code
stringlengths 64
7.01k
| docstring
stringlengths 2
15.8k
| text
stringlengths 144
19.2k
|
---|---|---|
#vtb
def add_route(app, fn, context=default_context):
transmute_func = TransmuteFunction(
fn,
args_not_from_request=["request"]
)
handler = create_handler(transmute_func, context=context)
get_swagger_spec(app).add_func(transmute_func, context)
for p in transmute_func.paths:
aiohttp_path = _convert_to_aiohttp_path(p)
resource = app.router.add_resource(aiohttp_path)
for method in transmute_func.methods:
resource.add_route(method, handler)
|
a decorator that adds a transmute route to the application.
|
### Input:
a decorator that adds a transmute route to the application.
### Response:
#vtb
def add_route(app, fn, context=default_context):
transmute_func = TransmuteFunction(
fn,
args_not_from_request=["request"]
)
handler = create_handler(transmute_func, context=context)
get_swagger_spec(app).add_func(transmute_func, context)
for p in transmute_func.paths:
aiohttp_path = _convert_to_aiohttp_path(p)
resource = app.router.add_resource(aiohttp_path)
for method in transmute_func.methods:
resource.add_route(method, handler)
|
#vtb
def get_roles_for_permission(permission, brain_or_object):
obj = api.get_object(brain_or_object)
valid_roles = get_valid_roles_for(obj)
for item in obj.ac_inherited_permissions(1):
name, value = item[:2]
if name == permission:
permission = Permission(name, value, obj)
roles = permission.getRoles()
return filter(lambda r: r in valid_roles, roles)
raise ValueError("The permission {} is invalid.".format(permission))
|
Return the roles of the permission that is granted on the object
Code extracted from `IRoleManager.rolesOfPermission`
:param permission: The permission to get the roles
:param brain_or_object: Catalog brain or object
:returns: List of roles having the permission
|
### Input:
Return the roles of the permission that is granted on the object
Code extracted from `IRoleManager.rolesOfPermission`
:param permission: The permission to get the roles
:param brain_or_object: Catalog brain or object
:returns: List of roles having the permission
### Response:
#vtb
def get_roles_for_permission(permission, brain_or_object):
obj = api.get_object(brain_or_object)
valid_roles = get_valid_roles_for(obj)
for item in obj.ac_inherited_permissions(1):
name, value = item[:2]
if name == permission:
permission = Permission(name, value, obj)
roles = permission.getRoles()
return filter(lambda r: r in valid_roles, roles)
raise ValueError("The permission {} is invalid.".format(permission))
|
#vtb
def remove_move(name):
try:
delattr(_MovedItems, name)
except AttributeError:
try:
del moves.__dict__[name]
except KeyError:
raise AttributeError("no such move, %r" % (name,))
|
Remove item from six.moves.
|
### Input:
Remove item from six.moves.
### Response:
#vtb
def remove_move(name):
try:
delattr(_MovedItems, name)
except AttributeError:
try:
del moves.__dict__[name]
except KeyError:
raise AttributeError("no such move, %r" % (name,))
|
#vtb
def from_start_and_end(cls, start, end, aa=None, helix_type=):
start = numpy.array(start)
end = numpy.array(end)
if aa is None:
rise_per_residue = _helix_parameters[helix_type][1]
aa = int((numpy.linalg.norm(end - start) / rise_per_residue) + 1)
instance = cls(aa=aa, helix_type=helix_type)
instance.move_to(start=start, end=end)
return instance
|
Creates a `Helix` between `start` and `end`.
Parameters
----------
start : 3D Vector (tuple or list or numpy.array)
The coordinate of the start of the helix primitive.
end : 3D Vector (tuple or list or numpy.array)
The coordinate of the end of the helix primitive.
aa : int, optional
Number of amino acids in the `Helix`. If `None, an
appropriate number of residues are added.
helix_type : str, optional
Type of helix, can be: 'alpha', 'pi', '3-10',
'PPI', 'PPII', 'collagen'.
|
### Input:
Creates a `Helix` between `start` and `end`.
Parameters
----------
start : 3D Vector (tuple or list or numpy.array)
The coordinate of the start of the helix primitive.
end : 3D Vector (tuple or list or numpy.array)
The coordinate of the end of the helix primitive.
aa : int, optional
Number of amino acids in the `Helix`. If `None, an
appropriate number of residues are added.
helix_type : str, optional
Type of helix, can be: 'alpha', 'pi', '3-10',
'PPI', 'PPII', 'collagen'.
### Response:
#vtb
def from_start_and_end(cls, start, end, aa=None, helix_type=):
start = numpy.array(start)
end = numpy.array(end)
if aa is None:
rise_per_residue = _helix_parameters[helix_type][1]
aa = int((numpy.linalg.norm(end - start) / rise_per_residue) + 1)
instance = cls(aa=aa, helix_type=helix_type)
instance.move_to(start=start, end=end)
return instance
|
#vtb
def liftover(self, intersecting_region):
if not self.intersects(intersecting_region):
raise RetrotransposonError("trying to lift " + str(intersecting_region) +
" from genomic to transposon coordinates " +
"in " + str(self) + ", but it doesn't " +
"intersect!")
if self.pairwise_alignment is not None:
return self.pairwise_alignment.liftover(self.chrom, self.repeat_name(),
intersecting_region.start,
intersecting_region.end,
trim=True)
return self.liftover_coordinates(intersecting_region)
|
Lift a region that overlaps the genomic occurrence of the retrotransposon
to consensus sequence co-ordinates. This method will behave differently
depending on whether this retrotransposon occurrance contains a full
alignment or not. If it does, the alignment is used to do the liftover and
an exact result is provided. If it does not, the coordinates are used to
do the liftover, padding either the genomic region or consensus sequence
(whichever is shorter) with equally spaced gaps to make the size of both
match.
:param intersecting_region: a region that intersects this occurrence.
:return: list of GenomicInterval objects. This is a list because a genomic
deletion of part of the retrotransposon can fragment the
intersecting region and result in more than one returned interval.
|
### Input:
Lift a region that overlaps the genomic occurrence of the retrotransposon
to consensus sequence co-ordinates. This method will behave differently
depending on whether this retrotransposon occurrance contains a full
alignment or not. If it does, the alignment is used to do the liftover and
an exact result is provided. If it does not, the coordinates are used to
do the liftover, padding either the genomic region or consensus sequence
(whichever is shorter) with equally spaced gaps to make the size of both
match.
:param intersecting_region: a region that intersects this occurrence.
:return: list of GenomicInterval objects. This is a list because a genomic
deletion of part of the retrotransposon can fragment the
intersecting region and result in more than one returned interval.
### Response:
#vtb
def liftover(self, intersecting_region):
if not self.intersects(intersecting_region):
raise RetrotransposonError("trying to lift " + str(intersecting_region) +
" from genomic to transposon coordinates " +
"in " + str(self) + ", but it doesn't " +
"intersect!")
if self.pairwise_alignment is not None:
return self.pairwise_alignment.liftover(self.chrom, self.repeat_name(),
intersecting_region.start,
intersecting_region.end,
trim=True)
return self.liftover_coordinates(intersecting_region)
|
#vtb
def otu_iter_nexson_proxy(nexson_proxy, otu_sort=None):
nexml_el = nexson_proxy._nexml_el
og_order = nexml_el[]
ogd = nexml_el[]
for og_id in og_order:
og = ogd[og_id]
if otu_sort is None:
for k, v in og:
yield nexson_proxy._create_otu_proxy(k, v)
else:
key_list = list(og.keys())
if otu_sort is True:
key_list.sort()
else:
key_list.sort(key=otu_sort)
for k in key_list:
v = og[k]
yield nexson_proxy._create_otu_proxy(k, v)
|
otu_sort can be None (not sorted or stable), True (sorted by ID lexigraphically)
or a key function for a sort function on list of otuIDs
Note that if there are multiple OTU groups, the NexSON specifies the order of sorting
of the groups (so the sort argument here only refers to the sorting of OTUs within
a group)
|
### Input:
otu_sort can be None (not sorted or stable), True (sorted by ID lexigraphically)
or a key function for a sort function on list of otuIDs
Note that if there are multiple OTU groups, the NexSON specifies the order of sorting
of the groups (so the sort argument here only refers to the sorting of OTUs within
a group)
### Response:
#vtb
def otu_iter_nexson_proxy(nexson_proxy, otu_sort=None):
nexml_el = nexson_proxy._nexml_el
og_order = nexml_el[]
ogd = nexml_el[]
for og_id in og_order:
og = ogd[og_id]
if otu_sort is None:
for k, v in og:
yield nexson_proxy._create_otu_proxy(k, v)
else:
key_list = list(og.keys())
if otu_sort is True:
key_list.sort()
else:
key_list.sort(key=otu_sort)
for k in key_list:
v = og[k]
yield nexson_proxy._create_otu_proxy(k, v)
|
#vtb
def get_cds_ranges_for_transcript(self, transcript_id):
headers = {"content-type": "application/json"}
self.attempt = 0
ext = "/overlap/id/{}?feature=cds".format(transcript_id)
r = self.ensembl_request(ext, headers)
cds_ranges = []
for cds_range in json.loads(r):
if cds_range["Parent"] != transcript_id:
continue
start = cds_range["start"]
end = cds_range["end"]
cds_ranges.append((start, end))
return cds_ranges
|
obtain the sequence for a transcript from ensembl
|
### Input:
obtain the sequence for a transcript from ensembl
### Response:
#vtb
def get_cds_ranges_for_transcript(self, transcript_id):
headers = {"content-type": "application/json"}
self.attempt = 0
ext = "/overlap/id/{}?feature=cds".format(transcript_id)
r = self.ensembl_request(ext, headers)
cds_ranges = []
for cds_range in json.loads(r):
if cds_range["Parent"] != transcript_id:
continue
start = cds_range["start"]
end = cds_range["end"]
cds_ranges.append((start, end))
return cds_ranges
|
#vtb
def last_available_business_date(self, asset_manager_id, asset_ids, page_no=None, page_size=None):
self.logger.info()
url = % self.endpoint
params = {: [asset_manager_id],
: .join(asset_ids)}
if page_no:
params[] = page_no
if page_size:
params[] = page_size
response = self.session.get(url, params=params)
if response.ok:
self.logger.info("Received %s assets' last available business date", len(response.json()))
return response.json()
else:
self.logger.error(response.text)
response.raise_for_status()
|
Returns the last available business date for the assets so we know the
starting date for new data which needs to be downloaded from data providers.
This method can only be invoked by system user
|
### Input:
Returns the last available business date for the assets so we know the
starting date for new data which needs to be downloaded from data providers.
This method can only be invoked by system user
### Response:
#vtb
def last_available_business_date(self, asset_manager_id, asset_ids, page_no=None, page_size=None):
self.logger.info()
url = % self.endpoint
params = {: [asset_manager_id],
: .join(asset_ids)}
if page_no:
params[] = page_no
if page_size:
params[] = page_size
response = self.session.get(url, params=params)
if response.ok:
self.logger.info("Received %s assets' last available business date", len(response.json()))
return response.json()
else:
self.logger.error(response.text)
response.raise_for_status()
|
#vtb
def _get_pattern_for_schema(self, schema_name, httpStatus):
defaultPattern = if self._is_http_error_rescode(httpStatus) else
model = self._models().get(schema_name)
patterns = self._find_patterns(model)
return patterns[0] if patterns else defaultPattern
|
returns the pattern specified in a response schema
|
### Input:
returns the pattern specified in a response schema
### Response:
#vtb
def _get_pattern_for_schema(self, schema_name, httpStatus):
defaultPattern = if self._is_http_error_rescode(httpStatus) else
model = self._models().get(schema_name)
patterns = self._find_patterns(model)
return patterns[0] if patterns else defaultPattern
|
#vtb
def release(self, conn):
self._pool_lock.acquire()
self._pool.put(ConnectionWrapper(self._pool, conn))
self._current_acquired -= 1
self._pool_lock.release()
|
Release a previously acquired connection.
The connection is put back into the pool.
|
### Input:
Release a previously acquired connection.
The connection is put back into the pool.
### Response:
#vtb
def release(self, conn):
self._pool_lock.acquire()
self._pool.put(ConnectionWrapper(self._pool, conn))
self._current_acquired -= 1
self._pool_lock.release()
|
#vtb
def cli(env, volume_id, reason, immediate):
file_storage_manager = SoftLayer.FileStorageManager(env.client)
if not (env.skip_confirmations or formatting.no_going_back(volume_id)):
raise exceptions.CLIAbort()
cancelled = file_storage_manager.cancel_snapshot_space(
volume_id, reason, immediate)
if cancelled:
if immediate:
click.echo(
% volume_id)
else:
click.echo(
% volume_id)
else:
click.echo(
% volume_id)
|
Cancel existing snapshot space for a given volume.
|
### Input:
Cancel existing snapshot space for a given volume.
### Response:
#vtb
def cli(env, volume_id, reason, immediate):
file_storage_manager = SoftLayer.FileStorageManager(env.client)
if not (env.skip_confirmations or formatting.no_going_back(volume_id)):
raise exceptions.CLIAbort()
cancelled = file_storage_manager.cancel_snapshot_space(
volume_id, reason, immediate)
if cancelled:
if immediate:
click.echo(
% volume_id)
else:
click.echo(
% volume_id)
else:
click.echo(
% volume_id)
|
#vtb
def request_add_sensor(self, sock, msg):
self.add_sensor(Sensor(int, % len(self._sensors),
, , params=[-10, 10]))
return Message.reply(, )
|
add a sensor
|
### Input:
add a sensor
### Response:
#vtb
def request_add_sensor(self, sock, msg):
self.add_sensor(Sensor(int, % len(self._sensors),
, , params=[-10, 10]))
return Message.reply(, )
|
#vtb
def fullName(self):
if self.givenName and self.sn:
return "{0} {1}".format(self.givenName, self.sn)
if self.givenName:
return self.givenName
if self.sn:
return self.sn
return self.uid
|
Returns a reliable full name (firstName lastName) for every
member (as of the writing of this comment.)
|
### Input:
Returns a reliable full name (firstName lastName) for every
member (as of the writing of this comment.)
### Response:
#vtb
def fullName(self):
if self.givenName and self.sn:
return "{0} {1}".format(self.givenName, self.sn)
if self.givenName:
return self.givenName
if self.sn:
return self.sn
return self.uid
|
#vtb
def custom_parser(cards: list, parser: Optional[Callable[[list], Optional[list]]]=None) -> Optional[list]:
if not parser:
return cards
else:
return parser(cards)
|
parser for CUSTOM [1] issue mode,
please provide your custom parser as argument
|
### Input:
parser for CUSTOM [1] issue mode,
please provide your custom parser as argument
### Response:
#vtb
def custom_parser(cards: list, parser: Optional[Callable[[list], Optional[list]]]=None) -> Optional[list]:
if not parser:
return cards
else:
return parser(cards)
|
#vtb
def read(self, size=None):
if not self._is_open:
raise IOError()
if self._current_offset < 0:
raise IOError(
.format(
self._current_offset))
if self._file_data is None or self._current_offset >= self._size:
return b
if size is None:
size = self._size
if self._current_offset + size > self._size:
size = self._size - self._current_offset
start_offset = self._current_offset
self._current_offset += size
return self._file_data[start_offset:self._current_offset]
|
Reads a byte string from the file-like object at the current offset.
The function will read a byte string of the specified size or
all of the remaining data if no size was specified.
Args:
size (Optional[int]): number of bytes to read, where None is all
remaining data.
Returns:
bytes: data read.
Raises:
IOError: if the read failed.
OSError: if the read failed.
|
### Input:
Reads a byte string from the file-like object at the current offset.
The function will read a byte string of the specified size or
all of the remaining data if no size was specified.
Args:
size (Optional[int]): number of bytes to read, where None is all
remaining data.
Returns:
bytes: data read.
Raises:
IOError: if the read failed.
OSError: if the read failed.
### Response:
#vtb
def read(self, size=None):
if not self._is_open:
raise IOError()
if self._current_offset < 0:
raise IOError(
.format(
self._current_offset))
if self._file_data is None or self._current_offset >= self._size:
return b
if size is None:
size = self._size
if self._current_offset + size > self._size:
size = self._size - self._current_offset
start_offset = self._current_offset
self._current_offset += size
return self._file_data[start_offset:self._current_offset]
|
#vtb
def mode_number(self, rows: List[Row], column: NumberColumn) -> Number:
most_frequent_list = self._get_most_frequent_values(rows, column)
if not most_frequent_list:
return 0.0
most_frequent_value = most_frequent_list[0]
if not isinstance(most_frequent_value, Number):
raise ExecutionError(f"Invalid valus for mode_number: {most_frequent_value}")
return most_frequent_value
|
Takes a list of rows and a column and returns the most frequent value under
that column in those rows.
|
### Input:
Takes a list of rows and a column and returns the most frequent value under
that column in those rows.
### Response:
#vtb
def mode_number(self, rows: List[Row], column: NumberColumn) -> Number:
most_frequent_list = self._get_most_frequent_values(rows, column)
if not most_frequent_list:
return 0.0
most_frequent_value = most_frequent_list[0]
if not isinstance(most_frequent_value, Number):
raise ExecutionError(f"Invalid valus for mode_number: {most_frequent_value}")
return most_frequent_value
|
#vtb
def wploader(self):
if self.target_system not in self.wploader_by_sysid:
self.wploader_by_sysid[self.target_system] = mavwp.MAVWPLoader()
return self.wploader_by_sysid[self.target_system]
|
per-sysid wploader
|
### Input:
per-sysid wploader
### Response:
#vtb
def wploader(self):
if self.target_system not in self.wploader_by_sysid:
self.wploader_by_sysid[self.target_system] = mavwp.MAVWPLoader()
return self.wploader_by_sysid[self.target_system]
|
#vtb
def transform_qubits(self: TSelf_Operation,
func: Callable[[Qid], Qid]) -> TSelf_Operation:
return self.with_qubits(*(func(q) for q in self.qubits))
|
Returns the same operation, but with different qubits.
