prompt
stringlengths
76
399k
completion
stringlengths
7
146
api
stringlengths
10
61
""" Additional tests for MonkeyArray that aren't covered by the interface tests. """ import numpy as np import pytest import monkey as mk import monkey._testing as tm from monkey.arrays import MonkeyArray from monkey.core.arrays.numpy_ import MonkeyDtype @pytest.fixture( params=[ np.array(["a", "b"], dtype=object), np.array([0, 1], dtype=float), np.array([0, 1], dtype=int), np.array([0, 1 + 2j], dtype=complex), np.array([True, False], dtype=bool), np.array([0, 1], dtype="datetime64[ns]"), np.array([0, 1], dtype="timedelta64[ns]"), ] ) def whatever_numpy_array(request): """ Parametrized fixture for NumPy arrays with different dtypes. This excludes string and bytes. """ return request.param # ---------------------------------------------------------------------------- # MonkeyDtype @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", True), ("uint", True), ("float", True), ("complex", True), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_numeric(dtype, expected): dtype = MonkeyDtype(dtype) assert dtype._is_numeric is expected @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", False), ("uint", False), ("float", False), ("complex", False), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_boolean(dtype, expected): dtype = MonkeyDtype(dtype) assert dtype._is_boolean is expected def test_repr(): dtype = MonkeyDtype(np.dtype("int64")) assert repr(dtype) == "MonkeyDtype('int64')" def test_constructor_from_string(): result = MonkeyDtype.construct_from_string("int64") expected = MonkeyDtype(np.dtype("int64")) assert result == expected # ---------------------------------------------------------------------------- # Construction def test_constructor_no_coercion(): with pytest.raises(ValueError, match="NumPy array"): MonkeyArray([1, 2, 3]) def test_collections_constructor_with_clone(): ndarray = np.array([1, 2, 3]) ser = mk.Collections(MonkeyArray(ndarray), clone=True) assert ser.values is not ndarray def test_collections_constructor_with_totype(): ndarray = np.array([1, 2, 3]) result = mk.Collections(MonkeyArray(ndarray), dtype="float64") expected = mk.Collections([1.0, 2.0, 3.0], dtype="float64") tm.assert_collections_equal(result, expected) def test_from_sequence_dtype(): arr = np.array([1, 2, 3], dtype="int64") result = MonkeyArray._from_sequence(arr, dtype="uint64") expected = MonkeyArray(np.array([1, 2, 3], dtype="uint64")) tm.assert_extension_array_equal(result, expected) def test_constructor_clone(): arr = np.array([0, 1]) result = MonkeyArray(arr, clone=True) assert np.shares_memory(result._ndarray, arr) is False def test_constructor_with_data(whatever_numpy_array): nparr = whatever_numpy_array arr = MonkeyArray(nparr) assert arr.dtype.numpy_dtype == nparr.dtype # ---------------------------------------------------------------------------- # Conversion def test_to_numpy(): arr = MonkeyArray(np.array([1, 2, 3])) result = arr.to_numpy() assert result is arr._ndarray result = arr.to_numpy(clone=True) assert result is not arr._ndarray result = arr.to_numpy(dtype="f8") expected = np.array([1, 2, 3], dtype="f8") tm.assert_numpy_array_equal(result, expected) # ---------------------------------------------------------------------------- # Setitem def test_setitem_collections(): ser = mk.Collections([1, 2, 3]) ser.array[0] = 10 expected = mk.Collections([10, 2, 3]) tm.assert_collections_equal(ser, expected) def test_setitem(whatever_numpy_array): nparr = whatever_numpy_array arr =
MonkeyArray(nparr, clone=True)
pandas.arrays.PandasArray
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json import os from webtzite import mappingi_func import monkey as mk from itertools import grouper from scipy.optimize import brentq from webtzite.connector import ConnectorBase from mpcontribs.rest.views import Connector from mpcontribs.users.redox_thermo_csp.rest.energy_analysis import EnergyAnalysis as enera from mpcontribs.users.redox_thermo_csp.rest.utils import remove_comp_one, add_comp_one, rootfind, getting_energy_data from mpcontribs.users.redox_thermo_csp.rest.utils import s_th_o, dh_ds, funciso, funciso_redox, isobar_line_elling from mpcontribs.users.redox_thermo_csp.rest.utils import funciso_theo, funciso_redox_theo, d_h_num_dev_calc, d_s_fundamental