id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
0 | 2106.11892v3 | 10 | [
341.2879943847656,
412.41900634765625,
533.7249755859375,
453.9639892578125
] | \begin{table}[h]
\centering
\begin{tabular}{c|c|c|c|c}
\hline
& Tiny & Small & Medium & Large \\
\hline
General leakage & 717 & 770 & 675 & 1494 \\
\hline
Small leakage & 153 & 38 & 0 & 0 \\
\hline
\end{tabular}
\caption{Two different test sets for evaluating the performance of our generative models. For the definitions of different leakage~(tiny, small, medium, and large), please refer to Eq.~\eqref{eq:leakCases} and Fig.~\ref{fig:mass dis}.}%~\my{(Please complete this table.)} }
\label{tab:TestData}
\end{table} | [
[
"",
"Tiny",
"Small",
"Medium",
"Large"
],
[
"General leakage",
"717",
"770",
"675",
"1494"
],
[
"Small leakage",
"153",
"38",
"0",
"0"
]
] | 0.383886 | null | null |
0 | 1806.01259v1 | 17 | [
141.79200744628906,
57.79901123046875,
467.71717834472656,
130.7249755859375
] | \begin{table}[t]
\centering
{
\renewcommand{\arraystretch}{1.2}
\begin{tabular}{|c|c|c|c|}
\hline
Encoding Function Architecture & k & \ECacc & \Trueacc\\ \hline
\multirow{2}{*}{\mlpcoder} & 2 & 0.9831 & 0.9279 \\
& 5 & 0.9817 & 0.9270 \\ \hline
\multirow{2}{*}{\convcoder} & 2 & 0.9899 & 0.9295 \\
& 5 & 0.9869 & 0.9260 \\ \hline
\end{tabular}
}
\caption{Test \ecacc and \trueacc for logistic regression \channelmodel on the \mnist dataset with $r=1$ and using KL-divergence as the loss function.}
\label{table:app-logistic}
\end{table} | [
[
"Encoding Function Architecture",
"k",
"Recovery-accuracy",
"Overall-accuracy"
],
[
"MLPEncoder",
"2\n5",
"0.9831\n0.9817",
"0.9279\n0.9270"
],
[
"ConvEncoder",
"2\n5",
"0.9899\n0.9869",
"0.9295\n0.9260"
]
] | 0.461538 | null | null |
0 | 1805.03441v1 | 3 | [
311.9779968261719,
87.30300903320312,
563.0369873046875,
176.07000732421875
] | \begin{table}[t]
\caption{Candidate code features used in \cite{Magni:2014:AOT:2628071.2628087}.}
\label{tbl:rawfeatures}
\scriptsize
\begin{tabularx}{\columnwidth}{X||X}
\toprule
\textbf{Feature Description} & \textbf{Feature Description}\\
\midrule
\rowcolor{Gray} \# Basic Blocks & \# Branches \\
\# Divergent Instr. & \# Instrs. in Divergent Regions \\
\rowcolor{Gray} (\# instr. in Divergent regions)/(\# total instr.) & \# Divergent regions \\
\# Instrs & \# Floating point instr. \\
\rowcolor{Gray} Avg. ILP per basic block & (\# integer instr.) / (\# floating point instr.) \\
\# integer instr. & \# Math built-in func.\\
\rowcolor{Gray} Avg. MLP per basic block & \# loads \\
\# stores & \# loads that are independent of the coarsening direction \\
\rowcolor{Gray} \# barriers & \\
\bottomrule
\end{tabularx}
\end{table} | [
[
"# Basic Blocks",
"# Branches"
],
[
"# Divergent Instr.",
"# Instrs. in Divergent Regions"
],
[
"(# instr. in Divergent regions)/(# total\ninstr.)",
"# Divergent regions"
],
[
"# Instrs",
"# Floating point instr."
],
[
"Avg. ILP per basic block",
"(# integer instr.) / (# floating point instr.)"
],
[
"# integer instr.",
"# Math built-in func."
],
[
"Avg. MLP per basic block",
"# loads"
],
[
"# stores",
"# loads that are independent of the\ncoarsening direction"
],
[
"# barriers",
""
]
] | 0.65748 | null | null |
1 | 1805.03441v1 | 12 | [
48.9640007019043,
292.2380065917969,
300.0220031738281,
319.1369934082031
] | \begin{table}[t]
\caption{Feature engineering techniques discussed in Section~\ref{sec:featureengineering}.}
\label{tbl:fegineering}
\begin{tabularx}{\columnwidth}{X X}
\toprule
\textbf{Problem} & \textbf{Techniques}\\
\midrule
\rowcolor{Gray} Feature selection & Pearson correlation coefficient, mutual information, regression analysis. See Section~\ref{sec:fesecl}.\\
Feature dimensionality reduction & Principal component analysis (\PCA), factor analysis, linear discriminant analysis, autoencoder. See Section~\ref {sec:dimred}.\\
\bottomrule
\end{tabularx}
\end{table} | [
[
"Feature selection",
"Pearson correlation coefficient, mu-\ntual information, regression analy-\nsis. See Section V-D1."
]
] | 0.369449 | null | null |
0 | 2008.06456v1 | 15 | [
274.5260009765625,
455.4179992675781,
337.4741668701172,
511.95599365234375
] | \begin{table}[H]
\centering
\begin{tabular}{|c|c|}
\hline
$\delta$ & 0.6 \\
\hline
$\gamma_{pred}$ & 0.2 \\
\hline
$\gamma_{succ}$ & 0.05 \\
\hline
$K$ & 10 \\
\hline
$p$ & 6 \\
\hline
\end{tabular}
\caption{Hyperparameters used for the MR\ algorithm. }
\label{table2}
\end{table} | [
[
"δ",
"0.6"
],
[
"γ\npred",
"0.2"
],
[
"γ\nsucc",
"0.05"
],
[
"K",
"10"
],
[
"p",
"6"
]
] | 0.477612 | null | null |
0 | 2308.11910v2 | 4 | [
37.872416496276855,
100.92999267578125,
292.63865661621094,
299.32403564453125
] | \begin{table}
\centering
\caption{Main notations used in this paper.}
\setlength{\tabcolsep}{1pt}
\begin{tabular}{ |c|>{\centering\arraybackslash}m{7.5cm}| }
\hline
Symbols & Description \\
\hline
$N_\text{p}$& Number of participants \\
$N_\text{s}$& Number of sessions for each participant \\
$N$& Number of ROIs \\
$T$& Number of volumes (i.e., time points) in each session \\
$\bm{x}_{t} \in \mathbb{R}^N$ & fMRI signal at time $t$\\
$\overline{x}_t$ & Average of $x_{t,i}$ over ROIs\\
$\sigma_{t}$ & Standard deviation of $x_{t,i}$ over ROIs\\
$K$ & Number of discrete states \\
$\bm{c}_{\ell} \in \mathbb{R}^N$ & Centroid of the $\ell$th cluster, where $\ell \in \{1,2, \ldots, K\}$\\
$L_t$ & Cluster label for $\bm{x}_t; L_t \in \{1, 2, \ldots, K\}$ \\
% $C_{\ell}$ & Set of $\bm{x}_t$'s in the $\ell$th cluster\\
\hline
\end{tabular}
\label{tab:notation}
\end{table} | [
[
"Symbols",
"Description"
],
[
"N\np\nN\ns\nN\nT\nx ∈RN\nt\nx\nt\nσ\nt\nK\nc ∈RN\nℓ\nL\nt",
"Number of participants\nNumber of sessions for each participant\nNumber of ROIs\nNumber of volumes (i.e., time points) in each session\nfMRI signal at time t\nAverage of x over ROIs\nt,i\nStandard deviation of x over ROIs\nt,i\nNumber of discrete states\nCentroid of the ℓth cluster, where ℓ 1, 2, . . . , K\n∈{ }\nCluster label for x ; L 1, 2, . . . , K\nt t ∈{ }"
]
] | 0.676606 | null | null |
0 | 1905.10737v3 | 5 | [
98.24457332066127,
483.2425231933594,
497.02701568603516,
569.02099609375
] | \begin{table}[h]
\centering
\small
\begin{tabular}{l|r|r|r|r|r|r|r|r|r|r|}
\cline{2-11}
& \multicolumn{10}{c|}{Time (t)} \\ \hline
\multicolumn{1}{|c|}{\multirow{2}{*}{$x_0$}} & \multicolumn{2}{c|}{100} & \multicolumn{2}{c|}{1,000} & \multicolumn{2}{c|}{5,000} & \multicolumn{2}{c|}{10,000} & \multicolumn{2}{c|}{20,000} \\ \cline{2-11}
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{Theo.} & \multicolumn{1}{c|}{Sim.} & \multicolumn{1}{c|}{Theo.} & \multicolumn{1}{c|}{Sim.} & \multicolumn{1}{c|}{Theo.} & \multicolumn{1}{c|}{Sim.} & \multicolumn{1}{c|}{Theo.} & \multicolumn{1}{c|}{Sim.} & \multicolumn{1}{c|}{Theo.} & \multicolumn{1}{c|}{Sim.} \\ \hline
\multicolumn{1}{|l|}{10} & 81.87 & 82.10 & 98.02 & 97.97 & 99.60 & 99.61 & 99.80 & 99.76 & 99.90 & 99.87 \\ \hline
\multicolumn{1}{|l|}{100} & 13.53 & 13.02 & 81.87 & 81.85 & 96.08 & 96.11 & 98.02 & 98.04 & 99.00 & 99.03 \\ \hline
\multicolumn{1}{|l|}{1000} & 0.00 & 0.00 & 13.53 & 13.31 & 67.03 & 67.08 & 81.87 & 82.10 & 90.48 & 90.68 \\ \hline
\multicolumn{1}{|l|}{10000} & 0.00 & 0.00 & 0.00 & 0.00 & 1.83 & 1.79 & 13.53 & 13.51 & 36.79 & 36.07 \\ \hline
\end{tabular}
\caption{Percentage of paths absorbed at origin over time for different values of $x_0$ with $t_0=0$, $\si^2=1$, $\Delta t_i=1$. (10,000 paths)}
\label{tab:samplesim4}
\end{table} | [
[
"",
"Time (t)",
null,
null,
null,
null,
null,
null,
null,
null,
null
],
[
"x\n0",
"100",
null,
"1,000",
null,
"5,000",
null,
"10,000",
null,
"20,000",
null
],
[
null,
"Theo.",
"Sim.",
"Theo.",
"Sim.",
"Theo.",
"Sim.",
"Theo.",
"Sim.",
"Theo.",
"Sim."
],
[
"10",
"81.87",
"82.10",
"98.02",
"97.97",
"99.60",
"99.61",
"99.80",
"99.76",
"99.90",
"99.87"
],
[
"100",
"13.53",
"13.02",
"81.87",
"81.85",
"96.08",
"96.11",
"98.02",
"98.04",
"99.00",
"99.03"
],
[
"1000",
"0.00",
"0.00",
"13.53",
"13.31",
"67.03",
"67.08",
"81.87",
"82.10",
"90.48",
"90.68"
],
[
"10000",
"0.00",
"0.00",
"0.00",
"0.00",
"1.83",
"1.79",
"13.53",
"13.51",
"36.79",
"36.07"
]
] | 0.434156 | null | null |
1 | 1905.10737v3 | 7 | [
166.4748306274414,
324.1865234375,
428.79557146344865,
398.010009765625
] | \begin{table}[h]
\centering
\small
\begin{tabular}{l|r|r|r|r|r|}
\cline{2-6}
& \multicolumn{5}{c|}{\textbf{Time (t)}} \\ \hline
\multicolumn{1}{|l|}{$x_0$} & \multicolumn{1}{c|}{100} & \multicolumn{1}{c|}{1000} & \multicolumn{1}{c|}{5000} & \multicolumn{1}{c|}{10000} & \multicolumn{1}{c|}{20000} \\ \hline
\multicolumn{1}{|l|}{10} & 8.35 & 6.98 & 2.74 & 0.00 & 0.00 \\ \hline
\multicolumn{1}{|l|}{100} & 100.70 & 110.73 & 100.92 & 127.18 & 149.70 \\ \hline
\multicolumn{1}{|l|}{1000} & 1000.47 & 996.56 & 908.82 & 960.91 & 1011.71 \\ \hline
\multicolumn{1}{|l|}{10000} & 9956.68 & 9958.66 & 9752.99 & 9860.61 & 9775.20 \\ \hline
\end{tabular}
\caption{Average $x$ value for varying $x_0$ values with $t_0=0$, $\si^2=10$, $\Delta t_i=1$. (10,000 paths)}
\label{tab:avgxvar10}
\end{table} | [
[
"",
"Time (t)",
null,
null,
null,
null
],
[
"x\n0",
"100",
"1000",
"5000",
"10000",
"20000"
],
[
"10",
"8.35",
"6.98",
"2.74",
"0.00",
"0.00"
],
[
"100",
"100.70",
"110.73",
"100.92",
"127.18",
"149.70"
],
[
"1000",
"1000.47",
"996.56",
"908.82",
"960.91",
"1011.71"
],
[
"10000",
"9956.68",
"9958.66",
"9752.99",
"9860.61",
"9775.20"
]
] | 0.41966 | null | null |
2 | 1905.10737v3 | 7 | [
159.00482940673828,
459.280517578125,
436.2664358956473,
533.10302734375
] | \begin{table}[h]
\centering
\small
\begin{tabular}{l|r|r|r|r|r|}
\cline{2-6}
& \multicolumn{5}{c|}{\textbf{Time (t)}} \\ \hline
\multicolumn{1}{|l|}{$x_0$} & \multicolumn{1}{c|}{100} & \multicolumn{1}{c|}{1000} & \multicolumn{1}{c|}{5000} & \multicolumn{1}{c|}{10000} & \multicolumn{1}{c|}{20000} \\ \hline
\multicolumn{1}{|l|}{10} & 10.07 & 11.07 & 10.29 & 12.68 & 14.92 \\ \hline
\multicolumn{1}{|l|}{100} & 100.05 & 99.72 & 90.96 & 96.19 & 99.01 \\ \hline
\multicolumn{1}{|l|}{1000} & 995.67 & 995.34 & 975.22 & 991.77 & 977.22 \\ \hline
\multicolumn{1}{|l|}{10000} & 9990.73 & 10000.84 & 10004.78 & 10049.72 & 9953.11 \\ \hline
\end{tabular}
\caption{Average $x$ value for varying $x_0$ values with $t_0=0$, $\si^2=1$, $\Delta t_i=1$. (10,000 paths)}
\label{tab:avgxvar1}
\end{table} | [
[
"",
"Time (t)",
null,
null,
null,
null
],
[
"x\n0",
"100",
"1000",
"5000",
"10000",
"20000"
],
[
"10",
"10.07",
"11.07",
"10.29",
"12.68",
"14.92"
],
[
"100",
"100.05",
"99.72",
"90.96",
"96.19",
"99.01"
],
[
"1000",
"995.67",
"995.34",
"975.22",
"991.77",
"977.22"
],
[
"10000",
"9990.73",
"10000.84",
"10004.78",
"10049.72",
"9953.11"
]
] | 0.463277 | null | null |
0 | 2302.00105v2 | 10 | [
336.1629943847656,
404.4530029296875,
542.9450073242188,
552.0989990234375
] | \begin{table}[]
\centering
\begin{tabular}{ |c|c|c|c| }
\hline
\multicolumn{4}{|c|}{The SWP leveraged the quantum neural classifier.} \\
\hline
\#Patients & \#SW &\#Layers & Accuracy\\
\hline
3 & 2 & 2 & 70.3\\
4 & 3 & 2 & 63.2\\
5 & 2 & 2 & 57.7 \\
5 & 3 & 2 & 48.1\\
5 & 4 & 2 & 47.2\\
\hline
\end{tabular}
\caption{We are solving the Social Workers' Problem (SWP) \cite{atchade2020using, adelomou2020formulation} with a quantum neural network classifier. }
\label{tab:results_CBR_NN_SW_Full}
\end{table} | [
[
"The SWP leveraged the quantum neural classifier.",
null,
null,
null
],
[
"#Patients",
"#SW",
"#Layers",
"Accuracy"
],
[
"3\n4\n5\n5\n5",
"2\n3\n2\n3\n4",
"2\n2\n2\n2\n2",
"70.3\n63.2\n57.7\n48.1\n47.2"
]
] | 0.49217 | null | null |
0 | 2007.09982v1 | 3 | [
97.24099731445312,
601.593994140625,
514.759033203125,
638.85400390625
] | \begin{table}[htb]
% \small
% \centering
% \begin{tabular}{l|c|c|c|c|c}
% \hline
% Dataset & examples & features & list & generator w. cache & generator \\
% \hline
% Madelon & 6000 & 5000 & \makecell{24.4 s\\7.3 GB} & \makecell{28.0 s\\2.6 GB} & \makecell{60.5 s\\2.3 GB} \\
% \hline
% Phishing & 11055 & 68 & \makecell{115.7 s\\23.9 GB} & \makecell{120.4 s\\6.2 GB} & \makecell{126.8 s\\5.7 GB} \\
% \hline
% \end{tabular}
% \caption{Computational time and memory usage of EasyMKL when trained with explicit kernels list and MKLpy generators.}
% \label{tab:generators}
% \vspace{-1.5em}
% \end{table} | [
[
"Dataset",
"examples",
"features",
"list",
"generator w. cache",
"generator"
],
[
"Madelon",
"6000",
"5000",
"24.4 s / 7.3 GB",
"28.0 s / 2.6 GB",
"60.5 s / 2.3 GB"
],
[
"Phishing",
"11055",
"68",
"115.7 s / 23.9 GB",
"120.4 s / 6.2 GB",
"126.8 s / 5.7 GB"
]
] | 0.719057 | null | null |
0 | 2401.13343v2 | 12 | [
221.66000366210938,
106.93096923828125,
333.83304511176215,
235.25
] | \begin{table}[ht]
\def\arraystretch{1.5}
\setlength\tabcolsep{0.2cm}
\centering
\caption{Hypothetical timings to build a CAD for a set of polynomials with six possible variable orderings}
\label{tab:orderings}
\begin{tabular}{|c|c|}
\hline
\multicolumn{1}{|l|}{\textbf{Ordering}} & \textbf{Timing } \\ \hline
$\succ_{123}$ & 22.16s \\ \hline
$\succ_{132}$ & 17.14s \\ \hline
$\succ_{213}$ & Timeout 30s \\ \hline
$\succ_{231}$ & 24.87 \\ \hline
$\succ_{312}$ & \textbf{16.06} \\ \hline
$\succ_{321}$ & 22.58 \\ \hline
\end{tabular}
\end{table} | [
[
"Ordering",
"Timing"
],
[
"≻123",
"22.16s"
],
[
"≻132",
"17.14s"
],
[
"≻213",
"Timeout 30s"
],
[
"≻231",
"24.87"
],
[
"≻312",
"16.06"
],
[
"≻321",
"22.58"
]
] | 0.83 | null | null |
1 | 2401.13343v2 | 20 | [
102.28299931117466,
506.2349853515625,
464.31500244140625,
592.7109985351562
] | \begin{table}[ht]
%\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Short name} & \textbf{Training dataset} & \textbf{Testing dataset} & \textbf{Paradigm}\\\hline
A & Imbalanced (see \Cref{sec:exploring classification dataset}) & Imbalanced & Classification\\\hline
B & Imbalanced & Balanced & Classification\\\hline
C & Balanced (see \Cref{sec:improving datasets}) & Balanced & Classification\\\hline
D & Augmented (see \Cref{sec:improving datasets}) & Balanced & Classification\\\hline
E & Regression orderings (See \Cref{sec:creating regression intance}) & Balanced & Regression\\\hline
F & Regression variables (see \Cref{sec:regression variables}) & Balanced & Regression\\\hline
\end{tabular}
%\caption{Short name for available strategies.}
