code
stringlengths 64
7.01k
| docstring
stringlengths 2
15.8k
| text
stringlengths 144
19.2k
|
---|---|---|
#vtb
def get_stories(self, userids: Optional[List[int]] = None) -> Iterator[Story]:
if not userids:
data = self.context.graphql_query("d15efd8c0c5b23f0ef71f18bf363c704",
{"only_stories": True})["data"]["user"]
if data is None:
raise BadResponseException()
userids = list(edge["node"]["id"] for edge in data["feed_reels_tray"]["edge_reels_tray_to_reel"]["edges"])
def _userid_chunks():
userids_per_query = 100
for i in range(0, len(userids), userids_per_query):
yield userids[i:i + userids_per_query]
for userid_chunk in _userid_chunks():
stories = self.context.graphql_query("bf41e22b1c4ba4c9f31b844ebb7d9056",
{"reel_ids": userid_chunk, "precomposed_overlay": False})["data"]
yield from (Story(self.context, media) for media in stories[])
|
Get available stories from followees or all stories of users whose ID are given.
Does not mark stories as seen.
To use this, one needs to be logged in
:param userids: List of user IDs to be processed in terms of downloading their stories, or None.
|
### Input:
Get available stories from followees or all stories of users whose ID are given.
Does not mark stories as seen.
To use this, one needs to be logged in
:param userids: List of user IDs to be processed in terms of downloading their stories, or None.
### Response:
#vtb
def get_stories(self, userids: Optional[List[int]] = None) -> Iterator[Story]:
if not userids:
data = self.context.graphql_query("d15efd8c0c5b23f0ef71f18bf363c704",
{"only_stories": True})["data"]["user"]
if data is None:
raise BadResponseException()
userids = list(edge["node"]["id"] for edge in data["feed_reels_tray"]["edge_reels_tray_to_reel"]["edges"])
def _userid_chunks():
userids_per_query = 100
for i in range(0, len(userids), userids_per_query):
yield userids[i:i + userids_per_query]
for userid_chunk in _userid_chunks():
stories = self.context.graphql_query("bf41e22b1c4ba4c9f31b844ebb7d9056",
{"reel_ids": userid_chunk, "precomposed_overlay": False})["data"]
yield from (Story(self.context, media) for media in stories[])
|
#vtb
def raise_exception_if_baseline_file_is_unstaged(filename):
try:
files_changed_but_not_staged = subprocess.check_output(
[
,
,
,
],
).split()
except subprocess.CalledProcessError:
).format(
filename,
filename,
))
raise ValueError
|
We want to make sure that if there are changes to the baseline
file, they will be included in the commit. This way, we can keep
our baselines up-to-date.
:raises: ValueError
|
### Input:
We want to make sure that if there are changes to the baseline
file, they will be included in the commit. This way, we can keep
our baselines up-to-date.
:raises: ValueError
### Response:
#vtb
def raise_exception_if_baseline_file_is_unstaged(filename):
try:
files_changed_but_not_staged = subprocess.check_output(
[
,
,
,
],
).split()
except subprocess.CalledProcessError:
).format(
filename,
filename,
))
raise ValueError
|
#vtb
async def display_columns_and_rows(
self,
database,
table,
description,
rows,
link_column=False,
truncate_cells=0,
):
"Returns columns, rows for specified table - including fancy foreign key treatment"
table_metadata = self.ds.table_metadata(database, table)
sortable_columns = await self.sortable_columns_for_table(database, table, True)
columns = [
{"name": r[0], "sortable": r[0] in sortable_columns} for r in description
]
pks = await self.ds.execute_against_connection_in_thread(
database, lambda conn: detect_primary_keys(conn, table)
)
column_to_foreign_key_table = {
fk["column"]: fk["other_table"]
for fk in await self.ds.foreign_keys_for_table(database, table)
}
cell_rows = []
for row in rows:
cells = []
if link_column:
cells.append(
{
"column": pks[0] if len(pks) == 1 else "Link",
"value": jinja2.Markup(
.format(
database=database,
table=urllib.parse.quote_plus(table),
flat_pks=str(
jinja2.escape(
path_from_row_pks(row, pks, not pks, False)
)
),
flat_pks_quoted=path_from_row_pks(row, pks, not pks),
)
),
}
)
for value, column_dict in zip(row, columns):
column = column_dict["name"]
if link_column and len(pks) == 1 and column == pks[0]:
label = value["label"]
value = value["value"]
other_table = column_to_foreign_key_table[column]
link_template = (
LINK_WITH_LABEL if (label != value) else LINK_WITH_VALUE
)
display_value = jinja2.Markup(link_template.format(
database=database,
table=urllib.parse.quote_plus(other_table),
link_id=urllib.parse.quote_plus(str(value)),
id=str(jinja2.escape(value)),
label=str(jinja2.escape(label)),
))
elif value in ("", None):
display_value = jinja2.Markup(" ")
elif is_url(str(value).strip()):
display_value = jinja2.Markup(
.format(
url=jinja2.escape(value.strip())
)
)
elif column in table_metadata.get("units", {}) and value != "":
value = value * ureg(table_metadata["units"][column])
value = round(value.to_compact(), 6)
display_value = jinja2.Markup(
"{:~P}".format(value).replace(" ", " ")
)
else:
display_value = str(value)
if truncate_cells and len(display_value) > truncate_cells:
display_value = display_value[:truncate_cells] + u"\u2026"
cells.append({"column": column, "value": display_value})
cell_rows.append(cells)
if link_column:
if len(pks) == 1:
columns = [col for col in columns if col["name"] != pks[0]]
columns = [
{"name": pks[0] if len(pks) == 1 else "Link", "sortable": len(pks) == 1}
] + columns
return columns, cell_rows
|
Returns columns, rows for specified table - including fancy foreign key treatment
|
### Input:
Returns columns, rows for specified table - including fancy foreign key treatment
### Response:
#vtb
async def display_columns_and_rows(
self,
database,
table,
description,
rows,
link_column=False,
truncate_cells=0,
):
"Returns columns, rows for specified table - including fancy foreign key treatment"
table_metadata = self.ds.table_metadata(database, table)
sortable_columns = await self.sortable_columns_for_table(database, table, True)
columns = [
{"name": r[0], "sortable": r[0] in sortable_columns} for r in description
]
pks = await self.ds.execute_against_connection_in_thread(
database, lambda conn: detect_primary_keys(conn, table)
)
column_to_foreign_key_table = {
fk["column"]: fk["other_table"]
for fk in await self.ds.foreign_keys_for_table(database, table)
}
cell_rows = []
for row in rows:
cells = []
if link_column:
cells.append(
{
"column": pks[0] if len(pks) == 1 else "Link",
"value": jinja2.Markup(
.format(
database=database,
table=urllib.parse.quote_plus(table),
flat_pks=str(
jinja2.escape(
path_from_row_pks(row, pks, not pks, False)
)
),
flat_pks_quoted=path_from_row_pks(row, pks, not pks),
)
),
}
)
for value, column_dict in zip(row, columns):
column = column_dict["name"]
if link_column and len(pks) == 1 and column == pks[0]:
label = value["label"]
value = value["value"]
other_table = column_to_foreign_key_table[column]
link_template = (
LINK_WITH_LABEL if (label != value) else LINK_WITH_VALUE
)
display_value = jinja2.Markup(link_template.format(
database=database,
table=urllib.parse.quote_plus(other_table),
link_id=urllib.parse.quote_plus(str(value)),
id=str(jinja2.escape(value)),
label=str(jinja2.escape(label)),
))
elif value in ("", None):
display_value = jinja2.Markup(" ")
elif is_url(str(value).strip()):
display_value = jinja2.Markup(
.format(
url=jinja2.escape(value.strip())
)
)
elif column in table_metadata.get("units", {}) and value != "":
value = value * ureg(table_metadata["units"][column])
value = round(value.to_compact(), 6)
display_value = jinja2.Markup(
"{:~P}".format(value).replace(" ", " ")
)
else:
display_value = str(value)
if truncate_cells and len(display_value) > truncate_cells:
display_value = display_value[:truncate_cells] + u"\u2026"
cells.append({"column": column, "value": display_value})
cell_rows.append(cells)
if link_column:
if len(pks) == 1:
columns = [col for col in columns if col["name"] != pks[0]]
columns = [
{"name": pks[0] if len(pks) == 1 else "Link", "sortable": len(pks) == 1}
] + columns
return columns, cell_rows
|
#vtb
def from_uint8(arr_uint8, shape, min_value=0.0, max_value=1.0):
arr_0to1 = arr_uint8.astype(np.float32) / 255.0
return HeatmapsOnImage.from_0to1(arr_0to1, shape, min_value=min_value, max_value=max_value)
|
Create a heatmaps object from an heatmap array containing values ranging from 0 to 255.
Parameters
----------
arr_uint8 : (H,W) ndarray or (H,W,C) ndarray
Heatmap(s) array, where ``H`` is height, ``W`` is width and ``C`` is the number of heatmap channels.
Expected dtype is uint8.
shape : tuple of int
Shape of the image on which the heatmap(s) is/are placed. NOT the shape of the
heatmap(s) array, unless it is identical to the image shape (note the likely
difference between the arrays in the number of channels).
If there is not a corresponding image, use the shape of the heatmaps array.
min_value : float, optional
Minimum value for the heatmaps that the 0-to-255 array represents. This will usually
be 0.0. It is used when calling :func:`imgaug.HeatmapsOnImage.get_arr`, which converts the
underlying ``(0, 255)`` array to value range ``(min_value, max_value)``.
max_value : float, optional
Maximum value for the heatmaps that 0-to-255 array represents.
See parameter `min_value` for details.
Returns
-------
imgaug.HeatmapsOnImage
Heatmaps object.
|
### Input:
Create a heatmaps object from an heatmap array containing values ranging from 0 to 255.
Parameters
----------
arr_uint8 : (H,W) ndarray or (H,W,C) ndarray
Heatmap(s) array, where ``H`` is height, ``W`` is width and ``C`` is the number of heatmap channels.
Expected dtype is uint8.
shape : tuple of int
Shape of the image on which the heatmap(s) is/are placed. NOT the shape of the
heatmap(s) array, unless it is identical to the image shape (note the likely
difference between the arrays in the number of channels).
If there is not a corresponding image, use the shape of the heatmaps array.
min_value : float, optional
Minimum value for the heatmaps that the 0-to-255 array represents. This will usually
be 0.0. It is used when calling :func:`imgaug.HeatmapsOnImage.get_arr`, which converts the
underlying ``(0, 255)`` array to value range ``(min_value, max_value)``.
max_value : float, optional
Maximum value for the heatmaps that 0-to-255 array represents.
See parameter `min_value` for details.
Returns
-------
imgaug.HeatmapsOnImage
Heatmaps object.
### Response:
#vtb
def from_uint8(arr_uint8, shape, min_value=0.0, max_value=1.0):
arr_0to1 = arr_uint8.astype(np.float32) / 255.0
return HeatmapsOnImage.from_0to1(arr_0to1, shape, min_value=min_value, max_value=max_value)
|
#vtb
def with_mfa(self, mfa_token):
if hasattr(mfa_token, ):
self.context.mfa_token = mfa_token.__call__()
else:
self.context.mfa_token = mfa_token
return self
|
Set the MFA token for the next request.
`mfa_token`s are only good for one request. Use this method to chain into
the protected action you want to perform.
Note: Only useful for Application authentication.
Usage:
account.with_mfa(application.totp.now()).pay(...)
Args:
mfa_token (str/function, optional): TOTP token for the Application
OR a callable/function which will generate such a token when called.
Returns:
self
|
### Input:
Set the MFA token for the next request.
`mfa_token`s are only good for one request. Use this method to chain into
the protected action you want to perform.
Note: Only useful for Application authentication.
Usage:
account.with_mfa(application.totp.now()).pay(...)
Args:
mfa_token (str/function, optional): TOTP token for the Application
OR a callable/function which will generate such a token when called.
Returns:
self
### Response:
#vtb
def with_mfa(self, mfa_token):
if hasattr(mfa_token, ):
self.context.mfa_token = mfa_token.__call__()
else:
self.context.mfa_token = mfa_token
return self
|
#vtb
def get_best_splitting_attr(self):
best = (-1e999999, None)
for attr in self.attributes:
best = max(best, (self.get_gain(attr), attr))
best_gain, best_attr = best
return best_attr
|
Returns the name of the attribute with the highest gain.
|
### Input:
Returns the name of the attribute with the highest gain.
### Response:
#vtb
def get_best_splitting_attr(self):
best = (-1e999999, None)
for attr in self.attributes:
best = max(best, (self.get_gain(attr), attr))
best_gain, best_attr = best
return best_attr
|
#vtb
def decrease_writes_in_units(
current_provisioning, units, min_provisioned_writes, log_tag):
updated_provisioning = int(current_provisioning) - int(units)
min_provisioned_writes = __get_min_writes(
current_provisioning,
min_provisioned_writes,
log_tag)
if updated_provisioning < min_provisioned_writes:
logger.info(
.format(
log_tag,
int(min_provisioned_writes)))
return min_provisioned_writes
logger.debug(
.format(
log_tag,
int(updated_provisioning)))
return updated_provisioning
|
Decrease the current_provisioning with units units
:type current_provisioning: int
:param current_provisioning: The current provisioning
:type units: int
:param units: How many units should we decrease with
:returns: int -- New provisioning value
:type min_provisioned_writes: int
:param min_provisioned_writes: Configured min provisioned writes
:type log_tag: str
:param log_tag: Prefix for the log
|
### Input:
Decrease the current_provisioning with units units
:type current_provisioning: int
:param current_provisioning: The current provisioning
:type units: int
:param units: How many units should we decrease with
:returns: int -- New provisioning value
:type min_provisioned_writes: int
:param min_provisioned_writes: Configured min provisioned writes
:type log_tag: str
:param log_tag: Prefix for the log
### Response:
#vtb
def decrease_writes_in_units(
current_provisioning, units, min_provisioned_writes, log_tag):
updated_provisioning = int(current_provisioning) - int(units)
min_provisioned_writes = __get_min_writes(
current_provisioning,
min_provisioned_writes,
log_tag)
if updated_provisioning < min_provisioned_writes:
logger.info(
.format(
log_tag,
int(min_provisioned_writes)))
return min_provisioned_writes
logger.debug(
.format(
log_tag,
int(updated_provisioning)))
return updated_provisioning
|
#vtb
def safe_call(cls, method, *args):
return cls.call(method, *args, safe=True)
|
Call a remote api method but don't raise if an error occurred.
|
### Input:
Call a remote api method but don't raise if an error occurred.
### Response:
#vtb
def safe_call(cls, method, *args):
return cls.call(method, *args, safe=True)
|
#vtb
def ap_state(value, failure_string=None):
try:
return statestyle.get(value).ap
except:
if failure_string:
return failure_string
else:
return value
|
Converts a state's name, postal abbreviation or FIPS to A.P. style.
Example usage:
>> ap_state("California")
'Calif.'
|
### Input:
Converts a state's name, postal abbreviation or FIPS to A.P. style.
Example usage:
>> ap_state("California")
'Calif.'
### Response:
#vtb
def ap_state(value, failure_string=None):
try:
return statestyle.get(value).ap
except:
if failure_string:
return failure_string
else:
return value
|
#vtb
def _get_path(entity_id):
try:
path = entity_id.path()
except AttributeError:
path = entity_id
if path.startswith():
path = path[3:]
return path
|
Get the entity_id as a string if it is a Reference.
@param entity_id The ID either a reference or a string of the entity
to get.
@return entity_id as a string
|
### Input:
Get the entity_id as a string if it is a Reference.
@param entity_id The ID either a reference or a string of the entity
to get.
@return entity_id as a string
### Response:
#vtb
def _get_path(entity_id):
try:
path = entity_id.path()
except AttributeError:
path = entity_id
if path.startswith():
path = path[3:]
return path
|
#vtb
def downgrades(src):
def _(f):
destination = src - 1
@do(operator.setitem(_downgrade_methods, destination))
@wraps(f)
def wrapper(op, conn, version_info_table):
conn.execute(version_info_table.delete())
f(op)
write_version_info(conn, version_info_table, destination)
return wrapper
return _
|
Decorator for marking that a method is a downgrade to a version to the
previous version.
Parameters
----------
src : int
The version this downgrades from.
Returns
-------
decorator : callable[(callable) -> callable]
The decorator to apply.
|
### Input:
Decorator for marking that a method is a downgrade to a version to the
previous version.
Parameters
----------
src : int
The version this downgrades from.
Returns
-------
decorator : callable[(callable) -> callable]
The decorator to apply.
### Response:
#vtb
def downgrades(src):
def _(f):
destination = src - 1
@do(operator.setitem(_downgrade_methods, destination))
@wraps(f)
def wrapper(op, conn, version_info_table):
conn.execute(version_info_table.delete())
f(op)
write_version_info(conn, version_info_table, destination)
return wrapper
return _
|
#vtb
def observe(self, seconds=None):
if self._observer.isRunning:
return False
if seconds is not None:
timeout = time.time() + seconds
else:
timeout = None
while (not self._observer.isStopped) and (seconds is None or time.time() < timeout):
self._observer.check_events()
time.sleep(1/self.getObserveScanRate())
return True
|
Begins the observer loop (synchronously).
