code
stringlengths 64
7.01k
| docstring
stringlengths 2
15.8k
| text
stringlengths 144
19.2k
|
---|---|---|
#vtb
def get_subject(self, msg):
text, encoding = decode_header(msg[])[-1]
try:
text = text.decode(encoding)
except AttributeError:
pass
return text
|
Extracts the subject line from an EmailMessage object.
|
### Input:
Extracts the subject line from an EmailMessage object.
### Response:
#vtb
def get_subject(self, msg):
text, encoding = decode_header(msg[])[-1]
try:
text = text.decode(encoding)
except AttributeError:
pass
return text
|
#vtb
def tradingStatus(symbol=None, token=, version=):
_raiseIfNotStr(symbol)
if symbol:
return _getJson( + symbol, token, version)
return _getJson(, token, version)
|
The Trading status message is used to indicate the current trading status of a security.
For IEX-listed securities, IEX acts as the primary market and has the authority to institute a trading halt or trading pause in a security due to news dissemination or regulatory reasons.
For non-IEX-listed securities, IEX abides by any regulatory trading halts and trading pauses instituted by the primary or listing market, as applicable.
IEX disseminates a full pre-market spin of Trading status messages indicating the trading status of all securities.
In the spin, IEX will send out a Trading status message with βTβ (Trading) for all securities that are eligible for trading at the start of the Pre-Market Session.
If a security is absent from the dissemination, firms should assume that the security is being treated as operationally halted in the IEX Trading System.
After the pre-market spin, IEX will use the Trading status message to relay changes in trading status for an individual security. Messages will be sent when a security is:
Halted
Paused*
Released into an Order Acceptance Period*
Released for trading
*The paused and released into an Order Acceptance Period status will be disseminated for IEX-listed securities only. Trading pauses on non-IEX-listed securities will be treated simply as a halt.
https://iexcloud.io/docs/api/#deep-trading-status
Args:
symbol (string); Ticker to request
token (string); Access token
version (string); API version
Returns:
dict: result
|
### Input:
The Trading status message is used to indicate the current trading status of a security.
For IEX-listed securities, IEX acts as the primary market and has the authority to institute a trading halt or trading pause in a security due to news dissemination or regulatory reasons.
For non-IEX-listed securities, IEX abides by any regulatory trading halts and trading pauses instituted by the primary or listing market, as applicable.
IEX disseminates a full pre-market spin of Trading status messages indicating the trading status of all securities.
In the spin, IEX will send out a Trading status message with βTβ (Trading) for all securities that are eligible for trading at the start of the Pre-Market Session.
If a security is absent from the dissemination, firms should assume that the security is being treated as operationally halted in the IEX Trading System.
After the pre-market spin, IEX will use the Trading status message to relay changes in trading status for an individual security. Messages will be sent when a security is:
Halted
Paused*
Released into an Order Acceptance Period*
Released for trading
*The paused and released into an Order Acceptance Period status will be disseminated for IEX-listed securities only. Trading pauses on non-IEX-listed securities will be treated simply as a halt.
https://iexcloud.io/docs/api/#deep-trading-status
Args:
symbol (string); Ticker to request
token (string); Access token
version (string); API version
Returns:
dict: result
### Response:
#vtb
def tradingStatus(symbol=None, token=, version=):
_raiseIfNotStr(symbol)
if symbol:
return _getJson( + symbol, token, version)
return _getJson(, token, version)
|
#vtb
def _get_param_names(self):
template = Template(self.yaml_string)
names = []
for match in re.finditer(template.pattern, template.template):
name = match.group() or match.group()
assert name is not None
names.append(name)
return names
|
Get mappable parameters from YAML.
|
### Input:
Get mappable parameters from YAML.
### Response:
#vtb
def _get_param_names(self):
template = Template(self.yaml_string)
names = []
for match in re.finditer(template.pattern, template.template):
name = match.group() or match.group()
assert name is not None
names.append(name)
return names
|
#vtb
def acquire_hosting_device_slots(self, context, hosting_device, resource,
resource_type, resource_service, num,
exclusive=False):
bound = hosting_device[]
if ((bound is not None and bound != resource[]) or
(exclusive and not self._exclusively_used(context, hosting_device,
resource[]))):
LOG.debug(
,
{: num,
: if bound is None else bound + ,
: hosting_device[], : resource[]})
return False
with context.session.begin(subtransactions=True):
res_info = {: resource, : resource_type,
: resource_service}
slot_info, query = self._get_or_create_slot_allocation(
context, hosting_device, res_info)
if slot_info is None:
LOG.debug(
,
{: num, : hosting_device[],
: resource[]})
return False
new_allocation = num + slot_info.num_allocated
if hosting_device[][] < new_allocation:
LOG.debug(
,
{: num, : hosting_device[],
: resource[]})
self._dispatch_pool_maintenance_job(hosting_device[])
return False
if exclusive and bound is None:
self._update_hosting_device_exclusivity(
context, hosting_device, resource[])
bound = resource[]
elif not exclusive and bound is not None:
self._update_hosting_device_exclusivity(context,
hosting_device, None)
bound = None
slot_info.num_allocated = new_allocation
context.session.add(slot_info)
self._dispatch_pool_maintenance_job(hosting_device[])
LOG.info(
,
{: num, : if bound is None else bound + ,
: new_allocation, : hosting_device[],
: resource[]})
return True
|
Assign <num> slots in <hosting_device> to logical <resource>.
If exclusive is True the hosting device is bound to the resource's
tenant. Otherwise it is not bound to any tenant.
Returns True if allocation was granted, False otherwise.
|
### Input:
Assign <num> slots in <hosting_device> to logical <resource>.
If exclusive is True the hosting device is bound to the resource's
tenant. Otherwise it is not bound to any tenant.
Returns True if allocation was granted, False otherwise.
### Response:
#vtb
def acquire_hosting_device_slots(self, context, hosting_device, resource,
resource_type, resource_service, num,
exclusive=False):
bound = hosting_device[]
if ((bound is not None and bound != resource[]) or
(exclusive and not self._exclusively_used(context, hosting_device,
resource[]))):
LOG.debug(
,
{: num,
: if bound is None else bound + ,
: hosting_device[], : resource[]})
return False
with context.session.begin(subtransactions=True):
res_info = {: resource, : resource_type,
: resource_service}
slot_info, query = self._get_or_create_slot_allocation(
context, hosting_device, res_info)
if slot_info is None:
LOG.debug(
,
{: num, : hosting_device[],
: resource[]})
return False
new_allocation = num + slot_info.num_allocated
if hosting_device[][] < new_allocation:
LOG.debug(
,
{: num, : hosting_device[],
: resource[]})
self._dispatch_pool_maintenance_job(hosting_device[])
return False
if exclusive and bound is None:
self._update_hosting_device_exclusivity(
context, hosting_device, resource[])
bound = resource[]
elif not exclusive and bound is not None:
self._update_hosting_device_exclusivity(context,
hosting_device, None)
bound = None
slot_info.num_allocated = new_allocation
context.session.add(slot_info)
self._dispatch_pool_maintenance_job(hosting_device[])
LOG.info(
,
{: num, : if bound is None else bound + ,
: new_allocation, : hosting_device[],
: resource[]})
return True
|
#vtb
def compact(self, term_doc_matrix):
rank_df = self.scorer.get_rank_df(term_doc_matrix)
return self._prune_higher_ranked_terms(term_doc_matrix, rank_df, self.rank)
|
Parameters
----------
term_doc_matrix : TermDocMatrix
Term document matrix object to compact
Returns
-------
TermDocMatrix
|
### Input:
Parameters
----------
term_doc_matrix : TermDocMatrix
Term document matrix object to compact
Returns
-------
TermDocMatrix
### Response:
#vtb
def compact(self, term_doc_matrix):
rank_df = self.scorer.get_rank_df(term_doc_matrix)
return self._prune_higher_ranked_terms(term_doc_matrix, rank_df, self.rank)
|
#vtb
def batch_retrieve_overrides_in_course(self, course_id, assignment_overrides_id, assignment_overrides_assignment_id):
path = {}
data = {}
params = {}
path["course_id"] = course_id
params["assignment_overrides[id]"] = assignment_overrides_id
params["assignment_overrides[assignment_id]"] = assignment_overrides_assignment_id
self.logger.debug("GET /api/v1/courses/{course_id}/assignments/overrides with query params: {params} and form data: {data}".format(params=params, data=data, **path))
return self.generic_request("GET", "/api/v1/courses/{course_id}/assignments/overrides".format(**path), data=data, params=params, all_pages=True)
|
Batch retrieve overrides in a course.
Returns a list of specified overrides in this course, providing
they target sections/groups/students visible to the current user.
Returns null elements in the list for requests that were not found.
|
### Input:
Batch retrieve overrides in a course.
Returns a list of specified overrides in this course, providing
they target sections/groups/students visible to the current user.
Returns null elements in the list for requests that were not found.
### Response:
#vtb
def batch_retrieve_overrides_in_course(self, course_id, assignment_overrides_id, assignment_overrides_assignment_id):
path = {}
data = {}
params = {}
path["course_id"] = course_id
params["assignment_overrides[id]"] = assignment_overrides_id
params["assignment_overrides[assignment_id]"] = assignment_overrides_assignment_id
self.logger.debug("GET /api/v1/courses/{course_id}/assignments/overrides with query params: {params} and form data: {data}".format(params=params, data=data, **path))
return self.generic_request("GET", "/api/v1/courses/{course_id}/assignments/overrides".format(**path), data=data, params=params, all_pages=True)
|
#vtb
def _set_predictor(self, predictor):
if predictor is self._predictor:
return self
if self.data is not None:
self._predictor = predictor
return self._free_handle()
else:
raise LightGBMError("Cannot set predictor after freed raw data, "
"set free_raw_data=False when construct Dataset to avoid this.")
|
Set predictor for continued training.
It is not recommended for user to call this function.
Please use init_model argument in engine.train() or engine.cv() instead.
|
### Input:
Set predictor for continued training.
It is not recommended for user to call this function.
Please use init_model argument in engine.train() or engine.cv() instead.
### Response:
#vtb
def _set_predictor(self, predictor):
if predictor is self._predictor:
return self
if self.data is not None:
self._predictor = predictor
return self._free_handle()
else:
raise LightGBMError("Cannot set predictor after freed raw data, "
"set free_raw_data=False when construct Dataset to avoid this.")
|
#vtb
def split(self, bits_count):
result = []
array = WBinArray(self.__value, self.__size)
if (len(array) % bits_count) > 0:
array.resize(len(array) + (bits_count - (len(array) % bits_count)))
while len(array):
result.append(WBinArray(array[:bits_count], bits_count))
array = array[bits_count:]
return result
|
Split array into smaller parts. Each small array is fixed-length WBinArray (length of that array is
bits_count).
:param bits_count: array length
:return: list of WBinArray
|
### Input:
Split array into smaller parts. Each small array is fixed-length WBinArray (length of that array is
bits_count).
:param bits_count: array length
:return: list of WBinArray
### Response:
#vtb
def split(self, bits_count):
result = []
array = WBinArray(self.__value, self.__size)
if (len(array) % bits_count) > 0:
array.resize(len(array) + (bits_count - (len(array) % bits_count)))
while len(array):
result.append(WBinArray(array[:bits_count], bits_count))
array = array[bits_count:]
return result
|
#vtb
def check_differences(self):
logger.info("Check that mail differences are within the limits.")
if self.conf.size_threshold < 0:
logger.info("Skip checking for size differences.")
if self.conf.content_threshold < 0:
logger.info("Skip checking for content differences.")
if self.conf.size_threshold < 0 and self.conf.content_threshold < 0:
return
for mail_a, mail_b in combinations(self.pool, 2):
if self.conf.size_threshold > -1:
size_difference = abs(mail_a.size - mail_b.size)
logger.debug("{} and {} differs by {} bytes in size.".format(
mail_a, mail_b, size_difference))
if size_difference > self.conf.size_threshold:
raise SizeDiffAboveThreshold
if self.conf.content_threshold > -1:
content_difference = self.diff(mail_a, mail_b)
logger.debug(
"{} and {} differs by {} bytes in content.".format(
mail_a, mail_b, content_difference))
if content_difference > self.conf.content_threshold:
if self.conf.show_diff:
logger.info(self.pretty_diff(mail_a, mail_b))
raise ContentDiffAboveThreshold
|
In-depth check of mail differences.
Compare all mails of the duplicate set with each other, both in size
and content. Raise an error if we're not within the limits imposed by
the threshold setting.
|
### Input:
In-depth check of mail differences.
Compare all mails of the duplicate set with each other, both in size
and content. Raise an error if we're not within the limits imposed by
the threshold setting.
### Response:
#vtb
def check_differences(self):
logger.info("Check that mail differences are within the limits.")
if self.conf.size_threshold < 0:
logger.info("Skip checking for size differences.")
if self.conf.content_threshold < 0:
logger.info("Skip checking for content differences.")
if self.conf.size_threshold < 0 and self.conf.content_threshold < 0:
return
for mail_a, mail_b in combinations(self.pool, 2):
if self.conf.size_threshold > -1:
size_difference = abs(mail_a.size - mail_b.size)
logger.debug("{} and {} differs by {} bytes in size.".format(
mail_a, mail_b, size_difference))
if size_difference > self.conf.size_threshold:
raise SizeDiffAboveThreshold
if self.conf.content_threshold > -1:
content_difference = self.diff(mail_a, mail_b)
logger.debug(
"{} and {} differs by {} bytes in content.".format(
mail_a, mail_b, content_difference))
if content_difference > self.conf.content_threshold:
if self.conf.show_diff:
logger.info(self.pretty_diff(mail_a, mail_b))
raise ContentDiffAboveThreshold
|
#vtb
def avgwave(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths).value
y = self(x).value
num = np.trapz(y * x, x=x)
den = np.trapz(y, x=x)
if den == 0:
avg_wave = 0.0
else:
avg_wave = abs(num / den)
return avg_wave * self._internal_wave_unit
|
Calculate the :ref:`average wavelength <synphot-formula-avgwv>`.
Parameters
----------
wavelengths : array-like, `~astropy.units.quantity.Quantity`, or `None`
Wavelength values for sampling.
If not a Quantity, assumed to be in Angstrom.
If `None`, `waveset` is used.
Returns
-------
avg_wave : `~astropy.units.quantity.Quantity`
Average wavelength.
|
### Input:
Calculate the :ref:`average wavelength <synphot-formula-avgwv>`.
Parameters
----------
wavelengths : array-like, `~astropy.units.quantity.Quantity`, or `None`
Wavelength values for sampling.
If not a Quantity, assumed to be in Angstrom.
If `None`, `waveset` is used.
Returns
-------
avg_wave : `~astropy.units.quantity.Quantity`
Average wavelength.
### Response:
#vtb
def avgwave(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths).value
y = self(x).value
num = np.trapz(y * x, x=x)
den = np.trapz(y, x=x)
if den == 0:
avg_wave = 0.0
else:
avg_wave = abs(num / den)
return avg_wave * self._internal_wave_unit
|
#vtb
def show_correlation_matrix(self, correlation_matrix):
cr_plot.create_correlation_matrix_plot(
correlation_matrix, self.title, self.headers_to_test
)
pyplot.show()
|
Shows the given correlation matrix as image
:param correlation_matrix: Correlation matrix of features
|
### Input:
Shows the given correlation matrix as image
:param correlation_matrix: Correlation matrix of features
### Response:
#vtb
def show_correlation_matrix(self, correlation_matrix):
cr_plot.create_correlation_matrix_plot(
correlation_matrix, self.title, self.headers_to_test
)
pyplot.show()
|
#vtb
def get_parent_of_type(typ, obj):
if type(typ) is not text:
typ = typ.__name__
while hasattr(obj, ):
obj = obj.parent
if obj.__class__.__name__ == typ:
return obj
|
Finds first object up the parent chain of the given type.
If no parent of the given type exists None is returned.
Args:
typ(str or python class): The type of the model object we are
looking for.
obj (model object): Python model object which is the start of the
search process.
|
### Input:
Finds first object up the parent chain of the given type.
If no parent of the given type exists None is returned.
Args:
typ(str or python class): The type of the model object we are
looking for.
obj (model object): Python model object which is the start of the
search process.
### Response:
#vtb
def get_parent_of_type(typ, obj):
if type(typ) is not text:
typ = typ.__name__
while hasattr(obj, ):
obj = obj.parent
if obj.__class__.__name__ == typ:
return obj
|
#vtb
def launch_job(self, job_id):
assert self.api_version.lower() in [, ], \
try:
self.create_job(job_id, {: True})
except ValueError:
pass
return self.read_job(job_id)
|
Convenience method for launching a job. We use POST for actions
outside of HTTP verbs (job launch in this case).
|
### Input:
Convenience method for launching a job. We use POST for actions
outside of HTTP verbs (job launch in this case).
### Response:
#vtb
def launch_job(self, job_id):
assert self.api_version.lower() in [, ], \
try:
self.create_job(job_id, {: True})
except ValueError:
pass
return self.read_job(job_id)
|
#vtb
def printed_out(self, name):
opt = self.variables().optional_namestring()
req = self.variables().required_namestring()
out =
out +=
out += .format(name, req, opt)
if self.description:
out += .format(self.description)
return out
|
Create a string representation of the action
|
### Input:
Create a string representation of the action
### Response:
#vtb
def printed_out(self, name):
opt = self.variables().optional_namestring()
req = self.variables().required_namestring()
out =
out +=
out += .format(name, req, opt)
if self.description:
out += .format(self.description)
return out
|
#vtb
def send_short_lpp_packet(self, dest_id, data):
pk = CRTPPacket()
pk.port = CRTPPort.LOCALIZATION
pk.channel = self.GENERIC_CH
pk.data = struct.pack(, self.LPS_SHORT_LPP_PACKET, dest_id) + data
self._cf.send_packet(pk)
|
Send ultra-wide-band LPP packet to dest_id
|
### Input:
Send ultra-wide-band LPP packet to dest_id
### Response:
#vtb
def send_short_lpp_packet(self, dest_id, data):
pk = CRTPPacket()
pk.port = CRTPPort.LOCALIZATION
pk.channel = self.GENERIC_CH
pk.data = struct.pack(, self.LPS_SHORT_LPP_PACKET, dest_id) + data
self._cf.send_packet(pk)
|
#vtb
def network_delete_event(self, network_info):
net_id = network_info[]
if net_id not in self.network:
LOG.error(,
net_id)
return
segid = self.network[net_id].get()
tenant_id = self.network[net_id].get()
tenant_name = self.get_project_name(tenant_id)
net = utils.Dict2Obj(self.network[net_id])
if not tenant_name:
LOG.error(,
{: tenant_id})
self.update_network_db(net.id, constants.DELETE_FAIL)
return
try:
self.dcnm_client.delete_network(tenant_name, net)
self.seg_drvr.release_segmentation_id(segid)
self.delete_network_db(net_id)
del self.network[net_id]
snets = [k for k in self.subnet if (
self.subnet[k].get() == net_id)]
[self.subnet.pop(s) for s in snets]
except dexc.DfaClientRequestFailed:
LOG.error(,
{: net.name})
self.update_network_db(net_id, constants.DELETE_FAIL)
instances = self.get_vms()
instances_related = [k for k in instances if k.network_id == net_id]
for vm in instances_related:
LOG.debug("deleting vm %s because network is deleted", vm.name)
self.delete_vm_function(vm.port_id, vm)
self.network_del_notif(tenant_id, tenant_name, net_id)
|
Process network delete event.
|
### Input:
Process network delete event.