%\label{tab:estrategies short name}
%\end{table} | [
[
"Short name",
"Training dataset",
"Testing dataset",
"Paradigm"
],
[
"A",
"Imbalanced (see Section 4.2)",
"Imbalanced",
"Classification"
],
[
"B",
"Imbalanced",
"Balanced",
"Classification"
],
[
"C",
"Balanced (see Section 4.3)",
"Balanced",
"Classification"
],
[
"D",
"Augmented (see Section 4.3)",
"Balanced",
"Classification"
],
[
"E",
"Regression orderings (See Section 5.1)",
"Balanced",
"Regression"
],
[
"F",
"Regression variables (see Section 6)",
"Balanced",
"Regression"
]
] | 0.374439 | null | null |
0 | 2311.15460v1 | 5 | [
347.5989990234375,
299.5270080566406,
527.4149780273438,
507.3479919433594
] | \begin{table}[!ht]
\renewcommand{\arraystretch}{1}
\centering
\caption{Modal verbs for Deontic Types}\label{tab:modalverbs} %
\begin{tabular}{| p{1.5cm} | p{4cm}|}
\hline
Type & Model Verbs \\ \hline
Obligation & shall be required, will be required, shall be obligated, shall, must, will, have to, should, ought to have, will be paid, shall be paid, agree, agrees, acknowledges, acknowledge, represents and warrants, shall be responsible for, will be responsible for \\ \hline
Prohibition & shall not, will not, must not, may not, cannot, shall have no right, can not, shall not be allowed, will not be allowed, shall not assist, shall be prohibited, will be prohibited, nor shall, not to be, neither lessor nore lessee may, in no event shall, nor will, will not allow, nor may \\ \hline
Permissions & shall be permitted, shall also be permitted, can, may, could, shall be allowed, will be allowed, is permitted, will allow, has the right, or at landlord's option, shall be permitted to \\ \hline
\end{tabular}
\end{table} | [
[
"Type",
"Model Verbs"
],
[
"Obligation",
"shall be required, will be required,\nshall be obligated, shall, must,\nwill, have to, should, ought to\nhave, will be paid, shall be paid,\nagree, agrees, acknowledges, ac-\nknowledge, represents and war-\nrants, shall be responsible for, will\nbe responsible for"
],
[
"Prohibition",
"shall not, will not, must not, may\nnot, cannot, shall have no right, can\nnot, shall not be allowed, will not\nbe allowed, shall not assist, shall be\nprohibited, will be prohibited, nor\nshall, not to be, neither lessor nore\nlessee may, in no event shall, nor\nwill, will not allow, nor may"
],
[
"Permissions",
"shall be permitted, shall also be\npermitted, can, may, could, shall be\nallowed, will be allowed, is per-\nmitted, will allow, has the right,\nor at landlord’s option, shall be\npermitted to"
]
] | 0.892308 | null | null |
0 | 2312.08493v1 | 14 | [
165.67300415039062,
77.21600341796875,
442.00201416015625,
119.208984375
] | \begin{table}
\begin{tabular}{ |c|c|c|c|c| }
\hline
& Example 1 & Example 2 & Example 3 & Example 4 \\
\hline
MSE & 0.0042 & 0.0035 & 0.4954 & 0.0007 \\
\hline
$R^2$ & 0.9972 & 0.9987 & 0.9246 & 0.9934 \\
\hline
\end{tabular} \caption{\label{metrics} MSE and $R^2$ for real and predicted values.}
\end{table} | [
[
"",
"Example 1",
"Example 2",
"Example 3",
"Example 4"
],
[
"MSE",
"0.0042",
"0.0035",
"0.4954",
"0.0007"
],
[
"R2",
"0.9972",
"0.9987",
"0.9246",
"0.9934"
]
] | 0.787645 | null | null |
1 | 2312.08493v1 | 17 | [
84.15299987792969,
290.9429931640625,
552.0289916992188,
346.9330139160156
] | \begin{table}
\begin{tabular}{ |c|c|c|c|c|c|c|c|c| }
\hline
& \multicolumn{2}{|c|}{Example 1} &
\multicolumn{2}{|c|}{Example 2} & \multicolumn{2}{|c|}{Example 3} & \multicolumn{2}{|c|}{Example 4} \\
\hline
& X real & X approx & X real & X approx & X real & X approx & X real & X approx \\
\hline
empirical mean & 0.515 & 0.515 & 0.495 & 0.497 & 1.243 & 1.256 & 0.477 & 0.519 \\
\hline
empirical std dev & 2.456 & 2.388 & 3.168 & 3.202 & 4.835 & 5.077 & 0.144 & 0.143 \\
\hline
\end{tabular} \caption{\label{histogram_values}Empirical distribution values for each example - mean and standard deviation}
\end{table} | [
[
"",
"Example 1",
null,
"Example 2",
null,
"Example 3",
null,
"Example 4",
null
],
[
"",
"X real",
"X approx",
"X real",
"X approx",
"X real",
"X approx",
"X real",
"X approx"
],
[
"empirical mean",
"0.515",
"0.515",
"0.495",
"0.497",
"1.243",
"1.256",
"0.477",
"0.519"
],
[
"empirical std dev",
"2.456",
"2.388",
"3.168",
"3.202",
"4.835",
"5.077",
"0.144",
"0.143"
]
] | 0.646566 | null | null |
2 | 2312.08493v1 | 17 | [
134.64100646972656,
607.8049926757812,
473.03399658203125,
649.7969970703125
] | \begin{table}
\begin{tabular}{ |c|c|c|c|c| }
\hline
& Example 1 & Example 2 & Example 3 & Example 4 \\
\hline
KS statistics & 0.015 & 0.009 & 0.028 & 0.132 \\
\hline
$p$-value of KS test & 0.99987 & 0.99999 & 0.82821 & 5.19e-08 \\
\hline
\end{tabular} \caption{\label{distance_measures} Comparison of distributions metrics for all the examples}
\end{table} | [
[
"",
"Example 1",
"Example 2",
"Example 3",
"Example 4"
],
[
"KS statistics",
"0.015",
"0.009",
"0.028",
"0.132"
],
[
"p-value of KS test",
"0.99987",
"0.99999",
"0.82821",
"5.19e-08"
]
] | 0.765579 | null | null |
3 | 2312.08493v1 | 18 | [
154.87899780273438,
77.21600341796875,
452.7969970703125,
133.20599365234375
] | \begin{table}
\begin{tabular}{ |c|c|c|c|c| }
\hline
& Example 1 & Example 2 & Example 3 & Example 4 \\
\hline
$L_{empirical}$ & 0.081 & 0.060 & 0.449 & 0.041 \\
\hline
$R_{empirical}$ & 0.597 & 0.503 & 1.252 & 2.223 \\
\hline
$C_{empirical}$ & 0.136 & 0.119 & 0.359 & 0.019 \\
\hline
\end{tabular} \caption{\label{theorem1_values} Empirical values for components of Theorem \ref{dist_X1X2} \& \ref{dist_X1X2_discont} inequality.}
\end{table} | [
[
"",
"Example 1",
"Example 2",
"Example 3",
"Example 4"
],
[
"L\nempirical",
"0.081",
"0.060",
"0.449",
"0.041"
],
[
"R\nempirical",
"0.597",
"0.503",
"1.252",
"2.223"
],
[
"C\nempirical",
"0.136",
"0.119",
"0.359",
"0.019"
]
] | 0.736573 | null | null |
0 | 1807.06540v1 | 3 | [
198.85699462890625,
371.8500061035156,
413.14300537109375,
451.00299072265625
] | \begin{table}[htbp]
%\begin{minipage}{0.5\hsize}
\begin{center}
\begin{tabular}{|c||c|c|}\hline
ResNet-Depth & Before & Icing on the Cake \\ \hline
11 & 0.57 (0.010)& 0.64 (0.003)\\ \hline
20& 0.61 (0.014)&0.69 (0.005) \\ \hline
29 &0.63 (0.021)& 0.71 (0.005) \\ \hline
38& 0.64 (0.016)&0.72 (0.004) \\ \hline
47& 0.64 (0.020)&0.72 (0.003) \\ \hline
56& 0.66 (0.015)&0.73 (0.003) \\ \hline
\end{tabular}
\caption{The experiments in ResNet with varying depth from 11 to 56. Accuracies and stand deviations are written.}\label{tab: resnet-depth}
\end{center}
%\end{minipage}
\end{table} | [
[
"ResNet-Depth",
"Before",
"Icing on the Cake"
],
[
"11",
"0.57 (0.010)",
"0.64 (0.003)"
],
[
"20",
"0.61 (0.014)",
"0.69 (0.005)"
],
[
"29",
"0.63 (0.021)",
"0.71 (0.005)"
],
[
"38",
"0.64 (0.016)",
"0.72 (0.004)"
],
[
"47",
"0.64 (0.020)",
"0.72 (0.003)"
],
[
"56",
"0.66 (0.015)",
"0.73 (0.003)"
]
] | 0.775735 | null | null |
1 | 1807.06540v1 | 3 | [
123.05000305175781,
500.0889892578125,
290.95001220703125,
534.011962890625
] | \begin{table}[htbp]
\begin{minipage}{0.5\hsize}
\begin{center}
\begin{tabular}{|c||c|c|c|c|}\hline
& ResNet56& DenseNet \\ \hline
Before& 0.66 (0.015) & 0.59 (0.023) \\ \hline
ICK & 0.73 (0.003)& 0.79 (0.0049) \\ \hline
\end{tabular}
\caption{The classifications in Cifar100}\label{tab: result100}
\end{center}
\end{minipage}
% \end{table} | [
[
"",
"ResNet56",
"DenseNet"
],
[
"Before",
"0.66 (0.015)",
"0.59 (0.023)"
],
[
"ICK",
"0.73 (0.003)",
"0.79 (0.0049)"
]
] | 0.778846 | null | null |
2 | 1807.06540v1 | 3 | [
320.4519958496094,
500.0889892578125,
493.3340148925781,
534.011962890625
] | \begin{table}[htbp]
\begin{minipage}{0.5\hsize}
\begin{center}
\begin{tabular}{|c||c|c|c|c|}\hline
& ResNet56& DenseNet \\ \hline
Before& 0.885 (0.012) & 0.86 (0.024) \\ \hline
ICK & 0.92 (0.0025) & 0.91 (0.0057) \\ \hline
\end{tabular}
\caption{The classifications in Cifar10}\label{tab: result10}
\end{center}
\end{minipage}
\end{table} | [
[
"",
"ResNet56",
"DenseNet"
],
[
"Before",
"0.885 (0.012)",
"0.86 (0.024)"
],
[
"ICK",
"0.92 (0.0025)",
"0.91 (0.0057)"
]
] | 0.790476 | null | null |
3 | 1807.06540v1 | 4 | [
245.26300048828125,
202.4990234375,
366.73699951171875,
315.57501220703125
] | \begin{table}[htbp]
%\begin{minipage}{0.5\hsize}
\begin{center}
\begin{tabular}{|c|c|}\hline
Before& Icing on the Cake \\ \hline
0.72 & 0.73 \\ \hline
0.72& 0.74 \\ \hline
0.72&0.74 \\ \hline
0.72& 0.73 \\ \hline
0.72& 0.73\\ \hline
0.72& 0.74 \\ \hline
0.73&0.74 \\ \hline
0.73& 0.74 \\ \hline
0.72 & 0.73 \\ \hline
\end{tabular}
\caption{The experiments in WideResNet--16--8}\label{tab: wideresnet}
\end{center}
% \end{minipage}
\end{table} | [
[
"Before",
"Icing on the Cake"
],
[
"0.72",
"0.73"
],
[
"0.72",
"0.74"
],
[
"0.72",
"0.74"
],
[
"0.72",
"0.73"
],
[
"0.72",
"0.73"
],
[
"0.72",
"0.74"
],
[
"0.73",
"0.74"
],
[
"0.73",
"0.74"
],
[
"0.72",
"0.73"
]
] | 0.814286 | null | null |
0 | 2101.11760v1 | 13 | [
314.6903381347656,
64.42020606994629,
569.1417236328125,
99.39306640625
] | \begin{table}[h]
\vspace*{-0.2cm}
\centering
\caption{Error metrics for the case study}
\label{tab:errors}
\scalebox{0.92}{
\begin{tabular}{ |c||c|c|c|c| }
\hline
Frequency & Layers & Train. MSE (dB) & Val. MAE (dB) & Test MAE (dB)\\
\hline
900\,MHz & 3 & 2.677 & 0.946 & 0.827 \\
\hline
900\,MHz & 4 & 1.677 & 0.785 & 0.725 \\
\hline
2.4\,GHz & 4 & 15.03 & 2.579 & 2.746 \\
\hline
\end{tabular}}
\end{table} | [
[
"Frequency",
"Layers",
"Train. MSE (dB)",
"Val. MAE (dB)",
"Test MAE (dB)"
],
[
"900 MHz",
"3",
"2.677",
"0.946",
"0.827"
],
[
"900 MHz",
"4",
"1.677",
"0.785",
"0.725"
],
[
"2.4 GHz",
"4",
"15.03",
"2.579",
"2.746"
]
] | 0.979167 | null | null |
0 | 1703.07513v1 | 23 | [
134.8179931640625,
519.300048828125,
459.49298095703125,
601.3920288085938
] | \begin{table}[ht]
\centering
\caption{Summary of Financial Agents.}
\label{tab:centrality}
\begin{tabular}{l | l| l | l}
\hline
Agent & Number of Agents &Avg. NAV & Avg. Leverage \\ \hline
Banks & 100 & 1.66e8 & 3.781 \\
Hedge Funds & 200 & 1.71e7 & 1.000 \\
MMFs & 100 & 3.11e8 & 1.000\\
\hline
\end{tabular}
\end{table} | [
[
"Agent",
"Number of Agents",
"Avg. NAV",
"Avg. Leverage"
],
[
"Banks\nHedge Funds\nMMFs",
"100\n200\n100",
"1.66e8\n1.71e7\n3.11e8",
"3.781\n1.000\n1.000"
]
] | 0.714286 | null | null |
0 | 1901.00612v1 | 3 | [
75.5999984741211,
243.385009765625,
311.0409851074219,
312.5830078125
] | \begin{table}
\tiny
\caption{\small Functions $g(r)$ and $f(r)$ corresponding to particular $f$-GAN setups.\label{tab:list}}
\begin{tabular}{ |p{2.0cm}||p{2.95cm}||p{1.95cm}| }
\hline
% \multicolumn{2}{|c|}{Country List} \\
% \hline
$f$-Divergence & $f(r)$ & $g(r)$ in $\theta$ update \\
\hline
Kullback-Leibler (KL) & $r\log r$ & $r$ \\
Reverse KL & $-\log r$ & $\log r$ \\
Squared Hellinger & $(\sqrt{r}-1)^2$ & $\sqrt{r}$ \\
Total variation & $|r-1|/2$ & $\frac{1}{2}\mbox{sign}({r}-1)$ \\
Pearson $\chi^2$ & $(r-1)^2$ & $({r}-1)^2+2r$ \\
Neyman $\chi^2$ & $(r-1)^2/r$ & $-1/r$ \\
GAN & $r \log r - (r + 1) \log(r + 1)$ & $-\log\big[\frac{1}{1+{r}}\big]$ \\
\hline
\end{tabular}\vspace{-2mm}
\end{table} | [
[
"f-Divergence",
"f(r)",
"g(r) in θ update"
],
[
"Kullback-Leibler\n(KL)\nReverse KL\nSquared Hellinger\nTotal variation\nPearson χ2\nNeyman χ2\nGAN",
"r log r\n−log r\n(√r −1)2\n|r −1|/2\n(r −1)2\n(r −1)2/r\nr log r −(r + 1) log(r + 1)",
"r\nlog r\n√r\n(1 2 s −ign 1( )r − 1 2)\nr 2 + r\n−1/r\n−log\u0002 1+1 r\u0003"
]
] | 0.446461 | null | null |
1 | 1901.00612v1 | 13 | [
79.552001953125,
620.885009765625,
305.64898681640625,
707.1309814453125
] | \begin{table}[h!]
\renewcommand{\arraystretch}{0.8}
\centering
\caption{Hyper-parameters in SQL.}
\label{tab:env_params}
\vspace{1mm}
\begin{tabular}{ r|ccc }
\hline
Environment &Action &Reward & Replay \\
&Spcae &Scale & Pool Size\\
\hline
Swimmer (rllab) &2 & 100 & $10^6$\\
Hopper-v1 &3 & 1 & $10^6$\\
HalfCheetah-v1 &6 & 1 & $10^7$\\
Walker2d-v1 &6 & 3 & $10^6$\\
Ant-v1 &8 & 10 & $10^6$\\
Humanoid (rllab) &21 & 100 & $10^6$\\
\hline
\end{tabular}
\end{table} | [
[
"Environment",
"Action Reward Replay\nSpcae Scale Pool Size"
],
[
"Swimmer (rllab)\nHopper-v1\nHalfCheetah-v1\nWalker2d-v1\nAnt-v1\nHumanoid (rllab)",
"2 100 106\n3 1 106\n6 1 107\n6 3 106\n8 10 106\n21 100 106"
]
] | 0.767568 | null | null |
0 | 2212.11728v1 | 17 | [
147.906005859375,
283.6929931640625,
453.2760009765625,
325.5360107421875
] | \begin{table}[!htb]
\centering
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline
cluster & $a$ & $b$ & $c$ & $d$ & $e$ & $f$ & $g$ & $h$ & $i$ & $j$\\
\hline
size & 4297 & 1572 & 9325 & 4033 & 2061 & 7686 & 1581 & 4075 & 7163 & 7049\\
\hline
withinss & 4484.7 & 1849.6 & 8185.9 & 3919.8 & 1738.8 & 5156.8 & 1720.7 & 2490.5 & 5447.2 & 3701.6\\
\hline
withinss\% & 11.58 & 4.77 & 21.15 & 10.12 & 4.49 & 13.32 & 4.44 & 6.43 & 14.07 & 9.56\\
\hline
\end{tabular}\caption{Summary of the clusters of instances using k-means}\label{summary_adult}
\end{table} | [
[
"cluster",
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j"
],
[
"size",
"4297",
"1572",
"9325",
"4033",
"2061",
"7686",
"1581",
"4075",
"7163",
"7049"
],
[
"withinss",
"4484.7",
"1849.6",
"8185.9",
"3919.8",
"1738.8",
"5156.8",
"1720.7",
"2490.5",
"5447.2",
"3701.6"
],
[
"withinss%",
"11.58",
"4.77",
"21.15",
"10.12",
"4.49",
"13.32",
"4.44",
"6.43",
"14.07",
"9.56"
]
] | 0.661479 | null | null |
0 | 2312.12774v1 | 4 | [
324.33982340494794,
85.6810302734375,
553.070322672526,
186.30401611328125
] | \begin{table}[ht]
\centering
\caption{ETL Load Plan for Data Collection and Processing}
\begin{tabular}{|l|p{4cm}|}
\hline
\textbf{Field} & \textbf{Description} \\
\hline
Name & ETL for Data Collection and Processing \\
\hline
Description (Optional) & Load plan for collecting data through x, storing it in MySQL, and processing it for analysis using Github and Ionos. \\
\hline
Load Plan Type (Optional) & Source Extract and Load (SDE, SIL and PLP) \\
\hline
Source Instances (Optional) & Select MySQL as the source instance for data extraction. \\
\hline
\end{tabular}
\label{tab:etl_load_plan}
\end{table} | [
[
"Field",
"Description"
],
[
"Name",
"ETL for Data Collection and Pro-\ncessing"
],
[
"Description (Optional)",
"Load plan for collecting data\nthrough x, storing it in MySQL,\nand processing it for analysis using\nGithub and Ionos."