Loops for ``seconds`` or until this region's stopObserver() method is called.
If ``seconds`` is None, the observer loop cycles until stopped. If this
method is called while the observer loop is already running, it returns False.
Returns True if the observer could be started, False otherwise.
|
### Input:
Begins the observer loop (synchronously).
Loops for ``seconds`` or until this region's stopObserver() method is called.
If ``seconds`` is None, the observer loop cycles until stopped. If this
method is called while the observer loop is already running, it returns False.
Returns True if the observer could be started, False otherwise.
### Response:
#vtb
def observe(self, seconds=None):
if self._observer.isRunning:
return False
if seconds is not None:
timeout = time.time() + seconds
else:
timeout = None
while (not self._observer.isStopped) and (seconds is None or time.time() < timeout):
self._observer.check_events()
time.sleep(1/self.getObserveScanRate())
return True
|
#vtb
def infer_named_tuple(node, context=None):
tuple_base_name = nodes.Name(name="tuple", parent=node.root())
class_node, name, attributes = infer_func_form(
node, tuple_base_name, context=context
)
call_site = arguments.CallSite.from_call(node)
func = next(extract_node("import collections; collections.namedtuple").infer())
try:
rename = next(call_site.infer_argument(func, "rename", context)).bool_value()
except InferenceError:
rename = False
if rename:
attributes = _get_renamed_namedtuple_attributes(attributes)
replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes)
field_def = (
" {name} = property(lambda self: self[{index:d}], "
"doc=)"
)
field_defs = "\n".join(
field_def.format(name=name, index=index)
for index, name in enumerate(attributes)
)
fake = AstroidBuilder(MANAGER).string_build(
% {
"name": name,
"fields": attributes,
"field_defs": field_defs,
"replace_args": replace_args,
}
)
class_node.locals["_asdict"] = fake.body[0].locals["_asdict"]
class_node.locals["_make"] = fake.body[0].locals["_make"]
class_node.locals["_replace"] = fake.body[0].locals["_replace"]
class_node.locals["_fields"] = fake.body[0].locals["_fields"]
for attr in attributes:
class_node.locals[attr] = fake.body[0].locals[attr]
return iter([class_node])
|
Specific inference function for namedtuple Call node
|
### Input:
Specific inference function for namedtuple Call node
### Response:
#vtb
def infer_named_tuple(node, context=None):
tuple_base_name = nodes.Name(name="tuple", parent=node.root())
class_node, name, attributes = infer_func_form(
node, tuple_base_name, context=context
)
call_site = arguments.CallSite.from_call(node)
func = next(extract_node("import collections; collections.namedtuple").infer())
try:
rename = next(call_site.infer_argument(func, "rename", context)).bool_value()
except InferenceError:
rename = False
if rename:
attributes = _get_renamed_namedtuple_attributes(attributes)
replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes)
field_def = (
" {name} = property(lambda self: self[{index:d}], "
"doc=)"
)
field_defs = "\n".join(
field_def.format(name=name, index=index)
for index, name in enumerate(attributes)
)
fake = AstroidBuilder(MANAGER).string_build(
% {
"name": name,
"fields": attributes,
"field_defs": field_defs,
"replace_args": replace_args,
}
)
class_node.locals["_asdict"] = fake.body[0].locals["_asdict"]
class_node.locals["_make"] = fake.body[0].locals["_make"]
class_node.locals["_replace"] = fake.body[0].locals["_replace"]
class_node.locals["_fields"] = fake.body[0].locals["_fields"]
for attr in attributes:
class_node.locals[attr] = fake.body[0].locals[attr]
return iter([class_node])
|
#vtb
def all_devices(cl_device_type=None, platform=None):
if isinstance(cl_device_type, str):
cl_device_type = device_type_from_string(cl_device_type)
runtime_list = []
if platform is None:
platforms = cl.get_platforms()
else:
platforms = [platform]
for platform in platforms:
if cl_device_type:
devices = platform.get_devices(device_type=cl_device_type)
else:
devices = platform.get_devices()
for device in devices:
if device_supports_double(device):
env = CLEnvironment(platform, device)
runtime_list.append(env)
return runtime_list
|
Get multiple device environments, optionally only of the indicated type.
This will only fetch devices that support double point precision.
Args:
cl_device_type (cl.device_type.* or string): The type of the device we want,
can be a opencl device type or a string matching 'GPU' or 'CPU'.
platform (opencl platform): The opencl platform to select the devices from
Returns:
list of CLEnvironment: List with the CL device environments.
|
### Input:
Get multiple device environments, optionally only of the indicated type.
This will only fetch devices that support double point precision.
Args:
cl_device_type (cl.device_type.* or string): The type of the device we want,
can be a opencl device type or a string matching 'GPU' or 'CPU'.
platform (opencl platform): The opencl platform to select the devices from
Returns:
list of CLEnvironment: List with the CL device environments.
### Response:
#vtb
def all_devices(cl_device_type=None, platform=None):
if isinstance(cl_device_type, str):
cl_device_type = device_type_from_string(cl_device_type)
runtime_list = []
if platform is None:
platforms = cl.get_platforms()
else:
platforms = [platform]
for platform in platforms:
if cl_device_type:
devices = platform.get_devices(device_type=cl_device_type)
else:
devices = platform.get_devices()
for device in devices:
if device_supports_double(device):
env = CLEnvironment(platform, device)
runtime_list.append(env)
return runtime_list
|
#vtb
def resolve_polytomy(
self,
dist=1.0,
support=100,
recursive=True):
nself = self.copy()
nself.treenode.resolve_polytomy(
default_dist=dist,
default_support=support,
recursive=recursive)
nself._coords.update()
return nself
|
Returns a copy of the tree with all polytomies randomly resolved.
Does not transform tree in-place.
|
### Input:
Returns a copy of the tree with all polytomies randomly resolved.
Does not transform tree in-place.
### Response:
#vtb
def resolve_polytomy(
self,
dist=1.0,
support=100,
recursive=True):
nself = self.copy()
nself.treenode.resolve_polytomy(
default_dist=dist,
default_support=support,
recursive=recursive)
nself._coords.update()
return nself
|
#vtb
def enr_at_fpr(fg_vals, bg_vals, fpr=0.01):
pos = np.array(fg_vals)
neg = np.array(bg_vals)
s = scoreatpercentile(neg, 100 - fpr * 100)
neg_matches = float(len(neg[neg >= s]))
if neg_matches == 0:
return float("inf")
return len(pos[pos >= s]) / neg_matches * len(neg) / float(len(pos))
|
Computes the enrichment at a specific FPR (default 1%).
Parameters
----------
fg_vals : array_like
The list of values for the positive set.
bg_vals : array_like
The list of values for the negative set.
fpr : float, optional
The FPR (between 0.0 and 1.0).
Returns
-------
enrichment : float
The enrichment at the specified FPR.
|
### Input:
Computes the enrichment at a specific FPR (default 1%).
Parameters
----------
fg_vals : array_like
The list of values for the positive set.
bg_vals : array_like
The list of values for the negative set.
fpr : float, optional
The FPR (between 0.0 and 1.0).
Returns
-------
enrichment : float
The enrichment at the specified FPR.
### Response:
#vtb
def enr_at_fpr(fg_vals, bg_vals, fpr=0.01):
pos = np.array(fg_vals)
neg = np.array(bg_vals)
s = scoreatpercentile(neg, 100 - fpr * 100)
neg_matches = float(len(neg[neg >= s]))
if neg_matches == 0:
return float("inf")
return len(pos[pos >= s]) / neg_matches * len(neg) / float(len(pos))
|
#vtb
def main(params=None):
if params == None:
parser = getParser()
args = parser.parse_args(params)
else:
args = params
results = []
print(general.title(banner.text))
sayingHello = .format(general.LICENSE_URL)
print(general.info(sayingHello))
if args.license:
general.showLicense()
else:
startTime= dt.datetime.now()
print(str(startTime) + "\tStarting search in different platform(s)... Relax!\n")
print(general.emphasis("\tPress <Ctrl + C> to stop...\n"))
try:
results = performSearch(platformNames=args.platforms, queries=args.queries, process=args.process, excludePlatformNames=args.exclude)
except KeyboardInterrupt:
print(general.error("\n[!] Process manually stopped by the user. Workers terminated without providing any result.\n"))
results = []
if args.extension:
if not os.path.exists (args.output_folder):
os.makedirs(args.output_folder)
fileHeader = os.path.join(args.output_folder, args.file_header)
for ext in args.extension:
general.exportUsufy(results, ext, fileHeader)
now = dt.datetime.now()
print("\n{}\tResults obtained:\n".format(str(now)))
print(general.success(general.usufyToTextExport(results)))
if args.web_browser:
general.openResultsInBrowser(results)
now = dt.datetime.now()
print("\n{date}\tYou can find all the information collected in the following files:".format(date=str(now)))
for ext in args.extension:
print("\t" + general.emphasis(fileHeader + "." + ext))
endTime= dt.datetime.now()
print("\n{date}\tFinishing execution...\n".format(date=str(endTime)))
print("Total time used:\t" + general.emphasis(str(endTime-startTime)))
print("Average seconds/query:\t" + general.emphasis(str((endTime-startTime).total_seconds()/len(args.platforms))) +" seconds\n")
print(banner.footer)
if params:
return results
|
Main function to launch usufy.
The function is created in this way so as to let other applications make
use of the full configuration capabilities of the application. The
parameters received are used as parsed by this modules `getParser()`.
Args:
-----
params: A list with the parameters as grabbed by the terminal. It is
None when this is called by an entry_point. If it is called by osrf
the data is already parsed.
Returns:
--------
A list of i3visio entities.
|
### Input:
Main function to launch usufy.
The function is created in this way so as to let other applications make
use of the full configuration capabilities of the application. The
parameters received are used as parsed by this modules `getParser()`.
Args:
-----
params: A list with the parameters as grabbed by the terminal. It is
None when this is called by an entry_point. If it is called by osrf
the data is already parsed.
Returns:
--------
A list of i3visio entities.
### Response:
#vtb
def main(params=None):
if params == None:
parser = getParser()
args = parser.parse_args(params)
else:
args = params
results = []
print(general.title(banner.text))
sayingHello = .format(general.LICENSE_URL)
print(general.info(sayingHello))
if args.license:
general.showLicense()
else:
startTime= dt.datetime.now()
print(str(startTime) + "\tStarting search in different platform(s)... Relax!\n")
print(general.emphasis("\tPress <Ctrl + C> to stop...\n"))
try:
results = performSearch(platformNames=args.platforms, queries=args.queries, process=args.process, excludePlatformNames=args.exclude)
except KeyboardInterrupt:
print(general.error("\n[!] Process manually stopped by the user. Workers terminated without providing any result.\n"))
results = []
if args.extension:
if not os.path.exists (args.output_folder):
os.makedirs(args.output_folder)
fileHeader = os.path.join(args.output_folder, args.file_header)
for ext in args.extension:
general.exportUsufy(results, ext, fileHeader)
now = dt.datetime.now()
print("\n{}\tResults obtained:\n".format(str(now)))
print(general.success(general.usufyToTextExport(results)))
if args.web_browser:
general.openResultsInBrowser(results)
now = dt.datetime.now()
print("\n{date}\tYou can find all the information collected in the following files:".format(date=str(now)))
for ext in args.extension:
print("\t" + general.emphasis(fileHeader + "." + ext))
endTime= dt.datetime.now()
print("\n{date}\tFinishing execution...\n".format(date=str(endTime)))
print("Total time used:\t" + general.emphasis(str(endTime-startTime)))
print("Average seconds/query:\t" + general.emphasis(str((endTime-startTime).total_seconds()/len(args.platforms))) +" seconds\n")
print(banner.footer)
if params:
return results
|
#vtb
def _find_ancestor(self, task_spec):
if self.parent is None:
return self
if self.parent.task_spec == task_spec:
return self.parent
return self.parent._find_ancestor(task_spec)
|
Returns the ancestor that has the given task spec assigned.
If no such ancestor was found, the root task is returned.
:type task_spec: TaskSpec
:param task_spec: The wanted task spec.
:rtype: Task
:returns: The ancestor.
|
### Input:
Returns the ancestor that has the given task spec assigned.
If no such ancestor was found, the root task is returned.
:type task_spec: TaskSpec
:param task_spec: The wanted task spec.
:rtype: Task
:returns: The ancestor.
### Response:
#vtb
def _find_ancestor(self, task_spec):
if self.parent is None:
return self
if self.parent.task_spec == task_spec:
return self.parent
return self.parent._find_ancestor(task_spec)
|
#vtb
def det_curve(y_true, scores, distances=False):
if distances:
scores = -scores
fpr, tpr, thresholds = sklearn.metrics.roc_curve(
y_true, scores, pos_label=True)
fnr = 1 - tpr
if distances:
thresholds = -thresholds
eer_index = np.where(fpr > fnr)[0][0]
eer = .25 * (fpr[eer_index-1] + fpr[eer_index] +
fnr[eer_index-1] + fnr[eer_index])
return fpr, fnr, thresholds, eer
|
DET curve
Parameters
----------
y_true : (n_samples, ) array-like
Boolean reference.
scores : (n_samples, ) array-like
Predicted score.
distances : boolean, optional
When True, indicate that `scores` are actually `distances`
Returns
-------
fpr : numpy array
False alarm rate
fnr : numpy array
False rejection rate
thresholds : numpy array
Corresponding thresholds
eer : float
Equal error rate
|
### Input:
DET curve
Parameters
----------
y_true : (n_samples, ) array-like
Boolean reference.
scores : (n_samples, ) array-like
Predicted score.
distances : boolean, optional
When True, indicate that `scores` are actually `distances`
Returns
-------
fpr : numpy array
False alarm rate
fnr : numpy array
False rejection rate
thresholds : numpy array
Corresponding thresholds
eer : float
Equal error rate
### Response:
#vtb
def det_curve(y_true, scores, distances=False):
if distances:
scores = -scores
fpr, tpr, thresholds = sklearn.metrics.roc_curve(
y_true, scores, pos_label=True)
fnr = 1 - tpr
if distances:
thresholds = -thresholds
eer_index = np.where(fpr > fnr)[0][0]
eer = .25 * (fpr[eer_index-1] + fpr[eer_index] +
fnr[eer_index-1] + fnr[eer_index])
return fpr, fnr, thresholds, eer
|
#vtb
def slice(self, start, stop=None, axis=0):
if stop is None:
stop = start
axis = self.get_axis_number(axis)
start_bin = max(0, self.get_axis_bin_index(start, axis))
stop_bin = min(len(self.bin_centers(axis)) - 1,
self.get_axis_bin_index(stop, axis))
new_bin_edges = self.bin_edges.copy()
new_bin_edges[axis] = new_bin_edges[axis][start_bin:stop_bin + 2]
return Histdd.from_histogram(np.take(self.histogram, np.arange(start_bin, stop_bin + 1), axis=axis),
bin_edges=new_bin_edges, axis_names=self.axis_names)
|
Restrict histogram to bins whose data values (not bin numbers) along axis are between start and stop
(both inclusive). Returns d dimensional histogram.
|
### Input:
Restrict histogram to bins whose data values (not bin numbers) along axis are between start and stop
(both inclusive). Returns d dimensional histogram.
### Response:
#vtb
def slice(self, start, stop=None, axis=0):
if stop is None:
stop = start
axis = self.get_axis_number(axis)
start_bin = max(0, self.get_axis_bin_index(start, axis))
stop_bin = min(len(self.bin_centers(axis)) - 1,
self.get_axis_bin_index(stop, axis))
new_bin_edges = self.bin_edges.copy()
new_bin_edges[axis] = new_bin_edges[axis][start_bin:stop_bin + 2]
return Histdd.from_histogram(np.take(self.histogram, np.arange(start_bin, stop_bin + 1), axis=axis),
bin_edges=new_bin_edges, axis_names=self.axis_names)
|
#vtb
def get_between_times(self, t1, t2, target=None):
try:
t1 = t1.isoformat()
t2 = t2.isoformat()
except AttributeError:
pass
myquery = self._get_time_query(t1, t2)
if target is not None:
myquery["target"] = target
self.create_files_request(myquery, fmt="json")
self.unpack_json_response()
|
Query for OPUS data between times t1 and t2.
Parameters
----------
t1, t2 : datetime.datetime, strings
Start and end time for the query. If type is datetime, will be
converted to isoformat string. If type is string already, it needs
to be in an accepted international format for time strings.
target : str
Potential target for the observation query. Most likely will reduce
the amount of data matching the query a lot.
Returns
-------
None, but set's state of the object to have new query results stored
in self.obsids.
|
### Input:
Query for OPUS data between times t1 and t2.