Args:
func: The function to use to turn each current qubit into a desired
new qubit.
Returns:
The receiving operation but with qubits transformed by the given
function.
|
### Input:
Returns the same operation, but with different qubits.
Args:
func: The function to use to turn each current qubit into a desired
new qubit.
Returns:
The receiving operation but with qubits transformed by the given
function.
### Response:
#vtb
def transform_qubits(self: TSelf_Operation,
func: Callable[[Qid], Qid]) -> TSelf_Operation:
return self.with_qubits(*(func(q) for q in self.qubits))
|
#vtb
def make_name(self):
if self.title:
self.name = six.text_type(make_name(self.title_for_name, maxlength=self.__name_length__))
|
Autogenerates a :attr:`name` from :attr:`title_for_name`
|
### Input:
Autogenerates a :attr:`name` from :attr:`title_for_name`
### Response:
#vtb
def make_name(self):
if self.title:
self.name = six.text_type(make_name(self.title_for_name, maxlength=self.__name_length__))
|
#vtb
def coerce_to_target_dtype(self, other):
dtype, _ = infer_dtype_from(other, pandas_dtype=True)
if is_dtype_equal(self.dtype, dtype):
return self
if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype):
return self
elif (self.is_datetime or
is_datetime64_dtype(dtype) or
is_datetime64tz_dtype(dtype)):
if not ((is_datetime64_dtype(dtype) or
is_datetime64tz_dtype(dtype)) and self.is_datetime):
return self.astype(object)
if str(mytz) != str(othertz):
return self.astype(object)
raise AssertionError("possible recursion in "
"coerce_to_target_dtype: {} {}".format(
self, other))
elif (self.is_timedelta or is_timedelta64_dtype(dtype)):
if not (is_timedelta64_dtype(dtype) and self.is_timedelta):
return self.astype(object)
raise AssertionError("possible recursion in "
"coerce_to_target_dtype: {} {}".format(
self, other))
try:
return self.astype(dtype)
except (ValueError, TypeError, OverflowError):
pass
return self.astype(object)
|
coerce the current block to a dtype compat for other
we will return a block, possibly object, and not raise
we can also safely try to coerce to the same dtype
and will receive the same block
|
### Input:
coerce the current block to a dtype compat for other
we will return a block, possibly object, and not raise
we can also safely try to coerce to the same dtype
and will receive the same block
### Response:
#vtb
def coerce_to_target_dtype(self, other):
dtype, _ = infer_dtype_from(other, pandas_dtype=True)
if is_dtype_equal(self.dtype, dtype):
return self
if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype):
return self
elif (self.is_datetime or
is_datetime64_dtype(dtype) or
is_datetime64tz_dtype(dtype)):
if not ((is_datetime64_dtype(dtype) or
is_datetime64tz_dtype(dtype)) and self.is_datetime):
return self.astype(object)
if str(mytz) != str(othertz):
return self.astype(object)
raise AssertionError("possible recursion in "
"coerce_to_target_dtype: {} {}".format(
self, other))
elif (self.is_timedelta or is_timedelta64_dtype(dtype)):
if not (is_timedelta64_dtype(dtype) and self.is_timedelta):
return self.astype(object)
raise AssertionError("possible recursion in "
"coerce_to_target_dtype: {} {}".format(
self, other))
try:
return self.astype(dtype)
except (ValueError, TypeError, OverflowError):
pass
return self.astype(object)
|
#vtb
def LinearContrast(alpha=1, per_channel=False, name=None, deterministic=False, random_state=None):
params1d = [
iap.handle_continuous_param(alpha, "alpha", value_range=None, tuple_to_uniform=True, list_to_choice=True)
]
func = adjust_contrast_linear
return _ContrastFuncWrapper(
func, params1d, per_channel,
dtypes_allowed=["uint8", "uint16", "uint32",
"int8", "int16", "int32",
"float16", "float32", "float64"],
dtypes_disallowed=["uint64", "int64", "float96", "float128", "float256", "bool"],
name=name if name is not None else ia.caller_name(),
deterministic=deterministic,
random_state=random_state
)
|
Adjust contrast by scaling each pixel value to ``127 + alpha*(I_ij-127)``.
dtype support::
See :func:`imgaug.augmenters.contrast.adjust_contrast_linear`.
Parameters
----------
alpha : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional
Multiplier to linearly pronounce (>1.0), dampen (0.0 to 1.0) or invert (<0.0) the
difference between each pixel value and the center value, e.g. ``127`` for ``uint8``.
* If a number, then that value will be used for all images.
* If a tuple ``(a, b)``, then a value from the range ``[a, b]`` will be used per image.
* If a list, then a random value will be sampled from that list per image.
* If a StochasticParameter, then a value will be sampled per image from that parameter.
per_channel : bool or float, optional
Whether to use the same value for all channels (False) or to sample a new value for each
channel (True). If this value is a float ``p``, then for ``p`` percent of all images `per_channel`
will be treated as True, otherwise as False.
name : None or str, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.
deterministic : bool, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.
random_state : None or int or numpy.random.RandomState, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.
Returns
-------
_ContrastFuncWrapper
Augmenter to perform contrast adjustment by linearly scaling the distance to 128.
|
### Input:
Adjust contrast by scaling each pixel value to ``127 + alpha*(I_ij-127)``.
dtype support::
See :func:`imgaug.augmenters.contrast.adjust_contrast_linear`.
Parameters
----------
alpha : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional
Multiplier to linearly pronounce (>1.0), dampen (0.0 to 1.0) or invert (<0.0) the
difference between each pixel value and the center value, e.g. ``127`` for ``uint8``.
* If a number, then that value will be used for all images.
* If a tuple ``(a, b)``, then a value from the range ``[a, b]`` will be used per image.
* If a list, then a random value will be sampled from that list per image.
* If a StochasticParameter, then a value will be sampled per image from that parameter.
per_channel : bool or float, optional
Whether to use the same value for all channels (False) or to sample a new value for each
channel (True). If this value is a float ``p``, then for ``p`` percent of all images `per_channel`
will be treated as True, otherwise as False.
name : None or str, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.
deterministic : bool, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.
random_state : None or int or numpy.random.RandomState, optional
See :func:`imgaug.augmenters.meta.Augmenter.__init__`.
Returns
-------
_ContrastFuncWrapper
Augmenter to perform contrast adjustment by linearly scaling the distance to 128.
### Response:
#vtb
def LinearContrast(alpha=1, per_channel=False, name=None, deterministic=False, random_state=None):
params1d = [
iap.handle_continuous_param(alpha, "alpha", value_range=None, tuple_to_uniform=True, list_to_choice=True)
]
func = adjust_contrast_linear
return _ContrastFuncWrapper(
func, params1d, per_channel,
dtypes_allowed=["uint8", "uint16", "uint32",
"int8", "int16", "int32",
"float16", "float32", "float64"],
dtypes_disallowed=["uint64", "int64", "float96", "float128", "float256", "bool"],
name=name if name is not None else ia.caller_name(),
deterministic=deterministic,
random_state=random_state
)
|
#vtb
def declare_list(self, name, sep=os.pathsep):
self._declare_special(name, sep, ListVariable)
|
Declare an environment variable as a list-like special variable.
This can be used even if the environment variable is not
present.
:param name: The name of the environment variable that should
be considered list-like.
:param sep: The separator to be used. Defaults to the value
of ``os.pathsep``.
|
### Input:
Declare an environment variable as a list-like special variable.
This can be used even if the environment variable is not
present.
:param name: The name of the environment variable that should
be considered list-like.
:param sep: The separator to be used. Defaults to the value
of ``os.pathsep``.
### Response:
#vtb
def declare_list(self, name, sep=os.pathsep):
self._declare_special(name, sep, ListVariable)
|
#vtb
def _restore_stdout(self):
if self.buffer:
if self._mirror_output:
output = sys.stdout.getvalue()
error = sys.stderr.getvalue()
if output:
if not output.endswith():
output +=
self._original_stdout.write(STDOUT_LINE % output)
if error:
if not error.endswith():
error +=
self._original_stderr.write(STDERR_LINE % error)
sys.stdout = self._original_stdout
sys.stderr = self._original_stderr
self._stdout_buffer.seek(0)
self._stdout_buffer.truncate()
self._stderr_buffer.seek(0)
self._stderr_buffer.truncate()
|
Unhook stdout and stderr if buffering is enabled.
|
### Input:
Unhook stdout and stderr if buffering is enabled.
### Response:
#vtb
def _restore_stdout(self):
if self.buffer:
if self._mirror_output:
output = sys.stdout.getvalue()
error = sys.stderr.getvalue()
if output:
if not output.endswith():
output +=
self._original_stdout.write(STDOUT_LINE % output)
if error:
if not error.endswith():
error +=
self._original_stderr.write(STDERR_LINE % error)
sys.stdout = self._original_stdout
sys.stderr = self._original_stderr
self._stdout_buffer.seek(0)
self._stdout_buffer.truncate()
self._stderr_buffer.seek(0)
self._stderr_buffer.truncate()
|
#vtb
def prompt_save_images(args):
if args[] or args[]:
return
if (args[] or args[]) and (args[] or args[]):
save_msg = (
)
try:
save_images = utils.confirm_input(input(save_msg))
except (KeyboardInterrupt, EOFError):
return
args[] = save_images
args[] = not save_images
|
Prompt user to save images when crawling (for pdf and HTML formats).
|
### Input:
Prompt user to save images when crawling (for pdf and HTML formats).
### Response:
#vtb
def prompt_save_images(args):
if args[] or args[]:
return
if (args[] or args[]) and (args[] or args[]):
save_msg = (
)
try:
save_images = utils.confirm_input(input(save_msg))
except (KeyboardInterrupt, EOFError):
return
args[] = save_images
args[] = not save_images
|
#vtb
def IV(abf,T1,T2,plotToo=True,color=):
rangeData=abf.average_data([[T1,T2]])
AV,SD=rangeData[:,0,0],rangeData[:,0,1]
Xs=abf.clampValues(T1)
if plotToo:
new(abf)
pylab.margins(.1,.1)
annotate(abf)
return AV,SD
|
Given two time points (seconds) return IV data.
Optionally plots a fancy graph (with errorbars)
Returns [[AV],[SD]] for the given range.
|
### Input:
Given two time points (seconds) return IV data.
Optionally plots a fancy graph (with errorbars)
Returns [[AV],[SD]] for the given range.
### Response:
#vtb
def IV(abf,T1,T2,plotToo=True,color=):
rangeData=abf.average_data([[T1,T2]])
AV,SD=rangeData[:,0,0],rangeData[:,0,1]
Xs=abf.clampValues(T1)
if plotToo:
new(abf)
pylab.margins(.1,.1)
annotate(abf)
return AV,SD
|
#vtb
def show_worst_drawdown_periods(returns, top=5):
drawdown_df = timeseries.gen_drawdown_table(returns, top=top)
utils.print_table(
drawdown_df.sort_values(, ascending=False),
name=,
float_format=.format,
)
|
Prints information about the worst drawdown periods.
Prints peak dates, valley dates, recovery dates, and net
drawdowns.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
top : int, optional
Amount of top drawdowns periods to plot (default 5).
|
### Input:
Prints information about the worst drawdown periods.
Prints peak dates, valley dates, recovery dates, and net
drawdowns.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
top : int, optional
Amount of top drawdowns periods to plot (default 5).
### Response:
#vtb
def show_worst_drawdown_periods(returns, top=5):
drawdown_df = timeseries.gen_drawdown_table(returns, top=top)
utils.print_table(
drawdown_df.sort_values(, ascending=False),
name=,
float_format=.format,
)
|
#vtb
def DeleteAttachment(self, attachment_link, options=None):
if options is None:
options = {}
path = base.GetPathFromLink(attachment_link)
attachment_id = base.GetResourceIdOrFullNameFromLink(attachment_link)
return self.DeleteResource(path,
,
attachment_id,
None,
options)
|
Deletes an attachment.
:param str attachment_link:
The link to the attachment.
:param dict options:
The request options for the request.
:return:
The deleted Attachment.
:rtype:
dict
|
### Input:
Deletes an attachment.
:param str attachment_link:
The link to the attachment.
:param dict options:
The request options for the request.
:return:
The deleted Attachment.
:rtype:
dict
### Response:
#vtb
def DeleteAttachment(self, attachment_link, options=None):
if options is None:
options = {}
path = base.GetPathFromLink(attachment_link)
attachment_id = base.GetResourceIdOrFullNameFromLink(attachment_link)
return self.DeleteResource(path,
,
attachment_id,
None,
options)
|
#vtb
def read_index_iter(self):
with fopen(self.vpk_path, ) as f:
f.seek(self.header_length)
while True:
if self.version > 0 and f.tell() > self.tree_length + self.header_length:
raise ValueError("Error parsing index (out of bounds)")
ext = _read_cstring(f)
if ext == :
break
while True:
path = _read_cstring(f)
if path == :
break
if path != :
path = os.path.join(path, )
else:
path =
while True:
name = _read_cstring(f)
if name == :
break
(crc32,
preload_length,
archive_index,
archive_offset,
file_length,
suffix,
) = metadata = list(struct.unpack("IHHIIH", f.read(18)))
if suffix != 0xffff:
raise ValueError("Error while parsing index")
if archive_index == 0x7fff:
metadata[3] = self.header_length + self.tree_length + archive_offset
metadata = (f.read(preload_length),) + tuple(metadata[:-1])
yield path + name + + ext, metadata
|
Generator function that reads the file index from the vpk file
yeilds (file_path, metadata)
|
### Input:
Generator function that reads the file index from the vpk file
yeilds (file_path, metadata)
### Response:
#vtb
def read_index_iter(self):
with fopen(self.vpk_path, ) as f:
f.seek(self.header_length)
while True:
if self.version > 0 and f.tell() > self.tree_length + self.header_length:
raise ValueError("Error parsing index (out of bounds)")
ext = _read_cstring(f)
if ext == :
break
while True:
path = _read_cstring(f)
if path == :
break
if path != :
path = os.path.join(path, )
else:
path =
while True:
name = _read_cstring(f)
if name == :
break
(crc32,
preload_length,
archive_index,
archive_offset,
file_length,
suffix,
) = metadata = list(struct.unpack("IHHIIH", f.read(18)))
if suffix != 0xffff:
raise ValueError("Error while parsing index")
if archive_index == 0x7fff:
metadata[3] = self.header_length + self.tree_length + archive_offset
metadata = (f.read(preload_length),) + tuple(metadata[:-1])
yield path + name + + ext, metadata
|
#vtb
def load_from_namespace(module_name):
class_inst = None
name = "py3status.modules.{}".format(module_name)
py_mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
py_mod = getattr(py_mod, comp)
class_inst = py_mod.Py3status()
return class_inst
|
Load a py3status bundled module.
|
### Input:
Load a py3status bundled module.
### Response:
#vtb
def load_from_namespace(module_name):
class_inst = None
name = "py3status.modules.{}".format(module_name)
py_mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
py_mod = getattr(py_mod, comp)
class_inst = py_mod.Py3status()
return class_inst
|
#vtb
def _add_loss_summaries(total_loss):
loss_averages = tf.train.ExponentialMovingAverage(0.9, name=)
losses = tf.get_collection()
loss_averages_op = loss_averages.apply(losses + [total_loss])
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name + , l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op
|
Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
|
### Input:
Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
### Response:
#vtb
def _add_loss_summaries(total_loss):
loss_averages = tf.train.ExponentialMovingAverage(0.9, name=)
losses = tf.get_collection()
loss_averages_op = loss_averages.apply(losses + [total_loss])
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name + , l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
return loss_averages_op
|
#vtb
def _download_libraries(self, libname):
self._logger.info("Downloading and generating Enrichr library gene sets......")
s = retry(5)
ENRICHR_URL =
query_string =
response = s.get( ENRICHR_URL + query_string % libname, timeout=None)
if not response.ok:
raise Exception()
mkdirs(DEFAULT_CACHE_PATH)
genesets_dict = {}
outname = "enrichr.%s.gmt"%libname
gmtout = open(os.path.join(DEFAULT_CACHE_PATH, outname), "w")
for line in response.iter_lines(chunk_size=1024, decode_unicode=):
line=line.strip()
k = line.split("\t")[0]
v = list(map(lambda x: x.split(",")[0], line.split("\t")[2:]))
genesets_dict.update({ k: v})
outline = "%s\t\t%s\n"%(k, "\t".join(v))
gmtout.write(outline)
gmtout.close()
return genesets_dict
|
download enrichr libraries.
|
### Input:
download enrichr libraries.
