57499885559082,
123.8790283203125,
495.898868560791,
257.27899169921875
] | \begin{table}
\centering
\begin{tabular}{|m{0.12\textwidth}|m{0.2\textwidth}|m{0.11\textwidth}|m{0.2\textwidth}|m{0.2\textwidth}|}
\hline
\textbf{Identifier index}& \textbf{Identifier (name of annotation)}&\textbf{Number of regions}
&\textbf{Hierarchical?}& \textbf{Number of annotated voxels}\\ \hline
1 & {\ttfamily{’standard’}} & 209 & Yes & 49,742\\ \hline
2 & {\ttfamily{’cortex’}} & 40 & Yes & 11,862\\ \hline
3 & {\ttfamily{’standard+cortex’}} & 242 & Yes & 49,742\\ \hline
4 & {\ttfamily{’fine’}} & 94 & No & 22,882\\ \hline
5 & {\ttfamily{’big12’}} & 13 & No & 25,155 \\ \hline
6 & {\ttfamily{’cortexLayers’}} & 8 & No & 11,862 \\ \hline
\end{tabular}
\caption{Systems of annotations of the adult mouse brain in the digital version
of the Allen Reference Atlas, at a resolution of 200 microns.}
\label{annotationSystems}
\end{table} | [
[
"Identifier\nindex",
"Identifier\n(name of anno-\ntation)",
"Number\nof re-\ngions",
"Hierarchical?",
"Number of an-\nnotated voxels"
],
[
"1",
"standard",
"209",
"Yes",
"49,742"
],
[
"2",
"cortex",
"40",
"Yes",
"11,862"
],
[
"3",
"standard+cortex",
"242",
"Yes",
"49,742"
],
[
"4",
"fine",
"94",
"No",
"22,882"
],
[
"5",
"big12",
"13",
"No",
"25,155"
],
[
"6",
"cortexLayers",
"8",
"No",
"11,862"
]
] | 0.653001 | null | null |
0 | 1809.06404v3 | 7 | [
159.51300048828125,
404.05999755859375,
452.4859924316406,
462.8389892578125
] | \begin{table}[h]
\caption{The evaluation of reward learning on transfer learning tasks. Mean scores (higher the better) with standard deviation are presented over 5 trials.}
\centering
\begin{tabular}{|l|c|c|c|}\hline
Algorithm& States-Only & Pointmass-Maze & Crippled-Ant\\ \hline \hline
%&&&&\\\hline
\multirow{1}{*}{Expert}& N/A & $-4.98 \pm 0.29$ & $432.66 \pm 14.38$ \\ \hline
\multirow{1}{*}{AIRL}& Yes & $-8.07 \pm 0.50$&$175.51 \pm 27.31$ \\ \hline
\multirow{1}{*}{AIRL}& No & $-19.28 \pm 2.03$&$46.12 \pm 14.37$ \\ \hline
\multirow{1}{*}{\textbf{EAIRL(Ours)}}& \textbf{No} & $\boldsymbol{-7.01 \pm 0.61}$& $\boldsymbol{348.43 \pm 43.17}$\\ \hline
\end{tabular}
\end{table} | [
[
"Algorithm",
"States-Only",
"Pointmass-Maze",
"Crippled-Ant"
],
[
"Expert",
"N/A",
"4.98 0.29\n− ±",
"432.66 14.38\n±"
],
[
"AIRL",
"Yes",
"8.07 0.50\n− ±",
"175.51 27.31\n±"
],
[
"AIRL",
"No",
"19.28 2.03\n− ±",
"46.12 14.37\n±"
],
[
"EAIRL(Ours)",
"No",
"−7.01 ± 0.61",
"348.43 ± 43.17"
]
] | 0.571429 | null | null |
0 | 2009.04756v2 | 30 | [
170.9759979248047,
298.8489990234375,
294.0559997558594,
395.2879943847656
] | \begin{table}[h!]
\caption{Fault classes and known magnitudes (i.e., $\theta$ for multiplicative sensor faults and leakage diameters) represented in training data. Data from the leakage $f_{iml}$ have been collected from two known diameters of the orifice.}
\label{tab:fault_modes}
\centering
\begin{tabular}{ccccccccc}
\hline
Fault Class & \multicolumn{8}{c}{Fault magnitudes} \\
\hline
$ NF $ & \\
$ f_{ypim} $ & -20\%& -15\% & -10\% & -5\% & 5\% & 10\% & 15\% & \\
$ f_{ypic} $ & -20\% & -15\% & -10\% & -5\% & 5\% & 10\% & 15\% &\\
$ f_{ywaf} $ & -20\% & -15\% & -10\% & -5\% & 5\% & 10\% & 15\% & 20\%\\
$ f_{iml} $ & 4mm & 6mm\\
\hline
\end{tabular}
\end{table} | [
[
"θ N\n\\",
"50 100 200 300"
],
[
"-20%\n-15%\n-10%\n-5%\n5%\n10%\n15%",
"37.7 45.9 69.5 77.1\n23.7 27.8 39.7 43.0\n13.4 14.8 18.6 19.1\n7.7 7.2 7.0 6.6\n9.1 7.1 7.0 7.3\n17.0 14.9 18.3 20.9\n31.0 28.8 40.0 45.6"
]
] | 0.383648 | null | null |
1 | 2009.04756v2 | 30 | [
180.38499450683594,
417.1419982910156,
290.1820068359375,
525.5350341796875
] | \begin{table}[h!]
\caption{Comparison of mean values of distinguishability measure of fault detection as a function of fault size and used batch size when estimating pdfs.}
\label{tab:Dij_varying_batch}
\centering
\footnotesize
\begin{tabular}{ c | c c c c }
\multicolumn{5}{c}{$\mathcal{D}_{fypic,NF}$} \\
\hline
$\theta$ \textbackslash $N$ & 50 & 100 & 200 & 300 \\
\hline
-20\% & 37.7 & 45.9 & 69.5 & 77.1 \\
-15\% & 23.7 & 27.8 & 39.7 & 43.0 \\
-10\% & 13.4 & 14.8 & 18.6 & 19.1 \\
-5\% & 7.7 & 7.2 & 7.0 & 6.6 \\
5\% & 9.1 & 7.1 & 7.0 & 7.3 \\
10\%& 17.0 & 14.9 & 18.3 & 20.9 \\
15\%& 31.0 & 28.8 & 40.0 & 45.6 \\
\hline
\end{tabular}\quad\quad\quad%
\begin{tabular}{ c | c c c c }
\multicolumn{5}{c}{$\mathcal{D}_{fypim,NF}$} \\
\hline
$\theta$ \textbackslash $N$ & 50 & 100 & 200 & 300 \\
\hline
-20\% & 9.5 & 9.4 &10.1 & 10.7 \\
-15\% & 6.7 & 6.5 & 6.8 & 7.1 \\
-10\% & 5.1 & 4.6 & 4.2 & 4.2 \\
-5\% & 2.6 & 2.2 & 1.8 & 1.6\\
5\% & 3.2 & 2.8 & 1.7 & 2.3 \\
10\%& 4.7 & 4.2 & 3.9 & 3.8 \\
15\%& 6.3 & 6.0 & 6.0 & 6.1 \\
\hline
\end{tabular}
\vspace{0.3cm}
\begin{tabular}{ c | c c c c }
\multicolumn{5}{c}{$\mathcal{D}_{fywaf,NF}$} \\
\hline
$\theta$ \textbackslash $N$ & 50 & 100 & 200 & 300 \\
\hline
-20\% & 3.9 & 3.3 & 3.0 & 2.9 \\
-15\% & 3.7 & 3.1 & 2.6 & 2.4 \\
-10\% & 3.1 & 2.7 & 2.1 & 1.9 \\
-5\% & 2.4 & 2.0 & 1.8 & 1.6 \\
5\% & 1.8 & 1.4 & 1.1 & 0.8 \\
10\%& 2.2 & 1.9 & 1.4 & 1.1 \\
15\%& 2.6 & 2.1 & 1.6 & 1.4 \\
20\%& 3.0 & 2.5 & 2.1 & 2.0 \\
\hline
\end{tabular}\quad\quad\quad%
\begin{tabular}{ c | c c c c }
\multicolumn{5}{c}{$\mathcal{D}_{fiml,NF}$} \\
\hline
$\theta$ \textbackslash $N$ & 50 & 100 & 200 & 300 \\
\hline
4mm& 4.0 & 3.6 & 3.0 & 2.6 \\
6mm& 6.9 & 6.7 & 6.4 & 5.8 \\
\hline
\end{tabular}
\end{table} | [
[
"θ N\n\\",
"50 100 200 300"
],
[
"-20%\n-15%\n-10%\n-5%\n5%\n10%\n15%\n20%",
"3.9 3.3 3.0 2.9\n3.7 3.1 2.6 2.4\n3.1 2.7 2.1 1.9\n2.4 2.0 1.8 1.6\n1.8 1.4 1.1 0.8\n2.2 1.9 1.4 1.1\n2.6 2.1 1.6 1.4\n3.0 2.5 2.1 2.0"
]
] | 0.401417 | null | null |
0 | 2203.12808v4 | 26 | [
109.98426055908203,
101.17723083496094,
523.7464141845703,
145.69573974609375
] | \begin{table}[h]
\centering
\renewcommand\arraystretch{1.5}
\resizebox{\linewidth}{!}{
\begin{tabular}{|c|c|}
% \hline
% & Basis functions for $g(\cdot)$ function \\
\hline
$\mathcal{V}_0$ & \makecell{$\{\texttt{exper,expersq,black,south,smsa,smsa66,} \texttt{reg1,reg2,reg3,reg4,reg5,reg6,reg7,reg8}\}$} \\
\hline
$\mathcal{V}_1$ & \makecell{$\mathcal{V}_0\cup\texttt{nearc4}\cdot\{1, \texttt{exper}, \texttt{expersq}, \texttt{black},\texttt{south}, \texttt{smsa}, \texttt{smsa66}\}$} \\
\hline
$\mathcal{V}_2$ & \makecell{$\mathcal{V}_0\cup\texttt{nearc4}\cdot\{1, \texttt{exper}, \texttt{expersq}, \texttt{black},\texttt{south}, \texttt{smsa}, \texttt{smsa66}, \texttt{reg1}, \texttt{reg2}, \texttt{reg3}, \texttt{reg4},\texttt{reg5}, \texttt{reg6}, \texttt{reg7}, \texttt{reg8}\}$} \\
\hline
\end{tabular}}
\caption{\small Definitions of $\mathcal{V}_0, \mathcal{V}_1$ and $\mathcal{V}_2$, which are used to approximate $g(\cdot)$.} %and required as inputs for Algorithm \ref{algo: TSCI selection}.} %$\mathcal{V}_0$ includes all baseline covariates; $\mathcal{V}_1$ includes $\mathcal{V}_0$ and the interaction of the IV \texttt{nearc4} and six most important covariates in the first stage. For $\mathcal{V}_2$, we further include the interactions of the IV with the remaining covariates which are the full set of regional dummies. }
\label{tab:basis real data}
\end{table} | [
[
"V0",
"{exper,expersq,black,south,smsa,smsa66,reg1,reg2,reg3,reg4,reg5,reg6,reg7,reg8}"
],
[
"V1",
"V0 ∪nearc4 · {1, exper, expersq, black, south, smsa, smsa66}"
],
[
"V2",
"V0 ∪nearc4 · {1, exper, expersq, black, south, smsa, smsa66, reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}"
]
] | 0.46953 | null | null |
0 | 1607.03765v1 | 13 | [
127.81099700927734,
164.75198364257812,
467.9939888848199,
408.9360046386719
] | \begin{table}[!h!]
\tiny
\centering
\caption{List of descriptors. Point = real scalar; Int = interval data; Hist = histogram data}
\begin{tabular}{|l|l|l|l}
\cline{1-3}
\multicolumn{1}{|c|}{\textbf{Descriptor}} & \multicolumn{1}{c|}{\textbf{Nature}} & \multicolumn{1}{c|}{\textbf{Legend}} & \\
\cline{1-3}
Area & \multicolumn{1}{c|}{Point} & Lesion area & \\
\cline{1-3}
Perimeter & \multicolumn{1}{c|}{Point} & Lesion perimeter & \\
\cline{1-3}
EquivDiameter & \multicolumn{1}{c|}{Point} & Equivalent diameter & \\
\cline{1-3}
Eccentricity & \multicolumn{1}{c|}{Point} & Eccentricity & \\
\cline{1-3}
MinMaxAxisLength & \multicolumn{1}{c|}{Int} & Major and minor interval axis & \\
\cline{1-3}
AsymmXY & \multicolumn{1}{c|}{Int} & Shape asymmetry & \\
\cline{1-3}
AsymmCelebiA1 & \multicolumn{1}{c|}{Point} & Alternative shape asymmetry & \\
\cline{1-3}
AsymmCelebiA2 & \multicolumn{1}{c|}{Point} & Alternative shape asymmetry & \\
\cline{1-3}
AsymmXYRed & \multicolumn{1}{c|}{Int} & Red asymmetry & \\
\cline{1-3}
AsymmXYGreen & \multicolumn{1}{c|}{Int} & Green asymmetry & \\
\cline{1-3}
AsymmXYBlue & \multicolumn{1}{c|}{Int} & Blue asymmetry & \\
\cline{1-3}
MagloZoneExt & \multicolumn{1}{c|}{Hist} & Pixel average intensity within external section & \\
\cline{1-3}
MagloZoneMid & \multicolumn{1}{c|}{Hist} & Pixel average intensity within middle section & \\
\cline{1-3}
MagloZoneInt & \multicolumn{1}{c|}{Hist} & Pixel average intensity within internal section & \\
\cline{1-3}
Degradation1 & \multicolumn{1}{c|}{Hist} & Color degradation & \\
\cline{1-3}
Degradation2 & \multicolumn{1}{c|}{Hist} & Alternative color degradation & \\
\cline{1-3}
Degradation3 & \multicolumn{1}{c|}{Hist} & Alternative color degradation & \\
\cline{1-3}
Degradation4 & \multicolumn{1}{c|}{Hist} & Alternative color degradation & \\
\cline{1-3}
Degradation5 & \multicolumn{1}{c|}{Hist} & Alternative color degradation & \\
\cline{1-3}
Degradation6 & \multicolumn{1}{c|}{Hist} & Alternative color degradation & \\
\cline{1-3}
Compactness & \multicolumn{1}{c|}{Point} & Compactness index & \\
\cline{1-3}
MinMaxBorderDist & \multicolumn{1}{c|}{Int} & Minimum and maximum distance border bari-center & \\
\cline{1-3}
RappBorderDist & \multicolumn{1}{c|}{Point} & Ratio between minimum and maximum distance border bari-center & \\
\cline{1-3}
VectorDistNorm & \multicolumn{1}{c|}{Hist} & Distances border bari-center & \\
\cline{1-3}
CVBorderDist & \multicolumn{1}{c|}{Point} & Coefficient of variation distance border bari-center & \\
\cline{1-3}
IntBord1 & \multicolumn{1}{c|}{Hist} & Border interruption & \\
\cline{1-3}
IntBord2 & \multicolumn{1}{c|}{Hist} & Alternative border interruption & \\
\cline{1-3}
IntBord3 & \multicolumn{1}{c|}{Hist} & Alternative border interruption & \\
\cline{1-3}
IntBord4 & \multicolumn{1}{c|}{Hist} & Alternative border interruption & \\
\cline{1-3}
IntBord5 & \multicolumn{1}{c|}{Hist} & Alternative border interruption & \\
\cline{1-3}
IntBord6 & \multicolumn{1}{c|}{Hist} & Alternative border interruption & \\
\cline{1-3}
IntBord7 & \multicolumn{1}{c|}{Hist} & Alternative border interruption & \\
\cline{1-3}
Smoothness & \multicolumn{1}{c|}{Point} & Smoothness index & \\
\cline{1-3}
Solidity & \multicolumn{1}{c|}{Point} & Solidity index & \\
\cline{1-3}
\end{tabular}
\label{descr}
\end{table} | [
[
"Descriptor",
"Nature",
"Legend"
],
[
"Area",
"Point",
"Lesion area"
],
[
"Perimeter",
"Point",
"Lesion perimeter"
],
[
"EquivDiameter",
"Point",
"Equivalent diameter"
],
[
"Eccentricity",
"Point",
"Eccentricity"
],
[
"MinMaxAxisLength",
"Int",
"Major and minor interval axis"
],
[
"AsymmXY",
"Int",
"Shape asymmetry"
],
[
"AsymmCelebiA1",
"Point",
"Alternative shape asymmetry"
],
[
"AsymmCelebiA2",
"Point",
"Alternative shape asymmetry"
],
[
"AsymmXYRed",
"Int",
"Red asymmetry"
],
[
"AsymmXYGreen",
"Int",
"Green asymmetry"
],
[
"AsymmXYBlue",
"Int",
"Blue asymmetry"
],
[
"MagloZoneExt",
"Hist",
"Pixel average intensity within external section"
],
[
"MagloZoneMid",
"Hist",
"Pixel average intensity within middle section"
],
[
"MagloZoneInt",
"Hist",
"Pixel average intensity within internal section"
],
[
"Degradation1",
"Hist",
"Color degradation"
],
[
"Degradation2",
"Hist",
"Alternative color degradation"
],
[
"Degradation3",
"Hist",
"Alternative color degradation"
],
[
"Degradation4",
"Hist",
"Alternative color degradation"
],
[
"Degradation5",
"Hist",
"Alternative color degradation"
],
[
"Degradation6",
"Hist",
"Alternative color degradation"
],
[
"Compactness",
"Point",
"Compactness index"
],
[
"MinMaxBorderDist",
"Int",
"Minimum and maximum distance border bari-center"
],
[
"RappBorderDist",
"Point",
"Ratio between minimum and maximum distance border bari-center"
],
[
"VectorDistNorm",
"Hist",
"Distances border bari-center"
],
[
"CVBorderDist",
"Point",
"Coefficient of variation distance border bari-center"
],
[
"IntBord1",
"Hist",
"Border interruption"
],
[
"IntBord2",
"Hist",
"Alternative border interruption"
],
[
"IntBord3",
"Hist",
"Alternative border interruption"
],
[
"IntBord4",
"Hist",
"Alternative border interruption"
],
[
"IntBord5",
"Hist",
"Alternative border interruption"
],
[
"IntBord6",
"Hist",
"Alternative border interruption"
],
[
"IntBord7",
"Hist",
"Alternative border interruption"
],
[
"Smoothness",
"Point",
"Smoothness index"
],
[
"Solidity",
"Point",
"Solidity index"
]
] | 0.507488 | null | null |
0 | 2111.08507v1 | 35 | [
123.16220245361328,
501.5360107421875,
472.11400146484374,
575.3590087890625
] | \begin{table}[h]
\centering
\begin{tabular}{| m{5cm} | m{3cm} | m{3cm} |}
\hline
\textbf{Data} & \textbf{Elbow Method} & \textbf{BIC} \\\hline
RNASeq (5 points) & - & 15*\\\hline
RPF (5 points) & - & - \\\hline
TE (5 points) & 5 & 17* \\\hline
\end{tabular}
\caption{Optimal K for different datasets, K-Means}
\label{tab:KMeanstable}
\end{table} | [
[
"Data",
"Elbow\nMethod",
"BIC"
],
[
"RNASeq (5 points)",
"-",
"15*"
],
[
"RPF (5 points)",
"-",
"-"
],
[
"TE (5 points)",
"5",
"17*"
]
] | 0.743363 | null | null |
1 | 2111.08507v1 | 38 | [
143.51220092773437,
231.3699951171875,
451.7638000488281,
290.74700927734375
] | \begin{table}[h]
\centering
\begin{tabular}{| m{5cm}| m{5cm} |}
\hline
\textbf{Data} & \textbf{BIC} \\\hline
RNASeq (5 points) & 13*\\\hline
RPF (5 points) & 8* \\\hline
TE (5 points) & 16* \\\hline
\end{tabular}
\caption{Optimal K for different datasets, HMMs}
\label{tab:HMMTable}
\end{table} | [
[
"Data",
"BIC"
],
[
"RNASeq (5 points)",
"13*"
],
[
"RPF (5 points)",
"8*"
],
[
"TE (5 points)",
"16*"
]
] | 0.717391 | null | null |
2 | 2111.08507v1 | 41 | [
102.81866455078125,
85.239013671875,
492.4571787516276,
159.46002197265625
] | \begin{table}
\centering
\begin{tabular}{|p{3cm}|p{3cm}|p{3cm}|p{3cm}|}
\hline
& \multicolumn{3}{|c|}{\textbf{Accuracy for Clusters}} \\\hline
\textbf{Algorithm} & \hspace{1.35cm}\textbf{4} & \hspace{1.35cm}\textbf{5} & \hspace{1.35cm}\textbf{6} \\\hline
K-Means & \hspace{0.95cm}56.52\% & \hspace{0.95cm}48.35\% & \hspace{0.95cm}41.61\% \\\hline
GMMs & \hspace{0.95cm}58.40\% & \hspace{0.95cm}53.11\% & \hspace{0.95cm}50.31\%\\\hline
HMMs & \hspace{0.95cm}68.72\% & \hspace{0.95cm}79.45\% & \hspace{1.45cm}-\\\hline
\end{tabular}
\caption{Performance evaluation for all algorithms*}
\label{tab:Comparison4}
\end{table} | [
[
"",
"Accuracy for Clusters",
null,
null
],
[
"Algorithm",
"4",
"5",
"6"
],
[
"K-Means",
"56.52%",
"48.35%",
"41.61%"
],
[
"GMMs",
"58.40%",
"53.11%",
"50.31%"
],
[
"HMMs",
"68.72%",
"79.45%",
"-"
]
] | 0.578512 | null | null |
3 | 2111.08507v1 | 19 | [
133.32266998291016,
85.239013671875,
461.95318094889325,
275.02703857421875
] | \begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Covariance} & \textbf{Description} & \textbf{Parameters} \\ \hline
Full & \pbox{20cm}{\hspace{0.1cm}\\Each component has its own \\ general covariance matrix\\} & \small $\frac{KD(D+1)}{2}$ \\ \hline
Diagonal& \pbox{20cm}{\hspace{0.1cm}\\Each component has a\\ diagonal covariance matrix\\} & $KD$\\ \hline
Spherical & \pbox{20cm}{\hspace{0.1cm}\\Each component \\ has a single variance\\} & $K$\\ \hline
Tied & \pbox{20cm}{\hspace{0.1cm}\\All components share the\\ same general covariance matrix\\} & $\frac{D(D+1)}{2}$\\ \hline
\end{tabular}
\caption{Covariance Settings for GMM}
\label{tab:GMM_Cov}
\end{table} | [
[
"Covariance",
"Description",
"Parameters"
],
[
"Full",
"Each component has its own\ngeneral covariance matrix",
"KD(D+1)\n2"
],
[
"Diagonal",
"Each component has a\ndiagonal covariance matrix",
"KD"
],
[
"Spherical",
"Each component\nhas a single variance",
"K"
],
[
"Tied",
"All components share the\nsame general covariance matrix",
"D(D+1)\n2"
]
] | 0.864697 | null | null |
0 | 2402.17219v1 | 15 | [
48.29499816894531,
147.24434407552084,
280.52398681640625,
406.190673828125
] | \begin{table}[htb!]