Parameters
----------
t1, t2 : datetime.datetime, strings
Start and end time for the query. If type is datetime, will be
converted to isoformat string. If type is string already, it needs
to be in an accepted international format for time strings.
target : str
Potential target for the observation query. Most likely will reduce
the amount of data matching the query a lot.
Returns
-------
None, but set's state of the object to have new query results stored
in self.obsids.
### Response:
#vtb
def get_between_times(self, t1, t2, target=None):
try:
t1 = t1.isoformat()
t2 = t2.isoformat()
except AttributeError:
pass
myquery = self._get_time_query(t1, t2)
if target is not None:
myquery["target"] = target
self.create_files_request(myquery, fmt="json")
self.unpack_json_response()
|
#vtb
def filter_queryset(self, request, queryset, view):
start_value = self.get_start(request)
if start_value:
queryset = self.apply_published_filter(queryset, "after", start_value)
end_value = self.get_end(request)
if end_value:
queryset = self.apply_published_filter(queryset, "before", end_value)
return queryset
|
Apply the relevant behaviors to the view queryset.
|
### Input:
Apply the relevant behaviors to the view queryset.
### Response:
#vtb
def filter_queryset(self, request, queryset, view):
start_value = self.get_start(request)
if start_value:
queryset = self.apply_published_filter(queryset, "after", start_value)
end_value = self.get_end(request)
if end_value:
queryset = self.apply_published_filter(queryset, "before", end_value)
return queryset
|
#vtb
def read(self, nrml_file, validate=False,
simple_fault_spacing=1.0, complex_mesh_spacing=5.0,
mfd_spacing=0.1):
self.source_file = nrml_file
if validate:
converter = SourceConverter(1.0, simple_fault_spacing,
complex_mesh_spacing,
mfd_spacing,
10.0)
converter.fname = nrml_file
root = nrml.read(nrml_file)
if root[] == :
sg_nodes = [root.sourceModel.nodes]
else:
sg_nodes = root.sourceModel.nodes
sources = []
for sg_node in sg_nodes:
for no, src_node in enumerate(sg_node, 1):
if validate:
print("Validating Source %s" % src_node.attrib["id"])
converter.convert_node(src_node)
sources.append(src_node)
return SourceModel(sources)
|
Build the source model from nrml format
|
### Input:
Build the source model from nrml format
### Response:
#vtb
def read(self, nrml_file, validate=False,
simple_fault_spacing=1.0, complex_mesh_spacing=5.0,
mfd_spacing=0.1):
self.source_file = nrml_file
if validate:
converter = SourceConverter(1.0, simple_fault_spacing,
complex_mesh_spacing,
mfd_spacing,
10.0)
converter.fname = nrml_file
root = nrml.read(nrml_file)
if root[] == :
sg_nodes = [root.sourceModel.nodes]
else:
sg_nodes = root.sourceModel.nodes
sources = []
for sg_node in sg_nodes:
for no, src_node in enumerate(sg_node, 1):
if validate:
print("Validating Source %s" % src_node.attrib["id"])
converter.convert_node(src_node)
sources.append(src_node)
return SourceModel(sources)
|
#vtb
def local_temp_dir():
path = tempfile.mkdtemp()
yield path
shutil.rmtree(path, ignore_errors=True)
|
Creates a local temporary directory. The directory is removed when no longer needed. Failure to do
so will be ignored.
:return: Path to the temporary directory.
:rtype: unicode
|
### Input:
Creates a local temporary directory. The directory is removed when no longer needed. Failure to do
so will be ignored.
:return: Path to the temporary directory.
:rtype: unicode
### Response:
#vtb
def local_temp_dir():
path = tempfile.mkdtemp()
yield path
shutil.rmtree(path, ignore_errors=True)
|
#vtb
def _incr_exceptions(self, conn):
self._pool_manager.get_connection(self.pid, conn).exceptions += 1
|
Increment the number of exceptions for the current connection.
:param psycopg2.extensions.connection conn: the psycopg2 connection
|
### Input:
Increment the number of exceptions for the current connection.
:param psycopg2.extensions.connection conn: the psycopg2 connection
### Response:
#vtb
def _incr_exceptions(self, conn):
self._pool_manager.get_connection(self.pid, conn).exceptions += 1
|
#vtb
def QRatio(s1, s2, force_ascii=True, full_process=True):
if full_process:
p1 = utils.full_process(s1, force_ascii=force_ascii)
p2 = utils.full_process(s2, force_ascii=force_ascii)
else:
p1 = s1
p2 = s2
if not utils.validate_string(p1):
return 0
if not utils.validate_string(p2):
return 0
return ratio(p1, p2)
|
Quick ratio comparison between two strings.
Runs full_process from utils on both strings
Short circuits if either of the strings is empty after processing.
:param s1:
:param s2:
:param force_ascii: Allow only ASCII characters (Default: True)
:full_process: Process inputs, used here to avoid double processing in extract functions (Default: True)
:return: similarity ratio
|
### Input:
Quick ratio comparison between two strings.
Runs full_process from utils on both strings
Short circuits if either of the strings is empty after processing.
:param s1:
:param s2:
:param force_ascii: Allow only ASCII characters (Default: True)
:full_process: Process inputs, used here to avoid double processing in extract functions (Default: True)
:return: similarity ratio
### Response:
#vtb
def QRatio(s1, s2, force_ascii=True, full_process=True):
if full_process:
p1 = utils.full_process(s1, force_ascii=force_ascii)
p2 = utils.full_process(s2, force_ascii=force_ascii)
else:
p1 = s1
p2 = s2
if not utils.validate_string(p1):
return 0
if not utils.validate_string(p2):
return 0
return ratio(p1, p2)
|
#vtb
def _parse_handler_result(self, result):
if isinstance(result, (list, tuple)):
payload = result[0]
list_result = list(result)
else:
payload = result
list_result = [""]
return payload, list_result
|
Parses the item(s) returned by your handler implementation.
Handlers may return a single item (payload), or a tuple that gets
passed to the Response class __init__ method of your HTTP layer.
_parse_handler_result separates the payload from the rest the tuple,
as well as providing the tuple so that it can be re-composed after
the payload has been run through the `_returns` Resource's renderer.
|
### Input:
Parses the item(s) returned by your handler implementation.
Handlers may return a single item (payload), or a tuple that gets
passed to the Response class __init__ method of your HTTP layer.
_parse_handler_result separates the payload from the rest the tuple,
as well as providing the tuple so that it can be re-composed after
the payload has been run through the `_returns` Resource's renderer.
### Response:
#vtb
def _parse_handler_result(self, result):
if isinstance(result, (list, tuple)):
payload = result[0]
list_result = list(result)
else:
payload = result
list_result = [""]
return payload, list_result
|
#vtb
def merge_keywords(x,y):
z = x.copy()
z.update(y)
return z
|
Given two dicts, merge them into a new dict as a shallow copy.
|
### Input:
Given two dicts, merge them into a new dict as a shallow copy.
### Response:
#vtb
def merge_keywords(x,y):
z = x.copy()
z.update(y)
return z
|
#vtb
def get_function_from_config(item):
config = get_configuration()
func_path = config.get(item)
module_path, func_name = func_path.rsplit(".", 1)
module = importlib.import_module(module_path)
func = getattr(module, func_name)
return func
|
Import the function to get profile by handle.
|
### Input:
Import the function to get profile by handle.
### Response:
#vtb
def get_function_from_config(item):
config = get_configuration()
func_path = config.get(item)
module_path, func_name = func_path.rsplit(".", 1)
module = importlib.import_module(module_path)
func = getattr(module, func_name)
return func
|
#vtb
def split_bezier(bpoints, t):
def split_bezier_recursion(bpoints_left_, bpoints_right_, bpoints_, t_):
if len(bpoints_) == 1:
bpoints_left_.append(bpoints_[0])
bpoints_right_.append(bpoints_[0])
else:
new_points = [None]*(len(bpoints_) - 1)
bpoints_left_.append(bpoints_[0])
bpoints_right_.append(bpoints_[-1])
for i in range(len(bpoints_) - 1):
new_points[i] = (1 - t_)*bpoints_[i] + t_*bpoints_[i + 1]
bpoints_left_, bpoints_right_ = split_bezier_recursion(
bpoints_left_, bpoints_right_, new_points, t_)
return bpoints_left_, bpoints_right_
bpoints_left = []
bpoints_right = []
bpoints_left, bpoints_right = \
split_bezier_recursion(bpoints_left, bpoints_right, bpoints, t)
bpoints_right.reverse()
return bpoints_left, bpoints_right
|
Uses deCasteljau's recursion to split the Bezier curve at t into two
Bezier curves of the same order.
|
### Input:
Uses deCasteljau's recursion to split the Bezier curve at t into two
Bezier curves of the same order.
### Response:
#vtb
def split_bezier(bpoints, t):
def split_bezier_recursion(bpoints_left_, bpoints_right_, bpoints_, t_):
if len(bpoints_) == 1:
bpoints_left_.append(bpoints_[0])
bpoints_right_.append(bpoints_[0])
else:
new_points = [None]*(len(bpoints_) - 1)
bpoints_left_.append(bpoints_[0])
bpoints_right_.append(bpoints_[-1])
for i in range(len(bpoints_) - 1):
new_points[i] = (1 - t_)*bpoints_[i] + t_*bpoints_[i + 1]
bpoints_left_, bpoints_right_ = split_bezier_recursion(
bpoints_left_, bpoints_right_, new_points, t_)
return bpoints_left_, bpoints_right_
bpoints_left = []
bpoints_right = []
bpoints_left, bpoints_right = \
split_bezier_recursion(bpoints_left, bpoints_right, bpoints, t)
bpoints_right.reverse()
return bpoints_left, bpoints_right
|
#vtb
def get_parser(segmenter, **options):
if segmenter == :
return NLAPIParser(**options)
elif segmenter == :
return MecabParser()
elif segmenter == :
return TinysegmenterParser()
else:
raise ValueError(.format(segmenter))
|
Gets a parser.
Args:
segmenter (str): Segmenter to use.
options (:obj:`dict`, optional): Optional settings.
Returns:
Parser (:obj:`budou.parser.Parser`)
Raises:
ValueError: If unsupported segmenter is specified.
|
### Input:
Gets a parser.
Args:
segmenter (str): Segmenter to use.
options (:obj:`dict`, optional): Optional settings.
Returns:
Parser (:obj:`budou.parser.Parser`)
Raises:
ValueError: If unsupported segmenter is specified.
### Response:
#vtb
def get_parser(segmenter, **options):
if segmenter == :
return NLAPIParser(**options)
elif segmenter == :
return MecabParser()
elif segmenter == :
return TinysegmenterParser()
else:
raise ValueError(.format(segmenter))
|
#vtb
def _read_opt_type(self, kind):
bin_ = bin(kind)[2:].zfill(8)
type_ = dict(
value=kind,
action=_IPv6_Opts_ACT.get(bin_[:2]),
change=True if int(bin_[2], base=2) else False,
)
return type_
|
Read option type field.
Positional arguments:
* kind -- int, option kind value
Returns:
* dict -- extracted IPv6_Opts option
Structure of option type field [RFC 791]:
Octets Bits Name Descriptions
0 0 ipv6_opts.opt.type.value Option Number
0 0 ipv6_opts.opt.type.action Action (00-11)
0 2 ipv6_opts.opt.type.change Change Flag (0/1)
|
### Input:
Read option type field.
Positional arguments:
* kind -- int, option kind value
Returns:
* dict -- extracted IPv6_Opts option
Structure of option type field [RFC 791]:
Octets Bits Name Descriptions
0 0 ipv6_opts.opt.type.value Option Number
0 0 ipv6_opts.opt.type.action Action (00-11)
0 2 ipv6_opts.opt.type.change Change Flag (0/1)
### Response:
#vtb
def _read_opt_type(self, kind):
bin_ = bin(kind)[2:].zfill(8)
type_ = dict(
value=kind,
action=_IPv6_Opts_ACT.get(bin_[:2]),
change=True if int(bin_[2], base=2) else False,
)
return type_
|
#vtb
def find_types_removed_from_unions(
old_schema: GraphQLSchema, new_schema: GraphQLSchema
) -> List[BreakingChange]:
old_type_map = old_schema.type_map
new_type_map = new_schema.type_map
types_removed_from_union = []
for old_type_name, old_type in old_type_map.items():
new_type = new_type_map.get(old_type_name)
if not (is_union_type(old_type) and is_union_type(new_type)):
continue
old_type = cast(GraphQLUnionType, old_type)
new_type = cast(GraphQLUnionType, new_type)
type_names_in_new_union = {type_.name for type_ in new_type.types}
for type_ in old_type.types:
type_name = type_.name
if type_name not in type_names_in_new_union:
types_removed_from_union.append(
BreakingChange(
BreakingChangeType.TYPE_REMOVED_FROM_UNION,
f"{type_name} was removed from union type {old_type_name}.",
)
)
return types_removed_from_union
|
Find types removed from unions.
Given two schemas, returns a list containing descriptions of any breaking changes
in the new_schema related to removing types from a union type.
|
### Input:
Find types removed from unions.
Given two schemas, returns a list containing descriptions of any breaking changes
in the new_schema related to removing types from a union type.
### Response:
#vtb
def find_types_removed_from_unions(
old_schema: GraphQLSchema, new_schema: GraphQLSchema
) -> List[BreakingChange]:
old_type_map = old_schema.type_map
new_type_map = new_schema.type_map
types_removed_from_union = []
for old_type_name, old_type in old_type_map.items():
new_type = new_type_map.get(old_type_name)
if not (is_union_type(old_type) and is_union_type(new_type)):
continue
old_type = cast(GraphQLUnionType, old_type)
new_type = cast(GraphQLUnionType, new_type)
type_names_in_new_union = {type_.name for type_ in new_type.types}
for type_ in old_type.types:
type_name = type_.name
if type_name not in type_names_in_new_union:
types_removed_from_union.append(
BreakingChange(
BreakingChangeType.TYPE_REMOVED_FROM_UNION,
f"{type_name} was removed from union type {old_type_name}.",
)
)
return types_removed_from_union
|
#vtb
def strip_possessives(self, word):
if word.endswith(""):
return word[:-3]
elif word.endswith(""):
return word[:-1]
else:
return word
|
Get rid of apostrophes indicating possession.
|
### Input:
Get rid of apostrophes indicating possession.
### Response:
#vtb
def strip_possessives(self, word):
if word.endswith(""):
return word[:-3]
elif word.endswith(""):
return word[:-1]
else:
return word
|
#vtb
def list_snapshots(self):
return [snap for snap in self.manager.list_snapshots()
if snap.volume_id == self.id]
|
Returns a list of all snapshots of this volume.
|
### Input:
Returns a list of all snapshots of this volume.
### Response:
#vtb
def list_snapshots(self):
return [snap for snap in self.manager.list_snapshots()
if snap.volume_id == self.id]
|
#vtb
def matches(self, pattern, flags=0):
if not re.match(pattern, self._subject, flags):
raise self._error_factory(_format("Expected {} to match {}", self._subject, pattern))
return ChainInspector(self._subject)
|
Ensures :attr:`subject` matches regular expression *pattern*.
|
### Input:
Ensures :attr:`subject` matches regular expression *pattern*.
### Response:
#vtb
def matches(self, pattern, flags=0):
if not re.match(pattern, self._subject, flags):
raise self._error_factory(_format("Expected {} to match {}", self._subject, pattern))
return ChainInspector(self._subject)
|
#vtb
def describe_config_variable(self, config_id):
config = self._config_variables.get(config_id)
if config is None:
return [Error.INVALID_ARRAY_KEY, 0, 0, 0, 0]
packed_size = config.total_size
packed_size |= int(config.variable) << 15
return [0, 0, 0, config_id, packed_size]
|
Describe the config variable by its id.
|
### Input:
Describe the config variable by its id.
### Response:
#vtb
def describe_config_variable(self, config_id):
config = self._config_variables.get(config_id)
if config is None:
return [Error.INVALID_ARRAY_KEY, 0, 0, 0, 0]
packed_size = config.total_size
packed_size |= int(config.variable) << 15
return [0, 0, 0, config_id, packed_size]
|
#vtb
def loadPng(varNumVol, tplPngSize, strPathPng):
print()
lstPngPaths = [None] * varNumVol
for idx01 in range(0, varNumVol):
lstPngPaths[idx01] = (strPathPng + str(idx01) + )
aryPngData = np.zeros((tplPngSize[0],
tplPngSize[1],
varNumVol))
for idx01 in range(0, varNumVol):
aryPngData[:, :, idx01] = np.array(Image.open(lstPngPaths[idx01]))
aryPngData = (aryPngData > 0).astype(int)
return aryPngData
|
Load PNG files.
Parameters
----------
varNumVol : float
Number of volumes, i.e. number of time points in all runs.
tplPngSize : tuple
Shape of the stimulus image (i.e. png).
strPathPng: str
Path to the folder cointaining the png files.