### Response:
#vtb
def _download_libraries(self, libname):
self._logger.info("Downloading and generating Enrichr library gene sets......")
s = retry(5)
ENRICHR_URL =
query_string =
response = s.get( ENRICHR_URL + query_string % libname, timeout=None)
if not response.ok:
raise Exception()
mkdirs(DEFAULT_CACHE_PATH)
genesets_dict = {}
outname = "enrichr.%s.gmt"%libname
gmtout = open(os.path.join(DEFAULT_CACHE_PATH, outname), "w")
for line in response.iter_lines(chunk_size=1024, decode_unicode=):
line=line.strip()
k = line.split("\t")[0]
v = list(map(lambda x: x.split(",")[0], line.split("\t")[2:]))
genesets_dict.update({ k: v})
outline = "%s\t\t%s\n"%(k, "\t".join(v))
gmtout.write(outline)
gmtout.close()
return genesets_dict
|
#vtb
def _set_config(c):
gl_attribs = [glcanvas.WX_GL_RGBA,
glcanvas.WX_GL_DEPTH_SIZE, c[],
glcanvas.WX_GL_STENCIL_SIZE, c[],
glcanvas.WX_GL_MIN_RED, c[],
glcanvas.WX_GL_MIN_GREEN, c[],
glcanvas.WX_GL_MIN_BLUE, c[],
glcanvas.WX_GL_MIN_ALPHA, c[]]
gl_attribs += [glcanvas.WX_GL_DOUBLEBUFFER] if c[] else []
gl_attribs += [glcanvas.WX_GL_STEREO] if c[] else []
return gl_attribs
|
Set gl configuration
|
### Input:
Set gl configuration
### Response:
#vtb
def _set_config(c):
gl_attribs = [glcanvas.WX_GL_RGBA,
glcanvas.WX_GL_DEPTH_SIZE, c[],
glcanvas.WX_GL_STENCIL_SIZE, c[],
glcanvas.WX_GL_MIN_RED, c[],
glcanvas.WX_GL_MIN_GREEN, c[],
glcanvas.WX_GL_MIN_BLUE, c[],
glcanvas.WX_GL_MIN_ALPHA, c[]]
gl_attribs += [glcanvas.WX_GL_DOUBLEBUFFER] if c[] else []
gl_attribs += [glcanvas.WX_GL_STEREO] if c[] else []
return gl_attribs
|
#vtb
def error(self):
status_code, error_msg, payload = self.check_error()
if status_code != 200 and not error_msg and not payload:
return "Async error (%s). Status code: %r" % (self.async_id, status_code)
return error_msg
|
Check if the async response is an error.
Take care to call `is_done` before calling `error`. Note that the error
messages are always encoded as strings.
:raises CloudUnhandledError: When not checking `is_done` first
:return: the error value/payload, if found.
:rtype: str
|
### Input:
Check if the async response is an error.
Take care to call `is_done` before calling `error`. Note that the error
messages are always encoded as strings.
:raises CloudUnhandledError: When not checking `is_done` first
:return: the error value/payload, if found.
:rtype: str
### Response:
#vtb
def error(self):
status_code, error_msg, payload = self.check_error()
if status_code != 200 and not error_msg and not payload:
return "Async error (%s). Status code: %r" % (self.async_id, status_code)
return error_msg
|
#vtb
def fluxfrac(*mags):
Ftot = 0
for mag in mags:
Ftot += 10**(-0.4*mag)
F1 = 10**(-0.4*mags[0])
return F1/Ftot
|
Returns fraction of total flux in first argument, assuming all are magnitudes.
|
### Input:
Returns fraction of total flux in first argument, assuming all are magnitudes.
### Response:
#vtb
def fluxfrac(*mags):
Ftot = 0
for mag in mags:
Ftot += 10**(-0.4*mag)
F1 = 10**(-0.4*mags[0])
return F1/Ftot
|
#vtb
def GetUserInfo(knowledge_base, user):
if "\\" in user:
domain, user = user.split("\\", 1)
users = [
u for u in knowledge_base.users
if u.username == user and u.userdomain == domain
]
else:
users = [u for u in knowledge_base.users if u.username == user]
if not users:
return
else:
return users[0]
|
Get a User protobuf for a specific user.
Args:
knowledge_base: An rdf_client.KnowledgeBase object.
user: Username as string. May contain domain like DOMAIN\\user.
Returns:
A User rdfvalue or None
|
### Input:
Get a User protobuf for a specific user.
Args:
knowledge_base: An rdf_client.KnowledgeBase object.
user: Username as string. May contain domain like DOMAIN\\user.
Returns:
A User rdfvalue or None
### Response:
#vtb
def GetUserInfo(knowledge_base, user):
if "\\" in user:
domain, user = user.split("\\", 1)
users = [
u for u in knowledge_base.users
if u.username == user and u.userdomain == domain
]
else:
users = [u for u in knowledge_base.users if u.username == user]
if not users:
return
else:
return users[0]
|
#vtb
def __geomToPointList(self, geom):
if arcpyFound and isinstance(geom, arcpy.Multipoint):
feature_geom = []
fPart = []
for part in geom:
fPart = []
for pnt in part:
fPart.append(Point(coord=[pnt.X, pnt.Y],
wkid=geom.spatialReference.factoryCode,
z=pnt.Z, m=pnt.M))
feature_geom.append(fPart)
return feature_geom
|
converts a geometry object to a common.Geometry object
|
### Input:
converts a geometry object to a common.Geometry object
### Response:
#vtb
def __geomToPointList(self, geom):
if arcpyFound and isinstance(geom, arcpy.Multipoint):
feature_geom = []
fPart = []
for part in geom:
fPart = []
for pnt in part:
fPart.append(Point(coord=[pnt.X, pnt.Y],
wkid=geom.spatialReference.factoryCode,
z=pnt.Z, m=pnt.M))
feature_geom.append(fPart)
return feature_geom
|
#vtb
def get_hash(self):
if self._hash is None:
self._hash = self._source.get_hash(self._handle).strip()
return self._hash
|
Returns the associated hash for this template version
Returns:
str: Hash for this version
|
### Input:
Returns the associated hash for this template version
Returns:
str: Hash for this version
### Response:
#vtb
def get_hash(self):
if self._hash is None:
self._hash = self._source.get_hash(self._handle).strip()
return self._hash
|
#vtb
def RGB_color_picker(obj):
digest = hashlib.sha384(str(obj).encode()).hexdigest()
subsize = int(len(digest) / 3)
splitted_digest = [digest[i * subsize: (i + 1) * subsize]
for i in range(3)]
max_value = float(int("f" * subsize, 16))
components = (
int(d, 16)
/ max_value
for d in splitted_digest)
return Color(rgb2hex(components))
|
Build a color representation from the string representation of an object
This allows to quickly get a color from some data, with the
additional benefit that the color will be the same as long as the
(string representation of the) data is the same::
>>> from colour import RGB_color_picker, Color
Same inputs produce the same result::
>>> RGB_color_picker("Something") == RGB_color_picker("Something")
True
... but different inputs produce different colors::
>>> RGB_color_picker("Something") != RGB_color_picker("Something else")
True
In any case, we still get a ``Color`` object::
>>> isinstance(RGB_color_picker("Something"), Color)
True
|
### Input:
Build a color representation from the string representation of an object
This allows to quickly get a color from some data, with the
additional benefit that the color will be the same as long as the
(string representation of the) data is the same::
>>> from colour import RGB_color_picker, Color
Same inputs produce the same result::
>>> RGB_color_picker("Something") == RGB_color_picker("Something")
True
... but different inputs produce different colors::
>>> RGB_color_picker("Something") != RGB_color_picker("Something else")
True
In any case, we still get a ``Color`` object::
>>> isinstance(RGB_color_picker("Something"), Color)
True
### Response:
#vtb
def RGB_color_picker(obj):
digest = hashlib.sha384(str(obj).encode()).hexdigest()
subsize = int(len(digest) / 3)
splitted_digest = [digest[i * subsize: (i + 1) * subsize]
for i in range(3)]
max_value = float(int("f" * subsize, 16))
components = (
int(d, 16)
/ max_value
for d in splitted_digest)
return Color(rgb2hex(components))
|
#vtb
def build_dependencies(self):
for m in self.modules:
m.build_dependencies()
for p in self.packages:
p.build_dependencies()
|
Recursively build the dependencies for sub-modules and sub-packages.
Iterate on node's modules then packages and call their
build_dependencies methods.
|
### Input:
Recursively build the dependencies for sub-modules and sub-packages.
Iterate on node's modules then packages and call their
build_dependencies methods.
### Response:
#vtb
def build_dependencies(self):
for m in self.modules:
m.build_dependencies()
for p in self.packages:
p.build_dependencies()
|
#vtb
def __setup():
global __collaborators, __flag_first
import f311
__flag_first = False
for pkgname in f311.COLLABORATORS_C:
try:
pkg = importlib.import_module(pkgname)
a99.get_python_logger().info("Imported collaborator package ".format(pkgname))
try:
if hasattr(pkg, "_setup_filetypes"):
pkg._setup_filetypes()
else:
_collect_classes(pkg)
__collaborators[pkgname] = pkg
except:
a99.get_python_logger().exception(
"Actually, package gave error".format(pkgname))
raise
except:
a99.get_python_logger().warning("Failed to import package '{}".format(pkgname))
|
Will be executed in the first time someone calls classes_*()
|
### Input:
Will be executed in the first time someone calls classes_*()
### Response:
#vtb
def __setup():
global __collaborators, __flag_first
import f311
__flag_first = False
for pkgname in f311.COLLABORATORS_C:
try:
pkg = importlib.import_module(pkgname)
a99.get_python_logger().info("Imported collaborator package ".format(pkgname))
try:
if hasattr(pkg, "_setup_filetypes"):
pkg._setup_filetypes()
else:
_collect_classes(pkg)
__collaborators[pkgname] = pkg
except:
a99.get_python_logger().exception(
"Actually, package gave error".format(pkgname))
raise
except:
a99.get_python_logger().warning("Failed to import package '{}".format(pkgname))
|
#vtb
def createPolyline(self, points, strokewidth=1, stroke=):
style_dict = {:, :strokewidth, :stroke}
myStyle = StyleBuilder(style_dict)
p = Polyline(points=points)
p.set_style(myStyle.getStyle())
return p
|
Creates a Polyline
@type points: string in the form "x1,y1 x2,y2 x3,y3"
@param points: all points relevant to the polygon
@type strokewidth: string or int
@param strokewidth: width of the pen used to draw
@type stroke: string (either css constants like "black" or numerical values like "#FFFFFF")
@param stroke: color with which to draw the outer limits
@return: a polyline object
|
### Input:
Creates a Polyline
@type points: string in the form "x1,y1 x2,y2 x3,y3"
@param points: all points relevant to the polygon
@type strokewidth: string or int
@param strokewidth: width of the pen used to draw
@type stroke: string (either css constants like "black" or numerical values like "#FFFFFF")
@param stroke: color with which to draw the outer limits
@return: a polyline object
### Response:
#vtb
def createPolyline(self, points, strokewidth=1, stroke=):
style_dict = {:, :strokewidth, :stroke}
myStyle = StyleBuilder(style_dict)
p = Polyline(points=points)
p.set_style(myStyle.getStyle())
return p
|
#vtb
def remove_programmer(programmer_id):
log.debug(, programmer_id)
lines = programmers_txt().lines()
lines = filter(
lambda x: not x.strip().startswith(programmer_id + ), lines)
programmers_txt().write_lines(lines)
|
remove programmer.
:param programmer_id: programmer id (e.g. 'avrisp')
:rtype: None
|
### Input:
remove programmer.
:param programmer_id: programmer id (e.g. 'avrisp')
:rtype: None
### Response:
#vtb
def remove_programmer(programmer_id):
log.debug(, programmer_id)
lines = programmers_txt().lines()
lines = filter(
lambda x: not x.strip().startswith(programmer_id + ), lines)
programmers_txt().write_lines(lines)
|
#vtb
def logistic_regression(X, y, coef_only=False, alpha=0.05,
as_dataframe=True, remove_na=False, **kwargs):
from pingouin.utils import _is_sklearn_installed
_is_sklearn_installed(raise_error=True)
from sklearn.linear_model import LogisticRegression
if isinstance(X, pd.DataFrame):
names = X.keys().tolist()
elif isinstance(X, pd.Series):
names = [X.name]
else:
names = []
assert 0 < alpha < 1
assert y.ndim == 1,
X = np.asarray(X)
y = np.asarray(y)
if X.ndim == 1:
X = X[..., np.newaxis]
if remove_na:
X, y = rm_na(X, y[..., np.newaxis], paired=True, axis=)
y = np.squeeze(y)
y_gd = np.isfinite(y).all()
X_gd = np.isfinite(X).all()
assert y_gd,
assert X_gd,
assert y.shape[0] == X.shape[0],
if np.unique(y).size != 2:
raise ValueError()
if not names:
names = [ + str(i + 1) for i in range(X.shape[1])]
names.insert(0, "Intercept")
if not in kwargs:
kwargs[] =
if not in kwargs:
kwargs[] =
lom = LogisticRegression(**kwargs)
lom.fit(X, y)
coef = np.append(lom.intercept_, lom.coef_)
if coef_only:
return coef
X_design = np.column_stack((np.ones(X.shape[0]), X))
n, p = X_design.shape
denom = (2 * (1 + np.cosh(lom.decision_function(X))))
denom = np.tile(denom, (p, 1)).T
fim = np.dot((X_design / denom).T, X_design)
crao = np.linalg.inv(fim)
se = np.sqrt(np.diag(crao))
z_scores = coef / se
pval = np.array([2 * norm.sf(abs(z)) for z in z_scores])
crit = norm.ppf(1 - alpha / 2)
ll = coef - crit * se
ul = coef + crit * se
ll_name = % (100 * alpha / 2)
ul_name = % (100 * (1 - alpha / 2))
stats = {: names, : coef, : se, : z_scores,
: pval, ll_name: ll, ul_name: ul}
if as_dataframe:
return pd.DataFrame.from_dict(stats)
else:
return stats
|
(Multiple) Binary logistic regression.
Parameters
----------
X : np.array or list
Predictor(s). Shape = (n_samples, n_features) or (n_samples,).
y : np.array or list
Dependent variable. Shape = (n_samples).
Must be binary.
coef_only : bool
If True, return only the regression coefficients.
alpha : float
Alpha value used for the confidence intervals.
CI = [alpha / 2 ; 1 - alpha / 2]
as_dataframe : bool
If True, returns a pandas DataFrame. If False, returns a dictionnary.
remove_na : bool
If True, apply a listwise deletion of missing values (i.e. the entire
row is removed).
**kwargs : optional
Optional arguments passed to sklearn.linear_model.LogisticRegression.
Returns
-------
stats : dataframe or dict
Logistic regression summary::
'names' : name of variable(s) in the model (e.g. x1, x2...)
'coef' : regression coefficients
'se' : standard error
'z' : z-scores
'pval' : two-tailed p-values
'CI[2.5%]' : lower confidence interval
'CI[97.5%]' : upper confidence interval
Notes
-----
This is a wrapper around the
:py:class:`sklearn.linear_model.LogisticRegression` class.
Results have been compared against statsmodels and JASP.
Note that the first coefficient is always the constant term (intercept) of
the model.
This function will not run if NaN values are either present in the target
or predictors variables. Please remove them before runing the function.
Adapted from a code found at
https://gist.github.com/rspeare/77061e6e317896be29c6de9a85db301d
Examples
--------
1. Simple binary logistic regression
>>> import numpy as np
>>> from pingouin import logistic_regression
>>> np.random.seed(123)
>>> x = np.random.normal(size=30)
>>> y = np.random.randint(0, 2, size=30)
>>> lom = logistic_regression(x, y)
>>> lom.round(2)
names coef se z pval CI[2.5%] CI[97.5%]
0 Intercept -0.27 0.37 -0.73 0.46 -0.99 0.45
1 x1 0.06 0.32 0.19 0.85 -0.56 0.68
2. Multiple binary logistic regression
>>> np.random.seed(42)
>>> z = np.random.normal(size=30)
>>> X = np.column_stack((x, z))
>>> lom = logistic_regression(X, y)
>>> print(lom['coef'].values)
[-0.34933805 -0.0226106 -0.39453532]
3. Using a Pandas DataFrame
>>> import pandas as pd
>>> df = pd.DataFrame({'x': x, 'y': y, 'z': z})
>>> lom = logistic_regression(df[['x', 'z']], df['y'])
>>> print(lom['coef'].values)
[-0.34933805 -0.0226106 -0.39453532]
4. Return only the coefficients
>>> logistic_regression(X, y, coef_only=True)
array([-0.34933805, -0.0226106 , -0.39453532])
4. Passing custom parameters to sklearn
>>> lom = logistic_regression(X, y, solver='sag', max_iter=10000)
>>> print(lom['coef'].values)
[-0.34941889 -0.02261911 -0.39451064]
|
### Input:
(Multiple) Binary logistic regression.
Parameters
----------
X : np.array or list
Predictor(s). Shape = (n_samples, n_features) or (n_samples,).
y : np.array or list
Dependent variable. Shape = (n_samples).
Must be binary.
coef_only : bool
If True, return only the regression coefficients.
alpha : float
Alpha value used for the confidence intervals.
CI = [alpha / 2 ; 1 - alpha / 2]
as_dataframe : bool
If True, returns a pandas DataFrame. If False, returns a dictionnary.
remove_na : bool
If True, apply a listwise deletion of missing values (i.e. the entire
row is removed).
**kwargs : optional
Optional arguments passed to sklearn.linear_model.LogisticRegression.
Returns
-------
stats : dataframe or dict
Logistic regression summary::
'names' : name of variable(s) in the model (e.g. x1, x2...)
'coef' : regression coefficients
'se' : standard error
'z' : z-scores
'pval' : two-tailed p-values
'CI[2.5%]' : lower confidence interval
'CI[97.5%]' : upper confidence interval
Notes
-----
This is a wrapper around the
:py:class:`sklearn.linear_model.LogisticRegression` class.
Results have been compared against statsmodels and JASP.
Note that the first coefficient is always the constant term (intercept) of
the model.
This function will not run if NaN values are either present in the target
or predictors variables. Please remove them before runing the function.