\caption{\textbf{The statistics on well-known Defi projects that
have been attacked.}}
\label{E}
\centering
\begin{tabular}{l|l|l}
\hline
\hline
\makebox[0.15\textwidth][l]{\textbf{Project Name} } & \makebox[0.15\textwidth][l]{\textbf{Attacking Time}} & \makebox[0.1\textwidth][l]{\textbf{Loss}} \\ \hline
Balancer & 2020.06.28 & \$0.5 Million \\ \hline
MakerDAO & 2020.03.12 & \$9 Million \\ \hline
ChainSwap & 2021.07.11 & \$4.8 Million \\ \hline
Burgerswap & 2021.05.28 & \$7.2 Million \\ \hline
bZx-V2 & 2020.09.15 & \$8.1 Million \\ \hline
bZx-V1 & 2020.02.17 & \$9.4 Million \\ \hline
Akropolis & 2020.11.12 & \$2 Million \\ \hline
EasyFi & 2021.04.20 & \$80 Million \\ \hline
Eminence Finance & 2020.09.29 & \$15 Million \\ \hline
JulSwap & 2021.05.28 & \$0.7 Million \\ \hline
Furucombo & 2020.09.29 & \$15 Million \\ \hline
Harvest Finance & 2020.10.26 & \$33.8 Million \\ \hline
Grim Finance & 2021.12.19 & \$30 Million \\ \hline
Indexed Finance & 2021.10.14 & \$16 Million \\ \hline
Lendf.Me & 2020.04.18 & \$25 Million \\ \hline
Nerve & 2021.11.15 & \$8 Million \\ \hline
Origin & 2020.11.17 & \$7 Million \\ \hline
Oypn & 2020.08.04 & \$0.37 Million \\ \hline
PancakeBunny & 2021.05.20 & \$47.1 Million \\ \hline
PAID Network & 2021.03.05 & \$160 Million \\ \hline
Pickle Finance & 2020.11.22 & \$20 Million \\ \hline
Poly Network & 2021.08.10 & \$611 Million \\ \hline
Popsicle & 2021.08.04 & \$25 Million \\ \hline
Rari Capital & 2022.04.30 & \$90 Million \\ \hline \hline
\end{tabular}
\end{table} | [
[
"Project Name",
"Attacking Time",
"Loss"
],
[
"Balancer",
"2020.06.28",
"$0.5 Million"
],
[
"MakerDAO",
"2020.03.12",
"$9 Million"
],
[
"ChainSwap",
"2021.07.11",
"$4.8 Million"
],
[
"Burgerswap",
"2021.05.28",
"$7.2 Million"
],
[
"bZx-V2",
"2020.09.15",
"$8.1 Million"
],
[
"bZx-V1",
"2020.02.17",
"$9.4 Million"
],
[
"Akropolis",
"2020.11.12",
"$2 Million"
],
[
"EasyFi",
"2021.04.20",
"$80 Million"
],
[
"Eminence Finance",
"2020.09.29",
"$15 Million"
],
[
"JulSwap",
"2021.05.28",
"$0.7 Million"
],
[
"Furucombo",
"2020.09.29",
"$15 Million"
],
[
"Harvest Finance",
"2020.10.26",
"$33.8 Million"
],
[
"Grim Finance",
"2021.12.19",
"$30 Million"
],
[
"Indexed Finance",
"2021.10.14",
"$16 Million"
],
[
"Lendf.Me",
"2020.04.18",
"$25 Million"
],
[
"Nerve",
"2021.11.15",
"$8 Million"
],
[
"Origin",
"2020.11.17",
"$7 Million"
],
[
"Oypn",
"2020.08.04",
"$0.37 Million"
],
[
"PancakeBunny",
"2021.05.20",
"$47.1 Million"
],
[
"PAID Network",
"2021.03.05",
"$160 Million"
],
[
"Pickle Finance",
"2020.11.22",
"$20 Million"
],
[
"Poly Network",
"2021.08.10",
"$611 Million"
],
[
"Popsicle",
"2021.08.04",
"$25 Million"
],
[
"Rari Capital",
"2022.04.30",
"$90 Million"
]
] | 0.930046 | null | null |
0 | 2105.14564v1 | 4 | [
99.11984487680289,
189.1669921875,
250.9031536395733,
257.71002197265625
] | \begin{table}
\normalsize
\begin{center}
\caption{The top 5 features selected from ISCX VPN-NonVPN and NIMS Datasets}\label{tab3}
\begin{tabular}{|| c | l | c | l ||}
\hline
\textbf{ID} & \multicolumn{1}{||c|}{\textbf{ISCX}} & \textbf{ID} & \multicolumn{1}{c||}{\textbf{NIMS}}\\
\hline\hline
0 & duration & 16 & duration\\
5 & max-fiat & 10 & max-fiat\\
6 & max-biat & 14 & max-biat\\
7 & mean-fiat & 9 & mean-fiat\\
8 & mean-biat & 13 & mean-biat\\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"ID",
"ISCX",
"ID",
"NIMS"
],
[
"0\n5\n6\n7\n8",
"duration\nmax-fiat\nmax-biat\nmean-fiat\nmean-biat",
"16\n10\n14\n9\n13",
"duration\nmax-fiat\nmax-biat\nmean-fiat\nmean-biat"
]
] | 0.56 | null | null |
0 | 1908.06402v1 | 4 | [
49.14799880981445,
78.1099853515625,
299.82998934659093,
270.38800048828125
] | \begin{table}[!bt]
\caption{Description of features.}
\begin{center}
\begin{tabular}{|p{2.3cm}|p{5.7cm}|}
%\begin{tabular}{|cp{3cm}|cp{9cm}|}
\hline
\textbf{Feature name} & \textbf{Description} \\\hline
$>$1000 h exp & Player has more than 1000 hours of experience. \\\hline
Gender & Gender of a player. 0 is a woman, 1 is a man. \\\hline
Kill Death Ratio & Number of player's kills divided by number of player's death in a session \\\hline
Age & Age of a player. \\\hline
lean\_back & Portion of time when player leans to the back of the chair. \\\hline
med\_acc\_x\_std & Median value of the floating standard deviation within 1-second window for $x$-component of accelerometer. The same for $y$ and $z$ components and gyro. \\\hline
moving\_acc\_x & Proportion of time when floating standard deviation of $x$ component of accelerometer is 3 times more than median. In other words, player actively moves along $x$ axis. \\\hline
moving\_gyro\_x & The same as moving\_acc\_x, but player actively rotates along $x$-axis. \\\hline
moving\_death\_acc\_x & Proportion of time during 1 second after death when person actively moving. The same for gyro, other components and events.\\\hline
\end{tabular}
\label{factors_description}
\end{center}
\end{table} | [
[
"Feature name",
"Description"
],
[
">1000 h exp",
"Player has more than 1000 hours of experience."
],
[
"Gender",
"Gender of a player. 0 is a woman, 1 is a man."
],
[
"Kill Death Ratio",
"Number of player’s kills divided by number of\nplayer’s death in a session"
],
[
"Age",
"Age of a player."
],
[
"lean back",
"Portion of time when player leans to the back of\nthe chair."
],
[
"med acc x std",
"Median value of the floating standard deviation\nwithin 1-second window for x-component of ac-\ncelerometer. The same for y and z components\nand gyro."
],
[
"moving acc x",
"Proportion of time when floating standard devia-\ntion of x component of accelerometer is 3 times\nmore than median. In other words, player actively\nmoves along x axis."
],
[
"moving gyro x",
"The same as moving acc x, but player actively\nrotates along x-axis."
],
[
"moving death acc x",
"Proportion of time during 1 second after death\nwhen person actively moving. The same for gyro,\nother components and events."
]
] | 0.952649 | null | null |
1 | 1908.06402v1 | 6 | [
48.95899963378906,
299.31500244140625,
300.25799560546875,
473.2619934082031
] | \begin{table}[!bt]
\caption{Features selected using AIC.}
\begin{center}
\begin{tabular}{|p{2.9cm}|p{0.7cm}|p{4cm}|}
\hline
\textbf{Feature name} & \textbf{Coef.} & \textbf{Possible sense}\\\hline
moving\_death\_gyro\_x & -0.17 & How often after the death player quickly leans back (or opposite, get close to a monitor).\\\hline
moving\_shootout\_gyro\_z & -0.16 & How often during the shootout player spins on the chair.\\\hline
moving\_death\_gyro\_y & -0.07 & After the death player changes a posture.\\\hline
moving\_shootout\_acc\_y & -0.07 & How often during the shootout player approaches or move away from monitor.\\\hline
med\_gyro\_y\_std & 0.03 & How intensely player moves in a chair.\\\hline
moving\_acc\_x & 0.05 & How often player moves along the table.\\\hline
moving\_acc\_y & 0.11 & How often player approaches or move away from a monitor.\\\hline
med\_gyro\_x\_std & 0.42 & How intensely player wiggles to a monitor.\\\hline
\end{tabular}
\label{aic_features}
\end{center}
\end{table} | [
[
"Feature name",
"Coef.",
"Possible sense"
],
[
"moving death gyro x",
"-0.17",
"How often after the death player\nquickly leans back (or opposite, get\nclose to a monitor)."
],
[
"moving shootout gyro z",
"-0.16",
"How often during the shootout\nplayer spins on the chair."
],
[
"moving death gyro y",
"-0.07",
"After the death player changes a\nposture."
],
[
"moving shootout acc y",
"-0.07",
"How often during the shootout\nplayer approaches or move away\nfrom monitor."
],
[
"med gyro y std",
"0.03",
"How intensely player moves in a\nchair."
],
[
"moving acc x",
"0.05",
"How often player moves along the\ntable."
],
[
"moving acc y",
"0.11",
"How often player approaches or\nmove away from a monitor."
],
[
"med gyro x std",
"0.42",
"How intensely player wiggles to a\nmonitor."
]
] | 0.888889 | null | null |
2 | 1908.06402v1 | 6 | [
332.3089904785156,
78.1099853515625,
539.906005859375,
143.66400146484375
] | \begin{table}[!bt]
\caption{Scores for the machine learning algorithms.}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
& Accuracy & ROC AUC & Log Loss \\\hline
Logistic regression & 0.71 & 0.86 & 0.60 \\\hline
SVM & \textbf{0.78} & 0.85 & 0.84 \\\hline
Random forest & 0.77 & \textbf{0.88} & \textbf{0.46} \\\hline
k-nearest neighbors & 0.77 & 0.73 & 5.59 \\\hline
Naive Bayes & 0.76 & 0.69 & 5.50 \\\hline
Gaussian process & 0.71 & 0.86 & 0.60 \\\hline
\end{tabular}
\label{scores}
\end{center}
\end{table} | [
[
"",
"Accuracy",
"ROC AUC",
"Log Loss"
],
[
"Logistic regression",
"0.71",
"0.86",
"0.60"
],
[
"SVM",
"0.78",
"0.85",
"0.84"
],
[
"Random forest",
"0.77",
"0.88",
"0.46"
],
[
"k-nearest neighbors",
"0.77",
"0.73",
"5.59"
],
[
"Naive Bayes",
"0.76",
"0.69",
"5.50"
],
[
"Gaussian process",
"0.71",
"0.86",
"0.60"
]
] | 0.982968 | null | null |
0 | 1703.07608v5 | 12 | [
167.53700256347656,
468.4159851074219,
444.463134765625,
564.1909790039062
] | \begin{table}[htpb]
\centering
\begin{tabular}{|c|c|}
\hline
{\bf exploration method} & {\bf expected episodes to learn} \\
\hline
optimal & $\Theta(N)$ \\
pure exploitation & $\infty$ \\
myopic & $\infty$ \\
dithering & $\Theta(2^N)$ \\
% curiosity-driven & $\Theta(N^2)$ \\
optimistic & $\Theta(N)$ \\
randomized & $\Theta(N)$ \\
\hline
\end{tabular}
\caption{Expected number of episodes required to learn an optimal policy for Example \ref{ex:grid}.}
\label{tab:grid}
\end{table} | [
[
"exploration method",
"expected episodes to learn"
],
[
"optimal\npure exploitation\nmyopic\ndithering\noptimistic\nrandomized",
"Θ N\n( )\n∞\n∞\nΘ 2N\n( )\nΘ N\n( )\nΘ N\n( )"
]
] | 0.582569 | null | null |
0 | 2312.05346v1 | 4 | [
85.03900146484375,
319.5320129394531,
570.541015625,
523.3680419921875
] | \begin{table}[H]
\centering
\caption{Feature Columns Description (Bored Ape Yacht Club)}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Feature Category} & \textbf{Feature} & \textbf{Description} \\ \hline
\multirow{4}{*}{Market} & volume\_eth\_lag1 & daily market volume (ETH) \\ \cline{2-3}
& price\_p5\_eth\_lag1 & daily 5-percentile price (ETH) \\ \cline{2-3}
& price\_max\_eth\_lag1 & daily highest price (ETH) \\ \cline{2-3}
& price\_min\_eth\_lag1 & daily minimum (floor) price (ETH)\\ \hline
\multirow{8}{*}{Traits \& Rarity} & rarity\_rank & rarity rank measured by OpenRarity \\ \cline{2-3}
& Background\_count & number of items with the same \textit{Background} trait \\ \cline{2-3}
& Mouth\_count & number of items with the same \textit{Mouth} trait \\ \cline{2-3}
& Eyes\_count & number of items with the same \textit{Eyes} trait\\ \cline{2-3}
& Fur\_count & number of items with the same \textit{Fur} trait \\ \cline{2-3}
& Clothes\_count & number of items with the same \textit{Clothes} trait \\ \cline{2-3}
& Earring\_count & number of items with the same \textit{Earring} trait \\ \hline
\multirow{2}{*}{Last Trade} & last\_trade\_timediff & time since the last time this item was traded \\ \cline{2-3}
& last\_trade\_price & price at the last time this item was traded\\ \hline
\end{tabular}
\label{tab: feature_columns}
\end{table} | [
[
"Feature Category",
"Feature",
"Description"
],
[
"Market",
"volume eth lag1",
"daily market volume (ETH)"
],
[
null,
"price p5 eth lag1",
"daily 5-percentile price (ETH)"
],
[
null,
"price max eth lag1",
"daily highest price (ETH)"
],
[
null,
"price min eth lag1",
"daily minimum (floor) price (ETH)"
],
[
"Traits & Rarity",
"rarity rank",
"rarity rank measured by OpenRarity"
],
[
null,
"Background count",
"number of items with the same Background trait"
],
[
null,
"Mouth count",
"number of items with the same Mouth trait"
],
[
null,
"Eyes count",
"number of items with the same Eyes trait"
],
[
null,
"Fur count",
"number of items with the same Fur trait"
],
[
null,
"Clothes count",
"number of items with the same Clothes trait"
],
[
null,
"Earring count",
"number of items with the same Earring trait"
],
[
"Last Trade",
"last trade timediff",
"time since the last time this item was traded"
],
[
null,
"last trade price",
"price at the last time this item was traded"
]
] | 0.867485 | null | null |
1 | 2312.05346v1 | 11 | [
166.7100067138672,
110.52398681640625,
441.38800048828125,
197.9959716796875
] | \begin{table}[H]
\centering
\caption{List of Hyperparameters and Importance with Respect to Validation Loss.}
\begin{tabular}{l|c|c}
\hline
\textbf{Config Parameter} & \textbf{Importance} & \textbf{Correlation} \\ \hline
kernel size & .427 & -.102 \\
learning rate & .356 & .055 \\
filters & .100 & .008 \\
units & .087 & -.091 \\
dropout & .030 & -.098 \\ \hline
\end{tabular}
\label{tab:cnn_hyperparam}
\end{table} | [
[
"Config Parameter",
"Importance",
"Correlation"
],
[
"kernel size\nlearning rate\nfilters\nunits\ndropout",
".427\n.356\n.100\n.087\n.030",
"-.102\n.055\n.008\n-.091\n-.098"
]
] | 0.657718 | null | null |
0 | 2002.10853v1 | 9 | [
85.41500091552734,
92.8690185546875,
269.1839904785156,
183.3289794921875
] | \begin{table}[!htbp]
\begin{subtable}[h]{0.45\textwidth}
\centering
\begin{tabular}{|l|l|}
\hline
States: & Reward: \\ \hline
Object Front & -1 \\ \hline
Object Left & -1 \\ \hline
Object Right & -1 \\ \hline
Object Back Left & -1 \\ \hline
Object Back Right & -1 \\ \hline
Object Back Left \& Back Right & -1 \\ \hline
Nothing Detected & 1 \\ \hline
\end{tabular}
\caption{States \& Rewards}
\label{task_1_SR}
\end{subtable}
\hfill
\begin{subtable}[h]{0.45\textwidth}
\centering
\begin{tabular}{|l|}
\hline
Actions: \\ \hline
Forwards \\ \hline
Up Left \\ \hline
Up Right \\ \hline
Back Left \\ \hline
Back Right \\ \hline
Backwards \\ \hline
\end{tabular}
\caption{Actions}
\label{task_1_A}
\end{subtable}
\caption{States, Rewards and Actions of Task 1}
\end{table} | [
[
"States:",
"Reward:"
],
[
"Object Front",
"-1"
],
[
"Object Left",
"-1"
],
[
"Object Right",
"-1"
],
[
"Object Back Left",
"-1"
],
[
"Object Back Right",
"-1"
],
[
"Object Back Left & Back Right",
"-1"
],
[
"Nothing Detected",
"1"
]
] | 0.671053 | null | null |
1 | 2002.10853v1 | 9 | [
75.27300262451172,
273.8330078125,
279.32598876953125,
420.8320007324219
] | \begin{table}[!htbp]
\begin{subtable}[b]{0.45\textwidth}
\centering
\begin{tabular}{|l|l|}
\hline
States: & Reward: \\ \hline
Target Far Left & 5 \\ \hline
Target Far Center & 5 \\ \hline
Target Far Right & 5 \\ \hline
Target Close Left & 10 \\ \hline
Target Close Center & 10 \\ \hline
Target Close Right & 10 \\ \hline
Object Front & -10 \\ \hline
Object Left & -10 \\ \hline
Object Right & -10 \\ \hline
Nothing Detected but last seen Left & -1 \\ \hline
Nothing Detected but last seen Right & -1 \\ \hline
Nothing Detected & -5 \\ \hline
\end{tabular}
\caption{States \& Rewards}
\label{task_2_SR}
\end{subtable}
\hfill
\begin{subtable}[b]{0.45\textwidth}
\centering
\begin{tabular}{|l|}
\hline
Actions: \\ \hline
Forwards \\ \hline
Up Left \\ \hline
Up Right \\ \hline
Back Left \\ \hline
Back Right \\ \hline
Backwards \\ \hline
\end{tabular}
\caption{Actions}
\label{task_2_A}
\end{subtable}
\caption{States, Rewards and Actions of Task 2}
\end{table} | [
[
"States:",
"Reward:"
],
[
"Target Far Left",
"5"
],
[
"Target Far Center",
"5"
],
[
"Target Far Right",
"5"
],
[
"Target Close Left",
"10"
],
[
"Target Close Center",
"10"
],
[
"Target Close Right",
"10"
],
[
"Object Front",
"-10"
],
[
"Object Left",
"-10"
],
[
"Object Right",
"-10"
],
[
"Nothing Detected but last seen Left",
"-1"
],
[
"Nothing Detected but last seen Right",
"-1"
],
[
"Nothing Detected",
"-5"
]
] | 0.795014 | null | null |
2 | 2002.10853v1 | 9 | [
75.27300262451172,
511.33599853515625,
279.32598876953125,
658.333984375
] | \begin{table}[!htbp]
\begin{subtable}[b]{0.45\textwidth}
\centering
\begin{tabular}{|l|l|}
\hline
States: & Reward: \\ \hline
Target Far Left & 5 \\ \hline
Target Far Center & 5 \\ \hline
Target Far Right & 5 \\ \hline
Target Close Left & 10 \\ \hline
Target Close Center & 20 \\ \hline
Target Close Right & 10 \\ \hline
Object Front & -10 \\ \hline
Object Left & -10 \\ \hline
Object Right & -10 \\ \hline
Nothing Detected but last seen Left & -10 \\ \hline
Nothing Detected but last seen Right & -10 \\ \hline
Nothing Detected & -10 \\ \hline
\end{tabular}
\caption{States \& Rewards}
\label{task_3_SR}
\end{subtable}
\hfill
\begin{subtable}[b]{0.45\textwidth}
\centering
\begin{tabular}{|l|}
\hline
Actions: \\ \hline
Forwards \\ \hline
Up Left \\ \hline
Up Right \\ \hline
Backwards \\ \hline
Turn Around Axis (Clockwise) \\
or Forwards (50\% chance) \\ \hline
Turn Around Axis (Counter-Clockwise) \\ or Forwards (50\% chance) \\ \hline
\end{tabular}
\caption{Actions}
\label{task_3_A}
\end{subtable}
\caption{States, Rewards and Actions of Task 3}
\end{table} | [
[
"States:",
"Reward:"
],
[
"Target Far Left",
"5"
],
[
"Target Far Center",
"5"
],
[
"Target Far Right",
"5"
],
[
"Target Close Left",
"10"
],
[
"Target Close Center",
"20"
],
[
"Target Close Right",
"10"
],
[
"Object Front",
"-10"
],
[
"Object Left",
"-10"
],
[
"Object Right",
"-10"
],
[
"Nothing Detected but last seen Left",
"-10"
],
[
"Nothing Detected but last seen Right",
"-10"
],
[
"Nothing Detected",
"-10"
]
] | 0.706456 | null | null |
0 | 1903.07854v1 | 5 | [
54,
86.489990234375,
304.09299087524414,
151.64501953125
] | \begin{table}
\setlength{\abovecaptionskip}{-2pt}
\setlength{\belowcaptionskip}{-5pt}
\caption{ Performance of policies trained with different algorithms}
\label{table7}
\begin{center}
\setlength{\tabcolsep}{0.1mm}{
\begin{tabular}{|c|c|c|c|c|}
\hline
\multirow{2}{*}{Method} & \multicolumn{2}{|c|}{Reaching task} & \multicolumn{2}{|c|}{Grasping object task} \\
\cline{2-5}
& success rate & distance error $(m)$ & success rate & distance error $(m)$\\
\hline
GAIL-demo & $0.98\pm0.02$ &${0.03\pm0.01 }$ &$0.95\pm0.02$ &${0.02\pm0.003 }$ \\
\hline
GASIL & $0.42\pm0.08$ &${0.20\pm0.07}$ & $0.03\pm0.03$ &${0.25\pm0.06}$\\
\hline
PP0 & $0$ &${1.70\pm0.12}$ & $0$ &${1.53\pm0.08}$ \\
\hline
HGAIL(ours) & $0.98\pm0.02$ &${1.05\pm0.03}$ & $0.95\pm0.03$ &${0.03\pm0.002}$\\
\hline
HGAIL-no & $0.01\pm0.01$ &${0.62\pm0.27}$ & $0.02\pm0.02$ &${1.49\pm0.04}$\\
\hline
\end{tabular}}
\end{center}
\end{table} | [
[
"Method",
"Reaching task",
null,
"Grasping object task",
null
],
[
null,
"success rate",
"distance error (m)",
"success rate",
"distance error (m)"
],
[
"GAIL-demo",
"0.98 ± 0.02",
"0.03 ± 0.01",
"0.95 ± 0.02",
"0.02 ± 0.003"
],
[
"GASIL",
"0.42 ± 0.08",
"0.20 ± 0.07",
"0.03 ± 0.03",
"0.25 ± 0.06"
],
[
"PP0",
"0",
"1.70 ± 0.12",
"0",
"1.53 ± 0.08"
],
[
"HGAIL(ours)",
"0.98 ± 0.02",
"1.05 ± 0.03",
"0.95 ± 0.03",
"0.03 ± 0.002"
],
[
"HGAIL-no",
"0.01 ± 0.01",
"0.62 ± 0.27",
"0.02 ± 0.02",
"1.49 ± 0.04"
]
] | 0.645248 | null | null |
1 | 1903.07854v1 | 5 | [
66.302001953125,
684.72900390625,
286.49798583984375,
712.822998046875
] | \begin{table}[h]
%\caption{ Comparing policies performance with different training methods}
%\label{table1}
%\begin{center}
%\begin{tabular}{|c|c|c|}
%\hline
%Method & Success rates & Distance errors ($m$) \\
%\hline
%GAIL-demos\cite{c9} & $0.98\pm0.02$ &${0.03\pm0.004 }$ \\
%\hline
%GASIL\cite{c43} & $0.62\pm0.07$ &${0.16\pm0.07}$ \\
%\hline
%PP0\cite{c44} & $ 0.38\pm0.14$ &${0.18\pm0.12}$ \\
%\hline
%HGAIL(ours) & $0.98\pm0.02$ &${0.03\pm0.01}$ \\
%\hline
%HGAIL-no & $0.26\pm0.05$ &${0.62\pm0.27}$ \\
%
%\hline
%\end{tabular}
%\end{center}
%\end{table} | [
[
"Method",
"Success rates",
"Distance errors (m)"
],
[
"Curriculum learning",
"0.98 ± 0.02",
"0.03 ± 0.01"
],
[
"No curriculum learning",
"0.49 ± 0.17",
"0.16 ± 0.05"
]
] | 0.46988 | null | null |
2 | 1903.07854v1 | 6 | [
348.6549987792969,
321.8070068359375,
522.5449829101562,
349.9020080566406
] | \begin{table}[h]
\caption{ Performance of policies trained with curriculum learning mechanism or not}
\label{table2}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Method & Success rates & Distance errors ($m$) \\
\hline
Curriculum learning & $0.98\pm0.02$ &${0.03\pm0.01}$ \\
\hline
No curriculum learning & $0.49\pm0.17$ &${0.16\pm0.05}$ \\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Task",
"Success rates",
"Distance errors (m)"
],
[
"Reaching",
"0.95 ± 0.03",
"0.01 ± 0.01"
],
[
"Picking",
"0.93 ± 0.04",
"0.02 ± 0.01"
]
] | 0.608696 | null | null |
3 | 1903.07854v1 | 5 | [
323.1270446777344,
627.4190063476562,
548.072998046875,
655.5140380859375
] | \begin{table}[h]
\setlength{\abovecaptionskip}{0pt}
\setlength{\belowcaptionskip}{0pt}
\caption{ Performance of policies trained with different hindsight transformation}
\label{table3}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
Hindsight transformation & Success rates & Distance errors ($m$) \\
\hline
Future & $0.99\pm 0.01$ &${0.04\pm 0.01}$ \\
\hline
Final & $0.31\pm 0.17$ &${0.18\pm 0.05}$ \\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Hindsight transformation",
"Success rates",
"Distance errors (m)"
],
[
"Future",
"0.99 ± 0.01",
"0.04 ± 0.01"
],
[
"Final",
"0.31 ± 0.17",
"0.18 ± 0.05"
]
] | 0.932773 | null | null |
0 | 1012.0269v1 | 9 | [
82.46077897813585,
109.06103515625,
516.9070095486111,
410.3310241699219
] | \begin{table}
\centering
\begin{tabular}{| l |p{8cm}|}
\hline
\multicolumn{1}{|c|}{\R function} & \multicolumn{1}{c|}{Description}\\
\hline
\code{f.analyzeFMRI.gui()} & Starts an \R/TclTk based GUI to explore, using the \pkg{AnalyzeFMRI} package functions, an fMRI data set stored in ANALYZE format. \tabularnewline
\hline
\code{f.icast.fmri.gui()} & The GUI provides a quick and easy to use interface for applying spatial or temporal ICA to fMRI data sets in NIFTI format.\tabularnewline
\hline
\code{f.plot.volume.gui()} & TclTk GUI to display functional or structural MR images. This GUI is useful for instance to display the results performed with \code{f.icast.fmri.gui()}.\tabularnewline
\hline
\code{f.read.header(file)} & Reads ANALYZE or NIFTI (\texttt{.hdr} or \texttt{.nii}) header file. The format type is automatically detected by first reading the magic field. \tabularnewline
\hline
\code{f.read.volume(file)} & Reads ANALYZE or NIFTI image file and puts it into an array. Automatic detection of the format type. \tabularnewline
\hline
\code{f.write.analyze(mat,file,...,)} & Stores the data in ANALYZE format: creation of the corresponding \texttt{.img/.hdr} pair of files.