Returns
-------
aryPngData : 2d numpy array, shape [png_x, png_y, n_vols]
Stack of stimulus data.
|
### Input:
Load PNG files.
Parameters
----------
varNumVol : float
Number of volumes, i.e. number of time points in all runs.
tplPngSize : tuple
Shape of the stimulus image (i.e. png).
strPathPng: str
Path to the folder cointaining the png files.
Returns
-------
aryPngData : 2d numpy array, shape [png_x, png_y, n_vols]
Stack of stimulus data.
### Response:
#vtb
def loadPng(varNumVol, tplPngSize, strPathPng):
print()
lstPngPaths = [None] * varNumVol
for idx01 in range(0, varNumVol):
lstPngPaths[idx01] = (strPathPng + str(idx01) + )
aryPngData = np.zeros((tplPngSize[0],
tplPngSize[1],
varNumVol))
for idx01 in range(0, varNumVol):
aryPngData[:, :, idx01] = np.array(Image.open(lstPngPaths[idx01]))
aryPngData = (aryPngData > 0).astype(int)
return aryPngData
|
#vtb
def print_output(self, per_identity_data: ) -> None:
if not self._window_bts:
data = per_identity_data.flatMap(
lambda x: [json.dumps(data, cls=BlurrJSONEncoder) for data in x[1][0].items()])
else:
data = per_identity_data.map(
lambda x: json.dumps((x[0], x[1][1]), cls=BlurrJSONEncoder))
for row in data.collect():
print(row)
|
Basic helper function to write data to stdout. If window BTS was provided then the window
BTS output is written, otherwise, the streaming BTS output is written to stdout.
WARNING - For large datasets this will be extremely slow.
:param per_identity_data: Output of the `execute()` call.
|
### Input:
Basic helper function to write data to stdout. If window BTS was provided then the window
BTS output is written, otherwise, the streaming BTS output is written to stdout.
WARNING - For large datasets this will be extremely slow.
:param per_identity_data: Output of the `execute()` call.
### Response:
#vtb
def print_output(self, per_identity_data: ) -> None:
if not self._window_bts:
data = per_identity_data.flatMap(
lambda x: [json.dumps(data, cls=BlurrJSONEncoder) for data in x[1][0].items()])
else:
data = per_identity_data.map(
lambda x: json.dumps((x[0], x[1][1]), cls=BlurrJSONEncoder))
for row in data.collect():
print(row)
|
#vtb
def _type_string(label, case=None):
return label, abstractSearch.in_string, lambda s: abstractRender.default(s, case=case), ""
|
Shortcut for string like fields
|
### Input:
Shortcut for string like fields
### Response:
#vtb
def _type_string(label, case=None):
return label, abstractSearch.in_string, lambda s: abstractRender.default(s, case=case), ""
|
#vtb
def serialize(self, data=None):
if data is not None and self.response is not None:
self.response[] = self.media_types[0]
self.response.write(data)
return data
|
Transforms the object into an acceptable format for transmission.
@throws ValueError
To indicate this serializer does not support the encoding of the
specified object.
|
### Input:
Transforms the object into an acceptable format for transmission.
@throws ValueError
To indicate this serializer does not support the encoding of the
specified object.
### Response:
#vtb
def serialize(self, data=None):
if data is not None and self.response is not None:
self.response[] = self.media_types[0]
self.response.write(data)
return data
|
#vtb
def is_vert_aligned(c):
return all(
[
_to_span(c[i]).sentence.is_visual()
and bbox_vert_aligned(
bbox_from_span(_to_span(c[i])), bbox_from_span(_to_span(c[0]))
)
for i in range(len(c))
]
)
|
Return true if all the components of c are vertically aligned.
Vertical alignment means that the bounding boxes of each Mention of c
shares a similar x-axis value in the visual rendering of the document.
:param c: The candidate to evaluate
:rtype: boolean
|
### Input:
Return true if all the components of c are vertically aligned.
Vertical alignment means that the bounding boxes of each Mention of c
shares a similar x-axis value in the visual rendering of the document.
:param c: The candidate to evaluate
:rtype: boolean
### Response:
#vtb
def is_vert_aligned(c):
return all(
[
_to_span(c[i]).sentence.is_visual()
and bbox_vert_aligned(
bbox_from_span(_to_span(c[i])), bbox_from_span(_to_span(c[0]))
)
for i in range(len(c))
]
)
|
#vtb
def from_function(cls, function):
module_name = function.__module__
function_name = function.__name__
class_name = ""
function_source_hasher = hashlib.sha1()
try:
source = inspect.getsource(function)
if sys.version_info[0] >= 3:
source = source.encode()
function_source_hasher.update(source)
function_source_hash = function_source_hasher.digest()
except (IOError, OSError, TypeError):
function_source_hash = b""
return cls(module_name, function_name, class_name,
function_source_hash)
|
Create a FunctionDescriptor from a function instance.
This function is used to create the function descriptor from
a python function. If a function is a class function, it should
not be used by this function.
Args:
cls: Current class which is required argument for classmethod.
function: the python function used to create the function
descriptor.
Returns:
The FunctionDescriptor instance created according to the function.
|
### Input:
Create a FunctionDescriptor from a function instance.
This function is used to create the function descriptor from
a python function. If a function is a class function, it should
not be used by this function.
Args:
cls: Current class which is required argument for classmethod.
function: the python function used to create the function
descriptor.
Returns:
The FunctionDescriptor instance created according to the function.
### Response:
#vtb
def from_function(cls, function):
module_name = function.__module__
function_name = function.__name__
class_name = ""
function_source_hasher = hashlib.sha1()
try:
source = inspect.getsource(function)
if sys.version_info[0] >= 3:
source = source.encode()
function_source_hasher.update(source)
function_source_hash = function_source_hasher.digest()
except (IOError, OSError, TypeError):
function_source_hash = b""
return cls(module_name, function_name, class_name,
function_source_hash)
|
#vtb
def write_to_file(filename, content):
if not config["destdir"]:
print("{destdir} config variable not present. Did you forget to run init()?")
sys.exit(8)
abs_filename = os.path.abspath(config["destdir"] + "/" + filename)
abs_filepath = os.path.dirname(abs_filename)
if not os.path.exists(abs_filepath):
try:
os.makedirs(abs_filepath)
except OSError as e:
print("Cannot create directory " + abs_filepath)
print("Error %d: %s" % (e.errno, e.strerror))
sys.exit(6)
with codecs.open(abs_filename, "w", "utf-8") as out:
if isinstance(content, str): content = [content]
for line in content:
if line is not None:
out.write(line)
out.write("\n")
|
Writes content to the given file. The file's directory will be created if needed.
:param filename: name of the output file, relative to the "destination folder" provided by the user
:param content: iterable (line-by-line) that should be written to the file. Either a list or a generator. Each
line will be appended with a "\n". Lines containing None will be skipped.
|
### Input:
Writes content to the given file. The file's directory will be created if needed.
:param filename: name of the output file, relative to the "destination folder" provided by the user
:param content: iterable (line-by-line) that should be written to the file. Either a list or a generator. Each
line will be appended with a "\n". Lines containing None will be skipped.
### Response:
#vtb
def write_to_file(filename, content):
if not config["destdir"]:
print("{destdir} config variable not present. Did you forget to run init()?")
sys.exit(8)
abs_filename = os.path.abspath(config["destdir"] + "/" + filename)
abs_filepath = os.path.dirname(abs_filename)
if not os.path.exists(abs_filepath):
try:
os.makedirs(abs_filepath)
except OSError as e:
print("Cannot create directory " + abs_filepath)
print("Error %d: %s" % (e.errno, e.strerror))
sys.exit(6)
with codecs.open(abs_filename, "w", "utf-8") as out:
if isinstance(content, str): content = [content]
for line in content:
if line is not None:
out.write(line)
out.write("\n")
|
#vtb
def namer(cls, imageUrl, pageUrl):
index = int(compile(r).search(pageUrl).group(1))
ext = imageUrl.rsplit(, 1)[1]
return "SnowFlakes-%d.%s" % (index, ext)
|
Use strip index number for image name.
|
### Input:
Use strip index number for image name.
### Response:
#vtb
def namer(cls, imageUrl, pageUrl):
index = int(compile(r).search(pageUrl).group(1))
ext = imageUrl.rsplit(, 1)[1]
return "SnowFlakes-%d.%s" % (index, ext)
|
#vtb
def visit(self, event):
to_visit = False
if event.arr_time_ut <= self.min_transfer_time+self.get_min_visit_time():
to_visit = True
else:
for ve in self.visit_events:
if (event.trip_I == ve.trip_I) and event.arr_time_ut < ve.arr_time_ut:
to_visit = True
if to_visit:
self.visit_events.append(event)
min_time = self.get_min_visit_time()
self.visit_events = [v for v in self.visit_events if v.arr_time_ut <= min_time+self.min_transfer_time]
return to_visit
|
Visit the stop if it has not been visited already by an event with
earlier arr_time_ut (or with other trip that does not require a transfer)
Parameters
----------
event : Event
an instance of the Event (namedtuple)
Returns
-------
visited : bool
if visit is stored, returns True, otherwise False
|
### Input:
Visit the stop if it has not been visited already by an event with
earlier arr_time_ut (or with other trip that does not require a transfer)
Parameters
----------
event : Event
an instance of the Event (namedtuple)
Returns
-------
visited : bool
if visit is stored, returns True, otherwise False
### Response:
#vtb
def visit(self, event):
to_visit = False
if event.arr_time_ut <= self.min_transfer_time+self.get_min_visit_time():
to_visit = True
else:
for ve in self.visit_events:
if (event.trip_I == ve.trip_I) and event.arr_time_ut < ve.arr_time_ut:
to_visit = True
if to_visit:
self.visit_events.append(event)
min_time = self.get_min_visit_time()
self.visit_events = [v for v in self.visit_events if v.arr_time_ut <= min_time+self.min_transfer_time]
return to_visit
|
#vtb
def autocommit(data_access):
if not data_access.autocommit:
data_access.commit()
old_autocommit = data_access.autocommit
data_access.autocommit = True
try:
yield data_access
finally:
data_access.autocommit = old_autocommit
|
Make statements autocommit.
:param data_access: a DataAccess instance
|
### Input:
Make statements autocommit.
:param data_access: a DataAccess instance
### Response:
#vtb
def autocommit(data_access):
if not data_access.autocommit:
data_access.commit()
old_autocommit = data_access.autocommit
data_access.autocommit = True
try:
yield data_access
finally:
data_access.autocommit = old_autocommit
|
#vtb
def _node_le(self, node_self, node_other):
for x in [, , ]:
if node_self.__getattribute__(x) != node_other.__getattribute__(x):
return False
for a in node_self.attrib:
if a not in node_other.attrib or \
node_self.attrib[a] != node_other.attrib[a]:
return False
for child in node_self.getchildren():
peers = self._get_peers(child, node_other)
if len(peers) < 1:
return False
elif len(peers) > 1:
raise ConfigError( \
.format(self.device.get_xpath(child)))
else:
schma_node = self.device.get_schema_node(child)
if schma_node.get() == and \
schma_node.get() == or \
schma_node.get() == and \
schma_node.get() == :
elder_siblings = list(child.itersiblings(tag=child.tag,
preceding=True))
if elder_siblings:
immediate_elder_sibling = elder_siblings[0]
peers_of_immediate_elder_sibling = \
self._get_peers(immediate_elder_sibling,
node_other)
if len(peers_of_immediate_elder_sibling) < 1:
return False
elif len(peers_of_immediate_elder_sibling) > 1:
p = self.device.get_xpath(immediate_elder_sibling)
raise ConfigError( \
.format(p))
elder_siblings_of_peer = \
list(peers[0].itersiblings(tag=child.tag,
preceding=True))
if peers_of_immediate_elder_sibling[0] not in \
elder_siblings_of_peer:
return False
if not self._node_le(child, peers[0]):
return False
return True
|
_node_le
Low-level api: Return True if all descendants of one node exist in the
other node. Otherwise False. This is a recursive method.
Parameters
----------
node_self : `Element`
A node to be compared.
node_other : `Element`
Another node to be compared.
Returns
-------
bool
True if all descendants of node_self exist in node_other, otherwise
False.
|
### Input:
_node_le
Low-level api: Return True if all descendants of one node exist in the
other node. Otherwise False. This is a recursive method.
Parameters
----------
node_self : `Element`
A node to be compared.
node_other : `Element`
Another node to be compared.
Returns
-------
bool
True if all descendants of node_self exist in node_other, otherwise
False.
### Response:
#vtb
def _node_le(self, node_self, node_other):
for x in [, , ]:
if node_self.__getattribute__(x) != node_other.__getattribute__(x):
return False
for a in node_self.attrib:
if a not in node_other.attrib or \
node_self.attrib[a] != node_other.attrib[a]:
return False
for child in node_self.getchildren():
peers = self._get_peers(child, node_other)
if len(peers) < 1:
return False
elif len(peers) > 1:
raise ConfigError( \
.format(self.device.get_xpath(child)))
else:
schma_node = self.device.get_schema_node(child)
if schma_node.get() == and \
schma_node.get() == or \
schma_node.get() == and \
schma_node.get() == :
elder_siblings = list(child.itersiblings(tag=child.tag,
preceding=True))
if elder_siblings:
immediate_elder_sibling = elder_siblings[0]
peers_of_immediate_elder_sibling = \
self._get_peers(immediate_elder_sibling,
node_other)
if len(peers_of_immediate_elder_sibling) < 1:
return False
elif len(peers_of_immediate_elder_sibling) > 1:
p = self.device.get_xpath(immediate_elder_sibling)
raise ConfigError( \
.format(p))
elder_siblings_of_peer = \
list(peers[0].itersiblings(tag=child.tag,
preceding=True))
if peers_of_immediate_elder_sibling[0] not in \
elder_siblings_of_peer:
return False
if not self._node_le(child, peers[0]):
return False
return True
|
#vtb
def cli(env, identifier, enabled, port, weight, healthcheck_type, ip_address):
mgr = SoftLayer.LoadBalancerManager(env.client)
loadbal_id, group_id = loadbal.parse_id(identifier)
ip_address_id = None
if ip_address:
ip_service = env.client[]
ip_record = ip_service.getByIpAddress(ip_address)
if len(ip_record) > 0:
ip_address_id = ip_record[]
mgr.add_service(loadbal_id,
group_id,
ip_address_id=ip_address_id,
enabled=enabled,
port=port,
weight=weight,
hc_type=healthcheck_type)
env.fout()
|
Adds a new load balancer service.
|
### Input:
Adds a new load balancer service.
### Response:
#vtb
def cli(env, identifier, enabled, port, weight, healthcheck_type, ip_address):
mgr = SoftLayer.LoadBalancerManager(env.client)
loadbal_id, group_id = loadbal.parse_id(identifier)
ip_address_id = None
if ip_address:
ip_service = env.client[]
ip_record = ip_service.getByIpAddress(ip_address)
if len(ip_record) > 0:
ip_address_id = ip_record[]
mgr.add_service(loadbal_id,
group_id,
ip_address_id=ip_address_id,
enabled=enabled,
port=port,
weight=weight,
hc_type=healthcheck_type)
env.fout()
|
#vtb
def update_checkplotdict_nbrlcs(
checkplotdict,
timecol, magcol, errcol,
lcformat=,
lcformatdir=None,
verbose=True,
):
bests
checkplot. This is used to extract the correct times-series from the
neighborsve stored
your lcformat description JSONs, other than the usual directories lcproc
knows to search for them in. Use this along with `lcformat` to specify
an LC format JSON file that
try:
formatinfo = get_lcformat(lcformat,
use_lcformat_dir=lcformatdir)
if formatinfo:
(dfileglob, readerfunc,
dtimecols, dmagcols, derrcols,
magsarefluxes, normfunc) = formatinfo
else:
LOGERROR("cant figure out the light curve format")
return checkplotdict
if not ( in checkplotdict and
checkplotdict[] and
len(checkplotdict[]) > 0):
LOGERROR( %
(checkplotdict[]))
return checkplotdict
nbrmagkeys = {}
for mc in objmagkeys:
if (( in lcdict) and
(isinstance(lcdict[], dict)) and
(mc in lcdict[]) and
(lcdict[][mc] is not None) and
(np.isfinite(lcdict[][mc]))):
nbrmagkeys[mc] = lcdict[][mc]
magdiffs = {}
for omc in objmagkeys:
if omc in nbrmagkeys:
magdiffs[omc] = objmagkeys[omc] - nbrmagkeys[omc]
colordiffs = {}
"for target: %s, neighbor: %s, neighbor LC: %s" %
(checkplotdict[],
nbr[],
nbr[]))
continue
nbrdict = _pkl_magseries_plot(xtimes,
xmags,
xerrs,
magsarefluxes=magsarefluxes)
nbr.update(nbrdict)
if in checkplotdict:
pfmethods = checkplotdict[]
else:
pfmethods = []
for cpkey in checkplotdict:
for pfkey in PFMETHODS:
if pfkey in cpkey:
pfmethods.append(pfkey)
for lspt in pfmethods:
nbr[lspt] = {}
operiod, oepoch = (checkplotdict[lspt][0][],
checkplotdict[lspt][0][])
(ophasewrap, ophasesort, ophasebin,
ominbinelems, oplotxlim) = (
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
)
nbr = _pkl_phased_magseries_plot(
nbr,
lspt.split()[1],
0,
xtimes, xmags, xerrs,
operiod, oepoch,
phasewrap=ophasewrap,
phasesort=ophasesort,
phasebin=ophasebin,
minbinelems=ominbinelems,
plotxlim=oplotxlim,
magsarefluxes=magsarefluxes,
verbose=verbose,
override_pfmethod=lspt
)
return checkplotdict
|
For all neighbors in a checkplotdict, make LCs and phased LCs.