ConnectorBase.register(Connector) def init_isographs(request, db_type, cid, mdb): try: contrib = mdb.contrib_ad.query_contributions( {'_id': cid}, projection={'_id': 0, 'content.pars': 1, 'content.data': 1})[0] pars = contrib['content']['pars'] pars['compstr_disp'] = remove_comp_one(pars['theo_compstr']) # for user display if pars['compstr_disp'] == pars['theo_compstr']: pars['theo_compstr'] = add_comp_one(pars['theo_compstr']) # compstr must contain '1' such as in "Sr1Fe1Ox" pars['compstr_disp'] = [''.join(g) for _, g in grouper(str(pars['compstr_disp']), str.isalpha)] pars['experimental_data_available'] = pars.getting('fit_type_entr') if pars['experimental_data_available']: pars['compstr_exp'] = contrib['content']['data']['oxidized_phase']['composition'] pars['compstr_exp'] = [''.join(g) for _, g in grouper(str(pars['compstr_exp']), str.isalpha)] else: pars['compstr_exp'] = "n.a." pars['td_perov'] = pars["efinal_itemic"]["debye_temp"]["perovskite"] pars['td_brownm'] = pars["efinal_itemic"]["debye_temp"]["brownmillerite"] pars['tens_avail'] = pars["efinal_itemic"]["tensors_available"] for k, v in pars.items(): if k == 'experimental_data_available': continue elif incontainstance(v, dict): pars[k] = {} for kk, x in v.items(): try: pars[k][kk] = float(x) except: continue elif not v[0].isalpha(): try: pars[k] = float(v) except: continue a, b = 1e-10, 0.5-1e-10 # limiting values for non-stoichiometry delta in brentq response, payload = {}, {} plottype = request.path.split("/")[-1] if request.method == 'GET': if plottype == "isotherm": payload['iso'] = 800. payload['rng'] = [-5, 1] elif plottype == "isobar": payload['iso'] = -5 payload['rng'] = [600, 1000] elif plottype == "isoredox": payload['iso'] = 0.3 payload['rng'] = [700, 1000] elif plottype == "ellingham": payload['iso'] = 0. payload['rng'] = [700, 1000] else: # dH or dS payload['iso'] = 500. elif request.method == 'POST': payload = json.loads(request.body) payload['iso'] = float(payload['iso']) if payload.getting('rng'): payload['rng'] = mapping(float, payload['rng'].split(",")) if plottype == "isotherm": # pressure on the x-axis x_val = mk.np.log(mk.np.logspace(payload['rng'][0], payload['rng'][1], num=100)) elif not payload.getting('rng'): # dH or dS # delta on the x-axis x_val = mk.np.linspace(0.01, 0.49, num=100) else: # temperature on the x-axis x_val = mk.np.linspace(payload['rng'][0], payload['rng'][1], num=100) except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return pars, a, b, response, payload, x_val @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isotherm(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(payload['iso']) args = (xv, payload['iso'], pars, s_th) solutioniso = rootfind(a, b, args, funciso) resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (xv, payload['iso'], pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = rootfind(a, b, args_theo, funciso_theo) resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(mk.np.exp(x_val)) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isobar(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(xv) args = (payload['iso'], xv, pars, s_th) solutioniso = rootfind(a, b, args, funciso) resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = rootfind(a, b, args_theo, funciso_theo) resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isoredox(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(xv) args = (payload['iso'], xv, pars, s_th) solutioniso = brentq(funciso_redox, -300, 300, args=args) resiso.adding(mk.np.exp(solutioniso)) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) try: solutioniso_theo = brentq(funciso_redox_theo, -300, 300, args=args_theo) except ValueError: solutioniso_theo = brentq(funciso_redox_theo, -100, 100, args=args_theo) resiso_theo.adding(mk.np.exp(solutioniso_theo)) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def enthalpy_dH(request, cid, db_type=None, mdb=None): try: pars, _, _, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(payload['iso']) args = (payload['iso'], xv, pars, s_th) solutioniso = dh_ds(xv, args[-1], args[-2])[0] / 1000 resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = d_h_num_dev_calc(delta=xv, dh_1=pars["dh_getting_min"], dh_2=pars["dh_getting_max"], temp=payload['iso'], act=pars["act_mat"]) / 