Adapted from a code found at
https://gist.github.com/rspeare/77061e6e317896be29c6de9a85db301d
Examples
--------
1. Simple binary logistic regression
>>> import numpy as np
>>> from pingouin import logistic_regression
>>> np.random.seed(123)
>>> x = np.random.normal(size=30)
>>> y = np.random.randint(0, 2, size=30)
>>> lom = logistic_regression(x, y)
>>> lom.round(2)
names coef se z pval CI[2.5%] CI[97.5%]
0 Intercept -0.27 0.37 -0.73 0.46 -0.99 0.45
1 x1 0.06 0.32 0.19 0.85 -0.56 0.68
2. Multiple binary logistic regression
>>> np.random.seed(42)
>>> z = np.random.normal(size=30)
>>> X = np.column_stack((x, z))
>>> lom = logistic_regression(X, y)
>>> print(lom['coef'].values)
[-0.34933805 -0.0226106 -0.39453532]
3. Using a Pandas DataFrame
>>> import pandas as pd
>>> df = pd.DataFrame({'x': x, 'y': y, 'z': z})
>>> lom = logistic_regression(df[['x', 'z']], df['y'])
>>> print(lom['coef'].values)
[-0.34933805 -0.0226106 -0.39453532]
4. Return only the coefficients
>>> logistic_regression(X, y, coef_only=True)
array([-0.34933805, -0.0226106 , -0.39453532])
4. Passing custom parameters to sklearn
>>> lom = logistic_regression(X, y, solver='sag', max_iter=10000)
>>> print(lom['coef'].values)
[-0.34941889 -0.02261911 -0.39451064]
### Response:
#vtb
def logistic_regression(X, y, coef_only=False, alpha=0.05,
as_dataframe=True, remove_na=False, **kwargs):
from pingouin.utils import _is_sklearn_installed
_is_sklearn_installed(raise_error=True)
from sklearn.linear_model import LogisticRegression
if isinstance(X, pd.DataFrame):
names = X.keys().tolist()
elif isinstance(X, pd.Series):
names = [X.name]
else:
names = []
assert 0 < alpha < 1
assert y.ndim == 1,
X = np.asarray(X)
y = np.asarray(y)
if X.ndim == 1:
X = X[..., np.newaxis]
if remove_na:
X, y = rm_na(X, y[..., np.newaxis], paired=True, axis=)
y = np.squeeze(y)
y_gd = np.isfinite(y).all()
X_gd = np.isfinite(X).all()
assert y_gd,
assert X_gd,
assert y.shape[0] == X.shape[0],
if np.unique(y).size != 2:
raise ValueError()
if not names:
names = [ + str(i + 1) for i in range(X.shape[1])]
names.insert(0, "Intercept")
if not in kwargs:
kwargs[] =
if not in kwargs:
kwargs[] =
lom = LogisticRegression(**kwargs)
lom.fit(X, y)
coef = np.append(lom.intercept_, lom.coef_)
if coef_only:
return coef
X_design = np.column_stack((np.ones(X.shape[0]), X))
n, p = X_design.shape
denom = (2 * (1 + np.cosh(lom.decision_function(X))))
denom = np.tile(denom, (p, 1)).T
fim = np.dot((X_design / denom).T, X_design)
crao = np.linalg.inv(fim)
se = np.sqrt(np.diag(crao))
z_scores = coef / se
pval = np.array([2 * norm.sf(abs(z)) for z in z_scores])
crit = norm.ppf(1 - alpha / 2)
ll = coef - crit * se
ul = coef + crit * se
ll_name = % (100 * alpha / 2)
ul_name = % (100 * (1 - alpha / 2))
stats = {: names, : coef, : se, : z_scores,
: pval, ll_name: ll, ul_name: ul}
if as_dataframe:
return pd.DataFrame.from_dict(stats)
else:
return stats
|
#vtb
def _generate_iam_invoke_role_policy(self):
invoke_pol = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Resource": ["*"],
"Action": ["lambda:InvokeFunction"]
}
]
}
self.tf_conf[][][] = {
: self.resource_name + ,
: ,
: json.dumps(invoke_pol)
}
|
Generate the policy for the IAM role used by API Gateway to invoke
the lambda function.
Terraform name: aws_iam_role.invoke_role
|
### Input:
Generate the policy for the IAM role used by API Gateway to invoke
the lambda function.
Terraform name: aws_iam_role.invoke_role
### Response:
#vtb
def _generate_iam_invoke_role_policy(self):
invoke_pol = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Resource": ["*"],
"Action": ["lambda:InvokeFunction"]
}
]
}
self.tf_conf[][][] = {
: self.resource_name + ,
: ,
: json.dumps(invoke_pol)
}
|
#vtb
def _dusty_hosts_config(hosts_specs):
rules = .join([.format(spec[], spec[]) for spec in hosts_specs])
return config_file.create_config_section(rules)
|
Return a string of all host rules required to match
the given spec. This string is wrapped in the Dusty hosts
header and footer so it can be easily removed later.
|
### Input:
Return a string of all host rules required to match
the given spec. This string is wrapped in the Dusty hosts
header and footer so it can be easily removed later.
### Response:
#vtb
def _dusty_hosts_config(hosts_specs):
rules = .join([.format(spec[], spec[]) for spec in hosts_specs])
return config_file.create_config_section(rules)
|
#vtb
def modify_schema(self, field_schema):
field_schema[] = self.maximum_value
if self.exclusive:
field_schema[] = True
|
Modify field schema.
|
### Input:
Modify field schema.
### Response:
#vtb
def modify_schema(self, field_schema):
field_schema[] = self.maximum_value
if self.exclusive:
field_schema[] = True
|
#vtb
def normalize_url(url):
if not url or len(url) == 0:
return
if not url.startswith():
url = + url
if len(url) > 1 and url.endswith():
url = url[0:len(url) - 1]
return url
|
Return a normalized url with trailing and without leading slash.
>>> normalize_url(None)
'/'
>>> normalize_url('/')
'/'
>>> normalize_url('/foo/bar')
'/foo/bar'
>>> normalize_url('foo/bar')
'/foo/bar'
>>> normalize_url('/foo/bar/')
'/foo/bar'
|
### Input:
Return a normalized url with trailing and without leading slash.
>>> normalize_url(None)
'/'
>>> normalize_url('/')
'/'
>>> normalize_url('/foo/bar')
'/foo/bar'
>>> normalize_url('foo/bar')
'/foo/bar'
>>> normalize_url('/foo/bar/')
'/foo/bar'
### Response:
#vtb
def normalize_url(url):
if not url or len(url) == 0:
return
if not url.startswith():
url = + url
if len(url) > 1 and url.endswith():
url = url[0:len(url) - 1]
return url
|
#vtb
def visualize(G, settings, filename="dependencies", no_graphviz=False):
error = settings["error"]
if no_graphviz:
write_dot_file(G, filename)
return 0
write_dot_file(G, "tempdot")
renderer = "svg"
if re.search("\.jpg$", filename, re.IGNORECASE):
renderer = "jpg"
elif re.search("\.jpeg$", filename, re.IGNORECASE):
renderer = "jpg"
elif re.search("\.svg$", filename, re.IGNORECASE):
renderer = "svg"
elif re.search("\.png$", filename, re.IGNORECASE):
renderer = "png"
elif re.search("\.gif$", filename, re.IGNORECASE):
renderer = "gif"
elif re.search("\.ps$", filename, re.IGNORECASE):
renderer = "ps"
elif re.search("\.pdf$", filename, re.IGNORECASE):
renderer = "pdf"
else:
renderer = "svg"
filename += ".svg"
command = "dot -T{} tempdot -o {}".format(renderer, filename)
p = Popen(command, shell=True)
p.communicate()
if p.returncode:
errmes = "Either graphviz is not installed, or its not on PATH"
os.remove("tempdot")
error(errmes)
sys.exit(1)
os.remove("tempdot")
return 0
|
Uses networkX to draw a graphviz dot file either (a) calls the
graphviz command "dot" to turn it into a SVG and remove the
dotfile (default), or (b) if no_graphviz is True, just output
the graphviz dot file
Args:
a NetworkX DiGraph
the settings dictionary
a filename (a default is provided
a flag indicating whether graphviz should *not* be called
Returns:
0 if everything worked
will cause fatal error on failure
|
### Input:
Uses networkX to draw a graphviz dot file either (a) calls the
graphviz command "dot" to turn it into a SVG and remove the
dotfile (default), or (b) if no_graphviz is True, just output
the graphviz dot file
Args:
a NetworkX DiGraph
the settings dictionary
a filename (a default is provided
a flag indicating whether graphviz should *not* be called
Returns:
0 if everything worked
will cause fatal error on failure
### Response:
#vtb
def visualize(G, settings, filename="dependencies", no_graphviz=False):
error = settings["error"]
if no_graphviz:
write_dot_file(G, filename)
return 0
write_dot_file(G, "tempdot")
renderer = "svg"
if re.search("\.jpg$", filename, re.IGNORECASE):
renderer = "jpg"
elif re.search("\.jpeg$", filename, re.IGNORECASE):
renderer = "jpg"
elif re.search("\.svg$", filename, re.IGNORECASE):
renderer = "svg"
elif re.search("\.png$", filename, re.IGNORECASE):
renderer = "png"
elif re.search("\.gif$", filename, re.IGNORECASE):
renderer = "gif"
elif re.search("\.ps$", filename, re.IGNORECASE):
renderer = "ps"
elif re.search("\.pdf$", filename, re.IGNORECASE):
renderer = "pdf"
else:
renderer = "svg"
filename += ".svg"
command = "dot -T{} tempdot -o {}".format(renderer, filename)
p = Popen(command, shell=True)
p.communicate()
if p.returncode:
errmes = "Either graphviz is not installed, or its not on PATH"
os.remove("tempdot")
error(errmes)
sys.exit(1)
os.remove("tempdot")
return 0
|
#vtb
def check_row(state, index, missing_msg=None, expand_msg=None):
if missing_msg is None:
missing_msg = "The system wants to verify row {{index + 1}} of your query result, but couldnre trying to fetch the row at index {}".format(
n_sol, index
)
)
if index >= n_stu:
_msg = state.build_message(missing_msg, fmt_kwargs=msg_kwargs)
state.do_test(_msg)
return state.to_child(
append_message={"msg": expand_msg, "kwargs": msg_kwargs},
student_result={k: [v[index]] for k, v in stu_res.items()},
solution_result={k: [v[index]] for k, v in sol_res.items()},
)
|
Zoom in on a particular row in the query result, by index.
After zooming in on a row, which is represented as a single-row query result,
you can use ``has_equal_value()`` to verify whether all columns in the zoomed in solution
query result have a match in the student query result.
Args:
index: index of the row to zoom in on (zero-based indexed).
missing_msg: if specified, this overrides the automatically generated feedback
message in case the row is missing in the student query result.
expand_msg: if specified, this overrides the automatically generated feedback
message that is prepended to feedback messages that are thrown
further in the SCT chain.
:Example:
Suppose we are testing the following SELECT statements
* solution: ``SELECT artist_id as id, name FROM artists LIMIT 5``
* student : ``SELECT artist_id, name FROM artists LIMIT 2``
We can write the following SCTs: ::
# fails, since row 3 at index 2 is not in the student result
Ex().check_row(2)
# passes, since row 2 at index 1 is in the student result
Ex().check_row(0)
|
### Input:
Zoom in on a particular row in the query result, by index.
After zooming in on a row, which is represented as a single-row query result,
you can use ``has_equal_value()`` to verify whether all columns in the zoomed in solution
query result have a match in the student query result.
Args:
index: index of the row to zoom in on (zero-based indexed).
missing_msg: if specified, this overrides the automatically generated feedback
message in case the row is missing in the student query result.
expand_msg: if specified, this overrides the automatically generated feedback
message that is prepended to feedback messages that are thrown
further in the SCT chain.
:Example:
Suppose we are testing the following SELECT statements
* solution: ``SELECT artist_id as id, name FROM artists LIMIT 5``
* student : ``SELECT artist_id, name FROM artists LIMIT 2``
We can write the following SCTs: ::
# fails, since row 3 at index 2 is not in the student result
Ex().check_row(2)
# passes, since row 2 at index 1 is in the student result
Ex().check_row(0)
### Response:
#vtb
def check_row(state, index, missing_msg=None, expand_msg=None):
if missing_msg is None:
missing_msg = "The system wants to verify row {{index + 1}} of your query result, but couldnre trying to fetch the row at index {}".format(
n_sol, index
)
)
if index >= n_stu:
_msg = state.build_message(missing_msg, fmt_kwargs=msg_kwargs)
state.do_test(_msg)
return state.to_child(
append_message={"msg": expand_msg, "kwargs": msg_kwargs},
student_result={k: [v[index]] for k, v in stu_res.items()},
solution_result={k: [v[index]] for k, v in sol_res.items()},
)
|
#vtb
def replace(self, **kwargs):
return SlashSeparatedCourseKey(
kwargs.pop(, self.org),
kwargs.pop(, self.course),
kwargs.pop(, self.run),
**kwargs
)
|
Return: a new :class:`SlashSeparatedCourseKey` with specific ``kwargs`` replacing
their corresponding values.
Using CourseLocator's replace function results in a mismatch of __init__ args and kwargs.
Replace tries to instantiate a SlashSeparatedCourseKey object with CourseLocator args and kwargs.
|
### Input:
Return: a new :class:`SlashSeparatedCourseKey` with specific ``kwargs`` replacing
their corresponding values.
Using CourseLocator's replace function results in a mismatch of __init__ args and kwargs.
Replace tries to instantiate a SlashSeparatedCourseKey object with CourseLocator args and kwargs.
### Response:
#vtb
def replace(self, **kwargs):
return SlashSeparatedCourseKey(
kwargs.pop(, self.org),
kwargs.pop(, self.course),
kwargs.pop(, self.run),
**kwargs
)
|
#vtb
def dtype(self):
try:
return self.data.dtype
except AttributeError:
return numpy.dtype( % (self._sample_type, self._sample_bytes))
|
Pixel data type.
|
### Input:
Pixel data type.
### Response:
#vtb
def dtype(self):
try:
return self.data.dtype
except AttributeError:
return numpy.dtype( % (self._sample_type, self._sample_bytes))
|
#vtb
def reverse(view, *args, **kwargs):
s `reverse`
as `args` and `kwargs` arguments, respectively.
The special optional keyword argument `query` is a dictionary of query (or GET) parameters
that can be appended to the `reverse`d URL.
Example:
reverse(, categoryId = 5, query = {: 2})
is equivalent to
django.core.urlresolvers.reverse(, kwargs = {: 5}) +
queryquery{}?{}'.format(base, django.utils.http.urlencode(query))
else:
return base
|
User-friendly reverse. Pass arguments and keyword arguments to Django's `reverse`
as `args` and `kwargs` arguments, respectively.
The special optional keyword argument `query` is a dictionary of query (or GET) parameters
that can be appended to the `reverse`d URL.
Example:
reverse('products:category', categoryId = 5, query = {'page': 2})
is equivalent to
django.core.urlresolvers.reverse('products:category', kwargs = {'categoryId': 5}) + '?page=2'
|
### Input:
User-friendly reverse. Pass arguments and keyword arguments to Django's `reverse`
as `args` and `kwargs` arguments, respectively.
The special optional keyword argument `query` is a dictionary of query (or GET) parameters
that can be appended to the `reverse`d URL.
Example:
reverse('products:category', categoryId = 5, query = {'page': 2})
is equivalent to
django.core.urlresolvers.reverse('products:category', kwargs = {'categoryId': 5}) + '?page=2'
### Response:
#vtb
def reverse(view, *args, **kwargs):
s `reverse`
as `args` and `kwargs` arguments, respectively.
The special optional keyword argument `query` is a dictionary of query (or GET) parameters
that can be appended to the `reverse`d URL.
Example:
reverse(, categoryId = 5, query = {: 2})
is equivalent to
django.core.urlresolvers.reverse(, kwargs = {: 5}) +
queryquery{}?{}'.format(base, django.utils.http.urlencode(query))
else:
return base
|
#vtb
def hacking_assert_equal(logical_line, noqa):
r
if noqa:
return
methods = [, ]
for method in methods:
start = logical_line.find( % method) + 1
if start != 0:
break
else:
return
comparisons = [ast.Eq, ast.NotEq]
checker = AssertTrueFalseChecker(methods, comparisons)
checker.visit(ast.parse(logical_line))
if checker.error:
yield start,
|
r"""Check that self.assertEqual and self.assertNotEqual are used.
Okay: self.assertEqual(x, y)
Okay: self.assertNotEqual(x, y)
H204: self.assertTrue(x == y)
H204: self.assertTrue(x != y)
H204: self.assertFalse(x == y)
H204: self.assertFalse(x != y)
|
### Input:
r"""Check that self.assertEqual and self.assertNotEqual are used.
Okay: self.assertEqual(x, y)
Okay: self.assertNotEqual(x, y)
H204: self.assertTrue(x == y)
H204: self.assertTrue(x != y)
H204: self.assertFalse(x == y)
H204: self.assertFalse(x != y)
### Response:
#vtb
def hacking_assert_equal(logical_line, noqa):
r
if noqa:
return
methods = [, ]
for method in methods:
start = logical_line.find( % method) + 1
if start != 0:
break
else:
return
comparisons = [ast.Eq, ast.NotEq]
checker = AssertTrueFalseChecker(methods, comparisons)
checker.visit(ast.parse(logical_line))
if checker.error:
yield start,
|
#vtb
def delete_feed(self, pid):
logger.info("delete_feed(pid=\"%s\") [lid=%s]", pid, self.__lid)
return self.__delete_point(R_FEED, pid)
|
Delete a feed, identified by its local id.