Parameters
----------
checkplotdict : dict
This is the checkplot to process. The light curves for the neighbors to
the object here will be extracted from the stored file paths, and this
function will make plots of these time-series. If the object has 'best'
periods and epochs generated by period-finder functions in this
checkplotdict, phased light curve plots of each neighbor will be made
using these to check the effects of blending.
timecol,magcol,errcol : str
The timecol, magcol, and errcol keys used to generate this object's
checkplot. This is used to extract the correct times-series from the
neighbors' light curves.
lcformat : str
This is the `formatkey` associated with your light curve format, which
you previously passed in to the `lcproc.register_lcformat`
function. This will be used to look up how to find and read the light
curves specified in `basedir` or `use_list_of_filenames`.
lcformatdir : str or None
If this is provided, gives the path to a directory when you've stored
your lcformat description JSONs, other than the usual directories lcproc
knows to search for them in. Use this along with `lcformat` to specify
an LC format JSON file that's not currently registered with lcproc.
Returns
-------
dict
The input checkplotdict is returned with the neighor light curve plots
added in.
|
### Input:
For all neighbors in a checkplotdict, make LCs and phased LCs.
Parameters
----------
checkplotdict : dict
This is the checkplot to process. The light curves for the neighbors to
the object here will be extracted from the stored file paths, and this
function will make plots of these time-series. If the object has 'best'
periods and epochs generated by period-finder functions in this
checkplotdict, phased light curve plots of each neighbor will be made
using these to check the effects of blending.
timecol,magcol,errcol : str
The timecol, magcol, and errcol keys used to generate this object's
checkplot. This is used to extract the correct times-series from the
neighbors' light curves.
lcformat : str
This is the `formatkey` associated with your light curve format, which
you previously passed in to the `lcproc.register_lcformat`
function. This will be used to look up how to find and read the light
curves specified in `basedir` or `use_list_of_filenames`.
lcformatdir : str or None
If this is provided, gives the path to a directory when you've stored
your lcformat description JSONs, other than the usual directories lcproc
knows to search for them in. Use this along with `lcformat` to specify
an LC format JSON file that's not currently registered with lcproc.
Returns
-------
dict
The input checkplotdict is returned with the neighor light curve plots
added in.
### Response:
#vtb
def update_checkplotdict_nbrlcs(
checkplotdict,
timecol, magcol, errcol,
lcformat=,
lcformatdir=None,
verbose=True,
):
bests
checkplot. This is used to extract the correct times-series from the
neighborsve stored
your lcformat description JSONs, other than the usual directories lcproc
knows to search for them in. Use this along with `lcformat` to specify
an LC format JSON file that
try:
formatinfo = get_lcformat(lcformat,
use_lcformat_dir=lcformatdir)
if formatinfo:
(dfileglob, readerfunc,
dtimecols, dmagcols, derrcols,
magsarefluxes, normfunc) = formatinfo
else:
LOGERROR("cant figure out the light curve format")
return checkplotdict
if not ( in checkplotdict and
checkplotdict[] and
len(checkplotdict[]) > 0):
LOGERROR( %
(checkplotdict[]))
return checkplotdict
nbrmagkeys = {}
for mc in objmagkeys:
if (( in lcdict) and
(isinstance(lcdict[], dict)) and
(mc in lcdict[]) and
(lcdict[][mc] is not None) and
(np.isfinite(lcdict[][mc]))):
nbrmagkeys[mc] = lcdict[][mc]
magdiffs = {}
for omc in objmagkeys:
if omc in nbrmagkeys:
magdiffs[omc] = objmagkeys[omc] - nbrmagkeys[omc]
colordiffs = {}
"for target: %s, neighbor: %s, neighbor LC: %s" %
(checkplotdict[],
nbr[],
nbr[]))
continue
nbrdict = _pkl_magseries_plot(xtimes,
xmags,
xerrs,
magsarefluxes=magsarefluxes)
nbr.update(nbrdict)
if in checkplotdict:
pfmethods = checkplotdict[]
else:
pfmethods = []
for cpkey in checkplotdict:
for pfkey in PFMETHODS:
if pfkey in cpkey:
pfmethods.append(pfkey)
for lspt in pfmethods:
nbr[lspt] = {}
operiod, oepoch = (checkplotdict[lspt][0][],
checkplotdict[lspt][0][])
(ophasewrap, ophasesort, ophasebin,
ominbinelems, oplotxlim) = (
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
checkplotdict[lspt][0][],
)
nbr = _pkl_phased_magseries_plot(
nbr,
lspt.split()[1],
0,
xtimes, xmags, xerrs,
operiod, oepoch,
phasewrap=ophasewrap,
phasesort=ophasesort,
phasebin=ophasebin,
minbinelems=ominbinelems,
plotxlim=oplotxlim,
magsarefluxes=magsarefluxes,
verbose=verbose,
override_pfmethod=lspt
)
return checkplotdict
|
#vtb
def parse_field(fld, selectable, aggregated=True, default_aggregation=):
aggregation_lookup = {
: func.sum,
: func.min,
: func.max,
: func.avg,
: func.count,
: lambda fld: func.count(distinct(fld)),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_part(, func.age(fld)),
None: lambda fld: fld,
}
if isinstance(fld, basestring):
fld = {
: fld,
}
if not isinstance(fld, dict):
raise BadIngredient()
if not in fld:
raise BadIngredient()
if not isinstance(fld[], basestring):
raise BadIngredient()
if in fld:
if not isinstance(fld[], dict) and \
not fld[] is None:
raise BadIngredient()
else:
fld[] = None
initial_aggregation = default_aggregation if aggregated else None
if in fld:
if not isinstance(fld[], basestring) and \
not fld[] is None:
raise BadIngredient()
if fld[] is None:
fld[] = initial_aggregation
else:
fld[] = initial_aggregation
value = fld.get(, None)
if value is None:
raise BadIngredient()
field_parts = []
for word in tokenize(value):
if word in (, , , ):
field_parts.append(word)
else:
field_parts.append(find_column(selectable, word))
if len(field_parts) is None:
raise BadIngredient()
if len(field_parts) % 2 != 1:
raise BadIngredient()
field = field_parts[0]
if len(field_parts) > 1:
for operator, other_field in zip(field_parts[1::2], field_parts[2::2]):
if operator == :
field = field.__add__(other_field)
elif operator == :
field = field.__sub__(other_field)
elif operator == :
field = field.__div__(other_field)
elif operator == :
field = field.__mul__(other_field)
else:
raise BadIngredient(.format(operator))
aggr = fld.get(, )
if aggr is not None:
aggr = aggr.strip()
if aggr not in aggregation_lookup:
raise BadIngredient(.format(aggr))
aggregator = aggregation_lookup[aggr]
condition = parse_condition(
fld.get(, None),
selectable,
aggregated=False,
default_aggregation=default_aggregation
)
if condition is not None:
field = case([(condition, field)])
return aggregator(field)
|
Parse a field object from yaml into a sqlalchemy expression
|
### Input:
Parse a field object from yaml into a sqlalchemy expression
### Response:
#vtb
def parse_field(fld, selectable, aggregated=True, default_aggregation=):
aggregation_lookup = {
: func.sum,
: func.min,
: func.max,
: func.avg,
: func.count,
: lambda fld: func.count(distinct(fld)),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_trunc(, fld),
: lambda fld: func.date_part(, func.age(fld)),
None: lambda fld: fld,
}
if isinstance(fld, basestring):
fld = {
: fld,
}
if not isinstance(fld, dict):
raise BadIngredient()
if not in fld:
raise BadIngredient()
if not isinstance(fld[], basestring):
raise BadIngredient()
if in fld:
if not isinstance(fld[], dict) and \
not fld[] is None:
raise BadIngredient()
else:
fld[] = None
initial_aggregation = default_aggregation if aggregated else None
if in fld:
if not isinstance(fld[], basestring) and \
not fld[] is None:
raise BadIngredient()
if fld[] is None:
fld[] = initial_aggregation
else:
fld[] = initial_aggregation
value = fld.get(, None)
if value is None:
raise BadIngredient()
field_parts = []
for word in tokenize(value):
if word in (, , , ):
field_parts.append(word)
else:
field_parts.append(find_column(selectable, word))
if len(field_parts) is None:
raise BadIngredient()
if len(field_parts) % 2 != 1:
raise BadIngredient()
field = field_parts[0]
if len(field_parts) > 1:
for operator, other_field in zip(field_parts[1::2], field_parts[2::2]):
if operator == :
field = field.__add__(other_field)
elif operator == :
field = field.__sub__(other_field)
elif operator == :
field = field.__div__(other_field)
elif operator == :
field = field.__mul__(other_field)
else:
raise BadIngredient(.format(operator))
aggr = fld.get(, )
if aggr is not None:
aggr = aggr.strip()
if aggr not in aggregation_lookup:
raise BadIngredient(.format(aggr))
aggregator = aggregation_lookup[aggr]
condition = parse_condition(
fld.get(, None),
selectable,
aggregated=False,
default_aggregation=default_aggregation
)
if condition is not None:
field = case([(condition, field)])
return aggregator(field)
|
#vtb
def stop(opts, bot, event):
name = opts[]
slack_username = opts[]
now = datetime.datetime.now()
delta = now - bot.timers.pop(name)
response = bot.stop_fmt.format(delta)
if slack_username:
mention =
users = bot.slack.users.list().body[]
for user in users:
if user[] == slack_username:
mention = "<@%s>" % user[]
break
response = "%s: %s" % (mention, response)
return response
|
Usage: stop [--name=<name>] [--notify=<slack_username>]
Stop a timer.
_name_ works the same as for `start`.
If given _slack_username_, reply with an at-mention to the given user.
|
### Input:
Usage: stop [--name=<name>] [--notify=<slack_username>]
Stop a timer.
_name_ works the same as for `start`.
If given _slack_username_, reply with an at-mention to the given user.
### Response:
#vtb
def stop(opts, bot, event):
name = opts[]
slack_username = opts[]
now = datetime.datetime.now()
delta = now - bot.timers.pop(name)
response = bot.stop_fmt.format(delta)
if slack_username:
mention =
users = bot.slack.users.list().body[]
for user in users:
if user[] == slack_username:
mention = "<@%s>" % user[]
break
response = "%s: %s" % (mention, response)
return response
|
#vtb
def _gpdfit(x):
prior_bs = 3
prior_k = 10
len_x = len(x)
m_est = 30 + int(len_x ** 0.5)
b_ary = 1 - np.sqrt(m_est / (np.arange(1, m_est + 1, dtype=float) - 0.5))
b_ary /= prior_bs * x[int(len_x / 4 + 0.5) - 1]
b_ary += 1 / x[-1]
k_ary = np.log1p(-b_ary[:, None] * x).mean(axis=1)
len_scale = len_x * (np.log(-(b_ary / k_ary)) - k_ary - 1)
weights = 1 / np.exp(len_scale - len_scale[:, None]).sum(axis=1)
real_idxs = weights >= 10 * np.finfo(float).eps
if not np.all(real_idxs):
weights = weights[real_idxs]
b_ary = b_ary[real_idxs]
weights /= weights.sum()
b_post = np.sum(b_ary * weights)
k_post = np.log1p(-b_post * x).mean()
k_post = (len_x * k_post + prior_k * 0.5) / (len_x + prior_k)
sigma = -k_post / b_post
return k_post, sigma
|
Estimate the parameters for the Generalized Pareto Distribution (GPD).
Empirical Bayes estimate for the parameters of the generalized Pareto
distribution given the data.
Parameters
----------
x : array
sorted 1D data array
Returns
-------
k : float
estimated shape parameter
sigma : float
estimated scale parameter
|
### Input:
Estimate the parameters for the Generalized Pareto Distribution (GPD).
Empirical Bayes estimate for the parameters of the generalized Pareto
distribution given the data.
Parameters
----------
x : array
sorted 1D data array
Returns
-------
k : float
estimated shape parameter
sigma : float
estimated scale parameter
### Response:
#vtb
def _gpdfit(x):
prior_bs = 3
prior_k = 10
len_x = len(x)
m_est = 30 + int(len_x ** 0.5)
b_ary = 1 - np.sqrt(m_est / (np.arange(1, m_est + 1, dtype=float) - 0.5))
b_ary /= prior_bs * x[int(len_x / 4 + 0.5) - 1]
b_ary += 1 / x[-1]
k_ary = np.log1p(-b_ary[:, None] * x).mean(axis=1)
len_scale = len_x * (np.log(-(b_ary / k_ary)) - k_ary - 1)
weights = 1 / np.exp(len_scale - len_scale[:, None]).sum(axis=1)
real_idxs = weights >= 10 * np.finfo(float).eps
if not np.all(real_idxs):
weights = weights[real_idxs]
b_ary = b_ary[real_idxs]
weights /= weights.sum()
b_post = np.sum(b_ary * weights)
k_post = np.log1p(-b_post * x).mean()
k_post = (len_x * k_post + prior_k * 0.5) / (len_x + prior_k)
sigma = -k_post / b_post
return k_post, sigma
|
#vtb
def l2traceroute_input_rbridge_id(self, **kwargs):
config = ET.Element("config")
l2traceroute = ET.Element("l2traceroute")
config = l2traceroute
input = ET.SubElement(l2traceroute, "input")
rbridge_id = ET.SubElement(input, "rbridge-id")
rbridge_id.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config)
|
Auto Generated Code
|
### Input:
Auto Generated Code
### Response:
#vtb
def l2traceroute_input_rbridge_id(self, **kwargs):
config = ET.Element("config")
l2traceroute = ET.Element("l2traceroute")
config = l2traceroute
input = ET.SubElement(l2traceroute, "input")
rbridge_id = ET.SubElement(input, "rbridge-id")
rbridge_id.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config)
|
#vtb
def to_grpc_address(target: str) -> str:
u = urlparse(target)
if u.scheme == "dns":
raise ValueError("dns:// not supported")
if u.scheme == "unix":
return "unix:"+u.path
return u.netloc
|
Converts a standard gRPC target to one that is supported by grpcio
:param target: the server address.
:returns: the converted address.
|
### Input:
Converts a standard gRPC target to one that is supported by grpcio
:param target: the server address.
:returns: the converted address.
### Response:
#vtb
def to_grpc_address(target: str) -> str:
u = urlparse(target)
if u.scheme == "dns":
raise ValueError("dns:// not supported")
if u.scheme == "unix":
return "unix:"+u.path
return u.netloc
|
#vtb
def download(ctx):
user, project_name = get_project_or_local(ctx.obj.get())
try:
PolyaxonClient().project.download_repo(user, project_name)
except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e:
Printer.print_error(.format(project_name))
Printer.print_error(.format(e))
sys.exit(1)
Printer.print_success()
|
Download code of the current project.
|
### Input:
Download code of the current project.
### Response:
#vtb
def download(ctx):
user, project_name = get_project_or_local(ctx.obj.get())
try:
PolyaxonClient().project.download_repo(user, project_name)
except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e:
Printer.print_error(.format(project_name))
Printer.print_error(.format(e))
sys.exit(1)
Printer.print_success()
|
#vtb
def passed(self):
return [test for test in self.all() if not test.failed() and not test.skipped()]
|
Return all the passing testcases
:return:
|
### Input:
Return all the passing testcases
:return:
### Response:
#vtb
def passed(self):
return [test for test in self.all() if not test.failed() and not test.skipped()]
|
#vtb
def user_identity_show(self, user_id, id, **kwargs):
"https://developer.zendesk.com/rest_api/docs/core/user_identities
api_path = "/api/v2/users/{user_id}/identities/{id}.json"
api_path = api_path.format(user_id=user_id, id=id)
return self.call(api_path, **kwargs)
|
https://developer.zendesk.com/rest_api/docs/core/user_identities#show-identity
|
### Input:
https://developer.zendesk.com/rest_api/docs/core/user_identities#show-identity
### Response:
#vtb
def user_identity_show(self, user_id, id, **kwargs):
"https://developer.zendesk.com/rest_api/docs/core/user_identities
api_path = "/api/v2/users/{user_id}/identities/{id}.json"
api_path = api_path.format(user_id=user_id, id=id)
return self.call(api_path, **kwargs)
|
#vtb
def bell(self, percent = 0, onerror = None):
request.Bell(display = self.display,
onerror = onerror,
percent = percent)
|
Ring the bell at the volume percent which is relative the base
volume. See XBell(3X11).
|
### Input:
Ring the bell at the volume percent which is relative the base
volume. See XBell(3X11).