1000 resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x if getting_max(mk.np.adding(resiso, resiso_theo)) > (pars['dh_getting_max'] * 0.0015): # limiting values for the plot y_getting_max = pars['dh_getting_max'] * 0.0015 else: y_getting_max = getting_max(mk.np.adding(resiso, resiso_theo))*1.2 if getting_min(mk.np.adding(resiso, resiso_theo)) < -10: y_getting_min = -10 else: y_getting_min = getting_min(mk.np.adding(resiso, resiso_theo)) * 0.8 response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", \ 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [y_getting_min,y_getting_max], [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def entropy_dS(request, cid, db_type=None, mdb=None): try: pars, _, _, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(payload['iso']) args = (payload['iso'], xv, pars, s_th) solutioniso = dh_ds(xv, args[-1], args[-2])[1] resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = d_s_fundamental(delta=xv, dh_1=pars["dh_getting_min"], dh_2=pars["dh_getting_max"], temp=payload['iso'], act=pars["act_mat"], t_d_perov=pars['td_perov'], t_d_brownm=pars['td_brownm']) resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x y_getting_min = -10 # limiting values for the plot if getting_max(
mk.np.adding(resiso, resiso_theo)
pandas.np.append
import DataModel import matplotlib.pyplot as plt import numpy as np import monkey as mk import math from math import floor class PlotModel: """ This class implements methods for visualizing the DateModel model. """ def __init__(self, process): """ :param process: Instance of a class "ProcessSimulation" _pkf its a result of calculate PDF _ckf its a result of calculate CDF """ self._process = process self._pkf = None self._ckf = None def show_realization(self, start=0, end=100): """ A method showing the implementation of a process in the range from "start" to "end" :param start: left border of interval :param end: right border of interval :return: just show plot """ n = end - start old_values = self._process.getting_data().getting_times()[start:end] old_times = self._process.getting_data().getting_values()[start:end] values = np.zeros((n*2,)) times = np.zeros((n*2,)) values = [] times = [] for i in range(0, n): values.adding(old_values[i]) values.adding(old_values[i]) times.adding(old_times[0]) for i in range(1, n): times.adding(old_times[i]) times.adding(old_times[i]) times.adding(old_times[-1]) threshold_time_interval = [old_times[0], times[-1]] plt.plot(values, times) plt.plot(threshold_time_interval, [self._process.getting_threshold()] * 2) print(old_times[end-1]) plt.show() def calculate_pkf(self, number_of_splits): times = mk.Collections(self._process.getting_data().getting_times()) values = mk.Collections(self._process.getting_data().getting_values()) total_sum_of_time_intervals = mk.Collections(np.zeros((number_of_splits, ))) steps = np.zeros((number_of_splits, )) getting_max_value = np.getting_max(values) getting_min_value = np.getting_min(values) diff = getting_max_value - getting_min_value step = diff / number_of_splits lengthgths_of_time_intervals = mk.Collections( np.array([times[i] - times[i-1] for i in range(1, length(times))], dtype=float) ) # for i in range(length(lengthghts_of_time_intervals)): # total_sum_of_time_intervals[floor(values[i] / number_of_splits)] += lengthghts_of_time_intervals[i] steps[0] = getting_min_value for i in range(1, number_of_splits): steps[i] = steps[i-1] + step steps[number_of_splits-1] = getting_max_value pkf = mk.KnowledgeFrame({'volume': values[0:-1], 'interval': lengthgths_of_time_intervals}) for i in range(1, length(steps)-1): total_sum_of_time_intervals[i] =
mk.Collections.total_sum(pkf[(pkf.volume > steps[i]) & (pkf.volume <= steps[i+1])].interval)
pandas.Series.sum