],
[
"Load Plan Type (Optional)",
"Source Extract and Load (SDE,\nSIL and PLP)"
],
[
"Source Instances (Optional)",
"Select MySQL as the source in-\nstance for data extraction."
]
] | 0.972603 | null | null |
1 | 2312.12774v1 | 6 | [
68.5658327738444,
85.6810302734375,
310.45933024088544,
132.5059814453125
] | \begin{table}[ht]
\centering
\caption{Data collected }
\begin{tabular}{|l|r|r|r|r|r|}
\hline
\textbf{Type} & \textbf{Items No.} & \textbf{Total Records} &
\textbf{Flat File Size (MB)}\\
\hline
Stocks & 359 & 19,910,499 & 1,228.8\\
\hline
Commodities & 3 & 359,316 & 26.6\\
\hline
Indexes & 3 & 111,900 & 8.24\\
\hline
\textbf{ Total }& 365 & \textbf{20,381,715} &
\textbf{1,263.64} \\
\hline
\end{tabular}
\label{tab:first_data}
\end{table} | [
[
"Type",
"Items No.",
"Total Records",
"Flat File Size (MB)"
],
[
"Stocks",
"359",
"19,910,499",
"1,228.8"
],
[
"Commodities",
"3",
"359,316",
"26.6"
],
[
"Indexes",
"3",
"111,900",
"8.24"
],
[
"Total",
"365",
"20,381,715",
"1,263.64"
]
] | 0.957576 | null | null |
0 | 2112.07893v3 | 3 | [
319.5,
86.08001708984375,
565.60498046875,
148.24700927734375
] | \begin{table}[h]\small
\centering
\caption{Comparison of the prediction accuracy w/ and w/o resampled data.}
\label{tab:sample}
\begin{tabular}{|c|c|c|c|c|}
\hline
Models & Raw-data & Over-s & Under-s & Combined-s \\ \hline
KNN & 0.1100 & 0.0957 & \textbf{0.1292} & 0.0861 \\\hline
SVM & \textbf{0.1292} & 0.0287 & 0.1196 & 0.0667 \\\hline
Random Forest & 0.1435 & \textbf{0.1531} & 0.1388 & 0.1483 \\\hline
XGBoost & \textbf{0.1770} & 0.1579 & 0.1340 & 0.1483 \\\hline
MLP & 0.1435 & 0.0718 & \textbf{0.1627} & 0.1005 \\\hline
\end{tabular}
\end{table} | [
[
"Models",
"Raw-data",
"Over-s",
"Under-s",
"Combined-s"
],
[
"KNN",
"0.1100",
"0.0957",
"0.1292",
"0.0861"
],
[
"SVM",
"0.1292",
"0.0287",
"0.1196",
"0.0667"
],
[
"Random Forest",
"0.1435",
"0.1531",
"0.1388",
"0.1483"
],
[
"XGBoost",
"0.1770",
"0.1579",
"0.1340",
"0.1483"
],
[
"MLP",
"0.1435",
"0.0718",
"0.1627",
"0.1005"
]
] | 1 | null | null |
1 | 2112.07893v3 | 3 | [
348.74298095703125,
192.3289794921875,
528.7570190429688,
271.83099365234375
] | \begin{table}[htb]
\centering
\caption{Comparison of the prediction accuracy w/ and w/o feature G1,G2.}
\label{tab:comp}
\begin{tabular}{|c|c|c|}
\hline
Models & w/ Grade & w/o Grade \\ \hline
KNN & 0.2679 & 0.1100 \\ \hline
SVM & 0.3014 & 0.1292 \\ \hline
Random Forest & 0.4019 & 0.1435 \\ \hline
XGBoost & 0.4498 & 0.1770 \\ \hline
MLP & 0.2679 & 0.1435 \\\hline
Proposed Model & \textbf{0.4641} & \textbf{0.1866} \\
\hline
\end{tabular}
\end{table} | [
[
"Models",
"w/ Grade",
"w/o Grade"
],
[
"KNN",
"0.2679",
"0.1100"
],
[
"SVM",
"0.3014",
"0.1292"
],
[
"Random Forest",
"0.4019",
"0.1435"
],
[
"XGBoost",
"0.4498",
"0.1770"
],
[
"MLP",
"0.2679",
"0.1435"
],
[
"Proposed Model",
"0.4641",
"0.1866"
]
] | 1 | null | null |
2 | 2112.07893v3 | 3 | [
335.85296630859375,
639.634033203125,
541.64697265625,
701.801025390625
] | \begin{table}[htb]\small
\centering
\caption{Comparison of the prediction accuracy between the proposed model and other models.}
\label{tab:final}
\begin{tabular}{|c|c|c|}
\hline
Models & Raw-data & Feature-selected-data\\ \hline
SVM & 0.1292 & 0.1292 \\ \hline
Random Forest & 0.1435 & 0.1675 \\ \hline
XGBoost & 0.1770 & 0.1627 \\ \hline
MLP & 0.1435 & 0.1483 \\\hline
Proposed Model & \textbf{0.1866} & \textbf{0.1922} \\
\hline
\end{tabular}
\end{table} | [
[
"Models",
"Raw-data",
"Feature-selected-data"
],
[
"SVM",
"0.1292",
"0.1292"
],
[
"Random Forest",
"0.1435",
"0.1675"
],
[
"XGBoost",
"0.1770",
"0.1627"
],
[
"MLP",
"0.1435",
"0.1483"
],
[
"Proposed Model",
"0.1866",
"0.1922"
]
] | 1 | null | null |
0 | 2102.00753v2 | 7 | [
355.1029968261719,
86.46732584635417,
521.0540161132812,
189.219970703125
] | \begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline \hline
$i$ (index) & $x_1$ (protected) & $x_2$ & $x_3$ & $\ket{x_i^n}$ \\
\hline \hline
1 & 1 & 1 & 1 & $\ket{111}$ \\
2 & 1 & 1 & 0 & $\ket{110}$ \\
3 & 1 & 0 & 1 & $\ket{101}$ \\
4 & 1 & 0 & 0 & $\ket{100}$ \\
5 & 0 & 1 & 1 & $\ket{011}$ \\
6 & 0 & 1 & 0 & $\ket{010}$ \\
7 & 0 & 0 & 1 & $\ket{001}$ \\
8 & 0 & 0 & 0 & $\ket{000}$ \\
\hline
\end{tabular}
% \label{table:basisencoding}
\end{center}
\caption{Basis encoding of individuals with features $b_k$ into quantum states $\ket{x^n}$}
\end{table} | [
[
"𝑖(index)",
"𝑥1 (protected)",
"𝑥2",
"𝑥3",
"|𝑥 𝑖𝑛 ⟩"
],
[
"1\n2\n3\n4\n5\n6\n7\n8",
"1\n1\n1\n1\n0\n0\n0\n0",
"1\n1\n0\n0\n1\n1\n0\n0",
"1\n0\n1\n0\n1\n0\n1\n0",
"111\n| ⟩\n110\n| ⟩\n101\n| ⟩\n100\n| ⟩\n011\n| ⟩\n010\n| ⟩\n001\n| ⟩\n000\n| ⟩"
]
] | 0.381443 | null | null |
0 | 1909.05125v1 | 9 | [
72.4020004272461,
54.198974609375,
274.09815979003906,
109.791015625
] | \begin{table} [h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Name & \# Training & \# Test & \# Features \\
\hline
MNIST & $50,000$ & $10,000$ & $784$ \\
FMNIST & $50,000$ & $10,000$ & $784$ \\
Spambase & $3,680$ & $921$ & $54$ \\
CIFAR-10 & $50,000$ & $10,000$ & $3,072$ \\
\hline
\end{tabular}
\caption{Characteristics of the 4 datasets used in the experiments.}
\label{tabDatasets}
\end{table} | [
[
"Name",
"# Training",
"# Test",
"# Features"
],
[
"MNIST\nFMNIST\nSpambase\nCIFAR-10",
"50, 000\n50, 000\n3, 680\n50, 000",
"10, 000\n10, 000\n921\n10, 000",
"784\n784\n54\n3, 072"
]
] | 0.486957 | null | null |
0 | 2208.03112v1 | 3 | [
307.44000244140625,
147.3570098876953,
546.198974609375,
251.489013671875
] | \begin{table}[t]
\caption{Baseline characteristics of the study subjects. Data was expressed as median (IQR) or mean (SD). The number (No.) was expressed as absolute value and \%.}
\label{baseline}
\vskip 0.15in
\begin{center}
\begin{small}
\begin{sc}
\begin{tabular}{c|ccc}
\toprule
& Total & Men & Women \\
\midrule
No & 29,080 & 12,946 & 16,134 \\ \hline
Follow-up & 4.7 & 4.6 & 4.8 \\
{}[years] & (2.4-7.9) & (2.3-7.7) & (2.5-8.0) \\ \hline
Age & 52 & 55 & 49 \\
& (37-62) & (42-63) & (34-60) \\ \hline
BMI[kg/m2] & 23.0 (4.2) & 23.7 (3.8) & 22.4 (4.3) \\ \hline
%kg/m2 & (n=28105) & (n=12532) & (n=15573) \\
BIL & 0.65 & 0.70 & 0.60 \\
{}[mg/dL] & (0.50-0.82) & (0.54-0.90) & (0.50-0.80) \\ \hline
Smoking & 8301 (32\%) & 6021 (52\%) & 2280 (16\%) \\ \hline
%& (n=26144) & (n=11576) & (n=11576) \\
Diabetes & 5120 (18\%) & 2958 (23\%) & 2162 (13\%) \\
\bottomrule
\end{tabular}
\end{sc}
\end{small}
\end{center}
\vskip -0.1in
\end{table} | [
[
"NO",
"29,080 12,946 16,134"
],
[
"FOLLOW-UP\n[YEARS]",
"4.7 4.6 4.8\n(2.4-7.9) (2.3-7.7) (2.5-8.0)"
],
[
"AGE",
"52 55 49\n(37-62) (42-63) (34-60)"
],
[
"BMI[KG/M2]",
"23.0 (4.2) 23.7 (3.8) 22.4 (4.3)"
],
[
"BIL\n[MG/DL]",
"0.65 0.70 0.60\n(0.50-0.82) (0.54-0.90) (0.50-0.80)"
],
[
"SMOKING",
"8301 (32%) 6021 (52%) 2280 (16%)"
],
[
"DIABETES",
"5120 (18%) 2958 (23%) 2162 (13%)"
]
] | 0.470588 | null | null |
0 | 1503.07759v3 | 12 | [
188.072998046875,
278.426025390625,
423.17401123046875,
346.57000732421875
] | \begin{table}[ht]
\centering
\small
\begin{tabular}{|l|l|}
\hline
Add 2014\_09 UniProtKB & 182 minutes \\ \hline
Update to 2014\_10 UniProtKB & 144 minutes \\ \hline
Retrieve UniProtKB& 36 minutes \\ \hline
Retrieve cached UniProtKB & 12 minutes \\ \hline
Retrieve incremental UniProtKB & 5 minutes \\ \hline
Retrieve cached incremental UniProtKB & 26 seconds \\ \hline
\end{tabular}
\caption{GeStore add, update, and retrieve execution times.}
\label{TAB1}
\end{table} | [
[
"Add 2014 09 UniProtKB",
"182 minutes"
],
[
"Update to 2014 10 UniProtKB",
"144 minutes"
],
[
"Retrieve UniProtKB",
"36 minutes"
],
[
"Retrieve cached UniProtKB",
"12 minutes"
],
[
"Retrieve incremental UniProtKB",
"5 minutes"
],
[
"Retrieve cached incremental UniProtKB",
"26 seconds"
]
] | 0.88716 | null | null |
1 | 1503.07759v3 | 14 | [
195.37399291992188,
324.1990051269531,
415.8739929199219,
369.62799072265625
] | \begin{table}[ht]
\centering
\small
\begin{tabular}{|l|l|}
\hline
Get incremental UniProtKB and generate BLAST database & 9 minutes \\ \hline
Get cached incremental UniProtKB & 26 seconds \\ \hline
\end{tabular}
\caption{Generating incremental meta-databases}
\label{TAB2}
\end{table} | [
[
"Retrieve FASTA",
"55 minutes"
],
[
"Retrieve cached FASTA",
"10 minutes"
],
[
"Retrieve and split FASTA",
"9 minutes"
],
[
"Get HDFS path of cached FASTA file",
"2 seconds"
]
] | 0.368056 | null | null |
2 | 1503.07759v3 | 15 | [
140.14100646972656,
319.2170104980469,
471.10699462890625,
387.36199951171875
] | \begin{table}[ht]
\centering
\small
\begin{tabular}{|l|l|l|l|}
\hline
Versions & Compressed on disk & Uncompressed on disk & In HBase \\ \hline
2014-03 & 23 GB & 133 GB & 306 GB \\ \hline
2014-03 to 2014-04 & 47 GB & 268 GB & 240 GB \\ \hline
2014-03 to 2014-05 & 71 GB & 405 GB & 210 GB \\ \hline
2014-03 to 2014-06 & 99 GB & 568 GB & 234 GB \\ \hline
2014-03 to 2014-07 & 133 GB & 757 GB & 273 GB \\ \hline
%??? HER BURDE DET VÆRT FLERE VERSJONER FOR BEDRE Å SE TRENDEN
\end{tabular}
\caption{Aggregate size of UniProtKB on disk and in HBase using snappy and delta compression with a replication factor of three.}
\label{sizetab}
\end{table} | [
[
"Versions",
"Compressed on disk",
"Uncompressed on disk",
"In HBase"
],
[
"2014-03",
"23 GB",
"133 GB",
"306 GB"
],
[
"2014-03 to 2014-04",
"47 GB",
"268 GB",
"240 GB"
],
[
"2014-03 to 2014-05",
"71 GB",
"405 GB",
"210 GB"
],
[
"2014-03 to 2014-06",
"99 GB",
"568 GB",
"234 GB"
],
[
"2014-03 to 2014-07",
"133 GB",
"757 GB",
"273 GB"
]
] | 0.718101 | null | null |
3 | 1503.07759v3 | 16 | [
193.44000244140625,
125.0009765625,
417.8080139160156,
181.78802490234375
] | \begin{table}[ht]
\centering
\small
\begin{tabular}{|l|l|}
\hline
Full update without GeStore & 833 minutes \\ \hline
Full update with GeStore & 965 minutes \\ \hline
Full update with GeStore, cached DB & 859 minutes \\ \hline
1-month incremental update & 61 minutes \\ \hline
4-month incremental update & 99 minutes \\ \hline
\end{tabular}
\caption{Application benchmarks for Meta-Pipe}
\label{TAB4}
\end{table} | [
[
"Full update without GeStore",
"833 minutes"
],
[
"Full update with GeStore",
"965 minutes"
],
[
"Full update with GeStore, cached DB",
"859 minutes"
],
[
"1-month incremental update",
"61 minutes"
],
[
"4-month incremental update",
"99 minutes"
]
] | 0.904977 | null | null |
4 | 1503.07759v3 | 17 | [
180.2729949951172,
124.90148162841797,
430.97500949435766,
216.25897216796875
] | \begin{table}[ht]
\centering
\small
\begin{tabular}{|l|l|l|}
\hline
& Ad hoc Script & GeStore \\ \hline\hline
Write FASTA & 63 minutes & \\ \hline
Formatdb & 34 minutes & \\ \hline
Copy BLAST DB to nodes & 109 minutes & \\ \hline
Total vs. GeStore add & 206 minutes & 80 minutes \\ \hline \hline
Create SQLite DB & 142 minutes & \\ \hline
Copy SQLite DB to nodes & 173 minutes & \\ \hline \hline
Total vs. GeStore retrieve & 522 minutes & 191 minutes \\ \hline
\end{tabular}
\caption{Ad hoc scripts vs. corresponding GeStore operations.}
\label{TAB5}
\end{table} | [
[
"",
"Ad hoc Script",
"GeStore"
],
[
"Write FASTA",
"63 minutes",
""
],
[
"Formatdb",
"34 minutes",
null
],
[
"Copy BLAST DB to nodes",
"109 minutes",
null
],
[
"Total",
"206 minutes",
"80 minutes"
],
[
"Create SQLite DB",
"142 minutes",
""
],
[
"Copy SQLite DB to nodes",
"173 minutes",
null
],
[
"Total",
"315 minutes",
"191 minutes"
]
] | 0.794964 | null | null |
0 | 1706.08519v1 | 13 | [
187.56119689941406,
296.5369873046875,
422.6907958984375,
341.1700134277344
] | \begin{table}
\centering
\caption{The (minimal) impact of the type of decision on the Breir score}\label{tab:breir}
\vspace{6pt}
\begin{tabular}{|l|r|r|}
\hline
% after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
Decision & $\ba=0$ & $\ba=1$ \\\hline
Bayes decision & 0.1898 & 0.1820 \\
Bayes decision based on 2 categories & 0.2064 & 0.1990 \\
The non-discrimantory decision & 0.2092 & 0.2001 \\
\hline
\end{tabular}
\end{table} | [
[
"Decision",
"a = 0",
"a = 1"
],
[
"Bayes decision\nBayes decision based on 2 categories\nThe non-discrimantory decision",
"0.1898\n0.2064\n0.2092",
"0.1820\n0.1990\n0.2001"
]
] | 0.69969 | null | null |
1 | 1706.08519v1 | 20 | [
203.5959930419922,
78.12701416015625,
403.3853251139323,
147.785400390625
] | \begin{table}
\centering
\caption{}
\vspace{6pt}
\begin{tabular}{l|g|g|}
\rowcolor{white} \multicolumn{1}{l}{} & \multicolumn{1}{l}{$\ba=$ female} & \multicolumn{1}{l}{$\ba=$ male} \\[12pt] \hhline{~|-|-|}
\rowcolor{white} $\bz=$ female & \parbox[t]{60pt}{homosexual\\female} & \parbox[t]{60pt}{heterosexual\\male} \\[12pt] \hhline{~|-|-|}
$\bz=$ male & \parbox[t]{60pt}{heterosexual\\female} & \parbox[t]{60pt}{homosexual\\male} \\[12pt] \hhline{~|-|-|}
\end{tabular}
\label{tab:gender-sexual-orientation}
\end{table} | [
[
"",
"a = female",
"a = male"
],
[
"z = female",
"homosexual\nfemale",
"heterosexual\nmale"
],
[
"z = male",
"heterosexual\nfemale",
"homosexual\nmale"
]
] | 0.541353 | null | null |
0 | 2202.12807v1 | 8 | [
130.7969970703125,
250.06534830729166,
464.47900390625,
298.23166910807294
] | \begin{table}
\caption{\label{Table1} PDF coverage for EXFOR and NSR references as of October 14, 2021. Reciprocal PDF contributions are shown as \# of complementary files.}
\begin{center}
\begin{tabular}{l|c|c|c}
\hline \hline
Database & \# of References & \# of PDF Files & \# of Complementary Files \\
\hline
%EXFOR & 34,042 & 25,634 & 602 \\
EXFOR & 34,609 & 26,343 & 1,899 \\
NSR & 236,583 & 187,617 & 1,375 \\
%CINDA & 39,817 & 14,154 & \\
%IBANDL & 795 & 642 & \\
\hline \hline
\end{tabular}
\end{center}
\end{table} | [
[
"Database",
"# of References",
"# of PDF Files",
"# of Complementary Files"
],
[
"EXFOR\nNSR",
"34,609\n236,583",
"26,343\n187,617",
"1,899\n1,375"
]
] | 0.694158 | null | null |
1 | 2202.12807v1 | 12 | [
135.03399658203125,
116.988037109375,
460.2409973144531,
209.8666788736979
] | \begin{table}
\caption{\label{Table2} PDF files coverage for several types of NSR and EXFOR references as of October 14, 2021.}
\begin{center}
\begin{tabular}{l|c|c}
\hline \hline
Reference Type & NSR: \#PDF/\#Total & EXFOR: \#PDF/\#Total \\
\hline
%Journals & 157,424/188,064 (85\%) & 22,110/25,143 (88\%) \\
Reports & 14,761/27,895 (53\%) & 2,107/5,397 (39\%) \\
Conf. Proceedings & 13,352/20,143 (66\%) & 2,031/2,731 (74\%) \\
Theses & 654/2,051 (32\%) & 100/434 (23\%) \\
Books & 90/155 (58\%) & 34/102 (33\%) \\
Priv. Communications & 1,291/2,107 (61\%) & 1/815 (0.1\%) \\
\hline \hline
\end{tabular}
\end{center}
\end{table} | [
[
"Reference Type",
