Datasets:
Matthew Franglen
commited on
Commit
•
8e12b39
1
Parent(s):
d136bc8
Split up some of the code
Browse files- src/convert.py +23 -89
- src/data.py +45 -0
- src/types.py +30 -0
src/convert.py
CHANGED
@@ -1,51 +1,10 @@
|
|
1 |
-
import
|
2 |
-
import re
|
3 |
-
from dataclasses import dataclass
|
4 |
-
from typing import Optional, TypedDict
|
5 |
|
6 |
import Levenshtein
|
7 |
import pandas as pd
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
df = pd.read_xml(file)[["text"]]
|
12 |
-
return df
|
13 |
-
|
14 |
-
|
15 |
-
def read_aste_file(file: str) -> pd.DataFrame:
|
16 |
-
def triple_to_hashable(
|
17 |
-
triple: tuple[list[int], list[int], str]
|
18 |
-
) -> tuple[tuple[int, ...], tuple[int, ...], str]:
|
19 |
-
aspect_span, opinion_span, sentiment = triple
|
20 |
-
return tuple(aspect_span), tuple(opinion_span), sentiment
|
21 |
-
|
22 |
-
df = pd.read_csv(
|
23 |
-
file,
|
24 |
-
sep="####",
|
25 |
-
header=None,
|
26 |
-
names=["text", "triples"],
|
27 |
-
engine="python",
|
28 |
-
)
|
29 |
-
|
30 |
-
# There are duplicate rows, some of which have the same triples and some don't
|
31 |
-
# This deals with that by
|
32 |
-
# * first dropping the pure duplicates,
|
33 |
-
# * then parsing the triples and exploding them to one per row
|
34 |
-
# * then dropping the exploded duplicates (have to convert triples back to string for this)
|
35 |
-
# * then grouping the triples up again
|
36 |
-
# * finally sorting the distinct triples
|
37 |
-
|
38 |
-
# df = df.copy()
|
39 |
-
df = df.drop_duplicates()
|
40 |
-
df["triples"] = df.triples.apply(ast.literal_eval)
|
41 |
-
df = df.explode("triples")
|
42 |
-
df["triples"] = df.triples.apply(triple_to_hashable)
|
43 |
-
df = df.drop_duplicates()
|
44 |
-
df = df.groupby("text").agg(list)
|
45 |
-
df = df.reset_index(drop=False)
|
46 |
-
df["triples"] = df.triples.apply(set).apply(sorted)
|
47 |
-
|
48 |
-
return df
|
49 |
|
50 |
|
51 |
def get_original_text(
|
@@ -106,25 +65,6 @@ def has_unmapped_non_space(row: pd.Series) -> bool:
|
|
106 |
return any(index is None for letter, index in letter_and_index if letter != " ")
|
107 |
|
108 |
|
109 |
-
@dataclass(frozen=True)
|
110 |
-
class WordSpan:
|
111 |
-
start_index: int
|
112 |
-
end_index: int # this is the letter after the end
|
113 |
-
|
114 |
-
|
115 |
-
class CharacterIndices(TypedDict):
|
116 |
-
aspect_start_index: int
|
117 |
-
aspect_end_index: int
|
118 |
-
aspect_term: str
|
119 |
-
opinion_start_index: int
|
120 |
-
opinion_end_index: int
|
121 |
-
opinion_term: str
|
122 |
-
sentiment: str
|
123 |
-
|
124 |
-
|
125 |
-
word_pattern = re.compile(r"\S+")
|
126 |
-
|
127 |
-
|
128 |
def row_to_character_indices(row: pd.Series) -> pd.Series:
|
129 |
try:
|
130 |
return pd.Series(
|
@@ -202,10 +142,7 @@ def to_character_indices(
|
|
202 |
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
203 |
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
204 |
|
205 |
-
word_indices =
|
206 |
-
WordSpan(start_index=match.start(), end_index=match.end())
|
207 |
-
for match in word_pattern.finditer(preprocessed)
|
208 |
-
]
|
209 |
|
210 |
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
211 |
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
@@ -218,15 +155,15 @@ def to_character_indices(
|
|
218 |
"NEU": "neutral",
|
219 |
}[sentiment]
|
220 |
|
221 |
-
return
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
|
231 |
|
232 |
def convert_sem_eval_text(
|
@@ -304,10 +241,7 @@ def aste_to_character_indices(
|
|
304 |
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
305 |
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
306 |
|
307 |
-
word_indices =
|
308 |
-
WordSpan(start_index=match.start(), end_index=match.end())
|
309 |
-
for match in word_pattern.finditer(text)
|
310 |
-
]
|
311 |
|
312 |
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
313 |
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
@@ -320,12 +254,12 @@ def aste_to_character_indices(
|
|
320 |
"NEU": "neutral",
|
321 |
}[sentiment]
|
322 |
|
323 |
-
return
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
1 |
+
from typing import Optional
|
|
|
|
|
|
|
2 |
|
3 |
import Levenshtein
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from .data import read_aste_file, read_sem_eval_file
|
7 |
+