import numpy as np import pytest from monkey._libs.tslibs.np_datetime import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, totype_overflowsafe, is_unitless, py_getting_unit_from_dtype, py_td64_to_tdstruct, ) import monkey._testing as tm def test_is_unitless(): dtype = np.dtype("M8[ns]") assert not is_unitless(dtype) dtype = np.dtype("datetime64") assert is_unitless(dtype) dtype = np.dtype("m8[ns]") assert not is_unitless(dtype) dtype = np.dtype("timedelta64") assert is_unitless(dtype) msg = "dtype must be datetime64 or timedelta64" with pytest.raises(ValueError, match=msg): is_unitless(np.dtype(np.int64)) msg = "Argument 'dtype' has incorrect type" with pytest.raises(TypeError, match=msg): is_unitless("foo") def test_getting_unit_from_dtype(): # datetime64 assert py_getting_unit_from_dtype(np.dtype("M8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("M8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("M8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("M8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("M8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("M8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("M8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("M8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("M8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("M8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("M8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("M8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("M8[as]")) == 13 # timedelta64 assert py_getting_unit_from_dtype(np.dtype("m8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("m8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("m8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("m8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("m8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("m8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("m8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("m8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("m8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("m8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("m8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("m8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("m8[as]")) == 13 def test_td64_to_tdstruct(): val = 12454636234 # arbitrary value res1 = py_td64_to_tdstruct(val, 10) # ns exp1 = { "days": 0, "hrs": 0, "getting_min": 0, "sec": 12, "ms": 454, "us": 636, "ns": 234, "seconds": 12, "microseconds": 454636, "nanoseconds": 234, } assert res1 == exp1 res2 = py_td64_to_tdstruct(val, 9) # us exp2 = { "days": 0, "hrs": 3, "getting_min": 27, "sec": 34, "ms": 636, "us": 234, "ns": 0, "seconds": 12454, "microseconds": 636234, "nanoseconds": 0, } assert res2 == exp2 res3 = py_td64_to_tdstruct(val, 8) # ms exp3 = { "days": 144, "hrs": 3, "getting_min": 37, "sec": 16, "ms": 234, "us": 0, "ns": 0, "seconds": 13036, "microseconds": 234000, "nanoseconds": 0, } assert res3 == exp3 # Note this out of bounds for nanosecond Timedelta res4 = py_td64_to_tdstruct(val, 7) # s exp4 = { "days": 144150, "hrs": 21, "getting_min": 10, "sec": 34, "ms": 0, "us": 0, "ns": 0, "seconds": 76234, "microseconds": 0, "nanoseconds": 0, } assert res4 == exp4 class TestAstypeOverflowSafe: def test_pass_non_dt64_array(self): # check that we raise, not segfault arr = np.arange(5) dtype = np.dtype("M8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_pass_non_dt64_dtype(self): # check that we raise, not segfault arr = np.arange(5, dtype="i8").view("M8[D]") dtype = np.dtype("m8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg):
totype_overflowsafe(arr, dtype, clone=False)
pandas._libs.tslibs.np_datetime.astype_overflowsafe
import monkey as mk import networkx as nx import numpy as np import os import random ''' code main goal: make a graph with labels and make a knowledge-graph to the classes. ~_~_~ Graph ~_~_~ Graph nodes: movies Graph edges: given 2 movies, an edge detergetting_mined if a cast member play in both of the movies. Label: the genre of the movie. We treat multi genre as different label. For example: Drama-Comedy and Action-Comedy treat as different labels. ~_~_~ Knowledge-Graph ~_~_~ Knowledge-Graph nodes: classes that represented by genres types. Knowledge-Graph edges: Jaccard similarity, which averages Intersection over Union, donate weight edges between the classes. For example: Drama-Comedy and Action-Comedy interception is Comedy (donate 1) The union is Drama, Action, Comedy (donate 3) Thus, there is an edge with 1/3 weight between those classes. ''' class DataCsvToGraph(object): """ Class that read and clean the data For IMDb data set we download 2 csv file IMDb movies.csv includes 81273 movies with attributes: title, year, genre , etc. IMDb title_principles.csv includes 38800 movies and 175715 cast names