"NSR: #PDF/#Total",
"EXFOR: #PDF/#Total"
],
[
"Reports\nConf. Proceedings\nTheses\nBooks\nPriv. Communications",
"14,761/27,895 (53%)\n13,352/20,143 (66%)\n654/2,051 (32%)\n90/155 (58%)\n1,291/2,107 (61%)",
"2,107/5,397 (39%)\n2,031/2,731 (74%)\n100/434 (23%)\n34/102 (33%)\n1/815 (0.1%)"
]
] | 0.410256 | null | null |
0 | 2406.14075v1 | 5 | [
342.4639892578125,
106.968994140625,
533.6929931640625,
171.0679931640625
] | \begin{table}
\caption{Proportions of Complex Nuggets and Events}
\label{tab:complex_demonstration}
\begin{tabular}{l|rr}
\toprule
{\bf Forms} & Instances & Proportion \\
\midrule
Inconsecutive nugget & 2,492 & 0.031 \\
Overlapped nugget & 27,229 & 0.337 \\
Reverse-ordered nugget & 819 & 0.010\\
Sub-event & 6,250 & 0.256 \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Forms",
"Instances Proportion"
],
[
"Inconsecutive nugget\nOverlapped nugget\nReverse-ordered nugget\nSub-event",
"2,492 0.031\n27,229 0.337\n819 0.010\n6,250 0.256"
]
] | 0.54321 | null | null |
1 | 2406.14075v1 | 8 | [
63.19300079345703,
225.13702392578125,
284.6499938964844,
278.2769775390625
] | \begin{table}
\caption{Model Ablation Studies (F1 values)}
\label{tab:ablation}
\begin{tabular}{l|rrrrr}
\toprule
~ & TI & TC & AI & AC & EC \\
\midrule
{\bf EXCEEDS} & 75.92 & 63.11 & 44.23 & 41.85 & 47.60 \\
\quad w/o Biaffine & 74.85 & 61.64 & 41.73 & 39.00 & 42.59 \\
\quad w/o BiAttention & 75.67 & 62.54 & 43.70 & 41.51 & 47.25 \\
\bottomrule
\end{tabular}
\end{table} | [
[
"",
"TI TC AI AC EC"
],
[
"EXCEEDS\nw/o Biaffine\nw/o BiAttention",
"75.92 63.11 44.23 41.85 47.60\n74.85 61.64 41.73 39.00 42.59\n75.67 62.54 43.70 41.51 47.25"
]
] | 0.569975 | null | null |
2 | 2406.14075v1 | 10 | [
317.9549865722656,
617.39501953125,
565.375,
670.5350341796875
] | \begin{table}[htbp]
\caption{Schema of Purpose (PUR)}
\label{tab:event_type_pur}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
Aim & APP / MOD / FEA / DST / STR / WEA / TAK \\
Condition & LIM \\
Dataset & DST \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"Aim\nCondition\nDataset",
"APP / MOD / FEA / DST / STR / WEA / TAK\nLIM\nDST"
]
] | 0.619883 | null | null |
3 | 2406.14075v1 | 11 | [
53.79800033569336,
106.968994140625,
299.97149658203125,
160.1090087890625
] | \begin{table}[htbp]
\caption{Schema of IntroduceTarget (ITT)}
\label{tab:event_type_itt}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
Target & APP / MOD / FEA / DST / STR / WEA / TAK \\
Condition & LIM \\
Dataset & DST \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"Target\nCondition\nDataset",
"APP / MOD / FEA / DST / STR / WEA / TAK\nLIM\nDST"
]
] | 0.61236 | null | null |
4 | 2406.14075v1 | 11 | [
317.9549865722656,
217.63397216796875,
573.8930053710938,
292.6919860839844
] | \begin{table}[htbp]
\caption{Schema of RelatedWorkStep (RWS)}
\label{tab:event_type_rws}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
Subject & APP / MOD / FEA / DST \\
BaseComponent & APP / MOD / FEA / DST \\
TriedComponent & APP / MOD / FEA / DST \\
Condition & LIM / E-RWS \\
Dataset & DST \\
Target & E-PUR / TAK / STR / WEA / APP / FEA / MOD \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"BaseComponent\nTriedComponent\nCondition\nDataset\nTarget",
"APP / MOD / FEA / DST\nAPP / MOD / FEA / DST\nLIM / E-MDS\nDST\nE-PUR / TAK / STR / WEA / APP / FEA / MOD"
]
] | 0.550725 | null | null |
5 | 2406.14075v1 | 11 | [
317.9549865722656,
106.968994140625,
573.8930053710938,
182.0269775390625
] | \begin{table}[htbp]
\caption{Schema of RelatedWorkFault (RWF)}
\label{tab:event_type_rwf}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
Concern & APP / FEA / STR / WEA / MOD / DST \\
Fault & APP / FEA / STR / WEA / MOD / DST \\
Condition & LIM / E-RWF / E-RWS \\
Dataset & DST \\
Target & E-PUR / TAK / STR / WEA \\
Extent & DEG \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"Researcher\nContent\nCondition\nDataset\nTarget",
"OG\nAPP / MOD / FEA / DST / STR / WEA / TAK\nLIM\nDST\nE-PUR / TAK / STR / WEA / APP / FEA / MOD"
]
] | 0.490272 | null | null |
6 | 2406.14075v1 | 12 | [
53.79800033569336,
106.968994140625,
299.97149658203125,
203.94500732421875
] | \begin{table}[htbp]
\caption{Schema of WorkStatement (WKS)}
\label{tab:event_type_wks}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
Researcher & OG \\
Content & APP / MOD / FEA / DST / STR / WEA / TAK \\
Condition & LIM \\
Dataset & DST \\
Target & E-PUR / TAK / STR / WEA / APP / FEA / MOD \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"Arg1\nArg2\nCondition\nDataset\nResult\nMetrics\nExtent",
"E-FAC / APP / MOD / FEA / DST\nE-FAC / APP / MOD / FEA / DST\nLIM / E-FAC\nDST\nSTR / WEA\nTAK\nDEG"
]
] | 0.449898 | null | null |
7 | 2406.14075v1 | 11 | [
53.79800033569336,
288.4289855957031,
309.7359924316406,
374.4469909667969
] | \begin{table}[htbp]
\caption{Schema of MethodStep (MDS)}
\label{tab:event_type_mds}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
BaseComponent & APP / MOD / FEA / DST \\
TriedComponent & APP / MOD / FEA / DST \\
Condition & LIM / E-MDS \\
Dataset & DST \\
Target & E-PUR / TAK / STR / WEA / APP / FEA / MOD \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"Subject\nBaseComponent\nTriedComponent\nCondition\nDataset\nTarget",
"APP / MOD / FEA / DST\nAPP / MOD / FEA / DST\nAPP / MOD / FEA / DST\nLIM / E-RWS\nDST\nE-PUR / TAK / STR / WEA / APP / FEA / MOD"
]
] | 0.427788 | null | null |
8 | 2406.14075v1 | 11 | [
317.9549865722656,
328.29901123046875,
562.8819580078125,
381.4389953613281
] | \begin{table}[htbp]
\caption{Schema of Propose (PRP)}
\label{tab:event_type_prp}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
Proposer & OG \\
Content & APP / FEA / MOD / DST / TAK \\
Target & E-PUR / TAK / FEA / WEA \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"Proposer\nContent\nTarget",
"OG\nAPP / FEA / MOD / DST / TAK\nE-PUR / TAK / FEA / WEA"
]
] | 0.683333 | null | null |
9 | 2406.14075v1 | 11 | [
317.9549865722656,
455.0270080566406,
562.8819580078125,
497.2090148925781
] | \begin{table}[htbp]
\caption{Schema of Finding (FIN)}
\label{tab:event_type_fin}
\begin{tabular}{c|c}
\toprule
{\bf Argument Type} & Constrained Nugget Types and Event Types \\
\midrule
Finder & OG \\
Content & E-FAC / E-CMP \\
\bottomrule
\end{tabular}
\end{table} | [
[
"Argument Type",
"Constrained Nugget Types and Event Types"
],
[
"Finder\nContent",
"OG\nE-FAC / E-CMP"
]
] | 0.62406 | null | null |
10 | 2406.14075v1 | 12 | [
347.29998779296875,
163.8790283203125,
528.8569946289062,
249.26397705078125
] | \begin{table}[htbp]
\caption{Metrics in SciEvents}
\label{tab:metrics}
\begin{tabular}{c|ccccc}
\toprule
{\bf Metrics} & TI & TC & AI & AC & EC \\
\midrule
trigger & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
event type &&\checkmark&\checkmark&\checkmark&\checkmark\\
argument &&&\checkmark&\checkmark&\\
argument type &&&&\checkmark&\\
trigger-trigger &&&&&\checkmark\\
trigger-trigger type &&&&&\checkmark\\
\bottomrule
\end{tabular}
\end{table} | [
[
"Metrics",
"TI TC AI AC EC"
],
[
"trigger\nevent type\nargument\nargument type\ntrigger-trigger\ntrigger-trigger type",
"✓ ✓ ✓ ✓ ✓\n✓ ✓ ✓ ✓\n✓ ✓\n✓\n✓\n✓"
]
] | 0.447826 | null | null |
11 | 2406.14075v1 | 12 | [
376.4200134277344,
317.3630065917969,
499.73699951171875,
381.4630126953125
] | \begin{table}[htbp]
\caption{An Illustrative Example}
\label{tab:example}
\begin{tabular}{c|cc}
\toprule
~ & Event 1 & Event 2 \\
\midrule
trigger & A & C2 \\
event type & M & N \\
argument & BT: B & DT: D\\
argument & CT: C1& ~\\
\bottomrule
\end{tabular}
\end{table} | [
[
"",
"Event 1 Event 2"
],
[
"trigger\nevent type\nargument\nargument",
"A C2\nM N\nBT: B DT: D\nCT: C1"
]
] | 0.501992 | null | null |
12 | 2406.14075v1 | 12 | [
317.9549865722656,
463.91400146484375,
560.427978515625,
538.9719848632812
] | \begin{table}[htbp]
\caption{Extraction Results of the Illustrative Example}
\label{tab:example}
\begin{tabular}{c|lll}
\toprule
Metric & \multicolumn{3}{c}{Results} \\
\midrule
TI & A & C2 & ~\\
TC & A+M & C2+N & ~\\
AI & A+M+B & A+M+C1 & C2+N+D\\
AC & A+M+B+BT & A+M+C1+CT & C2+N+D+DT\\
EC & A+M+C1(=C2)+N+CT& &\\
\bottomrule
\end{tabular}
\end{table} | [
[
"Metric",
"Results"
],
[
"TI\nTC\nAI\nAC\nEC",
"A C2\nA+M C2+N\nA+M+B A+M+C1 C2+N+D\nA+M+B+BT A+M+C1+CT C2+N+D+DT\nA+M+C1(=C2)+N+CT"
]
] | 0.585075 | null | null |
0 | 1702.07138v1 | 5 | [
134.76499938964844,
458.49798583984375,
480.9000244140625,
611.0570068359375
] | \begin{table}
\caption{Architectural decisions and motivation behind them}
\label{T:attr}
\begin{tabular}{m{3cm}|m{9cm}}
\hline
\textbf{Attribute name} & \textbf{Arguments} \\ \hline
Extensibility & Proposed architecture allows to add new agents and new analysis tools without downtime or reconfiguration.
%To start collecting data from a new IDE we need create a new agent and implement basic JSON document structure described above.
%To start using new analysis tool we need to create a new data unifier and/or a new data exporter.
\\ \hline
Security and Privacy & The system could be deployed in multiple organizations.
%And some organizations may not want to share their information with others.
So we need to provide reasonable authorization, roles and access restriction settings. \\ \hline
Performance & We need high-performance on write. There could be thousands of agents trying to write their data into document-oriented database at the same time. \\ \hline
Consistency & We do not require strong consistency, eventual consistency should be fine.
\\ \hline
Modifiability & We require high modifiability of database schema. \\ \hline
Scalability & We need horizontal scalability in terms of volume of data. \\ \hline
\end{tabular}
\end{table} | [
[
"Attribute name",
"Arguments"
],
[
"Extensibility",
"Proposed architecture allows to add new agents and new anal-\nysis tools without downtime or reconfiguration."
],
[
"Security and Privacy",
"The system could be deployed in multiple organizations. So\nwe need to provide reasonable authorization, roles and access\nrestriction settings."
],
[
"Performance",
"We need high-performance on write. There could be thousands\nof agents trying to write their data into document-oriented\ndatabase at the same time."
],
[
"Consistency",
"We do not require strong consistency, eventual consistency\nshould be fine."
],
[
"Modifiability",
"We require high modifiability of database schema."
],
[
"Scalability",
"We need horizontal scalability in terms of volume of data."
]
] | 0.698337 | null | null |
0 | 2310.13240v2 | 19 | [
239.3602523803711,
663.4970092773438,
372.6397476196289,
707.2369995117188
] | \begin{table}[]
\caption{\label{table1}Results of refutation tests}
\begin{center}
\begin{tabular}{|l|l|}
\hline
& ATE estimate \\ \hline
Randomise w & \$9 (\$256) \\ \hline
Randomise y & \$-716 (\$535) \\ \hline
\end{tabular}
\end{center}
\end{table} | [
[
"",
"ATE estimate"
],
[
"Randomise w",
"$9 ($256)"
],
[
"Randomise y",
"$-716 ($535)"
]
] | 0.964912 | null | null |
0 | 2308.01486v1 | 7 | [
321.5886739095052,
364.3970031738281,
553.4251912434896,
413.6130065917969
] | \begin{table}[!h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Number of days $T$ & $1$ & $7$ & $25$ & $75$ & $150$
\\
\hline
\hline
Benchmark & -0.16 & 0.43 & -0.05 & -0.58 & -0.79
\\
\hline
PDV (SS regression) & 0.35 & 0.53 & 0.17 & -0.44 & -0.95
\\
\hline
PDV (linear regression) & \textbf{0.36} & 0.55 & 0.29 & 0.0 & -0.07
\\
\hline
SS Path Shadowing & 0.32 & \textbf{0.56} & \textbf{0.33} & \textbf{0.07} & \textbf{0.01}
\\
\hline
\end{tabular}
\caption{Prediction of realized daily volatility ($R^2$ score).
The PS-MC method based on the Scattering Spectra (SS) model outperforms the recently introduced PDV model
at all time-scales $\geq$ 7 days, and upholds predictive power up to a period of $\approx$ 150 days. For $T=1$ day, however, the PDV model performs best. The benchmark is the realized variance on the $T$ previous days. The PDV model was calibrated using two different methods, see Appendix \ref{app:pdv}.
}
\label{tab:vol-prediction}
\end{table} | [
[
"Number of days T",
"1",
"7",
"25",
"75",
"150"
],
[
"Benchmark",
"-0.16",
"0.43",
"-0.05",
"-0.58",
"-0.79"
],
[
"PDV (SS regression)",
"0.35",
"0.53",
"0.17",
"-0.44",
"-0.95"
],
[
"PDV (linear regression)",
"0.36",
"0.55",
"0.29",
"0.0",
"-0.07"
],
[
"SS Path Shadowing",
"0.32",
"0.56",
"0.33",
"0.07",
"0.01"
]
] | 0.470056 | null | null |
1 | 2308.01486v1 | 9 | [
315.45226287841797,
52.6820068359375,
559.5620269775391,
83.16802978515625
] | \begin{table}[!h]
\centering
\begin{tabular}{|c||c|c|c|c|}
\hline
& full period & $2015$-$2017$ & $2018$-$2020$ & $2021$-$2023$
\\
\hline
\hline
PDV &
0.071 $\pm$ 0.03 &
0.13 $\pm$ 0.01 &
0.0 $\pm$ 0.04 &
0.10 $\pm$ 0.02
\\
\hline
SS &
\textbf{0.13} $\pm$ 0.03 &
\textbf{0.14} $\pm$ 0.02 &
\textbf{0.14} $\pm$ 0.04 &
\textbf{0.11} $\pm$ 0.02
\\
\hline
\end{tabular}
\caption{Average $\mathrm{P\&L}$ of the trading game against the S\&P market using the PDV model (re-optimized for each $T$) or using the Scattering Spectra (SS) model, both calibrated using data from 2000 to 2014. Detailed $\mathrm{P\&Ls}$ are shown in Fig.~\ref{fig:smile-prediction-avg}.}
\label{tab:smile-prediction}
\end{table} | [
[
"",
"full period",
"2015-2017",
"2018-2020",
"2021-2023"
],
[
"PDV",
"0.071 ± 0.03",
"0.13 ± 0.01",
"0.0 ± 0.04",
"0.10 ± 0.02"
],
[
"SS",
"0.13 ± 0.03",
"0.14 ± 0.02",
"0.14 ± 0.04",
"0.11 ± 0.02"
]
] | 0.475524 | null | null |
0 | 2302.06361v1 | 11 | [
69.0510025024414,
289.2900085449219,
278.791015625,
333.9230041503906
] | \begin{table}
\centering
\caption{Online communication volume of \schemename{} versus \gazelle{} during the inference of a single input in MB. Note that \schemename's communication volume is independent of the number of input providers.}
\label{tab:communication_cost}
\begin{tabular}{l|c|c|c|c|c}
\hline
Framework / Model& A & B & C & D & F \\ \hline
\schemename & \textbf{0.1} & \textbf{0.1} & \textbf{0.1} & \textbf{0.1} & \textbf{0.4} \\
\minionn{} & 43.8 & 12.2 & - & 636.6 & 6226 \\
\gazelle{} & 0.5 & 0.5 & 2.1 & 22.5 & 296 \\ \hline
\end{tabular}
\end{table} | [
[
"Framework / Model",
"A",
"B",
"C",
"D",
"F"
],
[
"Dash\nMiniONN\nGazelle",
"0.1\n43.8\n0.5",
"0.1\n12.2\n0.5",
"0.1\n-\n2.1",
"0.1\n636.6\n22.5",
"0.4\n6226\n296"
]
] | 0.514019 | null | null |
0 | 2403.03099v1 | 17 | [
102.66200256347656,
551.66796875,
504.26800537109375,
606.6619873046875
] | \begin{table}[h!]