Raises [IOTException](./Exceptions.m.html#IoticAgent.IOT.Exceptions.IOTException)
containing the error if the infrastructure detects a problem
Raises [LinkException](../Core/AmqpLink.m.html#IoticAgent.Core.AmqpLink.LinkException)
if there is a communications problem between you and the infrastructure
`pid` (required) (string) local identifier of your feed you want to delete
|
### Input:
Delete a feed, identified by its local id.
Raises [IOTException](./Exceptions.m.html#IoticAgent.IOT.Exceptions.IOTException)
containing the error if the infrastructure detects a problem
Raises [LinkException](../Core/AmqpLink.m.html#IoticAgent.Core.AmqpLink.LinkException)
if there is a communications problem between you and the infrastructure
`pid` (required) (string) local identifier of your feed you want to delete
### Response:
#vtb
def delete_feed(self, pid):
logger.info("delete_feed(pid=\"%s\") [lid=%s]", pid, self.__lid)
return self.__delete_point(R_FEED, pid)
|
#vtb
def send(self, url, data, headers):
eventlet.spawn(self._send_payload, (url, data, headers))
|
Spawn an async request to a remote webserver.
|
### Input:
Spawn an async request to a remote webserver.
### Response:
#vtb
def send(self, url, data, headers):
eventlet.spawn(self._send_payload, (url, data, headers))
|
#vtb
def team(self, name=None, id=None, is_hidden=False, **kwargs):
_teams = self.teams(name=name, id=id, **kwargs)
if len(_teams) == 0:
raise NotFoundError("No team criteria matches")
if len(_teams) != 1:
raise MultipleFoundError("Multiple teams fit criteria")
return _teams[0]
|
Team of KE-chain.
Provides a team of :class:`Team` of KE-chain. You can filter on team name or provide id.
:param name: (optional) team name to filter
:type name: basestring or None
:param id: (optional) id of the user to filter
:type id: basestring or None
:param is_hidden: (optional) boolean to show non-hidden or hidden teams or both (None) (default is non-hidden)
:type is_hidden: bool or None
:param kwargs: Additional filtering keyword=value arguments
:type kwargs: dict or None
:return: List of :class:`Team`
:raises NotFoundError: when a user could not be found
:raises MultipleFoundError: when more than a single user can be found
|
### Input:
Team of KE-chain.
Provides a team of :class:`Team` of KE-chain. You can filter on team name or provide id.
:param name: (optional) team name to filter
:type name: basestring or None
:param id: (optional) id of the user to filter
:type id: basestring or None
:param is_hidden: (optional) boolean to show non-hidden or hidden teams or both (None) (default is non-hidden)
:type is_hidden: bool or None
:param kwargs: Additional filtering keyword=value arguments
:type kwargs: dict or None
:return: List of :class:`Team`
:raises NotFoundError: when a user could not be found
:raises MultipleFoundError: when more than a single user can be found
### Response:
#vtb
def team(self, name=None, id=None, is_hidden=False, **kwargs):
_teams = self.teams(name=name, id=id, **kwargs)
if len(_teams) == 0:
raise NotFoundError("No team criteria matches")
if len(_teams) != 1:
raise MultipleFoundError("Multiple teams fit criteria")
return _teams[0]
|
#vtb
def _extend(self, newsub):
current = self
while hasattr(current, ):
current = current._sub
_set(current, , newsub)
try:
object.__delattr__(self, )
except:
pass
|
Append a subclass (extension) after the base class. For parser internal use.
|
### Input:
Append a subclass (extension) after the base class. For parser internal use.
### Response:
#vtb
def _extend(self, newsub):
current = self
while hasattr(current, ):
current = current._sub
_set(current, , newsub)
try:
object.__delattr__(self, )
except:
pass
|
#vtb
def subclass(self, klass):
return bool(lib.EnvSubclassP(self._env, self._cls, klass._cls))
|
True if the Class is a subclass of the given one.
|
### Input:
True if the Class is a subclass of the given one.
### Response:
#vtb
def subclass(self, klass):
return bool(lib.EnvSubclassP(self._env, self._cls, klass._cls))
|
#vtb
def put(self, item, *args, **kwargs):
if not self.enabled:
return
timeout = kwargs.pop(, None)
if timeout is None:
timeout = self.default_timeout
cache_key = self.make_key(args, kwargs)
with self._cache_lock:
self._cache[cache_key] = (time() + timeout, item)
|
Put an item into the cache, for this combination of args and kwargs.
Args:
*args: any arguments.
**kwargs: any keyword arguments. If ``timeout`` is specified as one
of the keyword arguments, the item will remain available
for retrieval for ``timeout`` seconds. If ``timeout`` is
`None` or not specified, the ``default_timeout`` for this
cache will be used. Specify a ``timeout`` of 0 (or ensure that
the ``default_timeout`` for this cache is 0) if this item is
not to be cached.
|
### Input:
Put an item into the cache, for this combination of args and kwargs.
Args:
*args: any arguments.
**kwargs: any keyword arguments. If ``timeout`` is specified as one
of the keyword arguments, the item will remain available
for retrieval for ``timeout`` seconds. If ``timeout`` is
`None` or not specified, the ``default_timeout`` for this
cache will be used. Specify a ``timeout`` of 0 (or ensure that
the ``default_timeout`` for this cache is 0) if this item is
not to be cached.
### Response:
#vtb
def put(self, item, *args, **kwargs):
if not self.enabled:
return
timeout = kwargs.pop(, None)
if timeout is None:
timeout = self.default_timeout
cache_key = self.make_key(args, kwargs)
with self._cache_lock:
self._cache[cache_key] = (time() + timeout, item)
|
#vtb
def add_arguments(self, parser):
parser.add_argument(
,
action=,
default=False,
help="Output what wet actually do it."
)
parser.add_argument(
, ,
default=None,
help=u"Restrict cleanup to tasks matching the named task.",
)
parser.add_argument(
, ,
type=int,
default=30,
help=u"Only delete tasks that have been resolved for at least the specified number of days (default: 30)",
)
|
Add arguments to the command parser.
Uses argparse syntax. See documentation at
https://docs.python.org/3/library/argparse.html.
|
### Input:
Add arguments to the command parser.
Uses argparse syntax. See documentation at
https://docs.python.org/3/library/argparse.html.
### Response:
#vtb
def add_arguments(self, parser):
parser.add_argument(
,
action=,
default=False,
help="Output what wet actually do it."
)
parser.add_argument(
, ,
default=None,
help=u"Restrict cleanup to tasks matching the named task.",
)
parser.add_argument(
, ,
type=int,
default=30,
help=u"Only delete tasks that have been resolved for at least the specified number of days (default: 30)",
)
|
#vtb
def render_mail_template(subject_template, body_template, context):
try:
subject = strip_spaces(render_to_string(subject_template, context))
body = render_to_string(body_template, context)
finally:
pass
return subject, body
|
Renders both the subject and body templates in the given context.
Returns a tuple (subject, body) of the result.
|
### Input:
Renders both the subject and body templates in the given context.
Returns a tuple (subject, body) of the result.
### Response:
#vtb
def render_mail_template(subject_template, body_template, context):
try:
subject = strip_spaces(render_to_string(subject_template, context))
body = render_to_string(body_template, context)
finally:
pass
return subject, body
|
#vtb
def use_strategy(new_strategy):
def wrapped_class(klass):
klass._meta.strategy = new_strategy
return klass
return wrapped_class
|
Force the use of a different strategy.
This is an alternative to setting default_strategy in the class definition.
|
### Input:
Force the use of a different strategy.
This is an alternative to setting default_strategy in the class definition.
### Response:
#vtb
def use_strategy(new_strategy):
def wrapped_class(klass):
klass._meta.strategy = new_strategy
return klass
return wrapped_class
|
#vtb
def cart_create(self, items, **kwargs):
if isinstance(items, dict):
items = [items]
if len(items) > 10:
raise CartException("You canItem.{0}.OfferListingIdItem.{0}.Quantityoffer_idquantity']
response = self.api.CartCreate(**kwargs)
root = objectify.fromstring(response)
return AmazonCart(root)
|
CartCreate.
:param items:
A dictionary containing the items to be added to the cart.
Or a list containing these dictionaries.
It is not possible to create an empty cart!
example: [{'offer_id': 'rt2ofih3f389nwiuhf8934z87o3f4h',
'quantity': 1}]
:return:
An :class:`~.AmazonCart`.
|
### Input:
CartCreate.
:param items:
A dictionary containing the items to be added to the cart.
Or a list containing these dictionaries.
It is not possible to create an empty cart!
example: [{'offer_id': 'rt2ofih3f389nwiuhf8934z87o3f4h',
'quantity': 1}]
:return:
An :class:`~.AmazonCart`.
### Response:
#vtb
def cart_create(self, items, **kwargs):
if isinstance(items, dict):
items = [items]
if len(items) > 10:
raise CartException("You canItem.{0}.OfferListingIdItem.{0}.Quantityoffer_idquantity']
response = self.api.CartCreate(**kwargs)
root = objectify.fromstring(response)
return AmazonCart(root)
|
#vtb
def mel_to_hz(mels, htk=False):
mels = np.asanyarray(mels)
if htk:
return 700.0 * (10.0**(mels / 2595.0) - 1.0)
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mels
min_log_hz = 1000.0
min_log_mel = (min_log_hz - f_min) / f_sp
logstep = np.log(6.4) / 27.0
if mels.ndim:
log_t = (mels >= min_log_mel)
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
elif mels >= min_log_mel:
freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))
return freqs
|
Convert mel bin numbers to frequencies
Examples
--------
>>> librosa.mel_to_hz(3)
200.
>>> librosa.mel_to_hz([1,2,3,4,5])
array([ 66.667, 133.333, 200. , 266.667, 333.333])
Parameters
----------
mels : np.ndarray [shape=(n,)], float
mel bins to convert
htk : bool
use HTK formula instead of Slaney
Returns
-------
frequencies : np.ndarray [shape=(n,)]
input mels in Hz
See Also
--------
hz_to_mel
|
### Input:
Convert mel bin numbers to frequencies
Examples
--------
>>> librosa.mel_to_hz(3)
200.
>>> librosa.mel_to_hz([1,2,3,4,5])
array([ 66.667, 133.333, 200. , 266.667, 333.333])
Parameters
----------
mels : np.ndarray [shape=(n,)], float
mel bins to convert
htk : bool
use HTK formula instead of Slaney
Returns
-------
frequencies : np.ndarray [shape=(n,)]
input mels in Hz
See Also
--------
hz_to_mel
### Response:
#vtb
def mel_to_hz(mels, htk=False):
mels = np.asanyarray(mels)
if htk:
return 700.0 * (10.0**(mels / 2595.0) - 1.0)
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mels
min_log_hz = 1000.0
min_log_mel = (min_log_hz - f_min) / f_sp
logstep = np.log(6.4) / 27.0
if mels.ndim:
log_t = (mels >= min_log_mel)
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
elif mels >= min_log_mel:
freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))
return freqs
|
#vtb
def prepare_data(self):
result = {}
for field in self.fields:
data = self.data.get(field.name)
result[field.name] = field.prepare_data(data)
return result
|
Prepare widget data for template.
|
### Input:
Prepare widget data for template.
### Response:
#vtb
def prepare_data(self):
result = {}
for field in self.fields:
data = self.data.get(field.name)
result[field.name] = field.prepare_data(data)
return result
|
#vtb
def compute_ssm(X, metric="seuclidean"):
D = distance.pdist(X, metric=metric)
D = distance.squareform(D)
D /= D.max()
return 1 - D
|
Computes the self-similarity matrix of X.
|
### Input:
Computes the self-similarity matrix of X.
### Response:
#vtb
def compute_ssm(X, metric="seuclidean"):
D = distance.pdist(X, metric=metric)
D = distance.squareform(D)
D /= D.max()
return 1 - D
|
#vtb
def id_request(self, device_id):
self.logger.info("\nid_request for device %s", device_id)
device_id = device_id.upper()
self.direct_command(device_id, , )
sleep(2)
status = self.get_buffer_status(device_id)
if not status:
sleep(1)
status = self.get_buffer_status(device_id)
return status
|
Get the device for the ID. ID request can return device type (cat/subcat),
firmware ver, etc. Cat is status['is_high'], sub cat is status['id_mid']
|
### Input:
Get the device for the ID. ID request can return device type (cat/subcat),
firmware ver, etc. Cat is status['is_high'], sub cat is status['id_mid']
### Response:
#vtb
def id_request(self, device_id):
self.logger.info("\nid_request for device %s", device_id)
device_id = device_id.upper()
self.direct_command(device_id, , )
sleep(2)
status = self.get_buffer_status(device_id)
if not status:
sleep(1)
status = self.get_buffer_status(device_id)
return status
|
#vtb
def on_send(self, frame):
if frame.cmd == CMD_CONNECT or frame.cmd == CMD_STOMP:
if self.heartbeats != (0, 0):
frame.headers[HDR_HEARTBEAT] = % self.heartbeats
if self.next_outbound_heartbeat is not None:
self.next_outbound_heartbeat = monotonic() + self.send_sleep
|
Add the heartbeat header to the frame when connecting, and bump
next outbound heartbeat timestamp.
:param Frame frame: the Frame object
|
### Input:
Add the heartbeat header to the frame when connecting, and bump
next outbound heartbeat timestamp.
:param Frame frame: the Frame object
### Response:
#vtb
def on_send(self, frame):
if frame.cmd == CMD_CONNECT or frame.cmd == CMD_STOMP:
if self.heartbeats != (0, 0):
frame.headers[HDR_HEARTBEAT] = % self.heartbeats
if self.next_outbound_heartbeat is not None:
self.next_outbound_heartbeat = monotonic() + self.send_sleep
|
#vtb
def create_udf_node(name, fields):
definition = next(_udf_name_cache[name])
external_name = .format(name, definition)
return type(external_name, (BigQueryUDFNode,), fields)
|
Create a new UDF node type.
Parameters
----------
name : str
Then name of the UDF node
fields : OrderedDict
Mapping of class member name to definition
Returns
-------
result : type
A new BigQueryUDFNode subclass
|
### Input:
Create a new UDF node type.
Parameters
----------
name : str
Then name of the UDF node
fields : OrderedDict
Mapping of class member name to definition
Returns
-------
result : type
A new BigQueryUDFNode subclass
### Response:
#vtb
def create_udf_node(name, fields):
definition = next(_udf_name_cache[name])
external_name = .format(name, definition)
return type(external_name, (BigQueryUDFNode,), fields)
|
#vtb
def visit_Module(self, node):
deps = sorted(self.dependencies)
headers = [Include(os.path.join("pythonic", "include", *t) + ".hpp")
for t in deps]
headers += [Include(os.path.join("pythonic", *t) + ".hpp")
for t in deps]
decls_n_defns = [self.visit(stmt) for stmt in node.body]
decls, defns = zip(*[s for s in decls_n_defns if s])
nsbody = [s for ls in decls + defns for s in ls]
ns = Namespace(pythran_ward + self.passmanager.module_name, nsbody)
self.result = CompilationUnit(headers + [ns])
|
Build a compilation unit.
|
### Input:
Build a compilation unit.
### Response:
#vtb
def visit_Module(self, node):
deps = sorted(self.dependencies)
headers = [Include(os.path.join("pythonic", "include", *t) + ".hpp")
for t in deps]
headers += [Include(os.path.join("pythonic", *t) + ".hpp")
for t in deps]
decls_n_defns = [self.visit(stmt) for stmt in node.body]
decls, defns = zip(*[s for s in decls_n_defns if s])
nsbody = [s for ls in decls + defns for s in ls]
ns = Namespace(pythran_ward + self.passmanager.module_name, nsbody)
self.result = CompilationUnit(headers + [ns])
|
#vtb
def adjust_internal_tacking_values(self,
min_non_zero_index,
max_index,
total_added):
if max_index >= 0:
max_value = self.get_highest_equivalent_value(self.get_value_from_index(max_index))
self.max_value = max(self.max_value, max_value)
if min_non_zero_index >= 0:
min_value = self.get_value_from_index(min_non_zero_index)
self.min_value = min(self.min_value, min_value)
self.total_count += total_added
|
Called during decoding and add to adjust the new min/max value and
total count
Args:
min_non_zero_index min nonzero index of all added counts (-1 if none)
max_index max index of all added counts (-1 if none)
|
### Input:
Called during decoding and add to adjust the new min/max value and
total count
Args:
min_non_zero_index min nonzero index of all added counts (-1 if none)
max_index max index of all added counts (-1 if none)
### Response:
#vtb
def adjust_internal_tacking_values(self,
min_non_zero_index,
max_index,
total_added):
if max_index >= 0:
max_value = self.get_highest_equivalent_value(self.get_value_from_index(max_index))
self.max_value = max(self.max_value, max_value)
if min_non_zero_index >= 0:
min_value = self.get_value_from_index(min_non_zero_index)
self.min_value = min(self.min_value, min_value)
self.total_count += total_added
|
#vtb
def has_method(obj, name):
if obj == None:
raise Exception("Object cannot be null")
if name == None:
raise Exception("Method name cannot be null")
name = name.lower()
for method_name in dir(obj):
if method_name.lower() != name:
continue
method = getattr(obj, method_name)
if MethodReflector._is_method(method, method_name):
return True
return False
|
Checks if object has a method with specified name.
:param obj: an object to introspect.
:param name: a name of the method to check.
:return: true if the object has the method and false if it doesn't.
|
### Input:
Checks if object has a method with specified name.
:param obj: an object to introspect.
:param name: a name of the method to check.
:return: true if the object has the method and false if it doesn't.