### Response:
#vtb
def network_delete_event(self, network_info):
net_id = network_info[]
if net_id not in self.network:
LOG.error(,
net_id)
return
segid = self.network[net_id].get()
tenant_id = self.network[net_id].get()
tenant_name = self.get_project_name(tenant_id)
net = utils.Dict2Obj(self.network[net_id])
if not tenant_name:
LOG.error(,
{: tenant_id})
self.update_network_db(net.id, constants.DELETE_FAIL)
return
try:
self.dcnm_client.delete_network(tenant_name, net)
self.seg_drvr.release_segmentation_id(segid)
self.delete_network_db(net_id)
del self.network[net_id]
snets = [k for k in self.subnet if (
self.subnet[k].get() == net_id)]
[self.subnet.pop(s) for s in snets]
except dexc.DfaClientRequestFailed:
LOG.error(,
{: net.name})
self.update_network_db(net_id, constants.DELETE_FAIL)
instances = self.get_vms()
instances_related = [k for k in instances if k.network_id == net_id]
for vm in instances_related:
LOG.debug("deleting vm %s because network is deleted", vm.name)
self.delete_vm_function(vm.port_id, vm)
self.network_del_notif(tenant_id, tenant_name, net_id)
|
#vtb
def create_backed_vol(self, name, backer, _format=):
vol_xml = ElementTree.Element()
vol_name = ElementTree.SubElement(vol_xml, )
name = .format(name, _format)
vol_name.text = name
target = ElementTree.SubElement(vol_xml, )
target_format = ElementTree.SubElement(target, )
target_format.set(, _format)
vol_cap = ElementTree.SubElement(vol_xml, )
vol_cap.set(, )
vol_cap.text = backer.capacity
backing_store = ElementTree.SubElement(vol_xml, )
bs_path = ElementTree.SubElement(backing_store, )
bs_path.text = backer.path
bs_format = ElementTree.SubElement(backing_store, )
bs_format.set(, backer.format)
XMLString = ElementTree.tostring(vol_xml)
self.virsp.createXML(XMLString, 0)
return self.find_volume(name)
|
TODO(rdelinger) think about changing _format
This is a pretty specialized function.
It takes an existing volume, and creates a new volume
that is backed by the existing volume
Sadly there is no easy way to do this in libvirt, the
best way I've found is to just create some xml and use the createXML
function
|
### Input:
TODO(rdelinger) think about changing _format
This is a pretty specialized function.
It takes an existing volume, and creates a new volume
that is backed by the existing volume
Sadly there is no easy way to do this in libvirt, the
best way I've found is to just create some xml and use the createXML
function
### Response:
#vtb
def create_backed_vol(self, name, backer, _format=):
vol_xml = ElementTree.Element()
vol_name = ElementTree.SubElement(vol_xml, )
name = .format(name, _format)
vol_name.text = name
target = ElementTree.SubElement(vol_xml, )
target_format = ElementTree.SubElement(target, )
target_format.set(, _format)
vol_cap = ElementTree.SubElement(vol_xml, )
vol_cap.set(, )
vol_cap.text = backer.capacity
backing_store = ElementTree.SubElement(vol_xml, )
bs_path = ElementTree.SubElement(backing_store, )
bs_path.text = backer.path
bs_format = ElementTree.SubElement(backing_store, )
bs_format.set(, backer.format)
XMLString = ElementTree.tostring(vol_xml)
self.virsp.createXML(XMLString, 0)
return self.find_volume(name)
|
#vtb
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
topic = self.get_topic()
context[] = topic
context[] = topic.forum
try:
if hasattr(topic, ) and topic.poll.options.exists():
context[] = topic.poll
context[] = self.poll_form_class(poll=topic.poll)
context[] = self.request.GET.get(, None)
context[] = self.request.GET.get(, None)
except ObjectDoesNotExist:
pass
return context
|
Returns the context data to provide to the template.
|
### Input:
Returns the context data to provide to the template.
### Response:
#vtb
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
topic = self.get_topic()
context[] = topic
context[] = topic.forum
try:
if hasattr(topic, ) and topic.poll.options.exists():
context[] = topic.poll
context[] = self.poll_form_class(poll=topic.poll)
context[] = self.request.GET.get(, None)
context[] = self.request.GET.get(, None)
except ObjectDoesNotExist:
pass
return context
|
#vtb
def serverdir():
path = join(ROOT_DIR, )
path = normpath(path)
if sys.platform == : path = realpath(path)
return path
|
Get the location of the server subpackage
|
### Input:
Get the location of the server subpackage
### Response:
#vtb
def serverdir():
path = join(ROOT_DIR, )
path = normpath(path)
if sys.platform == : path = realpath(path)
return path
|
#vtb
def binarize_signal(signal, treshold="auto", cut="higher"):
if treshold == "auto":
treshold = (np.max(np.array(signal)) - np.min(np.array(signal)))/2
signal = list(signal)
binary_signal = []
for i in range(len(signal)):
if cut == "higher":
if signal[i] > treshold:
binary_signal.append(1)
else:
binary_signal.append(0)
else:
if signal[i] < treshold:
binary_signal.append(1)
else:
binary_signal.append(0)
return(binary_signal)
|
Binarize a channel based on a continuous channel.
Parameters
----------
signal = array or list
The signal channel.
treshold = float
The treshold value by which to select the events. If "auto", takes the value between the max and the min.
cut = str
"higher" or "lower", define the events as above or under the treshold. For photosensors, a white screen corresponds usually to higher values. Therefore, if your events were signalled by a black colour, events values would be the lower ones, and you should set the cut to "lower".
Returns
----------
list
binary_signal
Example
----------
>>> import neurokit as nk
>>> binary_signal = nk.binarize_signal(signal, treshold=4)
Authors
----------
- `Dominique Makowski <https://dominiquemakowski.github.io/>`_
Dependencies
----------
None
|
### Input:
Binarize a channel based on a continuous channel.
Parameters
----------
signal = array or list
The signal channel.
treshold = float
The treshold value by which to select the events. If "auto", takes the value between the max and the min.
cut = str
"higher" or "lower", define the events as above or under the treshold. For photosensors, a white screen corresponds usually to higher values. Therefore, if your events were signalled by a black colour, events values would be the lower ones, and you should set the cut to "lower".
Returns
----------
list
binary_signal
Example
----------
>>> import neurokit as nk
>>> binary_signal = nk.binarize_signal(signal, treshold=4)
Authors
----------
- `Dominique Makowski <https://dominiquemakowski.github.io/>`_
Dependencies
----------
None
### Response:
#vtb
def binarize_signal(signal, treshold="auto", cut="higher"):
if treshold == "auto":
treshold = (np.max(np.array(signal)) - np.min(np.array(signal)))/2
signal = list(signal)
binary_signal = []
for i in range(len(signal)):
if cut == "higher":
if signal[i] > treshold:
binary_signal.append(1)
else:
binary_signal.append(0)
else:
if signal[i] < treshold:
binary_signal.append(1)
else:
binary_signal.append(0)
return(binary_signal)
|
#vtb
def permutation_entropy(time_series, order=3, delay=1, normalize=False):
x = np.array(time_series)
hashmult = np.power(order, np.arange(order))
sorted_idx = _embed(x, order=order, delay=delay).argsort(kind=)
hashval = (np.multiply(sorted_idx, hashmult)).sum(1)
_, c = np.unique(hashval, return_counts=True)
p = np.true_divide(c, c.sum())
pe = -np.multiply(p, np.log2(p)).sum()
if normalize:
pe /= np.log2(factorial(order))
return pe
|
Permutation Entropy.
Parameters
----------
time_series : list or np.array
Time series
order : int
Order of permutation entropy
delay : int
Time delay
normalize : bool
If True, divide by log2(factorial(m)) to normalize the entropy
between 0 and 1. Otherwise, return the permutation entropy in bit.
Returns
-------
pe : float
Permutation Entropy
References
----------
.. [1] Massimiliano Zanin et al. Permutation Entropy and Its Main
Biomedical and Econophysics Applications: A Review.
http://www.mdpi.com/1099-4300/14/8/1553/pdf
.. [2] Christoph Bandt and Bernd Pompe. Permutation entropy β a natural
complexity measure for time series.
http://stubber.math-inf.uni-greifswald.de/pub/full/prep/2001/11.pdf
Notes
-----
Last updated (Oct 2018) by Raphael Vallat ([email protected]):
- Major speed improvements
- Use of base 2 instead of base e
- Added normalization
Examples
--------
1. Permutation entropy with order 2
>>> x = [4, 7, 9, 10, 6, 11, 3]
>>> # Return a value between 0 and log2(factorial(order))
>>> print(permutation_entropy(x, order=2))
0.918
2. Normalized permutation entropy with order 3
>>> x = [4, 7, 9, 10, 6, 11, 3]
>>> # Return a value comprised between 0 and 1.
>>> print(permutation_entropy(x, order=3, normalize=True))
0.589
|
### Input:
Permutation Entropy.
Parameters
----------
time_series : list or np.array
Time series
order : int
Order of permutation entropy
delay : int
Time delay
normalize : bool
If True, divide by log2(factorial(m)) to normalize the entropy
between 0 and 1. Otherwise, return the permutation entropy in bit.
Returns
-------
pe : float
Permutation Entropy
References
----------
.. [1] Massimiliano Zanin et al. Permutation Entropy and Its Main
Biomedical and Econophysics Applications: A Review.
http://www.mdpi.com/1099-4300/14/8/1553/pdf
.. [2] Christoph Bandt and Bernd Pompe. Permutation entropy β a natural
complexity measure for time series.
http://stubber.math-inf.uni-greifswald.de/pub/full/prep/2001/11.pdf
Notes
-----
Last updated (Oct 2018) by Raphael Vallat ([email protected]):
- Major speed improvements
- Use of base 2 instead of base e
- Added normalization
Examples
--------
1. Permutation entropy with order 2
>>> x = [4, 7, 9, 10, 6, 11, 3]
>>> # Return a value between 0 and log2(factorial(order))
>>> print(permutation_entropy(x, order=2))
0.918
2. Normalized permutation entropy with order 3
>>> x = [4, 7, 9, 10, 6, 11, 3]
>>> # Return a value comprised between 0 and 1.
>>> print(permutation_entropy(x, order=3, normalize=True))
0.589
### Response:
#vtb
def permutation_entropy(time_series, order=3, delay=1, normalize=False):
x = np.array(time_series)
hashmult = np.power(order, np.arange(order))
sorted_idx = _embed(x, order=order, delay=delay).argsort(kind=)
hashval = (np.multiply(sorted_idx, hashmult)).sum(1)
_, c = np.unique(hashval, return_counts=True)
p = np.true_divide(c, c.sum())
pe = -np.multiply(p, np.log2(p)).sum()
if normalize:
pe /= np.log2(factorial(order))
return pe
|
#vtb
def expand_as_args(args):
return (isinstance(args, collections.Sequence) and
not _is_namedtuple(args) and not _force_leaf(args))
|
Returns `True` if `args` should be expanded as `*args`.
|
### Input:
Returns `True` if `args` should be expanded as `*args`.
### Response:
#vtb
def expand_as_args(args):
return (isinstance(args, collections.Sequence) and
not _is_namedtuple(args) and not _force_leaf(args))
|
#vtb
def get_startup(self, id_):
return _get_request(_STARTUP.format(c_api=_C_API_BEGINNING,
api=_API_VERSION,
id_=id_,
at=self.access_token))
|
Get startup based on id
|
### Input:
Get startup based on id
### Response:
#vtb
def get_startup(self, id_):
return _get_request(_STARTUP.format(c_api=_C_API_BEGINNING,
api=_API_VERSION,
id_=id_,
at=self.access_token))
|
#vtb
def set_ifo(self,ifo):
self.__ifo = ifo
if self.job().channel():
self.add_var_opt(, ifo + + self.job().channel())
|
Set the ifo name to analyze. If the channel name for the job is defined,
then the name of the ifo is prepended to the channel name obtained
from the job configuration file and passed with a --channel-name option.
@param ifo: two letter ifo code (e.g. L1, H1 or H2).
|
### Input:
Set the ifo name to analyze. If the channel name for the job is defined,
then the name of the ifo is prepended to the channel name obtained
from the job configuration file and passed with a --channel-name option.
@param ifo: two letter ifo code (e.g. L1, H1 or H2).
### Response:
#vtb
def set_ifo(self,ifo):
self.__ifo = ifo
if self.job().channel():
self.add_var_opt(, ifo + + self.job().channel())
|
#vtb
def rename(self, old_name, new_name):
try:
self.api.rename(mkey(old_name), mkey(new_name))
except ResponseError, exc:
if "no such key" in exc.args:
raise KeyError(old_name)
raise
|
Rename key to a new name.
|
### Input:
Rename key to a new name.
### Response:
#vtb
def rename(self, old_name, new_name):
try:
self.api.rename(mkey(old_name), mkey(new_name))
except ResponseError, exc:
if "no such key" in exc.args:
raise KeyError(old_name)
raise
|
#vtb
def cli(self, prt=sys.stdout):
kws = self.objdoc.get_docargs(prt=None)
godag = get_godag(kws[], prt=None, loading_bar=False, optional_attrs=[])
usrgos = GetGOs(godag, max_gos=200).get_usrgos(kws.get(), prt)
tcntobj = self._get_tcntobj(usrgos, godag, **kws)
self.gosubdag = GoSubDag(usrgos, godag, relationships=True, tcntobj=tcntobj, prt=None)
grprdflt = GrouperDflts(self.gosubdag, kws[])
ver_list = [godag.version, grprdflt.ver_goslims]
prt.write("{VER}\n".format(VER="\n".join(ver_list)))
sections = self._read_sections(kws[])
hdrobj = HdrgosSections(self.gosubdag, grprdflt.hdrgos_dflt, sections)
grprobj = Grouper("init", usrgos, hdrobj, self.gosubdag)
objsecwr = WrSectionsTxt(grprobj, ver_list)
if not os.path.exists(kws[]):
objsecwr.wr_txt_section_hdrgos(kws[])
objsecwr.wr_txt_section_hdrgos(kws[])
objsecpy = WrSectionsPy(grprobj, ver_list)
if in kws:
objsecpy.wr_py_sections(kws[], sections, doc=godag.version)
sortobj = Sorter(grprobj)
objgowr = WrXlsxSortedGos("init", sortobj, ver_list)
objgowr.wr_txt_gos(kws[], sortby=objsecpy.fncsortnt)
self._prt_cnt_usrgos(usrgos, sys.stdout)
|
Command-line interface for go_draw script.
|
### Input:
Command-line interface for go_draw script.
### Response:
#vtb
def cli(self, prt=sys.stdout):
kws = self.objdoc.get_docargs(prt=None)
godag = get_godag(kws[], prt=None, loading_bar=False, optional_attrs=[])
usrgos = GetGOs(godag, max_gos=200).get_usrgos(kws.get(), prt)
tcntobj = self._get_tcntobj(usrgos, godag, **kws)
self.gosubdag = GoSubDag(usrgos, godag, relationships=True, tcntobj=tcntobj, prt=None)
grprdflt = GrouperDflts(self.gosubdag, kws[])
ver_list = [godag.version, grprdflt.ver_goslims]
prt.write("{VER}\n".format(VER="\n".join(ver_list)))
sections = self._read_sections(kws[])
hdrobj = HdrgosSections(self.gosubdag, grprdflt.hdrgos_dflt, sections)
grprobj = Grouper("init", usrgos, hdrobj, self.gosubdag)
objsecwr = WrSectionsTxt(grprobj, ver_list)
if not os.path.exists(kws[]):
objsecwr.wr_txt_section_hdrgos(kws[])
objsecwr.wr_txt_section_hdrgos(kws[])
objsecpy = WrSectionsPy(grprobj, ver_list)
if in kws:
objsecpy.wr_py_sections(kws[], sections, doc=godag.version)
sortobj = Sorter(grprobj)
objgowr = WrXlsxSortedGos("init", sortobj, ver_list)
objgowr.wr_txt_gos(kws[], sortby=objsecpy.fncsortnt)
self._prt_cnt_usrgos(usrgos, sys.stdout)
|
#vtb
def quick_str_input(prompt, default_value):
valid = False
str_val = default_value
while not valid:
input_val = raw_input(prompt + "[{0}]: ".format(default_value))
if input_val == "":
str_val = default_value
valid = True
else:
try:
str_val = text_type(input_val)
valid = True
except ValueError:
print("ERROR: must be text.")
valid = False
return str_val
|
Function to display a quick question for text input.
**Parameters:**
- **prompt:** Text / question to display
- **default_value:** Default value for no entry
**Returns:** text_type() or default_value.
|
### Input:
Function to display a quick question for text input.
**Parameters:**
- **prompt:** Text / question to display
- **default_value:** Default value for no entry
**Returns:** text_type() or default_value.
### Response:
#vtb
def quick_str_input(prompt, default_value):
valid = False
str_val = default_value
while not valid:
input_val = raw_input(prompt + "[{0}]: ".format(default_value))
if input_val == "":
str_val = default_value
valid = True
else:
try:
str_val = text_type(input_val)
valid = True
except ValueError:
print("ERROR: must be text.")
valid = False
return str_val
|
#vtb
def main():
args = parse_args()
logging.info(, __version__)
completed_classes = []
classes_with_errors = []
mkdir_p(PATH_CACHE, 0o700)
if args.clear_cache:
shutil.rmtree(PATH_CACHE)
if args.list_courses:
logging.info()
list_courses(args)
return
session = get_session()
login(session, args.username, args.password)
if args.specialization:
args.class_names = expand_specializations(session, args.class_names)
for class_index, class_name in enumerate(args.class_names):
try:
logging.info(,
class_name, class_index + 1, len(args.class_names))
error_occurred, completed = download_class(
session, args, class_name)
if completed:
completed_classes.append(class_name)
if error_occurred:
classes_with_errors.append(class_name)
except requests.exceptions.HTTPError as e:
logging.error(, e)
if is_debug_run():
logging.exception(, e)
except requests.exceptions.SSLError as e:
logging.error(, e)
print_ssl_error_message(e)
if is_debug_run():
raise
except ClassNotFound as e:
logging.error(, e)
except AuthenticationFailed as e:
logging.error(, e)
if class_index + 1 != len(args.class_names):
logging.info(
,
args.download_delay)
time.sleep(args.download_delay)
if completed_classes:
logging.info( * 80)
logging.info(
"Classes which appear completed: " + " ".join(completed_classes))
if classes_with_errors:
logging.info( * 80)
logging.info(
)
for class_name in classes_with_errors:
logging.info(,
class_name, class_name)
|
Main entry point for execution as a program (instead of as a module).
|
### Input:
Main entry point for execution as a program (instead of as a module).