\footnotesize
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|} \hline
$p$ & 0.80 & 0.82 & 0.84 & 0.86 & 0.88 & 0.90 \\ \hline
K-means for weighted observations & 0.9185&0.9388&0.9558&0.9661&0.9803&0.9883\\ \hline
K-means for raw data & 0.9185&0.9388&0.9558&0.9661&0.9803&0.9883\\ \hline
\end{tabular}
\label{tab:p8}
\caption{Correct Cluster Classification Simulation Results}
\end{table} | [
[
"p",
"0.80",
"0.82",
"0.84",
"0.86",
"0.88",
"0.90"
],
[
"K-means for weighted observations",
"0.9185",
"0.9388",
"0.9558",
"0.9661",
"0.9803",
"0.9883"
],
[
"K-means for raw data",
"0.9185",
"0.9388",
"0.9558",
"0.9661",
"0.9803",
"0.9883"
]
] | 0.856423 | null | null |
1 | 2403.03099v1 | 18 | [
108.76499938964844,
204.968017578125,
501.48699951171875,
278.29302978515625
] | \begin{table}[h!]
\footnotesize
\centering
\label{table: accuracy}
\begin{tabular}{|l|l|l|l|l|}
\hline & Cluster 1 & Cluster 2 & Cluster 3 & Cluster 4 \\
\hline cluster size & 500000 & 500000 & 50000 & 2000 \\
\hline cluster center & $(1,0,0,0,1,1)$ & $(0,1,0,1,1,0)$ & $(1,1,0,0,1,0)$ & $(0,0,1,1,0,1)$ \\
\hline
Variance on each
dim & 0.25 & 0.25 & 0.25 & 0.25 \\
\hline
\end{tabular}
\caption{Cluster information for the simulated data}
\end{table} | [
[
"",
"Cluster 1",
"Cluster 2",
"Cluster 3",
"Cluster 4"
],
[
"cluster size",
"500000",
"500000",
"50000",
"2000"
],
[
"cluster center",
"(1, 0, 0, 0, 1, 1)",
"(0, 1, 0, 1, 1, 0)",
"(1, 1, 0, 0, 1, 0)",
"(0, 0, 1, 1, 0, 1)"
],
[
"Variance on each dim",
"0.25",
"0.25",
"0.25",
"0.25"
]
] | 0.630385 | null | null |
0 | 2107.08096v2 | 5 | [
340.6977233886719,
83.86937713623047,
537.2900085449219,
130.384033203125
] | \begin{table}
\centering
\small
% \vspace{-.5cm}
\resizebox{7cm}{!}{
\begin{tabular}{ |c|c|c|c|c| }
\hline
\textbf{Dataset} & \textbf{\# Users} & \textbf{\# Items} & \textbf{Item type} & \textbf{Sparsity} \\
\hline
MovieLens-L & 5000 & 17400 & movie & 1.7\% \\
MovieLens-S & 1000 & 11529 & movie & 2.6\% \\
GoogleLocal-L & 1500 & 265807 & business & 0.1\% \\
GoogleLocal-S & 500 & 104766 & business & 0.3\% \\
\hline
\end{tabular}}
\caption{Dataset statistics.}
\vspace{-1cm}
\label{dataset_info}
\end{table} | [
[
"Dataset",
"# Users",
"# Items",
"Item type",
"Sparsity"
],
[
"MovieLens-L\nMovieLens-S\nGoogleLocal-L\nGoogleLocal-S",
"5000\n1000\n1500\n500",
"17400\n11529\n265807\n104766",
"movie\nmovie\nbusiness\nbusiness",
"1.7%\n2.6%\n0.1%\n0.3%"
]
] | 0.574209 | null | null |
0 | 2305.04162v1 | 17 | [
80.34023475646973,
510.7770080566406,
400.39673614501953,
547.8380126953125
] | \begin{table}[ht!]
\centering
\begin{tabular}{|l*{9}{|c}r}
\hline
{Step size} & $2^{0}$ & $2^{-1}$& $2^{-2}$& $2^{-3}$& $2^{-4}$& $2^{-5}$& $2^{-6}$ & $2^{-7}$\\
\hline
{\# of Nodes} & $5$ & $13$& $41$& $145$& $545$& $2113$& $8321$& $33025$\\
\hline
{\# of Triangles} & $4$ & $16$& $64$& $256$& $1024$& $4096$& $16384$ & $65536$\\
\hline
\end{tabular}
\caption{The number of nodes and triangles of the multigrid with the edge refinement for each level.} \label{2d:MG}
\end{table} | [
[
"Step size",
"20",
"2−1",
"2−2",
"2−3",
"2−4",
"2−5",
"2−6",
"2−7"
],
[
"# of Nodes",
"5",
"13",
"41",
"145",
"545",
"2113",
"8321",
"33025"
],
[
"# of Triangles",
"4",
"16",
"64",
"256",
"1024",
"4096",
"16384",
"65536"
]
] | 0.690608 | null | null |
0 | 1801.04385v1 | 5 | [
317.9549865722656,
681.6682739257812,
556.3832397460938,
707.0260620117188
] | \begin{table}[b]
\centering
\caption{Number of data points in each group}
\label{tab:sesfreq}
\resizebox{\columnwidth}{!}{%
\begin{tabular}{c|cccccccccc}
\toprule
\textbf{Session Length}&1&2&3&4&5&6&7&8\\
\midrule
%[7248481, 2571860, 1267290, 710064, 437615, 283716, 194075, 142360, 102897, 76790]
\textbf{Data points}& 7.2M & 2.6M & 1.3M & 0.7M & 0.4M & 0.3M & 0.2M & 0.1M\\
\bottomrule
\end{tabular}
}
\end{table} | [
[
"Session Length",
"1 2 3 4 5 6 7 8"
],
[
"Data points",
"7.2M 2.6M 1.3M 0.7M 0.4M 0.3M 0.2M 0.1M"
]
] | 0.438503 | null | null |
0 | 2212.00061v1 | 8 | [
155.7852554321289,
214.4019775390625,
455.4617462158203,
251.4630126953125
] | \begin{table}[ht]
\begin{center}
\caption{Test Results for Cat \& Dog Classifier with Auxiliary Learning}
\label{TestReultsAuxiliaryLearning}
\begin{tabular}{|c|c|c|}
\hline
Loss function & Test Accuracy & Test Loss \\\hline
Categorical Cross-Entropy & 0.95880 & 0.76609 \\\hline
Weighted Categorical Cross-Entropy & 0.94783& 0.24978 \\\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Loss function",
"Test Accuracy",
"Test Loss"
],
[
"Categorical Cross-Entropy",
"0.95880",
"0.76609"
],
[
"Weighted Categorical Cross-Entropy",
"0.94783",
"0.24978"
]
] | 1 | null | null |
1 | 2212.00061v1 | 8 | [
173.56366984049478,
484.87701416015625,
437.68467203776044,
509.5840148925781
] | \begin{table}[ht]
\begin{center}
\caption{Test Results for Cat \& Dog Binary Classifier without Auxiliary Learning}
\label{TestReultsBinaryCLassifier}
\begin{tabular}{|c|c|c|}
\hline
Model & Test Accuracy & Test Loss \\\hline
Cat \& Dog Binary Classifier & 0.90939 & 0.78215 \\\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Model",
"Test Accuracy",
"Test Loss"
],
[
"Cat & Dog Binary Classifier",
"0.90939",
"0.78215"
]
] | 0.986111 | null | null |
2 | 2212.00061v1 | 10 | [
159.44490744850853,
144.81597900390625,
451.8021795099432,
265.96099853515625
] | \begin{table}[ht]
\begin{center}
\caption{Precision ,Recall and F1-Score}
\label{PRF1}
\begin{tabular}{|c|c|c|c|c|}
\hline
Class & Model & Precision & Recall & F1-Score \\\hline
\multirow{3}{*}{Cat} & Binary Classifier & 0.89 & 0.94 & 0.91 \\\cline{2-5}
& Auxiliary Learning & 0.90 & 0.85 & 0.88 \\\cline{2-5}
& AL with weighted loss & 0.93 & 0.77 & 0.84 \\\hline
\multirow{3}{*}{Dog} & Binary Classifier & 0.93 & 0.88 & 0.91 \\\cline{2-5}
& Auxiliary Learning & 0.87 & 0.83 & 0.85 \\\cline{2-5}
& AL with weighted loss & 0.87 & 0.76 & 0.81 \\\hline
\multirow{3}{*}{Others} & Binary Classifier & NA & NA & NA \\\cline{2-5}
& Auxiliary Learning & 0.97 & 0.99 & 0.98 \\\cline{2-5}
& AL with weighted loss & 0.96 & 0.99 & 0.97 \\\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Class",
"Model",
"Precision",
"Recall",
"F1-Score"
],
[
"Cat",
"Binary Classifier",
"0.89",
"0.94",
"0.91"
],
[
null,
"Auxiliary Learning",
"0.90",
"0.85",
"0.88"
],
[
null,
"AL with weighted loss",
"0.93",
"0.77",
"0.84"
],
[
"Dog",
"Binary Classifier",
"0.93",
"0.88",
"0.91"
],
[
null,
"Auxiliary Learning",
"0.87",
"0.83",
"0.85"
],
[
null,
"AL with weighted loss",
"0.87",
"0.76",
"0.81"
],
[
"Others",
"Binary Classifier",
"NA",
"NA",
"NA"
],
[
null,
"Auxiliary Learning",
"0.97",
"0.99",
"0.98"
],
[
null,
"AL with weighted loss",
"0.96",
"0.99",
"0.97"
]
] | 0.873711 | null | null |
3 | 2212.00061v1 | 6 | [
138.7761962890625,
344.51800537109375,
472.4720092773438,
393.9330139160156
] | \begin{table}[ht]
\begin{center}
\caption{Distribution of data}
\label{Distribution}
\begin{tabular}{|c|c|c|}
\hline
Class & No. of images used for training & No. of images used for testing\\\hline
Cat & 9999 ($\sim$10000) & 2501 $\sim$2500)\\\hline
Dog & 10001 ($\sim$10000) & 2499 ($\sim$2500)\\\hline
Others & 87500 (8.75 x 10000) & 21875 (8.75 x 2500)\\\hline
\end{tabular}
\end{center}
\end{table} | [
[
"Class",
"No. of images used for training",
"No. of images used for testing"
],
[
"Cat",
"9999 ( 10000)\n∼",
"2501 2500)\n∼"
],
[
"Dog",
"10001 ( 10000)\n∼",
"2499 ( 2500)\n∼"
],
[
"Others",
"87500 (8.75 x 10000)",
"21875 (8.75 x 2500)"
]
] | 0.938005 | null | null |
0 | 2103.13226v1 | 9 | [
203.08799743652344,
178.3740234375,
412.26800537109375,
212.44598388671875
] | \begin{table}[]
\centering
\begin{tabular}{|l|l|l|}
\hline
Metrics & Mean Accuracy & Mean Recall \\ \hline
Centralized Approach& 75.40 & 69.22 \\ \hline
Distributed Approach& 71.83 & 63.35 \\ \hline
\end{tabular}
\caption{Final evaluation of ResNet-18 on test dataset}
\label{test-result}
\end{table} | [
[
"Metrics",
"Mean Accuracy",
"Mean Recall"
],
[
"Centralized Approach",
"75.40",
"69.22"
],
[
"Distributed Approach",
"71.83",
"63.35"
]
] | 0.773438 | null | null |
0 | 1902.07742v1 | 8 | [
108,
148.53147888183594,
517.0339965820312,
228.23248291015625
] | \begin{table}[tb]
\caption{Success rates (in percentages) across task categories. Each result is averaged over 3 seeds. Test-Task refers to testing on novel tasks within the same houses as training, whereas Test-House refers to testing novel tasks in novel houses. The AGILE method is described in~\citep{Bahdanau18}}
\label{tbl:results_main}
\begin{center}
\begin{tabular}{c||c|c|c||c|c|c||c|c|c}
\hline
& \multicolumn{3}{c}{Train} & \multicolumn{3}{c}{Test-Task} & \multicolumn{3}{c}{Test-House} \\
\hline
& PICK & NAV & Total & PICK & NAV & Total & PICK & NAV& Total \\
%\hline
%DAgger \citep{DAgger} & 14.5 & 51.2 & 32.1 & 5.5 & 23.3 & 14.1 & 0.0 & 17.6 & 8.7 \\
\hdashline
Optimal Policy Cloning & 20.7 & 61.6 & 40.3
& 10.1 & 29.4 & 19.6
& 0.0 & 17.2 & 8.5 \\
\hdashline
AGILE & 0.0 & 40.9 & 18.0 & 0.0 & 34.1 & 16.8 & 0.0 & 30.6 & 15.1 \\
\hline
GAIL-Exact & 59.4 & \textbf{73.5} & \textbf{66.9} & 49.1 & \textbf{50.4} & 49.8 & 23.5 & 35.4 & 28.3 \\
\hdashline
LC-RL (ours) & \textbf{63.8} & 69.7 & \textbf{66.9}
& \textbf{56.7} & 47.8 & \textbf{51.9}
& \textbf{32.1} & \textbf{39.4} & \textbf{36.4}\\
\hline
Reward Reg. (Oracle) & 87.0 & 85.0 & 86.1
& 82.5 & 67.0 & 74.1
& 70.6 & 62.3 & 65.7\\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"",
"Train Test-Task Test-House",
null,
null,
null,
null,
null,
null,
null,
null
],
[
"Optimal Policy Cloning\nAGILE",
"PICK\n20.7\n0.0",
"NAV\n61.6\n40.9",
"Total\n40.3\n18.0",
"PICK\n10.1\n0.0",
"NAV\n29.4\n34.1",
"Total\n19.6\n16.8",
"PICK\n0.0\n0.0",
"NAV\n17.2\n30.6",
"Total\n8.5\n15.1"
],
[
"GAIL-Exact\nLC-RL (ours)",
"59.4\n63.8",
"73.5\n69.7",
"66.9\n66.9",
"49.1\n56.7",
"50.4\n47.8",
"49.8\n51.9",
"23.5\n32.1",
"35.4\n39.4",
"28.3\n36.4"
],
[
"Reward Reg. (Oracle)",
"87.0",
"85.0",
"86.1",
"82.5",
"67.0",
"74.1",
"70.6",
"62.3",
"65.7"
]
] | 0.37123 | null | null |
1 | 1902.07742v1 | 12 | [
240.84500122070312,
517.1805114746094,
371.156005859375,
551.1530151367188
] | \begin{table}[h]
\label{tbl:img_sweep}
\begin{center}
\begin{tabular}{c|c|c}
\hline
& Train & Test-Task \\
\hline
32 by 24 & 67.3 & 49.7 \\
\hdashline
64 by 64 & 70.6 & 51.1 \\
\end{tabular}
\end{center}
\end{table} | [
[
"",
"Train",
"Test-Task"
],
[
"32 by 24\n64 by 64",
"67.3\n70.6",
"49.7\n51.1"
]
] | 0.741379 | null | null |
0 | 2402.05885v1 | 11 | [
55.86825180053711,
295.2284851074219,
300.8415222167969,
333.4424743652344
] | \begin{table}[!h]
\caption{Transfer Learning (off-diagonal) -- \textsc{H$^2$MN} (RMSE); \pki{diagonals show cases of train and test sets drawn from the same dataset.}}\label{tab:transferability_h2mn}
% \vspace{-2mm}
\centering
\scalebox{0.75}{
\begin{tabular}{p{2.3cm}p{1cm}p{2.3cm}p{2.5cm}|p{1.3cm}}
\toprule
& \multicolumn{3}{c}{\textbf{Train Set}} & \textbf{\name}\\
\textbf{Test Set} & \texttt{AIDS} & \texttt{ogbg-molhiv} & \texttt{ogbg-molpcba}\\
\midrule
\texttt{AIDS} & \textcolor{lightgray}{1.14} & 3.61 & 2.90 & 0.83\\
\texttt{ogbg-molhiv} & NA & \textcolor{lightgray}{12.01} & \cellcolor{yellow}{11.01} & 2.93\\
\texttt{ogbg-molpcba} & NA & 5.95 & \textcolor{lightgray}{5.50} & 2.98\\
\bottomrule
\end{tabular}}
% \vspace{-4mm}
\end{table} | [
[
"Test Set AIDS ogbg-molhiv ogbg-molpcba",
""
],
[
"AIDS 1.14 3.61 2.90\nogbg-molhiv NA 12.01 11.01\nogbg-molpcba NA 5.95 5.50",
"0.83\n2.93\n2.98"
]
] | 0.42029 | null | null |
0 | 2102.04757v1 | 13 | [
124.44383112589519,
172.78802490234375,
487.55617268880206,
575.2789916992188
] | \begin{table}[!hp]
\caption{Comparing Typical Risks Between Handcrafted and Machine Learning Methods}\label{typicalriskstable}
\begin{longtable}{|p{25mm}|p{45mm}|p{45mm}|}
\hline \thead{Risk} & \thead{Handcrafted} & \thead{Machine Learning} \\
\hline
Structural Risk
& Lower dimensional models which are easy to calibrate, but fail to capture all aspects of the market's behaviour. Generally a higher bias than variance and more prone to underfitting.
& High dimensional models which require large amounts of data to calibrate, but can capture fine detail when fitted well. Can often incorporate new sources of information in a convenient manner. Generally a higher variance than bias and more prone to overfitting.
\\
\hline
Model Sensitivity
& Few parameters and model inputs. Model outputs vary smoothly with calibration and input. Well understood sensitivities to erroneous inputs.
& High-dimensional parameters and data inputs. Model outputs can vary sharply with inputs. Sensitivities to erroneous inputs can vary significantly.
\\
\hline
Adversarial Attacks
& Reasonably robust calibration and not susceptible to data poisoning attacks. Calibration can be easily monitored by users. Adversarial defenses not a key part of most models.
& Susceptible to attacks, require robust training and adversarial defences, but these can be incorporated as a key part of the model. Not easily monitored by users.
\\
\hline
Model Drift
& Models naturally incorporate economic intuition and underpinnings. Few parameters to update online, but do not often incorporate updating as a core part of the model.
& Model based on data patterns which may change over time. Many parameters need to be updated dynamically, which can lead to unstable behaviour. Model updating can be included as a core part of the approach. \\
\hline
\end{longtable}
\end{table} | [
[
"Risk",
"Handcrafted",
"Machine Learning"
],
[
"Structural Risk",
"Lower dimensional models\nwhich are easy to calibrate,\nbut fail to capture all aspects\nof the market’s behaviour.\nGenerally a higher bias than\nvariance and more prone to\nunderfitting.",
"High dimensional models\nwhich require large amounts\nof data to calibrate, but\ncan capture fine detail when\nfitted well. Can often in-\ncorporate new sources of\ninformation in a convenient\nmanner. Generally a higher\nvariance than bias and more\nprone to overfitting."
