Datasets:
File size: 1,361 Bytes
8e12b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import ast
from pathlib import Path
import pandas as pd
def read_sem_eval_file(file: str | Path) -> pd.DataFrame:
df = pd.read_xml(file)[["text"]]
return df
def read_aste_file(file: str | Path) -> pd.DataFrame:
df = pd.read_csv(
file,
sep="####",
header=None,
names=["text", "triples"],
engine="python",
)
# There are duplicate rows, some of which have the same triples and some don't
# This deals with that by
# * first dropping the pure duplicates,
# * then parsing the triples and exploding them to one per row
# * then dropping the exploded duplicates (have to convert triples back to string for this)
# * then grouping the triples up again
# * finally sorting the distinct triples
df = df.drop_duplicates()
df["triples"] = df.triples.apply(ast.literal_eval)
df = df.explode("triples")
df["triples"] = df.triples.apply(_triple_to_hashable)
df = df.drop_duplicates()
df = df.groupby("text").agg(list)
df = df.reset_index(drop=False)
df["triples"] = df.triples.apply(set).apply(sorted)
return df
def _triple_to_hashable(
triple: tuple[list[int], list[int], str]
) -> tuple[tuple[int, ...], tuple[int, ...], str]:
aspect_span, opinion_span, sentiment = triple
return tuple(aspect_span), tuple(opinion_span), sentiment
|