\tabularnewline
\hline
\code{f.write.nifti(mat,file,size,...)} & Stores the data in NIFTI format: creation of the corresponding \texttt{.img/.hdr} pair of files or single \texttt{.nii} file.
\tabularnewline
\hline
\end{tabular}
\caption{Seven main functions of our package with their description.\label{table1}}
\end{table} | [
[
"R function",
"Description"
],
[
"f.analyzeFMRI.gui()",
"Starts an R/TclTk based GUI to explore, using\nthe AnalyzeFMRI package functions, an fMRI\ndata set stored in ANALYZE format."
],
[
"f.icast.fmri.gui()",
"The GUI provides a quick and easy to use in-\nterface for applying spatial or temporal ICA to\nfMRI data sets in NIFTI format."
],
[
"f.plot.volume.gui()",
"TclTk GUI to display functional or struc-\ntural MR images. This GUI is useful for in-\nstance to display the results performed with\nf.icast.fmri.gui()."
],
[
"f.read.header(file)",
"Reads ANALYZE or NIFTI (.hdr or .nii)\nheader file. The format type is automatically\ndetected by first reading the magic field."
],
[
"f.read.volume(file)",
"Reads ANALYZE or NIFTI image file and puts\nit into an array. Automatic detection of the for-\nmat type."
],
[
"f.write.analyze(mat,file,...,)",
"Stores the data in ANALYZE format: creation\nof the corresponding .img/.hdr pair of files."
],
[
"f.write.nifti(mat,file,size,...)",
"Stores the data in NIFTI format: creation of the\ncorresponding .img/.hdr pair of files or single\n.nii file."
]
] | 0.905866 | null | null |
0 | 1709.03854v1 | 9 | [
72.18904762268066,
89.64898681640625,
408.5479446411133,
362.2270202636719
] | \begin{table}
\begin{tabularx}{\columnwidth}{ | l | >{\raggedright\arraybackslash} X | >{\raggedright\arraybackslash} X | }
\hline
\textbf{Short name} & \textbf{Name} & \textbf{Parameter settings} \\ \hline
ctree & Conditional trees & min\_split=20, min\_bucket=7\\ \hline
rtree & Regression trees & min\_split=20, min\_bucket=7\\ \hline
cforest & Random forest (with conditional trees) & n\_trees=500, min\_split=20, min\_bucket=7\\ \hline
rforest & Random forest & n\_trees=500, min\_split=20, min\_bucket=7\\ \hline
gbm & Generalized boosted regression & n\_trees=100, depth=1, CV=no, min\_obs\_node=10\\ \hline
fnn & k-Nearest neighbor & k=1\\ \hline
earth & Adaptive regression splines (earth) & (as default)\\ \hline
glmnet & Regularized GLM & (as default)\\ \hline
ridge & Penalized ridge regression & (as default)\\ \hline
lm & Multiple linear regression & (as default)\\ \hline
pcr & Principal component regression & (as default)\\ \hline
plsr & Partial least squares & (as default)\\ \hline
rsm & Response surface regression & (as default)\\ \hline
rvm & Relevance vector machine & Kernel=RBF, nu=0.2, epsilon=0.1\\ \hline
ksvm & Support vector machines & Kernel=RBF, nu=0.2, epsilon=0.1\\ \hline
ksvmfp & Support vector machines with Tanimoto kernel & Kernel=Tanimoto\\ \hline
nnet & Neural networks & size=3\\ \hline
nneth2o & Neural networks using H2O library & layers=2, size layer 1 = 0.333* n\_inputs, layer 2 = 0.667*n\_inputs\\ \hline
\end{tabularx}
\caption{List of baseline QSAR algorithms. Abbreviations: n\_trees: number of trees; min\_split: minimum node size allowed for splitting; min\_bucket: minimum size of the bucket. k: number of neighbours; depth: search depth; CV: cross-validation; min\_obs\_node: minimum number of observations per node; RBF: radial basis function with nu (spread) and epsilon (scale) parameters; size: number of neurons in the hidden layer; n\_inputs: length of the input vector.}
\label{table:baseline-qsar-algos}
\end{table} | [
[
"Short name",
"Name",
"Parameter settings"
],
[
"ctree",
"Conditional trees",
"min split=20, min bucket=7"
],
[
"rtree",
"Regression trees",
"min split=20, min bucket=7"
],
[
"cforest",
"Random forest (with conditional\ntrees)",
"n trees=500, min split=20,\nmin bucket=7"
],
[
"rforest",
"Random forest",
"n trees=500, min split=20,\nmin bucket=7"
],
[
"gbm",
"Generalized boosted regression",
"n trees=100, depth=1, CV=no,\nmin obs node=10"
],
[
"fnn",
"k-Nearest neighbor",
"k=1"
],
[
"earth",
"Adaptive regression splines\n(earth)",
"(as default)"
],
[
"glmnet",
"Regularized GLM",
"(as default)"
],
[
"ridge",
"Penalized ridge regression",
"(as default)"
],
[
"lm",
"Multiple linear regression",
"(as default)"
],
[
"pcr",
"Principal component regression",
"(as default)"
],
[
"plsr",
"Partial least squares",
"(as default)"
],
[
"rsm",
"Response surface regression",
"(as default)"
],
[
"rvm",
"Relevance vector machine",
"Kernel=RBF, nu=0.2,\nepsilon=0.1"
],
[
"ksvm",
"Support vector machines",
"Kernel=RBF, nu=0.2,\nepsilon=0.1"
],
[
"ksvmfp",
"Support vector machines with\nTanimoto kernel",
"Kernel=Tanimoto"
],
[
"nnet",
"Neural networks",
"size=3"
],
[
"nneth2o",
"Neural networks using H2O\nlibrary",
"layers=2, size layer 1 = 0.333*\nn inputs, layer 2 =\n0.667*n inputs"
]
] | 0.802862 | null | null |
1 | 1709.03854v1 | 11 | [
72.14924812316895,
89.64898681640625,
408.5877456665039,
147.63201904296875
] | \begin{table}[t]
\begin{tabularx}{\columnwidth}{ | >{\raggedright\arraybackslash} X | >{\raggedright\arraybackslash} X | >{\raggedright\arraybackslash} X | >{\raggedright\arraybackslash} X |}
\hline
& Basic set of descriptors (43) & All descriptors (1447) & FCFP4 fingerprint (1024) \\ \hline
Original dataset & basicmolprop (not used) & allmolprop (not used) & fpFCFP4 \\ \hline
Missing value imputation & basicmolprop.miss & allmolprop.miss & (no missing values) \\ \hline
\end{tabularx}
\caption{Names of the generated dataset representations.
}
\label{table:Dataset Representations}
\end{table} | [
[
"",
"Basic set of\ndescriptors (43)",
"All descriptors\n(1447)",
"FCFP4 fingerprint\n(1024)"
],
[
"Original dataset",
"basicmolprop (not\nused)",
"allmolprop (not\nused)",
"fpFCFP4"
],
[
"Missing value\nimputation",
"basicmolprop.miss",
"allmolprop.miss",
"(no missing values)"
]
] | 0.853383 | null | null |
2 | 1709.03854v1 | 17 | [
72.1836899977464,
89.64898681640625,
408.55330247145434,
274.25701904296875
] | \begin{table}
\begin{tabularx}{\columnwidth}{ | l | >{\raggedright\arraybackslash} X | }
\hline
Feature & Description \\ \hline
multiinfo & Multiple information (also called total correlation) among the random variables in the dataset. \\ \hline
mutualinfo & Mutual information between nominal attributes X and Y. Describes the reduction in uncertainty of Y due to the knowledge of X, and leans on the conditional entropy $H(Y|X)$.\\ \hline
nentropyfeat & Normalised entropy of the features which is the class entropy divided by log(n) where n is the number of the features.\\ \hline
mmeanfeat & Average mean of the features.\\ \hline
msdfeat & Average standard deviation of the features.\\ \hline
kurtresp & Kurtosis of the response variable.\\ \hline
meanresp & Mean of the response variable.\\ \hline
skewresp & Skewness of the response variable.\\ \hline
nentropyresp & Normalised entropy of the response variable.\\ \hline
sdresp & Standard deviation of the response.\\ \hline
aggFCFP4fp (1024 features) & Aggregated fingerprints and normalized over the number of instances in the dataset.\\ \hline
\end{tabularx}
\caption{Dataset meta-features (Examples).}
\label{table:dataset-meta-features}
\end{table} | [
[
"Feature",
"Description"
],
[
"multiinfo",
"Multiple information (also called total correlation)\namong the random variables in the dataset."
],
[
"mutualinfo",
"Mutual information between nominal attributes X and\nY. Describes the reduction in uncertainty of Y due to\nthe knowledge of X, and leans on the conditional\nentropy H(Y |X)."
],
[
"nentropyfeat",
"Normalised entropy of the features which is the class\nentropy divided by log(n) where n is the number of the\nfeatures."
],
[
"mmeanfeat",
"Average mean of the features."
],
[
"msdfeat",
"Average standard deviation of the features."
],
[
"kurtresp",
"Kurtosis of the response variable."
],
[
"meanresp",
"Mean of the response variable."
],
[
"skewresp",
"Skewness of the response variable."
],
[
"nentropyresp",
"Normalised entropy of the response variable."
],
[
"sdresp",
"Standard deviation of the response."
],
[
"aggFCFP4fp (1024 features)",
"Aggregated fingerprints and normalized over the\nnumber of instances in the dataset."
]
] | 0.965097 | null | null |
3 | 1709.03854v1 | 18 | [
72.18241437276204,
134.37200927734375,
408.55457814534503,
488.9420166015625
] | \begin{table}[h]
\centering
\begin{tabularx}{\columnwidth}{ | l | >{\raggedright\arraybackslash} X | }
\hline
Feature & Description \\ \hline
Aliphatic index &
The Aliphatic index~\cite{IKAI1980} is defined as the relative volume occupied by aliphatic side chains (Alanine, Valine, Isoleucine, and Leucine). It may be regarded as a positive factor for the increase of thermo stability of globular proteins.\\ \hline
Hydrophobicity & Hydrophobicity is the association of non-polar groups or molecules in an aqueous environment which arises from the tendency of water to exclude non-polar molecules \cite{IUPAC}.\\ \hline
Boman index & This the potential protein interaction index proposed by Boman~\cite{boman2003}. It is calculated as the sum of the solubility values for all residues in a sequence~\cite{peptides}. \\ \hline
Hydrophobicity (38 features) & Hydrophobicity is the association of non-polar groups or molecules in an aqueous environment which arises from the tendency of water to exclude non-polar molecules \cite{IUPAC}. We estimated 38 variants of hydrophobicity.\\ \hline
Net charge & The theoretical net charge of a protein sequence as described by Moore~\cite{moore1985}.\\ \hline
Molecular weight & Ratio of the mass of a molecule to the unified atomic mass unit. Sometimes called the molecular weight or relative molar mass \cite{IUPAC}.\\ \hline
Isoelectric point & The pH value at which the net electric charge of an elementary entity is zero. (pI is a commonly used symbol for this kind-of-quantity, however more accurate symbol is pH(I)) \cite{IUPAC}. \\ \hline
Sequence length & A number of amino acids in a protein sequence. \\ \hline
Instability index & The instability index was proposed by (Guruprasad, 1990). A protein whose instability index is smaller than 40 is predicted as stable, a value above 40 predicts that the protein may be unstable.\\ \hline
DC groups (400 features) & The Dipeptide Composition descriptor~\cite{protr2015,bhasin2004} captures information about the fraction and local order of amino acids.\\ \hline
\end{tabularx}
\caption{Drug targets meta-features (Examples).}
\label{table:drug-target-meta-features}
\end{table} | [
[
"Feature",
"Description"
],
[
"Aliphatic index",
"The Aliphatic index (Atsushi, 1980) is defined as the\nrelative volume occupied by aliphatic side chains\n(Alanine, Valine, Isoleucine, and Leucine). It may be\nregarded as a positive factor for the increase of thermo\nstability of globular proteins."
],
[
"Hydrophobicity",
"Hydrophobicity is the association of non-polar groups\nor molecules in an aqueous environment which arises\nfrom the tendency of water to exclude non-polar\nmolecules (Mcnaught and Wilkinson, 1997)."
],
[
"Boman index",
"This the potential protein interaction index proposed\nby Boman (Boman, 2003). It is calculated as the sum\nof the solubility values for all residues in a\nsequence (D. Osorio and Torres, 2014)."
],
[
"Hydrophobicity (38 features)",
"Hydrophobicity is the association of non-polar groups\nor molecules in an aqueous environment which arises\nfrom the tendency of water to exclude non-polar\nmolecules (Mcnaught and Wilkinson, 1997). We\nestimated 38 variants of hydrophobicity."
],
[
"Net charge",
"The theoretical net charge of a protein sequence as\ndescribed by Moore (Moore, 1985)."
],
[
"Molecular weight",
"Ratio of the mass of a molecule to the unified atomic\nmass unit. Sometimes called the molecular weight or\nrelative molar mass (Mcnaught and Wilkinson, 1997)."
],
[
"Isoelectric point",
"The pH value at which the net electric charge of an\nelementary entity is zero. (pI is a commonly used\nsymbol for this kind-of-quantity, however more\naccurate symbol is pH(I)) (Mcnaught and Wilkinson,\n1997)."
],
[
"Sequence length",
"A number of amino acids in a protein sequence."
],
[
"Instability index",
"The instability index was proposed by (Guruprasad,\n1990). A protein whose instability index is smaller\nthan 40 is predicted as stable, a value above 40\npredicts that the protein may be unstable."
],
[
"DC groups (400 features)",
"The Dipeptide Composition descriptor (Xiao et al.,\n2015; Bhasin and Raghava, 2004) captures information\nabout the fraction and local order of amino acids."
]
] | 0.907975 | null | null |
0 | 1806.07846v1 | 5 | [
197.84283955891928,
389.4779968261719,
414.15716044108075,
446.0159912109375
] | \begin{table}
\caption{\label{tbl:cifar10} Accuracy results for CIFAR-10 Dataset
with different network sizes.}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Number of Conv Channels & fp32 & int8 KANJI \\
\hline
(16, 16, 32) & 77.3\% & 78.5\% \\
\hline
(32, 32, 64) & 80.8\% & 81.9\% \\
\hline
(48, 48, 96) & 83.1\% & 83.0\% \\
\hline
(64, 64, 128) & 84.2\% & 83.7\% \\
\hline
\end{tabular}
\end{table} | [
[
"Number of Conv Channels",
"fp32",
"int8 KANJI"
],
[
"(16, 16, 32)",
"77.3%",
"78.5%"
],
[
"(32, 32, 64)",
"80.8%",
"81.9%"
],
[
"(48, 48, 96)",
"83.1%",
"83.0%"
],
[
"(64, 64, 128)",
"84.2%",
"83.7%"
]
] | 0.970588 | null | null |
1 | 1806.07846v1 | 6 | [
213.48883565266928,
89.08099365234375,
398.51116434733075,
145.6190185546875
] | \begin{table}
\caption{\label{tbl:other} Accuracy results with VGG for CIFAR-100
and tiny-imagenet dataset.}
\centering
\begin{tabular}{|c|c|c|}
\hline
Data set & fp32 & int8 KANJI \\
\hline
CIFAR-100 top1 & 59.5\% & 59.6\% \\
\hline
CIFAR-100 top3 & 77.9\% & 77.4\% \\
\hline
tiny-imagenet top1 & 42.0\% & 42.0\% \\
\hline
tiny-imagenet top3 & 60.0\% & 60.1\% \\
\hline
\end{tabular}
\end{table} | [
[
"Data set",
"fp32",
"int8 KANJI"
],
[
"CIFAR-100 top1",
"59.5%",
"59.6%"
],
[
"CIFAR-100 top3",
"77.9%",
"77.4%"
],
[
"tiny-imagenet top1",
"42.0%",
"42.0%"
],
[
"tiny-imagenet top3",
"60.0%",
"60.1%"
]
] | 0.970588 | null | null |
2 | 1806.07846v1 | 6 | [
108.15919799804688,
174.79400634765625,
506.2237915039062,
220.02398681640625
] | \begin{table}
\caption{\label{tbl:norm} Different image pre-processing operators.}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Image Pre-Processing Operator & Input Dependence & Memory Overhead & Runtime Overhead \\
\hline
$per\_image\_standardization$ & Yes & Low & High \\
\hline
$mean.binaryproto$ & No & High & Low \\
\hline
$batch\_norm$-like & No & Low & Low \\
\hline
\end{tabular}
\end{table} | [
[
"Image Pre-Processing Operator",
"Input Dependence",
"Memory Overhead",
"Runtime Overhead"
],
[
"per_image_standardization",
"Yes",
"Low",
"High"
],
[
"mean.binaryproto",
"No",
"High",
"Low"
],
[
"batch_norm-like",
"No",
"Low",
"Low"
]
] | 0.991304 | null | null |
3 | 1806.07846v1 | 7 | [
172.98312187194824,
89.08099365234375,
439.0168762207031,
168.2340087890625
] | \begin{table}
\caption{\label{tbl:quant} Network accuracy on CIFAR-10 with different image pre-processing and
quantization.}
\centering
\begin{tabular}{|c|c|c|}
\hline
Input Pre-Processing & Quantization & Accuracy \\
\hline
$per\_image\_standardization$ & None (fp32) & 81.2\% \\
\hline
$per\_image\_standardization$ & 8-bit asymmetric & 81.2\% \\
\hline
$mean.binaryproto$ & None (fp32) & 81.5\% \\
\hline
$mean.binaryproto$ & 8-bit, symmetric & 81.5\% \\
\hline
$batch\_norm$-like & None (fp32) & 81.8\% \\
\hline
$batch\_norm$-like & KANJI & 81.9\% \\
\hline
\end{tabular}
\end{table} | [
[
"Input Pre-Processing",
"Quantization",
"Accuracy"
],
[
"per_image_standardization",
"None (fp32)",
"81.2%"
],
[
"per_image_standardization",
"8-bit asymmetric",
"81.2%"
],
[
"mean.binaryproto",
"None (fp32)",
"81.5%"
],
[
"mean.binaryproto",
"8-bit, symmetric",
"81.5%"
],
[
"batch_norm-like",
"None (fp32)",
"81.8%"
],
[
"batch_norm-like",
"KANJI",
"81.9%"
]
] | 0.962406 | null | null |
0 | 2304.00129v1 | 15 | [
315.17247111002604,
481.5679931640625,
564.626513671875,
597.9290161132812
] | \begin{table}[ht!]