],
[
"Model Sensitiv-\nity",
"Few parameters and model\ninputs. Model outputs vary\nsmoothly with calibration\nand input. Well understood\nsensitivities to erroneous\ninputs.",
"High-dimensional parameters\nand data inputs. Model out-\nputs can vary sharply with\ninputs. Sensitivities to erro-\nneous inputs can vary signifi-\ncantly."
],
[
"Adversarial At-\ntacks",
"Reasonably robust calibra-\ntion and not susceptible to\ndata poisoning attacks. Cal-\nibration can be easily mon-\nitored by users. Adversar-\nial defenses not a key part of\nmost models.",
"Susceptible to attacks, re-\nquire robust training and ad-\nversarial defences, but these\ncan be incorporated as a key\npart of the model. Not easily\nmonitored by users."
],
[
"Model Drift",
"Models naturally incorporate\neconomic intuition and un-\nderpinnings. Few parameters\nto update online, but do not\noften incorporate updating as\na core part of the model.",
"Model based on data pat-\nterns which may change over\ntime. Many parameters need\nto be updated dynamically,\nwhich can lead to unstable\nbehaviour. Model updating\ncan be included as a core part\nof the approach."
]
] | 0.97365 | null | null |
1 | 2102.04757v1 | 17 | [
110.28741772969563,
138.91497802734375,
501.7125981648763,
675.3040161132812
] | \begin{table}[!hp]
\caption{Examples of Adversarial Attacks in Finance}\label{attackstable}
\begin{longtable}{|p{25mm}|p{30mm}|p{70mm}|}
\hline \thead{Failures} & \thead{Description} & \thead{Example} \\
\hline
Reward Hacking
& When training, the stated reward differs from a true reward.
& A learning agent was trained to create a perfect hedge, however transaction costs were poorly modelled, leading to poor performance. \\
\hline
Side Effects
& A reinforcement learning system disrupts the environment by advancing its goal.
& A model has learned an order execution strategy for an illiquid asset, but by executing this strategy, changes the dynamics of the order book significantly, leading to increased risk.\\
\hline
Distributional Shifts
& The system is trained on one environment, but unable to adapt to changes. & A pricing model was trained on data during normal times, and is unable to react to the higher correlations between assets during crises. \\
\hline
Natural Adversarial Examples.
& Even without being attacked the system fails from natural errors.
& A pricing model was trained individually for each strike and maturity, resulting in arbitrageable prices being offered in the market. \\
\hline Common Corruptions
& The system is not able to deal with common corruptions.
& A pricing model failed due to a halt on trading being placed on a closely related underlying instrument. \\
\hline Incomplete Testing
& The system is not tested on the right environment nor over multiple periods.
& A pricing model is tested only on one exchange, but is deployed in multiple locations with differing market behaviours. \\
\hline Poisoning attack
& Contaminate training phase.
& Contaminated data is introduced into a pricing model, for example when using sentiment analysis based on social media. \\
\hline Model stealing
& Recover the entire model.
& A proprietary model is trained and can be queried online by counterparties. By repeated queries it is possible that the inputs can be matched with the outputs, to reverse engineer the original model. \\
\hline Model inversion
& Recover hidden features.
& A pricing model is trained using proprietary trading data on market impact. The fitted model is then made public, without the underlying data. By repeated queries, it may be possible to extract the training data used \citep{fredrikson2015model}. \\
\hline Reprogramming system
& Repurpose system for other use.
& An online pricing model is used to identify expected future market volatility. \\
\hline
\end{longtable}
\end{table} | [
[
"Failures",
"Description",
"Example"
],
[
"Reward Hacking",
"When training, the\nstated reward dif-\nfers from a true re-\nward.",
"A learning agent was trained to create a per-\nfect hedge, however transaction costs were\npoorly modelled, leading to poor performance."
],
[
"Side Effects",
"A reinforcement\nlearning system\ndisrupts the en-\nvironment by\nadvancing its goal.",
"A model has learned an order execution strat-\negy for an illiquid asset, but by executing this\nstrategy, changes the dynamics of the order\nbook significantly, leading to increased risk."
],
[
"Distributional\nShifts",
"The system is\ntrained on one\nenvironment, but\nunable to adapt to\nchanges.",
"A pricing model was trained on data dur-\ning normal times, and is unable to react to\nthe higher correlations between assets during\ncrises."
],
[
"Natural Adver-\nsarial Examples.",
"Even without being\nattacked the system\nfails from natural\nerrors.",
"A pricing model was trained individually for\neach strike and maturity, resulting in arbi-\ntrageable prices being offered in the market."
],
[
"Common Cor-\nruptions",
"The system is\nnot able to deal\nwith common\ncorruptions.",
"A pricing model failed due to a halt on trading\nbeing placed on a closely related underlying\ninstrument."
],
[
"Incomplete\nTesting",
"The system is\nnot tested on the\nright environment\nnor over multiple\nperiods.",
"A pricing model is tested only on one ex-\nchange, but is deployed in multiple locations\nwith differing market behaviours."
],
[
"Poisoning at-\ntack",
"Contaminate train-\ning phase.",
"Contaminated data is introduced into a pric-\ning model, for example when using sentiment\nanalysis based on social media."
],
[
"Model stealing",
"Recover the entire\nmodel.",
"A proprietary model is trained and can be\nqueried online by counterparties. By repeated\nqueries it is possible that the inputs can be\nmatched with the outputs, to reverse engineer\nthe original model."
],
[
"Model inversion",
"Recover hidden fea-\ntures.",
"A pricing model is trained using proprietary\ntrading data on market impact. The fitted\nmodel is then made public, without the un-\nderlying data. By repeated queries, it may\nbe possible to extract the training data used\n(Fredrikson et al., 2015)."
],
[
"Reprogramming\nsystem",
"Repurpose system\nfor other use.",
"An online pricing model is used to identify ex-\npected future market volatility."
]
] | 0.980072 | null | null |
2 | 2102.04757v1 | 18 | [
110.23766835530598,
120.15399169921875,
501.76234944661456,
264.41302490234375
] | \begin{table}[!ht]
\begin{longtable}{|p{25mm}|p{30mm}|p{70mm}|}
\hline Adversarial example in physical domain
& Fool a system by changing some interface component.
& An adversary determines that a pricing model has sensitivity to the volumes deep in the order book -- by posting to this part of the book, they influence the model's behaviour.\\% A regime-shifting options model has been tricked into thinking that there is a change in regime by an agent that hacked the broker and adjusted all interfacing strike-prices to be $10 \%$ higher. \\
\hline Exploit software dependencies
& The use of traditional software exploits.
& The model relies on code dependencies, these dependencies are exploited by modifying the code to introduce nonsensical values, leading to a trading halt. (The 2016 NPM/left-pad debacle illustrates this external dependency risk, where a disgruntled developer deleted a tiny piece of code that `broke' the internet \citep{Collins2021Feb}.) \\
\hline
\end{longtable}
\end{table} | [
[
"Adversarial ex-\nample in physi-\ncal domain",
"Fool a system by\nchanging some in-\nterface component.",
"An adversary determines that a pricing model\nhas sensitivity to the volumes deep in the or-\nder book – by posting to this part of the book,\nthey influence the model’s behaviour."
],
[
"Exploit software\ndependencies",
"The use of tradi-\ntional software ex-\nploits.",
"The model relies on code dependencies, these\ndependencies are exploited by modifying the\ncode to introduce nonsensical values, leading\nto a trading halt. (The 2016 NPM/left-pad\ndebacle illustrates this external dependency\nrisk, where a disgruntled developer deleted a\ntiny piece of code that ‘broke’ the internet\n(Collins, 2016).)"
]
] | 0.820247 | null | null |
0 | 2004.11149v7 | 12 | [
119.28266779581706,
609.8759765625,
492.7171579996745,
666.4130249023438
] | \begin{table}[htpb]
\centering
\caption{Testing accuracy of black-box adaptation meta-learning methods on 5-way 5-shot miniImageNet classification.}
\label{tabblackbox}
\begin{tabular}{|m{10cm}|m{2.3cm}|}
\hline
Method & Accuracy \\ \hline
\cite{Qiao2018} Activation to parameter with neural network & $67.87\pm 0.20\%$ \\ \hline
\cite{Qiao2018} with wide residual network WRN & $73.74\pm 0.19\%$ \\ \hline
\cite{Munkhdalai2018} AdaCNN with DF & $62.00\pm 0.55\%$ \\ \hline
\cite{Munkhdalai2018} AdaResNet with DF & $71.94\pm 0.57\%$ \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"Accuracy"
],
[
"[93] Activation to parameter with neural network",
"67.87 0.20%\n±"
],
[
"[93] with wide residual network WRN",
"73.74 0.19%\n±"
],
[
"[21] AdaCNN with DF",
"62.00 0.55%\n±"
],
[
"[21] AdaResNet with DF",
"71.94 0.57%\n±"
]
] | 0.829384 | null | null |
1 | 2004.11149v7 | 18 | [
119.30489052666559,
89.08099365234375,
492.6950463189019,
281.3089904785156
] | \begin{table}[htpb]
\centering
\caption{Testing accuracy of metric-based meta-learning methods on 5-way 5-shot miniImageNet classification. }
\label{tabsimilarity}
\begin{tabular}{|m{10cm}|m{2.3cm}|}
\hline
Method & Accuracy \\ \hline
\cite{Vinyals2016} Matching Net & $60.0\%$ \\ \hline
\cite{Mishra2018} SNAIL & $68.88\pm 0.92\%$ \\ \hline
\cite{Sung2018} Relation Net & $65.32\pm 0.70\%$ \\ \hline
\cite{Snell2017} Prototypical Net & $68.20\pm 0.66\%$ \\ \hline
\cite{Das2020} & $70.91\pm 0.85\%$ \\ \hline
\cite{Li2020} Prototypical Net+TRAML & $77.94\pm 0.57\%$ \\ \hline
\cite{Li2020} AM3+TRAML & $79.54\pm 0.60\%$ \\ \hline
\cite{Guan2020} DAPNA & $84.07 \pm 0.16\%$ \\ \hline
\cite{Oreshkin2018} TADAM with $\alpha$, AT and TC & $76.7\pm 0.3\%$ \\ \hline
\cite{Oreshkin2018} TADAM without tuning & $74.2\pm 0.2\%$ \\ \hline
\cite{Gidaris2018} Dynamic few-shot with C128F feature extractor & $73.00\pm 0.64\%$ \\ \hline
\cite{Gidaris2018} with ResNet feature extractor & $70.13\pm 0.68\%$ \\ \hline
\cite{Gidaris2018} with cosine classifier and attention based weight generator & $74.92\pm 0.36\%$ \\ \hline
\cite{Gidaris2018} with cosine classifier and no weight generator & $72.83\pm 0.35\%$ \\ \hline
\cite{Triantafillou2017} mAP-SSVM & $63.94\pm 0.72\%$ \\ \hline
\cite{Triantafillou2017} mAP-DLM & $63.70\pm 0.70\%$ \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"Accuracy"
],
[
"[14] Matching Net",
"60.0%"
],
[
"[94] SNAIL",
"68.88 0.92%\n±"
],
[
"[17] Relation Net",
"65.32 0.70%\n±"
],
[
"[15] Prototypical Net",
"68.20 0.66%\n±"
],
[
"[105]",
"70.91 0.85%\n±"
],
[
"[95] Prototypical Net+TRAML",
"77.94 0.57%\n±"
],
[
"[95] AM3+TRAML",
"79.54 0.60%\n±"
],
[
"[11] DAPNA",
"84.07 0.16%\n±"
],
[
"[84] TADAM with α, AT and TC",
"76.7 0.3%\n±"
],
[
"[84] TADAM without tuning",
"74.2 0.2%\n±"
],
[
"[96] Dynamic few-shot with C128F feature extractor",
"73.00 0.64%\n±"
],
[
"[96] with ResNet feature extractor",
"70.13 0.68%\n±"
],
[
"[96] with cosine classifier and attention based weight generator",
"74.92 0.36%\n±"
],
[
"[96] with cosine classifier and no weight generator",
"72.83 0.35%\n±"
],
[
"[89] mAP-SSVM",
"63.94 0.72%\n±"
],
[
"[89] mAP-DLM",
"63.70 0.70%\n±"
]
] | 0.441369 | null | null |
2 | 2004.11149v7 | 24 | [
119.30423691693474,
89.08099365234375,
492.69569666245405,
270.00201416015625
] | \begin{table}[htpb]
\centering
\caption{Testing accuracy of layered meta-learning methods on 5-way 5-shot miniImageNet classification.}
\label{tabmetalearner}
\begin{tabular}{|m{10cm}|m{2.3cm}|}
\hline
Method & Accuracy \\ \hline
\cite{Finn2017} MAML & $63.11\pm 0.92\%$ \\ \hline
\cite{Li2017} Meta-SGD & $64.03 \pm 0.94\%$ \\ \hline
\cite{Nichol2018a} Reptile without transduction & $61.98 \pm 0.69\%$ \\ \hline
\cite{Nichol2018a} Reptile with transduction & $66.00 \pm 0.62\%$ \\ \hline
\cite{Ravi2019a} Meta-LSTM & $60.60 \pm 0.71\%$ \\ \hline
\cite{Kim2018} Auto-Meta (without Transduction F=10) & $65.09 \pm 0.24\%$ \\ \hline
\cite{Kim2018} Auto-Meta (with Transduction F=12) & $74.65 \pm 0.19\%$ \\ \hline
\cite{Bertinetto2019} R2-D2 & $68.4\pm 0.2\%$ \\ \hline
\cite{Bertinetto2019} LR-D2 with 5 iterations & $68.7\pm 0.2\%$ \\ \hline
\cite{Bertinetto2019} LR-D2 with 1 iteration & $65.6\pm 0.2\%$ \\ \hline
\cite{Lee2019} MetaOptNet-RidgeReg & $77.88 \pm 0.46\%$ \\ \hline
\cite{Lee2019} MetaOptNet-SVM & $78.63 \pm 0.46\%$ \\ \hline
\cite{Lee2019} MetaOptNet-SVM-trainval & $80.00 \pm 0.45\%$ \\ \hline
\cite{Liu2019} TPN & $69.86\pm 0.65\%$ \\ \hline
\cite{Rusu2019} LEO & $77.59 \pm 0.12\%$ \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"Accuracy"
],
[
"[12] MAML",
"63.11 0.92%\n±"
],
[
"[16] Meta-SGD",
"64.03 0.94%\n±"
],
[
"[97] Reptile without transduction",
"61.98 0.69%\n±"
],
[
"[97] Reptile with transduction",
"66.00 0.62%\n±"
],
[
"[5] Meta-LSTM",
"60.60 0.71%\n±"
],
[
"[123] Auto-Meta (without Transduction F=10)",
"65.09 0.24%\n±"
],
[
"[123] Auto-Meta (with Transduction F=12)",
"74.65 0.19%\n±"
],
[
"[85] R2-D2",
"68.4 0.2%\n±"
],
[
"[85] LR-D2 with 5 iterations",
"68.7 0.2%\n±"
],
[
"[85] LR-D2 with 1 iteration",
"65.6 0.2%\n±"
],
[
"[81] MetaOptNet-RidgeReg",
"77.88 0.46%\n±"
],
[
"[81] MetaOptNet-SVM",
"78.63 0.46%\n±"
],
[
"[81] MetaOptNet-SVM-trainval",
"80.00 0.45%\n±"
],
[
"[98] TPN",
"69.86 0.65%\n±"
],
[
"[99] LEO",
"77.59 0.12%\n±"
]
] | 0.639004 | null | null |
3 | 2004.11149v7 | 29 | [
119.31087356958633,
186.010009765625,
492.68909317407855,
622.8709716796875
] | \begin{table}[htpb]
\centering
\caption{Testing accuracy of meta-learning methods on 5-way 1-shot miniImageNet classification.}
\label{tabbayes}
\begin{tabular}{|m{10cm}|m{2.3cm}|}
\hline
Method & Accuracy \\ \hline
\cite{Grant2018} LLAMA & $49.40\pm 1.83\%$ \\ \hline
\cite{Yoon2018a} BMAML & $53.8\pm 1.46\%$ \\ \hline
\cite{Finn2018} PLATIPUS & $50.13\pm 1.86\%$ \\ \hline
\cite{Gordon2018} VERSA & $53.40\pm 1.82\%$ \\ \hline\hline
\cite{Qiao2018} Activation to parameter with neural network & $54.53 \pm
0.40\%$ \\ \hline
\cite{Qiao2018} wide residual network WRN & $59.60 \pm 0.41\%$ \\ \hline
\cite{Munkhdalai2018} AdaCNN with DF & $48.34 \pm 0.68\%$ \\ \hline
\cite{Munkhdalai2018} AdaResNet with DF & $56.88 \pm 0.62\%$ \\ \hline\hline
\cite{Vinyals2016} Matching Net & $46.6\%$ \\ \hline
\cite{Snell2017} Prototypical Net & $46.61\pm 0.78\%$ \\ \hline
\cite{Das2020} PVRT & $52.68\pm 0.51\%$ \\ \hline
\cite{Li2020} Prototypical Network+TRAML & $60.31\pm 0.48\%$ \\ \hline
\cite{Sung2018} Relation Net & $50.44\pm 0.82\%$ \\ \hline
\cite{Mishra2018} SNAIL & $45.1\%$ \\ \hline
\cite{Oreshkin2018} TADAM with $\alpha$, AT and TC & $58.5 \pm 0.3\%$ \\ \hline
\cite{Oreshkin2018} TADAM without tuning & $56.5 \pm 0.4\%$ \\ \hline
\cite{Gidaris2018} Dynamic few-shot with C128F feature extractor & $55.95 \pm 0.84\%$ \\ \hline
\cite{Gidaris2018} with ResNet feature extractor & $55.45 \pm 0.89\%$ \\ \hline
\cite{Gidaris2018} with cosine classifier and attention based weight generator & $58.55 \pm 0.50\%$ \\ \hline
\cite{Gidaris2018} with cosine classifier and no weight generator & $54.55 \pm 0.44\%$ \\ \hline
\cite{Triantafillou2017} mAP-SSVM & $50.32\pm 0.80\%$ \\ \hline
\cite{Triantafillou2017} mAP-DLM & $50.28\pm 0.80\%$ \\ \hline\hline
\cite{Finn2017} MAML & $48.7\pm 1.84\%$ \\ \hline
\cite{Munkhdalai2017} MetaNet & $49.21 \pm 0.96\%$ \\ \hline
\cite{Nichol2018} Reptile & $49.97\pm 0.32\%$ \\ \hline
\cite{Li2017} Meta-SGD & $50.47\pm 1.87\%$ \\ \hline
\cite{Ravi2019a} Meta-LSTM & $43.44\pm 0.77\%$ \\ \hline
\cite{Kim2018} Auto-Meta (without Transduction F=10) & $49.58\pm 0.20\%$ \\ \hline
\cite{Kim2018} Auto-Meta (with Transduction F=12) & $57.58\pm 0.20\%$ \\ \hline
\cite{Bertinetto2019} R2-D2 & $51.8\pm 0.2\%$ \\ \hline
\cite{Bertinetto2019} LR-D2 with 5 iterations & $51.9\pm 0.2\%$ \\ \hline
\cite{Bertinetto2019} LR-D2 with 1 iteration & $51.0\pm 0.2\%$ \\ \hline
\cite{Lee2019} MetaOptNet-RidgeReg & $61.41 \pm 0.61\%$ \\ \hline
\cite{Lee2019} MetaOptNet-SVM & $62.64 \pm 0.61\%$ \\ \hline
\cite{Lee2019} MetaOptNet-SVM-trainval & $64.09 \pm 0.62\%$ \\ \hline
\cite{Liu2019} TPN & $55.51\pm 0.86\%$ \\ \hline
\cite{Rusu2019} LEO & $61.76 \pm 0.08\%$ \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"Accuracy"
],
[
"[101] LLAMA",
"49.40 1.83%\n±"
],
[
"[62] BMAML",
"53.8 1.46%\n±"
],
[
"[126] PLATIPUS",
"50.13 1.86%\n±"
],
[
"[18] VERSA",
"53.40 1.82%\n±"
],
[
"[93] Activation to parameter with neural network",
"54.53 0.40%\n±"
],
[
"[93] wide residual network WRN",
"59.60 0.41%\n±"
],
[
"[21] AdaCNN with DF",
"48.34 0.68%\n±"
],
[
"[21] AdaResNet with DF",
"56.88 0.62%\n±"
],
[
"[14] Matching Net",
"46.6%"
],
[
"[15] Prototypical Net",
"46.61 0.78%\n±"
],
[
"[105] PVRT",
"52.68 0.51%\n±"
],
[
"[95] Prototypical Network+TRAML",
"60.31 0.48%\n±"
],
[
"[17] Relation Net",
"50.44 0.82%\n±"
],
[
"[94] SNAIL",
"45.1%"
],
[
"[84] TADAM with α, AT and TC",
"58.5 0.3%\n±"
],
[
"[84] TADAM without tuning",
"56.5 0.4%\n±"
],
[
"[96] Dynamic few-shot with C128F feature extractor",
"55.95 0.84%\n±"
],
[
"[96] with ResNet feature extractor",
"55.45 0.89%\n±"
],
[
"[96] with cosine classifier and attention based weight generator",
"58.55 0.50%\n±"
],
[
"[96] with cosine classifier and no weight generator",
"54.55 0.44%\n±"
],
[
"[89] mAP-SSVM",
"50.32 0.80%\n±"
],
[
"[89] mAP-DLM",
"50.28 0.80%\n±"
],
[
"[12] MAML",
"48.7 1.84%\n±"
],
[
"[23] MetaNet",
"49.21 0.96%\n±"
],
[
"[60] Reptile",
"49.97 0.32%\n±"
],
[
"[16] Meta-SGD",
"50.47 1.87%\n±"
],
[
"[5] Meta-LSTM",
"43.44 0.77%\n±"
],
[
"[123] Auto-Meta (without Transduction F=10)",
"49.58 0.20%\n±"
],
[
"[123] Auto-Meta (with Transduction F=12)",
"57.58 0.20%\n±"
],
[
"[85] R2-D2",
"51.8 0.2%\n±"
],
[
"[85] LR-D2 with 5 iterations",
"51.9 0.2%\n±"
],
[
"[85] LR-D2 with 1 iteration",
"51.0 0.2%\n±"
],
[
"[81] MetaOptNet-RidgeReg",
"61.41 0.61%\n±"
],
[
"[81] MetaOptNet-SVM",
"62.64 0.61%\n±"
],
[
"[81] MetaOptNet-SVM-trainval",
"64.09 0.62%\n±"
],
[
"[98] TPN",
"55.51 0.86%\n±"
],
[
"[99] LEO",
"61.76 0.08%\n±"
]
] | 0.596361 | null | null |
0 | 2201.08183v1 | 6 | [
115.55500030517578,
126.29866536458333,
476.3999938964844,
189.26300048828125
] | \begin{table}[h!]