### Response:
#vtb
def bell(self, percent = 0, onerror = None):
request.Bell(display = self.display,
onerror = onerror,
percent = percent)
|
#vtb
def _validate_and_parse(self, batch_object):
if not waffle.waffle().is_enabled(waffle.ENABLE_COMPLETION_TRACKING):
raise ValidationError(
_("BlockCompletion.objects.submit_batch_completion should not be called when the feature is disabled.")
)
for key in self.REQUIRED_KEYS:
if key not in batch_object:
raise ValidationError(_("Key not found.").format(key=key))
username = batch_object[]
user = User.objects.get(username=username)
course_key_obj = self._validate_and_parse_course_key(batch_object[])
if not CourseEnrollment.is_enrolled(user, course_key_obj):
raise ValidationError(_())
blocks = batch_object[]
block_objs = []
for block_key in blocks:
block_key_obj = self._validate_and_parse_block_key(block_key, course_key_obj)
completion = float(blocks[block_key])
block_objs.append((block_key_obj, completion))
return user, course_key_obj, block_objs
|
Performs validation on the batch object to make sure it is in the proper format.
Parameters:
* batch_object: The data provided to a POST. The expected format is the following:
{
"username": "username",
"course_key": "course-key",
"blocks": {
"block_key1": 0.0,
"block_key2": 1.0,
"block_key3": 1.0,
}
}
Return Value:
* tuple: (User, CourseKey, List of tuples (UsageKey, completion_float)
Raises:
django.core.exceptions.ValidationError:
If any aspect of validation fails a ValidationError is raised.
ObjectDoesNotExist:
If a database object cannot be found an ObjectDoesNotExist is raised.
|
### Input:
Performs validation on the batch object to make sure it is in the proper format.
Parameters:
* batch_object: The data provided to a POST. The expected format is the following:
{
"username": "username",
"course_key": "course-key",
"blocks": {
"block_key1": 0.0,
"block_key2": 1.0,
"block_key3": 1.0,
}
}
Return Value:
* tuple: (User, CourseKey, List of tuples (UsageKey, completion_float)
Raises:
django.core.exceptions.ValidationError:
If any aspect of validation fails a ValidationError is raised.
ObjectDoesNotExist:
If a database object cannot be found an ObjectDoesNotExist is raised.
### Response:
#vtb
def _validate_and_parse(self, batch_object):
if not waffle.waffle().is_enabled(waffle.ENABLE_COMPLETION_TRACKING):
raise ValidationError(
_("BlockCompletion.objects.submit_batch_completion should not be called when the feature is disabled.")
)
for key in self.REQUIRED_KEYS:
if key not in batch_object:
raise ValidationError(_("Key not found.").format(key=key))
username = batch_object[]
user = User.objects.get(username=username)
course_key_obj = self._validate_and_parse_course_key(batch_object[])
if not CourseEnrollment.is_enrolled(user, course_key_obj):
raise ValidationError(_())
blocks = batch_object[]
block_objs = []
for block_key in blocks:
block_key_obj = self._validate_and_parse_block_key(block_key, course_key_obj)
completion = float(blocks[block_key])
block_objs.append((block_key_obj, completion))
return user, course_key_obj, block_objs
|
#vtb
def rgb_to_websafe(r, g=None, b=None, alt=False):
if type(r) in [list,tuple]:
r, g, b = r
websafeComponent = _websafe_component
return tuple((websafeComponent(v, alt) for v in (r, g, b)))
|
Convert the color from RGB to 'web safe' RGB
Parameters:
:r:
The Red component value [0...1]
:g:
The Green component value [0...1]
:b:
The Blue component value [0...1]
:alt:
If True, use the alternative color instead of the nearest one.
Can be used for dithering.
Returns:
The color as an (r, g, b) tuple in the range:
the range:
r[0...1],
g[0...1],
b[0...1]
>>> '(%g, %g, %g)' % rgb_to_websafe(1, 0.55, 0.0)
'(1, 0.6, 0)'
|
### Input:
Convert the color from RGB to 'web safe' RGB
Parameters:
:r:
The Red component value [0...1]
:g:
The Green component value [0...1]
:b:
The Blue component value [0...1]
:alt:
If True, use the alternative color instead of the nearest one.
Can be used for dithering.
Returns:
The color as an (r, g, b) tuple in the range:
the range:
r[0...1],
g[0...1],
b[0...1]
>>> '(%g, %g, %g)' % rgb_to_websafe(1, 0.55, 0.0)
'(1, 0.6, 0)'
### Response:
#vtb
def rgb_to_websafe(r, g=None, b=None, alt=False):
if type(r) in [list,tuple]:
r, g, b = r
websafeComponent = _websafe_component
return tuple((websafeComponent(v, alt) for v in (r, g, b)))
|
#vtb
def add_device_callback(self, devices, callback):
if not devices:
return False
if not isinstance(devices, (tuple, list)):
devices = [devices]
for device in devices:
device_id = device
if isinstance(device, AbodeDevice):
device_id = device.device_id
if not self._abode.get_device(device_id):
raise AbodeException((ERROR.EVENT_DEVICE_INVALID))
_LOGGER.debug(
"Subscribing to updated for device_id: %s", device_id)
self._device_callbacks[device_id].append((callback))
return True
|
Register a device callback.
|
### Input:
Register a device callback.
### Response:
#vtb
def add_device_callback(self, devices, callback):
if not devices:
return False
if not isinstance(devices, (tuple, list)):
devices = [devices]
for device in devices:
device_id = device
if isinstance(device, AbodeDevice):
device_id = device.device_id
if not self._abode.get_device(device_id):
raise AbodeException((ERROR.EVENT_DEVICE_INVALID))
_LOGGER.debug(
"Subscribing to updated for device_id: %s", device_id)
self._device_callbacks[device_id].append((callback))
return True
|
#vtb
def calf(self, spec):
if not isinstance(spec, Spec):
raise TypeError()
if not spec.get(BUILD_DIR):
tempdir = realpath(mkdtemp())
spec.advise(CLEANUP, shutil.rmtree, tempdir)
build_dir = join(tempdir, )
mkdir(build_dir)
spec[BUILD_DIR] = build_dir
else:
build_dir = self.realpath(spec, BUILD_DIR)
if not isdir(build_dir):
logger.error("build_dir is not a directory", build_dir)
raise_os_error(errno.ENOTDIR, build_dir)
self.realpath(spec, EXPORT_TARGET)
spec.handle(SETUP)
try:
process = (, , , , )
for p in process:
spec.handle( + p)
getattr(self, p)(spec)
spec.handle( + p)
spec.handle(SUCCESS)
except ToolchainCancel:
pass
finally:
spec.handle(CLEANUP)
|
Typical safe usage is this, which sets everything that could be
problematic up.
Requires the filename which everything will be produced to.
|
### Input:
Typical safe usage is this, which sets everything that could be
problematic up.
Requires the filename which everything will be produced to.
### Response:
#vtb
def calf(self, spec):
if not isinstance(spec, Spec):
raise TypeError()
if not spec.get(BUILD_DIR):
tempdir = realpath(mkdtemp())
spec.advise(CLEANUP, shutil.rmtree, tempdir)
build_dir = join(tempdir, )
mkdir(build_dir)
spec[BUILD_DIR] = build_dir
else:
build_dir = self.realpath(spec, BUILD_DIR)
if not isdir(build_dir):
logger.error("build_dir is not a directory", build_dir)
raise_os_error(errno.ENOTDIR, build_dir)
self.realpath(spec, EXPORT_TARGET)
spec.handle(SETUP)
try:
process = (, , , , )
for p in process:
spec.handle( + p)
getattr(self, p)(spec)
spec.handle( + p)
spec.handle(SUCCESS)
except ToolchainCancel:
pass
finally:
spec.handle(CLEANUP)
|
#vtb
def hops(node1, node2):
if node1 == node2:
return 0
elif set(node1.interfaces) & set(node2.interfaces):
return 1
else:
return 0
|
returns # of hops it takes to get from node1 to node2, 1 means they're on the same link
|
### Input:
returns # of hops it takes to get from node1 to node2, 1 means they're on the same link
### Response:
#vtb
def hops(node1, node2):
if node1 == node2:
return 0
elif set(node1.interfaces) & set(node2.interfaces):
return 1
else:
return 0
|
#vtb
def qnh_estimate(self):
alt_gps = self.master.field(, , 0) * 0.001
pressure2 = self.master.field(, , 0)
ground_temp = self.get_mav_param(, 21)
temp = ground_temp + 273.15
pressure1 = pressure2 / math.exp(math.log(1.0 - (alt_gps / (153.8462 * temp))) / 0.190259)
return pressure1
|
estimate QNH pressure from GPS altitude and scaled pressure
|
### Input:
estimate QNH pressure from GPS altitude and scaled pressure
### Response:
#vtb
def qnh_estimate(self):
alt_gps = self.master.field(, , 0) * 0.001
pressure2 = self.master.field(, , 0)
ground_temp = self.get_mav_param(, 21)
temp = ground_temp + 273.15
pressure1 = pressure2 / math.exp(math.log(1.0 - (alt_gps / (153.8462 * temp))) / 0.190259)
return pressure1
|
#vtb
def device_statistics(fritz, args):
stats = fritz.get_device_statistics(args.ain)
print(stats)
|
Command that prints the device statistics.
|
### Input:
Command that prints the device statistics.
### Response:
#vtb
def device_statistics(fritz, args):
stats = fritz.get_device_statistics(args.ain)
print(stats)
|
#vtb
def get_role_by_code(role_code,**kwargs):
try:
role = db.DBSession.query(Role).filter(Role.code==role_code).one()
return role
except NoResultFound:
raise ResourceNotFoundError("Role not found (role_code={})".format(role_code))
|
Get a role by its code
|
### Input:
Get a role by its code
### Response:
#vtb
def get_role_by_code(role_code,**kwargs):
try:
role = db.DBSession.query(Role).filter(Role.code==role_code).one()
return role
except NoResultFound:
raise ResourceNotFoundError("Role not found (role_code={})".format(role_code))
|
#vtb
def is_text_visible(driver, text, selector, by=By.CSS_SELECTOR):
try:
element = driver.find_element(by=by, value=selector)
return element.is_displayed() and text in element.text
except Exception:
return False
|
Returns whether the specified text is visible in the specified selector.
@Params
driver - the webdriver object (required)
text - the text string to search for
selector - the locator that is used (required)
by - the method to search for the locator (Default: By.CSS_SELECTOR)
@Returns
Boolean (is text visible)
|
### Input:
Returns whether the specified text is visible in the specified selector.
@Params
driver - the webdriver object (required)
text - the text string to search for
selector - the locator that is used (required)
by - the method to search for the locator (Default: By.CSS_SELECTOR)
@Returns
Boolean (is text visible)
### Response:
#vtb
def is_text_visible(driver, text, selector, by=By.CSS_SELECTOR):
try:
element = driver.find_element(by=by, value=selector)
return element.is_displayed() and text in element.text
except Exception:
return False
|
#vtb
def get_active_for(self, user, user_agent=_MARK, ip_address=_MARK):
conditions = [LoginSession.user == user]
if user_agent is not _MARK:
if user_agent is None:
user_agent = request.environ.get("HTTP_USER_AGENT", "")
conditions.append(LoginSession.user_agent == user_agent)
if ip_address is not _MARK:
if ip_address is None:
ip_addresses = request.headers.getlist("X-Forwarded-For")
ip_address = ip_addresses[0] if ip_addresses else request.remote_addr
conditions.append(LoginSession.ip_address == ip_address)
session = (
LoginSession.query.filter(*conditions)
.order_by(LoginSession.id.desc())
.first()
)
return session
|
Return last known session for given user.
:param user: user session
:type user: `abilian.core.models.subjects.User`
:param user_agent: *exact* user agent string to lookup, or `None` to have
user_agent extracted from request object. If not provided at all, no
filtering on user_agent.
:type user_agent: string or None, or absent
:param ip_address: client IP, or `None` to have ip_address extracted from
request object (requires header 'X-Forwarded-For'). If not provided at
all, no filtering on ip_address.
:type ip_address: string or None, or absent
:rtype: `LoginSession` or `None` if no session is found.
|
### Input:
Return last known session for given user.
:param user: user session
:type user: `abilian.core.models.subjects.User`
:param user_agent: *exact* user agent string to lookup, or `None` to have
user_agent extracted from request object. If not provided at all, no
filtering on user_agent.
:type user_agent: string or None, or absent
:param ip_address: client IP, or `None` to have ip_address extracted from
request object (requires header 'X-Forwarded-For'). If not provided at
all, no filtering on ip_address.
:type ip_address: string or None, or absent
:rtype: `LoginSession` or `None` if no session is found.
### Response:
#vtb
def get_active_for(self, user, user_agent=_MARK, ip_address=_MARK):
conditions = [LoginSession.user == user]
if user_agent is not _MARK:
if user_agent is None:
user_agent = request.environ.get("HTTP_USER_AGENT", "")
conditions.append(LoginSession.user_agent == user_agent)
if ip_address is not _MARK:
if ip_address is None:
ip_addresses = request.headers.getlist("X-Forwarded-For")
ip_address = ip_addresses[0] if ip_addresses else request.remote_addr
conditions.append(LoginSession.ip_address == ip_address)
session = (
LoginSession.query.filter(*conditions)
.order_by(LoginSession.id.desc())
.first()
)
return session
|
#vtb
def clean_headers(headers):
clean = {}
try:
for k, v in six.iteritems(headers):
if not isinstance(k, six.binary_type):
k = str(k)
if not isinstance(v, six.binary_type):
v = str(v)
clean[_helpers._to_bytes(k)] = _helpers._to_bytes(v)
except UnicodeEncodeError:
from oauth2client.client import NonAsciiHeaderError
raise NonAsciiHeaderError(k, , v)
return clean
|
Forces header keys and values to be strings, i.e not unicode.
The httplib module just concats the header keys and values in a way that
may make the message header a unicode string, which, if it then tries to
contatenate to a binary request body may result in a unicode decode error.
Args:
headers: dict, A dictionary of headers.
Returns:
The same dictionary but with all the keys converted to strings.
|
### Input:
Forces header keys and values to be strings, i.e not unicode.
The httplib module just concats the header keys and values in a way that
may make the message header a unicode string, which, if it then tries to
contatenate to a binary request body may result in a unicode decode error.
Args:
headers: dict, A dictionary of headers.
Returns:
The same dictionary but with all the keys converted to strings.
### Response:
#vtb
def clean_headers(headers):
clean = {}
try:
for k, v in six.iteritems(headers):
if not isinstance(k, six.binary_type):
k = str(k)
if not isinstance(v, six.binary_type):
v = str(v)
clean[_helpers._to_bytes(k)] = _helpers._to_bytes(v)
except UnicodeEncodeError:
from oauth2client.client import NonAsciiHeaderError
raise NonAsciiHeaderError(k, , v)
return clean
|
#vtb
def get_step(self, grad):
if self._momentum is None:
self._momentum = self.initial_accumulator_value * np.ones_like(grad)
self._momentum += grad ** 2
return self.learning_rate * grad / np.sqrt(self._momentum)
|
Computes the 'step' to take for the next gradient descent update.
Returns the step rather than performing the update so that
parameters can be updated in place rather than overwritten.
Examples
--------
>>> gradient = # ...
>>> optimizer = AdaGradOptimizer(0.01)
>>> params -= optimizer.get_step(gradient)
Parameters
----------
grad
Returns
-------
np.array
Size matches `grad`.
|
### Input:
Computes the 'step' to take for the next gradient descent update.
Returns the step rather than performing the update so that
parameters can be updated in place rather than overwritten.
Examples
--------
>>> gradient = # ...
>>> optimizer = AdaGradOptimizer(0.01)
>>> params -= optimizer.get_step(gradient)
Parameters
----------
grad
Returns
-------
np.array
Size matches `grad`.