### Response:
#vtb
def main():
args = parse_args()
logging.info(, __version__)
completed_classes = []
classes_with_errors = []
mkdir_p(PATH_CACHE, 0o700)
if args.clear_cache:
shutil.rmtree(PATH_CACHE)
if args.list_courses:
logging.info()
list_courses(args)
return
session = get_session()
login(session, args.username, args.password)
if args.specialization:
args.class_names = expand_specializations(session, args.class_names)
for class_index, class_name in enumerate(args.class_names):
try:
logging.info(,
class_name, class_index + 1, len(args.class_names))
error_occurred, completed = download_class(
session, args, class_name)
if completed:
completed_classes.append(class_name)
if error_occurred:
classes_with_errors.append(class_name)
except requests.exceptions.HTTPError as e:
logging.error(, e)
if is_debug_run():
logging.exception(, e)
except requests.exceptions.SSLError as e:
logging.error(, e)
print_ssl_error_message(e)
if is_debug_run():
raise
except ClassNotFound as e:
logging.error(, e)
except AuthenticationFailed as e:
logging.error(, e)
if class_index + 1 != len(args.class_names):
logging.info(
,
args.download_delay)
time.sleep(args.download_delay)
if completed_classes:
logging.info( * 80)
logging.info(
"Classes which appear completed: " + " ".join(completed_classes))
if classes_with_errors:
logging.info( * 80)
logging.info(
)
for class_name in classes_with_errors:
logging.info(,
class_name, class_name)
|
#vtb
def bsn(self) -> str:
def _is_valid_bsn(number: str) -> bool:
total = 0
multiplier = 9
for char in number:
multiplier = -multiplier if multiplier == 1 else multiplier
total += int(char) * multiplier
multiplier -= 1
result = total % 11 == 0
return result
a, b = (100000000, 999999999)
sample = str(self.random.randint(a, b))
while not _is_valid_bsn(sample):
sample = str(self.random.randint(a, b))
return sample
|
Generate a random, but valid ``Burgerservicenummer``.
:returns: Random BSN.
:Example:
255159705
|
### Input:
Generate a random, but valid ``Burgerservicenummer``.
:returns: Random BSN.
:Example:
255159705
### Response:
#vtb
def bsn(self) -> str:
def _is_valid_bsn(number: str) -> bool:
total = 0
multiplier = 9
for char in number:
multiplier = -multiplier if multiplier == 1 else multiplier
total += int(char) * multiplier
multiplier -= 1
result = total % 11 == 0
return result
a, b = (100000000, 999999999)
sample = str(self.random.randint(a, b))
while not _is_valid_bsn(sample):
sample = str(self.random.randint(a, b))
return sample
|
#vtb
def eth_getBlockByNumber(self, number):
block_hash = self.reader._get_block_hash(number)
block_number = _format_block_number(number)
body_key = body_prefix + block_number + block_hash
block_data = self.db.get(body_key)
body = rlp.decode(block_data, sedes=Block)
return body
|
Get block body by block number.
:param number:
:return:
|
### Input:
Get block body by block number.
:param number:
:return:
### Response:
#vtb
def eth_getBlockByNumber(self, number):
block_hash = self.reader._get_block_hash(number)
block_number = _format_block_number(number)
body_key = body_prefix + block_number + block_hash
block_data = self.db.get(body_key)
body = rlp.decode(block_data, sedes=Block)
return body
|
#vtb
def execute(self, query, *args, **kwargs):
tornado_future = Future()
cassandra_future = self._session.execute_async(query, *args, **kwargs)
self._ioloop.add_callback(
self._callback, cassandra_future, tornado_future)
return tornado_future
|
Asynchronously execute the specified CQL query.
The execute command also takes optional parameters and trace
keyword arguments. See cassandra-python documentation for
definition of those parameters.
|
### Input:
Asynchronously execute the specified CQL query.
The execute command also takes optional parameters and trace
keyword arguments. See cassandra-python documentation for
definition of those parameters.
### Response:
#vtb
def execute(self, query, *args, **kwargs):
tornado_future = Future()
cassandra_future = self._session.execute_async(query, *args, **kwargs)
self._ioloop.add_callback(
self._callback, cassandra_future, tornado_future)
return tornado_future
|
#vtb
def thermal_expansion_coeff(self, structure, temperature, mode="debye"):
soec = ElasticTensor(self[0])
v0 = (structure.volume * 1e-30 / structure.num_sites)
if mode == "debye":
td = soec.debye_temperature(structure)
t_ratio = temperature / td
integrand = lambda x: (x**4 * np.exp(x)) / (np.exp(x) - 1)**2
cv = 9 * 8.314 * t_ratio**3 * quad(integrand, 0, t_ratio**-1)[0]
elif mode == "dulong-petit":
cv = 3 * 8.314
else:
raise ValueError("Mode must be debye or dulong-petit")
tgt = self.get_tgt(temperature, structure)
alpha = np.einsum(, soec.compliance_tensor, tgt)
alpha *= cv / (1e9 * v0 * 6.022e23)
return SquareTensor(alpha)
|
Gets thermal expansion coefficient from third-order constants.
Args:
temperature (float): Temperature in kelvin, if not specified
will return non-cv-normalized value
structure (Structure): Structure to be used in directional heat
capacity determination, only necessary if temperature
is specified
mode (string): mode for finding average heat-capacity,
current supported modes are 'debye' and 'dulong-petit'
|
### Input:
Gets thermal expansion coefficient from third-order constants.
Args:
temperature (float): Temperature in kelvin, if not specified
will return non-cv-normalized value
structure (Structure): Structure to be used in directional heat
capacity determination, only necessary if temperature
is specified
mode (string): mode for finding average heat-capacity,
current supported modes are 'debye' and 'dulong-petit'
### Response:
#vtb
def thermal_expansion_coeff(self, structure, temperature, mode="debye"):
soec = ElasticTensor(self[0])
v0 = (structure.volume * 1e-30 / structure.num_sites)
if mode == "debye":
td = soec.debye_temperature(structure)
t_ratio = temperature / td
integrand = lambda x: (x**4 * np.exp(x)) / (np.exp(x) - 1)**2
cv = 9 * 8.314 * t_ratio**3 * quad(integrand, 0, t_ratio**-1)[0]
elif mode == "dulong-petit":
cv = 3 * 8.314
else:
raise ValueError("Mode must be debye or dulong-petit")
tgt = self.get_tgt(temperature, structure)
alpha = np.einsum(, soec.compliance_tensor, tgt)
alpha *= cv / (1e9 * v0 * 6.022e23)
return SquareTensor(alpha)
|
#vtb
def api_version(self, verbose=False):
return self.__auth_req_get(self.rest_url, verbose=verbose)
|
Get information about the API
http://docs.opsview.com/doku.php?id=opsview4.6:restapi#api_version_information
|
### Input:
Get information about the API
http://docs.opsview.com/doku.php?id=opsview4.6:restapi#api_version_information
### Response:
#vtb
def api_version(self, verbose=False):
return self.__auth_req_get(self.rest_url, verbose=verbose)
|
#vtb
def accepts_contributor_roles(func):
if inspect.isclass(func):
apply_function_to_members(func, accepts_contributor_roles)
return func
else:
@functools.wraps(func)
def decorator(*args, **kwargs):
return accepts_roles(*ROLES_CONTRIBUTOR)(func)(*args, **kwargs)
return decorator
|
Decorator that accepts only contributor roles
:param func:
:return:
|
### Input:
Decorator that accepts only contributor roles
:param func:
:return:
### Response:
#vtb
def accepts_contributor_roles(func):
if inspect.isclass(func):
apply_function_to_members(func, accepts_contributor_roles)
return func
else:
@functools.wraps(func)
def decorator(*args, **kwargs):
return accepts_roles(*ROLES_CONTRIBUTOR)(func)(*args, **kwargs)
return decorator
|
#vtb
def add(self, data, overwrite=False):
if is_srec(data):
self.add_srec(data, overwrite)
elif is_ihex(data):
self.add_ihex(data, overwrite)
elif is_ti_txt(data):
self.add_ti_txt(data, overwrite)
else:
raise UnsupportedFileFormatError()
|
Add given data string by guessing its format. The format must be
Motorola S-Records, Intel HEX or TI-TXT. Set `overwrite` to
``True`` to allow already added data to be overwritten.
|
### Input:
Add given data string by guessing its format. The format must be
Motorola S-Records, Intel HEX or TI-TXT. Set `overwrite` to
``True`` to allow already added data to be overwritten.
### Response:
#vtb
def add(self, data, overwrite=False):
if is_srec(data):
self.add_srec(data, overwrite)
elif is_ihex(data):
self.add_ihex(data, overwrite)
elif is_ti_txt(data):
self.add_ti_txt(data, overwrite)
else:
raise UnsupportedFileFormatError()
|
#vtb
def calcFontScaling(self):
self.ypx = self.figure.get_size_inches()[1]*self.figure.dpi
self.xpx = self.figure.get_size_inches()[0]*self.figure.dpi
self.fontSize = self.vertSize*(self.ypx/2.0)
self.leftPos = self.axes.get_xlim()[0]
self.rightPos = self.axes.get_xlim()[1]
|
Calculates the current font size and left position for the current window.
|
### Input:
Calculates the current font size and left position for the current window.
### Response:
#vtb
def calcFontScaling(self):
self.ypx = self.figure.get_size_inches()[1]*self.figure.dpi
self.xpx = self.figure.get_size_inches()[0]*self.figure.dpi
self.fontSize = self.vertSize*(self.ypx/2.0)
self.leftPos = self.axes.get_xlim()[0]
self.rightPos = self.axes.get_xlim()[1]
|
#vtb
def z_angle_rotate(xy, theta):
xy = np.array(xy).T
theta = np.array(theta).T
out = np.zeros_like(xy)
out[...,0] = np.cos(theta)*xy[...,0] - np.sin(theta)*xy[...,1]
out[...,1] = np.sin(theta)*xy[...,0] + np.cos(theta)*xy[...,1]
return out.T
|
Rotated the input vector or set of vectors `xy` by the angle `theta`.
Parameters
----------
xy : array_like
The vector or array of vectors to transform. Must have shape
|
### Input:
Rotated the input vector or set of vectors `xy` by the angle `theta`.
Parameters
----------
xy : array_like
The vector or array of vectors to transform. Must have shape
### Response:
#vtb
def z_angle_rotate(xy, theta):
xy = np.array(xy).T
theta = np.array(theta).T
out = np.zeros_like(xy)
out[...,0] = np.cos(theta)*xy[...,0] - np.sin(theta)*xy[...,1]
out[...,1] = np.sin(theta)*xy[...,0] + np.cos(theta)*xy[...,1]
return out.T
|
#vtb
def get_portal_by_name(self, portal_name):
portals = self.get_portals_list()
for p in portals:
if portal_name == p[1]:
self.set_portal_name( p[1] )
self.set_portal_id( p[0] )
self.set_portal_cik( p[2][1][][] )
return p
return None
|
Set active portal according to the name passed in 'portal_name'.
Returns dictionary of device 'serial_number: rid'
|
### Input:
Set active portal according to the name passed in 'portal_name'.
Returns dictionary of device 'serial_number: rid'
### Response:
#vtb
def get_portal_by_name(self, portal_name):
portals = self.get_portals_list()
for p in portals:
if portal_name == p[1]:
self.set_portal_name( p[1] )
self.set_portal_id( p[0] )
self.set_portal_cik( p[2][1][][] )
return p
return None
|
#vtb
def pan_delta(self, dx_px, dy_px):
direction = self.target - self.position
distance_from_target = direction.length()
direction = direction.normalized()
speed_per_radius = self.get_translation_speed(distance_from_target)
px_per_unit = self.vport_radius_px / speed_per_radius
right = direction ^ self.up
translation = (right * (-dx_px / px_per_unit) +
self.up * (-dy_px / px_per_unit))
self.position = self.position + translation
self.target = self.target + translation
|
This causes the scene to appear to translate right and up
(i.e., what really happens is the camera is translated left and down).
This is also called "panning" in some software packages.
Passing in negative delta values causes the opposite motion.
|
### Input:
This causes the scene to appear to translate right and up
(i.e., what really happens is the camera is translated left and down).
This is also called "panning" in some software packages.
Passing in negative delta values causes the opposite motion.
### Response:
#vtb
def pan_delta(self, dx_px, dy_px):
direction = self.target - self.position
distance_from_target = direction.length()
direction = direction.normalized()
speed_per_radius = self.get_translation_speed(distance_from_target)
px_per_unit = self.vport_radius_px / speed_per_radius
right = direction ^ self.up
translation = (right * (-dx_px / px_per_unit) +
self.up * (-dy_px / px_per_unit))
self.position = self.position + translation
self.target = self.target + translation
|
#vtb
def hostcmd_push(base_path, project_name, engine_name, vars_files=None, config_file=None, **kwargs):
assert_initialized(base_path, config_file)
config = get_config(base_path, vars_files=vars_files, engine_name=engine_name, project_name=project_name,
config_file=config_file)
engine_obj = load_engine([, ],
engine_name, config.project_name,
config[], **kwargs)
logger.debug(, project_name=config.project_name)
push_images(base_path,
config.image_namespace,
engine_obj,
config,
save_conductor=config.save_conductor,
**kwargs)
|
Push images to a registry. Requires authenticating with the registry prior to starting
the push. If your engine's config file does not already contain an authorization for the
registry, pass username and/or password. If you exclude password, you will be prompted.
|
### Input:
Push images to a registry. Requires authenticating with the registry prior to starting
the push. If your engine's config file does not already contain an authorization for the
registry, pass username and/or password. If you exclude password, you will be prompted.
### Response:
#vtb
def hostcmd_push(base_path, project_name, engine_name, vars_files=None, config_file=None, **kwargs):
assert_initialized(base_path, config_file)
config = get_config(base_path, vars_files=vars_files, engine_name=engine_name, project_name=project_name,
config_file=config_file)
engine_obj = load_engine([, ],
engine_name, config.project_name,
config[], **kwargs)
logger.debug(, project_name=config.project_name)
push_images(base_path,
config.image_namespace,
engine_obj,
config,
save_conductor=config.save_conductor,
**kwargs)
|
#vtb
def mime(self):
author = self.author
sender = self.sender
if not author:
raise ValueError("You must specify an author.")
if not self.subject:
raise ValueError("You must specify a subject.")
if len(self.recipients) == 0:
raise ValueError("You must specify at least one recipient.")
if not self.plain:
raise ValueError("You must provide plain text content.")
if not self._dirty and self._processed:
return self._mime
self._processed = False
plain = MIMEText(self._callable(self.plain), , self.encoding)
rich = None
if self.rich:
rich = MIMEText(self._callable(self.rich), , self.encoding)
message = self._mime_document(plain, rich)
headers = self._build_header_list(author, sender)
self._add_headers_to_message(message, headers)
self._mime = message
self._processed = True
self._dirty = False
return message
|
Produce the final MIME message.
|
### Input:
Produce the final MIME message.
### Response:
#vtb
def mime(self):
author = self.author
sender = self.sender
if not author:
raise ValueError("You must specify an author.")
if not self.subject:
raise ValueError("You must specify a subject.")
if len(self.recipients) == 0:
raise ValueError("You must specify at least one recipient.")
if not self.plain:
raise ValueError("You must provide plain text content.")
if not self._dirty and self._processed:
return self._mime
self._processed = False
plain = MIMEText(self._callable(self.plain), , self.encoding)
rich = None
if self.rich:
rich = MIMEText(self._callable(self.rich), , self.encoding)
message = self._mime_document(plain, rich)
headers = self._build_header_list(author, sender)
self._add_headers_to_message(message, headers)
self._mime = message
self._processed = True
self._dirty = False
return message
|
#vtb
def two_lorentzian(freq, freq0_1, freq0_2, area1, area2, hwhm1, hwhm2, phase1,
phase2, offset, drift):
return (lorentzian(freq, freq0_1, area1, hwhm1, phase1, offset, drift) +
lorentzian(freq, freq0_2, area2, hwhm2, phase2, offset, drift))
|
A two-Lorentzian model.
This is simply the sum of two lorentzian functions in some part of the
spectrum. Each individual Lorentzian has its own peak frequency, area, hwhm
and phase, but they share common offset and drift parameters.
|
### Input:
A two-Lorentzian model.
This is simply the sum of two lorentzian functions in some part of the
spectrum. Each individual Lorentzian has its own peak frequency, area, hwhm
and phase, but they share common offset and drift parameters.
### Response:
#vtb
def two_lorentzian(freq, freq0_1, freq0_2, area1, area2, hwhm1, hwhm2, phase1,
phase2, offset, drift):
return (lorentzian(freq, freq0_1, area1, hwhm1, phase1, offset, drift) +
lorentzian(freq, freq0_2, area2, hwhm2, phase2, offset, drift))
|
#vtb
def blend(self, blend_function=stack):
new_scn = Scene()
common_datasets = self.shared_dataset_ids
for ds_id in common_datasets:
datasets = [scn[ds_id] for scn in self.scenes if ds_id in scn]
new_scn[ds_id] = blend_function(datasets)
return new_scn
|
Blend the datasets into one scene.
.. note::
Blending is not currently optimized for generator-based
MultiScene.
|
### Input:
Blend the datasets into one scene.
.. note::
Blending is not currently optimized for generator-based
MultiScene.
### Response:
#vtb
def blend(self, blend_function=stack):
new_scn = Scene()
common_datasets = self.shared_dataset_ids
for ds_id in common_datasets:
datasets = [scn[ds_id] for scn in self.scenes if ds_id in scn]
new_scn[ds_id] = blend_function(datasets)
return new_scn
|
#vtb
def normalize_modpath(modpath, hide_init=True, hide_main=False):
if six.PY2:
if modpath.endswith():
modpath = modpath[:-1]
if hide_init:
if basename(modpath) == :
modpath = dirname(modpath)
hide_main = True
else:
modpath_with_init = join(modpath, )
if exists(modpath_with_init):
modpath = modpath_with_init
if hide_main:
if basename(modpath) == :
parallel_init = join(dirname(modpath), )
if exists(parallel_init):
modpath = dirname(modpath)
return modpath
|
Normalizes __init__ and __main__ paths.
Notes:
Adds __init__ if reasonable, but only removes __main__ by default
Args:
hide_init (bool): if True, always return package modules
as __init__.py files otherwise always return the dpath.
hide_init (bool): if True, always strip away main files otherwise
ignore __main__.py.
CommandLine:
xdoctest -m xdoctest.static_analysis normalize_modpath
Example:
>>> import xdoctest.static_analysis as static
>>> modpath = static.__file__
>>> assert static.normalize_modpath(modpath) == modpath.replace('.pyc', '.py')
>>> dpath = dirname(modpath)
>>> res0 = static.normalize_modpath(dpath, hide_init=0, hide_main=0)
>>> res1 = static.normalize_modpath(dpath, hide_init=0, hide_main=1)
>>> res2 = static.normalize_modpath(dpath, hide_init=1, hide_main=0)
>>> res3 = static.normalize_modpath(dpath, hide_init=1, hide_main=1)
>>> assert res0.endswith('__init__.py')
>>> assert res1.endswith('__init__.py')
>>> assert not res2.endswith('.py')
>>> assert not res3.endswith('.py')
|
### Input:
Normalizes __init__ and __main__ paths.