\centering
\caption{Summary of CMS collider datasets used from CERN Open Data Portal}
\begin{tabular}{ |c|l|c| }
\hline
$\sqrt{s}$ & \multirow{2}{*}{Dataset} & \multirow{2}{*}{Ref.} \\
(TeV) & & \\
\hline \hline
0.9 & /MinimumBias/Commissioning10-07JunReReco\_900GeV/RECO & \cite{data900GeV} \\
\hline
7 & /MinimumBias/Run2010A-Apr21ReReco-v1/AOD & \cite{data7TeV} \\
\hline
8 & /MinimumBias/Run2012B-22Jan2013-v1/AOD & \cite{data8TeV} \\
\hline
\end{tabular}
\label{tab:RECOdatasets}
\end{table} | [
[
"√\ns\n(TeV)",
"Dataset",
"Ref."
],
[
"0.9",
"/MinimumBias/Commissioning10-07JunReReco 900GeV/RECO",
"[13]"
],
[
"7",
"/MinimumBias/Run2010A-Apr21ReReco-v1/AOD",
"[14]"
],
[
"8",
"/MinimumBias/Run2012B-22Jan2013-v1/AOD",
"[15]"
]
] | 0.809278 | null | null |
1 | 2201.08183v1 | 6 | [
124.2490005493164,
235.8876749674479,
467.70599365234375,
334.718017578125
] | \begin{table}[h!]
\centering
\caption{Summary of Monte Carlo datasets used from CERN Open Data Portal}
\begin{tabular}{ |c|l|c| }
\hline
$\sqrt{s}$ & \multirow{2}{*}{Dataset} & \multirow{2}{*}{Ref.} \\
(TeV) & & \\
\hline \hline
\multirow{2}{*}{0.9} & /MinBias\_TuneZ2\_900GeV\_pythia6\_cff\_py & \multirow{2}{*}{\cite{mc900GeV}}\\
& \_GEN\_SIM\_START311\_V2\_Dec11\_v2 & \\
\hline
\multirow{2}{*}{7} & /MinBias\_TuneZ2star\_7TeV\_pythia6/Summer12-LowPU2010 & \multirow{2}{*}{\cite{mc7TeV}} \\
& \_DR42-PU\_S0\_START42\_V17B-v1/AODSIM & \\
\hline
\multirow{2}{*}{8} & /MinBias\_TuneZ2star\_8TeV-pythia6/Summer12\_DR53X-PU & \multirow{2}{*}{\cite{mc8TeV}} \\
& \_S10\_START53\_V7A-v1/AODSIM & \\
\hline
\end{tabular}
\label{tab:MCdatasets}
\end{table} | [
[
"√\ns\n(TeV)",
"Dataset",
"Ref."
],
[
"0.9",
"/MinBias TuneZ2 900GeV pythia6 cff py\nGEN SIM START311 V2 Dec11 v2",
"[16]"
],
[
"7",
"/MinBias TuneZ2star 7TeV pythia6/Summer12-LowPU2010\nDR42-PU S0 START42 V17B-v1/AODSIM",
"[17]"
],
[
"8",
"/MinBias TuneZ2star 8TeV-pythia6/Summer12 DR53X-PU\nS10 START53 V7A-v1/AODSIM",
"[18]"
]
] | 0.70318 | null | null |
0 | 2303.05840v1 | 22 | [
126.80801391601562,
270.18572998046875,
485.19182205200195,
337.9849853515625
] | \begin{table}[h!]
\resizebox{\textwidth}{!}{%
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Algorithm & Objective value & $\err_{L^2}$ & $\err_{H^1_0}$ & Iterations & Time \\
\hline
Projection \eqref{eq:P} & 1.281e-02 & 1.731e-02 & 7.973e-02 & 10 & 0.477 \\
\hline
Projection with stepsize \eqref{eq:PS} & 1.248e-02 & 8.869e-03 & 7.895e-02 & 17 & 0.554 \\
\hline
Douglas-Rachford \eqref{eq:DR1} & 1.305e-02 & 7.878e-03 & 7.891e-02 & 99 & 9.137 \\
\hline
Douglas-Rachford \eqref{eq:DR2} & 1.299e-02 & 8.292e-03 & 7.870e-02 & 52 & 3.846 \\
\hline
Algorithm \ref{alg:local_search_POD} with initialization by \eqref{eq:PS} & 1.247e-02 & 8.800e-03 & 7.886e-02 & 4 & 181.242 \\
\hline
Algorithm \ref{alg:local_search_POD} with exact initialization & 1.248e-02 & 8.800e-03 & 7.887e-02 & 21 & 4351.329 \\
\hline
\end{tabular}}
\caption{Fourier's law with $|\DD_k^\loc| = 11025$ and $h_k := \sqrt2/20$.} \label{tab:fourier}
\end{table} | [
[
"Algorithm",
"Objective value",
"err L2",
"err H01",
"Iterations",
"Time"
],
[
"Projection (PG)",
"1.281e-02",
"1.731e-02",
"7.973e-02",
"10",
"0.477"
],
[
"Projection with stepsize (PS)",
"1.248e-02",
"8.869e-03",
"7.895e-02",
"17",
"0.554"
],
[
"Douglas-Rachford (DR1)",
"1.305e-02",
"7.878e-03",
"7.891e-02",
"99",
"9.137"
],
[
"Douglas-Rachford (DR2)",
"1.299e-02",
"8.292e-03",
"7.870e-02",
"52",
"3.846"
],
[
"Algorithm 1 with initialization by (PS)",
"1.247e-02",
"8.800e-03",
"7.886e-02",
"4",
"181.242"
],
[
"Algorithm 1 with exact initialization",
"1.248e-02",
"8.800e-03",
"7.887e-02",
"21",
"4351.329"
]
] | 0.866279 | null | null |
0 | 2205.04731v1 | 12 | [
136.2729949951172,
146.91900634765625,
471.6540568033854,
315.885009765625
] | \begin{table}[t]
%\scriptsize
\caption{$NRMSE$ for ours vs related works}
\centering
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline
% \multirow{Bench.} & \multirow{perc.} & \multicolumn{6}{|c|}{Avg. $NRMSE$ for $iter$=$5$} \\ \cline{3-8}
Bench. & perc. & \multicolumn{6}{|c|}{Avg. $NRMSE$ for $iter$=$5$} \\ \cline{3-8}
& & mean & k-means & KNN & MICE & Datawig & Ours \\ \hline
% \multirow{Wine} & 5 & 0.99 & 0.99 & 1.01 & 0.62 & 0.65 & 0.70 \\ \cline{2-8}
Wine & 5 & 0.99 & 0.99 & 1.01 & 0.62 & 0.65 & 0.70 \\ \cline{2-8}
& 10 & 0.98 & 0.99 & 0.93 & 0.66 & 0.68 & 0.69 \\ \cline{2-8}
& 20 & 0.99 & 1.11 & 0.87 & 0.68 & 0.75 & 0.70 \\ \cline{2-8}
& 30 & 0.98 & 2.03 & 0.88 & 0.82 & 0.78 & 0.74 \\ \hline
% \multirow{Ecoli} & 5 & 0.90 & 0.70 & 0.61 & 0.68 & 0.62 & 0.61 \\ \cline{2-8}
Ecoli & 5 & 0.90 & 0.70 & 0.61 & 0.68 & 0.62 & 0.61 \\ \cline{2-8}
& 10 & 0.81 & 0.61 & 0.73 & 0.63 & 0.67 & 0.59 \\ \cline{2-8}
& 20 & 0.84 & 0.66 & 0.90 & 0.76 & 0.70 & 0.63 \\ \cline{2-8}
& 30 & 0.92 & 0.85 & 1.04 & 1.04 & 0.84 & 0.80 \\ \hline
% \multirow{Polynomials} & 5 & 3.87 & 4.69 & 2.82 & 1.08 & 1.34 & 0.90 \\ \cline{2-8}
Polynomials & 5 & 3.87 & 4.69 & 2.82 & 1.08 & 1.34 & 0.90 \\ \cline{2-8}
& 10 & 4.40 & 5.23 & 3.79 & 1.27 & 1.11 & 0.87 \\ \cline{2-8}
& 20 & 4.20 & 4.5 & 4.19 & 1.45 & 1.25 & 1.59 \\ \cline{2-8}
& 30 & 4.18 & 4.98 & 4.54 & 1.98 & 1.65 & 2.45 \\ \hline
\end{tabular}
\label{nrmse}
\end{table} | [
[
"Bench.",
"perc.",
"Avg. NRMSE for iter=5",
null,
null,
null,
null,
null
],
[
null,
null,
"mean",
"k-means",
"KNN",
"MICE",
"Datawig",
"Ours"
],
[
"Wine",
"5",
"0.99",
"0.99",
"1.01",
"0.62",
"0.65",
"0.70"
],
[
null,
"10",
"0.98",
"0.99",
"0.93",
"0.66",
"0.68",
"0.69"
],
[
null,
"20",
"0.99",
"1.11",
"0.87",
"0.68",
"0.75",
"0.70"
],
[
null,
"30",
"0.98",
"2.03",
"0.88",
"0.82",
"0.78",
"0.74"
],
[
"Ecoli",
"5",
"0.90",
"0.70",
"0.61",
"0.68",
"0.62",
"0.61"
],
[
null,
"10",
"0.81",
"0.61",
"0.73",
"0.63",
"0.67",
"0.59"
],
[
null,
"20",
"0.84",
"0.66",
"0.90",
"0.76",
"0.70",
"0.63"
],
[
null,
"30",
"0.92",
"0.85",
"1.04",
"1.04",
"0.84",
"0.80"
],
[
"Polynomials",
"5",
"3.87",
"4.69",
"2.82",
"1.08",
"1.34",
"0.90"
],
[
null,
"10",
"4.40",
"5.23",
"3.79",
"1.27",
"1.11",
"0.87"
],
[
null,
"20",
"4.20",
"4.5",
"4.19",
"1.45",
"1.25",
"1.59"
],
[
null,
"30",
"4.18",
"4.98",
"4.54",
"1.98",
"1.65",
"2.45"
]
] | 0.40566 | null | null |
1 | 2205.04731v1 | 9 | [
220.3260040283203,
502.23199462890625,
390.92212295532227,
586.7149658203125
] | \begin{table}[b]
% \scriptsize
% \caption{Benchmark Characteristics\label{tab:bench}}
% \begin{tabular}{|c|c|c|c|c|}
% \hline
% Benchmark & Size & \#Features & \#NUM:\#CAT Features\\
% \hline
% Polynomial $^1$& 1000 & 5 & 5:0\\
% Iris $^2$& 150 & 4 & 4:0\\
% Ecoli $^2$& 336 & 8 & \\
% Wine $^2$& 178 & 13 & \\
% Diabetes $^2$& 486 & 20 & \\
% Breast Cancer $^2$& 286 & 9 & \\
% % Bank Market $^3$& & & \\
% \hline
% \end{tabular}
% \end{table} | [
[
"Benchmark",
"Size",
"#Features"
],
[
"Polynomial 1\nIris 2\nEcoli 2\nWine 2\nDiabetes 2\nBreast Cancer 2",
"1000\n150\n336\n178\n486\n286",
"5\n4\n8\n13\n20\n9"
]
] | 0.632302 | null | null |
2 | 2205.04731v1 | 13 | [
133.76800537109375,
146.91900634765625,
529.1200103759766,
267.666015625
] | \begin{table}[t]
%\scriptsize
\caption{$Prediction$ $Accuracy$ and $Fidelity$}
\centering
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline
% \multirow{Bench.} & \multirow{perc.} & \multicolumn{6}{|c||}{($Prediction Accuracy$, $Fidelity$) for $iter$=$5$} \\ \cline{3-8}
Bench. & perc. & \multicolumn{6}{|c||}{($Prediction$ $Accuracy$, $Fidelity$) for $iter$=$5$} \\ \cline{3-8}
& & mean & k-means & KNN & MICE & Datawig & Ours\\ \hline
% \multirow{Wine} & 5 & 0.88, 0.81 & 0.88, 0.81 & 0.87, 0.79 & 0.87, 0.88 & 0.90, 0.92 & 0.98, 0.85\\ \cline{2-8}
Wine & 5 & 0.88, 0.81 & 0.88, 0.81 & 0.87, 0.79 & 0.87, 0.88 & 0.90, 0.92 & 0.98, 0.85\\ \cline{2-8}
& 10 & 0.85, 0.74 & 0.77, 0.72 & 0.83, 0.75 & 0.81, 0.79 & 0.88, 0.85 & 0.98, 0.85 \\ \cline{2-8}
& 20 & 0.79, 0.72 & 0.83, 0.81 & 0.79, 0.77 & 0.88, 0.79& 0.85, 0.77 & 1, 0.87 \\ \cline{2-8}
& 30 & 0.83, 0.74 & 0.64, 0.62 & 0.81, 0.75 & 0.75, 0.77 & 0.83, 0.79 & 0.92, 0.79 \\ \hline
% \multirow{Iris} & 5 & 0.95, 0.95 & 0.95, 0.95 & 1, 1 & 0.97, 0.97 & 0.97, 0.97 & 1, 1 \\ \cline{2-8}
Iris & 5 & 0.95, 0.95 & 0.95, 0.95 & 1, 1 & 0.97, 0.97 & 0.97, 0.97 & 1, 1 \\ \cline{2-8}
& 10 & 0.84, 0.84 & 0.95, 0.95 & 1, 1 & 0.95, 0.95 & 1, 1 & 1, 1 \\ \cline{2-8}
& 20 & 0.75, 0.75 & 0.91, 0.91 & 0.91, 0.91 & 0.95, 0.95 & 0.91, 0.91 & 0.95, 0.95 \\ \cline{2-8}
& 30 & 0.77, 0.77 & 0.91, 0.91 & 0.86, 0.86 & 0.93, 0.93 & 0.95, 0.93 & 0.95, 0.95 \\ \hline
\end{tabular}
\label{tab:accuracy}
\end{table} | [
[
"Bench.",
"perc.",
"(Prediction Accuracy, Fidelity) for iter=5",
null,
null,
null,
null,
null
],
[
null,
null,
"mean",
"k-means",
"KNN",
"MICE",
"Datawig",
"Ours"
],
[
"Wine",
"5",
"0.88, 0.81",
"0.88, 0.81",
"0.87, 0.79",
"0.87, 0.88",
"0.90, 0.92",
"0.98, 0.85"
],
[
null,
"10",
"0.85, 0.74",
"0.77, 0.72",
"0.83, 0.75",
"0.81, 0.79",
"0.88, 0.85",
"0.98, 0.85"
],
[
null,
"20",
"0.79, 0.72",
"0.83, 0.81",
"0.79, 0.77",
"0.88, 0.79",
"0.85, 0.77",
"1, 0.87"
],
[
null,
"30",
"0.83, 0.74",
"0.64, 0.62",
"0.81, 0.75",
"0.75, 0.77",
"0.83, 0.79",
"0.92, 0.79"
],
[
"Iris",
"5",
"0.95, 0.95",
"0.95, 0.95",
"1, 1",
"0.97, 0.97",
"0.97, 0.97",
"1, 1"
],
[
null,
"10",
"0.84, 0.84",
"0.95, 0.95",
"1, 1",
"0.95, 0.95",
"1, 1",
"1, 1"
],
[
null,
"20",
"0.75, 0.75",
"0.91, 0.91",
"0.91, 0.91",
"0.95, 0.95",
"0.91, 0.91",
"0.95, 0.95"
],
[
null,
"30",
"0.77, 0.77",
"0.91, 0.91",
"0.86, 0.86",
"0.93, 0.93",
"0.95, 0.93",
"0.95, 0.95"
]
] | 0.475515 | null | null |
0 | 1812.11560v1 | 6 | [
147.1020050048828,
145.9229736328125,
468.2539978027344,
190.55499267578125
] | \begin{table}[ht]
\caption{Test accuracies for the various sampling strategies on the MNIST-Sparse, MNIST-Clustered, ICIAR Part A and GTEx Skin datasets}
\label{sample-table}
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Test accuracy & MNIST Sparse & MNIST Clust & ICIAR PartA & GTEx Skin \\
\hline
Grid sampling & 0.520 $\pm$ 0.01 & 0.523 $\pm$ 0.01 & 0.776 & 0.826\\
Uniform sampling & 0.759 $\pm$ 0.03 & 0.83 $\pm$ 0.01 & 0.790 & 0.920 \\
Monte-Carlo sampling & \textbf{0.825 $\pm$ 0.02} & \textbf{0.852 $\pm$ 0.03} & \textbf{0.847} & \textbf{0.942} \\
\hline
\end{tabular}
\end{table} | [
[
"Test accuracy",
"MNIST Sparse",
"MNIST Clust",
"ICIAR PartA",
"GTEx Skin"
],
[
"Grid sampling\nUniform sampling\nMonte-Carlo sampling",
"0.520 ± 0.01\n0.759 ± 0.03\n0.825 ± 0.02",
"0.523 ± 0.01\n0.83 ± 0.01\n0.852 ± 0.03",
"0.776\n0.790\n0.847",
"0.826\n0.920\n0.942"
]
] | 0.557018 | null | null |
0 | 2008.10773v1 | 4 | [
60.395729064941406,
300.2820129394531,
293.4418029785156,
367.6289978027344
] | \begin{table}[t]
\centering
\begin{tabular}[c]{|>{\centering\arraybackslash}m{1.8cm}|>{\centering\arraybackslash}m{2cm}|>{\centering\arraybackslash}m{1.8cm}|>{\centering\arraybackslash}m{2cm}|>{\centering\arraybackslash}m{1.2cm}|}
\hline
\multicolumn{2}{|c|}{Batching Scenario}&& \\
Iterations & Samples per iteration& Energy MAE (eV) & Structure MAE (\ang)\\
\hline\hline
20 & 1 & 0.0063 & 0.0037 \\ \hline
10 & 2 & 0.0069 & 0.0063 \\ \hline
5 & 4 & 0.0080 & 0.0067 \\ \hline
\end{tabular}
\caption{Comparison of different offline active learning batching scenarios on the structural relaxation of C/Cu(100). At each iteration, a varying number of queries are randomly made from the generated relaxation. A tradeoff in performance and the number of samples per iteration is observed for a fixed total number of DFT calls $= 20$. All models trained here incorporated the proposed Morse prior.}
\label{table:batch}
\end{table} | [
[
"Batching Scenario\nSamples per\nIterations\niteration",
null,
"Energy\nMAE (eV)",
"Structure\nMAE (˚A)"
],
[
"20",
"1",
"0.0063",
"0.0037"
],
[
"10",
"2",
"0.0069",
"0.0063"
],
[
"5",
"4",
"0.0080",
"0.0067"
]
] | 0.368345 | null | null |
0 | 2105.03523v1 | 1 | [
321.3630065917969,
334.02398681640625,
553.6510009765625,
508.3699951171875
] | \begin{table}[ht]
\begin{table}[!htbp]
\centering
\begin{tabular}{|l|p{5.3cm}|}
\hline
{\bf Term} & {\bf Definition} \\
\hline
SA tool & static analysis tool that analyzes code without running it\\ \hline
FFSA tool & flaw-finding static analysis tool\\ \hline
SA alert & static analysis alert (warning) about a particular type of flaw\\ \hline
Checker & analysis for a particular type of code flaw, by a particular FFSA tool %The checker may simply do syntactic analysis or do deep semantic analysis.