\vspace{-1.0em}
\center
\footnotesize
\setlength\tabcolsep{1.0pt}
\begin{tabular}{ |c|c|c| }
\hline
\textbf{Symbol} & \textbf{Definition} & \textbf{Default} \\
\toprule
\hline
$s$, $p$, $w$ & \# DPs, \# power and eigen iterations & 6, 10, 5 \\
\hline
$\psi$ + $\alpha$ = $\rho$ & \# PCs + oversampling = \# components & 4 + 4 = 8 \\
\hline
$\zeta*$, $\zeta$, $d$ & Optimized cost, cost, approx. degree & -, -, 31 \\
\hline
$m, n, n_i$ & \# features, \# samples tot. \& at DP$_i$ & $2^8$, 6144, $2^{10}$ \\
\hline
$\mathcal{N}$, $\lambda$ & Ring dim., \# available levels & $2^{14}$, 7 \\ \hline
$R_Q$ & Plain/Ciphertext domain & - \\ \hline
%$\Delta$, $mc$ & Plaintext scale, chain of moduli & -\\ \hline
$\bm{c}$ & encrypted vector/ fresh ciphertext with & -\\
& $\bm{c}=(\bm{c}_{0}, \bm{c}_{1}) \in R^{2}_{Q_{L}}$ %$= \{\bm{c}, L, \Delta \}$
& \\ \hline
$\bm{\tilde{p}}\in R_{Q_{L}}$, $sk,\ pk$ & plaintext, secret \& public keys & -, -, -\\ \hline
$t$, $\bullet$ & $\bm{c}$ capacity, dot product & $2^{13}$, -\\ \hline
$\bm{M}^{(a \times b)}$, $\bm{\tilde{N}}^{(b \times c)}$ & Generic encrypted and cleartext matrices & -, - \\ \hline
$\bm{M}[i,j]$, $\bm{v}[i]$ & Matrix/vector elem. at index $(i,j)$/$i$) & -, - \\ \hline
\end{tabular}
\vspace{-0.5em}
\caption{\small{\textbf{Glossary of Symbols and Their Default Values in \sys.}}}
\label{tab:symbols}
\vspace{-0.5em}
\end{table} | [
[
"s, p, w",
"# DPs, # power and eigen iterations",
"6, 10, 5"
],
[
"ψ + α = ρ",
"# PCs + oversampling = # components",
"4 + 4 = 8"
],
[
"ζ∗, ζ, d",
"Optimized cost, cost, approx. degree",
"-, -, 31"
],
[
"m,n,ni",
"# features, # samples tot. & at DPi",
"28, 6144, 210"
],
[
"N, λ",
"Ring dim., # available levels",
"214, 7"
],
[
"RQ",
"Plain/Ciphertext domain",
"-"
],
[
"c",
"encrypted vector/ fresh ciphertext with\nc=(c0,c1)∈R Q2\nL",
"-"
],
[
"p˜∈RQL, sk, pk",
"plaintext, secret & public keys",
"-, -, -"
],
[
"t, •",
"c capacity, dot product",
"213, -"
],
[
"M(a×b), N˜(b×c)",
"Generic encrypted and cleartext matrices",
"-, -"
],
[
"M[i,j], v[i]",
"Matrix/vector elem. at index (i,j)/i)",
"-, -"
]
] | 0.717987 | null | null |
0 | 2307.11788v3 | 3 | [
313.50392659505206,
405.00799560546875,
564.6167399088541,
433.302001953125
] | \begin{table}[h]
\centering
\begin{tabular}{c|c|c|c|c|c}
& \multicolumn{3}{c|}{Class} & & \\ \hline
Complexity & $-$ & $\circ$ & $+$ & $\diameter$ word count & vocabulary size \\ \Xhline{2\arrayrulewidth}
Low & 34\% & 18\% & 48\% & 4.9 & 913 \\ \hline
Moderate & 37\% & 17\% & 46\% & 18.4 & 1608
\end{tabular}
\caption{Data class distribution of both generated datasets encompassing roughly 1000 sentences each.}
\label{tab:DataDistribution}
\end{table} | [
[
"Complexity",
"−",
"◦",
"+",
"word count",
"vocabulary size"
],
[
"Low",
"34%",
"18%",
"48%",
"4.9",
"913"
],
[
"Moderate",
"37%",
"17%",
"46%",
"18.4",
"1608"
]
] | 0.542169 | null | null |
0 | 2205.15104v1 | 4 | [
87.125,
72.96697998046875,
259.0710144042969,
174.38702392578125
] | \begin{table}
\centering
\caption{Patient demographics of final study cohort.}\label{table_demographics_1}
\vspace{-2mm}
\begin{tabular}{|l|l|l|l|l|}
\hline
Demographics & Total & Death & Survival\\
\hline
\hline
Patients & 19414 & 1892 & 17522\\
{\bfseries Gender} & & &\\
Female & 8582 & 879 & 7703\\
Male & 10832 & 1013 & 9819\\
{\bfseries Ethnicity} & & &\\
Caucasian & 13706 & 6021 & 7685\\
African American & 1447 & 801 & 646\\
Asian & 445 & 174 & 271\\
Hispanic/Latino & 604 & 249 & 355\\
Others/Unknown & 3212 & 1337 & 1875\\
\hline
\end{tabular}
\vspace{-2mm}
\end{table} | [
[
"Demographics",
"Total",
"Death",
"Survival"
],
[
"Patients\nGender\nFemale\nMale\nEthnicity\nCaucasian\nAfrican American\nAsian\nHispanic/Latino\nOthers/Unknown",
"19414\n8582\n10832\n13706\n1447\n445\n604\n3212",
"1892\n879\n1013\n6021\n801\n174\n249\n1337",
"17522\n7703\n9819\n7685\n646\n271\n355\n1875"
]
] | 0.520076 | null | null |
1 | 2205.15104v1 | 4 | [
312.67999267578125,
72.96697998046875,
562.333984375,
138.91998291015625
] | \begin{table}
\centering
\caption{Admission age and length of stay of final study cohort.}\label{table_demographics_2}
\vspace{-2mm}
\begin{tabular}{|l|ccc|ccc|}
\hline
& \multicolumn{3}{|c|}{\textbf{Admission age (years)}} & \multicolumn{3}{|c|}{\textbf{Length of 1st ICU stay (days)}}\\
\hline
& Total & Death & Survival & Total & Death & Survival\\
\hline
\hline
Count & 19414 & 1892 & 17522 & 19414 & 1892 & 17522 \\
Mean & 64.83 & 68.56 & 64.42 & 6.82 & 9.46 & 6.53 \\
Std & 17.09 & 16.15 & 17.14 & 7.50 & 8.90 & 7.28 \\
Min & 15.19 & 16.47 & 15.19 & 2.00 & 2.01 & 2.00 \\
Max & 90.00 & 90.00 & 90.00 & 153.93 & 97.30 & 153.93 \\
\hline
\end{tabular}
\vspace{-2mm}
\end{table} | [
[
"",
"Admission age (years)",
"Length of 1st ICU stay (days)"
],
[
"",
"Total Death Survival",
"Total Death Survival"
],
[
"Count\nMean\nStd\nMin\nMax",
"19414 1892 17522\n64.83 68.56 64.42\n17.09 16.15 17.14\n15.19 16.47 15.19\n90.00 90.00 90.00",
"19414 1892 17522\n6.82 9.46 6.53\n7.50 8.90 7.28\n2.00 2.01 2.00\n153.93 97.30 153.93"
]
] | 0.398637 | null | null |
0 | 2404.07452v1 | 18 | [
114.65699768066406,
481.8730163574219,
497.343017578125,
560.2780151367188
] | \begin{table}[h]
\centering
\caption{Performance results on our proposed framework RiskLabs from different baseline models.}
\scalebox{1.0}{
\begin{tabular}{lccccc|c|c}
\toprule
\textbf{Model} & \textbf{$\overline{MSE}$} & \textbf{$MSE_3$} & \textbf{$MSE_7$} & \textbf{$MSE_{15}$} & \textbf{$MSE_{30}$} & \textbf{$VaR$} & \text{Multi-Task}\\ \midrule
Classical Method & 0.713 &1.710 & 0.526 & 0.330 & 0.284 & / & $\otimes$ \\
LSTM & 0.746 &1.970 & 0.459 & 0.320 & 0.235 & / & $\otimes$ \\
MT-LSTM-ATT & 0.739 &1.983 & 0.435 & 0.304 & 0.233 & / & $\otimes$ \\
HAN & 0.598 &1.426 & 0.461 & 0.308 & 0.198 & / & $\otimes$ \\
MRDM & 0.577 &1.371 & 0.420 & 0.300 & 0.217 & / & $\otimes$ \\
HTML & 0.401 &0.845 & 0.349 & 0.251 & \textbf{0.158} & / &$\checkmark$ \\
GPT-3.5-Turbo & 2.198 & 2.152 & 1.793 & 2.514 & 2.332 & 0.371 & $\checkmark$ \\ \midrule
\textbf{RiskLabs} & \textbf{0.324} & \textbf{0.585} & \textbf{0.317} & \textbf{0.233} & 0.171 & \textbf{0.049} & $\checkmark$ \\
\bottomrule
\end{tabular}}
\label{tab:overall_performance}
\end{table} | [
[
"Classical Method 0.713 1.710 0.526 0.330 0.284\nLSTM 0.746 1.970 0.459 0.320 0.235\nMT-LSTM-ATT 0.739 1.983 0.435 0.304 0.233\nHAN 0.598 1.426 0.461 0.308 0.198\nMRDM 0.577 1.371 0.420 0.300 0.217\nHTML 0.401 0.845 0.349 0.251 0.158\nGPT-3.5-Turbo 2.198 2.152 1.793 2.514 2.332",
"/\n/\n/\n/\n/\n/\n0.371",
"⊗\n⊗\n⊗\n⊗\n⊗\n✓\n✓"
]
] | 0.576882 | null | null |
1 | 2404.07452v1 | 20 | [
114.23300170898438,
608.4540405273438,
497.7659912109375,
643.3720092773438
] | \begin{table}[h]
\centering
\caption{Ablation Study: performance results of different modules.}
\scalebox{1.0}{
\begin{tabular}{lccccc|c}
\toprule
\textbf{Module} & \textbf{$\overline{MSE}$} & \textbf{$MSE_3$} & \textbf{$MSE_7$} & \textbf{$MSE_{15}$} & \textbf{$MSE_{30}$} & \textbf{$VaR$} \\ \midrule
Audio + Text & 0.373 & 0.645 & 0.362 & 0.280 & 0.204 & 0.131 \\
Audio + Text + Analysis & 0.357 & 0.627 & 0.335 & 0.267 & 0.199 & 0.057 \\
Audio + Text + Analysis + VIX & \textbf{0.324} & \textbf{0.585} & \textbf{0.317} & \textbf{0.233} & \textbf{0.171} & \textbf{0.049} \\
\bottomrule
\end{tabular}}
\label{tab:ablation}
\end{table} | [
[
"Audio + Text 0.373 0.645 0.362 0.280 0.204\nAudio + Text + Analysis 0.357 0.627 0.335 0.267 0.199\nAudio + Text + Analysis + VIX 0.324 0.585 0.317 0.233 0.171",
"0.131\n0.057\n0.049"
]
] | 0.611321 | null | null |
0 | 2107.13132v2 | 17 | [
92.452197265625,
646.375,
519.547802734375,
695.7899780273438
] | \begin{table}[]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
& n. epochs & s. epochs & frontier size & penalty & max depth & lr & batch size \\
\hline
Synthetic & 10 & 10 & 30 & 0.01 & 2 & 0.0002 & 32 \\
\hline
CalMS21 & 6 & 10 & 8 & 0.01 & 5 & 0.001 & 256 \\
\hline
Basketball & 8 & 8 & 30 & 0.01 & 3 & 0.002 & 128 \\
\hline
\end{tabular}
\caption{Hyperparameters for program learning. n. epochs and s. epochs represent the number of neural and symbolic epochs respectively, where the neural epoch is for the neural heuristic. lr is the learning rate.}
\label{tab:hyperparams_prog}
\end{table} | [
[
"",
"n. epochs",
"s. epochs",
"frontier size",
"penalty",
"max depth",
"lr",
"batch size"
],
[
"Synthetic",
"10",
"10",
"30",
"0.01",
"2",
"0.0002",
"32"
],
[
"CalMS21",
"6",
"10",
"8",
"0.01",
"5",
"0.001",
"256"
],
[
"Basketball",
"8",
"8",
"30",
"0.01",
"3",
"0.002",
"128"
]
] | 0.6 | null | null |
1 | 2107.13132v2 | 18 | [
91.02219696044922,
82.06097412109375,
520.977783203125,
131.47601318359375
] | \begin{table}[]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
& epochs & z dim & h dim & RNN dim & adv. dim & disc. cap. & cont. cap. & lr \\
\hline
Synthetic & 50 & 4 & 16 & 16 & 8 & 0.6 & - & 0.0002 \\
\hline
CalMS21 & 30 & 8 & 256 & 256 & 8 & 0.69 & 10 & 0.0001 \\
\hline
Basketball & 20 & 8 & 128 & 128 & 8 & 0.6 & 4 & 0.02 \\
\hline
\end{tabular}
\caption{Hyperparameters for VAE training. The batch size is the same as the ones for program learning in Table~\ref{tab:hyperparams_prog}.}
\label{tab:hyperparams_vae}
\end{table} | [
[
"",
"epochs",
"z dim",
"h dim",
"RNN dim",
"adv. dim",
"disc. cap.",
"cont. cap.",
"lr"
],
[
"Synthetic",
"50",
"4",
"16",
"16",
"8",
"0.6",
"-",
"0.0002"
],
[
"CalMS21",
"30",
"8",
"256",
"256",
"8",
"0.69",
"10",
"0.0001"
],
[
"Basketball",
"20",
"8",
"128",
"128",
"8",
"0.6",
"4",
"0.02"
]
] | 0.70082 | null | null |
0 | 2406.03603v1 | 11 | [
161.60899353027344,
174.1590118408203,
450.3909912109375,
212.5360107421875
] | \begin{table}[ht]
\centering
\caption{Ablation study on positive and negative calibration in \Cref{eq:muc_obj} regarding the average gap over metrics on CIFAR-10 and MoCo with forgetting ratio 10/50\%.
For example, ``w/o + w/'' means \emph{AC} without negative calibration but with positive calibration.
}
\label{tab:ablation}
\vspace{5pt}
\begin{tabular}{c|cccc}
\toprule
\textbf{Ratio} & \textbf{w/ + w/} & \textbf{w/o + w/} & \textbf{w/ + w/o} & \textbf{w/o + w/o} \\
\hline
10\% & \textbf{0.92} & 1.25 & 1.95 & 2.70 \\
50\% & \textbf{2.00} & 4.12 & 3.75 & 6.45 \\
\bottomrule
\end{tabular}%
\end{table} | [
[
"Ratio",
"w/ + w/ w/o + w/ w/ + w/o w/o + w/o"
],
[
"10%\n50%",
"0.92 1.25 1.95 2.70\n2.00 4.12 3.75 6.45"
]
] | 0.57931 | null | null |
0 | 2310.06221v1 | 34 | [
134.46456718444824,
257.40997314453125,
476.78349685668945,
523.4110107421875
] | \begin{table}[htb]
\caption{List of common math notations. }
\centering
\begin{tabular}{|c||l|}
\hline
% \textbf{Symbols} & \textbf{Descriptions} \\ \midrule \hline
$[n]$ & the set $\{1, ..., n\} $ \\ \hline
$\|\cdot\|_1$ & $l_1$ norm of a matrix or a vector \\ \hline
$\|\cdot\|_2$ & $l_2$ norm of a matrix or a vector \\ \hline
$\|\cdot\|_F$ & the Frobenius norm of a matrix \\ \hline
$\mathbf{1}_n$ & $n$-dimensional vector with all 1 \\ \hline
$\mathbf{0}_n$ & $n$-dimensional vector with all 0 \\ \hline
$\mathbf{1}_{m\times n}$ & $m$-by-$n$ matrix with all 1 \\ \hline
$\mathbf{0}_{m\times n}$ & $m$-by-$n$ matrix with all 0 \\ \hline
$I_n$ & identity matrix with shape $n\times n$ \\ \hline
$V_{(i,j)}/V_{ij}$ & the value at $i$-th row and $j$-th column of a matrix $V$ \\ \hline
$V_{k, (i,j)}$ & the value at $i$-th row and $j$-th column of a matrix $V_k$ \\ \hline
$\*v_{(i)}/\*v_{i}$ & $i$-th value for a vector $\*v$ \\ \hline
$\*v_{k, (i)}$ & $i$-th value for a subscripted vector $\*v_{k}$ \\ \hline
$\langle \*u, \*v \rangle$ & inner-production between $\*u$ and $\*v$ \\ \hline
$V^{\dagger}$ & Moore-Penrose inverse of matrix $V$ \\ \hline
% & \\ \hline
% $A$ & Adjacency Matrix \\ \hline
% \rule{0pt}{2pt}$\Dot{A}$ & Normalized Adjacency Matrix \\ \hline
\end{tabular}
\end{table} | [
[
"[n]",
"the set 1, ..., n\n{ }"
],
[
"∥· ∥1",
"l norm of a matrix or a vector\n1"
],
[
"∥· ∥2",
"l norm of a matrix or a vector\n2"
],
[
"∥· ∥F",
"the Frobenius norm of a matrix"
],
[
"1\nn",
"n-dimensional vector with all 1"
],
[
"0\nn",
"n-dimensional vector with all 0"
],
[
"1\nm×n",
"m-by-n matrix with all 1"
],
[
"0\nm×n",
"m-by-n matrix with all 0"
],
[
"I\nn",
"identity matrix with shape n n\n×"
],
[
"V /V\n(i,j) ij",
"the value at i-th row and j-th column of a matrix V"
],
[
"V\nk,(i,j)",
"the value at i-th row and j-th column of a matrix V\nk"
],
[
"v /v\n(i) i",
"i-th value for a vector v"
],
[
"v\nk,(i)",
"i-th value for a subscripted vector v\nk"
],
[
"u, v\n⟨ ⟩",
"inner-production between u and v"
],
[
"V†",
"Moore-Penrose inverse of matrix V"
]
] | 0.617602 | null | null |
0 | 2011.10097v1 | 14 | [
251.04119567871095,
143.04498291015625,
356.8860107421875,
216.3699951171875
] | \begin{table}
\centering
\caption{Model parameters}
\begin{tabular}{|c|c|c|}
\hline
& PNMM&SLMM \\
\hline
$\eta$ & 0.500& 0.500 \\
\hline
$\beta$ & 0.100& 0.100 \\
\hline
$\lambda$ & 0.500& 0.500 \\
\hline
\end{tabular}
\label{table5:par_pnmm}
\end{table} | [
[
"",
"PNMM",
"SLMM"
],
[
"η",
"0.500",
"0.500"
],
[
"β",
"0.100",
"0.100"
],
[
"λ",
"0.500",
"0.500"
]
] | 0.755906 | null | null |
0 | 1410.3169v1 | 12 | [
199.39025115966797,
148.10101318359375,
410.1187515258789,
234.57598876953125
] | \begin{table}[!h]
\caption{$+$ vs. X}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 99.00\% &98.63\% &1.37\%\\
\hline
MLPCA& No& 87.90\%& 95.67\%& 12.10\% \\
\hline
MLSA& No& 99.37\%& 99.30\% &0.70\%\\
\hline
PLH &10 & 89.13\% & 94.67\% &10.87\% \\
\hline
MLPCA& 10 & 84.23\% &93.60\% &15.77\%\\
\hline
MLSA &10& 98.23\% &98.63\% &1.77\%\\
\hline
\end{tabular}
\label{table:plusXtable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"99.00%",
"98.63%",
"1.37%"
],
[
"MLPCA",
"No",
"87.90%",
"95.67%",
"12.10%"
],
[
"MLSA",
"No",
"99.37%",
"99.30%",
"0.70%"
],
[
"PLH",
"10",
"89.13%",
"94.67%",
"10.87%"
],
[
"MLPCA",
"10",
"84.23%",
"93.60%",
"15.77%"
],
[
"MLSA",
"10",
"98.23%",
"98.63%",
"1.77%"
]
] | 0.697337 | null | null |
1 | 1410.3169v1 | 12 | [
199.39025115966797,
274.7969970703125,
410.1187515258789,
361.27301025390625
] | \begin{table}[!h]
\caption{$+$ vs. Y}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 89.23\% &92.93\% &10.77\%\\
\hline
MLPCA& No& 87.83\% & 94.23\% & 12.17\% \\
\hline
MLSA& No& 93.90\% & 97.50\% & 6.10\%\\
\hline
PLH &10 & 85.87\% & 97.23\% & 14.13\% \\
\hline
MLPCA& 10 & 82.27\% & 91.33\% & 17.73\%\\
\hline
MLSA &10& 93.93\% & 98.87\% & 6.07\%\\
\hline
\end{tabular}
\label{table:plusYtable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"89.23%",
"92.93%",
"10.77%"
],
[
"MLPCA",
"No",
"87.83%",
"94.23%",
"12.17%"
],
[
"MLSA",
"No",
"93.90%",
"97.50%",
"6.10%"
],
[
"PLH",
"10",
"85.87%",
"97.23%",
"14.13%"
],
[
"MLPCA",
"10",
"82.27%",
"91.33%",
"17.73%"
],
[
"MLSA",
"10",
"93.93%",
"98.87%",
"6.07%"
]
] | 0.645783 | null | null |
2 | 1410.3169v1 | 12 | [
199.39025115966797,
402.60400390625,
410.1187515258789,
489.0799865722656
] | \begin{table}[!h]
\caption{$+$ vs. Triple}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 99.73\% & 99.43\% & 0.57\%\\
\hline
MLPCA& No& 86.67\% & 96.80\% & 13.33\% \\
\hline
MLSA& No & 99.83\% & 99.93\% & 0.17\% \\
\hline
PLH &10 & 99.97\% & 99.77\% & 0.23\% \\
\hline
MLPCA& 10 & 86.43\% & 95.27\% & 13.57\%\\
\hline
MLSA &10& 99.97\% & 99.97\% & 0.03\% \\
\hline
\end{tabular}
\label{table:plustripletable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"99.73%",
"99.43%",
"0.57%"
],
[
"MLPCA",
"No",
"86.67%",
"96.80%",
"13.33%"
],
[
"MLSA",
"No",
"99.83%",
"99.93%",
"0.17%"
],
[
"PLH",
"10",
"99.97%",
"99.77%",
"0.23%"
],
[
"MLPCA",
"10",
"86.43%",
"95.27%",
"13.57%"
],
[
"MLSA",
"10",
"99.97%",
"99.97%",
"0.03%"
]
] | 0.644231 | null | null |
3 | 1410.3169v1 | 12 | [
199.39025115966797,
528.594970703125,
410.1187515258789,
615.0709838867188
] | \begin{table}[!h]
\caption{X vs. Y}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 95.20\% & 98.93\% & 4.80\%\\
\hline
MLPCA& No& 79.17\% & 93.77\% & 20.83\% \\
\hline
MLSA& No& 99.97\% & 100.00\% & 0.03\% \\
\hline
PLH &10 & 94.67\% & 97.77\% & 5.33\% \\
\hline
MLPCA& 10 & 81.50\% & 94.80\% & 18.50\%\\
\hline
MLSA &10& 99.97\% & 99.97\% & 0.03\% \\
\hline
\end{tabular}
\label{table:XYtable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"95.20%",
"98.93%",
"4.80%"
],
[
"MLPCA",
"No",
"79.17%",
"93.77%",
"20.83%"
],
[
"MLSA",
"No",
"99.97%",
"100.00%",
"0.03%"
],
[
"PLH",
"10",
"94.67%",
"97.77%",
"5.33%"
],
[
"MLPCA",
"10",
"81.50%",
"94.80%",
"18.50%"
],
[
"MLSA",
"10",
"99.97%",
"99.97%",
"0.03%"
]
] | 0.6 | null | null |
4 | 1410.3169v1 | 13 | [
199.39025115966797,
149.21197509765625,
410.1187515258789,
235.68701171875
] | \begin{table}[!h]
\caption{X vs. Triple}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 89.13\% & 92.03\% & 10.87\%\\
\hline
MLPCA& No& 90.00\% & 92.53\% & 10.00\% \\
\hline
MLSA& No& 94.20\% & 98.30\% & 5.80\% \\
\hline
PLH &10 & 89.50\% & 93.90\% & 10.50\% \\
\hline
MLPCA& 10 & 92.60\% & 93.30\% & 7.40\% \\
\hline
MLSA &10& 95.00\% & 98.73\% & 5.00\%\\
\hline
\end{tabular}
\label{table:Xtripletable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"89.13%",
"92.03%",
"10.87%"
],
[
"MLPCA",
"No",
"90.00%",
"92.53%",
"10.00%"
],
[
"MLSA",
"No",
"94.20%",
"98.30%",
"5.80%"
],
[
"PLH",
"10",
"89.50%",
"93.90%",
"10.50%"
],
[
"MLPCA",
"10",
"92.60%",
"93.30%",
"7.40%"
],
[
"MLSA",
"10",
"95.00%",
"98.73%",
"5.00%"
]
] | 0.592771 | null | null |
5 | 1410.3169v1 | 13 | [
199.39025115966797,
277.01898193359375,
410.1187515258789,
363.4939880371094
] | \begin{table}[!h]
\caption{Y vs. Triple}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 98.17\% & 100.00\% & 1.83\%\\
\hline
MLPCA& No& 92.70\% & 91.37\% & 8.63\% \\
\hline
MLSA& No& 99.23\% & 100.00\% & 0.77\%\\
\hline
PLH &10 & 97.47\% & 100.00\% & 2.53\% \\
\hline
MLPCA& 10 & 95.77\% & 87.57\% & 12.43\%\\
\hline
MLSA &10& 99.13\% & 100.00\% & 0.87\%\\
\hline
\end{tabular}
\label{table:Ytripletable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"98.17%",
"100.00%",
"1.83%"
],
[
"MLPCA",
"No",
"92.70%",
"91.37%",
"8.63%"
],
[
"MLSA",
"No",
"99.23%",
"100.00%",
"0.77%"
],
[
"PLH",
"10",
"97.47%",
"100.00%",
"2.53%"
],
[
"MLPCA",
"10",
"95.77%",
"87.57%",
"12.43%"
],
[
"MLSA",
"10",
"99.13%",
"100.00%",
"0.87%"
]
] | 0.610979 | null | null |
6 | 1410.3169v1 | 13 | [
199.39025115966797,
403.010009765625,
410.1187515258789,
489.4859924316406
] | \begin{table}[!h]
\caption{One Side vs. Both Sides}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 92.17\%& 99.73\%& 7.83\%\\
\hline
MLPCA& No& 66.17\%& 86.03\%& 33.83\% \\
\hline
MLSA& No& 95.93\%& 98.73\% &4.07\%\\
\hline
PLH &10 & 91.67\%& 99.73\%& 8.33\% \\
\hline
MLPCA& 10 & 68.60\%& 83.97\%& 31.40\%\\
\hline
MLSA &10& 95.13\%& 98.73\%& 4.87\%\\
\hline
\end{tabular}
\label{table:sidestable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"92.17%",
"99.73%",
"7.83%"
],
[
"MLPCA",
"No",
"66.17%",
"86.03%",
"33.83%"
],
[
"MLSA",
"No",
"95.93%",
"98.73%",
"4.07%"
],
[
"PLH",
"10",
"91.67%",
"99.73%",
"8.33%"
],
[
"MLPCA",
"10",
"68.60%",
"83.97%",
"31.40%"
],
[
"MLSA",
"10",
"95.13%",
"98.73%",
"4.87%"
]
] | 0.6618 | null | null |
7 | 1410.3169v1 | 13 | [
199.39025115966797,
529.0009765625,
410.1187515258789,
615.4769897460938
] | \begin{table}[!h]
\caption{LIDAR}
\begin{tabular}{|c|c|c|c|c|}
\hline
Features& Bins&Sens.&Spec.& Max Errors \\
\hline
PLH &No& 92.80\% & 74.04\% & 25.96\%\\
\hline
MLPCA& No& 94.28\% & 98.86\% & 5.72\% \\
\hline
MLSA& No& 94.90\% & 98.56\% & 5.10\% \\
\hline
PLH &10 & 92.98\% & 78.04\% & 21.96\% \\
\hline
MLPCA& 10 & 95.05\% & 99.06\% & 4.95\%\\
\hline
MLSA &10& 95.69\% & 99.14\% & 4.31\% \\
\hline
\end{tabular}
\label{table:LIDARtable}
\end{table} | [
[
"Features",
"Bins",
"Sens.",
"Spec.",
"Max Errors"
],
[
"PLH",
"No",
"92.80%",
"74.04%",
"25.96%"
],
[
"MLPCA",
"No",
"94.28%",
"98.86%",
"5.72%"
],
[
"MLSA",
"No",
"94.90%",
"98.56%",
"5.10%"
],
[
"PLH",
"10",
"92.98%",
"78.04%",
"21.96%"
],
[
"MLPCA",
"10",
"95.05%",
"99.06%",
"4.95%"
],
[
"MLSA",
"10",
"95.69%",
"99.14%",
"4.31%"
]
] | 0.622871 | null | null |
0 | 2404.12355v2 | 26 | [
160.09477996826172,
54.198974609375,
451.90527779715404,
244.385986328125
] | \begin{table}[t!]