Notes:
Adds __init__ if reasonable, but only removes __main__ by default
Args:
hide_init (bool): if True, always return package modules
as __init__.py files otherwise always return the dpath.
hide_init (bool): if True, always strip away main files otherwise
ignore __main__.py.
CommandLine:
xdoctest -m xdoctest.static_analysis normalize_modpath
Example:
>>> import xdoctest.static_analysis as static
>>> modpath = static.__file__
>>> assert static.normalize_modpath(modpath) == modpath.replace('.pyc', '.py')
>>> dpath = dirname(modpath)
>>> res0 = static.normalize_modpath(dpath, hide_init=0, hide_main=0)
>>> res1 = static.normalize_modpath(dpath, hide_init=0, hide_main=1)
>>> res2 = static.normalize_modpath(dpath, hide_init=1, hide_main=0)
>>> res3 = static.normalize_modpath(dpath, hide_init=1, hide_main=1)
>>> assert res0.endswith('__init__.py')
>>> assert res1.endswith('__init__.py')
>>> assert not res2.endswith('.py')
>>> assert not res3.endswith('.py')
### Response:
#vtb
def normalize_modpath(modpath, hide_init=True, hide_main=False):
if six.PY2:
if modpath.endswith():
modpath = modpath[:-1]
if hide_init:
if basename(modpath) == :
modpath = dirname(modpath)
hide_main = True
else:
modpath_with_init = join(modpath, )
if exists(modpath_with_init):
modpath = modpath_with_init
if hide_main:
if basename(modpath) == :
parallel_init = join(dirname(modpath), )
if exists(parallel_init):
modpath = dirname(modpath)
return modpath
|
#vtb
def _slice_replace(code, index, old, new):
nodes = [str(node) for node in code.get(index)]
substring = "".join(nodes).replace(old, new)
code.nodes[index] = parse_anything(substring).nodes
|
Replace the string *old* with *new* across *index* in *code*.
|
### Input:
Replace the string *old* with *new* across *index* in *code*.
### Response:
#vtb
def _slice_replace(code, index, old, new):
nodes = [str(node) for node in code.get(index)]
substring = "".join(nodes).replace(old, new)
code.nodes[index] = parse_anything(substring).nodes
|
#vtb
def get_languages_from_item(ct_item, item):
try:
item_lan = TransItemLanguage.objects.filter(content_type__pk=ct_item.id, object_id=item.id).get()
languages = [lang.code for lang in item_lan.languages.all()]
return languages
except TransItemLanguage.DoesNotExist:
return []
|
Get the languages configured for the current item
:param ct_item:
:param item:
:return:
|
### Input:
Get the languages configured for the current item
:param ct_item:
:param item:
:return:
### Response:
#vtb
def get_languages_from_item(ct_item, item):
try:
item_lan = TransItemLanguage.objects.filter(content_type__pk=ct_item.id, object_id=item.id).get()
languages = [lang.code for lang in item_lan.languages.all()]
return languages
except TransItemLanguage.DoesNotExist:
return []
|
#vtb
def plot_blob(
sampler, blobidx=0, label=None, last_step=False, figure=None, **kwargs
):
modelx, model = _process_blob(sampler, blobidx, last_step)
if label is None:
label = "Model output {0}".format(blobidx)
if modelx is None:
f = plot_distribution(model, label, figure=figure)
else:
f = plot_fit(
sampler,
modelidx=blobidx,
last_step=last_step,
label=label,
figure=figure,
**kwargs
)
return f
|
Plot a metadata blob as a fit to spectral data or value distribution
Additional ``kwargs`` are passed to `plot_fit`.
Parameters
----------
sampler : `emcee.EnsembleSampler`
Sampler with a stored chain.
blobidx : int, optional
Metadata blob index to plot.
label : str, optional
Label for the value distribution. Labels for the fit plot can be passed
as ``xlabel`` and ``ylabel`` and will be passed to `plot_fit`.
Returns
-------
figure : `matplotlib.pyplot.Figure`
`matplotlib` figure instance containing the plot.
|
### Input:
Plot a metadata blob as a fit to spectral data or value distribution
Additional ``kwargs`` are passed to `plot_fit`.
Parameters
----------
sampler : `emcee.EnsembleSampler`
Sampler with a stored chain.
blobidx : int, optional
Metadata blob index to plot.
label : str, optional
Label for the value distribution. Labels for the fit plot can be passed
as ``xlabel`` and ``ylabel`` and will be passed to `plot_fit`.
Returns
-------
figure : `matplotlib.pyplot.Figure`
`matplotlib` figure instance containing the plot.
### Response:
#vtb
def plot_blob(
sampler, blobidx=0, label=None, last_step=False, figure=None, **kwargs
):
modelx, model = _process_blob(sampler, blobidx, last_step)
if label is None:
label = "Model output {0}".format(blobidx)
if modelx is None:
f = plot_distribution(model, label, figure=figure)
else:
f = plot_fit(
sampler,
modelidx=blobidx,
last_step=last_step,
label=label,
figure=figure,
**kwargs
)
return f
|
#vtb
def style_data(self):
def recursive_get(data, keys):
if len(keys):
return recursive_get(data.get(keys[0]), keys[1:])
else:
return data
geometries = recursive_get(self.data, self.object_path.split())[]
for feature in geometries:
feature.setdefault(, {}).setdefault(, {}).update(self.style_function(feature))
|
Applies self.style_function to each feature of self.data.
|
### Input:
Applies self.style_function to each feature of self.data.
### Response:
#vtb
def style_data(self):
def recursive_get(data, keys):
if len(keys):
return recursive_get(data.get(keys[0]), keys[1:])
else:
return data
geometries = recursive_get(self.data, self.object_path.split())[]
for feature in geometries:
feature.setdefault(, {}).setdefault(, {}).update(self.style_function(feature))
|
#vtb
def build_query_string(self, data):
query = []
keys_to_be_removed = []
for key, value in data.items():
if key not in [, , ]:
if not key == :
if key == :
value = .join(str(val) for val in value)
keys_to_be_removed.append(key)
query.append(.format(key, value))
keys_to_be_removed.append(key)
keys_to_be_removed.append(key)
querystring = .join(query)
data[] = .format(data[], querystring)
for k in list(set(keys_to_be_removed)):
del data[k]
return data
|
This method occurs after dumping the data into the class.
Args:
data (dict): dictionary of all the query values
Returns:
data (dict): ordered dict of all the values
|
### Input:
This method occurs after dumping the data into the class.
Args:
data (dict): dictionary of all the query values
Returns:
data (dict): ordered dict of all the values
### Response:
#vtb
def build_query_string(self, data):
query = []
keys_to_be_removed = []
for key, value in data.items():
if key not in [, , ]:
if not key == :
if key == :
value = .join(str(val) for val in value)
keys_to_be_removed.append(key)
query.append(.format(key, value))
keys_to_be_removed.append(key)
keys_to_be_removed.append(key)
querystring = .join(query)
data[] = .format(data[], querystring)
for k in list(set(keys_to_be_removed)):
del data[k]
return data
|
#vtb
def from_bits(self, bits):
if len(bits) != Person.BITS_PER_PERSON:
raise ValueError(u"Person requires exactly {} bits".format(
Person.BITS_PER_PERSON
))
self.sitting = bool(bits[0])
return self
|
Set this person from bits (ignores the id)
:param bits: Bits representing a person
:type bits: bytearray
:rtype: Person
:raises ValueError: Bits has an unexpected length
|
### Input:
Set this person from bits (ignores the id)
:param bits: Bits representing a person
:type bits: bytearray
:rtype: Person
:raises ValueError: Bits has an unexpected length
### Response:
#vtb
def from_bits(self, bits):
if len(bits) != Person.BITS_PER_PERSON:
raise ValueError(u"Person requires exactly {} bits".format(
Person.BITS_PER_PERSON
))
self.sitting = bool(bits[0])
return self
|
#vtb
def create(style_dataset, content_dataset, style_feature=None,
content_feature=None, max_iterations=None, model=,
verbose=True, batch_size = 6, **kwargs):
if len(style_dataset) == 0:
raise _ToolkitError("style_dataset SFrame cannot be empty")
if len(content_dataset) == 0:
raise _ToolkitError("content_dataset SFrame cannot be empty")
if(batch_size < 1):
raise _ToolkitError(" must be greater than or equal to 1")
from ._sframe_loader import SFrameSTIter as _SFrameSTIter
import mxnet as _mx
from .._mxnet import _mxnet_utils
if style_feature is None:
style_feature = _tkutl._find_only_image_column(style_dataset)
if content_feature is None:
content_feature = _tkutl._find_only_image_column(content_dataset)
if verbose:
print("Using in style_dataset as feature column and using "
" in content_dataset as feature column".format(style_feature, content_feature))
_raise_error_if_not_training_sframe(style_dataset, style_feature)
_raise_error_if_not_training_sframe(content_dataset, content_feature)
params = {
: batch_size,
: 2,
: 0.001,
: 1.0,
: [1e-4, 1e-4, 1e-4, 1e-4],
: True,
: False,
: False,
: (256, 256),
: ,
: False,
: False,
: 0,
: 0,
: 0.9,
: 0.9,
: 0.0,
: 1.25,
: 0.05,
: 0.05,
: 0.05,
: 0.05,
: True,
: (.05, 1.5),
: 0.0,
: 20,
: 2,
}
if in kwargs:
new_keys = set(kwargs[].keys())
set_keys = set(params.keys())
unsupported = new_keys - set_keys
if unsupported:
raise _ToolkitError(.format(unsupported))
params.update(kwargs[])
_content_loss_mult = params[]
_style_loss_mult = params[]
num_gpus = _mxnet_utils.get_num_gpus_in_use(max_devices=params[])
batch_size_each = params[] // max(num_gpus, 1)
batch_size = max(num_gpus, 1) * batch_size_each
input_shape = params[]
iterations = 0
if max_iterations is None:
max_iterations = len(style_dataset) * 10000
if verbose:
print(.format(max_iterations))
if params[]:
content_loader_type = % params[]
else:
content_loader_type = params[]
content_images_loader = _SFrameSTIter(content_dataset, batch_size, shuffle=True,
feature_column=content_feature, input_shape=input_shape,
loader_type=content_loader_type, aug_params=params,
sequential=params[])
ctx = _mxnet_utils.get_mxnet_context(max_devices=params[])
num_styles = len(style_dataset)
from ._model import Transformer as _Transformer
transformer_model_path = _pre_trained_models.STYLE_TRANSFER_BASE_MODELS[model]().get_model_path()
transformer = _Transformer(num_styles, batch_size_each)
transformer.collect_params().initialize(ctx=ctx)
if params[]:
transformer.load_params(transformer_model_path, ctx, allow_missing=True)
from ._model import Vgg16 as _Vgg16
vgg_model_path = _pre_trained_models.STYLE_TRANSFER_BASE_MODELS[]().get_model_path()
vgg_model = _Vgg16()
vgg_model.collect_params().initialize(ctx=ctx)
vgg_model.load_params(vgg_model_path, ctx=ctx, ignore_extra=True)
vgg_model.hybridize()
from mxnet import gluon as _gluon
from ._model import gram_matrix as _gram_matrix
if params[]:
trainable_params = transformer.collect_params()
else:
trainable_params = transformer.collect_params()
trainer = _gluon.Trainer(trainable_params, , {: params[]})
mse_loss = _gluon.loss.L2Loss()
start_time = _time.time()
smoothed_loss = None
last_time = 0
cuda_gpus = _mxnet_utils.get_gpus_in_use(max_devices=params[])
num_mxnet_gpus = len(cuda_gpus)
if verbose:
cuda_mem_req = 260 + batch_size_each * 880 + num_styles * 1.4
_tkutl._print_neural_compute_device(cuda_gpus=cuda_gpus, use_mps=False,
cuda_mem_req=cuda_mem_req, has_mps_impl=False)
if verbose:
print()
style_images_loader = _SFrameSTIter(style_dataset, batch_size, shuffle=False, num_epochs=1,
feature_column=style_feature, input_shape=input_shape,
loader_type=,
sequential=params[])
num_layers = len(params[])
gram_chunks = [[] for _ in range(num_layers)]
for s_batch in style_images_loader:
s_data = _gluon.utils.split_and_load(s_batch.data[0], ctx_list=ctx, batch_axis=0)
for s in s_data:
vgg16_s = _vgg16_data_prep(s)
ret = vgg_model(vgg16_s)
grams = [_gram_matrix(x) for x in ret]
for i, gram in enumerate(grams):
if gram.context != _mx.cpu(0):
gram = gram.as_in_context(_mx.cpu(0))
gram_chunks[i].append(gram)
del style_images_loader
grams = [
_mx.nd.concat(*chunks, dim=0)[:num_styles]
for chunks in gram_chunks
]
ctx_grams = {}
if ctx[0] == _mx.cpu(0):
ctx_grams[_mx.cpu(0)] = grams
else:
for ctx0 in ctx:
ctx_grams[ctx0] = [gram.as_in_context(ctx0) for gram in grams]
vgg_content_loss_layer = params[]
rs = _np.random.RandomState(1234)
while iterations < max_iterations:
content_images_loader.reset()
for c_batch in content_images_loader:
c_data = _gluon.utils.split_and_load(c_batch.data[0], ctx_list=ctx, batch_axis=0)
Ls = []
curr_content_loss = []
curr_style_loss = []
with _mx.autograd.record():
for c in c_data:
indices = _mx.nd.array(rs.randint(num_styles, size=batch_size_each),
dtype=_np.int64, ctx=c.context)
p = transformer(c, indices)
vgg16_p = _vgg16_data_prep(p)
vgg16_c = _vgg16_data_prep(c)
p_vgg_outputs = vgg_model(vgg16_p)
c_vgg_outputs = vgg_model(vgg16_c)
c_content_layer = c_vgg_outputs[vgg_content_loss_layer]
p_content_layer = p_vgg_outputs[vgg_content_loss_layer]
}
return StyleTransfer(state)
|
Create a :class:`StyleTransfer` model.
Parameters
----------
style_dataset: SFrame
Input style images. The columns named by the ``style_feature`` parameters will
be extracted for training the model.
content_dataset : SFrame
Input content images. The columns named by the ``content_feature`` parameters will
be extracted for training the model.
style_feature: string
Name of the column containing the input images in style SFrame.
'None' (the default) indicates the only image column in the style SFrame
should be used as the feature.
content_feature: string
Name of the column containing the input images in content SFrame.
'None' (the default) indicates the only image column in the content
SFrame should be used as the feature.
max_iterations : int
The number of training iterations. If 'None' (the default), then it will
be automatically determined based on the amount of data you provide.
model : string optional
Style transfer model to use:
- "resnet-16" : Fast and small-sized residual network that uses
VGG-16 as reference network during training.
batch_size : int, optional
If you are getting memory errors, try decreasing this value. If you
have a powerful computer, increasing this value may improve training
throughput.
verbose : bool, optional
If True, print progress updates and model details.
Returns
-------
out : StyleTransfer
A trained :class:`StyleTransfer` model.
See Also
--------
StyleTransfer
Examples
--------
.. sourcecode:: python
# Create datasets
>>> content_dataset = turicreate.image_analysis.load_images('content_images/')
>>> style_dataset = turicreate.image_analysis.load_images('style_images/')
# Train a style transfer model
>>> model = turicreate.style_transfer.create(content_dataset, style_dataset)
# Stylize an image on all styles
>>> stylized_images = model.stylize(data)
# Visualize the stylized images
>>> stylized_images.explore()
|
### Input:
Create a :class:`StyleTransfer` model.
Parameters
----------
style_dataset: SFrame
Input style images. The columns named by the ``style_feature`` parameters will
be extracted for training the model.
content_dataset : SFrame
Input content images. The columns named by the ``content_feature`` parameters will
be extracted for training the model.
style_feature: string
Name of the column containing the input images in style SFrame.
'None' (the default) indicates the only image column in the style SFrame
should be used as the feature.
content_feature: string
Name of the column containing the input images in content SFrame.
'None' (the default) indicates the only image column in the content
SFrame should be used as the feature.
max_iterations : int
The number of training iterations. If 'None' (the default), then it will
be automatically determined based on the amount of data you provide.
model : string optional
Style transfer model to use:
- "resnet-16" : Fast and small-sized residual network that uses
VGG-16 as reference network during training.
batch_size : int, optional
If you are getting memory errors, try decreasing this value. If you
have a powerful computer, increasing this value may improve training
throughput.
verbose : bool, optional
If True, print progress updates and model details.
Returns
-------
out : StyleTransfer
A trained :class:`StyleTransfer` model.