### Response:
#vtb
def get_step(self, grad):
if self._momentum is None:
self._momentum = self.initial_accumulator_value * np.ones_like(grad)
self._momentum += grad ** 2
return self.learning_rate * grad / np.sqrt(self._momentum)
|
#vtb
def parse_args(self, args, scope):
arguments = list(zip(args,
[] * len(args))) if args and args[0] else None
zl = itertools.zip_longest if sys.version_info[
0] == 3 else itertools.izip_longest
if self.args:
parsed = [
v if hasattr(v, ) else v for v in copy.copy(self.args)
]
args = args if isinstance(args, list) else [args]
vars = [
self._parse_arg(var, arg, scope)
for arg, var in zl([a for a in args], parsed)
]
for var in vars:
if var:
var.parse(scope)
if not arguments:
arguments = [v.value for v in vars if v]
if not arguments:
arguments =
Variable([, None, arguments]).parse(scope)
|
Parse arguments to mixin. Add them to scope
as variables. Sets upp special variable @arguments
as well.
args:
args (list): arguments
scope (Scope): current scope
raises:
SyntaxError
|
### Input:
Parse arguments to mixin. Add them to scope
as variables. Sets upp special variable @arguments
as well.
args:
args (list): arguments
scope (Scope): current scope
raises:
SyntaxError
### Response:
#vtb
def parse_args(self, args, scope):
arguments = list(zip(args,
[] * len(args))) if args and args[0] else None
zl = itertools.zip_longest if sys.version_info[
0] == 3 else itertools.izip_longest
if self.args:
parsed = [
v if hasattr(v, ) else v for v in copy.copy(self.args)
]
args = args if isinstance(args, list) else [args]
vars = [
self._parse_arg(var, arg, scope)
for arg, var in zl([a for a in args], parsed)
]
for var in vars:
if var:
var.parse(scope)
if not arguments:
arguments = [v.value for v in vars if v]
if not arguments:
arguments =
Variable([, None, arguments]).parse(scope)
|
#vtb
def put_settings(self, body=None, params=None):
return self.transport.perform_request(, ,
params=params, body=body)
|
Update cluster wide specific settings.
`<http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-update-settings.html>`_
:arg body: The settings to be updated. Can be either `transient` or
`persistent` (survives cluster restart).
:arg flat_settings: Return settings in flat format (default: false)
:arg master_timeout: Explicit operation timeout for connection to master
node
:arg timeout: Explicit operation timeout
|
### Input:
Update cluster wide specific settings.
`<http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-update-settings.html>`_
:arg body: The settings to be updated. Can be either `transient` or
`persistent` (survives cluster restart).
:arg flat_settings: Return settings in flat format (default: false)
:arg master_timeout: Explicit operation timeout for connection to master
node
:arg timeout: Explicit operation timeout
### Response:
#vtb
def put_settings(self, body=None, params=None):
return self.transport.perform_request(, ,
params=params, body=body)
|
#vtb
def get_distribute_verbatim_metadata(self):
metadata = dict(self._mdata[])
metadata.update({: self._my_map[]})
return Metadata(**metadata)
|
Gets the metadata for the distribute verbatim rights flag.
return: (osid.Metadata) - metadata for the distribution rights
fields
*compliance: mandatory -- This method must be implemented.*
|
### Input:
Gets the metadata for the distribute verbatim rights flag.
return: (osid.Metadata) - metadata for the distribution rights
fields
*compliance: mandatory -- This method must be implemented.*
### Response:
#vtb
def get_distribute_verbatim_metadata(self):
metadata = dict(self._mdata[])
metadata.update({: self._my_map[]})
return Metadata(**metadata)
|
#vtb
def moveoutletstostrm(np, flowdir, streamRaster, outlet, modifiedOutlet,
workingdir=None, mpiexedir=None,
exedir=None, log_file=None, runtime_file=None, hostfile=None):
fname = TauDEM.func_name()
return TauDEM.run(FileClass.get_executable_fullpath(fname, exedir),
{: flowdir, : streamRaster, : outlet},
workingdir,
None,
{: modifiedOutlet},
{: mpiexedir, : hostfile, : np},
{: log_file, : runtime_file})
|
Run move the given outlets to stream
|
### Input:
Run move the given outlets to stream
### Response:
#vtb
def moveoutletstostrm(np, flowdir, streamRaster, outlet, modifiedOutlet,
workingdir=None, mpiexedir=None,
exedir=None, log_file=None, runtime_file=None, hostfile=None):
fname = TauDEM.func_name()
return TauDEM.run(FileClass.get_executable_fullpath(fname, exedir),
{: flowdir, : streamRaster, : outlet},
workingdir,
None,
{: modifiedOutlet},
{: mpiexedir, : hostfile, : np},
{: log_file, : runtime_file})
|
#vtb
def find_primitive(cell, symprec=1e-5):
lattice, positions, numbers = spg.find_primitive(cell.totuple(), symprec)
if lattice is None:
return None
else:
return Atoms(numbers=numbers,
scaled_positions=positions,
cell=lattice,
pbc=True)
|
A primitive cell is searched in the input cell. When a primitive
cell is found, an object of Atoms class of the primitive cell is
returned. When not, None is returned.
|
### Input:
A primitive cell is searched in the input cell. When a primitive
cell is found, an object of Atoms class of the primitive cell is
returned. When not, None is returned.
### Response:
#vtb
def find_primitive(cell, symprec=1e-5):
lattice, positions, numbers = spg.find_primitive(cell.totuple(), symprec)
if lattice is None:
return None
else:
return Atoms(numbers=numbers,
scaled_positions=positions,
cell=lattice,
pbc=True)
|
#vtb
def output(self, value):
return super(Map, self).output(self.stream, value)
|
SPL output port assignment expression.
Arguments:
value(str): SPL expression used for an output assignment. This can be a string, a constant, or an :py:class:`Expression`.
Returns:
Expression: Output assignment expression that is valid as a the context of this operator.
|
### Input:
SPL output port assignment expression.
Arguments:
value(str): SPL expression used for an output assignment. This can be a string, a constant, or an :py:class:`Expression`.
Returns:
Expression: Output assignment expression that is valid as a the context of this operator.
### Response:
#vtb
def output(self, value):
return super(Map, self).output(self.stream, value)
|
#vtb
def get(self, name, acc=None, default=None):
if acc in self.data[] and name in self.data[][acc]:
return self.data[][acc][name]
if name in self.data:
return self.data[name]
return default
|
Return the named config for the given account.
If an account is given, first checks the account space for the name.
If no account given, or if the name not found in the account space,
look for the name in the global config space. If still not found,
return the default, if given, otherwise ``None``.
|
### Input:
Return the named config for the given account.
If an account is given, first checks the account space for the name.
If no account given, or if the name not found in the account space,
look for the name in the global config space. If still not found,
return the default, if given, otherwise ``None``.
### Response:
#vtb
def get(self, name, acc=None, default=None):
if acc in self.data[] and name in self.data[][acc]:
return self.data[][acc][name]
if name in self.data:
return self.data[name]
return default
|
#vtb
def shell_sqlalchemy(session: SqlalchemySession, backend: ShellBackend):
namespace = {
: session
}
namespace.update(backend.get_namespace())
embed(user_ns=namespace, header=backend.header)
|
This command includes SQLAlchemy DB Session
|
### Input:
This command includes SQLAlchemy DB Session
### Response:
#vtb
def shell_sqlalchemy(session: SqlalchemySession, backend: ShellBackend):
namespace = {
: session
}
namespace.update(backend.get_namespace())
embed(user_ns=namespace, header=backend.header)
|
#vtb
def count_leases_by_owner(self, leases):
owners = [l.owner for l in leases]
return dict(Counter(owners))
|
Returns a dictionary of leases by current owner.
|
### Input:
Returns a dictionary of leases by current owner.
### Response:
#vtb
def count_leases_by_owner(self, leases):
owners = [l.owner for l in leases]
return dict(Counter(owners))
|
#vtb
def _get_network(project_id, network_name, service):
return service.networks().get(project=project_id,
network=network_name).execute()
|
Fetch network selfLink from network name.
|
### Input:
Fetch network selfLink from network name.
### Response:
#vtb
def _get_network(project_id, network_name, service):
return service.networks().get(project=project_id,
network=network_name).execute()
|
#vtb
def get_attrs(cls):
ignore = dir(type(, (object,), {})) + []
attrs = [
item for item in inspect.getmembers(cls) if item[0] not in ignore
and not isinstance(
item[1], (
types.FunctionType,
types.MethodType,
classmethod,
staticmethod,
property))]
attrs.sort(key=lambda attr: (getattr(attr[1], , -1), attr[0]))
return attrs
|
Get all class attributes ordered by definition
|
### Input:
Get all class attributes ordered by definition
### Response:
#vtb
def get_attrs(cls):
ignore = dir(type(, (object,), {})) + []
attrs = [
item for item in inspect.getmembers(cls) if item[0] not in ignore
and not isinstance(
item[1], (
types.FunctionType,
types.MethodType,
classmethod,
staticmethod,
property))]
attrs.sort(key=lambda attr: (getattr(attr[1], , -1), attr[0]))
return attrs
|
#vtb
def update_dataset_marker(self):
start_time = self.parent.overview.start_time
markers = []
if self.parent.info.markers is not None:
markers = self.parent.info.markers
self.idx_marker.clearContents()
self.idx_marker.setRowCount(len(markers))
for i, mrk in enumerate(markers):
abs_time = (start_time +
timedelta(seconds=mrk[])).strftime()
dur = timedelta(seconds=mrk[] - mrk[])
duration = .format(dur.seconds,
round(dur.microseconds / 1000))
item_time = QTableWidgetItem(abs_time)
item_duration = QTableWidgetItem(duration)
item_name = QTableWidgetItem(mrk[])
color = self.parent.value()
item_time.setForeground(QColor(color))
item_duration.setForeground(QColor(color))
item_name.setForeground(QColor(color))
self.idx_marker.setItem(i, 0, item_time)
self.idx_marker.setItem(i, 1, item_duration)
self.idx_marker.setItem(i, 2, item_name)
marker_start = [mrk[] for mrk in markers]
marker_end = [mrk[] for mrk in markers]
self.idx_marker.setProperty(, marker_start)
self.idx_marker.setProperty(, marker_end)
if self.parent.traces.data is not None:
self.parent.traces.display()
self.parent.overview.display_markers()
|
Update markers which are in the dataset. It always updates the list
of events. Depending on the settings, it might add the markers to
overview and traces.
|
### Input:
Update markers which are in the dataset. It always updates the list
of events. Depending on the settings, it might add the markers to
overview and traces.
### Response:
#vtb
def update_dataset_marker(self):
start_time = self.parent.overview.start_time
markers = []
if self.parent.info.markers is not None:
markers = self.parent.info.markers
self.idx_marker.clearContents()
self.idx_marker.setRowCount(len(markers))
for i, mrk in enumerate(markers):
abs_time = (start_time +
timedelta(seconds=mrk[])).strftime()
dur = timedelta(seconds=mrk[] - mrk[])
duration = .format(dur.seconds,
round(dur.microseconds / 1000))
item_time = QTableWidgetItem(abs_time)
item_duration = QTableWidgetItem(duration)
item_name = QTableWidgetItem(mrk[])
color = self.parent.value()
item_time.setForeground(QColor(color))
item_duration.setForeground(QColor(color))
item_name.setForeground(QColor(color))
self.idx_marker.setItem(i, 0, item_time)
self.idx_marker.setItem(i, 1, item_duration)
self.idx_marker.setItem(i, 2, item_name)
marker_start = [mrk[] for mrk in markers]
marker_end = [mrk[] for mrk in markers]
self.idx_marker.setProperty(, marker_start)
self.idx_marker.setProperty(, marker_end)
if self.parent.traces.data is not None:
self.parent.traces.display()
self.parent.overview.display_markers()
|
#vtb
def from_string(contents):
lines = [l.strip() for l in contents.split("\n")]
link0_patt = re.compile(r"^(%.+)\s*=\s*(.+)")
link0_dict = {}
for i, l in enumerate(lines):
if link0_patt.match(l):
m = link0_patt.match(l)
link0_dict[m.group(1).strip("=")] = m.group(2)
route_patt = re.compile(r"^
route = ""
route_index = None
for i, l in enumerate(lines):
if route_patt.match(l):
route += " " + l
route_index = i
elif (l == "" or l.isspace()) and route_index:
break
functional, basis_set, route_paras, dieze_tag = read_route_line(route)
ind = 2
title = []
while lines[route_index + ind].strip():
title.append(lines[route_index + ind].strip())
ind += 1
title = .join(title)
ind += 1
toks = re.split(r"[,\s]+", lines[route_index + ind])
charge = int(toks[0])
spin_mult = int(toks[1])
coord_lines = []
spaces = 0
input_paras = {}
ind += 1
for i in range(route_index + ind, len(lines)):
if lines[i].strip() == "":
spaces += 1
if spaces >= 2:
d = lines[i].split("=")
if len(d) == 2:
input_paras[d[0]] = d[1]
else:
coord_lines.append(lines[i].strip())
mol = GaussianInput._parse_coords(coord_lines)
mol.set_charge_and_spin(charge, spin_mult)
return GaussianInput(mol, charge=charge, spin_multiplicity=spin_mult,
title=title, functional=functional,
basis_set=basis_set,
route_parameters=route_paras,
input_parameters=input_paras,
link0_parameters=link0_dict,
dieze_tag=dieze_tag)
|
Creates GaussianInput from a string.
Args:
contents: String representing an Gaussian input file.
Returns:
GaussianInput object
|
### Input:
Creates GaussianInput from a string.
Args:
contents: String representing an Gaussian input file.
Returns:
GaussianInput object
### Response:
#vtb
def from_string(contents):
lines = [l.strip() for l in contents.split("\n")]
link0_patt = re.compile(r"^(%.+)\s*=\s*(.+)")
link0_dict = {}
for i, l in enumerate(lines):
if link0_patt.match(l):
m = link0_patt.match(l)
link0_dict[m.group(1).strip("=")] = m.group(2)
route_patt = re.compile(r"^
route = ""
route_index = None
for i, l in enumerate(lines):
if route_patt.match(l):
route += " " + l
route_index = i
elif (l == "" or l.isspace()) and route_index:
break
functional, basis_set, route_paras, dieze_tag = read_route_line(route)
ind = 2
title = []
while lines[route_index + ind].strip():
title.append(lines[route_index + ind].strip())
ind += 1
title = .join(title)
ind += 1
toks = re.split(r"[,\s]+", lines[route_index + ind])
charge = int(toks[0])
spin_mult = int(toks[1])
coord_lines = []
spaces = 0
input_paras = {}
ind += 1
for i in range(route_index + ind, len(lines)):
if lines[i].strip() == "":
spaces += 1
if spaces >= 2:
d = lines[i].split("=")
if len(d) == 2:
input_paras[d[0]] = d[1]
else:
coord_lines.append(lines[i].strip())
mol = GaussianInput._parse_coords(coord_lines)
mol.set_charge_and_spin(charge, spin_mult)
return GaussianInput(mol, charge=charge, spin_multiplicity=spin_mult,
title=title, functional=functional,
basis_set=basis_set,
route_parameters=route_paras,
input_parameters=input_paras,
link0_parameters=link0_dict,
dieze_tag=dieze_tag)
|
#vtb
def sequence(context, data):
number = data.get(, context.params.get(, 1))
stop = context.params.get()
step = context.params.get(, 1)
delay = context.params.get()
prefix = context.params.get()
while True:
tag = None if prefix is None else % (prefix, number)
if tag is None or not context.check_tag(tag):
context.emit(data={: number})
if tag is not None:
context.set_tag(tag, True)
number = number + step
if step > 0 and number >= stop:
break
if step < 0 and number <= stop:
break
if delay is not None:
context.recurse(data={: number}, delay=delay)
break
|
Generate a sequence of numbers.
It is the memorious equivalent of the xrange function, accepting the
``start``, ``stop`` and ``step`` parameters.
This can run in two ways:
* As a single function generating all numbers in the given range.
* Recursively, generating numbers one by one with an optional ``delay``.
The latter mode is useful in order to generate very large sequences
without completely clogging up the user queue.
If an optional ``tag`` is given, each number will be emitted only once
across multiple runs of the crawler.
|
### Input:
Generate a sequence of numbers.
It is the memorious equivalent of the xrange function, accepting the
``start``, ``stop`` and ``step`` parameters.
This can run in two ways:
* As a single function generating all numbers in the given range.
* Recursively, generating numbers one by one with an optional ``delay``.
The latter mode is useful in order to generate very large sequences
without completely clogging up the user queue.
If an optional ``tag`` is given, each number will be emitted only once
across multiple runs of the crawler.
### Response:
#vtb
def sequence(context, data):
number = data.get(, context.params.get(, 1))
stop = context.params.get()
step = context.params.get(, 1)
delay = context.params.get()
prefix = context.params.get()
while True:
tag = None if prefix is None else % (prefix, number)
if tag is None or not context.check_tag(tag):
context.emit(data={: number})
if tag is not None:
context.set_tag(tag, True)
number = number + step
if step > 0 and number >= stop:
break
if step < 0 and number <= stop:
break
if delay is not None:
context.recurse(data={: number}, delay=delay)
break
|
#vtb
def _updateWordSet(self):
self._wordSet = set(self._keywords) | set(self._customCompletions)
start = time.time()
for line in self._qpart.lines:
for match in _wordRegExp.findall(line):
self._wordSet.add(match)
if time.time() - start > self._WORD_SET_UPDATE_MAX_TIME_SEC:
break
|
Make a set of words, which shall be completed, from text
|
### Input:
Make a set of words, which shall be completed, from text
### Response:
#vtb
def _updateWordSet(self):
self._wordSet = set(self._keywords) | set(self._customCompletions)
start = time.time()
for line in self._qpart.lines:
for match in _wordRegExp.findall(line):
self._wordSet.add(match)
if time.time() - start > self._WORD_SET_UPDATE_MAX_TIME_SEC:
break
|
#vtb
def rename_acquisition(self, plate_name, name, new_name):
logger.info(
,
name, self.experiment_name, plate_name
)
content = {: new_name}
acquisition_id = self._get_acquisition_id(plate_name, name)
url = self._build_api_url(
.format(
experiment_id=self._experiment_id, acquisition_id=acquisition_id
)
)
res = self._session.put(url, json=content)
res.raise_for_status()
|
Renames an acquisition.