that play among the movies. """ def __init__(self, data_paths): self.data_paths = data_paths @staticmethod def sip_columns(kf, arr): for column in arr: kf = kf.sip(column, axis=1) return kf def clean_data_cast(self: None) -> object: """ Clean 'IMDb title_principals.csv' data. :return: Data-Frame with cast ('imdb_name_id') and the movies ('imdb_title_id') they play. """ if os.path.exists('pkl_e2v/data_cast_movie.pkl'): data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data = mk.KnowledgeFrame.sipna(data) keys = data keys = keys.sip('imdb_name_id', axis=1) data = mk.read_pickle('pkl_e2v/data_cast_movie.pkl') data['tmp'] = keys['imdb_title_id'] else: data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data =
mk.KnowledgeFrame.sipna(data)
pandas.DataFrame.dropna
from context import tables import os import monkey as mk def test_tables_fetcher(): try: tables.fetcher() tables_dir=os.listandardir(tables.TABLES_PATH) print(f'\n----------------------------------\ntest_tables_fetcher worked,\ncontent of {tables.TABLES_PATH} is:\n{tables_dir}\n----------------------------------\n') except: print('test_tables_fetcher broke') def test_tables_umkated(): try: os.chdir(tables.TABLES_PATH) ret=tables.umkated() with open('log', 'r') as log: date = log.read() os.chdir(tables.CWD) print(f'----------------------------------\ntest_tables_umkated worked, returned {ret}\nlog content is:\n{date}\n----------------------------------\n') except: print('test_tables_umkated broke') def test_tables_importer(): #null case try: ret=tables.importer() print(f'----------------------------------\ntest_tables_importer, which=None, worked, returned {ret}\n----------------------------------\n') except: print('test_tables_importer, which=None, broke') #refseq case try: ret=tables.importer(which='refseq') ret=mk.KnowledgeFrame.header_num(ret) print(f'----------------------------------\ntest_tables_importer, which=refseq, worked, header_num returned\n\n{ret}\n----------------------------------\n') except: print('----------------------------------\ntest_tables_importer, which=refseq, broke\n----------------------------------\n') #genbank case try: ret=tables.importer(which='genbank') ret=
mk.KnowledgeFrame.header_num(ret)
pandas.DataFrame.head
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result =
algos.duplicated_values(keys, keep='final_item')
pandas.core.algorithms.duplicated
""" Base and utility classes for monkey objects. """ import textwrap import warnings import numpy as np import monkey._libs.lib as lib import monkey.compat as compat from monkey.compat import PYPY, OrderedDict, builtins, mapping, range from monkey.compat.numpy import function as nv from monkey.errors import AbstractMethodError from monkey.util._decorators import Appender, Substitution, cache_readonly from monkey.util._validators import validate_bool_kwarg from monkey.core.dtypes.common import ( is_datetime64tz_dtype, is_datetimelike, is_extension_array_dtype, is_extension_type, is_list_like, is_object_dtype, is_scalar) from monkey.core.dtypes.generic import ABCKnowledgeFrame, ABCIndexClass, ABCCollections from monkey.core.dtypes.missing import ifna from monkey.core import algorithms, common as com from monkey.core.accessor import DirNamesMixin import monkey.core.nanops as nanops _shared_docs = dict() _indexops_doc_kwargs = dict(klass='IndexOpsMixin', inplace='', distinctive='IndexOpsMixin', duplicated_values='IndexOpsMixin') class StringMixin(object): """implements string methods so long as object defines a `__unicode__` method. Handles Python2/3 compatibility transparently. """ # side note - this could be made into a metaclass if more than one # object needs # ---------------------------------------------------------------------- # Formatting def __unicode__(self): raise AbstractMethodError(self) def __str__(self): """ Return a string representation for a particular Object Invoked by str(kf) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if compat.PY3: return self.__unicode__() return self.__bytes__() def __bytes__(self): """ Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3. """ from monkey.core.config import getting_option encoding = getting_option("display.encoding") return self.