See Also
--------
StyleTransfer
Examples
--------
.. sourcecode:: python
# Create datasets
>>> content_dataset = turicreate.image_analysis.load_images('content_images/')
>>> style_dataset = turicreate.image_analysis.load_images('style_images/')
# Train a style transfer model
>>> model = turicreate.style_transfer.create(content_dataset, style_dataset)
# Stylize an image on all styles
>>> stylized_images = model.stylize(data)
# Visualize the stylized images
>>> stylized_images.explore()
### Response:
#vtb
def create(style_dataset, content_dataset, style_feature=None,
content_feature=None, max_iterations=None, model=,
verbose=True, batch_size = 6, **kwargs):
if len(style_dataset) == 0:
raise _ToolkitError("style_dataset SFrame cannot be empty")
if len(content_dataset) == 0:
raise _ToolkitError("content_dataset SFrame cannot be empty")
if(batch_size < 1):
raise _ToolkitError(" must be greater than or equal to 1")
from ._sframe_loader import SFrameSTIter as _SFrameSTIter
import mxnet as _mx
from .._mxnet import _mxnet_utils
if style_feature is None:
style_feature = _tkutl._find_only_image_column(style_dataset)
if content_feature is None:
content_feature = _tkutl._find_only_image_column(content_dataset)
if verbose:
print("Using in style_dataset as feature column and using "
" in content_dataset as feature column".format(style_feature, content_feature))
_raise_error_if_not_training_sframe(style_dataset, style_feature)
_raise_error_if_not_training_sframe(content_dataset, content_feature)
params = {
: batch_size,
: 2,
: 0.001,
: 1.0,
: [1e-4, 1e-4, 1e-4, 1e-4],
: True,
: False,
: False,
: (256, 256),
: ,
: False,
: False,
: 0,
: 0,
: 0.9,
: 0.9,
: 0.0,
: 1.25,
: 0.05,
: 0.05,
: 0.05,
: 0.05,
: True,
: (.05, 1.5),
: 0.0,
: 20,
: 2,
}
if in kwargs:
new_keys = set(kwargs[].keys())
set_keys = set(params.keys())
unsupported = new_keys - set_keys
if unsupported:
raise _ToolkitError(.format(unsupported))
params.update(kwargs[])
_content_loss_mult = params[]
_style_loss_mult = params[]
num_gpus = _mxnet_utils.get_num_gpus_in_use(max_devices=params[])
batch_size_each = params[] // max(num_gpus, 1)
batch_size = max(num_gpus, 1) * batch_size_each
input_shape = params[]
iterations = 0
if max_iterations is None:
max_iterations = len(style_dataset) * 10000
if verbose:
print(.format(max_iterations))
if params[]:
content_loader_type = % params[]
else:
content_loader_type = params[]
content_images_loader = _SFrameSTIter(content_dataset, batch_size, shuffle=True,
feature_column=content_feature, input_shape=input_shape,
loader_type=content_loader_type, aug_params=params,
sequential=params[])
ctx = _mxnet_utils.get_mxnet_context(max_devices=params[])
num_styles = len(style_dataset)
from ._model import Transformer as _Transformer
transformer_model_path = _pre_trained_models.STYLE_TRANSFER_BASE_MODELS[model]().get_model_path()
transformer = _Transformer(num_styles, batch_size_each)
transformer.collect_params().initialize(ctx=ctx)
if params[]:
transformer.load_params(transformer_model_path, ctx, allow_missing=True)
from ._model import Vgg16 as _Vgg16
vgg_model_path = _pre_trained_models.STYLE_TRANSFER_BASE_MODELS[]().get_model_path()
vgg_model = _Vgg16()
vgg_model.collect_params().initialize(ctx=ctx)
vgg_model.load_params(vgg_model_path, ctx=ctx, ignore_extra=True)
vgg_model.hybridize()
from mxnet import gluon as _gluon
from ._model import gram_matrix as _gram_matrix
if params[]:
trainable_params = transformer.collect_params()
else:
trainable_params = transformer.collect_params()
trainer = _gluon.Trainer(trainable_params, , {: params[]})
mse_loss = _gluon.loss.L2Loss()
start_time = _time.time()
smoothed_loss = None
last_time = 0
cuda_gpus = _mxnet_utils.get_gpus_in_use(max_devices=params[])
num_mxnet_gpus = len(cuda_gpus)
if verbose:
cuda_mem_req = 260 + batch_size_each * 880 + num_styles * 1.4
_tkutl._print_neural_compute_device(cuda_gpus=cuda_gpus, use_mps=False,
cuda_mem_req=cuda_mem_req, has_mps_impl=False)
if verbose:
print()
style_images_loader = _SFrameSTIter(style_dataset, batch_size, shuffle=False, num_epochs=1,
feature_column=style_feature, input_shape=input_shape,
loader_type=,
sequential=params[])
num_layers = len(params[])
gram_chunks = [[] for _ in range(num_layers)]
for s_batch in style_images_loader:
s_data = _gluon.utils.split_and_load(s_batch.data[0], ctx_list=ctx, batch_axis=0)
for s in s_data:
vgg16_s = _vgg16_data_prep(s)
ret = vgg_model(vgg16_s)
grams = [_gram_matrix(x) for x in ret]
for i, gram in enumerate(grams):
if gram.context != _mx.cpu(0):
gram = gram.as_in_context(_mx.cpu(0))
gram_chunks[i].append(gram)
del style_images_loader
grams = [
_mx.nd.concat(*chunks, dim=0)[:num_styles]
for chunks in gram_chunks
]
ctx_grams = {}
if ctx[0] == _mx.cpu(0):
ctx_grams[_mx.cpu(0)] = grams
else:
for ctx0 in ctx:
ctx_grams[ctx0] = [gram.as_in_context(ctx0) for gram in grams]
vgg_content_loss_layer = params[]
rs = _np.random.RandomState(1234)
while iterations < max_iterations:
content_images_loader.reset()
for c_batch in content_images_loader:
c_data = _gluon.utils.split_and_load(c_batch.data[0], ctx_list=ctx, batch_axis=0)
Ls = []
curr_content_loss = []
curr_style_loss = []
with _mx.autograd.record():
for c in c_data:
indices = _mx.nd.array(rs.randint(num_styles, size=batch_size_each),
dtype=_np.int64, ctx=c.context)
p = transformer(c, indices)
vgg16_p = _vgg16_data_prep(p)
vgg16_c = _vgg16_data_prep(c)
p_vgg_outputs = vgg_model(vgg16_p)
c_vgg_outputs = vgg_model(vgg16_c)
c_content_layer = c_vgg_outputs[vgg_content_loss_layer]
p_content_layer = p_vgg_outputs[vgg_content_loss_layer]
}
return StyleTransfer(state)
|
#vtb
def use_certificate(self, cert):
if not isinstance(cert, X509):
raise TypeError("cert must be an X509 instance")
use_result = _lib.SSL_CTX_use_certificate(self._context, cert._x509)
if not use_result:
_raise_current_error()
|
Load a certificate from a X509 object
:param cert: The X509 object
:return: None
|
### Input:
Load a certificate from a X509 object
:param cert: The X509 object
:return: None
### Response:
#vtb
def use_certificate(self, cert):
if not isinstance(cert, X509):
raise TypeError("cert must be an X509 instance")
use_result = _lib.SSL_CTX_use_certificate(self._context, cert._x509)
if not use_result:
_raise_current_error()
|
#vtb
def circles(st, layer, axis, ax=None, talpha=1.0, cedge=, cface=):
pos = st.obj_get_positions()
rad = st.obj_get_radii()
shape = st.ishape.shape.tolist()
shape.pop(axis)
if ax is None:
fig = plt.figure()
axisbg = if cface == else
sx, sy = ((1,shape[1]/float(shape[0])) if shape[0] > shape[1] else
(shape[0]/float(shape[1]), 1))
ax = fig.add_axes((0,0, sx, sy), axisbg=axisbg)
particles = np.arange(len(pos))[np.abs(pos[:,axis] - layer) < rad]
scale = 1.0
for i in particles:
p = pos[i].copy()
r = 2*np.sqrt(rad[i]**2 - (p[axis] - layer)**2)
if axis==0:
ix = 1; iy = 2
elif axis == 1:
ix = 0; iy = 2
elif axis==2:
ix = 0; iy = 1
c = Circle((p[ix]/scale, p[iy]/scale), radius=r/2/scale, fc=cface,
ec=cedge, alpha=talpha)
ax.add_patch(c)
plt.axis()
return ax
|
Plots a set of circles corresponding to a slice through the platonic
structure. Copied from twoslice_overlay with comments, standaloneness.
Inputs
------
pos : array of particle positions; [N,3]
rad : array of particle radii; [N]
ax : plt.axis instance
layer : Which layer of the slice to use.
axis : The slice of the image, 0, 1, or 2.
cedge : edge color
cface : face color
talpha : Alpha of the thing
|
### Input:
Plots a set of circles corresponding to a slice through the platonic
structure. Copied from twoslice_overlay with comments, standaloneness.
Inputs
------
pos : array of particle positions; [N,3]
rad : array of particle radii; [N]
ax : plt.axis instance
layer : Which layer of the slice to use.
axis : The slice of the image, 0, 1, or 2.
cedge : edge color
cface : face color
talpha : Alpha of the thing
### Response:
#vtb
def circles(st, layer, axis, ax=None, talpha=1.0, cedge=, cface=):
pos = st.obj_get_positions()
rad = st.obj_get_radii()
shape = st.ishape.shape.tolist()
shape.pop(axis)
if ax is None:
fig = plt.figure()
axisbg = if cface == else
sx, sy = ((1,shape[1]/float(shape[0])) if shape[0] > shape[1] else
(shape[0]/float(shape[1]), 1))
ax = fig.add_axes((0,0, sx, sy), axisbg=axisbg)
particles = np.arange(len(pos))[np.abs(pos[:,axis] - layer) < rad]
scale = 1.0
for i in particles:
p = pos[i].copy()
r = 2*np.sqrt(rad[i]**2 - (p[axis] - layer)**2)
if axis==0:
ix = 1; iy = 2
elif axis == 1:
ix = 0; iy = 2
elif axis==2:
ix = 0; iy = 1
c = Circle((p[ix]/scale, p[iy]/scale), radius=r/2/scale, fc=cface,
ec=cedge, alpha=talpha)
ax.add_patch(c)
plt.axis()
return ax
|
#vtb
def visit_exact_match_value(self, node, fieldnames=None):
if not fieldnames:
fieldnames = []
else:
fieldnames = force_list(fieldnames)
if ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames[0]:
return self._generate_exact_author_query(node.value)
elif ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames[0]:
return self._generate_type_code_query(node.value)
elif ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames:
return self._generate_journal_nested_queries(node.value)
bai_fieldnames = self._generate_fieldnames_if_bai_query(
node.value,
bai_field_variation=FieldVariations.raw,
query_bai_field_if_dots_in_name=False
)
if ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames:
term_queries = []
for field in fieldnames:
term_query = \
{: {field: _truncate_date_value_according_on_date_field(field, node.value).dumps()}}
term_queries.append(
generate_nested_query(ElasticSearchVisitor.DATE_NESTED_QUERY_PATH, term_query)
if field in ElasticSearchVisitor.DATE_NESTED_FIELDS
else term_query
)
elif ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] in fieldnames:
term_queries = [
generate_nested_query(ElasticSearchVisitor.AUTHORS_NESTED_QUERY_PATH, {: {field: node.value}})
for field in (bai_fieldnames or fieldnames)
]
else:
term_queries = [{: {field: node.value}} for field in (bai_fieldnames or fieldnames)]
return wrap_queries_in_bool_clauses_if_more_than_one(term_queries, use_must_clause=False)
|
Generates a term query (exact search in ElasticSearch).
|
### Input:
Generates a term query (exact search in ElasticSearch).
### Response:
#vtb
def visit_exact_match_value(self, node, fieldnames=None):
if not fieldnames:
fieldnames = []
else:
fieldnames = force_list(fieldnames)
if ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames[0]:
return self._generate_exact_author_query(node.value)
elif ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames[0]:
return self._generate_type_code_query(node.value)
elif ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames:
return self._generate_journal_nested_queries(node.value)
bai_fieldnames = self._generate_fieldnames_if_bai_query(
node.value,
bai_field_variation=FieldVariations.raw,
query_bai_field_if_dots_in_name=False
)
if ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] == fieldnames:
term_queries = []
for field in fieldnames:
term_query = \
{: {field: _truncate_date_value_according_on_date_field(field, node.value).dumps()}}
term_queries.append(
generate_nested_query(ElasticSearchVisitor.DATE_NESTED_QUERY_PATH, term_query)
if field in ElasticSearchVisitor.DATE_NESTED_FIELDS
else term_query
)
elif ElasticSearchVisitor.KEYWORD_TO_ES_FIELDNAME[] in fieldnames:
term_queries = [
generate_nested_query(ElasticSearchVisitor.AUTHORS_NESTED_QUERY_PATH, {: {field: node.value}})
for field in (bai_fieldnames or fieldnames)
]
else:
term_queries = [{: {field: node.value}} for field in (bai_fieldnames or fieldnames)]
return wrap_queries_in_bool_clauses_if_more_than_one(term_queries, use_must_clause=False)
|
#vtb
def _handleDelete(self):
if self.cursorPos < len(self.inputBuffer):
self.inputBuffer = self.inputBuffer[0:self.cursorPos] + self.inputBuffer[self.cursorPos+1:]
self._refreshInputPrompt(len(self.inputBuffer)+1)
|
Handles "delete" characters
|
### Input:
Handles "delete" characters
### Response:
#vtb
def _handleDelete(self):
if self.cursorPos < len(self.inputBuffer):
self.inputBuffer = self.inputBuffer[0:self.cursorPos] + self.inputBuffer[self.cursorPos+1:]
self._refreshInputPrompt(len(self.inputBuffer)+1)
|
#vtb
def verify_sc_url(url: str) -> bool:
parsed = urlsplit(url)
scheme: str = parsed.scheme
netloc: str = parsed.netloc
path: str = parsed.path
try:
port = parsed.port
except ValueError:
port = None
result = (scheme.lower() == and
netloc.lower().split()[0] == and
path.startswith() and
(port == 443 or port is None))
return result
|
Verify signature certificate URL against Amazon Alexa requirements.
Each call of Agent passes incoming utterances batch through skills filter,
agent skills, skills processor. Batch of dialog IDs can be provided, in
other case utterances indexes in incoming batch are used as dialog IDs.
Args:
url: Signature certificate URL from SignatureCertChainUrl HTTP header.
Returns:
result: True if verification was successful, False if not.
|
### Input:
Verify signature certificate URL against Amazon Alexa requirements.
Each call of Agent passes incoming utterances batch through skills filter,
agent skills, skills processor. Batch of dialog IDs can be provided, in
other case utterances indexes in incoming batch are used as dialog IDs.
Args:
url: Signature certificate URL from SignatureCertChainUrl HTTP header.
Returns:
result: True if verification was successful, False if not.
### Response:
#vtb
def verify_sc_url(url: str) -> bool:
parsed = urlsplit(url)
scheme: str = parsed.scheme
netloc: str = parsed.netloc
path: str = parsed.path
try:
port = parsed.port
except ValueError:
port = None
result = (scheme.lower() == and
netloc.lower().split()[0] == and
path.startswith() and
(port == 443 or port is None))
return result
|
#vtb
def write(self, handle):
if not self._frames:
return
def add(name, desc, bpe, format, bytes, *dimensions):
group.add_param(name,
desc=desc,
bytes_per_element=bpe,
bytes=struct.pack(format, bytes),
dimensions=list(dimensions))
def add_str(name, desc, bytes, *dimensions):
group.add_param(name,
desc=desc,
bytes_per_element=-1,
bytes=bytes.encode(),
dimensions=list(dimensions))
def add_empty_array(name, desc, bpe):
group.add_param(name, desc=desc, bytes_per_element=bpe, dimensions=[0])
points, analog = self._frames[0]
ppf = len(points)
group = self.add_group(1, , )
add(, , 2, , ppf)
add(, , 2, , min(65535, len(self._frames)))
add(, , 2, , 0)
add(, , 4, , self._point_scale)
add(, , 4, , self._point_rate)
add_str(, , , 2)
add_str(, , , 2)
add_str(, , self._point_units, len(self._point_units))
add_str(, , .join( % i for i in range(ppf)), 5, ppf)
add_str(, , * 16 * ppf, 16, ppf)
group = self.add_group(2, , )
add(, , 2, , analog.shape[0])
add(, , 4, , analog.shape[1])
add(, , 4, , self._gen_scale)
add_empty_array(, , 4)
add_empty_array(, , 2)
group = self.add_group(3, , )
add(, , 2, , 1, 2)
add(, , 2, , len(self._frames), 2)
blocks = self.parameter_blocks()
self.get().bytes = struct.pack(, 2 + blocks)
self.header.data_block = 2 + blocks
self.header.frame_rate = self._point_rate
self.header.last_frame = min(len(self._frames), 65535)
self.header.point_count = ppf
self.header.analog_count = np.prod(analog.shape)
self.header.analog_per_frame = analog.shape[0]
self.header.scale_factor = self._point_scale
self._write_metadata(handle)
self._write_frames(handle)
|
Write metadata and point + analog frames to a file handle.
Parameters
----------
handle : file
Write metadata and C3D motion frames to the given file handle. The
writer does not close the handle.
|
### Input:
Write metadata and point + analog frames to a file handle.
Parameters
----------
handle : file
Write metadata and C3D motion frames to the given file handle. The
writer does not close the handle.
### Response:
#vtb
def write(self, handle):
if not self._frames:
return
def add(name, desc, bpe, format, bytes, *dimensions):
group.add_param(name,
desc=desc,
bytes_per_element=bpe,
bytes=struct.pack(format, bytes),
dimensions=list(dimensions))
def add_str(name, desc, bytes, *dimensions):
group.add_param(name,
desc=desc,
bytes_per_element=-1,
bytes=bytes.encode(),
dimensions=list(dimensions))
def add_empty_array(name, desc, bpe):
group.add_param(name, desc=desc, bytes_per_element=bpe, dimensions=[0])
points, analog = self._frames[0]
ppf = len(points)
group = self.add_group(1, , )
add(, , 2, , ppf)
add(, , 2, , min(65535, len(self._frames)))
add(, , 2, , 0)
add(, , 4, , self._point_scale)
add(, , 4, , self._point_rate)
add_str(, , , 2)
add_str(, , , 2)
add_str(, , self._point_units, len(self._point_units))
add_str(, , .join( % i for i in range(ppf)), 5, ppf)
add_str(, , * 16 * ppf, 16, ppf)
group = self.add_group(2, , )
add(, , 2, , analog.shape[0])
add(, , 4, , analog.shape[1])
add(, , 4, , self._gen_scale)
add_empty_array(, , 4)
add_empty_array(, , 2)
group = self.add_group(3, , )
add(, , 2, , 1, 2)
add(, , 2, , len(self._frames), 2)
blocks = self.parameter_blocks()
self.get().bytes = struct.pack(, 2 + blocks)
self.header.data_block = 2 + blocks
self.header.frame_rate = self._point_rate
self.header.last_frame = min(len(self._frames), 65535)
self.header.point_count = ppf
self.header.analog_count = np.prod(analog.shape)
self.header.analog_per_frame = analog.shape[0]
self.header.scale_factor = self._point_scale
self._write_metadata(handle)
self._write_frames(handle)
|
#vtb
def sort_values(self, by=None, axis=0, ascending=True, inplace=False,
kind=, na_position=):
raise NotImplementedError("sort_values has not been implemented "
"on Panel or Panel4D objects.")
|
Sort by the values along either axis.
Parameters
----------%(optional_by)s
axis : %(axes_single_arg)s, default 0
Axis to be sorted.
ascending : bool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort
orders. If this is a list of bools, must match the length of
the by.
inplace : bool, default False
If True, perform operation in-place.
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also ndarray.np.sort for more
information. `mergesort` is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
Puts NaNs at the beginning if `first`; `last` puts NaNs at the
end.
Returns
-------
sorted_obj : DataFrame or None
DataFrame with sorted values if inplace=False, None otherwise.
Examples
--------
>>> df = pd.DataFrame({
... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'],
... 'col2': [2, 1, 9, 8, 7, 4],
... 'col3': [0, 1, 9, 4, 2, 3],
... })
>>> df
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
3 NaN 8 4
4 D 7 2
5 C 4 3
Sort by col1
>>> df.sort_values(by=['col1'])
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2'])
col1 col2 col3
1 A 1 1
0 A 2 0
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4
Sort Descending
>>> df.sort_values(by='col1', ascending=False)
col1 col2 col3
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
3 NaN 8 4
Putting NAs first
>>> df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3
3 NaN 8 4
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
|
### Input:
Sort by the values along either axis.
Parameters
----------%(optional_by)s
axis : %(axes_single_arg)s, default 0
Axis to be sorted.
ascending : bool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort
orders. If this is a list of bools, must match the length of
the by.
inplace : bool, default False
If True, perform operation in-place.
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also ndarray.np.sort for more
information. `mergesort` is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
Puts NaNs at the beginning if `first`; `last` puts NaNs at the
end.
Returns
-------
sorted_obj : DataFrame or None
DataFrame with sorted values if inplace=False, None otherwise.
Examples
--------
>>> df = pd.DataFrame({
... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'],
... 'col2': [2, 1, 9, 8, 7, 4],
... 'col3': [0, 1, 9, 4, 2, 3],
... })
>>> df
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
3 NaN 8 4
4 D 7 2
5 C 4 3
Sort by col1
>>> df.sort_values(by=['col1'])
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2'])
col1 col2 col3
1 A 1 1
0 A 2 0
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4
Sort Descending
>>> df.sort_values(by='col1', ascending=False)
col1 col2 col3
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
3 NaN 8 4
Putting NAs first
>>> df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3
3 NaN 8 4
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
### Response:
#vtb
def sort_values(self, by=None, axis=0, ascending=True, inplace=False,
kind=, na_position=):
raise NotImplementedError("sort_values has not been implemented "
"on Panel or Panel4D objects.")
|
#vtb
def send(self, request, **kwargs):
kwargs.setdefault(, self.stream)
kwargs.setdefault(, self.verify)
kwargs.setdefault(, self.cert)
kwargs.setdefault(, self.proxies)
if history:
history.insert(0, r)
r = history.pop()
r.history = history
if not stream:
r.content
return r
|
Send a given PreparedRequest.
|
### Input:
Send a given PreparedRequest.