Parameters
----------
plate_name: str
name of the parent plate
name: str
name of the acquisition that should be renamed
new_name: str
name that should be given to the acquisition
See also
--------
:func:`tmserver.api.acquisition.update_acquisition`
:class:`tmlib.models.acquisition.Acquisition`
|
### Input:
Renames an acquisition.
Parameters
----------
plate_name: str
name of the parent plate
name: str
name of the acquisition that should be renamed
new_name: str
name that should be given to the acquisition
See also
--------
:func:`tmserver.api.acquisition.update_acquisition`
:class:`tmlib.models.acquisition.Acquisition`
### Response:
#vtb
def rename_acquisition(self, plate_name, name, new_name):
logger.info(
,
name, self.experiment_name, plate_name
)
content = {: new_name}
acquisition_id = self._get_acquisition_id(plate_name, name)
url = self._build_api_url(
.format(
experiment_id=self._experiment_id, acquisition_id=acquisition_id
)
)
res = self._session.put(url, json=content)
res.raise_for_status()
|
#vtb
def backlink(node):
seen = set()
to_see = [node]
while to_see:
node = to_see.pop()
seen.add(node)
for succ in node.next:
succ.prev.add(node)
if succ not in seen:
to_see.append(succ)
|
Given a CFG with outgoing links, create incoming links.
|
### Input:
Given a CFG with outgoing links, create incoming links.
### Response:
#vtb
def backlink(node):
seen = set()
to_see = [node]
while to_see:
node = to_see.pop()
seen.add(node)
for succ in node.next:
succ.prev.add(node)
if succ not in seen:
to_see.append(succ)
|
#vtb
def makeOrmValuesSubqueryCondition(ormSession, column, values: List[Union[int, str]]):
if isPostGreSQLDialect(ormSession.bind):
return column.in_(values)
if not isMssqlDialect(ormSession.bind):
raise NotImplementedError()
sql = _createMssqlSqlText(values)
sub_qry = ormSession.query(column)
sub_qry = sub_qry.from_statement(sql)
return column.in_(sub_qry)
|
Make Orm Values Subquery
:param ormSession: The orm session instance
:param column: The column from the Declarative table, eg TableItem.colName
:param values: A list of string or int values
|
### Input:
Make Orm Values Subquery
:param ormSession: The orm session instance
:param column: The column from the Declarative table, eg TableItem.colName
:param values: A list of string or int values
### Response:
#vtb
def makeOrmValuesSubqueryCondition(ormSession, column, values: List[Union[int, str]]):
if isPostGreSQLDialect(ormSession.bind):
return column.in_(values)
if not isMssqlDialect(ormSession.bind):
raise NotImplementedError()
sql = _createMssqlSqlText(values)
sub_qry = ormSession.query(column)
sub_qry = sub_qry.from_statement(sql)
return column.in_(sub_qry)
|
#vtb
def hide(self):
self._hidden = True
for artist in self.annotations.values():
artist.set_visible(False)
for fig in self.figures:
fig.canvas.draw()
return self
|
Hides all annotation artists associated with the DataCursor. Returns
self to allow "chaining". (e.g. ``datacursor.hide().disable()``)
|
### Input:
Hides all annotation artists associated with the DataCursor. Returns
self to allow "chaining". (e.g. ``datacursor.hide().disable()``)
### Response:
#vtb
def hide(self):
self._hidden = True
for artist in self.annotations.values():
artist.set_visible(False)
for fig in self.figures:
fig.canvas.draw()
return self
|
#vtb
def _straight_line_vertices(adjacency_mat, node_coords, directed=False):
if not issparse(adjacency_mat):
adjacency_mat = np.asarray(adjacency_mat, float)
if (adjacency_mat.ndim != 2 or adjacency_mat.shape[0] !=
adjacency_mat.shape[1]):
raise ValueError("Adjacency matrix should be square.")
arrow_vertices = np.array([])
edges = _get_edges(adjacency_mat)
line_vertices = node_coords[edges.ravel()]
if directed:
arrows = np.array(list(_get_directed_edges(adjacency_mat)))
arrow_vertices = node_coords[arrows.ravel()]
arrow_vertices = arrow_vertices.reshape((len(arrow_vertices)/2, 4))
return line_vertices, arrow_vertices
|
Generate the vertices for straight lines between nodes.
If it is a directed graph, it also generates the vertices which can be
passed to an :class:`ArrowVisual`.
Parameters
----------
adjacency_mat : array
The adjacency matrix of the graph
node_coords : array
The current coordinates of all nodes in the graph
directed : bool
Wether the graph is directed. If this is true it will also generate
the vertices for arrows which can be passed to :class:`ArrowVisual`.
Returns
-------
vertices : tuple
Returns a tuple containing containing (`line_vertices`,
`arrow_vertices`)
|
### Input:
Generate the vertices for straight lines between nodes.
If it is a directed graph, it also generates the vertices which can be
passed to an :class:`ArrowVisual`.
Parameters
----------
adjacency_mat : array
The adjacency matrix of the graph
node_coords : array
The current coordinates of all nodes in the graph
directed : bool
Wether the graph is directed. If this is true it will also generate
the vertices for arrows which can be passed to :class:`ArrowVisual`.
Returns
-------
vertices : tuple
Returns a tuple containing containing (`line_vertices`,
`arrow_vertices`)
### Response:
#vtb
def _straight_line_vertices(adjacency_mat, node_coords, directed=False):
if not issparse(adjacency_mat):
adjacency_mat = np.asarray(adjacency_mat, float)
if (adjacency_mat.ndim != 2 or adjacency_mat.shape[0] !=
adjacency_mat.shape[1]):
raise ValueError("Adjacency matrix should be square.")
arrow_vertices = np.array([])
edges = _get_edges(adjacency_mat)
line_vertices = node_coords[edges.ravel()]
if directed:
arrows = np.array(list(_get_directed_edges(adjacency_mat)))
arrow_vertices = node_coords[arrows.ravel()]
arrow_vertices = arrow_vertices.reshape((len(arrow_vertices)/2, 4))
return line_vertices, arrow_vertices
|
#vtb
def list(self,table, **kparams):
result = self.table_api_get(table, **kparams)
return self.to_records(result, table)
|
get a collection of records by table name.
returns a dict (the json map) for python 3.4
|
### Input:
get a collection of records by table name.
returns a dict (the json map) for python 3.4
### Response:
#vtb
def list(self,table, **kparams):
result = self.table_api_get(table, **kparams)
return self.to_records(result, table)
|
#vtb
def have_thumbnail(self, fitsimage, image):
chname = self.fv.get_channel_name(fitsimage)
idx = image.get(, None)
path = image.get(, None)
if path is not None:
path = os.path.abspath(path)
name = iohelper.name_image_from_path(path, idx=idx)
else:
name =
name = image.get(, name)
thumbkey = self.get_thumb_key(chname, name, path)
with self.thmblock:
return thumbkey in self.thumb_dict
|
Returns True if we already have a thumbnail version of this image
cached, False otherwise.
|
### Input:
Returns True if we already have a thumbnail version of this image
cached, False otherwise.
### Response:
#vtb
def have_thumbnail(self, fitsimage, image):
chname = self.fv.get_channel_name(fitsimage)
idx = image.get(, None)
path = image.get(, None)
if path is not None:
path = os.path.abspath(path)
name = iohelper.name_image_from_path(path, idx=idx)
else:
name =
name = image.get(, name)
thumbkey = self.get_thumb_key(chname, name, path)
with self.thmblock:
return thumbkey in self.thumb_dict
|
#vtb
def setupNodding(self):
g = get_root(self).globals
if not self.nod():
if not self.isDrift():
self.clear.enable()
self.nodPattern = {}
self.check()
return
self.nod.set(False)
self.nodPattern = {}
return
self.nodPattern = data
self.clear.set(True)
self.check()
|
Setup Nodding for GTC
|
### Input:
Setup Nodding for GTC
### Response:
#vtb
def setupNodding(self):
g = get_root(self).globals
if not self.nod():
if not self.isDrift():
self.clear.enable()
self.nodPattern = {}
self.check()
return
self.nod.set(False)
self.nodPattern = {}
return
self.nodPattern = data
self.clear.set(True)
self.check()
|
#vtb
def copy(self, key):
copy = Set(key=key, db=self.db)
copy.clear()
copy |= self
return copy
|
Copy the set to another key and return the new Set.
WARNING: If the key exists, it overwrites it.
|
### Input:
Copy the set to another key and return the new Set.
WARNING: If the key exists, it overwrites it.
### Response:
#vtb
def copy(self, key):
copy = Set(key=key, db=self.db)
copy.clear()
copy |= self
return copy
|
#vtb
def parameterize(
self,
country: Optional[str] = "South Sudan",
state: Optional[str] = None,
year: Optional[int] = None,
month: Optional[int] = None,
unit: Optional[str] = None,
fallback_aggaxes: List[str] = ["year", "month"],
aggfunc: Callable = np.mean,
):
valid_axes = ("country", "state", "year", "month")
if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)):
raise ValueError(
"All elements of the fallback_aggaxes set must be one of the "
f"following: {valid_axes}"
)
for n in self.nodes(data=True):
for indicator in n[1]["indicators"].values():
indicator.mean, indicator.unit = get_indicator_value(
indicator,
country,
state,
year,
month,
unit,
fallback_aggaxes,
aggfunc,
)
indicator.stdev = 0.1 * abs(indicator.mean)
|
Parameterize the analysis graph.
Args:
country
year
month
fallback_aggaxes:
An iterable of strings denoting the axes upon which to perform
fallback aggregation if the desired constraints cannot be met.
aggfunc: The function that will be called to perform the
aggregation if there are multiple matches.
|
### Input:
Parameterize the analysis graph.
Args:
country
year
month
fallback_aggaxes:
An iterable of strings denoting the axes upon which to perform
fallback aggregation if the desired constraints cannot be met.
aggfunc: The function that will be called to perform the
aggregation if there are multiple matches.
### Response:
#vtb
def parameterize(
self,
country: Optional[str] = "South Sudan",
state: Optional[str] = None,
year: Optional[int] = None,
month: Optional[int] = None,
unit: Optional[str] = None,
fallback_aggaxes: List[str] = ["year", "month"],
aggfunc: Callable = np.mean,
):
valid_axes = ("country", "state", "year", "month")
if any(map(lambda axis: axis not in valid_axes, fallback_aggaxes)):
raise ValueError(
"All elements of the fallback_aggaxes set must be one of the "
f"following: {valid_axes}"
)
for n in self.nodes(data=True):
for indicator in n[1]["indicators"].values():
indicator.mean, indicator.unit = get_indicator_value(
indicator,
country,
state,
year,
month,
unit,
fallback_aggaxes,
aggfunc,
)
indicator.stdev = 0.1 * abs(indicator.mean)
|
#vtb
def kill_process(procname, scriptname):
import signal
import subprocess
p = subprocess.Popen([, ], stdout=subprocess.PIPE)
out, err = p.communicate()
for line in out.decode().splitlines():
if procname in line and scriptname in line:
pid = int(line.split()[1])
info( % (procname, scriptname, pid))
os.kill(pid, signal.SIGKILL)
|
kill WSGI processes that may be running in development
|
### Input:
kill WSGI processes that may be running in development
### Response:
#vtb
def kill_process(procname, scriptname):
import signal
import subprocess
p = subprocess.Popen([, ], stdout=subprocess.PIPE)
out, err = p.communicate()
for line in out.decode().splitlines():
if procname in line and scriptname in line:
pid = int(line.split()[1])
info( % (procname, scriptname, pid))
os.kill(pid, signal.SIGKILL)
|
#vtb
def check_snmp(self):
from glances.snmp import GlancesSNMPClient
clientsnmp = GlancesSNMPClient(host=self.args.client,
port=self.args.snmp_port,
version=self.args.snmp_version,
community=self.args.snmp_community,
user=self.args.snmp_user,
auth=self.args.snmp_auth)
ret = clientsnmp.get_by_oid("1.3.6.1.2.1.1.5.0") != {}
if ret:
oid_os_name = clientsnmp.get_by_oid("1.3.6.1.2.1.1.1.0")
try:
self.system_name = self.get_system_name(oid_os_name[])
logger.info("SNMP system name detected: {}".format(self.system_name))
except KeyError:
self.system_name = None
logger.warning("Cannot detect SNMP system name")
return ret
|
Chek if SNMP is available on the server.
|
### Input:
Chek if SNMP is available on the server.
### Response:
#vtb
def check_snmp(self):
from glances.snmp import GlancesSNMPClient
clientsnmp = GlancesSNMPClient(host=self.args.client,
port=self.args.snmp_port,
version=self.args.snmp_version,
community=self.args.snmp_community,
user=self.args.snmp_user,
auth=self.args.snmp_auth)
ret = clientsnmp.get_by_oid("1.3.6.1.2.1.1.5.0") != {}
if ret:
oid_os_name = clientsnmp.get_by_oid("1.3.6.1.2.1.1.1.0")
try:
self.system_name = self.get_system_name(oid_os_name[])
logger.info("SNMP system name detected: {}".format(self.system_name))
except KeyError:
self.system_name = None
logger.warning("Cannot detect SNMP system name")
return ret
|
#vtb
def next_page(self, max_=None):
result = type(self)()
result.after = After(self.last.value)
result.max_ = max_
return result
|
Return a query set which requests the page after this response.
:param max_: Maximum number of items to return.
:type max_: :class:`int` or :data:`None`
:rtype: :class:`ResultSetMetadata`
:return: A new request set up to request the next page.
Must be called on a result set which has :attr:`last` set.
|
### Input:
Return a query set which requests the page after this response.
:param max_: Maximum number of items to return.
:type max_: :class:`int` or :data:`None`
:rtype: :class:`ResultSetMetadata`
:return: A new request set up to request the next page.
Must be called on a result set which has :attr:`last` set.
### Response:
#vtb
def next_page(self, max_=None):
result = type(self)()
result.after = After(self.last.value)
result.max_ = max_
return result
|
#vtb
def read(self):
if self._is_initialized:
return
self._is_initialized = True
if not isinstance(self._file_or_files, (tuple, list)):
files_to_read = [self._file_or_files]
else:
files_to_read = list(self._file_or_files)
seen = set(files_to_read)
num_read_include_files = 0
while files_to_read:
file_path = files_to_read.pop(0)
fp = file_path
file_ok = False
if hasattr(fp, "seek"):
self._read(fp, fp.name)
else:
try:
with open(file_path, ) as fp:
file_ok = True
self._read(fp, fp.name)
except IOError:
continue
assert osp.isabs(file_path), "Need absolute paths to be sure our cycle checks will work"
include_path = osp.join(osp.dirname(file_path), include_path)
include_path = osp.normpath(include_path)
if include_path in seen or not os.access(include_path, os.R_OK):
continue
seen.add(include_path)
files_to_read.insert(0, include_path)
num_read_include_files += 1
if num_read_include_files == 0:
self._merge_includes = False
|
Reads the data stored in the files we have been initialized with. It will
ignore files that cannot be read, possibly leaving an empty configuration
:return: Nothing
:raise IOError: if a file cannot be handled
|
### Input:
Reads the data stored in the files we have been initialized with. It will
ignore files that cannot be read, possibly leaving an empty configuration
:return: Nothing
:raise IOError: if a file cannot be handled
### Response:
#vtb
def read(self):
if self._is_initialized:
return
self._is_initialized = True
if not isinstance(self._file_or_files, (tuple, list)):
files_to_read = [self._file_or_files]
else:
files_to_read = list(self._file_or_files)
seen = set(files_to_read)
num_read_include_files = 0
while files_to_read:
file_path = files_to_read.pop(0)
fp = file_path
file_ok = False
if hasattr(fp, "seek"):
self._read(fp, fp.name)
else:
try:
with open(file_path, ) as fp:
file_ok = True
self._read(fp, fp.name)
except IOError:
continue
assert osp.isabs(file_path), "Need absolute paths to be sure our cycle checks will work"
include_path = osp.join(osp.dirname(file_path), include_path)
include_path = osp.normpath(include_path)
if include_path in seen or not os.access(include_path, os.R_OK):
continue
seen.add(include_path)
files_to_read.insert(0, include_path)
num_read_include_files += 1
if num_read_include_files == 0:
self._merge_includes = False
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.