from .types import CharacterIndices, WordSpan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def get_original_text(
|
|
|
65 |
return any(index is None for letter, index in letter_and_index if letter != " ")
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def row_to_character_indices(row: pd.Series) -> pd.Series:
|
69 |
try:
|
70 |
return pd.Series(
|
|
|
142 |
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
143 |
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
144 |
|
145 |
+
word_indices = WordSpan.to_spans(preprocessed)
|
|
|
|
|
|
|
146 |
|
147 |
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
148 |
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
|
|
155 |
"NEU": "neutral",
|
156 |
}[sentiment]
|
157 |
|
158 |
+
return CharacterIndices(
|
159 |
+
aspect_start_index=aspect_start_index,
|
160 |
+
aspect_end_index=aspect_end_index,
|
161 |
+
aspect_term=aspect_term,
|
162 |
+
opinion_start_index=opinion_start_index,
|
163 |
+
opinion_end_index=opinion_end_index,
|
164 |
+
opinion_term=opinion_term,
|
165 |
+
sentiment=nice_sentiment,
|
166 |
+
)
|
167 |
|
168 |
|
169 |
def convert_sem_eval_text(
|
|
|
241 |
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
242 |
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
243 |
|
244 |
+
word_indices = WordSpan.to_spans(text)
|
|
|
|
|
|
|
245 |
|
246 |
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
247 |
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
|
|
254 |
"NEU": "neutral",
|
255 |
}[sentiment]
|
256 |
|
257 |
+
return CharacterIndices(
|
258 |
+
aspect_start_index=aspect_start_index,
|
259 |
+
aspect_end_index=aspect_end_index,
|
260 |
+
aspect_term=aspect_term,
|
261 |
+
opinion_start_index=opinion_start_index,
|
262 |
+
opinion_end_index=opinion_end_index,
|
263 |
+
opinion_term=opinion_term,
|
264 |
+
sentiment=nice_sentiment,
|
265 |
+
)
|
src/data.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
|
7 |
+
def read_sem_eval_file(file: str | Path) -> pd.DataFrame:
|
8 |
+
df = pd.read_xml(file)[["text"]]
|
9 |
+
return df
|
10 |
+
|
11 |
+
|
12 |
+
def read_aste_file(file: str | Path) -> pd.DataFrame:
|
13 |
+
df = pd.read_csv(
|
14 |
+
file,
|
15 |
+
sep="####",
|
16 |
+
header=None,
|
17 |
+
names=["text", "triples"],
|
18 |
+
engine="python",
|
19 |
+
)
|
20 |
+
|
21 |
+
# There are duplicate rows, some of which have the same triples and some don't
|
22 |
+
# This deals with that by
|
23 |
+
# * first dropping the pure duplicates,
|
24 |
+
# * then parsing the triples and exploding them to one per row
|
25 |
+
# * then dropping the exploded duplicates (have to convert triples back to string for this)
|
26 |
+
# * then grouping the triples up again
|
27 |
+
# * finally sorting the distinct triples
|
28 |
+
|
29 |
+
df = df.drop_duplicates()
|
30 |
+
df["triples"] = df.triples.apply(ast.literal_eval)
|
31 |
+
df = df.explode("triples")
|
32 |
+
df["triples"] = df.triples.apply(_triple_to_hashable)
|
33 |
+
df = df.drop_duplicates()
|
34 |
+
df = df.groupby("text").agg(list)
|
35 |
+
df = df.reset_index(drop=False)
|
36 |
+
df["triples"] = df.triples.apply(set).apply(sorted)
|
37 |
+
|
38 |
+
return df
|
39 |
+
|
40 |
+
|
41 |
+
def _triple_to_hashable(
|
42 |
+
triple: tuple[list[int], list[int], str]
|
43 |
+
) -> tuple[tuple[int, ...], tuple[int, ...], str]:
|
44 |
+
aspect_span, opinion_span, sentiment = triple
|
45 |
+
return tuple(aspect_span), tuple(opinion_span), sentiment
|
src/types.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import re
|
4 |
+
from dataclasses import dataclass
|
5 |
+
|
6 |
+
word_pattern = re.compile(r"\S+")
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass(frozen=True)
|
10 |
+
class WordSpan:
|
11 |
+
start_index: int
|
12 |
+
end_index: int # this is the letter after the end
|
13 |
+
|
14 |
+
@staticmethod
|
15 |
+
def to_spans(text: str) -> list[WordSpan]:
|
16 |
+
return [
|
17 |
+
WordSpan(start_index=match.start(), end_index=match.end())
|
18 |
+
for match in word_pattern.finditer(text)
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass(frozen=True)
|
23 |
+
class CharacterIndices:
|
24 |
+
aspect_start_index: int
|
25 |
+
aspect_end_index: int
|
26 |
+
aspect_term: str
|
27 |
+
opinion_start_index: int
|
28 |
+
opinion_end_index: int
|
29 |
+
opinion_term: str
|
30 |
+
sentiment: str
|