Datasets:
import ast | |
from pathlib import Path | |
import pandas as pd | |
def read_sem_eval_file(file: str | Path) -> pd.DataFrame: | |
df = pd.read_xml(file)[["text"]] | |
return df | |
def read_aste_file(file: str | Path) -> pd.DataFrame: | |
df = pd.read_csv( | |
file, | |
sep="####", | |
header=None, | |
names=["text", "triples"], | |
engine="python", | |
) | |
# There are duplicate rows, some of which have the same triples and some don't | |
# This deals with that by | |
# * first dropping the pure duplicates, | |
# * then parsing the triples and exploding them to one per row | |
# * then dropping the exploded duplicates (have to convert triples back to string for this) | |
# * then grouping the triples up again | |
# * finally sorting the distinct triples | |
df = df.drop_duplicates() | |
df["triples"] = df.triples.apply(ast.literal_eval) | |
df = df.explode("triples") | |
df["triples"] = df.triples.apply(_triple_to_hashable) | |
df = df.drop_duplicates() | |
df = df.groupby("text").agg(list) | |
df = df.reset_index(drop=False) | |
df["triples"] = df.triples.apply(set).apply(sorted) | |
return df | |
def _triple_to_hashable( | |
triple: tuple[list[int], list[int], str] | |
) -> tuple[tuple[int, ...], tuple[int, ...], str]: | |
aspect_span, opinion_span, sentiment = triple | |
return tuple(aspect_span), tuple(opinion_span), sentiment | |