\centering
\begin{tabular}{|c|c|}
\hline
Equation type & Generator \\\hline
Heat&\multirow{5}{*}{Method of Line}\\
Klein-Gordon&\\
Sine-Gordon&\\
Porous medium &\\
Cahn-Hilliard&\\\hline
Diff-React&\multirow{3}{*}{PDEBench \cite{takamoto2022pdebench}}\\
Viscous Conservation&\\
Inviscid Conservation&\\\hline
Advection&\multirow{2}{*}{Exact solution defined by IC}\\
Wave&\\\hline
Kdv&Fourier Spectral Method \cite{Kdvsolver}\\\hline
Fokker-Planck&Matrix Numerical Method \cite{fplancksolver}\\
\hline
\end{tabular}
\caption{Solvers for different types of equations}
\label{tab:Generator}
\end{table} | [
[
"Equation type",
"Generator"
],
[
"Heat\nKlein-Gordon\nSine-Gordon\nPorous medium\nCahn-Hilliard",
"Method of Line"
],
[
"Diff-React\nViscous Conservation\nInviscid Conservation",
"PDEBench [55]"
],
[
"Advection\nWave",
"Exact solution defined by IC"
],
[
"Kdv",
"Fourier Spectral Method [72]"
],
[
"Fokker-Planck",
"Matrix Numerical Method [15]"
]
] | 0.518968 | null | null |
1 | 2404.12355v2 | 30 | [
81.43000030517578,
553.4459838867188,
530.5690307617188,
613.7570190429688
] | \begin{table}[t]
\centering
\caption{\textbf{Optimizer hyperparameters.}}
\label{tab:optim_hyper}
\begin{tabular}{l l | l l }
\toprule
Learning rate & $10^{-4}$ & Weight decay & $10^{-4}$\\
Scheduler & Inverse square root & Warmup steps & 10\% of total steps\\
Batch size per GPU & 512 & Gradient norm clip & 1.0\\
Data loss weight $\alpha$ & 5.0 & Symbol loss weight $\beta$ & 1.0\\
\bottomrule
\end{tabular}
\end{table} | [
[
"Learning rate 10´4\nScheduler Inverse square root\nBatch size per GPU 512\nData loss weight α 5.0",
"Weight decay 10´4\nWarmup steps 10% of total steps\nGradient norm clip 1.0\nSymbol loss weight β 1.0"
]
] | 0.474645 | null | null |
0 | 2109.00984v2 | 22 | [
109.77981567382812,
123.7247528076172,
502.2332458496094,
662.4291625976563
] | \begin{table}[h]
\setlength{\tabcolsep}{4pt}
\rowcolors{2}{gray!25}{white}
\resizebox{\linewidth}{!}{
\begin{tabular}{lcl}
\toprule
\bf Function & \bf Function name(s) & \bf Description\\
\midrule
Absolute & \texttt{abs} & Multiply value by its sign.\\
Addition & \texttt{add}, \texttt{+} & Each party adds their shares.\\
Argument of maximum & \texttt{argmax} & Perform pairwise comparisons or tree reduction.\\
Argument of minimum & \texttt{argmin} & Perform pairwise comparisons or tree reduction.\\
Average pooling & \texttt{avg\_pool2d} & Each party computes the average pooling of its share.\\
Batch normalization & \texttt{batchnorm} & Batch normalize values using summation, division, and variance functions.\\
Binary AND & \texttt{and}, \texttt{\&} & Compute using binary Beaver protocol.\\
Binary cross-entropy & \texttt{binary\_cross\_entropy} & Compute using logarithm, multiplication, and addition functions.\\
Binary XOR & \texttt{xor}, \texttt{\^} & Each party XORs it shares.\\
Clone & \texttt{clone} & Each party clones their share.\\
Comparison & \texttt{>=}, \texttt{<=}, \texttt{=}, \texttt{ge}, \texttt{le}, \texttt{eq} & To compare to $0$, convert to binary secret share and inspect most significant bit.\\
Concatenation & \texttt{cat} & Each party concatenates their shares.\\
\multirow{-2}{*}{Convolution} & \multirow{-2}{*}{\texttt{conv1d}, \texttt{conv2d}} & \shortstack[l]{If filter is public, each party convolves its share.\\If filter is private, compute using Beaver protocol.}\\
Cosine & \texttt{cos} & Approximate using repeated-squaring method.\\
Cross-entropy & \texttt{cross\_entropy} & Compute using softmax, logarithm, multiplication, and division functions.\\
Cumulative sum & \texttt{cumsum} & Each party computes cumulative sum of values in its share.\\
Division & \texttt{div}, \texttt{/} & If divisor is public, divide shares by value and correct for wrap-around errors.\\
Dot product & \texttt{dot} & Multiply all elements and sum results.\\
\multirow{-2}{*}{Dropout} & \multirow{-2}{*}{\texttt{dropout}} & \shortstack[l]{Each party multiplies their share with dropout mask.\\Dropout mask is not encrypted.}\\
Error function & \texttt{erf} & Approximate using Maclaurin series.\\
Exponent & \texttt{exp} & Approximate using limit approximation.\\
Flatten & \texttt{flatten} & Each party flattens their share.\\
Flip & \texttt{flip} & Each party flips their share.\\
Hard tangent & \texttt{hardtanh} & Compute using comparison, multiplication, and addition functions.\\
Logarithm & \texttt{log} & Approximate using higher-order modified Householder method.\\
Log-softmax & \texttt{log\_softmax} & Compute using exponentiation, maximum, summation, and addition functions.\\
\multirow{-2}{*}{Matrix multiplication} & \multirow{-2}{*}{\texttt{matmul}} & \shortstack[l]{If one matrix is public, each party matrix-multiplies its share.\\If both matrices are private, compute using Beaver protocol.}\\
Maximum & \texttt{max} & Compute argmax as one-hot vector; compute dot product with input.\\
Max pooling & \texttt{max\_pool2d} & Compute maximum value.\\
Mean & \texttt{mean} & Each party computes mean of its share.\\
Minimum & \texttt{min} & Compute argmin as one-hot vector; compute dot product with input.\\
\multirow{-2}{*}{Multiplication} & \multirow{-2}{*}{\texttt{mul}, \texttt{*}} & \shortstack[l]{If multiplier is public, each party multiplies its share with the\\multiplier. If multiplier is private, use Beaver protocol.}\\
Multiplexing & \texttt{where} & Multiply first value by binary mask; add second value multiplied by inverse mask.\\
Negation & \texttt{neg} & Each party negates their share.\\
Norm & \texttt{norm} & Compute using the square, sum, and square root functions.\\
Outer product & \texttt{ger} & Perform multiplication of each pair of elements.\\
Padding & \texttt{pad} &Each party pads their share.\\
Permute & \texttt{permute} & Each party permutes their share. Indexes are not encrypted.\\
Product & \texttt{prod} & Multiply all elements in the input.\\
\multirow{-2}{*}{Power} & \multirow{-2}{*}{\texttt{pow}, \texttt{pos\_pow}} & \shortstack[l]{For positive powers, multiply in log-domain and exponentiate.\\For negative powers, compute reciprocal and evaluate positive power.}\\
Reciprocal & \texttt{reciprocal} & Approximate using Newton-Rhapson iterations.\\
ReLU & \texttt{relu}, \texttt{relu6} & Compare values with $0$, and multiply values by the resulting mask.\\
Reshaping & \texttt{reshape}, \texttt{view} & Each party reshapes their share.\\
Rolling & \texttt{roll} & Each party rolls their share.\\
\multirow{-2}{*}{Scattering} & \multirow{-2}{*}{\texttt{scatter}} & \shortstack[l]{Each party scatters one share into the other share.\\Indexes are not encrypted.}\\
\multirow{-3}{*}{Selection} & \shortstack{\texttt{gather},\\ \texttt{index\_select},\\ \texttt{narrow}, \texttt{take}} & \multirow{-3}{*}{Each party selects part of their share. Indexes are not encrypted.}\\
Sigmoid & \texttt{sigmoid} & Compute using the exponential and reciprocal functions.\\
Sign & \texttt{sign} & Compare value with $0$, multiply by $2$, and subtract $1$.\\
Sine & \texttt{sin} & Approximate using repeated-squaring method.\\
Softmax & \texttt{softmax} & Compute using exponentiation, maximum, summation, and reciprocal functions.\\
Square & \texttt{square} & Compute using Beaver protocol.\\
Square root & \texttt{sqrt} & Approximate using Newton-Rhapson iterations.\\
Squeezing & \texttt{squeeze} & Each party removes dimensions with size $1$ from their share.\\
Stacking & \texttt{stack} & Each party stacks their shares.\\
Subtraction & \texttt{sub}, \texttt{-} & Each party subtracts their shares.\\
Summation & \texttt{sum} & Each party sums all values in its share.\\
Tangent & \texttt{tanh} & Perform linear transformation of sigmoid value of output.\\
Trace & \texttt{trace} & Each party sums all diagonal elements of their share.\\
Transpose & \texttt{t}, \texttt{transpose} & Each party transposes their share.\\
Unsqueezing & \texttt{unsqueeze} & Each party adds dimensions with size $1$ to their share.\\
Variance & \texttt{var} & Compute using square, addition, and subtraction functions.\\
\bottomrule
\end{tabular}
}
\caption{Overview of all functions on tensors implemented in \crypten{}.}
\label{tab:functions_detail}
\end{table} | [
[
"Absolute",
"abs",
"Multiply value by its sign."
],
[
"Addition",
"add, +",
"Each party adds their shares."
],
[
"Argument of maximum",
"argmax",
"Perform pairwise comparisons or tree reduction."
],
[
"Argument of minimum",
"argmin",
"Perform pairwise comparisons or tree reduction."
],
[
"Average pooling",
"avg_pool2d",
"Each party computes the average pooling of its share."
],
[
"Batch normalization",
"batchnorm",
"Batch normalize values using summation, division, and variance functions."
],
[
"Binary AND",
"and, &",
"Compute using binary Beaver protocol."
],
[
"Binary cross-entropy",
"binary_cross_entropy",
"Compute using logarithm, multiplication, and addition functions."
],
[
"Binary XOR",
"xor, ˆ",
"Each party XORs it shares."
],
[
"Clone",
"clone",
"Each party clones their share."
],
[
"Comparison",
">=, <=, =, ge, le, eq",
"To compare to 0, convert to binary secret share and inspect most significant bit."
],
[
"Concatenation",
"cat",
"Each party concatenates their shares."
],
[
"Convolution",
"conv1d, conv2d",
"If filter is public, each party convolves its share.\nIf filter is private, compute using Beaver protocol."
],
[
"Cosine",
"cos",
"Approximate using repeated-squaring method."
],
[
"Cross-entropy",
"cross_entropy",
"Compute using softmax, logarithm, multiplication, and division functions."
],
[
"Cumulative sum",
"cumsum",
"Each party computes cumulative sum of values in its share."
],
[
"Division",
"div, /",
"If divisor is public, divide shares by value and correct for wrap-around errors."
],
[
"Dot product",
"dot",
"Multiply all elements and sum results."
],
[
"Dropout",
"dropout",
"Each party multiplies their share with dropout mask.\nDropout mask is not encrypted."
],
[
"Error function",
"erf",
"Approximate using Maclaurin series."
],
[
"Exponent",
"exp",
"Approximate using limit approximation."
],
[
"Flatten",
"flatten",
"Each party flattens their share."
],
[
"Flip",
"flip",
"Each party flips their share."
],
[
"Hard tangent",
"hardtanh",
"Compute using comparison, multiplication, and addition functions."
],
[
"Logarithm",
"log",
"Approximate using higher-order modified Householder method."
],
[
"Log-softmax",
"log_softmax",
"Compute using exponentiation, maximum, summation, and addition functions."
],
[
"Matrix multiplication",
"matmul",
"If one matrix is public, each party matrix-multiplies its share.\nIf both matrices are private, compute using Beaver protocol."
],
[
"Maximum",
"max",
"Compute argmax as one-hot vector; compute dot product with input."
],
[
"Max pooling",
"max_pool2d",
"Compute maximum value."
],
[
"Mean",
"mean",
"Each party computes mean of its share."
],
[
"Minimum",
"min",
"Compute argmin as one-hot vector; compute dot product with input."
],
[
"Multiplication",
"mul, *",
"If multiplier is public, each party multiplies its share with the\nmultiplier. If multiplier is private, use Beaver protocol."
],
[
"Multiplexing",
"where",
"Multiply first value by binary mask; add second value multiplied by inverse mask."
],
[
"Negation",
"neg",
"Each party negates their share."
],
[
"Norm",
"norm",
"Compute using the square, sum, and square root functions."
],
[
"Outer product",
"ger",
"Perform multiplication of each pair of elements."
],
[
"Padding",
"pad",
"Each party pads their share."
],
[
"Permute",
"permute",
"Each party permutes their share. Indexes are not encrypted."
],
[
"Product",
"prod",
"Multiply all elements in the input."
],
[
"Power",
"pow, pos_pow",
"For positive powers, multiply in log-domain and exponentiate.\nFor negative powers, compute reciprocal and evaluate positive power."
],
[
"Reciprocal",
"reciprocal",
"Approximate using Newton-Rhapson iterations."
],
[
"ReLU",
"relu, relu6",
"Compare values with 0, and multiply values by the resulting mask."
],
[
"Reshaping",
"reshape, view",
"Each party reshapes their share."
],
[
"Rolling",
"roll",
"Each party rolls their share."
],
[
"Scattering",
"scatter",
"Each party scatters one share into the other share.\nIndexes are not encrypted."
],
[
"Selection",
"gather,\nindex_select,\nnarrow, take",
"Each party selects part of their share. Indexes are not encrypted."
],
[
"Sigmoid",
"sigmoid",
"Compute using the exponential and reciprocal functions."
],
[
"Sign",
"sign",
"Compare value with 0, multiply by 2, and subtract 1."
],
[
"Sine",
"sin",
"Approximate using repeated-squaring method."
],
[
"Softmax",
"softmax",
"Compute using exponentiation, maximum, summation, and reciprocal functions."
],
[
"Square",
"square",
"Compute using Beaver protocol."
],
[
"Square root",
"sqrt",
"Approximate using Newton-Rhapson iterations."
],
[
"Squeezing",
"squeeze",
"Each party removes dimensions with size 1 from their share."
],
[
"Stacking",
"stack",
"Each party stacks their shares."
],
[
"Subtraction",
"sub, -",
"Each party subtracts their shares."
],
[
"Summation",
"sum",
"Each party sums all values in its share."
],
[
"Tangent",
"tanh",
"Perform linear transformation of sigmoid value of output."
],
[
"Trace",
"trace",
"Each party sums all diagonal elements of their share."
],
[
"Transpose",
"t, transpose",
"Each party transposes their share."
],
[
"Unsqueezing",
"unsqueeze",
"Each party adds dimensions with size 1 to their share."
],
[
"Variance",
"var",
"Compute using square, addition, and subtraction functions."
]
] | 0.817723 | null | null |
0 | 2303.06183v2 | 7 | [
131.4588368733724,
258.00299072265625,
463.8173319498698,
329.68798828125
] | \begin{table}[H]
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline Event & Type & $\phi^e(t, I)$ & New individual \\
\hline Birth & $b$ & $\delta_{(t, \infty, X)}$ & $ \tau^b =t, \; X \sim k^b(t,I,\d x)$\\
\hline Entry & $en$& $\delta_{(\tau^b, \infty, X)}$ & $(\tau^b, X) \sim k^{en}(t,\d s, \d x)$ \\
\hline Death/Exit & $d$ & $\delta_{(\tau^b, t,x)} - \delta_{(\tau^b, \infty, x)}$ & {$\tau^d = t$} \\
\hline Swap & $s$ & $\delta_{(\tau^b, \infty , X)} - \delta_{(\tau^b, \infty, x)}$ & $ X \sim k^s(t,I,\d x)$\\
\hline
\end{tabular}
\end{center}
\caption{Events action}
\label{TableEvAction}
\end{table} | [
[
"Event",
"Type",
"ϕe(t, I)",
"New individual"
],
[
"Birth",
"b",
"δ\n(t,∞,X)",
"τ b = t, X kb(t, I, dx)\n∼"
],
[
"Entry",
"en",
"δ\n(τ b,∞,X)",
"(τ b, X) ken(t, ds, dx)\n∼"
],
[
"Death/Exit",
"d",
"δ δ\n(τ b,t,x) − (τ b,∞,x)",
"τ d = t"
],
[
"Swap",
"s",
"δ δ\n(τ b,∞,X) − (τ b,∞,x)",
"X ks(t, I, dx)\n∼"
]
] | 0.36803 | null | null |
0 | 2102.09340v1 | 12 | [
53.03983497619629,
70.614990234375,
295.9463297526042,
165.0606486002604
] | \begin{table}[!t]
\caption{The preprocessing Reuters-21578 dataset}
\label{table_6}
\centering
\begin{tabular}{|m{40pt}<{\centering}|c|c|c|c|c|c|}
\hline
Tasks& \multicolumn{2}{c|}{people vs. places}& \multicolumn{2}{c|}{orgs vs. people}& \multicolumn{2}{c|}{orgs vs. places}\\ \hline
Feature dimension& \multicolumn{2}{c|}{4562}& \multicolumn{2}{c|}{4771} &\multicolumn{2}{c|}{4415}\\ \hline \hline
Source vs. Target& people& places& orgs& people& orgs& places\\ \hline
Number of samples& 1077& 1077& 1237& 1208& 1016& 1043\\ \hline
Number of positive samples& 428 &456& 588 &587& 428& 456\\ \hline
\end{tabular}
\end{table} | [
[
"Tasks",
"people vs. places",
null,
"orgs vs. people",
null,
"orgs vs. places",
null
],
[
"Feature\ndimension",
"4562",
null,
"4771",
null,
"4415",
null
],
[
"Source vs.\nTarget",
"people",
"places",
"orgs",
"people",
"orgs",
"places"
],
[
"Number of\nsamples",
"1077",
"1077",
"1237",
"1208",
"1016",
"1043"
],
[
"Number of\npositive\nsamples",
"428",
"456",
"588",
"587",
"428",
"456"
]
] | 0.674157 | null | null |
1 | 2102.09340v1 | 12 | [
312.69745150479406,
246.6500244140625,
562.3158957741477,
313.99798583984375
] | \begin{table}
\scriptsize
\caption{The text classification accuracy (\%) with different kernel functions}
\label{table_8}
\centering
\begin{tabular}{| m{18pt}<{\centering} | m{18pt}<{\centering} | m{18pt}<{\centering} | m{21pt}<{\centering} | m{18pt}<{\centering} | m{20pt}<{\centering} | m{21pt}<{\centering} | m{18pt}<{\centering} |}
\hline
Dim& IGLDA (poly) &IGLDA (rbf) &IGLDA (Cauchy)& IGLDA (exp) & SDLK-IGLDA (rbf) &SDLK-IGLDA (Cauchy) & SDLK-IGLDA (exp)\\ \hline \hline
5& 55.8979& 51.7047 &51.5692& 51.4485& 56.3695& \textbf{57.3630}& 56.3045\\
10& 60.9694 &51.5339& 52.5998& 46.2117& 61.5135& \textbf{63.4169}& 61.5970\\
20& 59.3110 &52.0204& 52.9155 &47.5859& 59.5173& \textbf{60.4550}& 58.4215\\
30& 57.1365 &51.8217& 53.2126& 45.7753& 57.5859& \textbf{58.3565} &56.6202\\ \hline
Average& 58.3287& 51.7702& 52.5743& 47.7554& 58.7466& \textbf{59.8979}& 58.2358 \\ \hline
\end{tabular}
\end{table} | [
[
"Dim",
"IGLDA\n(poly)",
"IGLDA\n(rbf)",
"IGLDA\n(Cauchy)",
"IGLDA\n(exp)",
"SDLK-\nIGLDA\n(rbf)",
"SDLK-\nIGLDA\n(Cauchy)",
"SDLK-\nIGLDA\n(exp)"
],
[
"5\n10\n20\n30",
"55.8979\n60.9694\n59.3110\n57.1365",
"51.7047\n51.5339\n52.0204\n51.8217",
"51.5692\n52.5998\n52.9155\n53.2126",
"51.4485\n46.2117\n47.5859\n45.7753",
"56.3695\n61.5135\n59.5173\n57.5859",
"57.3630\n63.4169\n60.4550\n58.3565",
"56.3045\n61.5970\n58.4215\n56.6202"
],
[
"Average",
"58.3287",
"51.7702",
"52.5743",
"47.7554",
"58.7466",
"59.8979",
"58.2358"
]
] | 0.45177 | null | null |
0 | 2107.01238v1 | 2 | [
101.76599884033203,
91.06097412109375,
510.2340087890625,
261.6209716796875
] | \begin{table}
\small
\centering
\begin{tabular}{|c|l|c|c|c|c}
\hline
\textbf{Week} & \textbf{Topic} & \textbf{Exp. Acc. ORQ} & \textbf{Acc. ORQ} & \textbf{Acc. MCQ} \\
\hline
\hline
1 & Basics & 1.00 & 1.00 & 1.00\\
2 & Perceptrons & 0.98 & 0.98 & 0.98\\
3 & Features & 0.86 & 0.86 & 0.89\\
4 & Logistic regression & 0.86 & 0.86 & 0.90\\
5 & Regression & 0.97 & 0.97 & 0.97\\
6 & Neural networks I & 1.00 & 1.00 & 1.00\\
7 & Neural networks II & 0.97 & 0.97 & 0.98\\
8 & Convolutional neural networks & 0.84 & 0.86 & 0.89\\
9 & Recurrent neural networks & 1.00 & 1.00 & 1.00\\
10 & State machines and MDPs & 0.94 & 1.00 & 1.00\\
11 & Reinforcement learning & 1.00 & 1.00 & 1.00\\
12 & Decision trees & 1.00 & 1.00 & 1.00\\
\hline
& Overall average over topics & 0.95 & 0.96 & 0.97\\
\hline
\end{tabular}
\caption{Accuracy achieved using our system for each topic taught in MIT's Introduction to Machine Learning course, 6.036. Our system demonstrates an overall average expression accuracy (percent of correct expressions) of 95\% and value accuracy (percent of correct values) of 96\% for open response questions (ORQ), and accuracy (percent of correct values) of 97\% for multiple-choice questions (MCQ), achieving grade A performance in real-time.}
\label{tab:results}
\vspace{-20pt}
\end{table} | [
[
"Week",
"Topic",
"Exp. Acc. ORQ",
"Acc. ORQ",
"Acc. MCQ"
],
[
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12",
"Basics\nPerceptrons\nFeatures\nLogistic regression\nRegression\nNeural networks I\nNeural networks II\nConvolutional neural networks\nRecurrent neural networks\nState machines and MDPs\nReinforcement learning\nDecision trees",
"1.00\n0.98\n0.86\n0.86\n0.97\n1.00\n0.97\n0.84\n1.00\n0.94\n1.00\n1.00",
"1.00\n0.98\n0.86\n0.86\n0.97\n1.00\n0.97\n0.86\n1.00\n1.00\n1.00\n1.00",
"1.00\n0.98\n0.89\n0.90\n0.97\n1.00\n0.98\n0.89\n1.00\n1.00\n1.00\n1.00"
],
[
"",
"Overall average over topics",
"0.95",
"0.96",
"0.97"
]
] | 0.391245 | null | null |
1 | 2107.01238v1 | 10 | [
106.2979965209961,
159.98297119140625,
505.7019958496094,
609.4979858398438
] | \begin{table}
\small
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Topic} & \textbf{Question} & \textbf{Answer} \\
\hline \hline
Basics & Compute the magnitude of $[10, 10, 1]$. & $14.18$ \\
\hline
Perceptrons & If the decision boundary of a classifier is $\theta$, where $\theta =$ & $4$ \\
& $(4, 1)$, how does it classify point $p$, where $p = (2, -4)$? & \\
\hline
Features & A point $1$ has label $1$. Compute the margin of a classifier & $2$ \\
& on this point. Let the $\theta$ of the classifier be $-1$ and the $\theta_0$ & \\
& of the classifier be $-1$. & \\
\hline
Logistic & If we have $x = (0, -1)$, $\theta = (1, -2)$, and $\theta_0 = -3$, then & $-1$ \\
Regression & what is the result of $\theta x + \theta_0$? & \\
\hline
Regression & If we let $\theta = 1$ and $\lambda = 0.5$, what is the mean squared error & $2.25$ \\
& of the given points $[(2, 0), (1, 1)]$? & \\
\hline
Neural & Neurons A and B take inputs $4$ and $2$ with weights $2$ and & $20.5$\\
Networks I & $1$, respectively. Neuron A has offset $0.5$ and neuron B has & \\
& offset $1$. Neuron C takes in the output of A and B with & \\
& weights $1$ and $3$, respectively, and with offset $3$. What is & \\
& the output? & \\
\hline
Neural & Compute the ReLU output of neuron C which takes the & $1.5$ \\
Networks II & output of neuron A with weight $1$ and neuron B & \\
& with weight $2$ and offset $1$. Neuron B has input $0$ and & \\
& offset $1$. Neuron A has input $-1$ and offset $2$ with offset & \\
& $0.5$. & \\
\hline
Convolutional & What is the minimum number of padding needed to & $8$ \\
Neural & maintain the same output size if the input image is $50$ & \\
Networks & by $50$ and the filter is $17$ by $17$? & \\
\hline
State Machines & Consider the input $x_t = [7, 14, 13, 10]$ to a state machine & $56$\\
and Markov & with equations $s_t = f(s_{t-1}, x_t)$ and $y_t = g(s_t)$. Compute $y_4$ & \\
Decision & if our initial conditions are $s_0 = 2$, $f(s_{t-1}, x_t) =$ & \\
Processes & $\max(s_{t-1}, x_t)$, and $g(s_t) = 4s_t$. & \\
\hline
Reinforcement & Let $q = 2$. After Q learning, what is $q$ if $a = 0.3$ and $t = 8$? & $3.8$ \\
Learning & & \\
\hline
Recurrent & Let $s_0 = 1.5$, $w = 1.5$, and $x = [1, 0, 2]$. Compute $s_3$ if $s_t =$ & $9.31$\\
Neural & $w*s_{t-1} + x_t$. & \\
Networks & & \\
\hline
Decision & Consider a 1D classification line on a 2D plane. There is a & $0.90$ \\
Trees & total of $46$ points, $30$ of which are on the right and the & \\
& rest on the left of the boundary. $5$ points on the left are & \\
& classified positive. What is the entropy of the left region? & \\
\hline
\end{tabular}
\caption{A sample question from each of the machine learning course topics and the answer generated by our model.}
\label{results:examples}
\vspace{-24pt}
\end{table} | [
[
"Topic",
"Question",
"Answer"
],
[
"Basics",
"Compute the magnitude of [10, 10, 1].",
"14.18"
],
[
"Perceptrons",
"If the decision boundary of a classifier is θ, where θ =\n(4, 1), how does it classify point p, where p = (2, 4)?\n−",
"4"
],
[
"Features",
"A point 1 has label 1. Compute the margin of a classifier\non this point. Let the θ of the classifier be 1 and the θ\n− 0\nof the classifier be 1.\n−",
"2"
],
[
"Logistic\nRegression",
"If we have x = (0, −1), θ = (1, −2), and θ = −3, then\n0\nwhat is the result of θx + θ ?\n0",
"1\n−"
],
[
"Regression",
"If we let θ = 1 and λ = 0.5, what is the mean squared error\nof the given points [(2, 0), (1, 1)]?",
"2.25"
],
[
"Neural\nNetworks I",
"Neurons A and B take inputs 4 and 2 with weights 2 and\n1, respectively. Neuron A has offset 0.5 and neuron B has\noffset 1. Neuron C takes in the output of A and B with\nweights 1 and 3, respectively, and with offset 3. What is\nthe output?",
"20.5"
],
[
"Neural\nNetworks II",
"Compute the ReLU output of neuron C which takes the\noutput of neuron A with weight 1 and neuron B\nwith weight 2 and offset 1. Neuron B has input 0 and\noffset 1. Neuron A has input 1 and offset 2 with offset\n−\n0.5.",
"1.5"
],
[
"Convolutional\nNeural\nNetworks",
"What is the minimum number of padding needed to\nmaintain the same output size if the input image is 50\nby 50 and the filter is 17 by 17?",
"8"
],
[
"State Machines\nand Markov\nDecision\nProcesses",
"Consider the input x = [7, 14, 13, 10] to a state machine\nt\nwith equations s = f(s t−1, x t) and y = g(s t). Compute y\nt t 4\nif our initial conditions are s = 2, f(s t−1, x t) =\n0\nmax(s , x ), and g(s ) = 4s .\nt−1 t t t",
"56"
],
[
"Reinforcement\nLearning",
"Let q = 2. After Q learning, what is q if a = 0.3 and t = 8?",
"3.8"
],
[
"Recurrent\nNeural\nNetworks",
"Let s = 1.5, w = 1.5, and x = [1, 0, 2]. Compute s if s =\n0 3 t\nw ∗s + x t.\nt−1",
"9.31"
],
[
"Decision\nTrees",
"Consider a 1D classification line on a 2D plane. There is a\ntotal of 46 points, 30 of which are on the right and the\nrest on the left of the boundary. 5 points on the left are\nclassified positive. What is the entropy of the left region?",
"0.90"
]
] | 0.550746 | null | null |
2 | 2107.01238v1 | 11 | [
109.48999786376953,
376.23699951171875,
502.510009765625,
438.802001953125
] | \begin{table}[h!]