### Response:
#vtb
def send(self, request, **kwargs):
kwargs.setdefault(, self.stream)
kwargs.setdefault(, self.verify)
kwargs.setdefault(, self.cert)
kwargs.setdefault(, self.proxies)
if history:
history.insert(0, r)
r = history.pop()
r.history = history
if not stream:
r.content
return r
|
#vtb
def grouper_nofill_str(n, iterable):
res = more_itertools.chunked(iterable, n)
if isinstance(iterable, six.string_types):
res = (.join(item) for item in res)
return res
|
Take a sequence and break it up into chunks of the specified size.
The last chunk may be smaller than size.
This works very similar to grouper_nofill, except
it works with strings as well.
>>> tuple(grouper_nofill_str(3, 'foobarbaz'))
('foo', 'bar', 'baz')
You can still use it on non-strings too if you like.
>>> tuple(grouper_nofill_str(42, []))
()
>>> tuple(grouper_nofill_str(3, list(range(10))))
([0, 1, 2], [3, 4, 5], [6, 7, 8], [9])
|
### Input:
Take a sequence and break it up into chunks of the specified size.
The last chunk may be smaller than size.
This works very similar to grouper_nofill, except
it works with strings as well.
>>> tuple(grouper_nofill_str(3, 'foobarbaz'))
('foo', 'bar', 'baz')
You can still use it on non-strings too if you like.
>>> tuple(grouper_nofill_str(42, []))
()
>>> tuple(grouper_nofill_str(3, list(range(10))))
([0, 1, 2], [3, 4, 5], [6, 7, 8], [9])
### Response:
#vtb
def grouper_nofill_str(n, iterable):
res = more_itertools.chunked(iterable, n)
if isinstance(iterable, six.string_types):
res = (.join(item) for item in res)
return res
|
#vtb
def GetForwardedIps(self, interface, interface_ip=None):
try:
ips = netifaces.ifaddresses(interface)
ips = ips[netifaces.AF_INET]
except (ValueError, IndexError):
return []
forwarded_ips = []
for ip in ips:
if ip[] != interface_ip:
full_addr = % (ip[], netaddr.IPAddress(ip[]).netmask_bits())
forwarded_ips.append(full_addr)
return self.ParseForwardedIps(forwarded_ips)
|
Retrieve the list of configured forwarded IP addresses.
Args:
interface: string, the output device to query.
interface_ip: string, current interface ip address.
Returns:
list, the IP address strings.
|
### Input:
Retrieve the list of configured forwarded IP addresses.
Args:
interface: string, the output device to query.
interface_ip: string, current interface ip address.
Returns:
list, the IP address strings.
### Response:
#vtb
def GetForwardedIps(self, interface, interface_ip=None):
try:
ips = netifaces.ifaddresses(interface)
ips = ips[netifaces.AF_INET]
except (ValueError, IndexError):
return []
forwarded_ips = []
for ip in ips:
if ip[] != interface_ip:
full_addr = % (ip[], netaddr.IPAddress(ip[]).netmask_bits())
forwarded_ips.append(full_addr)
return self.ParseForwardedIps(forwarded_ips)
|
#vtb
def eval_genome(genome, config):
net = neat.nn.FeedForwardNetwork.create(genome, config)
error = 4.0
for xi, xo in zip(xor_inputs, xor_outputs):
output = net.activate(xi)
error -= (output[0] - xo[0]) ** 2
return error
|
This function will be run in parallel by ParallelEvaluator. It takes two
arguments (a single genome and the genome class configuration data) and
should return one float (that genome's fitness).
Note that this function needs to be in module scope for multiprocessing.Pool
(which is what ParallelEvaluator uses) to find it. Because of this, make
sure you check for __main__ before executing any code (as we do here in the
last few lines in the file), otherwise you'll have made a fork bomb
instead of a neuroevolution demo. :)
|
### Input:
This function will be run in parallel by ParallelEvaluator. It takes two
arguments (a single genome and the genome class configuration data) and
should return one float (that genome's fitness).
Note that this function needs to be in module scope for multiprocessing.Pool
(which is what ParallelEvaluator uses) to find it. Because of this, make
sure you check for __main__ before executing any code (as we do here in the
last few lines in the file), otherwise you'll have made a fork bomb
instead of a neuroevolution demo. :)
### Response:
#vtb
def eval_genome(genome, config):
net = neat.nn.FeedForwardNetwork.create(genome, config)
error = 4.0
for xi, xo in zip(xor_inputs, xor_outputs):
output = net.activate(xi)
error -= (output[0] - xo[0]) ** 2
return error
|
#vtb
def quantize_model(sym, arg_params, aux_params,
data_names=(,), label_names=(,),
ctx=cpu(), excluded_sym_names=None, calib_mode=,
calib_data=None, num_calib_examples=None, calib_layer=None,
quantized_dtype=, logger=logging):
if excluded_sym_names is None:
excluded_sym_names = []
if not isinstance(excluded_sym_names, list):
raise ValueError(
% str(type(excluded_sym_names)))
logger.info()
if quantized_dtype not in (, , ):
raise ValueError(
% quantized_dtype)
qsym = _quantize_symbol(sym, excluded_symbols=excluded_sym_names,
offline_params=list(arg_params.keys()),
quantized_dtype=quantized_dtype)
th_dict = {}
if calib_mode is not None and calib_mode != :
if not isinstance(ctx, Context):
raise ValueError( % str(ctx))
if calib_data is None:
raise ValueError( % calib_mode)
if not isinstance(calib_data, DataIter):
raise ValueError(
% (calib_mode, str(type(calib_data))))
mod = Module(symbol=sym, data_names=data_names, label_names=label_names, context=ctx)
if len(calib_data.provide_label) > 0:
mod.bind(for_training=False, data_shapes=calib_data.provide_data,
label_shapes=calib_data.provide_label)
else:
mod.bind(for_training=False, data_shapes=calib_data.provide_data)
mod.set_params(arg_params, aux_params)
if calib_mode == :
nd_dict, num_examples = _collect_layer_outputs(mod, calib_data,
include_layer=calib_layer,
max_num_examples=num_calib_examples,
logger=logger)
logger.info( % num_examples)
logger.info()
th_dict = _get_optimal_thresholds(nd_dict, quantized_dtype, logger=logger)
elif calib_mode == :
th_dict, num_examples = _collect_layer_output_min_max(
mod, calib_data, include_layer=calib_layer, max_num_examples=num_calib_examples,
logger=logger)
logger.info(
% num_examples)
else:
raise ValueError(
% calib_mode)
logger.info()
qsym = _calibrate_quantized_sym(qsym, th_dict)
logger.info()
qarg_params = _quantize_params(qsym, arg_params, th_dict)
return qsym, qarg_params, aux_params
|
User-level API for generating a quantized model from a FP32 model w/ or w/o calibration.
The backend quantized operators are only enabled for Linux systems. Please do not run
inference using the quantized models on Windows for now.
The quantization implementation adopts the TensorFlow's approach:
https://www.tensorflow.org/performance/quantization.
The calibration implementation borrows the idea of Nvidia's 8-bit Inference with TensorRT:
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
and adapts the method to MXNet.
Parameters
----------
sym : str or Symbol
Defines the structure of a neural network for FP32 data types.
arg_params : dict
Dictionary of name to `NDArray`.
aux_params : dict
Dictionary of name to `NDArray`.
data_names : a list of strs
Data names required for creating a Module object to run forward propagation on the
calibration dataset.
label_names : a list of strs
Label names required for creating a Module object to run forward propagation on the
calibration dataset.
ctx : Context
Defines the device that users want to run forward propagation on the calibration
dataset for collecting layer output statistics. Currently, only supports single context.
excluded_sym_names : list of strings
A list of strings representing the names of the symbols that users want to excluding
from being quantized.
calib_mode : str
If calib_mode='none', no calibration will be used and the thresholds for
requantization after the corresponding layers will be calculated at runtime by
calling min and max operators. The quantized models generated in this
mode are normally 10-20% slower than those with calibrations during inference.
If calib_mode='naive', the min and max values of the layer outputs from a calibration
dataset will be directly taken as the thresholds for quantization.
If calib_mode='entropy' (default mode), the thresholds for quantization will be
derived such that the KL divergence between the distributions of FP32 layer outputs and
quantized layer outputs is minimized based upon the calibration dataset.
calib_data : DataIter
A data iterator initialized by the calibration dataset.
num_calib_examples : int or None
The maximum number of examples that user would like to use for calibration. If not provided,
the whole calibration dataset will be used.
calib_layer : function
Given a layer's output name in string, return True or False for deciding whether to
calibrate this layer. If yes, the statistics of the layer's output will be collected;
otherwise, no information of the layer's output will be collected. If not provided,
all the layers' outputs that need requantization will be collected.
quantized_dtype : str
The quantized destination type for input data. Currently support 'int8'
, 'uint8' and 'auto'. 'auto' means automatically select output type according to calibration result.
Default value is 'int8'.
logger : Object
A logging object for printing information during the process of quantization.
Returns
-------
tuple
A tuple of quantized symbol, quantized arg_params, and aux_params.
-------
|
### Input:
User-level API for generating a quantized model from a FP32 model w/ or w/o calibration.
The backend quantized operators are only enabled for Linux systems. Please do not run
inference using the quantized models on Windows for now.
The quantization implementation adopts the TensorFlow's approach:
https://www.tensorflow.org/performance/quantization.
The calibration implementation borrows the idea of Nvidia's 8-bit Inference with TensorRT:
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
and adapts the method to MXNet.
Parameters
----------
sym : str or Symbol
Defines the structure of a neural network for FP32 data types.
arg_params : dict
Dictionary of name to `NDArray`.
aux_params : dict
Dictionary of name to `NDArray`.
data_names : a list of strs
Data names required for creating a Module object to run forward propagation on the
calibration dataset.
label_names : a list of strs
Label names required for creating a Module object to run forward propagation on the
calibration dataset.
ctx : Context
Defines the device that users want to run forward propagation on the calibration
dataset for collecting layer output statistics. Currently, only supports single context.
excluded_sym_names : list of strings
A list of strings representing the names of the symbols that users want to excluding
from being quantized.
calib_mode : str
If calib_mode='none', no calibration will be used and the thresholds for
requantization after the corresponding layers will be calculated at runtime by
calling min and max operators. The quantized models generated in this
mode are normally 10-20% slower than those with calibrations during inference.
If calib_mode='naive', the min and max values of the layer outputs from a calibration
dataset will be directly taken as the thresholds for quantization.
If calib_mode='entropy' (default mode), the thresholds for quantization will be
derived such that the KL divergence between the distributions of FP32 layer outputs and
quantized layer outputs is minimized based upon the calibration dataset.
calib_data : DataIter
A data iterator initialized by the calibration dataset.
num_calib_examples : int or None
The maximum number of examples that user would like to use for calibration. If not provided,
the whole calibration dataset will be used.
calib_layer : function
Given a layer's output name in string, return True or False for deciding whether to
calibrate this layer. If yes, the statistics of the layer's output will be collected;
otherwise, no information of the layer's output will be collected. If not provided,
all the layers' outputs that need requantization will be collected.
quantized_dtype : str
The quantized destination type for input data. Currently support 'int8'
, 'uint8' and 'auto'. 'auto' means automatically select output type according to calibration result.
Default value is 'int8'.
logger : Object
A logging object for printing information during the process of quantization.
Returns
-------
tuple
A tuple of quantized symbol, quantized arg_params, and aux_params.
-------
### Response:
#vtb
def quantize_model(sym, arg_params, aux_params,
data_names=(,), label_names=(,),
ctx=cpu(), excluded_sym_names=None, calib_mode=,
calib_data=None, num_calib_examples=None, calib_layer=None,
quantized_dtype=, logger=logging):
if excluded_sym_names is None:
excluded_sym_names = []
if not isinstance(excluded_sym_names, list):
raise ValueError(
% str(type(excluded_sym_names)))
logger.info()
if quantized_dtype not in (, , ):
raise ValueError(
% quantized_dtype)
qsym = _quantize_symbol(sym, excluded_symbols=excluded_sym_names,
offline_params=list(arg_params.keys()),
quantized_dtype=quantized_dtype)
th_dict = {}
if calib_mode is not None and calib_mode != :
if not isinstance(ctx, Context):
raise ValueError( % str(ctx))
if calib_data is None:
raise ValueError( % calib_mode)
if not isinstance(calib_data, DataIter):
raise ValueError(
% (calib_mode, str(type(calib_data))))
mod = Module(symbol=sym, data_names=data_names, label_names=label_names, context=ctx)
if len(calib_data.provide_label) > 0:
mod.bind(for_training=False, data_shapes=calib_data.provide_data,
label_shapes=calib_data.provide_label)
else:
mod.bind(for_training=False, data_shapes=calib_data.provide_data)
mod.set_params(arg_params, aux_params)
if calib_mode == :
nd_dict, num_examples = _collect_layer_outputs(mod, calib_data,
include_layer=calib_layer,
max_num_examples=num_calib_examples,
logger=logger)
logger.info( % num_examples)
logger.info()
th_dict = _get_optimal_thresholds(nd_dict, quantized_dtype, logger=logger)
elif calib_mode == :
th_dict, num_examples = _collect_layer_output_min_max(
mod, calib_data, include_layer=calib_layer, max_num_examples=num_calib_examples,
logger=logger)
logger.info(
% num_examples)
else:
raise ValueError(
% calib_mode)
logger.info()
qsym = _calibrate_quantized_sym(qsym, th_dict)
logger.info()
qarg_params = _quantize_params(qsym, arg_params, th_dict)
return qsym, qarg_params, aux_params
|
#vtb
def make_venv(self, dj_version):
venv_path = self._get_venv_path(dj_version)
self.logger.info( % dj_version)
try:
create_venv(venv_path, **VENV_CREATE_KWARGS)
except ValueError:
self.logger.warning()
self.venv_install( % dj_version, venv_path)
return venv_path
|
Creates a virtual environment for a given Django version.
:param str dj_version:
:rtype: str
:return: path to created virtual env
|
### Input:
Creates a virtual environment for a given Django version.
:param str dj_version:
:rtype: str
:return: path to created virtual env
### Response:
#vtb
def make_venv(self, dj_version):
venv_path = self._get_venv_path(dj_version)
self.logger.info( % dj_version)
try:
create_venv(venv_path, **VENV_CREATE_KWARGS)
except ValueError:
self.logger.warning()
self.venv_install( % dj_version, venv_path)
return venv_path
|
#vtb
def _resolve_name(name, package, level):
if not hasattr(package, ):
raise ValueError(" not set to a string")
dot = len(package)
for x in xrange(level, 1, -1):
try:
dot = package.rindex(, 0, dot)
except ValueError:
raise ValueError("attempted relative import beyond top-level "
"package")
return "%s.%s" % (package[:dot], name)
|
Return the absolute name of the module to be imported.
|
### Input:
Return the absolute name of the module to be imported.
### Response:
#vtb
def _resolve_name(name, package, level):
if not hasattr(package, ):
raise ValueError(" not set to a string")
dot = len(package)
for x in xrange(level, 1, -1):
try:
dot = package.rindex(, 0, dot)
except ValueError:
raise ValueError("attempted relative import beyond top-level "
"package")
return "%s.%s" % (package[:dot], name)
|
#vtb
def readPattern(self):
if ( self.dev == None ): return
pattern=[]
for i in range(0,16):
pattern.append( self.readPatternLine(i) )
return pattern
|
Read the entire color pattern
:return List of pattern line tuples
|
### Input:
Read the entire color pattern
:return List of pattern line tuples
### Response:
#vtb
def readPattern(self):
if ( self.dev == None ): return
pattern=[]
for i in range(0,16):
pattern.append( self.readPatternLine(i) )
return pattern
|
#vtb
def mark_flags_as_mutual_exclusive(flag_names, required=False,
flag_values=_flagvalues.FLAGS):
for flag_name in flag_names:
if flag_values[flag_name].default is not None:
warnings.warn(
.format(flag_name))
def validate_mutual_exclusion(flags_dict):
flag_count = sum(1 for val in flags_dict.values() if val is not None)
if flag_count == 1 or (not required and flag_count == 0):
return True
raise _exceptions.ValidationError(
.format(
if required else , .join(flag_names)))
register_multi_flags_validator(
flag_names, validate_mutual_exclusion, flag_values=flag_values)
|
Ensures that only one flag among flag_names is not None.
Important note: This validator checks if flag values are None, and it does not
distinguish between default and explicit values. Therefore, this validator
does not make sense when applied to flags with default values other than None,
including other false values (e.g. False, 0, '', []). That includes multi
flags with a default value of [] instead of None.
Args:
flag_names: [str], names of the flags.
required: bool. If true, exactly one of the flags must have a value other
than None. Otherwise, at most one of the flags can have a value other
than None, and it is valid for all of the flags to be None.
flag_values: flags.FlagValues, optional FlagValues instance where the flags
are defined.
|
### Input:
Ensures that only one flag among flag_names is not None.
Important note: This validator checks if flag values are None, and it does not
distinguish between default and explicit values. Therefore, this validator
does not make sense when applied to flags with default values other than None,
including other false values (e.g. False, 0, '', []). That includes multi
flags with a default value of [] instead of None.
Args:
flag_names: [str], names of the flags.
required: bool. If true, exactly one of the flags must have a value other
than None. Otherwise, at most one of the flags can have a value other
than None, and it is valid for all of the flags to be None.
flag_values: flags.FlagValues, optional FlagValues instance where the flags
are defined.
### Response:
#vtb
def mark_flags_as_mutual_exclusive(flag_names, required=False,
flag_values=_flagvalues.FLAGS):
for flag_name in flag_names:
if flag_values[flag_name].default is not None:
warnings.warn(
.format(flag_name))
def validate_mutual_exclusion(flags_dict):
flag_count = sum(1 for val in flags_dict.values() if val is not None)
if flag_count == 1 or (not required and flag_count == 0):
return True
raise _exceptions.ValidationError(
.format(
if required else , .join(flag_names)))
register_multi_flags_validator(
flag_names, validate_mutual_exclusion, flag_values=flag_values)
|
#vtb
def _set_allowed_services_and_actions(self, services):
for service in services:
self.services[service[]] = {}
for action in service[]:
name = action.pop()
self.services[service[]][name] = action
|
Expect services to be a list of service dictionaries, each with `name` and `actions` keys.
|
### Input:
Expect services to be a list of service dictionaries, each with `name` and `actions` keys.
