File size: 1,754 Bytes
eec394d
 
f7e9461
 
eec394d
 
 
 
5ecd650
 
8dbc877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32a994
8dbc877
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: apache-2.0
task_categories:
- robotics
---

# Dataset

<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6018554e68258223ca22136f/6og2VldKOfp0Ci31h-r_w.mp4"></video>

This dataset is used to train a transporter network for real-world pick/place within the RAD lab at the University of Edinburgh. The dataset is in TFDS format and was collected using [moveit2_data_collector](https://github.com/peterdavidfagan/moveit2_data_collector). In its current state the dataset is being tested as we are proving out this overall pipeline, keep monitoring this dataset and related repos for documentation updates.

# Download
An example of downloading and loading the dataset is given below, as larger datasets are uploaded this example script will change:

```python
import os
import tarfile

import tensorflow_datasets as tfds
from huggingface_hub import hf_hub_download

DATA_DIR="/home/robot"
FILENAME="data.tar.xz"
EXTRACTED_FILENAME="data"
FILEPATH=os.path.join(DATA_DIR, FILENAME)
EXTRACTED_FILEPATH=os.path.join(DATA_DIR, EXTRACTED_FILENAME)

# download data from huggingface
hf_hub_download(
        repo_id="peterdavidfagan/transporter_networks", 
        repo_type="dataset",
        filename=FILENAME,
        local_dir=DATA_DIR,
        )

# uncompress file
with tarfile.open(FILEPATH, 'r:xz') as tar:
    tar.extractall(path=DATA_DIR)
os.remove(FILEPATH)

# load with tfds
ds = tfds.builder_from_directory(EXTRACTED_FILEPATH).as_dataset()['train']

# basic inspection of data
print(ds.element_spec)
for eps in ds:
    print(eps["extrinsics"])
    for step in eps["steps"]:
        print(step["is_first"])
        print(step["is_last"])
        print(step["is_terminal"])
        print(step["action"])
```