\\ \hline
CheckerID & checker name%, usually a unique string or regular expression in a tool's alerts
\\ \hline
Test suites & repositories of ``benchmark'' programs that are purpose-built to test FFSA tools\\ \hline
Condition & a constraint or property of validity with which code should comply. FFSA tools try to detect if code violates conditions.\\ \hline
Alert fusion & unifying alert information from different tools which map to the same condition and code location\\ \hline
Coding taxonomy & a named set of coding rules, weaknesses, standards, or guidelines\\
\hline
\end{tabular}
\caption{Terminology}
\label{table:terminology}
\end{table} | [
[
"Term",
"Definition"
],
[
"SA tool",
"static analysis tool that analyzes code without\nrunning it"
],
[
"FFSA tool",
"flaw-finding static analysis tool"
],
[
"SA alert",
"static analysis alert (warning) about a particu-\nlar type of flaw"
],
[
"Checker",
"analysis for a particular type of code flaw, by\na particular FFSA tool"
],
[
"CheckerID",
"checker name"
],
[
"Test suites",
"repositories of “benchmark” programs that are\npurpose-built to test FFSA tools"
],
[
"Condition",
"a constraint or property of validity with which\ncode should comply. FFSA tools try to detect\nif code violates conditions."
],
[
"Alert fusion",
"unifying alert information from different tools\nwhich map to the same condition and code\nlocation"
],
[
"Coding taxonomy",
"a named set of coding rules, weaknesses, stan-\ndards, or guidelines"
]
] | 0.884354 | null | null |
0 | 2301.13339v1 | 13 | [
123.7750015258789,
148.2919921875,
485.49818725585936,
206.07598876953125
] | \begin{table}[ht!]
\centering
\caption{$l_2$-norm relative error for $K=20$ for examples 1 and 2, and $K=10$ for example 3.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
example & $\bbI_\xi$ & $\bbI_{QTT_0}$ & $\bbI_{QTT_r}$ & $\bbI_{\delta}$ & $\bbI_{RTT}$ & $\bbI_{lr}$\\
\hline
\hline
$1$ & $0.0383$ & $\textbf{0.0028}$ & $0.0102$ & $0.0280_{\delta=0.02}$ & $0.0430$ & -\\ \hline
$2$ & $0.0131$ & $\textbf{0.0011}$ & $0.0075$ & $0.0068_{\delta=0.01}$ & $0.0201$ & -\\ \hline
$3$ & $0.1142$ & $\textbf{0.0151}$ & $0.0447$ & $0.1650_{\delta=0.09}$ & $0.1534$ & $0.0470_{rank=23}$\\ \hline
\end{tabular}
\label{tab:qtt_rel_err}
\end{table} | [
[
"example",
"I\nξ",
"I\nQTT0",
"I\nQTTr",
"I\nδ",
"I\nRTT",
"I\nlr"
],
[
"1",
"0.0383",
"0.0028",
"0.0102",
"0.0280\nδ=0.02",
"0.0430",
"-"
],
[
"2",
"0.0131",
"0.0011",
"0.0075",
"0.0068\nδ=0.01",
"0.0201",
"-"
],
[
"3",
"0.1142",
"0.0151",
"0.0447",
"0.1650\nδ=0.09",
"0.1534",
"0.0470\nrank=23"
]
] | 0.848193 | null | null |
1 | 2301.13339v1 | 15 | [
242.76400756835938,
219.03399658203125,
366.5090026855469,
304.7130126953125
] | \begin{table}[ht!]
\centering
\caption{Data storage for Example 1.}
\begin{tabular}{|c|c|c|}
\hline
K & $f_\xi$ & $\tF_{\xi}$\\
\hline
\hline
$16$ & $65{,}536$ & $2088$ \\ \hline
$20$ & $1{,}048{,}576$ & $2888$ \\ \hline
$24$ & $16{,}777{,}216$ & $3688$ \\ \hline
$26$ & $67{,}108{,}864$ & $4088$ \\ \hline
$28$ & $268{,}435{,}456$ & $4488$ \\ \hline
\end{tabular}
\label{tab:data_storage_e1}
\end{table} | [
[
"K",
"f\nξ",
"Fξ"
],
[
"16",
"65,536",
"2088"
],
[
"20",
"1,048,576",
"2888"
],
[
"24",
"16,777,216",
"3688"
],
[
"26",
"67,108,864",
"4088"
],
[
"28",
"268,435,456",
"4488"
]
] | 0.880734 | null | null |
2 | 2301.13339v1 | 19 | [
242.76400756835938,
204.177001953125,
366.0662758567116,
275.90802001953125
] | \begin{table}[ht!]
\centering
\caption{Data storage for Example 3.}
\begin{tabular}{|c|c|c|}
\hline
K & $\bbf_\xi$ & $\tF_\xi$\\
\hline
\hline
$8$ & $65{,}536$ & $2088$ \\ \hline
$10$ & $1{,}048{,}576$ & $2888$ \\ \hline
$12$ & $16{,}777{,}216$ & $3688$ \\ \hline
$14$ & $268{,}435{,}456$ & $4488$ \\ \hline
\end{tabular}
\label{tab:data_storage_e3}
\end{table} | [
[
"K",
"f\nξ",
"Fξ"
],
[
"8",
"65,536",
"2088"
],
[
"10",
"1,048,576",
"2888"
],
[
"12",
"16,777,216",
"3688"
],
[
"14",
"268,435,456",
"4488"
]
] | 0.844444 | null | null |
0 | 1308.4565v2 | 11 | [
312.14712142944336,
53.33697509765625,
564.7523803710938,
120.38897705078125
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.1em}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
Learner & 1 &2 &3 & 4\\
\hline
Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\
Function (S1) & Logistic & Voted Perceptron &J48 & Always $0$\\
\hline
Error & 47, & 53, & 47, & 47, \\
percentage (S1) & 3 & 4 & 47 & 47\\
\hline
Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\
Function (S2) & Random & Random & J48 & Always $0$ \\
\hline
Error & 47, & 53, & 47, & 47, \\
percentage (S2) & 50 & 50 & 47 & 47 \\
\hline
\end{tabular}
}
\add{\vspace{-0.1in}}
\caption{Base classification functions used by the learners and their error percentages on the test data.}
\vspace{-0.25in}
\label{tab:sim_setup}
\end{table} | [
[
"Learner",
"1",
"2",
"3",
"4"
],
[
"Classification\nFunction (S1)",
"Naive Bayes,\nLogistic",
"Always 1,\nVoted Perceptron",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S1)",
"47,\n3",
"53,\n4",
"47,\n47",
"47,\n47"
],
[
"Classification\nFunction (S2)",
"Naive Bayes,\nRandom",
"Always 1,\nRandom",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S2)",
"47,\n50",
"53,\n50",
"47,\n47",
"47,\n47"
]
] | 0.454432 | null | null |
1 | 1308.4565v2 | 11 | [
312.14712142944336,
152.52099609375,
564.7523803710938,
199.4580078125
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.3em}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline
& $D_1(t)$ & $D_2(t)$ & $D_3(t)$ & $m_T$ & $A$ & $p$ \\
\hline
(Z1) CoS & $t^{1/8} \log t$ & $2 t^{1/8} \log t$ & $t^{1/8} \log t$ & $\lceil T \rceil^{1/4}$ & & \\
\hline
(Z1) DCZA & $t^{1/8} \log t$ & $2 t^{1/8} \log t$ & $t^{1/8} \log t$ & & $1$ & $4$ \\
\hline
(Z2) CoS & $t^{1/2} \log t$ & $2 t^{1/2} \log t$ & $t^{1/2} \log t$ & $\lceil T \rceil^{1/4}$ & & \\
\hline
(Z2) DCZA & $t^{2/p} \log t$ & $2 t^{2/p} \log t$ & $t^{2/p} \log t$ & & $1$ & $(3+\sqrt{17})/2$ \\
\hline
\end{tabular}
}
\add{\vspace{-0.05in}}
\caption{Input parameters for CoS and DCZA for two different parameter sets Z1 and Z2.}
\label{tab:par_setup}
\add{\vspace{-0.4in}}
\end{table} | [
[
"",
"D1(t)",
"D2(t)",
"D3(t)",
"mT",
"A",
"p"
],
[
"(Z1) CoS",
"t1/8 log t",
"2t1/8 log t",
"t1/8 log t",
"⌈T⌉1/4",
"",
""
],
[
"(Z1) DCZA",
"t1/8 log t",
"2t1/8 log t",
"t1/8 log t",
"",
"1",
"4"
],
[
"(Z2) CoS",
"t1/2 log t",
"2t1/2 log t",
"t1/2 log t",
"⌈T⌉1/4",
"",
""
],
[
"(Z2) DCZA",
"t2/p log t",
"2t2/p log t",
"t2/p log t",
"",
"1",
"√\n(3 + 17)/2"
]
] | 0.52 | null | null |
2 | 1308.4565v2 | 12 | [
56.45712375640869,
53.33697509765625,
286.24386978149414,
107.27099609375
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.3em}
\begin{tabular}{|l|c|c|}
\hline
(Parameters) Algorithm & (S1) Error $\%$ & (S2) Error $\%$ \\
\hline
(Z1) CoS (previous label as context) & 0.7 & 0.9 \\
\hline
(Z1) DCZA (previous label as context) & 1.4 & 1.9 \\
\hline
AdaBoost & 4.8 & 53 \\
\hline
($w=100$) SWA & 2.4 & 2.7 \\
\hline
($w=1000$) SWA & 11 & 11 \\
\hline
(Z1) CoS (no-context) & 5.2 & 49.8 \\
\hline
\end{tabular}
}
\add{\vspace{-0.05in}}
\caption{Comparison of error percentages of CoS, DCZA, AdaBoost, SWA and CoS with no context.}
\label{tab:error_comp}
\vspace{-0.2in}
%\vspace{-0.4in}
\end{table} | [
[
"(Parameters) Algorithm",
"(S1) Error %",
"(S2) Error %"
],
[
"(Z1) CoS (previous label as context)",
"0.7",
"0.9"
],
[
"(Z1) DCZA (previous label as context)",
"1.4",
"1.9"
],
[
"AdaBoost",
"4.8",
"53"
],
[
"(w = 100) SWA",
"2.4",
"2.7"
],
[
"(w = 1000) SWA",
"11",
"11"
],
[
"(Z1) CoS (no-context)",
"5.2",
"49.8"
]
] | 0.766031 | null | null |
3 | 1308.4565v2 | 12 | [
49.136778089735245,
146.8626708984375,
302.0871107313368,
208.0789794921875
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.3em}
\begin{tabular}{|l|c|c|c|}
\hline
(Setting) & Error $\%$ & Training $\%$ & Exploration $\%$ \\
Algorithm & context=A1,A2,A3 & context=A1,A2,A3 & context=A1,A2,A3 \\
\hline
(Z1,S1) CoS & 0.7, 4.6, 4.8 & 0.3, 3, 2.8 & 1.4, 6.3, 8.5 \\
\hline
(Z1,S1) DCZA & 1.4, 3.5, 3.2 & 0.4, 1.3, 0.9 & 4, 5.9, 7 \\
\hline
(Z1,S2) CoS & 0.9, 39, 10 & 0.3, 3, 2.8 & 1.5, 6.5, 8.6 \\
\hline
(Z1,S2) DCZA & 1.9, 38, 4.8 & 0.4, 1.3, 1 & 4, 6, 7 \\
\hline
(Z2,S1) CoS & 16, 14, 41 & 8.5, 16, 79 & 55 27 20\\
\hline
(Z2,S1) DCZA & 31, 29, 29 & 33 19 87 & 66 66 12 \\
\hline
\end{tabular}
}
\add{\vspace{-0.05in}}
\caption{Error, training and exploration percentages of CoS and DCZA under different simulation and parameter settings. (A1) context as the previous label, (A2) context as srcbytes feature, (A3) context as time.}
\label{tab:sim_results}
%\vspace{-0.4in}
\vspace{-0.2in}
\end{table} | [
[
"(Setting)\nAlgorithm",
"Error %\ncontext=A1,A2,A3",
"Training %\ncontext=A1,A2,A3",
"Exploration %\ncontext=A1,A2,A3"
],
[
"(Z1,S1) CoS",
"0.7, 4.6, 4.8",
"0.3, 3, 2.8",
"1.4, 6.3, 8.5"
],
[
"(Z1,S1) DCZA",
"1.4, 3.5, 3.2",
"0.4, 1.3, 0.9",
"4, 5.9, 7"
],
[
"(Z1,S2) CoS",
"0.9, 39, 10",
"0.3, 3, 2.8",
"1.5, 6.5, 8.6"
],
[
"(Z1,S2) DCZA",
"1.9, 38, 4.8",
"0.4, 1.3, 1",
"4, 6, 7"
],
[
"(Z2,S1) CoS",
"16, 14, 41",
"8.5, 16, 79",
"55 27 20"
],
[
"(Z2,S1) DCZA",
"31, 29, 29",
"33 19 87",
"66 66 12"
]
] | 0.667323 | null | null |
4 | 1308.4565v2 | 12 | [
315.0172058105469,
53.33697509765625,
557.1978149414062,
84.12298583984375
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.3em}
\begin{tabular}{|l|c|c|c|}
\hline
(Setting) & Error $\%$ & Training $\%$ & Exploration $\%$ \\
Algorithm & context=A1,A2,A3 & context=A1,A2,A3 & context=A1,A2,A3 \\
\hline
(Z1,S1) CoS & 1.8, 4.1, 6.7 & 2, 9.2, 10.3 & 1.4, 3.6, 8.5 \\
\hline
(Z1,S2) CoS & 24.6, 44.3, 31.3 & 2, 9.2, 10.3 & 1.4, 3.6, 8.5 \\
\hline
\end{tabular}
}
\caption{Error, training and exploration percentages of CoS for worst-case correlation between the learners for three different context types.}
\label{tab:sim_results2}
\vspace{-0.2in}
%\vspace{-0.4in}
\end{table} | [
[
"(Setting)\nAlgorithm",
"Error %\ncontext=A1,A2,A3",
"Training %\ncontext=A1,A2,A3",
"Exploration %\ncontext=A1,A2,A3"
],
[
"(Z1,S1) CoS",
"1.8, 4.1, 6.7",
"2, 9.2, 10.3",
"1.4, 3.6, 8.5"
],
[
"(Z1,S2) CoS",
"24.6, 44.3, 31.3",
"2, 9.2, 10.3",
"1.4, 3.6, 8.5"
]
] | 0.560137 | null | null |
5 | 1308.4565v2 | 12 | [
315.0172058105469,
131.89801025390625,
557.1978149414062,
162.83367919921875
] | \begin{table}[t]
\centering
{\fontsize{8}{6}\selectfont
\setlength{\tabcolsep}{.3em}
\begin{tabular}{|l|c|c|}
\hline
ensemble CoS & context-dependent weights & context-indep weights \\
Parameters: Z1 & S1, S2 & S1, S2 \\
\hline
total error $\%$ & 5.9, 10.2 & 3.8, 4.94 \\
\hline
exploitation error $\%$ & 2.9, 6.8 & 1.76, 2.17 \\
\hline
\end{tabular}
}
\caption{Total error percentage, and error percentage of the errors made in exploitation steps for CoS with ensemble learner.}
\label{tab:weights}
%\vspace{-0.4in}
\vspace{-0.2in}
\end{table} | [
[
"ensemble CoS\nParameters: Z1",
"context-dependent weights\nS1, S2",
"context-indep weights\nS1, S2"
],
[
"total error %",
"5.9, 10.2",
"3.8, 4.94"
],
[
"exploitation error %",
"2.9, 6.8",
"1.76, 2.17"
]
] | 0.591006 | null | null |