### Response:
#vtb
def has_method(obj, name):
if obj == None:
raise Exception("Object cannot be null")
if name == None:
raise Exception("Method name cannot be null")
name = name.lower()
for method_name in dir(obj):
if method_name.lower() != name:
continue
method = getattr(obj, method_name)
if MethodReflector._is_method(method, method_name):
return True
return False
|
#vtb
def copy(self, deep=True):
data = self._data.copy(deep=deep)
return self._constructor(data).__finalize__(self)
|
Make a copy of this object's indices and data.
When ``deep=True`` (default), a new object will be created with a
copy of the calling object's data and indices. Modifications to
the data or indices of the copy will not be reflected in the
original object (see notes below).
When ``deep=False``, a new object will be created without copying
the calling object's data or index (only references to the data
and index are copied). Any changes to the data of the original
will be reflected in the shallow copy (and vice versa).
Parameters
----------
deep : bool, default True
Make a deep copy, including a copy of the data and the indices.
With ``deep=False`` neither the indices nor the data are copied.
Returns
-------
copy : Series, DataFrame or Panel
Object type matches caller.
Notes
-----
When ``deep=True``, data is copied but actual Python objects
will not be copied recursively, only the reference to the object.
This is in contrast to `copy.deepcopy` in the Standard Library,
which recursively copies object data (see examples below).
While ``Index`` objects are copied when ``deep=True``, the underlying
numpy array is not copied for performance reasons. Since ``Index`` is
immutable, the underlying data can be safely shared and a copy
is not needed.
Examples
--------
>>> s = pd.Series([1, 2], index=["a", "b"])
>>> s
a 1
b 2
dtype: int64
>>> s_copy = s.copy()
>>> s_copy
a 1
b 2
dtype: int64
**Shallow copy versus default (deep) copy:**
>>> s = pd.Series([1, 2], index=["a", "b"])
>>> deep = s.copy()
>>> shallow = s.copy(deep=False)
Shallow copy shares data and index with original.
>>> s is shallow
False
>>> s.values is shallow.values and s.index is shallow.index
True
Deep copy has own copy of data and index.
>>> s is deep
False
>>> s.values is deep.values or s.index is deep.index
False
Updates to the data shared by shallow copy and original is reflected
in both; deep copy remains unchanged.
>>> s[0] = 3
>>> shallow[1] = 4
>>> s
a 3
b 4
dtype: int64
>>> shallow
a 3
b 4
dtype: int64
>>> deep
a 1
b 2
dtype: int64
Note that when copying an object containing Python objects, a deep copy
will copy the data, but will not do so recursively. Updating a nested
data object will be reflected in the deep copy.
>>> s = pd.Series([[1, 2], [3, 4]])
>>> deep = s.copy()
>>> s[0][0] = 10
>>> s
0 [10, 2]
1 [3, 4]
dtype: object
>>> deep
0 [10, 2]
1 [3, 4]
dtype: object
|
### Input:
Make a copy of this object's indices and data.
When ``deep=True`` (default), a new object will be created with a
copy of the calling object's data and indices. Modifications to
the data or indices of the copy will not be reflected in the
original object (see notes below).
When ``deep=False``, a new object will be created without copying
the calling object's data or index (only references to the data
and index are copied). Any changes to the data of the original
will be reflected in the shallow copy (and vice versa).
Parameters
----------
deep : bool, default True
Make a deep copy, including a copy of the data and the indices.
With ``deep=False`` neither the indices nor the data are copied.
Returns
-------
copy : Series, DataFrame or Panel
Object type matches caller.
Notes
-----
When ``deep=True``, data is copied but actual Python objects
will not be copied recursively, only the reference to the object.
This is in contrast to `copy.deepcopy` in the Standard Library,
which recursively copies object data (see examples below).
While ``Index`` objects are copied when ``deep=True``, the underlying
numpy array is not copied for performance reasons. Since ``Index`` is
immutable, the underlying data can be safely shared and a copy
is not needed.
Examples
--------
>>> s = pd.Series([1, 2], index=["a", "b"])
>>> s
a 1
b 2
dtype: int64
>>> s_copy = s.copy()
>>> s_copy
a 1
b 2
dtype: int64
**Shallow copy versus default (deep) copy:**
>>> s = pd.Series([1, 2], index=["a", "b"])
>>> deep = s.copy()
>>> shallow = s.copy(deep=False)
Shallow copy shares data and index with original.
>>> s is shallow
False
>>> s.values is shallow.values and s.index is shallow.index
True
Deep copy has own copy of data and index.
>>> s is deep
False
>>> s.values is deep.values or s.index is deep.index
False
Updates to the data shared by shallow copy and original is reflected
in both; deep copy remains unchanged.
>>> s[0] = 3
>>> shallow[1] = 4
>>> s
a 3
b 4
dtype: int64
>>> shallow
a 3
b 4
dtype: int64
>>> deep
a 1
b 2
dtype: int64
Note that when copying an object containing Python objects, a deep copy
will copy the data, but will not do so recursively. Updating a nested
data object will be reflected in the deep copy.
>>> s = pd.Series([[1, 2], [3, 4]])
>>> deep = s.copy()
>>> s[0][0] = 10
>>> s
0 [10, 2]
1 [3, 4]
dtype: object
>>> deep
0 [10, 2]
1 [3, 4]
dtype: object
### Response:
#vtb
def copy(self, deep=True):
data = self._data.copy(deep=deep)
return self._constructor(data).__finalize__(self)
|
#vtb
def Shell(device, *command):
if command:
return device.StreamingShell(.join(command))
else:
terminal_prompt = device.InteractiveShell()
print(terminal_prompt.decode())
while True:
cmd = input()
if not cmd:
continue
elif cmd == :
break
else:
stdout = device.InteractiveShell(cmd, strip_cmd=True, delim=terminal_prompt, strip_delim=True)
if stdout:
if isinstance(stdout, bytes):
stdout = stdout.decode()
print(stdout)
device.Close()
|
Runs a command on the device and prints the stdout.
Args:
command: Command to run on the target.
|
### Input:
Runs a command on the device and prints the stdout.
Args:
command: Command to run on the target.
### Response:
#vtb
def Shell(device, *command):
if command:
return device.StreamingShell(.join(command))
else:
terminal_prompt = device.InteractiveShell()
print(terminal_prompt.decode())
while True:
cmd = input()
if not cmd:
continue
elif cmd == :
break
else:
stdout = device.InteractiveShell(cmd, strip_cmd=True, delim=terminal_prompt, strip_delim=True)
if stdout:
if isinstance(stdout, bytes):
stdout = stdout.decode()
print(stdout)
device.Close()
|
#vtb
def iterate_sequences(
consumer_fn, output_template, sequences, length, chunk_length=None,
batch_size=None, num_epochs=1, padding_value=0):
if not length.shape[0].value:
raise ValueError()
num_sequences = length.shape[0].value
sequences = dict(sequence=sequences, length=length)
dataset = tf.data.Dataset.from_tensor_slices(sequences)
dataset = dataset.repeat(num_epochs)
if chunk_length:
dataset = dataset.map(remove_padding).flat_map(
lambda x: tf.data.Dataset.from_tensor_slices(
chunk_sequence(x, chunk_length, padding_value)))
num_chunks = tf.reduce_sum((length - 1) // chunk_length + 1)
else:
num_chunks = num_sequences
if batch_size:
dataset = dataset.shuffle(num_sequences // 2)
dataset = dataset.batch(batch_size or num_sequences)
dataset = dataset.prefetch(num_epochs)
iterator = dataset.make_initializable_iterator()
with tf.control_dependencies([iterator.initializer]):
num_batches = num_epochs * num_chunks // (batch_size or num_sequences)
return tf.scan(
lambda _1, index: consumer_fn(iterator.get_next()),
tf.range(num_batches), output_template, parallel_iterations=1)
|
Iterate over batches of chunks of sequences for multiple epochs.
The batch dimension of the length tensor must be set because it is used to
infer buffer sizes.
Args:
consumer_fn: Function creating the operation to process the data.
output_template: Nested tensors of same shape and dtype as outputs.
sequences: Nested collection of tensors with batch and time dimension.
length: Tensor containing the length for each sequence.
chunk_length: Split sequences into chunks of this size; optional.
batch_size: Split epochs into batches of this size; optional.
num_epochs: How many times to repeat over the data.
padding_value: Value used for padding the last chunk after the sequence.
Raises:
ValueError: Unknown batch size of the length tensor.
Returns:
Concatenated nested tensors returned by the consumer.
|
### Input:
Iterate over batches of chunks of sequences for multiple epochs.
The batch dimension of the length tensor must be set because it is used to
infer buffer sizes.
Args:
consumer_fn: Function creating the operation to process the data.
output_template: Nested tensors of same shape and dtype as outputs.
sequences: Nested collection of tensors with batch and time dimension.
length: Tensor containing the length for each sequence.
chunk_length: Split sequences into chunks of this size; optional.
batch_size: Split epochs into batches of this size; optional.
num_epochs: How many times to repeat over the data.
padding_value: Value used for padding the last chunk after the sequence.
Raises:
ValueError: Unknown batch size of the length tensor.
Returns:
Concatenated nested tensors returned by the consumer.
### Response:
#vtb
def iterate_sequences(
consumer_fn, output_template, sequences, length, chunk_length=None,
batch_size=None, num_epochs=1, padding_value=0):
if not length.shape[0].value:
raise ValueError()
num_sequences = length.shape[0].value
sequences = dict(sequence=sequences, length=length)
dataset = tf.data.Dataset.from_tensor_slices(sequences)
dataset = dataset.repeat(num_epochs)
if chunk_length:
dataset = dataset.map(remove_padding).flat_map(
lambda x: tf.data.Dataset.from_tensor_slices(
chunk_sequence(x, chunk_length, padding_value)))
num_chunks = tf.reduce_sum((length - 1) // chunk_length + 1)
else:
num_chunks = num_sequences
if batch_size:
dataset = dataset.shuffle(num_sequences // 2)
dataset = dataset.batch(batch_size or num_sequences)
dataset = dataset.prefetch(num_epochs)
iterator = dataset.make_initializable_iterator()
with tf.control_dependencies([iterator.initializer]):
num_batches = num_epochs * num_chunks // (batch_size or num_sequences)
return tf.scan(
lambda _1, index: consumer_fn(iterator.get_next()),
tf.range(num_batches), output_template, parallel_iterations=1)
|
#vtb
def applyIndex(self, lst, right):
if len(right) != 1:
raise exceptions.EvaluationError( % (self.left, self.right))
right = right[0]
if isinstance(right, int):
return lst[right]
raise exceptions.EvaluationError("Can't apply %r to argument (%r): integer expected, got %r" % (self.left, self.right, right))
|
Apply a list to something else.
|
### Input:
Apply a list to something else.
### Response:
#vtb
def applyIndex(self, lst, right):
if len(right) != 1:
raise exceptions.EvaluationError( % (self.left, self.right))
right = right[0]
if isinstance(right, int):
return lst[right]
raise exceptions.EvaluationError("Can't apply %r to argument (%r): integer expected, got %r" % (self.left, self.right, right))
|
#vtb
def print_user(user):
email = user[]
domain = user[][]
role = user[]
print(
.format(domain, email, role))
|
Prints information about the current user.
|
### Input:
Prints information about the current user.
### Response:
#vtb
def print_user(user):
email = user[]
domain = user[][]
role = user[]
print(
.format(domain, email, role))
|
#vtb
def list_vms(self, allow_clone=False):
vbox_vms = []
result = yield from self.execute("list", ["vms"])
for line in result:
if len(line) == 0 or line[0] != or line[-1:] != "}":
continue
vmname, _ = line.rsplit(, 1)
vmname = vmname.strip()
if vmname == "<inaccessible>":
continue
extra_data = yield from self.execute("getextradata", [vmname, "GNS3/Clone"])
if allow_clone or len(extra_data) == 0 or not extra_data[0].strip() == "Value: yes":
info_results = yield from self.execute("showvminfo", [vmname, "--machinereadable"])
ram = 0
for info in info_results:
try:
name, value = info.split(, 1)
if name.strip() == "memory":
ram = int(value.strip())
break
except ValueError:
continue
vbox_vms.append({"vmname": vmname, "ram": ram})
return vbox_vms
|
Gets VirtualBox VM list.
|
### Input:
Gets VirtualBox VM list.
### Response:
#vtb
def list_vms(self, allow_clone=False):
vbox_vms = []
result = yield from self.execute("list", ["vms"])
for line in result:
if len(line) == 0 or line[0] != or line[-1:] != "}":
continue
vmname, _ = line.rsplit(, 1)
vmname = vmname.strip()
if vmname == "<inaccessible>":
continue
extra_data = yield from self.execute("getextradata", [vmname, "GNS3/Clone"])
if allow_clone or len(extra_data) == 0 or not extra_data[0].strip() == "Value: yes":
info_results = yield from self.execute("showvminfo", [vmname, "--machinereadable"])
ram = 0
for info in info_results:
try:
name, value = info.split(, 1)
if name.strip() == "memory":
ram = int(value.strip())
break
except ValueError:
continue
vbox_vms.append({"vmname": vmname, "ram": ram})
return vbox_vms
|
#vtb
def getReflexRuleSetup(self):
relations = {}
pc = getToolByName(self, )
methods = [obj.getObject() for obj in pc(
portal_type=,
is_active=True)]
bsc = getToolByName(self, )
for method in methods:
an_servs_brains = bsc(
portal_type=,
getMethodUIDs={
"query": method.UID(),
"operator": "or"
})
analysiservices = {}
for analysiservice in an_servs_brains:
analysiservice = analysiservice.getObject()
service_methods_uid = analysiservice.getAvailableMethodUIDs()
query_dict = {
: ,
: True,
: ,
: {
"query": service_methods_uid + [],
"operator": "or"
}
}
wst_brains = bsc(query_dict)
analysiservices[analysiservice.UID()] = {
: analysiservice.getId(),
: analysiservice.Title(),
:
analysiservice.getResultOptions()
if analysiservice.getResultOptions()
else [],
: [
(brain.UID, brain.Title) for brain in wst_brains]
}
relations[method.UID()] = {
: method.getId(),
: method.Title(),
: analysiservices,
: analysiservices.keys(),
}
reflex_rule = self.aq_parent.aq_inner
saved_method = reflex_rule.getMethod()
relations[] = {
: saved_method.UID() if
saved_method else ,
: saved_method.getId() if
saved_method else ,
: saved_method.Title() if
saved_method else ,
: reflex_rule.getReflexRules(),
}
return json.dumps(relations)
|
Return a json dict with all the setup data necessary to build the
relations:
- Relations between methods and analysis services options.
- The current saved data
the functions returns:
{'<method_uid>': {
'analysisservices': {
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [,,]}
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [{
'ResultText': 'Failed',
'ResultValue': '1', 'value': ''},
...
]}
},
'as_keys': ['<as_uid>', '<as_uid>'],
'method_id': '<method_id>',
'method_tile': '<method_tile>'
},
'<method_uid>': {
'analysisservices': {
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [,,]}
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [,,]}
},
'as_keys': ['<as_uid>', '<as_uid>'],
'method_id': '<method_id>',
'method_tile': '<method_tile>'
},
'saved_actions': {'rules': [
{'actions': [{'act_row_idx': 0,
'action': 'repeat',
'an_result_id': '',
'analyst': '',
'otherWS': current,
'setresultdiscrete': '',
'setresulton': 'original',
'setresultvalue': '',
'worksheettemplate': '70d48adfb34c4231a145f76a858e94cf',}],
'conditions': [{'analysisservice': 'd802cdbf1f4742c094d45997b1038f9c',
'and_or': 'no',
'cond_row_idx': 0,
'discreteresult': '',
'range0': '12',
'range1': '12'}],
'rulenumber': '1',
'trigger': 'submit'},...],
'method_id': '<method_uid>',
'method_tile': '<method_tile>',
'method_uid': '<method_uid>'
}
}
|
### Input:
Return a json dict with all the setup data necessary to build the
relations:
- Relations between methods and analysis services options.
- The current saved data
the functions returns:
{'<method_uid>': {
'analysisservices': {
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [,,]}
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [{
'ResultText': 'Failed',
'ResultValue': '1', 'value': ''},
...