\small
\centering
\begin{tabular}{|l|l|l|l|}
\hline
\textbf{Topic} & \textbf{Question} & \textbf{Multiple Choice Options} & \textbf{Output} \\
\hline
\hline
Regression & Let $1$ be the optimal $\theta$ by mean & $[-0.24, -2.24, -0.64, -53.9]$ & $[-0.24]$ \\
& squared error. Given the data & & \\
& points $[(0, 0), (1, -1), (2, y)]$ and & & \\
& $\lambda = 1$, compute the value of $y$. & & \\
\hline
\end{tabular}
\caption{Multiple-choice question and answers. An example of the questions given to the model, the answers generated by the adversarial generator, and the output answers made by the model in order of the appearance. Note that the final value in output is the correct answer of the question, and the answering stops once the models achieves the correct answer. The correct answer is selected in the first attempt.}
\label{tab:input-output-examples_mc}
\end{table} | [
[
"Topic",
"Question",
"Multiple Choice Options",
"Output"
],
[
"Regression",
"Let 1 be the optimal θ by mean\nsquared error. Given the data\npoints [(0, 0), (1, 1), (2, y)] and\n−\nλ = 1, compute the value of y.",
"[ 0.24, 2.24, 0.64, 53.9]\n− − − −",
"[ 0.24]\n−"
]
] | 0.391937 | null | null |
3 | 2107.01238v1 | 12 | [
112.16300201416016,
419.84698486328125,
499.8370056152344,
672.8980102539062
] | \begin{table}
\centering
\small
\begin{tabular}{|c|l|}
\hline
Question & A neural network has input $x_1$ with weight $w_1$ that goes into neuron $A$.\\
& Neuron $A$ also has input $\textit{OA}$ that has weight $w_{\textit{OA}}$. Neuron $C$ inputs\\
& the output of neuron $A$ with weight $w_{\textit{AC}}$. Neuron $C$ also has input $\textit{OC}$\\
& that has weight $w_{\textit{OC}}$. Neurons output the sum of the products of each\\
& input with their respective weight. at has weight $w_{\textit{OA}}$. Neuron $C$ inputs\\
& the output of neuron $A$ with weight $w_{\textit{AC}}$. Neuron $C$ also has input $\textit{OC}$\\
& that has weigh $w_{\textit{OC}}$. Neurons output the sum of the products\\
& of each input with their respective weight. What is the output of\\
& neuron $C$ if $x_{1} = 2$, $w_{1} = 1$, $\textit{OA} = 0.5$, $w_{\textit{OA}} = 2$, $w_{\textit{AC}} = 1$, $\textit{OC} = 1$,\\
& and $w_{\textit{OC}} = 3$?\\
\hline
Answer & $(\textit{OA}*w_{\textit{OA}})*w_{\textit{AC}} + \textit{OC}*w_{\textit{OC}} = (0.5 * 2) * 1 + 1 * 3 = 4$\\
\hline
Expression & 1. $(\textit{OA}*w_{\textit{OA}})$\\
Hints & 2. $(\textit{OA}*w_{\textit{OA}})*w_{\textit{AC}}$\\
& 3. $\textit{OC}*w_{\textit{OC}}$\\
\hline
Value & 1. $0.5 * 2 = 1$\\
Hints & 2. $(0.5 * 2) * 1 = 1$\\
& 3. $1 * 3 = 3$\\
\hline
Example & For an example where $\textit{OA} = 8, w_{\textit{OA}} = 9, w_{\textit{AC}} = 3, \textit{OC} = 2, w_{\textit{OC}} = 4$:\\
Hints & 1. $8 * 9 = 72$\\
& 2. $(8 * 9) * 3 = 216$\\
& 3. $2 * 4 = 8$\\
\hline
\end{tabular}
\caption{Example questions and hints generated by our model.}
\label{tab:results_perceptrons}
\end{table} | [
[
"Question",
"A neural network has input x with weight w that goes into neuron A.\n1 1\nNeuron A also has input OA that has weight w . Neuron C inputs\nOA\nthe output of neuron A with weight w . Neuron C also has input OC\nAC\nthat has weight w . Neurons output the sum of the products of each\nOC\ninput with their respective weight. at has weight w . Neuron C inputs\nOA\nthe output of neuron A with weight w . Neuron C also has input OC\nAC\nthat has weigh w . Neurons output the sum of the products\nOC\nof each input with their respective weight. What is the output of\nneuron C if x = 2, w = 1, OA = 0.5, w = 2, w = 1, OC = 1,\n1 1 OA AC\nand w = 3?\nOC"
],
[
"Answer",
"(OA ∗w OA) ∗w + OC ∗w = (0.5 ∗2) ∗1 + 1 ∗3 = 4\nAC OC"
],
[
"Expression\nHints",
"1. (OA w )\n∗ OA\n2. (OA w ) w\n∗ OA ∗ AC\n3. OC w\n∗ OC"
],
[
"Value\nHints",
"1. 0.5 2 = 1\n∗\n2. (0.5 2) 1 = 1\n∗ ∗\n3. 1 3 = 3\n∗"
],
[
"Example\nHints",
"For an example where OA = 8, w = 9, w = 3, OC = 2, w = 4:\nOA AC OC\n1. 8 9 = 72\n∗\n2. (8 9) 3 = 216\n∗ ∗\n3. 2 4 = 8\n∗"
]
] | 0.822199 | null | null |
4 | 2107.01238v1 | 13 | [
90,
91.06097412109375,
528.3829956054688,
261.6209716796875
] | \begin{table}
\small
\centering
\begin{tabular}{|c|l|c|c|c|}
\hline
\textbf{Week} & \textbf{Topic} & \textbf{Our Model} & \textbf{Our Model without GNN} & \textbf{GPT-3} \\
\hline
\hline
1 & Basics & 1.00 & 0.50 & 0.00\\
2 & Perceptrons & 1.00 & 0.95 & 0.20\\
3 & Features & 0.65 & 0.50 & 0.00\\
4 & Logistic regression & 0.70 & 0.50 & 0.20\\
5 & Regression & 1.00 & 0.75 & 0.10\\
6 & Neural networks I & 1.00 & 0.95 & 0.00\\
7 & Neural networks II & 1.00 & 0.90 & 0.00\\
8 & Convolutional neural networks & 0.90 & 0.95 & 0.00\\
9 & Recurrent neural networks & 1.00 & 1.00 & 0.20\\
10 & State machines and MDPs & 1.00 & 1.00 & 0.10\\
11 & Reinforcement learning & 1.00 & 1.00 & 0.00\\
12 & Decision trees & 1.00 & 0.90 & 0.00\\
\hline
& Overall average over topics & 0.94 & 0.83 & 0.07\\
\hline
\end{tabular}
\caption{A comparison of the ORQ performance of our model vs. our model without GNN vs. GPT-3.}
\label{tab:baseline}
\vspace{-20pt}
\end{table} | [
[
"Week",
"Topic",
"Our Model",
"Our Model without GNN",
"GPT-3"
],
[
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12",
"Basics\nPerceptrons\nFeatures\nLogistic regression\nRegression\nNeural networks I\nNeural networks II\nConvolutional neural networks\nRecurrent neural networks\nState machines and MDPs\nReinforcement learning\nDecision trees",
"1.00\n1.00\n0.65\n0.70\n1.00\n1.00\n1.00\n0.90\n1.00\n1.00\n1.00\n1.00",
"0.50\n0.95\n0.50\n0.50\n0.75\n0.95\n0.90\n0.95\n1.00\n1.00\n1.00\n0.90",
"0.00\n0.20\n0.00\n0.20\n0.10\n0.00\n0.00\n0.00\n0.20\n0.10\n0.00\n0.00"
],
[
"",
"Overall average over topics",
"0.94",
"0.83",
"0.07"
]
] | 0.531444 | null | null |
5 | 2107.01238v1 | 17 | [
175.5019989013672,
298.5660095214844,
436.49798583984375,
374.6809997558594
] | \begin{table}[!htb]
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Basic Questions} & \textbf{Answer} \\
\hline \hline
1. Compute the magnitude of $[3, 12]$. & $12.37$ \\
\hline
2. If $x = [16, 4, 9]$, what is $||x||$? & $18.79$ \\
\hline
3. Find the Euclidean length of $[7, 0, 1]$ . & $7.07$ \\
\hline
4. Compute the magnitude of $[10, 10, 1]$. & $14.18$ \\
\hline
5. What is the magnitude of the vector $[0, 7]$? & $7$ \\
\hline
\end{tabular}
\caption{Example basic questions and answers generated by our model.}
\label{tab:results_basics1}
\end{table} | [
[
"Basic Questions",
"Answer"
],
[
"1. Compute the magnitude of [3, 12].",
"12.37"
],
[
"2. If x = [16, 4, 9], what is x ?\n|| ||",
"18.79"
],
[
"3. Find the Euclidean length of [7, 0, 1] .",
"7.07"
],
[
"4. Compute the magnitude of [10, 10, 1].",
"14.18"
],
[
"5. What is the magnitude of the vector [0, 7]?",
"7"
]
] | 0.846939 | null | null |
6 | 2107.01238v1 | 17 | [
110.48200225830078,
534.1500244140625,
501.51800537109375,
681.9949951171875
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Perceptrons Questions} & \textbf{Answer} \\
\hline \hline
1. If the decision boundary of a classifier is $\theta$, where $\theta = (4, 1)$, how & $4$ \\
does it classify point $p$, where $p = (2, -4)$? & \\
\hline
2. How does a classifier with decision boundary $\theta$ classify a point $p$ if & $-16$ \\
$\theta = (2, 4)$ and $p = (0, -4)$? & \\
\hline
3. What is the most number of mistakes made by the perceptron algorithm & $2704$ \\
if $13$ is the maximum magnitude of a point in the dataset and the dataset & \\
has a margin of $4$ to the separator. & \\
\hline
4. Determine if the following two classifiers represent the same hyperplane, & $1$ \\
$[0, 1, 1]$ and $[0, 1, 1]$. If so, return $1$, and return anything else otherwise. & \\
\hline
5. A classifier has a decision boundary where $\theta = (1, 0)$. What value does & $3$ \\
it classify $p$, where $p = (3, 0)$? & \\
\hline
\end{tabular}
\caption{Example perceptrons questions and answers generated by our model.}
\label{tab:results_perceptrons1}
\end{table} | [
[
"Perceptrons Questions",
"Answer"
],
[
"1. If the decision boundary of a classifier is θ, where θ = (4, 1), how\ndoes it classify point p, where p = (2, 4)?\n−",
"4"
],
[
"2. How does a classifier with decision boundary θ classify a point p if\nθ = (2, 4) and p = (0, 4)?\n−",
"16\n−"
],
[
"3. What is the most number of mistakes made by the perceptron algorithm\nif 13 is the maximum magnitude of a point in the dataset and the dataset\nhas a margin of 4 to the separator.",
"2704"
],
[
"4. Determine if the following two classifiers represent the same hyperplane,\n[0, 1, 1] and [0, 1, 1]. If so, return 1, and return anything else otherwise.",
"1"
],
[
"5. A classifier has a decision boundary where θ = (1, 0). What value does\nit classify p, where p = (3, 0)?",
"3"
]
] | 0.621461 | null | null |
7 | 2107.01238v1 | 18 | [
116.2471433367048,
119.9019775390625,
495.7528555733817,
255.7919921875
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Features Questions} & \textbf{Answer} \\
\hline \hline
1. What is the margin of a classifier with $\theta = -1$ and $\theta_0 = -6$ on a & $-6$ \\
point $0$ with label $1$? & \\
\hline
2. What is the loss for the data point $(0, -1)$ if we use NLL. Let $\theta = 2$ & $-0.69$ \\ and $\theta_0 = 0$. Also use natural log where the base is $2.71828$. & \\
\hline
3. A point $1$ has label $1$. Compute the margin of a classifier on this & $2$ \\
point. Let the $\theta$ of the classifier be $-1$ and the $\theta_0$ of the classifier be $-1$. & \\
\hline
4. Given the values for $\theta = 2$ and $\theta_0 = 1$, compute the NLL loss on the & $-0.31$ \\
data point $(-1, 0)$. Use log base $e$ of $2.71828$ for the log. & \\
\hline
5. What does the sigmoid function return when you pass into it $1$? Hint: & $0.73$ \\
have $e = 2.71828$. & \\
\hline
\end{tabular}
\caption{Example feature questions and answers generated by our model.}
\label{tab:results_features}
\end{table} | [
[
"Features Questions",
"Answer"
],
[
"1. What is the margin of a classifier with θ = −1 and θ = −6 on a\n0\npoint 0 with label 1?",
"6\n−"
],
[
"2. What is the loss for the data point (0, 1) if we use NLL. Let θ = 2\n−\nand θ = 0. Also use natural log where the base is 2.71828.\n0",
"0.69\n−"
],
[
"3. A point 1 has label 1. Compute the margin of a classifier on this\npoint. Let the θ of the classifier be −1 and the θ of the classifier be −1.\n0",
"2"
],
[
"4. Given the values for θ = 2 and θ = 1, compute the NLL loss on the\n0\ndata point ( 1, 0). Use log base e of 2.71828 for the log.\n−",
"0.31\n−"
],
[
"5. What does the sigmoid function return when you pass into it 1? Hint:\nhave e = 2.71828.",
"0.73"
]
] | 0.401439 | null | null |
8 | 2107.01238v1 | 18 | [
116.2471433367048,
342.4989929199219,
495.7528555733817,
442.52398681640625
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Logistic Regression Questions} & \textbf{Answer} \\
\hline \hline
1. What is the result of $\theta x + \theta_0$ if $x = (-1, 0)$, $\theta = (0, -1)$, and $\theta_0 = 3$? & $3$ \\
\hline
2. Let $\theta = (1, -1)$, $\theta_0 = 2$, and $x = (-1, 0)$. Compute $\theta x + \theta_0$. & $1$ \\
\hline
3. If you let $\theta = 1$ and $\eta = 0.05$, what is the updated $\theta$ value after one & $1$ \\
gradient descent step if the loss function is given by $( 0 \times \theta + 3)^2$ ? & \\
\hline
4. If we have $x = (0, -1)$, $\theta = (1, -2)$, and $\theta_0 = -3$, then what is the & $-1$ \\
result of $\theta x + \theta_0$? & \\
\hline
5. What is the value of $\theta x + \theta_0$ if $x = (-1, 0)$, $\theta = (-1, 0)$, and $\theta_0 = -3$? & $-2$ \\
\hline
\end{tabular}
\caption{Example logistic regression questions and answers generated by our model.}
\label{tab:results_logistic_regression}
\end{table} | [
[
"Logistic Regression Questions",
"Answer"
],
[
"1. What is the result of θx + θ if x = ( −1, 0), θ = (0, −1), and θ = 3?\n0 0",
"3"
],
[
"2. Let θ = (1, −1), θ = 2, and x = ( −1, 0). Compute θx + θ 0.\n0",
"1"
],
[
"3. If you let θ = 1 and η = 0.05, what is the updated θ value after one\ngradient descent step if the loss function is given by (0 θ + 3)2 ?\n×",
"1"
],
[
"4. If we have x = (0, −1), θ = (1, −2), and θ = −3, then what is the\n0\nresult of θx + θ ?\n0",
"1\n−"
],
[
"5. What is the value of θx + θ if x = ( −1, 0), θ = ( −1, 0), and θ = −3?\n0 0",
"2\n−"
]
] | 0.579392 | null | null |
9 | 2107.01238v1 | 18 | [
112.12999725341797,
529.22998046875,
499.8700866699219,
653.166015625
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Regression Questions} & \textbf{Answer} \\
\hline \hline
1. If $f(\theta) = (3 \times \theta + 3)^{2}$ and $\theta = 4$ what is $f(\theta)$? & $225$\\
\hline
2. Given $\theta = 3$ and $\lambda = 1$, compute the mean squared error with the data & $19.5$ \\
points $[(2, 0), (2, 5)]$. & \\
\hline
3. With $\lambda = 1$, the optimal $\theta = 1$. If the data points are $[(0, 1), (1, 2),$ & $0.27$ \\
$(2, y)]$, what is the value of $y$? The optimal $\theta$ is computed by mean & \\
squared error. & \\
\hline
4. If we let $\theta = 1$ and $\lambda = 0.5$, what is the mean squared error of the given & $2.25$ \\
points $[(2, 0), (1, 1)]$? & \\
\hline
5. If $f(\theta)$ is $(7 \times \theta + 8)^2$, what is $f(\theta)$ when $\theta = 15.4$? & $13409.64$ \\
\hline
\end{tabular}
\caption{Example regression questions and answers generated by our model.}
\label{tab:results_regression}
\end{table} | [
[
"Regression Questions",
"Answer"
],
[
"1. If f(θ) = (3 θ + 3)2 and θ = 4 what is f(θ)?\n×",
"225"
],
[
"2. Given θ = 3 and λ = 1, compute the mean squared error with the data\npoints [(2, 0), (2, 5)].",
"19.5"
],
[
"3. With λ = 1, the optimal θ = 1. If the data points are [(0, 1), (1, 2),\n(2, y)], what is the value of y? The optimal θ is computed by mean\nsquared error.",
"0.27"
],
[
"4. If we let θ = 1 and λ = 0.5, what is the mean squared error of the given\npoints [(2, 0), (1, 1)]?",
"2.25"
],
[
"5. If f(θ) is (7 θ + 8)2, what is f(θ) when θ = 15.4?\n×",
"13409.64"
]
] | 0.543002 | null | null |
10 | 2107.01238v1 | 19 | [
108.8420881188434,
383.9169921875,
503.1579132080078,
675.2249755859375
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Neural Networks II Questions} & \textbf{Answer} \\
\hline
\hline
1. A ReLU is applied to the output of neuron C, which takes in outputs & $15.5$ \\
from neurons A with weight $wAC = 1$ and B with weight $wBC = 2$ and & \\
offset $oC = 1$. Neuron A takes in value $x1 = 4$ with weight $w1 = 1$ and & \\
offset value $oA = 0.5$. Neuron B takes in input $x2 = 4$ with an offset of $1$. & \\
\hline
2. A neural network has inputs $x1 = 4$ with weight $2$ and $x2 = 2$ with & $16.5$ \\
weight $1$ and offset value $oA = 0.5$. Neuron B inputs $x2$ with offset $1$. & \\
Neuron C takes in the output of neurons A and B with offsets $wAC = 1$ & \\
and $wBC = 2$, respectively. Neuron C has offset value $oC = 2$ and & \\
applies a ReLU on its output. Compute the output. & \\
\hline
3. Neuron C is the output neuron which applies a ReLU on its output and & $6$ \\
neuron A is the input neuron to a neural network. Compute the output of a & \\
neural network with the given architecture and inputs. Neuron C takes in & \\
the offset value $oC = 2$ with weight $wOC = 3$. Neuron C takes in the output& \\
of neuron A with weight $wAC = 1$. Neuron A takes in the input value & \\
$x1 = 0$with weight $w1 = 2$ and offset value $oA = 0.5$ and offset weight & \\
$wOC = 3$. & \\
\hline
4. Neurons A and B take inputs $2$ and $1$ with weights $2$ and $1$, respectively. & $10.5$ \\
Neuron A has offset $0.5$ and neuron B has offset $1$ . Neuron C takes in the & \\
output of A and B with weights $1$ and $2$, respectively, and with offset 2. & \\
Neuron C also applies a ReLU on its output. What is the output? & \\
\hline
5. Compute the ReLU output of neuron C which takes the output of neuron & $1.5$ \\
A with weight $1$ and neuron B with weight $2$ and offset $1$. Neuron B has & \\
input $0$ and offset $1$. Neuron A has input $-1$ and offset $2$ with offset $0.5$. & \\
\hline
\end{tabular}
\caption{Example neural network questions and answers generated by our model.}
\label{tab:results_neural_networks_2}
\end{table} | [
[
"Neural Networks II Questions",
"Answer"
],
[
"1. A ReLU is applied to the output of neuron C, which takes in outputs\nfrom neurons A with weight wAC = 1 and B with weight wBC = 2 and\noffset oC = 1. Neuron A takes in value x1 = 4 with weight w1 = 1 and\noffset value oA = 0.5. Neuron B takes in input x2 = 4 with an offset of 1.",
"15.5"
],
[
"2. A neural network has inputs x1 = 4 with weight 2 and x2 = 2 with\nweight 1 and offset value oA = 0.5. Neuron B inputs x2 with offset 1.\nNeuron C takes in the output of neurons A and B with offsets wAC = 1\nand wBC = 2, respectively. Neuron C has offset value oC = 2 and\napplies a ReLU on its output. Compute the output.",
"16.5"
],
[
"3. Neuron C is the output neuron which applies a ReLU on its output and\nneuron A is the input neuron to a neural network. Compute the output of a\nneural network with the given architecture and inputs. Neuron C takes in\nthe offset value oC = 2 with weight wOC = 3. Neuron C takes in the output\nof neuron A with weight wAC = 1. Neuron A takes in the input value\nx1 = 0with weight w1 = 2 and offset value oA = 0.5 and offset weight\nwOC = 3.",
"6"
],
[
"4. Neurons A and B take inputs 2 and 1 with weights 2 and 1, respectively.\nNeuron A has offset 0.5 and neuron B has offset 1 . Neuron C takes in the\noutput of A and B with weights 1 and 2, respectively, and with offset 2.\nNeuron C also applies a ReLU on its output. What is the output?",
"10.5"
],
[
"5. Compute the ReLU output of neuron C which takes the output of neuron\nA with weight 1 and neuron B with weight 2 and offset 1. Neuron B has\ninput 0 and offset 1. Neuron A has input 1 and offset 2 with offset 0.5.\n−",
"1.5"
]
] | 0.455181 | null | null |
11 | 2107.01238v1 | 20 | [
107.63200378417969,
147.78802490234375,
504.3680114746094,
295.63299560546875
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Convolutional Neural Networks Questions} & \textbf{Answer} \\
\hline
\hline
1. An image $I$ has length $5$ and filter $F$ has length $2$, what is the length & $4$\\
of the result of applying $F$ to $I$? & \\
\hline
2. The row of an image $[1, 1, 1]$ has a filter $[0, 3, 0]$ applied to it. What is & $3$ \\
the resulting value if they both align? & \\
\hline
3. What is the minimum number of padding needed to maintain the same & $8$ \\
output size if the input image is $50$ by $50$ and the filter is $17$ by $17$? & \\
\hline
4. Given that there are $22$ inputs to a zero-padded max pooling layer and & $11$ \\
a stride length of $2$, compute the number of output units if we also know the & \\
pooling filter size of $3$? & \\
\hline
5. What is the length of the output when we use an image of length $52$ & $24$ \\
and a filter of length $5$ if we use a stride length of $2$? & \\
\hline
\end{tabular}
\caption{Example convolutional neural network questions and answers generated by our model.}
\label{tab:results_convolutional_neural_networks}
\end{table} | [
[
"Convolutional Neural Networks Questions",
"Answer"
],
[
"1. An image I has length 5 and filter F has length 2, what is the length\nof the result of applying F to I?",
"4"
],
[
"2. The row of an image [1, 1, 1] has a filter [0, 3, 0] applied to it. What is\nthe resulting value if they both align?",
"3"
],
[
"3. What is the minimum number of padding needed to maintain the same\noutput size if the input image is 50 by 50 and the filter is 17 by 17?",
"8"
],
[
"4. Given that there are 22 inputs to a zero-padded max pooling layer and\na stride length of 2, compute the number of output units if we also know the\npooling filter size of 3?",
"11"
],
[
"5. What is the length of the output when we use an image of length 52\nand a filter of length 5 if we use a stride length of 2?",
"24"
]
] | 0.663706 | null | null |
12 | 2107.01238v1 | 20 | [
129.8679962158203,
463.48699951171875,
482.1319908728966,
611.33203125
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Recurrent Neural Networks Questions} & \textbf{Answer} \\
\hline
\hline