### Response:
#vtb
def _set_allowed_services_and_actions(self, services):
for service in services:
self.services[service[]] = {}
for action in service[]:
name = action.pop()
self.services[service[]][name] = action
|
#vtb
def _read_parsed(self, lines):
self.log(u"Parsing fragments from parsed text format")
pairs = []
for line in lines:
pieces = line.split(gc.PARSED_TEXT_SEPARATOR)
if len(pieces) == 2:
identifier = pieces[0].strip()
text = pieces[1].strip()
if len(identifier) > 0:
pairs.append((identifier, [text]))
self._create_text_fragments(pairs)
|
Read text fragments from a parsed format text file.
:param list lines: the lines of the parsed text file
:param dict parameters: additional parameters for parsing
(e.g., class/id regex strings)
|
### Input:
Read text fragments from a parsed format text file.
:param list lines: the lines of the parsed text file
:param dict parameters: additional parameters for parsing
(e.g., class/id regex strings)
### Response:
#vtb
def _read_parsed(self, lines):
self.log(u"Parsing fragments from parsed text format")
pairs = []
for line in lines:
pieces = line.split(gc.PARSED_TEXT_SEPARATOR)
if len(pieces) == 2:
identifier = pieces[0].strip()
text = pieces[1].strip()
if len(identifier) > 0:
pairs.append((identifier, [text]))
self._create_text_fragments(pairs)
|
#vtb
def addmsg(self, msg_p):
return lib.zmsg_addmsg(self._as_parameter_, byref(zmsg_p.from_param(msg_p)))
|
Push encoded message as a new frame. Message takes ownership of
submessage, so the original is destroyed in this call. Returns 0 on
success, -1 on error.
|
### Input:
Push encoded message as a new frame. Message takes ownership of
submessage, so the original is destroyed in this call. Returns 0 on
success, -1 on error.
### Response:
#vtb
def addmsg(self, msg_p):
return lib.zmsg_addmsg(self._as_parameter_, byref(zmsg_p.from_param(msg_p)))
|
#vtb
def check_timers(self):
if self._current is None:
advance = min([self.clocks] + [x for x in self.timers if x is not None]) + 1
logger.debug(f"Advancing the clock from {self.clocks} to {advance}")
self.clocks = advance
for procid in range(len(self.timers)):
if self.timers[procid] is not None:
if self.clocks > self.timers[procid]:
self.procs[procid].PC += self.procs[procid].instruction.size
self.awake(procid)
|
Awake process if timer has expired
|
### Input:
Awake process if timer has expired
### Response:
#vtb
def check_timers(self):
if self._current is None:
advance = min([self.clocks] + [x for x in self.timers if x is not None]) + 1
logger.debug(f"Advancing the clock from {self.clocks} to {advance}")
self.clocks = advance
for procid in range(len(self.timers)):
if self.timers[procid] is not None:
if self.clocks > self.timers[procid]:
self.procs[procid].PC += self.procs[procid].instruction.size
self.awake(procid)
|
#vtb
def triangle_area(point1, point2, point3):
a = point_distance(point1, point2)
b = point_distance(point1, point3)
c = point_distance(point2, point3)
s = (a + b + c) / 2.0
return math.sqrt(s * (s - a) * (s - b) * (s - c))
|
Uses Heron's formula to find the area of a triangle
based on the coordinates of three points.
Args:
point1: list or tuple, the x y coordinate of point one.
point2: list or tuple, the x y coordinate of point two.
point3: list or tuple, the x y coordinate of point three.
Returns:
The area of a triangle as a floating point number.
Requires:
The math module, point_distance().
|
### Input:
Uses Heron's formula to find the area of a triangle
based on the coordinates of three points.
Args:
point1: list or tuple, the x y coordinate of point one.
point2: list or tuple, the x y coordinate of point two.
point3: list or tuple, the x y coordinate of point three.
Returns:
The area of a triangle as a floating point number.
Requires:
The math module, point_distance().
### Response:
#vtb
def triangle_area(point1, point2, point3):
a = point_distance(point1, point2)
b = point_distance(point1, point3)
c = point_distance(point2, point3)
s = (a + b + c) / 2.0
return math.sqrt(s * (s - a) * (s - b) * (s - c))
|
#vtb
def _get_role_arn(name, **conn_params):
if name.startswith():
return name
role = __salt__[](name, **conn_params)
rolearn = role.get() if role else None
return rolearn
|
Helper function to turn a name into an arn string,
returns None if not able to resolve
|
### Input:
Helper function to turn a name into an arn string,
returns None if not able to resolve
### Response:
#vtb
def _get_role_arn(name, **conn_params):
if name.startswith():
return name
role = __salt__[](name, **conn_params)
rolearn = role.get() if role else None
return rolearn
|
#vtb
def value_str(sc):
if sc.type in (STRING, INT, HEX):
return "({})".format(sc.str_value)
return "-->" if sc.choice.selection is sc else " "
tri_val_str = (" ", "M", "*")[sc.tri_value]
if len(sc.assignable) == 1:
return "-{}-".format(tri_val_str)
if sc.type == BOOL:
return "[{}]".format(tri_val_str)
if sc.type == TRISTATE:
if sc.assignable == (1, 2):
return "{" + tri_val_str + "}"
return "<{}>".format(tri_val_str)
|
Returns the value part ("[*]", "<M>", "(foo)" etc.) of a menu entry.
sc: Symbol or Choice.
|
### Input:
Returns the value part ("[*]", "<M>", "(foo)" etc.) of a menu entry.
sc: Symbol or Choice.
### Response:
#vtb
def value_str(sc):
if sc.type in (STRING, INT, HEX):
return "({})".format(sc.str_value)
return "-->" if sc.choice.selection is sc else " "
tri_val_str = (" ", "M", "*")[sc.tri_value]
if len(sc.assignable) == 1:
return "-{}-".format(tri_val_str)
if sc.type == BOOL:
return "[{}]".format(tri_val_str)
if sc.type == TRISTATE:
if sc.assignable == (1, 2):
return "{" + tri_val_str + "}"
return "<{}>".format(tri_val_str)
|
#vtb
def load_mod_from_file(self, fpath):
shutit_global.shutit_global_object.yield_to_draw()
fpath = os.path.abspath(fpath)
file_ext = os.path.splitext(os.path.split(fpath)[-1])[-1]
if file_ext.lower() != :
return
with open(fpath) as f:
content = f.read().splitlines()
ok = False
for line in content:
if line.strip() == :
ok = True
break
if not ok:
self.log( + fpath,level=logging.DEBUG)
return
existingmodules = [
m for m in self.shutit_modules
if getattr(m, , None) == fpath
]
if existingmodules:
self.log( + fpath,level=logging.DEBUG)
return
|
Loads modules from a .py file into ShutIt if there are no modules from
this file already.
We expect to have a callable 'module/0' which returns one or more module
objects.
If this doesn't exist we assume that the .py file works in the old style
(automatically inserting the module into shutit_global) or it's not a shutit
module.
|
### Input:
Loads modules from a .py file into ShutIt if there are no modules from
this file already.
We expect to have a callable 'module/0' which returns one or more module
objects.
If this doesn't exist we assume that the .py file works in the old style
(automatically inserting the module into shutit_global) or it's not a shutit
module.
### Response:
#vtb
def load_mod_from_file(self, fpath):
shutit_global.shutit_global_object.yield_to_draw()
fpath = os.path.abspath(fpath)
file_ext = os.path.splitext(os.path.split(fpath)[-1])[-1]
if file_ext.lower() != :
return
with open(fpath) as f:
content = f.read().splitlines()
ok = False
for line in content:
if line.strip() == :
ok = True
break
if not ok:
self.log( + fpath,level=logging.DEBUG)
return
existingmodules = [
m for m in self.shutit_modules
if getattr(m, , None) == fpath
]
if existingmodules:
self.log( + fpath,level=logging.DEBUG)
return
|
#vtb
def NewFromJSON(data):
if data.get(, None):
shakes = [Shake.NewFromJSON(shk) for shk in data.get()]
else:
shakes = None
return User(
id=data.get(, None),
name=data.get(, None),
profile_image_url=data.get(, None),
about=data.get(, None),
website=data.get(, None),
shakes=shakes)
|
Create a new User instance from a JSON dict.
Args:
data (dict): JSON dictionary representing a user.
Returns:
A User instance.
|
### Input:
Create a new User instance from a JSON dict.
Args:
data (dict): JSON dictionary representing a user.
Returns:
A User instance.
### Response:
#vtb
def NewFromJSON(data):
if data.get(, None):
shakes = [Shake.NewFromJSON(shk) for shk in data.get()]
else:
shakes = None
return User(
id=data.get(, None),
name=data.get(, None),
profile_image_url=data.get(, None),
about=data.get(, None),
website=data.get(, None),
shakes=shakes)
|
#vtb
def _estimate_label_shape(self):
max_count = 0
self.reset()
try:
while True:
label, _ = self.next_sample()
label = self._parse_label(label)
max_count = max(max_count, label.shape[0])
except StopIteration:
pass
self.reset()
return (max_count, label.shape[1])
|
Helper function to estimate label shape
|
### Input:
Helper function to estimate label shape
### Response:
#vtb
def _estimate_label_shape(self):
max_count = 0
self.reset()
try:
while True:
label, _ = self.next_sample()
label = self._parse_label(label)
max_count = max(max_count, label.shape[0])
except StopIteration:
pass
self.reset()
return (max_count, label.shape[1])
|
#vtb
def stretch_weber_fechner(self, k, s0):
attrs = self.data.attrs
self.data = k * xu.log(self.data / s0)
self.data.attrs = attrs
|
Stretch according to the Weber-Fechner law.
p = k.ln(S/S0)
p is perception, S is the stimulus, S0 is the stimulus threshold (the
highest unpercieved stimulus), and k is the factor.
|
### Input:
Stretch according to the Weber-Fechner law.
p = k.ln(S/S0)
p is perception, S is the stimulus, S0 is the stimulus threshold (the
highest unpercieved stimulus), and k is the factor.
### Response:
#vtb
def stretch_weber_fechner(self, k, s0):
attrs = self.data.attrs
self.data = k * xu.log(self.data / s0)
self.data.attrs = attrs
|
#vtb
def read(path, encoding="utf-8"):
try:
with io.open(path, encoding=encoding) as f:
return f.read()
except Exception as e:
logger.error("read: %s failed. Error: %s", path, e)
return ""
|
Read the content of the file.
Args:
path (str): Path to the file
encoding (str): File encoding. Default: utf-8
Returns:
str: File content or empty string if there was an error
|
### Input:
Read the content of the file.
Args:
path (str): Path to the file
encoding (str): File encoding. Default: utf-8
Returns:
str: File content or empty string if there was an error
### Response:
#vtb
def read(path, encoding="utf-8"):
try:
with io.open(path, encoding=encoding) as f:
return f.read()
except Exception as e:
logger.error("read: %s failed. Error: %s", path, e)
return ""
|
#vtb
def send_zipfile(request, fileList):
temp = tempfile.TemporaryFile()
archive = zipfile.ZipFile(temp, , zipfile.ZIP_DEFLATED)
for artist,files in fileList.iteritems():
for f in files:
archive.write(f[0], % (artist, f[1]))
archive.close()
wrapper = FixedFileWrapper(temp)
response = HttpResponse(wrapper, content_type=)
response[] =
response[] = temp.tell()
temp.seek(0)
return response
|
Create a ZIP file on disk and transmit it in chunks of 8KB,
without loading the whole file into memory. A similar approach can
be used for large dynamic PDF files.
|
### Input:
Create a ZIP file on disk and transmit it in chunks of 8KB,
without loading the whole file into memory. A similar approach can
be used for large dynamic PDF files.
### Response:
#vtb
def send_zipfile(request, fileList):
temp = tempfile.TemporaryFile()
archive = zipfile.ZipFile(temp, , zipfile.ZIP_DEFLATED)
for artist,files in fileList.iteritems():
for f in files:
archive.write(f[0], % (artist, f[1]))
archive.close()
wrapper = FixedFileWrapper(temp)
response = HttpResponse(wrapper, content_type=)
response[] =
response[] = temp.tell()
temp.seek(0)
return response
|
#vtb
def cmd(send, msg, args):
if not msg:
msg = gen_word()
morse = gen_morse(msg)
if len(morse) > 100:
send("Your morse is too long. Have you considered Western Union?")
else:
send(morse)
|
Converts text to morse code.
Syntax: {command} [text]
|
### Input:
Converts text to morse code.
Syntax: {command} [text]
### Response:
#vtb
def cmd(send, msg, args):
if not msg:
msg = gen_word()
morse = gen_morse(msg)
if len(morse) > 100:
send("Your morse is too long. Have you considered Western Union?")
else:
send(morse)
|
#vtb
def is_multicast(text):
try:
first = ord(dns.ipv4.inet_aton(text)[0])
return (first >= 224 and first <= 239)
except Exception:
try:
first = ord(dns.ipv6.inet_aton(text)[0])
return (first == 255)
except Exception:
raise ValueError
|
Is the textual-form network address a multicast address?
@param text: the textual address
@raises ValueError: the address family cannot be determined from the input.
@rtype: bool
|
### Input:
Is the textual-form network address a multicast address?
@param text: the textual address
@raises ValueError: the address family cannot be determined from the input.
@rtype: bool
### Response:
#vtb
def is_multicast(text):
try:
first = ord(dns.ipv4.inet_aton(text)[0])
return (first >= 224 and first <= 239)
except Exception:
try:
first = ord(dns.ipv6.inet_aton(text)[0])
return (first == 255)
except Exception:
raise ValueError
|
#vtb
def toTypeURIs(namespace_map, alias_list_s):
uris = []
if alias_list_s:
for alias in alias_list_s.split():
type_uri = namespace_map.getNamespaceURI(alias)
if type_uri is None:
raise KeyError(
% (alias,))
else:
uris.append(type_uri)
return uris
|
Given a namespace mapping and a string containing a
comma-separated list of namespace aliases, return a list of type
URIs that correspond to those aliases.
@param namespace_map: The mapping from namespace URI to alias
@type namespace_map: openid.message.NamespaceMap
@param alias_list_s: The string containing the comma-separated
list of aliases. May also be None for convenience.
@type alias_list_s: str or NoneType
@returns: The list of namespace URIs that corresponds to the
supplied list of aliases. If the string was zero-length or
None, an empty list will be returned.
@raise KeyError: If an alias is present in the list of aliases but
is not present in the namespace map.
|
### Input:
Given a namespace mapping and a string containing a
comma-separated list of namespace aliases, return a list of type
URIs that correspond to those aliases.
@param namespace_map: The mapping from namespace URI to alias
@type namespace_map: openid.message.NamespaceMap
@param alias_list_s: The string containing the comma-separated
list of aliases. May also be None for convenience.
@type alias_list_s: str or NoneType
@returns: The list of namespace URIs that corresponds to the
supplied list of aliases. If the string was zero-length or
None, an empty list will be returned.
@raise KeyError: If an alias is present in the list of aliases but
is not present in the namespace map.
### Response:
#vtb
def toTypeURIs(namespace_map, alias_list_s):
uris = []
if alias_list_s:
for alias in alias_list_s.split():
type_uri = namespace_map.getNamespaceURI(alias)
if type_uri is None:
raise KeyError(
% (alias,))
else:
uris.append(type_uri)
return uris
|
#vtb
def __query_spec(self):
operators = self.__modifiers.copy()
if self.__ordering:
operators["$orderby"] = self.__ordering
if self.__explain:
operators["$explain"] = True
if self.__hint:
operators["$hint"] = self.__hint
if self.__comment:
operators["$comment"] = self.__comment
if self.__max_scan:
operators["$maxScan"] = self.__max_scan
if self.__max_time_ms is not None:
operators["$maxTimeMS"] = self.__max_time_ms
if self.__max:
operators["$max"] = self.__max
if self.__min:
operators["$min"] = self.__min
if self.__return_key:
operators["$returnKey"] = self.__return_key
if self.__show_record_id:
operators["$showDiskLoc"] = self.__show_record_id
if self.__snapshot:
operators["$snapshot"] = self.__snapshot
if operators:
spec = self.__spec.copy()
if "$query" not in spec:
spec = SON([("$query", spec)])
if not isinstance(spec, SON):
spec = SON(spec)
spec.update(operators)
return spec
elif ("query" in self.__spec and
(len(self.__spec) == 1 or
next(iter(self.__spec)) == "query")):
return SON({"$query": self.__spec})
return self.__spec
|
Get the spec to use for a query.
|
### Input:
Get the spec to use for a query.
### Response:
#vtb
def __query_spec(self):
operators = self.__modifiers.copy()
if self.__ordering:
operators["$orderby"] = self.__ordering
if self.__explain:
operators["$explain"] = True
if self.__hint:
operators["$hint"] = self.__hint
if self.__comment:
operators["$comment"] = self.__comment
if self.__max_scan:
operators["$maxScan"] = self.__max_scan
if self.__max_time_ms is not None:
operators["$maxTimeMS"] = self.__max_time_ms
if self.__max:
operators["$max"] = self.__max
if self.__min:
operators["$min"] = self.__min
if self.__return_key:
operators["$returnKey"] = self.__return_key
if self.__show_record_id:
operators["$showDiskLoc"] = self.__show_record_id
if self.__snapshot:
operators["$snapshot"] = self.__snapshot
if operators:
spec = self.__spec.copy()
if "$query" not in spec:
spec = SON([("$query", spec)])
if not isinstance(spec, SON):
spec = SON(spec)
spec.update(operators)
return spec
elif ("query" in self.__spec and
(len(self.__spec) == 1 or
next(iter(self.__spec)) == "query")):
return SON({"$query": self.__spec})
return self.__spec
|
#vtb
def followed_topic_num(self):
if self.url is not None:
tag = self.soup.find(, class_=)
if tag is not None:
return int(re_get_number.match(
tag.parent.strong.text).group(1))
return 0
|
θ·εη¨ζ·ε
³ζ³¨ηθ―ι’ζ°
:return: ε
³ζ³¨ηθ―ι’ζ°
:rtype: int
|
### Input:
θ·εη¨ζ·ε
³ζ³¨ηθ―ι’ζ°
:return: ε
³ζ³¨ηθ―ι’ζ°
:rtype: int
### Response:
#vtb
def followed_topic_num(self):
if self.url is not None:
tag = self.soup.find(, class_=)
if tag is not None:
return int(re_get_number.match(
tag.parent.strong.text).group(1))
return 0
|
#vtb
def response_to_json_dict(response, **kwargs):
if response.encoding is None:
response.encoding =
return json.loads(response.text, **kwargs)
|
Standard place to convert responses to JSON.
:param response: requests response object
:param **kwargs: arguments accepted by json.loads
:returns: dict of JSON response
|
### Input:
Standard place to convert responses to JSON.
:param response: requests response object
:param **kwargs: arguments accepted by json.loads
:returns: dict of JSON response
### Response:
#vtb
def response_to_json_dict(response, **kwargs):
if response.encoding is None:
response.encoding =
return json.loads(response.text, **kwargs)
|
#vtb
def get_dates(raw_table) -> "list of dates":
dates = []
found_first = False
for i, dstr in enumerate([raw_table[i][0] for i in range(0, len(raw_table))]):
if dstr:
if len(dstr.split("/")) == 3:
d = datetime.datetime.strptime(dstr, )
elif len(dstr.split("-")) == 3:
d = datetime.datetime.strptime(dstr, )
else:
logging.debug("unknown date-format: {}".format(dstr))
continue
dates.append(d)
if not found_first:
found_first = True
logging.debug("Found first date: at i: {}".format(d.isoformat(), i))
elif found_first:
logging.debug("Last date: {}".format(d))
break
return dates
|
Goes through the first column of input table and
returns the first sequence of dates it finds.
|
### Input:
Goes through the first column of input table and
returns the first sequence of dates it finds.