]}
},
'as_keys': ['<as_uid>', '<as_uid>'],
'method_id': '<method_id>',
'method_tile': '<method_tile>'
},
'<method_uid>': {
'analysisservices': {
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [,,]}
'<as_uid>': {'as_id': '<as_id>',
'as_title':'<as_title>',
'resultoptions': [,,]}
},
'as_keys': ['<as_uid>', '<as_uid>'],
'method_id': '<method_id>',
'method_tile': '<method_tile>'
},
'saved_actions': {'rules': [
{'actions': [{'act_row_idx': 0,
'action': 'repeat',
'an_result_id': '',
'analyst': '',
'otherWS': current,
'setresultdiscrete': '',
'setresulton': 'original',
'setresultvalue': '',
'worksheettemplate': '70d48adfb34c4231a145f76a858e94cf',}],
'conditions': [{'analysisservice': 'd802cdbf1f4742c094d45997b1038f9c',
'and_or': 'no',
'cond_row_idx': 0,
'discreteresult': '',
'range0': '12',
'range1': '12'}],
'rulenumber': '1',
'trigger': 'submit'},...],
'method_id': '<method_uid>',
'method_tile': '<method_tile>',
'method_uid': '<method_uid>'
}
}
### Response:
#vtb
def getReflexRuleSetup(self):
relations = {}
pc = getToolByName(self, )
methods = [obj.getObject() for obj in pc(
portal_type=,
is_active=True)]
bsc = getToolByName(self, )
for method in methods:
an_servs_brains = bsc(
portal_type=,
getMethodUIDs={
"query": method.UID(),
"operator": "or"
})
analysiservices = {}
for analysiservice in an_servs_brains:
analysiservice = analysiservice.getObject()
service_methods_uid = analysiservice.getAvailableMethodUIDs()
query_dict = {
: ,
: True,
: ,
: {
"query": service_methods_uid + [],
"operator": "or"
}
}
wst_brains = bsc(query_dict)
analysiservices[analysiservice.UID()] = {
: analysiservice.getId(),
: analysiservice.Title(),
:
analysiservice.getResultOptions()
if analysiservice.getResultOptions()
else [],
: [
(brain.UID, brain.Title) for brain in wst_brains]
}
relations[method.UID()] = {
: method.getId(),
: method.Title(),
: analysiservices,
: analysiservices.keys(),
}
reflex_rule = self.aq_parent.aq_inner
saved_method = reflex_rule.getMethod()
relations[] = {
: saved_method.UID() if
saved_method else ,
: saved_method.getId() if
saved_method else ,
: saved_method.Title() if
saved_method else ,
: reflex_rule.getReflexRules(),
}
return json.dumps(relations)
|
#vtb
def affine_respective_zoom_matrix(w_range=0.8, h_range=1.1):
if isinstance(h_range, (float, int)):
zy = h_range
elif isinstance(h_range, tuple):
zy = np.random.uniform(h_range[0], h_range[1])
else:
raise Exception("h_range: float or tuple of 2 floats")
if isinstance(w_range, (float, int)):
zx = w_range
elif isinstance(w_range, tuple):
zx = np.random.uniform(w_range[0], w_range[1])
else:
raise Exception("w_range: float or tuple of 2 floats")
zoom_matrix = np.array([[zx, 0, 0], \
[0, zy, 0], \
[0, 0, 1]])
return zoom_matrix
|
Get affine transform matrix for zooming/scaling that height and width are changed independently.
OpenCV format, x is width.
Parameters
-----------
w_range : float or tuple of 2 floats
The zooming/scaling ratio of width, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
h_range : float or tuple of 2 floats
The zooming/scaling ratio of height, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
Returns
-------
numpy.array
An affine transform matrix.
|
### Input:
Get affine transform matrix for zooming/scaling that height and width are changed independently.
OpenCV format, x is width.
Parameters
-----------
w_range : float or tuple of 2 floats
The zooming/scaling ratio of width, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
h_range : float or tuple of 2 floats
The zooming/scaling ratio of height, greater than 1 means larger.
- float, a fixed ratio.
- tuple of 2 floats, randomly sample a value as the ratio between 2 values.
Returns
-------
numpy.array
An affine transform matrix.
### Response:
#vtb
def affine_respective_zoom_matrix(w_range=0.8, h_range=1.1):
if isinstance(h_range, (float, int)):
zy = h_range
elif isinstance(h_range, tuple):
zy = np.random.uniform(h_range[0], h_range[1])
else:
raise Exception("h_range: float or tuple of 2 floats")
if isinstance(w_range, (float, int)):
zx = w_range
elif isinstance(w_range, tuple):
zx = np.random.uniform(w_range[0], w_range[1])
else:
raise Exception("w_range: float or tuple of 2 floats")
zoom_matrix = np.array([[zx, 0, 0], \
[0, zy, 0], \
[0, 0, 1]])
return zoom_matrix
|
#vtb
def parent_suite(self):
if self.context and self.context.parent_suite_path:
return Suite.load(self.context.parent_suite_path)
return None
|
Get the current parent suite.
A parent suite exists when a context within a suite is active. That is,
during execution of a tool within a suite, or after a user has entered
an interactive shell in a suite context, for example via the command-
line syntax 'tool +i', where 'tool' is an alias in a suite.
Returns:
`Suite` object, or None if there is no current parent suite.
|
### Input:
Get the current parent suite.
A parent suite exists when a context within a suite is active. That is,
during execution of a tool within a suite, or after a user has entered
an interactive shell in a suite context, for example via the command-
line syntax 'tool +i', where 'tool' is an alias in a suite.
Returns:
`Suite` object, or None if there is no current parent suite.
### Response:
#vtb
def parent_suite(self):
if self.context and self.context.parent_suite_path:
return Suite.load(self.context.parent_suite_path)
return None
|
#vtb
def blt(f: List[SYM], x: List[SYM]) -> Dict[str, Any]:
J = ca.jacobian(f, x)
nblock, rowperm, colperm, rowblock, colblock, coarserow, coarsecol = J.sparsity().btf()
return {
: J,
: nblock,
: rowperm,
: colperm,
: rowblock,
: colblock,
: coarserow,
: coarsecol
}
|
Sort equations by dependence
|
### Input:
Sort equations by dependence
### Response:
#vtb
def blt(f: List[SYM], x: List[SYM]) -> Dict[str, Any]:
J = ca.jacobian(f, x)
nblock, rowperm, colperm, rowblock, colblock, coarserow, coarsecol = J.sparsity().btf()
return {
: J,
: nblock,
: rowperm,
: colperm,
: rowblock,
: colblock,
: coarserow,
: coarsecol
}
|
#vtb
def get(self, instance, **kw):
try:
return self._get(instance, **kw)
except AttributeError:
logger.error("Could not get the value of the computed field "
.format(self.get_field_name()))
return None
|
Get the value of the field
|
### Input:
Get the value of the field
### Response:
#vtb
def get(self, instance, **kw):
try:
return self._get(instance, **kw)
except AttributeError:
logger.error("Could not get the value of the computed field "
.format(self.get_field_name()))
return None
|
#vtb
def validate_request(self, path, action, body=None, query=None):
path_name, path_spec = self.get_path_spec(path)
if path_spec is None:
logging.warn("there is no path")
return False
if action not in path_spec.keys():
logging.warn("this http method is unknown ".format(action))
return False
action_spec = path_spec[action]
if action == :
is_ok, msg = _validate_post_body(body, action_spec)
if not is_ok:
logging.warn("the general post body did not validate due to ".format(msg))
return False
body_is_empty = body in [None, {}, ]
if body_is_empty and query is None:
return True
is_ok, msg = self._validate_body_parameters(body, action_spec)
if not is_ok:
logging.warn("the parameters in the body did not validate due to ".format(msg))
return False
if query is not None and not self._validate_query_parameters(query, action_spec):
return False
return True
|
Check if the given request is valid.
Validates the body and the query
# Rules to validate the BODY:
# Let's limit this to mime types that either contain 'text' or 'json'
# 1. if body is None, there must not be any required parameters in
# the given schema
# 2. if the mime type contains 'json', body must not be '', but can
# be {}
# 3. if the mime type contains 'text', body can be any string
# 4. if no mime type ('consumes') is given.. DISALLOW
# 5. if the body is empty ('' or {}), there must not be any required parameters
# 6. if there is something in the body, it must adhere to the given schema
# -> will call the validate body function
Args:
path: path of the request.
action: action of the request(get, post, delete...).
body: body of the request.
query: dict with the query parameters.
Returns:
True if the request is valid, False otherwise.
TODO:
- For every http method, we might want to have some general checks
before we go deeper into the parameters
- Check form data parameters
|
### Input:
Check if the given request is valid.
Validates the body and the query
# Rules to validate the BODY:
# Let's limit this to mime types that either contain 'text' or 'json'
# 1. if body is None, there must not be any required parameters in
# the given schema
# 2. if the mime type contains 'json', body must not be '', but can
# be {}
# 3. if the mime type contains 'text', body can be any string
# 4. if no mime type ('consumes') is given.. DISALLOW
# 5. if the body is empty ('' or {}), there must not be any required parameters
# 6. if there is something in the body, it must adhere to the given schema
# -> will call the validate body function
Args:
path: path of the request.
action: action of the request(get, post, delete...).
body: body of the request.
query: dict with the query parameters.
Returns:
True if the request is valid, False otherwise.
TODO:
- For every http method, we might want to have some general checks
before we go deeper into the parameters
- Check form data parameters
### Response:
#vtb
def validate_request(self, path, action, body=None, query=None):
path_name, path_spec = self.get_path_spec(path)
if path_spec is None:
logging.warn("there is no path")
return False
if action not in path_spec.keys():
logging.warn("this http method is unknown ".format(action))
return False
action_spec = path_spec[action]
if action == :
is_ok, msg = _validate_post_body(body, action_spec)
if not is_ok:
logging.warn("the general post body did not validate due to ".format(msg))
return False
body_is_empty = body in [None, {}, ]
if body_is_empty and query is None:
return True
is_ok, msg = self._validate_body_parameters(body, action_spec)
if not is_ok:
logging.warn("the parameters in the body did not validate due to ".format(msg))
return False
if query is not None and not self._validate_query_parameters(query, action_spec):
return False
return True
|
#vtb
def _find_rule_no(self, mac):
ipt_cmd = [, , ]
cmdo = dsl.execute(ipt_cmd, self._root_helper, log_output=False)
for o in cmdo.split():
if mac in o.lower():
rule_no = o.split()[0]
LOG.info(,
{: rule_no, : mac})
return rule_no
|
Find rule number associated with a given mac.
|
### Input:
Find rule number associated with a given mac.
### Response:
#vtb
def _find_rule_no(self, mac):
ipt_cmd = [, , ]
cmdo = dsl.execute(ipt_cmd, self._root_helper, log_output=False)
for o in cmdo.split():
if mac in o.lower():
rule_no = o.split()[0]
LOG.info(,
{: rule_no, : mac})
return rule_no
|
#vtb
def modelsClearAll(self):
self._logger.info(,
self.modelsTableName)
with ConnectionFactory.get() as conn:
query = % (self.modelsTableName)
conn.cursor.execute(query)
|
Delete all models from the models table
Parameters:
----------------------------------------------------------------
|
### Input:
Delete all models from the models table
Parameters:
----------------------------------------------------------------
### Response:
#vtb
def modelsClearAll(self):
self._logger.info(,
self.modelsTableName)
with ConnectionFactory.get() as conn:
query = % (self.modelsTableName)
conn.cursor.execute(query)
|
#vtb
def source(self, format=, accessible=False):
if accessible:
return self.http.get().value
return self.http.get(+format).value
|
Args:
format (str): only 'xml' and 'json' source types are supported
accessible (bool): when set to true, format is always 'json'
|
### Input:
Args:
format (str): only 'xml' and 'json' source types are supported
accessible (bool): when set to true, format is always 'json'
### Response:
#vtb
def source(self, format=, accessible=False):
if accessible:
return self.http.get().value
return self.http.get(+format).value
|
#vtb
def _init_metadata(self):
super(LabelOrthoFacesAnswerFormRecord, self)._init_metadata()
self._face_values_metadata = {
: Id(self.my_osid_object_form._authority,
self.my_osid_object_form._namespace,
),
: ,
: ,
: True,
: False,
: True,
: False,
: [{}],
: ,
: []
}
|
stub
|
### Input:
stub
### Response:
#vtb
def _init_metadata(self):
super(LabelOrthoFacesAnswerFormRecord, self)._init_metadata()
self._face_values_metadata = {
: Id(self.my_osid_object_form._authority,
self.my_osid_object_form._namespace,
),
: ,
: ,
: True,
: False,
: True,
: False,
: [{}],
: ,
: []
}
|
#vtb
def enable_apt_repositories(prefix, url, version, repositories):
with settings(hide(, , ),
warn_only=False, capture=True):
sudo( % (prefix,
url,
version,
repositories))
with hide(, ):
output = sudo("DEBIAN_FRONTEND=noninteractive /usr/bin/apt-get update")
if in output:
raise SystemExit(1)
else:
return True
|
adds an apt repository
|
### Input:
adds an apt repository
### Response:
#vtb
def enable_apt_repositories(prefix, url, version, repositories):
with settings(hide(, , ),
warn_only=False, capture=True):
sudo( % (prefix,
url,
version,
repositories))
with hide(, ):
output = sudo("DEBIAN_FRONTEND=noninteractive /usr/bin/apt-get update")
if in output:
raise SystemExit(1)
else:
return True
|
#vtb
def plotres(psr,deleted=False,group=None,**kwargs):
res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs
if (not deleted) and N.any(psr.deleted != 0):
res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr.deleted == 0]
print("Plotting {0}/{1} nondeleted points.".format(len(res),psr.nobs))
meanres = math.sqrt(N.mean(res**2)) / 1e-6
if group is None:
i = N.argsort(t)
P.errorbar(t[i],res[i]/1e-6,yerr=errs[i],fmt=,**kwargs)
else:
if (not deleted) and N.any(psr.deleted):
flagmask = psr.flagvals(group)[~psr.deleted]
else:
flagmask = psr.flagvals(group)
unique = list(set(flagmask))
for flagval in unique:
f = (flagmask == flagval)
flagres, flagt, flagerrs = res[f], t[f], errs[f]
i = N.argsort(flagt)
P.errorbar(flagt[i],flagres[i]/1e-6,yerr=flagerrs[i],fmt=,**kwargs)
P.legend(unique,numpoints=1,bbox_to_anchor=(1.1,1.1))
P.xlabel(); P.ylabel()
P.title("{0} - rms res = {1:.2f} us".format(psr.name,meanres))
|
Plot residuals, compute unweighted rms residual.
|
### Input:
Plot residuals, compute unweighted rms residual.
### Response:
#vtb
def plotres(psr,deleted=False,group=None,**kwargs):
res, t, errs = psr.residuals(), psr.toas(), psr.toaerrs
if (not deleted) and N.any(psr.deleted != 0):
res, t, errs = res[psr.deleted == 0], t[psr.deleted == 0], errs[psr.deleted == 0]
print("Plotting {0}/{1} nondeleted points.".format(len(res),psr.nobs))
meanres = math.sqrt(N.mean(res**2)) / 1e-6
if group is None:
i = N.argsort(t)
P.errorbar(t[i],res[i]/1e-6,yerr=errs[i],fmt=,**kwargs)
else:
if (not deleted) and N.any(psr.deleted):
flagmask = psr.flagvals(group)[~psr.deleted]
else:
flagmask = psr.flagvals(group)
unique = list(set(flagmask))
for flagval in unique:
f = (flagmask == flagval)
flagres, flagt, flagerrs = res[f], t[f], errs[f]
i = N.argsort(flagt)
P.errorbar(flagt[i],flagres[i]/1e-6,yerr=flagerrs[i],fmt=,**kwargs)
P.legend(unique,numpoints=1,bbox_to_anchor=(1.1,1.1))
P.xlabel(); P.ylabel()
P.title("{0} - rms res = {1:.2f} us".format(psr.name,meanres))
|
#vtb
def has_activity(graph: BELGraph, node: BaseEntity) -> bool:
return _node_has_modifier(graph, node, ACTIVITY)
|
Return true if over any of the node's edges, it has a molecular activity.
|
### Input:
Return true if over any of the node's edges, it has a molecular activity.