1. Consider a very simple RNN, defined by the following equation: & $0.525$\\
$s_t = w*s_{t-1} + x_t$. Given $s_0 = 0$, $w = 0.1$, and $x = [0.25, 0.5]$, & \\
what is $s_2$? & \\
\hline
2. An RNN is defined as $s_t = w*s_{t-1} + x_t$. If $s_0 = 1$, $w = 1$, and & $5$\\
$x = [2, 2, 0]$, what is $s_3$? & \\
\hline
3. What is the RNN result $s_2$ if $s_0 = 2$, $w = 0$, and $x = [9, 5]$ if & $5$\\
we let $s_t = w*s_{t-1} + x_t$? & \\
\hline
4. We define an RNN as $s_t = w*s_{t-1} + x_t$. What is $s_2$ if $s_0 = 3$, & $3.75$\\
$w = 0.5$, and $x = [2, 2]$? & \\
\hline
5. Let $s_0 = 1.5$, $w = 1.5$, and $x = [1, 0, 2]$. Compute $s_3$ if & $9.31$\\
$s_t = w*s_{t-1} + x_t$. & \\
\hline
\end{tabular}
\caption{Example recurrent neural network questions and answers generated by our model.}
\label{tab:results_recurrent_neural_networks}
\end{table} | [
[
"Recurrent Neural Networks Questions",
"Answer"
],
[
"1. Consider a very simple RNN, defined by the following equation:\ns = w ∗s + x t. Given s = 0, w = 0.1, and x = [0.25, 0.5],\nt t−1 0\nwhat is s ?\n2",
"0.525"
],
[
"2. An RNN is defined as s = w ∗s + x t. If s = 1, w = 1, and\nt t−1 0\nx = [2, 2, 0], what is s ?\n3",
"5"
],
[
"3. What is the RNN result s if s = 2, w = 0, and x = [9, 5] if\n2 0\nwe let s = w ∗s + x t?\nt t−1",
"5"
],
[
"4. We define an RNN as s = w ∗s + x t. What is s if s = 3,\nt t−1 2 0\nw = 0.5, and x = [2, 2]?",
"3.75"
],
[
"5. Let s = 1.5, w = 1.5, and x = [1, 0, 2]. Compute s if\n0 3\ns = w ∗s + x t.\nt t−1",
"9.31"
]
] | 0.706924 | null | null |
13 | 2107.01238v1 | 21 | [
134.80599975585938,
136.198974609375,
477.1940002441406,
379.6860046386719
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{State Machines and MDP Questions} & \textbf{Answer} \\
\hline
\hline
1. Let a state machine be described with the equations $s_t = $ & $18$\\
$f(s_{t-1}, x_t)$ and $y_t = g(s_t)$, where $x_t$ is the input. If $s_0 = 6$, &\\
$f(s_{t-1}, x_t) = \max(s_{t-1}, x_t)$, and $g(s_t) = s_t$, what is the output &\\
$y_3$ after the inputs $[16, 9, 18]$? & \\
\hline
2. If we have a state machine, defined as $s_t = f(s_{t-1}, x_t)$ and & $0$\\
$y_t = g(s_t)$, where $x_t$ is the input, what is the output $y_3$ &\\
if we have $s_0 = 14$, $f(s_{t-1}, x_t) = \max(s_{t-1}, x_t)$, $g(s_t) = 0s_t$, & \\
and we input $[14, 15, 9]$? & \\
\hline
3. Consider the input $x_t = [7, 14, 13, 10]$ to a state machine with & $56$\\
equations $s_t = f(s_{t-1}, x_t)$ and $y_t = g(s_t)$. Compute $y_4$ &\\
if our initial conditions are $s_0 = 2$, $f(s_{t-1}, x_t) = \max(s_{t-1}, x_t)$, & \\
and $g(s_t) = 4s_t$. & \\
\hline
4. A state machine is defined by the equations $s_t = f(s_{t-1}, x_t)$ & $51$\\
and $y_t = g(s_t)$. Given the conditions $s_0 = 7$, $f(s_{t-1}, x_t) = $ & \\
$\max(s_{t-1}, x_t)$, and $g(s_t) = 3s_t$, compute $y_5$ if the input is & \\
$x_t = [17, 4, 14, 2, 16]$. & \\
\hline
5. What is the output $y_5$ of a state machine with equations & $76$ \\
$s_t = f(s_{t-1}, x_t)$ and $y_t = g(s_t)$, conditions $s_0 = 10$, $f(s_{t-1}, x_t) = $ &\\
$\max(s_{t-1}, x_t)$, and $g(s_t) = 4s_t$, and input $x_t = [19, 17, 5, 9, 18]$? &\\
\hline
\end{tabular}
\caption{Example state machines and MDP questions and answers generated by our model.}
\label{tab:results_state_machines_mdps}
\end{table} | [
[
"State Machines and MDP Questions",
"Answer"
],
[
"1. Let a state machine be described with the equations s =\nt\nf(s t−1, x t) and y = g(s t), where x is the input. If s = 6,\nt t 0\nf(s , x ) = max(s , x ), and g(s ) = s , what is the output\nt−1 t t−1 t t t\ny after the inputs [16, 9, 18]?\n3",
"18"
],
[
"2. If we have a state machine, defined as s = f(s t−1, x t) and\nt\ny = g(s t), where x is the input, what is the output y\nt t 3\nif we have s = 14, f(s t−1, x t) = max(s t−1, x t), g(s t) = 0s t,\n0\nand we input [14, 15, 9]?",
"0"
],
[
"3. Consider the input x = [7, 14, 13, 10] to a state machine with\nt\nequations s = f(s t−1, x t) and y = g(s t). Compute y\nt t 4\nif our initial conditions are s = 2, f(s t−1, x t) = max(s t−1, x t),\n0\nand g(s ) = 4s .\nt t",
"56"
],
[
"4. A state machine is defined by the equations s = f(s t−1, x t)\nt\nand y = g(s t). Given the conditions s = 7, f(s t−1, x t) =\nt 0\nmax(s t−1, x t), and g(s t) = 3s t, compute y if the input is\n5\nx = [17, 4, 14, 2, 16].\nt",
"51"
],
[
"5. What is the output y of a state machine with equations\n5\ns = f(s t−1, x t) and y = g(s t), conditions s = 10, f(s t−1, x t) =\nt t 0\nmax(s t−1, x t), and g(s t) = 4s t, and input x = [19, 17, 5, 9, 18]?\nt",
"76"
]
] | 0.418012 | null | null |
14 | 2107.01238v1 | 21 | [
123.40699768066406,
512.9339599609375,
488.5929870605469,
636.8690185546875
] | \begin{table}
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Reinforcement Learning Questions} & \textbf{Answer} \\
\hline
\hline
1. What is the updated Q value of a tuple (s, a) if $q = 7$, the $a = 0.1$, & $6.9$\\
and $t = 6$? & \\
\hline
2. If $q = 8$, what is its updated value after applying Q learning if & $7.6$\\
$a = 0.1$ and $t = 4$? & \\
\hline
3. Let $q = 2$. After Q learning, what is $q$ if $a = 0.3$ and $t = 8$? & $3.8$\\
\hline
4. If $a = 0.4$ and $t = 10$, what is the Q learning value after applying & $7.6$\\
one tuple (s, a) if $q = 6$? & \\
\hline
5. After applying Q learning to $q = 4$, what is its value? Let the & $8.8$\\
$t = 10$ and $a = 0.8$. & \\
\hline
\end{tabular}
\caption{Example reinforcement learning questions and answers generated by our model.}
\label{tab:results_reinforcement_learning}
\end{table} | [
[
"Reinforcement Learning Questions",
"Answer"
],
[
"1. What is the updated Q value of a tuple (s, a) if q = 7, the a = 0.1,\nand t = 6?",
"6.9"
],
[
"2. If q = 8, what is its updated value after applying Q learning if\na = 0.1 and t = 4?",
"7.6"
],
[
"3. Let q = 2. After Q learning, what is q if a = 0.3 and t = 8?",
"3.8"
],
[
"4. If a = 0.4 and t = 10, what is the Q learning value after applying\none tuple (s, a) if q = 6?",
"7.6"
],
[
"5. After applying Q learning to q = 4, what is its value? Let the\nt = 10 and a = 0.8.",
"8.8"
]
] | 0.868173 | null | null |
15 | 2107.01238v1 | 35 | [
95.00199890136719,
123.5,
516.9981155395508,
575.405029296875
] | \begin{table}[!htb]
\centering
\begin{tabular}{|p{3cm}|p{7cm}|l|}
\hline
\multicolumn{1}{|c}{Topic} & \multicolumn{1}{|c|}{Question/Multiple Choice Options} & \multicolumn{1}{c|}{Our Model's Answers} \\
\hline
\hline
Basics & \specialcell{\textbf{Question:} What is the magnitude of the \\ vector $[1, 6, 4]$? \\ \textbf{Answer Options:} $[8, 4.12, 2.38, 1.41]$} & $[1.41]$ \\
\hline
Perceptrons & \specialcell{\textbf{Question:} Do the two classifiers $[0, 1, 0]$ \\ and $[2, 2, 0]$ represent the same \\ hyperplane? Return $1$ if true and \\ anything else otherwise. \\ \textbf{Answer Options:} $[230.0, -40.0, 23.2, $ \\ $20.0]$} & $[-40, 23.2, 20]$ \\
\hline
Features & \specialcell{\textbf{Question:} Consider the point $(0, 2)$, the \\ $\theta = 2$ and the $\theta_0 = 1$. What is the NLL \\ loss? Use natural log, where the base is \\ $2.71828$. \\ \textbf{Answer Options:} $[-0.02, 0.69, 2.06,$ \\ $1.06]$} & $[0.69]$ \\
\hline
Logistic regression & \specialcell{\textbf{Question:} Given a function $(2 \theta - 2)^2$, \\ calculate the value of the function after \\ one gradient descent update if $\theta = 1$ and \\ $\eta = 0.01$. \\ \textbf{Answer Options:} $[\infty, 0.1, 0.41, 0]$} & $[0.1, 0.41, 0]$ \\
\hline
Regression & \specialcell{\textbf{Question:} Let $1$ be the optimal $\theta$ by \\ mean squared error. Given the \\ datapoints $[(0, 0), (1, -1), (2, y)]$ and \\ $\lambda = 1$, compute the value of $y$. \\ \textbf{Answer Options:} $[-1.61, -0.28, -0.24$ \\ $-0.83]$} & $[-0.24]$ \\
\hline
\specialcell{Neural \\ networks I} & \specialcell{\textbf{Question:} If we have a neural network \\ layer with $20$ inputs and $200$ outputs, \\ how many weights (including biases) are \\ needed to describe each connection? \\ \textbf{Answer Options:} $[32000, 80000, 64000,$ \\ $8000]$} & $[64000, 32000, 8000]$ \\
\hline
\end{tabular}
\caption{Examples of the questions given to the model, the answers generated by the evaluator, and the output answers made by the model in order of the appearance. Note that the final value in output is the correct answer of the question, and the answering stops once the models achieves the correct answer.}
\label{tab:input-output-examples_mc1}
\end{table} | [
[
"Topic",
"Question/Multiple Choice Options",
"Our Model’s Answers"
],
[
"Basics",
"Question: What is the magnitude of the\nvector [1, 6, 4]?\nAnswer Options: [8, 4.12, 2.38, 1.41]",
"[1.41]"
],
[
"Perceptrons",
"Question: Do the two classifiers [0, 1, 0]\nand [2, 2, 0] represent the same\nhyperplane? Return 1 if true and\nanything else otherwise.\nAnswer Options: [230.0, 40.0, 23.2,\n−\n20.0]",
"[ 40, 23.2, 20]\n−"
],
[
"Features",
"Question: Consider the point (0, 2), the\nθ = 2 and the θ = 1. What is the NLL\n0\nloss? Use natural log, where the base is\n2.71828.\nAnswer Options: [ 0.02, 0.69, 2.06,\n−\n1.06]",
"[0.69]"
],
[
"Logistic regres-\nsion",
"Question: Given a function (2θ 2)2,\n−\ncalculate the value of the function after\none gradient descent update if θ = 1 and\nη = 0.01.\nAnswer Options: [ , 0.1, 0.41, 0]\n∞",
"[0.1, 0.41, 0]"
],
[
"Regression",
"Question: Let 1 be the optimal θ by\nmean squared error. Given the\ndatapoints [(0, 0), (1, 1), (2, y)] and\n−\nλ = 1, compute the value of y.\nAnswer Options: [ 1.61, 0.28, 0.24\n− − −\n0.83]\n−",
"[ 0.24]\n−"
],
[
"Neural\nnetworks I",
"Question: If we have a neural network\nlayer with 20 inputs and 200 outputs,\nhow many weights (including biases) are\nneeded to describe each connection?\nAnswer Options: [32000, 80000, 64000,\n8000]",
"[64000, 32000, 8000]"
]
] | 0.540156 | null | null |
16 | 2107.01238v1 | 36 | [
99.45500183105469,
91.06097412109375,
512.5449829101562,
574.0499877929688
] | \begin{table}[!htb]
\small
\centering
\begin{tabular}{|p{3cm}|p{7cm}|l|}
\hline
\multicolumn{1}{|c}{Topic} & \multicolumn{1}{|c|}{Question/Multiple Choice Options} & \multicolumn{1}{c|}{Our Model's Answers} \\
\hline
\hline
\specialcell{Neural \\ networks II} & \specialcell{\textbf{Question:} Neuron C is the output \\ neuron which applies a ReLU on its \\ output and neuron A is the input neuron \\ to a neural network. Compute the output \\ of a neural network with the given \\ architecture and inputs. Neuron C takes \\ in the offset value $oC = 1$ with weight \\ $wOC = 3$. Neuron C takes in the output \\ of neuron A with weight $wAC = 1$. \\ Neuron A takes in the input value \\ $x1 = -1$ with weight $w1 = 2$ and offset \\ value $oA = 0.5$ and offset weight \\ $wOC = 3$. \\ \textbf{Answer Options:} $[3, 2.63, 0, 1.5]$} & $[3, 2.63, 1.5]$ \\
\hline
\specialcell{Convolutional \\ neural \\ networks} & \specialcell{\textbf{Question:} Using a stride length of $2$, \\ what is the output from applying a filter \\ of length $7$ to an image of length $52$? \\ \textbf{Answer Options:} $[2.2, 25, 22.75, 23]$} & $[23]$ \\
\hline
\specialcell{Recurrent \\ neural \\ networks} & \specialcell{\textbf{Question:} An RNN is defined as \\ $s_t = w \times s_{t-1} + x_t$. If $s_0 = 2$, $w = 1$, and \\ $x = [0.25, 0.5]$, what is $s_2$? \\ \textbf{Answer Options:} $[2.75, 0.95, 1.75, 2.63]$} & $[1.75, 0.95, 2.63, 2.75]$ \\
\hline
\specialcell{State \\ machines and \\ MDPs} & \specialcell{\textbf{Question:} A state machine is defined by \\ the equations $s_t = f(s_{t-1}, x_t)$ and \\ $y_t = g(s_t)$. Given the conditions $s_0 = 16$, \\ $f(s_{t-1}, x_t) = \max(s_{t-1},x_t)$, and \\ $g(s_t) = 0 * s_t$, compute $y_3$ if the input is \\ $x_t = [8, 7, 9]$. \\ \textbf{Answer Options:} $[9.6, 0, 12.8, 40]$} & $[40, 0]$ \\
\hline
\specialcell{Reinforcement \\ learning} & \specialcell{\textbf{Question:} Let $q = 9$. After Q learning, \\ what is $q$ if $a = 0.1$ and $t = 4$? \\ \textbf{Answer Options:} $[3.1, 8.7, 8.5, 8.95]$} & $[8.7, 8.95, 3.1, 8.5]$ \\
\hline
Decision trees & \specialcell{\textbf{Question:} What is the entropy of the \\ left side of a region containing $27$ points \\ where the plane has $45$ points in total \\ and $4$ points on the left \\ are positive? \\ \textbf{Answer Options:} $[0.61, 0.299, -0.52, $ \\ $0.297]$} & $[-0.52, 0.61]$ \\
\hline
\end{tabular}
\caption{Examples of the questions given to the model, the answers generated by the evaluator, and the output answers made by the model in order of the appearance. Note that the final value in output is the correct answer of the question, and the answering stops once the models achieves the correct answer. Thus a single numbers was correct on the first try and longer lists required more attempts.}
\label{tab:input-output-examples_mc2}
\end{table} | [
[
"Topic",
"Question/Multiple Choice Options",
"Our Model’s Answers"
],
[
"Neural\nnetworks II",
"Question: Neuron C is the output\nneuron which applies a ReLU on its\noutput and neuron A is the input neuron\nto a neural network. Compute the output\nof a neural network with the given\narchitecture and inputs. Neuron C takes\nin the offset value oC = 1 with weight\nwOC = 3. Neuron C takes in the output\nof neuron A with weight wAC = 1.\nNeuron A takes in the input value\nx1 = 1 with weight w1 = 2 and offset\n−\nvalue oA = 0.5 and offset weight\nwOC = 3.\nAnswer Options: [3, 2.63, 0, 1.5]",
"[3, 2.63, 1.5]"
],
[
"Convolutional\nneural\nnetworks",
"Question: Using a stride length of 2,\nwhat is the output from applying a filter\nof length 7 to an image of length 52?\nAnswer Options: [2.2, 25, 22.75, 23]",
"[23]"
],
[
"Recurrent\nneural\nnetworks",
"Question: An RNN is defined as\ns = w s + x t. If s = 2, w = 1, and\nt × t−1 0\nx = [0.25, 0.5], what is s ?\n2\nAnswer Options: [2.75, 0.95, 1.75, 2.63]",
"[1.75, 0.95, 2.63, 2.75]"
],
[
"State\nmachines and\nMDPs",
"Question: A state machine is defined by\nthe equations s = f(s t−1, x t) and\nt\ny = g(s t). Given the conditions s = 16,\nt 0\nf(s , x ) = max(s , x ), and\nt−1 t t−1 t\ng(s t) = 0 ∗s t, compute y if the input is\n3\nx = [8, 7, 9].\nt\nAnswer Options: [9.6, 0, 12.8, 40]",
"[40, 0]"
],
[
"Reinforcement\nlearning",
"Question: Let q = 9. After Q learning,\nwhat is q if a = 0.1 and t = 4?\nAnswer Options: [3.1, 8.7, 8.5, 8.95]",
"[8.7, 8.95, 3.1, 8.5]"
],
[
"Decision trees",
"Question: What is the entropy of the\nleft side of a region containing 27 points\nwhere the plane has 45 points in total\nand 4 points on the left\nare positive?\nAnswer Options: [0.61, 0.299, 0.52,\n−\n0.297]",
"[ 0.52, 0.61]\n−"
]
] | 0.825295 | null | null |
17 | 2107.01238v1 | 37 | [
113.54000091552734,
123.5,
498.4599914550781,
331.5199890136719
] | \begin{table}[!htb]
\centering
\small
\begin{tabular}{|l|c|c|}
\hline
\textbf{Incorrect Questions} & \textbf{Answer} & \textbf{Solution}\\
\hline
\hline
1. Given the values for $\theta = 2$ and $\theta_0 = 1$, compute the & $-0.31$ & $-0.05$ \\
NLL loss on the data point $(-2, 0)$. Use log base $e$ of $2.71828$ & & \\
for the log. & & \\
\hline
2. Consider the point $(2, 2)$, the $\theta = 2$ and the& $3.98$ & $4.99$ \\
$\theta_0 = 1$. What is the NLL loss? Use natural log, where the & & \\
base is $2.71828$. & & \\
\hline
3. Given a loss function, $(-2\theta+3)^4$, for gradient descent, & $2.4$ & $0.4$ \\
compute the updated $\theta$ value after one gradient descent step. & & \\
Let $\theta = 2$ and $\eta = 0.05$. & & \\
\hline
4. The optimal $\theta$ value computed by mean squared error is $1$ & $-0.345$ & $2.75$ \\
using the datapoints $[(0, -1), (1, -2), (2, y)]$. If $\lambda = 0.5$, what & & \\
is $y$? & & \\
\hline
5. Compute the value returned from aligning the filter $[1, 4, 1]$ & $21$ & $18$ \\
to the image $[1, 4, 1]$ on top of one another. & & \\
\hline
6. What is the length of the result from applying $F$ to $I$ if $F$ & $34$ & $74$ \\
has length $17$ and $I$ has length $90$? & & \\
\hline
\end{tabular}
\caption{Example questions our model incorrectly answers, its answer, and the solution to the question.}
\label{tab:results_incorrect}
\end{table} | [
[
"Incorrect Questions",
"Answer",
"Solution"
],
[
"1. Given the values for θ = 2 and θ = 1, compute the\n0\nNLL loss on the data point ( 2, 0). Use log base e of 2.71828\n−\nfor the log.",
"0.31\n−",
"0.05\n−"
],
[
"2. Consider the point (2, 2), the θ = 2 and the\nθ = 1. What is the NLL loss? Use natural log, where the\n0\nbase is 2.71828.",
"3.98",
"4.99"
],
[
"3. Given a loss function, ( 2θ + 3)4, for gradient descent,\n−\ncompute the updated θ value after one gradient descent step.\nLet θ = 2 and η = 0.05.",
"2.4",
"0.4"
],
[
"4. The optimal θ value computed by mean squared error is 1\nusing the datapoints [(0, 1), (1, 2), (2, y)]. If λ = 0.5, what\n− −\nis y?",
"0.345\n−",
"2.75"
],
[
"5. Compute the value returned from aligning the filter [1, 4, 1]\nto the image [1, 4, 1] on top of one another.",
"21",
"18"
],
[
"6. What is the length of the result from applying F to I if F\nhas length 17 and I has length 90?",
"34",
"74"
]
] | 0.698675 | null | null |
18 | 2107.01238v1 | 37 | [
90.27300262451172,
442.4100036621094,
521.7269897460938,
637.9730224609375
] | \begin{table}[!htb]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Description} & \textbf{Text}\\
\hline
\hline
Question & Let $s_0 = 0$, $w = 1.5$, and $x = (2, 2, 0)$. Compute $s_3$ if \\
& $s_t = w * s_{t-1} + x_t$. \\
\hline
Template & Let $s_0 = \{a\}$, $w = \{b\}$, and $x = \{c\}$. Compute $s_{|\{c\}|}$ if \\
& $s_t = w * s_{t-1} + x_t$. \\
\hline
Paraphrased Template & An RNN is defined as $s_{t} = w*s_{t-1} + x_{t}$. If $s_{0}$ is $\{a\}$, $w$ is $\{b\}$, \\
& and $x$ is $\{c\}$, what is $s_{|\{c\}|}$?\\
\hline
Paraphrased Question & An RNN is defined as $s_{t} = w*s_{t-1} + x_{t}$. If $s_{0}$ is $0$, $w$ is $1.5$, \\ & and $x$ is $(2,2,0)$, what is $s_{3}$?\\
\hline
Augmentation & An RNN is defined as $s_{t} = w*s_{t-1} + x_{t}$. If $s_{0}$ is $1$, $w$ is $0.5$, \\
& and $x$ is $(0.25, 0.25)$, what is $s_2$?\\
\hline
Expression & $s_{3} = w * (w * (w * s_{0} + x_1) + x_2) + x_3$ \\
\hline
Values & $s_{3} = 1.5 * (1.5 * (1.5 * 0 + 2) + 2) + 0$ \\
\hline
Answer & 7.5 \\
\hline
\end{tabular}
\caption{An example of converting an original question into a new one containing different values and phrasing. Note that $| \cdot |$ represents taking the length of the input.}
\label{tab:data_augmentation}
\end{table} | [
[
"Description",
"Text"
],
[
"Question",
"Let s = 0, w = 1.5, and x = (2, 2, 0). Compute s if\n0 3\ns = w ∗s + x t.\nt t−1"
],
[
"Template",
"Let s = {a }, w = {b }, and x = {c }. Compute s if\n0 |{c}|\ns = w ∗s + x t.\nt t−1"
],
[
"Paraphrased Template",
"An RNN is defined as s = w ∗s + x t. If s is {a }, w is {b },\nt t−1 0\nand x is c , what is s ?\n{ } |{c}|"
],
[
"Paraphrased Question",
"An RNN is defined as s = w ∗s + x t. If s is 0, w is 1.5,\nt t−1 0\nand x is (2, 2, 0), what is s ?\n3"
],
[
"Augmentation",
"An RNN is defined as s = w ∗s + x t. If s is 1, w is 0.5,\nt t−1 0\nand x is (0.25, 0.25), what is s ?\n2"
],
[
"Expression",
"s = w ∗(w ∗(w ∗s + x 1) + x 2) + x\n3 0 3"
],
[
"Values",
"s = 1.5 ∗(1.5 ∗(1.5 ∗0 + 2) + 2) + 0\n3"
],
[
"Answer",
"7.5"
]
] | 0.516085 | null | null |
19 | 2107.01238v1 | 38 | [
200.85499572753906,
123.5,
411.1440124511719,
219.93798828125
] | \begin{table}[!htb]
\centering
\small
\begin{tabular}{|l|c|}
\hline
\textbf{Hyperparameters} & \textbf{T5 Transformer}\\
\hline
Learning rate & 1e-4 \\
Batch size & 32 \\
Epochs & 25 \\
Number of embeddings & 100 \\
Number of hidden layers & 512 \\
Number of layers & 3 \\
Number of heads & 8 \\
\hline
\end{tabular}
\caption{Hyperparameters of the T5 Transformer.}
\label{tab:hyperparameters}
\end{table} | [
[
"Hyperparameters",
"T5 Transformer"
],
[
"Learning rate\nBatch size\nEpochs\nNumber of embeddings\nNumber of hidden layers\nNumber of layers\nNumber of heads",
"1e-4\n32\n25\n100\n512\n3\n8"
]
] | 0.758442 | null | null |
0 | 1811.12629v4 | 7 | [
86.20942796979632,
387.3299865722656,
525.7904488699777,
461.4519958496094
] | \begin{table}[!ht]
\begin{adjustwidth}{-2.25in}{0in} % Comment out/remove adjustwidth environment if table fits in text column.