### Response:
#vtb
def get_dates(raw_table) -> "list of dates":
dates = []
found_first = False
for i, dstr in enumerate([raw_table[i][0] for i in range(0, len(raw_table))]):
if dstr:
if len(dstr.split("/")) == 3:
d = datetime.datetime.strptime(dstr, )
elif len(dstr.split("-")) == 3:
d = datetime.datetime.strptime(dstr, )
else:
logging.debug("unknown date-format: {}".format(dstr))
continue
dates.append(d)
if not found_first:
found_first = True
logging.debug("Found first date: at i: {}".format(d.isoformat(), i))
elif found_first:
logging.debug("Last date: {}".format(d))
break
return dates
|
#vtb
def write_url (self, url_data):
self.writeln(u"<tr>")
self.writeln(u % self.part("url"))
self.write(u)
self.write(u"`%s'" % cgi.escape(url_data.base_url))
self.writeln(u"</td></tr>")
|
Write url_data.base_url.
|
### Input:
Write url_data.base_url.
### Response:
#vtb
def write_url (self, url_data):
self.writeln(u"<tr>")
self.writeln(u % self.part("url"))
self.write(u)
self.write(u"`%s'" % cgi.escape(url_data.base_url))
self.writeln(u"</td></tr>")
|
#vtb
def _set_token(self):
try:
self.token = os.environ[]
if self.verbose:
print("Overriding Cerberus token with environment variable.", file=sys.stderr)
logger.info("Overriding Cerberus token with environment variable.")
return
except:
pass
if self.username:
ua = UserAuth(self.cerberus_url, self.username, self.password)
self.token = ua.get_token()
else:
awsa = AWSAuth(self.cerberus_url, region=self.region, aws_session=self.aws_session, verbose=self.verbose)
self.token = awsa.get_token()
|
Set the Cerberus token based on auth type
|
### Input:
Set the Cerberus token based on auth type
### Response:
#vtb
def _set_token(self):
try:
self.token = os.environ[]
if self.verbose:
print("Overriding Cerberus token with environment variable.", file=sys.stderr)
logger.info("Overriding Cerberus token with environment variable.")
return
except:
pass
if self.username:
ua = UserAuth(self.cerberus_url, self.username, self.password)
self.token = ua.get_token()
else:
awsa = AWSAuth(self.cerberus_url, region=self.region, aws_session=self.aws_session, verbose=self.verbose)
self.token = awsa.get_token()
|
#vtb
async def renew(self, session, *, dc=None):
session_id = extract_attr(session, keys=["ID"])
response = await self._api.put("/v1/session/renew", session_id,
params={"dc": dc})
try:
result = response.body[0]
except IndexError:
meta = extract_meta(response.headers)
raise NotFound("No session for %r" % session_id, meta=meta)
return consul(result, meta=extract_meta(response.headers))
|
Renews a TTL-based session
Parameters:
session (ObjectID): Session ID
dc (str): Specify datacenter that will be used.
Defaults to the agent's local datacenter.
Returns:
ObjectMeta: where value is session
Raises:
NotFound: session is absent
The response looks like this::
{
"LockDelay": datetime.timedelta(0, 15),
"Checks": [
"serfHealth"
],
"Node": "foobar",
"ID": "adf4238a-882b-9ddc-4a9d-5b6758e4159e",
"CreateIndex": 1086449
"Behavior": "release",
"TTL": datetime.timedelta(0, 15)
}
.. note:: Consul MAY return a TTL value higher than the one
specified during session creation. This indicates
the server is under high load and is requesting
clients renew less often.
|
### Input:
Renews a TTL-based session
Parameters:
session (ObjectID): Session ID
dc (str): Specify datacenter that will be used.
Defaults to the agent's local datacenter.
Returns:
ObjectMeta: where value is session
Raises:
NotFound: session is absent
The response looks like this::
{
"LockDelay": datetime.timedelta(0, 15),
"Checks": [
"serfHealth"
],
"Node": "foobar",
"ID": "adf4238a-882b-9ddc-4a9d-5b6758e4159e",
"CreateIndex": 1086449
"Behavior": "release",
"TTL": datetime.timedelta(0, 15)
}
.. note:: Consul MAY return a TTL value higher than the one
specified during session creation. This indicates
the server is under high load and is requesting
clients renew less often.
### Response:
#vtb
async def renew(self, session, *, dc=None):
session_id = extract_attr(session, keys=["ID"])
response = await self._api.put("/v1/session/renew", session_id,
params={"dc": dc})
try:
result = response.body[0]
except IndexError:
meta = extract_meta(response.headers)
raise NotFound("No session for %r" % session_id, meta=meta)
return consul(result, meta=extract_meta(response.headers))
|
#vtb
def reduce(source, func, initializer=None):
acc = accumulate.raw(source, func, initializer)
return select.item.raw(acc, -1)
|
Apply a function of two arguments cumulatively to the items
of an asynchronous sequence, reducing the sequence to a single value.
If ``initializer`` is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.
|
### Input:
Apply a function of two arguments cumulatively to the items
of an asynchronous sequence, reducing the sequence to a single value.
If ``initializer`` is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.
### Response:
#vtb
def reduce(source, func, initializer=None):
acc = accumulate.raw(source, func, initializer)
return select.item.raw(acc, -1)
|
#vtb
def create_init(self, path):
source =
with io.open(path, "w", encoding="utf-8") as outfile:
outfile.write(source)
|
Create a minimal __init__ file with enough boiler plate to not add to lint messages
:param path:
:return:
|
### Input:
Create a minimal __init__ file with enough boiler plate to not add to lint messages
:param path:
:return:
### Response:
#vtb
def create_init(self, path):
source =
with io.open(path, "w", encoding="utf-8") as outfile:
outfile.write(source)
|
#vtb
def gene_to_panels(self, case_obj):
LOG.info("Building gene to panels")
gene_dict = {}
for panel_info in case_obj.get(, []):
panel_name = panel_info[]
panel_version = panel_info[]
panel_obj = self.gene_panel(panel_name, version=panel_version)
if not panel_obj:
LOG.warning("Panel: {0}, version {1} does not exist in database".format(panel_name, panel_version))
for gene in panel_obj[]:
hgnc_id = gene[]
if hgnc_id not in gene_dict:
gene_dict[hgnc_id] = set([panel_name])
continue
gene_dict[hgnc_id].add(panel_name)
LOG.info("Gene to panels done")
return gene_dict
|
Fetch all gene panels and group them by gene
Args:
case_obj(scout.models.Case)
Returns:
gene_dict(dict): A dictionary with gene as keys and a set of
panel names as value
|
### Input:
Fetch all gene panels and group them by gene
Args:
case_obj(scout.models.Case)
Returns:
gene_dict(dict): A dictionary with gene as keys and a set of
panel names as value
### Response:
#vtb
def gene_to_panels(self, case_obj):
LOG.info("Building gene to panels")
gene_dict = {}
for panel_info in case_obj.get(, []):
panel_name = panel_info[]
panel_version = panel_info[]
panel_obj = self.gene_panel(panel_name, version=panel_version)
if not panel_obj:
LOG.warning("Panel: {0}, version {1} does not exist in database".format(panel_name, panel_version))
for gene in panel_obj[]:
hgnc_id = gene[]
if hgnc_id not in gene_dict:
gene_dict[hgnc_id] = set([panel_name])
continue
gene_dict[hgnc_id].add(panel_name)
LOG.info("Gene to panels done")
return gene_dict
|
#vtb
def get_count(self, prefix=):
return sum([self.counters[key]
for key in self.messages if key.startswith(prefix)])
|
Return the total count of errors and warnings.
|
### Input:
Return the total count of errors and warnings.
### Response:
#vtb
def get_count(self, prefix=):
return sum([self.counters[key]
for key in self.messages if key.startswith(prefix)])
|
#vtb
def load_watch():
XysidesubjectX_labelsy_labels
module_path = dirname(__file__)
data = np.load(module_path + "/data/watch_dataset.npy").item()
return data
|
Loads some of the 6-axis inertial sensor data from my smartwatch project. The sensor data was
recorded as study subjects performed sets of 20 shoulder exercise repetitions while wearing a
smartwatch. It is a multivariate time series.
The study can be found here: https://arxiv.org/abs/1802.01489
Returns
-------
data : dict
data['X'] : list, length 140
| inertial sensor data, each element with shape [n_samples, 6]
| sampled at 50 Hz
data['y'] : array, length 140
target vector (exercise type)
data['side'] : array, length 140
the extremity side, 1 = right, 0 = left
data['subject'] : array, length 140
the subject (participant) number
data['X_labels'] : str list, length 6
ordered labels for the sensor data variables
data['y_labels'] :str list, length 7
ordered labels for the target (exercise type)
Examples
--------
>>> from seglearn.datasets import load_watch
>>> data = load_watch()
>>> print(data.keys())
|
### Input:
Loads some of the 6-axis inertial sensor data from my smartwatch project. The sensor data was
recorded as study subjects performed sets of 20 shoulder exercise repetitions while wearing a
smartwatch. It is a multivariate time series.
The study can be found here: https://arxiv.org/abs/1802.01489
Returns
-------
data : dict
data['X'] : list, length 140
| inertial sensor data, each element with shape [n_samples, 6]
| sampled at 50 Hz
data['y'] : array, length 140
target vector (exercise type)
data['side'] : array, length 140
the extremity side, 1 = right, 0 = left
data['subject'] : array, length 140
the subject (participant) number
data['X_labels'] : str list, length 6
ordered labels for the sensor data variables
data['y_labels'] :str list, length 7
ordered labels for the target (exercise type)
Examples
--------
>>> from seglearn.datasets import load_watch
>>> data = load_watch()
>>> print(data.keys())
### Response:
#vtb
def load_watch():
XysidesubjectX_labelsy_labels
module_path = dirname(__file__)
data = np.load(module_path + "/data/watch_dataset.npy").item()
return data
|
#vtb
def add_filter(self, ftype, func):
if not isinstance(ftype, type):
raise TypeError("Expected type object, got %s" % type(ftype))
self.castfilter = [(t, f) for (t, f) in self.castfilter if t != ftype]
self.castfilter.append((ftype, func))
self.castfilter.sort()
|
Register a new output filter. Whenever bottle hits a handler output
matching `ftype`, `func` is applyed to it.
|
### Input:
Register a new output filter. Whenever bottle hits a handler output
matching `ftype`, `func` is applyed to it.
### Response:
#vtb
def add_filter(self, ftype, func):
if not isinstance(ftype, type):
raise TypeError("Expected type object, got %s" % type(ftype))
self.castfilter = [(t, f) for (t, f) in self.castfilter if t != ftype]
self.castfilter.append((ftype, func))
self.castfilter.sort()
|
#vtb
def vgcreate(vgname, devices, **kwargs):
if not vgname or not devices:
return
if isinstance(devices, six.string_types):
devices = devices.split()
cmd = [, vgname]
for device in devices:
cmd.append(device)
valid = (, , ,
, , )
for var in kwargs:
if kwargs[var] and var in valid:
cmd.append(.format(var))
cmd.append(kwargs[var])
out = __salt__[](cmd, python_shell=False).splitlines()
vgdata = vgdisplay(vgname)
vgdata[] = out[0].strip()
return vgdata
|
Create an LVM volume group
CLI Examples:
.. code-block:: bash
salt mymachine lvm.vgcreate my_vg /dev/sdb1,/dev/sdb2
salt mymachine lvm.vgcreate my_vg /dev/sdb1 clustered=y
|
### Input:
Create an LVM volume group
CLI Examples:
.. code-block:: bash
salt mymachine lvm.vgcreate my_vg /dev/sdb1,/dev/sdb2
salt mymachine lvm.vgcreate my_vg /dev/sdb1 clustered=y
### Response:
#vtb
def vgcreate(vgname, devices, **kwargs):
if not vgname or not devices:
return
if isinstance(devices, six.string_types):
devices = devices.split()
cmd = [, vgname]
for device in devices:
cmd.append(device)
valid = (, , ,
, , )
for var in kwargs:
if kwargs[var] and var in valid:
cmd.append(.format(var))
cmd.append(kwargs[var])
out = __salt__[](cmd, python_shell=False).splitlines()
vgdata = vgdisplay(vgname)
vgdata[] = out[0].strip()
return vgdata
|
#vtb
def stop_instance(self, instance_id):
if not instance_id:
log.info("Instance to stop has no instance id")
return
gce = self._connect()
try:
request = gce.instances().delete(project=self._project_id,
instance=instance_id, zone=self._zone)
response = self._execute_request(request)
self._check_response(response)
except HttpError as e:
if e.resp.status == 404:
raise InstanceNotFoundError(
"Instance `{instance_id}` was not found"
.format(instance_id=instance_id))
else:
raise InstanceError(
"Could not stop instance `{instance_id}`: `{e}`"
.format(instance_id=instance_id, e=e))
except CloudProviderError as e:
raise InstanceError(
"Could not stop instance `{instance_id}`: `{e}`"
.format(instance_id=instance_id, e=e))
|
Stops the instance gracefully.
:param str instance_id: instance identifier
:raises: `InstanceError` if instance can not be stopped
|
### Input:
Stops the instance gracefully.
:param str instance_id: instance identifier
:raises: `InstanceError` if instance can not be stopped
### Response:
#vtb
def stop_instance(self, instance_id):
if not instance_id:
log.info("Instance to stop has no instance id")
return
gce = self._connect()
try:
request = gce.instances().delete(project=self._project_id,
instance=instance_id, zone=self._zone)
response = self._execute_request(request)
self._check_response(response)
except HttpError as e:
if e.resp.status == 404:
raise InstanceNotFoundError(
"Instance `{instance_id}` was not found"
.format(instance_id=instance_id))
else:
raise InstanceError(
"Could not stop instance `{instance_id}`: `{e}`"
.format(instance_id=instance_id, e=e))
except CloudProviderError as e:
raise InstanceError(
"Could not stop instance `{instance_id}`: `{e}`"
.format(instance_id=instance_id, e=e))
|
#vtb
def connect(self, hostkey=None, username=, password=None, pkey=None):
if hostkey is not None:
self._preferred_keys = [ hostkey.get_name() ]
self.start_client()
if (hostkey is not None):
key = self.get_remote_server_key()
if (key.get_name() != hostkey.get_name()) or (str(key) != str(hostkey)):
self._log(DEBUG, )
self._log(DEBUG, % (hostkey.get_name(), repr(str(hostkey))))
self._log(DEBUG, % (key.get_name(), repr(str(key))))
raise SSHException()
self._log(DEBUG, % hostkey.get_name())
if (pkey is not None) or (password is not None):
if password is not None:
self._log(DEBUG, )
self.auth_password(username, password)
else:
self._log(DEBUG, )
self.auth_publickey(username, pkey)
return
|
Negotiate an SSH2 session, and optionally verify the server's host key
and authenticate using a password or private key. This is a shortcut
for L{start_client}, L{get_remote_server_key}, and
L{Transport.auth_password} or L{Transport.auth_publickey}. Use those
methods if you want more control.
You can use this method immediately after creating a Transport to
negotiate encryption with a server. If it fails, an exception will be
thrown. On success, the method will return cleanly, and an encrypted
session exists. You may immediately call L{open_channel} or
L{open_session} to get a L{Channel} object, which is used for data
transfer.
@note: If you fail to supply a password or private key, this method may
succeed, but a subsequent L{open_channel} or L{open_session} call may
fail because you haven't authenticated yet.
@param hostkey: the host key expected from the server, or C{None} if
you don't want to do host key verification.
@type hostkey: L{PKey<pkey.PKey>}
@param username: the username to authenticate as.
@type username: str
@param password: a password to use for authentication, if you want to
use password authentication; otherwise C{None}.
@type password: str
@param pkey: a private key to use for authentication, if you want to
use private key authentication; otherwise C{None}.
@type pkey: L{PKey<pkey.PKey>}
@raise SSHException: if the SSH2 negotiation fails, the host key
supplied by the server is incorrect, or authentication fails.
|
### Input:
Negotiate an SSH2 session, and optionally verify the server's host key
and authenticate using a password or private key. This is a shortcut
for L{start_client}, L{get_remote_server_key}, and
L{Transport.auth_password} or L{Transport.auth_publickey}. Use those
methods if you want more control.
You can use this method immediately after creating a Transport to
negotiate encryption with a server. If it fails, an exception will be
thrown. On success, the method will return cleanly, and an encrypted
session exists. You may immediately call L{open_channel} or
L{open_session} to get a L{Channel} object, which is used for data
transfer.
@note: If you fail to supply a password or private key, this method may
succeed, but a subsequent L{open_channel} or L{open_session} call may
fail because you haven't authenticated yet.
@param hostkey: the host key expected from the server, or C{None} if
you don't want to do host key verification.
@type hostkey: L{PKey<pkey.PKey>}
@param username: the username to authenticate as.
@type username: str
@param password: a password to use for authentication, if you want to
use password authentication; otherwise C{None}.
@type password: str
@param pkey: a private key to use for authentication, if you want to
use private key authentication; otherwise C{None}.
@type pkey: L{PKey<pkey.PKey>}
@raise SSHException: if the SSH2 negotiation fails, the host key
supplied by the server is incorrect, or authentication fails.
### Response:
#vtb
def connect(self, hostkey=None, username=, password=None, pkey=None):
if hostkey is not None:
self._preferred_keys = [ hostkey.get_name() ]
self.start_client()
if (hostkey is not None):
key = self.get_remote_server_key()
if (key.get_name() != hostkey.get_name()) or (str(key) != str(hostkey)):
self._log(DEBUG, )
self._log(DEBUG, % (hostkey.get_name(), repr(str(hostkey))))
self._log(DEBUG, % (key.get_name(), repr(str(key))))
raise SSHException()
self._log(DEBUG, % hostkey.get_name())
if (pkey is not None) or (password is not None):
if password is not None:
self._log(DEBUG, )
self.auth_password(username, password)
else:
self._log(DEBUG, )
self.auth_publickey(username, pkey)
return
|
#vtb
def overview():
search = Service.search()
search = search.filter("term", state=)
search.aggs.bucket(, , field=, order={: }, size=100) \
.metric(, , field=)
response = search.execute()
print_line("Port Count")
print_line("---------------")
for entry in response.aggregations.port_count.buckets:
print_line("{0:<7} {1}".format(entry.key, entry.unique_count.value))
|
Function to create an overview of the services.
Will print a list of ports found an the number of times the port was seen.
|
### Input:
Function to create an overview of the services.
Will print a list of ports found an the number of times the port was seen.
### Response:
#vtb
def overview():
search = Service.search()
search = search.filter("term", state=)
search.aggs.bucket(, , field=, order={: }, size=100) \
.metric(, , field=)
response = search.execute()
print_line("Port Count")
print_line("---------------")
for entry in response.aggregations.port_count.buckets:
print_line("{0:<7} {1}".format(entry.key, entry.unique_count.value))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.