### Response:
#vtb
def has_activity(graph: BELGraph, node: BaseEntity) -> bool:
return _node_has_modifier(graph, node, ACTIVITY)
|
#vtb
def thread( mafs, species ):
for m in mafs:
new_maf = deepcopy( m )
new_components = get_components_for_species( new_maf, species )
if new_components:
remove_all_gap_columns( new_components )
new_maf.components = new_components
new_maf.score = 0.0
new_maf.text_size = len(new_components[0].text)
yield new_maf
|
Restrict an list of alignments to a given list of species by:
1) Removing components for any other species
2) Remove any columns containing all gaps
Example:
>>> import bx.align.maf
>>> block1 = bx.align.maf.from_string( '''
... a score=4964.0
... s hg18.chr10 52686 44 + 135374737 GTGCTAACTTACTGCTCCACAGAAAACATCAATTCTGCTCATGC
... s rheMac2.chr20 58163346 43 - 88221753 ATATTATCTTAACATTAAAGA-AGAACAGTAATTCTGGTCATAA
... s panTro1.chrUn_random 208115356 44 - 240967748 GTGCTAACTGACTGCTCCAGAGAAAACATCAATTCTGTTCATGT
... s oryCun1.scaffold_175207 85970 22 + 212797 ----------------------AAAATATTAGTTATCACCATAT
... s bosTau2.chr23 23894492 43 + 41602928 AAACTACCTTAATGTCACAGG-AAACAATGTATgctgctgctgc
... ''' )
>>> block2 = bx.align.maf.from_string( '''
... a score=9151.0
... s hg18.chr10 52730 69 + 135374737 GCAGGTACAATTCATCAAGAAAG-GAATTACAACTTCAGAAATGTGTTCAAAATATATCCATACTT-TGAC
... s oryCun1.scaffold_175207 85992 71 + 212797 TCTAGTGCTCTCCAATAATATAATAGATTATAACTTCATATAATTATGTGAAATATAAGATTATTTATCAG
... s panTro1.chrUn_random 208115400 69 - 240967748 GCAGCTACTATTCATCAAGAAAG-GGATTACAACTTCAGAAATGTGTTCAAAGTGTATCCATACTT-TGAT
... s rheMac2.chr20 58163389 69 - 88221753 ACACATATTATTTCTTAACATGGAGGATTATATCTT-AAACATGTGTGCaaaatataaatatatat-tcaa
... ''' )
>>> mafs = [ block1, block2 ]
>>> threaded = [ t for t in thread( mafs, [ "hg18", "panTro1" ] ) ]
>>> len( threaded )
2
>>> print(threaded[0])
a score=0.0
s hg18.chr10 52686 44 + 135374737 GTGCTAACTTACTGCTCCACAGAAAACATCAATTCTGCTCATGC
s panTro1.chrUn_random 208115356 44 - 240967748 GTGCTAACTGACTGCTCCAGAGAAAACATCAATTCTGTTCATGT
<BLANKLINE>
>>> print(threaded[1])
a score=0.0
s hg18.chr10 52730 69 + 135374737 GCAGGTACAATTCATCAAGAAAGGAATTACAACTTCAGAAATGTGTTCAAAATATATCCATACTTTGAC
s panTro1.chrUn_random 208115400 69 - 240967748 GCAGCTACTATTCATCAAGAAAGGGATTACAACTTCAGAAATGTGTTCAAAGTGTATCCATACTTTGAT
<BLANKLINE>
|
### Input:
Restrict an list of alignments to a given list of species by:
1) Removing components for any other species
2) Remove any columns containing all gaps
Example:
>>> import bx.align.maf
>>> block1 = bx.align.maf.from_string( '''
... a score=4964.0
... s hg18.chr10 52686 44 + 135374737 GTGCTAACTTACTGCTCCACAGAAAACATCAATTCTGCTCATGC
... s rheMac2.chr20 58163346 43 - 88221753 ATATTATCTTAACATTAAAGA-AGAACAGTAATTCTGGTCATAA
... s panTro1.chrUn_random 208115356 44 - 240967748 GTGCTAACTGACTGCTCCAGAGAAAACATCAATTCTGTTCATGT
... s oryCun1.scaffold_175207 85970 22 + 212797 ----------------------AAAATATTAGTTATCACCATAT
... s bosTau2.chr23 23894492 43 + 41602928 AAACTACCTTAATGTCACAGG-AAACAATGTATgctgctgctgc
... ''' )
>>> block2 = bx.align.maf.from_string( '''
... a score=9151.0
... s hg18.chr10 52730 69 + 135374737 GCAGGTACAATTCATCAAGAAAG-GAATTACAACTTCAGAAATGTGTTCAAAATATATCCATACTT-TGAC
... s oryCun1.scaffold_175207 85992 71 + 212797 TCTAGTGCTCTCCAATAATATAATAGATTATAACTTCATATAATTATGTGAAATATAAGATTATTTATCAG
... s panTro1.chrUn_random 208115400 69 - 240967748 GCAGCTACTATTCATCAAGAAAG-GGATTACAACTTCAGAAATGTGTTCAAAGTGTATCCATACTT-TGAT
... s rheMac2.chr20 58163389 69 - 88221753 ACACATATTATTTCTTAACATGGAGGATTATATCTT-AAACATGTGTGCaaaatataaatatatat-tcaa
... ''' )
>>> mafs = [ block1, block2 ]
>>> threaded = [ t for t in thread( mafs, [ "hg18", "panTro1" ] ) ]
>>> len( threaded )
2
>>> print(threaded[0])
a score=0.0
s hg18.chr10 52686 44 + 135374737 GTGCTAACTTACTGCTCCACAGAAAACATCAATTCTGCTCATGC
s panTro1.chrUn_random 208115356 44 - 240967748 GTGCTAACTGACTGCTCCAGAGAAAACATCAATTCTGTTCATGT
<BLANKLINE>
>>> print(threaded[1])
a score=0.0
s hg18.chr10 52730 69 + 135374737 GCAGGTACAATTCATCAAGAAAGGAATTACAACTTCAGAAATGTGTTCAAAATATATCCATACTTTGAC
s panTro1.chrUn_random 208115400 69 - 240967748 GCAGCTACTATTCATCAAGAAAGGGATTACAACTTCAGAAATGTGTTCAAAGTGTATCCATACTTTGAT
<BLANKLINE>
### Response:
#vtb
def thread( mafs, species ):
for m in mafs:
new_maf = deepcopy( m )
new_components = get_components_for_species( new_maf, species )
if new_components:
remove_all_gap_columns( new_components )
new_maf.components = new_components
new_maf.score = 0.0
new_maf.text_size = len(new_components[0].text)
yield new_maf
|
#vtb
def get_component_tasks(self, component_id):
ret = []
for task_id, comp_id in self.task_to_component_map.items():
if comp_id == component_id:
ret.append(task_id)
return ret
|
Returns the task ids allocated for the given component id
|
### Input:
Returns the task ids allocated for the given component id
### Response:
#vtb
def get_component_tasks(self, component_id):
ret = []
for task_id, comp_id in self.task_to_component_map.items():
if comp_id == component_id:
ret.append(task_id)
return ret
|
#vtb
def check_stop_times(
feed: "Feed", *, as_df: bool = False, include_warnings: bool = False
) -> List:
table = "stop_times"
problems = []
if feed.stop_times is None:
problems.append(["error", "Missing table", table, []])
else:
f = feed.stop_times.copy().sort_values(["trip_id", "stop_sequence"])
problems = check_for_required_columns(problems, table, f)
if problems:
return format_problems(problems, as_df=as_df)
if include_warnings:
problems = check_for_invalid_columns(problems, table, f)
problems = check_column_linked_id(
problems, table, f, "trip_id", feed.trips
)
v = lambda x: pd.isnull(x) or valid_time(x)
for col in ["arrival_time", "departure_time"]:
problems = check_column(problems, table, f, col, v)
if "timepoint" not in f.columns:
f["timepoint"] = np.nan
indices = []
prev_tid = None
prev_atime = 1
prev_dtime = 1
for i, tid, atime, dtime, tp in f[
["trip_id", "arrival_time", "departure_time", "timepoint"]
].itertuples():
if tid != prev_tid:
if pd.isnull(prev_atime) or pd.isnull(prev_dtime):
indices.append(i - 1)
if pd.isnull(atime) or pd.isnull(dtime):
indices.append(i)
elif tp == 1 and (pd.isnull(atime) or pd.isnull(dtime)):
indices.append(i)
prev_tid = tid
prev_atime = atime
prev_dtime = dtime
if indices:
problems.append(
[
"error",
"First/last/time point arrival/departure time missing",
table,
indices,
]
)
problems = check_column_linked_id(
problems, table, f, "stop_id", feed.stops
)
cond = f[["trip_id", "stop_sequence"]].dropna().duplicated()
problems = check_table(
problems, table, f, cond, "Repeated pair (trip_id, stop_sequence)"
)
problems = check_column(
problems, table, f, "stop_headsign", valid_str, column_required=False
)
for col in ["pickup_type", "drop_off_type"]:
v = lambda x: x in range(4)
problems = check_column(
problems, table, f, col, v, column_required=False
)
if "shape_dist_traveled" in f.columns:
g = f.dropna(subset=["shape_dist_traveled"])
indices = []
prev_tid = None
prev_dist = -1
for i, tid, dist in g[["trip_id", "shape_dist_traveled"]].itertuples():
if tid == prev_tid and dist < prev_dist:
indices.append(i)
prev_tid = tid
prev_dist = dist
if indices:
problems.append(
[
"error",
"shape_dist_traveled decreases on a trip",
table,
indices,
]
)
v = lambda x: x in range(2)
problems = check_column(
problems, table, f, "timepoint", v, column_required=False
)
if include_warnings:
cond = f[["trip_id", "departure_time"]].duplicated()
problems = check_table(
problems,
table,
f,
cond,
"Repeated pair (trip_id, departure_time)",
"warning",
)
return format_problems(problems, as_df=as_df)
|
Analog of :func:`check_agency` for ``feed.stop_times``.
|
### Input:
Analog of :func:`check_agency` for ``feed.stop_times``.
### Response:
#vtb
def check_stop_times(
feed: "Feed", *, as_df: bool = False, include_warnings: bool = False
) -> List:
table = "stop_times"
problems = []
if feed.stop_times is None:
problems.append(["error", "Missing table", table, []])
else:
f = feed.stop_times.copy().sort_values(["trip_id", "stop_sequence"])
problems = check_for_required_columns(problems, table, f)
if problems:
return format_problems(problems, as_df=as_df)
if include_warnings:
problems = check_for_invalid_columns(problems, table, f)
problems = check_column_linked_id(
problems, table, f, "trip_id", feed.trips
)
v = lambda x: pd.isnull(x) or valid_time(x)
for col in ["arrival_time", "departure_time"]:
problems = check_column(problems, table, f, col, v)
if "timepoint" not in f.columns:
f["timepoint"] = np.nan
indices = []
prev_tid = None
prev_atime = 1
prev_dtime = 1
for i, tid, atime, dtime, tp in f[
["trip_id", "arrival_time", "departure_time", "timepoint"]
].itertuples():
if tid != prev_tid:
if pd.isnull(prev_atime) or pd.isnull(prev_dtime):
indices.append(i - 1)
if pd.isnull(atime) or pd.isnull(dtime):
indices.append(i)
elif tp == 1 and (pd.isnull(atime) or pd.isnull(dtime)):
indices.append(i)
prev_tid = tid
prev_atime = atime
prev_dtime = dtime
if indices:
problems.append(
[
"error",
"First/last/time point arrival/departure time missing",
table,
indices,
]
)
problems = check_column_linked_id(
problems, table, f, "stop_id", feed.stops
)
cond = f[["trip_id", "stop_sequence"]].dropna().duplicated()
problems = check_table(
problems, table, f, cond, "Repeated pair (trip_id, stop_sequence)"
)
problems = check_column(
problems, table, f, "stop_headsign", valid_str, column_required=False
)
for col in ["pickup_type", "drop_off_type"]:
v = lambda x: x in range(4)
problems = check_column(
problems, table, f, col, v, column_required=False
)
if "shape_dist_traveled" in f.columns:
g = f.dropna(subset=["shape_dist_traveled"])
indices = []
prev_tid = None
prev_dist = -1
for i, tid, dist in g[["trip_id", "shape_dist_traveled"]].itertuples():
if tid == prev_tid and dist < prev_dist:
indices.append(i)
prev_tid = tid
prev_dist = dist
if indices:
problems.append(
[
"error",
"shape_dist_traveled decreases on a trip",
table,
indices,
]
)
v = lambda x: x in range(2)
problems = check_column(
problems, table, f, "timepoint", v, column_required=False
)
if include_warnings:
cond = f[["trip_id", "departure_time"]].duplicated()
problems = check_table(
problems,
table,
f,
cond,
"Repeated pair (trip_id, departure_time)",
"warning",
)
return format_problems(problems, as_df=as_df)
|
#vtb
def route(self, path=None, method=, callback=None, name=None,
apply=None, skip=None, **config):
if callable(path): path, callback = None, path
plugins = makelist(apply)
skiplist = makelist(skip)
if in config:
depr("The parameter was renamed to ")
plugins += makelist(config.pop())
if config.pop(, False):
depr("The no_hooks parameter is no longer used. Add to the"\
" list of skipped plugins instead.")
skiplist.append()
static = config.get(, False)
def decorator(callback):
for rule in makelist(path) or yieldroutes(callback):
for verb in makelist(method):
verb = verb.upper()
cfg = dict(rule=rule, method=verb, callback=callback,
name=name, app=self, config=config,
apply=plugins, skip=skiplist)
self.routes.append(cfg)
cfg[] = self.routes.index(cfg)
self.router.add(rule, verb, cfg[], name=name, static=static)
if DEBUG: self.ccache[cfg[]] = self._build_callback(cfg)
return callback
return decorator(callback) if callback else decorator
|
A decorator to bind a function to a request URL. Example::
@app.route('/hello/:name')
def hello(name):
return 'Hello %s' % name
The ``:name`` part is a wildcard. See :class:`Router` for syntax
details.
:param path: Request path or a list of paths to listen to. If no
path is specified, it is automatically generated from the
signature of the function.
:param method: HTTP method (`GET`, `POST`, `PUT`, ...) or a list of
methods to listen to. (default: `GET`)
:param callback: An optional shortcut to avoid the decorator
syntax. ``route(..., callback=func)`` equals ``route(...)(func)``
:param name: The name for this route. (default: None)
:param apply: A decorator or plugin or a list of plugins. These are
applied to the route callback in addition to installed plugins.
:param skip: A list of plugins, plugin classes or names. Matching
plugins are not installed to this route. ``True`` skips all.
Any additional keyword arguments are stored as route-specific
configuration and passed to plugins (see :meth:`Plugin.apply`).
|
### Input:
A decorator to bind a function to a request URL. Example::
@app.route('/hello/:name')
def hello(name):
return 'Hello %s' % name
The ``:name`` part is a wildcard. See :class:`Router` for syntax
details.
:param path: Request path or a list of paths to listen to. If no
path is specified, it is automatically generated from the
signature of the function.
:param method: HTTP method (`GET`, `POST`, `PUT`, ...) or a list of
methods to listen to. (default: `GET`)
:param callback: An optional shortcut to avoid the decorator
syntax. ``route(..., callback=func)`` equals ``route(...)(func)``
:param name: The name for this route. (default: None)
:param apply: A decorator or plugin or a list of plugins. These are
applied to the route callback in addition to installed plugins.
:param skip: A list of plugins, plugin classes or names. Matching
plugins are not installed to this route. ``True`` skips all.
Any additional keyword arguments are stored as route-specific
configuration and passed to plugins (see :meth:`Plugin.apply`).
### Response:
#vtb
def route(self, path=None, method=, callback=None, name=None,
apply=None, skip=None, **config):
if callable(path): path, callback = None, path
plugins = makelist(apply)
skiplist = makelist(skip)
if in config:
depr("The parameter was renamed to ")
plugins += makelist(config.pop())
if config.pop(, False):
depr("The no_hooks parameter is no longer used. Add to the"\
" list of skipped plugins instead.")
skiplist.append()
static = config.get(, False)
def decorator(callback):
for rule in makelist(path) or yieldroutes(callback):
for verb in makelist(method):
verb = verb.upper()
cfg = dict(rule=rule, method=verb, callback=callback,
name=name, app=self, config=config,
apply=plugins, skip=skiplist)
self.routes.append(cfg)
cfg[] = self.routes.index(cfg)
self.router.add(rule, verb, cfg[], name=name, static=static)
if DEBUG: self.ccache[cfg[]] = self._build_callback(cfg)
return callback
return decorator(callback) if callback else decorator
|
#vtb
def _get_image(self, name):
document = self._control.document()
image = document.resource(QtGui.QTextDocument.ImageResource,
QtCore.QUrl(name))
return image
|
Returns the QImage stored as the ImageResource with 'name'.
|
### Input:
Returns the QImage stored as the ImageResource with 'name'.
### Response:
#vtb
def _get_image(self, name):
document = self._control.document()
image = document.resource(QtGui.QTextDocument.ImageResource,
QtCore.QUrl(name))
return image
|
#vtb
def retrieve_metar(station_icao) -> typing.Tuple[typing.Optional[str], typing.Optional[str]]:
url = _BASE_METAR_URL.format(station=station_icao)
with requests.get(url) as resp:
if not resp.ok:
return f \
f \
f, None
return None, resp.content.decode().split()[1]
|
Retrieves a METAR string from an online database
Args:
station_icao: ICAO of the station
Returns:
tuple of error, metar_str
|
### Input:
Retrieves a METAR string from an online database
Args:
station_icao: ICAO of the station
Returns:
tuple of error, metar_str
### Response:
#vtb
def retrieve_metar(station_icao) -> typing.Tuple[typing.Optional[str], typing.Optional[str]]:
url = _BASE_METAR_URL.format(station=station_icao)
with requests.get(url) as resp:
if not resp.ok:
return f \
f \
f, None
return None, resp.content.decode().split()[1]
|
#vtb
def _add_command(self, name, **parameters):
command = self._create_command(name, **parameters)
self._commands.append(command)
return command
|
Add a new command to the blueprint.
:param name: The command name
:type name: str
:param parameters: The command parameters
:type parameters: dict
:rtype: Fluent
|
### Input:
Add a new command to the blueprint.
:param name: The command name
:type name: str
:param parameters: The command parameters
:type parameters: dict
:rtype: Fluent
### Response:
#vtb
def _add_command(self, name, **parameters):
command = self._create_command(name, **parameters)
self._commands.append(command)
return command
|
#vtb
def browser(i):
r=find({:,
:})
if r[]>0:
if r[]!=16: return r
out(t find wfe module)!Please, install it via "ck pull repo:ck-web" and try again!returntemplaterepo_uoamodule_uoadata_uoa::actionstartmodule_uoawebbrowseryestemplatecidextra_urlextra_url')})
|
Input: {
(template) - use this web template
(repo_uoa) -
(module_uoa) -
(data_uoa) - view a given entry
(extra_url) - extra URL
}
Output: {
return - return code = 0, if successful
> 0, if error
(error) - error text if return > 0
}
|
### Input:
Input: {
(template) - use this web template
(repo_uoa) -
(module_uoa) -
(data_uoa) - view a given entry
(extra_url) - extra URL
}
Output: {
return - return code = 0, if successful
> 0, if error
(error) - error text if return > 0
}
### Response:
#vtb
def browser(i):
r=find({:,
:})
if r[]>0:
if r[]!=16: return r
out(t find wfe module)!Please, install it via "ck pull repo:ck-web" and try again!returntemplaterepo_uoamodule_uoadata_uoa::actionstartmodule_uoawebbrowseryestemplatecidextra_urlextra_url')})
|
#vtb
def read_file(filename):
infile = open(filename, )
lines = infile.readlines()
infile.close()
return lines
|
Read contents of the specified file.
Parameters:
-----------
filename : str
The name of the file to be read
Returns:
lines : list of str
The contents of the file, split by line
|
### Input:
Read contents of the specified file.
Parameters:
-----------
filename : str
The name of the file to be read
Returns:
lines : list of str
The contents of the file, split by line
### Response:
#vtb
def read_file(filename):
infile = open(filename, )
lines = infile.readlines()
infile.close()
return lines
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.