\centering
\caption{\label{tab:6}{\bf Summary of the evaluation dataset.}}
\begin{tabular}{ |c|c|c| }
\hline
\empty & representation & count\\
\hline
$SUBJECT\_ID$ & integer: IDs ranging from 2 to 99,999 & 30,000 \\
\hline
$GENDER$ & binary: 0 for female and 1 for male & 17,284/12,716 \\
\hline
$AGE\_GROUP$ & binary: 0 for ages less than or equal to 65 and 1 for greater & 13,947/16,053 \\
\hline
$MORTALITY$ & binary: 0 for survival and 1 for expired & 20,841/9,159 \\
\hline
$DRUGS$ & binary: 0 for not prescribed to patients and 1 for prescribed & 2814 dimensions \\
\hline
\end{tabular}
\end{adjustwidth}
\end{table} | [
[
"",
"representation",
"count"
],
[
"SUBJECT ID",
"integer: IDs ranging from 2 to 99,999",
"30,000"
],
[
"GENDER",
"binary: 0 for female and 1 for male",
"17,284/12,716"
],
[
"AGE GROUP",
"binary: 0 for ages less than or equal to 65 and 1 for greater",
"13,947/16,053"
],
[
"MORTALITY",
"binary: 0 for survival and 1 for expired",
"20,841/9,159"
],
[
"DRUGS",
"binary: 0 for not prescribed to patients and 1 for prescribed",
"2814 dimensions"
]
] | 0.98916 | null | null |
1 | 1811.12629v4 | 7 | [
49.73012590408325,
569.8820190429688,
562.2699890136719,
656.3569946289062
] | \begin{table}[!ht]
\begin{adjustwidth}{-2.25in}{0in} % Comment out/remove adjustwidth environment if table fits in text column.
\centering
\caption{\label{tab:7}\bf {Example rows and columns of DRUGS.}}
\begin{tabular}{ |c|c|c|c|c|c|c|c| }
\hline
SUBJECT$\_$ID & D5W & Heparin Sodium & Nitro-glycerine & Docusate Sodium & Insulin & Atropine Sulphate & ...\\
\hline
... & ...&...&...&...&...&...&... \\
\hline
9 & 1 & 0 & 0 & 0 & 1 & 0 & ... \\
\hline
10 & 0 & 0 & 0 & 0 & 1 & 0 & ... \\
\hline
11 & 0 & 0 & 0 & 1 & 1 & 0 & ... \\
\hline
12 & 1 & 0 & 0 & 0 & 1 & 0 & ... \\
\hline
13 & 1 & 1 & 1 & 1 & 1 & 1 & ... \\
\hline
\end{tabular}
\end{adjustwidth}
\end{table} | [
[
"SUBJECT ID",
"D5W",
"Heparin Sodium",
"Nitro-glycerine",
"Docusate Sodium",
"Insulin",
"Atropine Sulphate",
"..."
],
[
"...",
"...",
"...",
"...",
"...",
"...",
"...",
"..."
],
[
"9",
"1",
"0",
"0",
"0",
"1",
"0",
"..."
],
[
"10",
"0",
"0",
"0",
"0",
"1",
"0",
"..."
],
[
"11",
"0",
"0",
"0",
"1",
"1",
"0",
"..."
],
[
"12",
"1",
"0",
"0",
"0",
"1",
"0",
"..."
],
[
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"..."
]
] | 0.997691 | null | null |
2 | 1811.12629v4 | 11 | [
74.23459086698644,
74.35101318359375,
537.7654131721048,
171.9849853515625
] | \begin{table}[!ht]
\begin{adjustwidth}{-2.25in}{0in} % Comment out/remove adjustwidth environment if table fits in text column.
\centering
\caption{\label{tab:1}\bf IID scenario: 10-fold cross validation results with varying $C$ and $E$.}
\begin{tabular}{|P{1cm}|P{0.7cm}|P{3.0cm}|P{2.3cm}|P{3.0cm}|P{2.3cm}|P{1cm}|}
\hline
\multirow{2}{*}{$C$}&\multirow{2}{*}{$E$}&\multicolumn{2}{c|}{FedAvg}&\multicolumn{2}{c|}{LoAdaBoost}&\multirow{2}{*}{$p$-value} \\
\cline{3-6}
& & AUC & average epochs & AUC & average epochs & \\
\hline
\multirow{3}{*}{10\%} & 5 & 0.7891+-0.0002 & 75 & 0.7940+-0.0001 & 68 & 0.03\\
\cline{2-7}
&10& 0.7876+-0.0010 & 100 & 0.7900+-0.0007 & 73 & 0.03 \\
\cline{2-7}
&15& 0.7897+-0.0006 & 75 & 0.7907+-0.0010 & 52 & 0.03\\
\hline
20\% & 5 & 0.7905+-0.0003 & 75 & 0.7971+-0.0005 & 69 & 0.03 \\
\hline
50\% & 5 & 0.7903+-0.0003 & 80 & 0.7932+-0.0005 & 75 & 0.03\\
\hline
100\% & 5 & 0.7888+-0.0002 & 75 & 0.7887+-0.0003 & 72 & 0.78\\
\hline
\end{tabular}
\end{adjustwidth}
\end{table} | [
[
"C",
"E",
"FedAvg",
null,
"LoAdaBoost",
null,
"p-value"
],
[
null,
null,
"AUC",
"average epochs",
"AUC",
"average epochs",
null
],
[
"10%",
"5",
"0.7891+-0.0002",
"75",
"0.7940+-0.0001",
"68",
"0.03"
],
[
null,
"10",
"0.7876+-0.0010",
"100",
"0.7900+-0.0007",
"73",
"0.03"
],
[
null,
"15",
"0.7897+-0.0006",
"75",
"0.7907+-0.0010",
"52",
"0.03"
],
[
"20%",
"5",
"0.7905+-0.0003",
"75",
"0.7971+-0.0005",
"69",
"0.03"
],
[
"50%",
"5",
"0.7903+-0.0003",
"80",
"0.7932+-0.0005",
"75",
"0.03"
],
[
"100%",
"5",
"0.7888+-0.0002",
"75",
"0.7887+-0.0003",
"72",
"0.78"
]
] | 0.674699 | null | null |
3 | 1811.12629v4 | 11 | [
74.23459086698644,
600.1749877929688,
537.7654131721048,
685.4550170898438
] | \begin{table}[!ht]
\begin{adjustwidth}{-2.25in}{0in} % Comment out/remove adjustwidth environment if table fits in text column.
\centering
\caption{\label{tab:2}\bf Non-IID scenario: 10-fold cross validation results with varying $\alpha$ and $\beta$.}
\begin{tabular}{|P{0.7cm}|P{1.0cm}|P{3.0cm}|P{2.3cm}|P{3.0cm}|P{2.3cm}|P{1cm}|}
\hline
\multirow{2}{*}{$\beta$}&\multirow{2}{*}{$\alpha$}&\multicolumn{2}{c|}{FedAvg with data sharing}&\multicolumn{2}{c|}{LoAdaBoost with data sharing}&\multirow{2}{*}{$p$-value} \\
\cline{3-6}
& & AUC & average epochs & AUC & average epochs & \\
\hline
\multirow{3}{*}{1\%} & 10\% & 0.7842+-0.0016 & 40 & 0.7916+-0.0015 & 36 & 0.03\\
\cline{2-7}
&20\% & 0.7954+-0.0012 & 40 & 0.8016+-0.0015 & 35 & 0.03 \\
\cline{2-7}
&30\% & 0.8167+-0.0011 & 40 & 0.8203+-0.0011 & 34 & 0.03\\
\hline
2\% & 10\% & 0.7913+-0.0010 & 40 & 0.7984+-0.0008 & 35 & 0.03 \\
\hline
3\% & 10\% & 0.8033+-0.0010 & 40 & 0.8063+-0.0010 & 34 & 0.03 \\
\hline
\end{tabular}
\end{adjustwidth}
\end{table} | [
[
"β",
"α",
"FedAvg with data sharing",
null,
"LoAdaBoost with data sharing",
null,
"p-value"
],
[
null,
null,
"AUC",
"average epochs",
"AUC",
"average epochs",
null
],
[
"1%",
"10%",
"0.7842+-0.0016",
"40",
"0.7916+-0.0015",
"36",
"0.03"
],
[
null,
"20%",
"0.7954+-0.0012",
"40",
"0.8016+-0.0015",
"35",
"0.03"
],
[
null,
"30%",
"0.8167+-0.0011",
"40",
"0.8203+-0.0011",
"34",
"0.03"
],
[
"2%",
"10%",
"0.7913+-0.0010",
"40",
"0.7984+-0.0008",
"35",
"0.03"
],
[
"3%",
"10%",
"0.8033+-0.0010",
"40",
"0.8063+-0.0010",
"34",
"0.03"
]
] | 0.621253 | null | null |
4 | 1811.12629v4 | 12 | [
90.32757350376674,
499.9010009765625,
521.6724155970982,
573.6240234375
] | \begin{table}[!ht]
\begin{adjustwidth}{-2.25in}{0in} % Comment out/remove adjustwidth environment if table fits in text column.
\centering
\caption{\label{tab:3}\bf Non-IID scenario: 10-fold cross validation results with varying $C$.}
\begin{tabular}{|P{1cm}|P{3.0cm}|P{2.3cm}|P{3.0cm}|P{2.3cm}|P{1cm}|}
\hline
\multirow{2}{*}{$C$}&\multicolumn{2}{c|}{FedAvg with data sharing}&\multicolumn{2}{c|}{LoAdaBoost with data sharing}&\multirow{2}{*}{$p$-value} \\
\cline{2-5}
& AUC & average epochs & AUC & average epochs & \\
\hline
10\% & 0.7842+-0.0016 & 40 & 0.7916+-0.0015 & 36 & 0.03 \\
\hline
20\% & 0.7869+-0.0008 & 50 & 0.7893+-0.0005 & 46 & 0.03 \\
\hline
50\% & 0.7831+-0.0005 & 40 & 0.7877+-0.0006 & 35 & 0.03 \\
\hline
100\% & 0.7609+-0.0004 & 40 & 0.7900+-0.0003 & 35 & 0.03 \\
\hline
\end{tabular}
\end{adjustwidth}
\end{table} | [
[
"C",
"FedAvg with data sharing",
null,
"LoAdaBoost with data sharing",
null,
"p-value"
],
[
null,
"AUC",
"average epochs",
"AUC",
"average epochs",
null
],
[
"10%",
"0.7842+-0.0016",
"40",
"0.7916+-0.0015",
"36",
"0.03"
],
[
"20%",
"0.7869+-0.0008",
"50",
"0.7893+-0.0005",
"46",
"0.03"
],
[
"50%",
"0.7831+-0.0005",
"40",
"0.7877+-0.0006",
"35",
"0.03"
],
[
"100%",
"0.7609+-0.0004",
"40",
"0.7900+-0.0003",
"35",
"0.03"
]
] | 0.494949 | null | null |
5 | 1811.12629v4 | 13 | [
53.38283348083496,
74.35101318359375,
558.6171569824219,
136.1190185546875
] | \begin{table}[!ht]
\begin{adjustwidth}{-2.25in}{0in} % Comment out/remove adjustwidth environment if table fits in text column.
\centering
\caption{\label{tab:4}\bf Summary of the eICU dataset.}
\begin{tabular}{ |c|c|c| }
\hline
\empty & representation & count\\
\hline
$PATIENT\_UNIT\_STAY\_ID$ & integer: six-digit patient ID & 22,500 \\
\hline
$HOSPITAL\_ID$ & integer: hospital IDs ranging from 63 to 458 &45 \\
\hline
$MORTALITY$ & binary: 0 for survival and 1 for expired & 21393/1107 \\
\hline
$DRUGS$ & binary: 0 for not prescribed to patients and 1 for prescribed & 1399 dimensions \\
\hline
\end{tabular}
\end{adjustwidth}
\end{table} | [
[
"",
"representation",
"count"
],
[
"PATIENT UNIT STAY ID",
"integer: six-digit patient ID",
"22,500"
],
[
"HOSPITAL ID",
"integer: hospital IDs ranging from 63 to 458",
"45"
],
[
"MORTALITY",
"binary: 0 for survival and 1 for expired",
"21393/1107"
],
[
"DRUGS",
"binary: 0 for not prescribed to patients and 1 for prescribed",
"1399 dimensions"
]
] | 0.982456 | null | null |
6 | 1811.12629v4 | 14 | [
69.57912158966064,
74.35101318359375,
542.4209976196289,
159.23297119140625
] | \begin{table}[!ht]
\begin{adjustwidth}{-2.25in}{0in} % Comment out/remove adjustwidth environment if table fits in text column.
\centering
\caption{\label{tab:5}\bf Evaluation on eICU data: 10-fold cross validation results.}
\begin{tabular}{|P{3.5cm}|P{5.0cm}|P{2.5cm}|P{2.3cm}|P{1.2cm}|}
\hline
data distribution & method & AUC & average epochs & $p$-value \\
\hline
\multirow{2}{*}{IID} & FedAvg & 0.5693+-0.0057 &400&\multirow{2}{*}{0.03} \\
\cline{2-4}
& LoAdaBoost &0.6057+-0.0077& 262 & \\
\hline
\multirow{4}{*}{non-IID} &FedAvg& 0.6512+-0.0043& 300& \multirow{2}{*}{0.03}\\
\cline{2-4}
&LoAdaBoost& 0.6548+-0.0048& 271& \\
\cline{2-5}
&FedAvg with data-sharing& 0.6253+-0.0088& 350& \multirow{2}{*}{0.03}\\
\cline{2-4}
&LoAdaBoost with data-sharing& 0.6412+-0.0065& 272& \\
\hline
\end{tabular}
\end{adjustwidth}
\end{table} | [
[
"data distribution",
"method",
"AUC",
"average epochs",
"p-value"
],
[
"IID",
"FedAvg",
"0.5693+-0.0057",
"400",
"0.03"
],
[
null,
"LoAdaBoost",
"0.6057+-0.0077",
"262",
null
],
[
"non-IID",
"FedAvg",
"0.6512+-0.0043",
"300",
"0.03"
],
[
null,
"LoAdaBoost",
"0.6548+-0.0048",
"271",
null
],
[
null,
"FedAvg with data-sharing",
"0.6253+-0.0088",
"350",
"0.03"
],
[
null,
"LoAdaBoost with data-sharing",
"0.6412+-0.0065",
"272",
null
]
] | 0.8672 | null | null |
0 | 1812.00564v1 | 4 | [
191.40499877929688,
405.7820129394531,
418.10400390625,
451.0119934082031
] | \begin{table}[htbp]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Method} & \textbf{100 Clients} & \textbf{500 Clients} \\ \hline
\textbf{Large Batch SGD} & 29.4 TFlops & 5.89 TFlops \\ \hline
\textbf{Federated Learning} & 29.4 TFlops & 5.89 TFlops \\ \hline
\textbf{SplitNN} & 0.1548 TFlops & 0.03 TFlops \\ \hline
\end{tabular}
\vspace{1em}
\caption{Computation resources consumed per client when training CIFAR 10 over VGG (in teraflops) are drastically lower for SplitNN than Large Batch SGD and Federated Learning.}
\vspace{-1.8em}
\end{table} | [
[
"Method",
"100 Clients",
"500 Clients"
],
[
"Large Batch SGD",
"29.4 TFlops",
"5.89 TFlops"
],
[
"Federated Learning",
"29.4 TFlops",
"5.89 TFlops"
],
[
"SplitNN",
"0.1548 TFlops",
"0.03 TFlops"
]
] | 0.621564 | null | null |
1 | 1812.00564v1 | 4 | [
197.2239990234375,
491.3590087890625,
412.2860107421875,
536.5889892578125
] | \begin{table}[!htbp]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Method} & \textbf{100 Clients} & \textbf{500 Clients} \\ \hline
\textbf{Large Batch SGD} & 13 GB & 14 GB \\ \hline
\textbf{Federated Learning} & 3 GB & 2.4 GB \\ \hline
\textbf{SplitNN} & 6 GB & 1.2 GB \\ \hline
\end{tabular}
\vspace{1em}
\caption{Computation bandwidth required per client when training CIFAR 100 over ResNet (in gigabytes) is lower for splitNN than large batch SGD and federated learning with a large number of clients. For setups with a smaller number of clients, federated learning requires a lower bandwidth than splitNN. Large batch SGD methods popular in data centers use a heavy bandwidth in both settings.}
\end{table} | [
[
"Method",
"100 Clients",
"500 Clients"
],
[
"Large Batch SGD",
"13 GB",
"14 GB"
],
[
"Federated Learning",
"3 GB",
"2.4 GB"
],
[
"SplitNN",
"6 GB",
"1.2 GB"
]
] | 0.360331 | null | null |
0 | 2109.01374v1 | 10 | [
142.63999938964844,
134.9639892578125,
472.71600341796875,
376.2590026855469
] | \begin{table}[tb]
\caption{Query workload}
\begin{center}
\begin{tabular}{|c|l|}
%\textbf{ Workload} & \textbf{AURA-PMI} & \textbf{AUDAL-Bench-1} & \textbf{AUDAL-Bench-2}\\
%\hline
% \textbf{Order} & \textbf{Query statement} \\
% \hline
\hline
\multicolumn{2}{|c|}{\textbf{\textit{Data retrieval queries}}} \\
\hline
%\hline
1 & Retrieve documents written in English and edited in December \\
\hline
2 & Retrieve objects (tables or documents) containing the terms ``big'' and ``data'' \\
\hline
3 & Retrieve objects with terms ``big'', ``data'', ``document'' and ``article'' \\
\hline
4 & Retrieve 3 tables, joinable to any table. \\
\hline
5 & %Calculate document scores w.r.t. the terms ``big'' and ``data''
Retrieve 5 most similar documents to a given document\\
\hline
\hline
\multicolumn{2}{|c|}{\textbf{\textit{Textual content analysis}}} \\
\hline
6 & Calculate document scores w.r.t. the terms ``big'', ``data'', ``article''\\
& and ``document'' \\
\hline
7 & Extract a concordance from documents using the terms ``data'' and ``ai'' \\
\hline
8 & Extract a concordance from documents using the terms ``data'', ``ai'' ``article'' \\
& and ``paper'' \\
\hline
9 & Find top 10 keywords from all documents \\
\hline
10 & Run a 3-cluster KMeans clustering on documents grouped by month \\
\hline
11 & Run a PCA analysis on documents grouped by month. \\
\hline
\hline
\multicolumn{2}{|c|}{\textbf{\textit{Tabular content analysis}}} \\
\hline
12 & Run a join query between two tables \\
\hline
13 & Run a join query between two tables while averaging all numerical values \\
& and aggregating by any categorical column. \\
\hline
14 & Run a 3-cluster KMeans clustering on the result of \textit{query 12} \\
\hline
15 & Run a PCA on the result of \textit{query 12}. \\
\hline
\end{tabular}
\end{center}
\label{tab:queries}
\end{table} | [
[
"Data retrieval queries",
null
],
[
"1",
"Retrieve documents written in English and edited in December"
],
[
"2",
"Retrieve objects (tables or documents) containing the terms “big” and “data”"
],
[
"3",
"Retrieve objects with terms “big”, “data”, “document” and “article”"
],
[
"4",
"Retrieve 3 tables, joinable to any table."
],
[
"5",
"Retrieve 5 most similar documents to a given document"
],
[
"Textual content analysis",
null
],
[
"6",
"Calculate document scores w.r.t. the terms “big”, “data”, “article”\nand “document”"
],
[
"7",
"Extract a concordance from documents using the terms “data” and “ai”"
],
[
"8",
"Extract a concordance from documents using the terms “data”, “ai” “article”\nand “paper”"
],
[
"9",
"Find top 10 keywords from all documents"
],
[
"10",
"Run a 3-cluster KMeans clustering on documents grouped by month"
],
[
"11",
"Run a PCA analysis on documents grouped by month."
],
[
"Tabular content analysis",
null
],
[
"12",
"Run a join query between two tables"
],
[
"13",
"Run a join query between two tables while averaging all numerical values\nand aggregating by any categorical column."
],
[
"14",
"Run a 3-cluster KMeans clustering on the result of query 12"
],
[
"15",
"Run a PCA on the result of query 12."
]
] | 0.543621 | null | null |
1 | 2109.01374v1 | 11 | [
314.2120056152344,
193.8096720377604,
474.0570068359375,
310.94379272460935
] | \begin{table}[hbt]
\begin{minipage}{.5\textwidth}
\caption{Query response time (ms)}
\begin{center}
\begin{tabular}{|c|c|c|}
%\textbf{ Workload} & \textbf{AURA-PMI} & \textbf{AUDAL-Bench-1} & \textbf{AUDAL-Bench-2}\\
\hline
\textbf{Query} & \textbf{AURA-PMI} & \textbf{Artificial} \\
& \textbf{dataset} & \textbf{dataset} \\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{Data retrieval queries}}} \\
\hline
%\hline
Query 1 & 194 & 653 \\
\hline
Query 2 & 108 & 207 \\
\hline
Query 3 & 143 & 305 \\
\hline
Query 4 & 59 & 81 \\
\hline
Query 5 & 51 & 79 \\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{Textual content analysis}}} \\
\hline
Query 6 & 85 & 117 \\
\hline
Query 7 & 169 & 198 \\
\hline
Query 8 & 62 & 92 \\
\hline
Query 9 & 4,629& 188,199\\
\hline
Query 10 & 1,930 & 26,969
\\
\hline
Query 11 & 1,961& 26,871 \\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{Tabular content analysis}}} \\
\hline
Query 12 & 71 & 37 \\
\hline
Query 13 & 61 & 12 \\
\hline
Query 14 & 174 & 144 \\
\hline
Query 15 & 670 & 520 \\
\hline
\end{tabular}
\end{center}
\label{tab:results1}
\end{minipage}% This must go next to `\end{minipage}`
\begin{minipage}{.5\textwidth}
\begin{center}
\caption{Raw data vs. metadata size (GB)}
\begin{tabular}{|c|c|c|}
%\textbf{ Workload} & \textbf{AURA-PMI} & \textbf{AUDAL-Bench-1} & \textbf{AUDAL-Bench-2}\\
\hline
\textbf{System} & \textbf{AURA-PMI} & \textbf{Artificial} \\
& \textbf{dataset} & \textbf{dataset} \\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{Raw data}}} \\
\hline
- & \textbf{6.2} & \textbf{62.7} \\
\hline
\hline
\multicolumn{3}{|c|}{\textbf{\textit{Metadata}}} \\
\hline
Neo4J & 0.9 & 2.0 \\
\hline
SQLite & 0.003 & 1.7 \\
\hline
MongoDB & 0.28 & 3.4\\
\hline
ElasticSearch & 1.6 & 27.6\\
\hline
\textbf{Total }& \textbf{2.8} &\textbf{34.7} \\
\hline
\hline
\end{tabular}
\end{center}
\label{tab:results2}
\end{minipage}
\end{table} | [
[
"System",
"AURA-PMI\ndataset",
"Artificial\ndataset"
],
[
"Raw data",
null,
null
],
[
"-",
"6.2",
"62.7"
],
[
"Metadata",
null,
null
],
[
"Neo4J",
"0.9",
"2.0"
],
[
"SQLite",
"0.003",
"1.7"
],
[
"MongoDB",
"0.28",
"3.4"
],
[
"ElasticSearch",
"1.6",
"27.6"
],
[
"Total",
"2.8",
"34.7"
]
] | 0.36 | null | null |