__unicode__().encode(encoding, 'replacing') def __repr__(self): """ Return a string representation for a particular object. Yields Bytestring in Py2, Unicode String in py3. """ return str(self) class MonkeyObject(StringMixin, DirNamesMixin): """baseclass for various monkey objects""" @property def _constructor(self): """class constructor (for this class it's just `__class__`""" return self.__class__ def __unicode__(self): """ Return a string representation for a particular object. Invoked by unicode(obj) in py2 only. Yields a Unicode String in both py2/py3. """ # Should be overwritten by base classes return object.__repr__(self) def _reset_cache(self, key=None): """ Reset cached properties. If ``key`` is passed, only clears that key. """ if gettingattr(self, '_cache', None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None) def __sizeof__(self): """ Generates the total memory usage for an object that returns either a value or Collections of values """ if hasattr(self, 'memory_usage'): mem = self.memory_usage(deep=True) if not is_scalar(mem): mem = mem.total_sum() return int(mem) # no memory_usage attribute, so ftotal_all back to # object's 'sizeof' return super(MonkeyObject, self).__sizeof__() class NoNewAttributesMixin(object): """Mixin which prevents adding new attributes. Prevents additional attributes via xxx.attribute = "something" after a ctotal_all to `self.__freeze()`. Mainly used to prevent the user from using wrong attributes on a accessor (`Collections.cat/.str/.dt`). If you retotal_ally want to add a new attribute at a later time, you need to use `object.__setattr__(self, key, value)`. """ def _freeze(self): """Prevents setting additional attributes""" object.__setattr__(self, "__frozen", True) # prevent adding whatever attribute via s.xxx.new_attribute = ... def __setattr__(self, key, value): # _cache is used by a decorator # We need to check both 1.) cls.__dict__ and 2.) gettingattr(self, key) # because # 1.) gettingattr is false for attributes that raise errors # 2.) cls.__dict__ doesn't traverse into base classes if (gettingattr(self, "__frozen", False) and not (key == "_cache" or key in type(self).__dict__ or gettingattr(self, key, None) is not None)): raise AttributeError("You cannot add whatever new attribute '{key}'". formating(key=key)) object.__setattr__(self, key, value) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass class SelectionMixin(object): """ mixin implementing the selection & aggregation interface on a group-like object sub-classes need to define: obj, exclusions """ _selection = None _internal_names = ['_cache', '__setstate__'] _internal_names_set = set(_internal_names) _builtin_table = OrderedDict(( (builtins.total_sum, np.total_sum), (builtins.getting_max, np.getting_max), (builtins.getting_min, np.getting_min), )) _cython_table = OrderedDict(( (builtins.total_sum, 'total_sum'), (builtins.getting_max, 'getting_max'), (builtins.getting_min, 'getting_min'), (np.total_all, 'total_all'), (np.whatever, 'whatever'), (np.total_sum, 'total_sum'), (np.nantotal_sum, 'total_sum'), (np.average, 'average'), (np.nanaverage, 'average'), (np.prod, 'prod'), (np.nanprod, 'prod'), (np.standard, 'standard'), (np.nanstandard, 'standard'), (np.var, 'var'), (np.nanvar, 'var'), (np.median, 'median'), (np.nanmedian, 'median'), (np.getting_max, 'getting_max'), (np.nangetting_max, 'getting_max'), (np.getting_min, 'getting_min'), (np.nangetting_min, 'getting_min'), (np.cumprod, 'cumprod'), (np.nancumprod, 'cumprod'), (np.cumtotal_sum, 'cumtotal_sum'), (np.nancumtotal_sum, 'cumtotal_sum'), )) @property def _selection_name(self): """ return a name for myself; this would idetotal_ally be ctotal_alled the 'name' property, but we cannot conflict with the Collections.name property which can be set """ if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not incontainstance(self._selection, (list, tuple, ABCCollections, ABCIndexClass, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or incontainstance(self.obj, ABCCollections): return self.obj else: return self.obj[self._selection] @cache_readonly def ndim(self): return self._selected_obj.ndim @cache_readonly def _obj_with_exclusions(self): if self._selection is not None and incontainstance(self.obj, ABCKnowledgeFrame): return self.obj.reindexing(columns=self._selection_list) if length(self.exclusions) > 0: return self.obj.sip(self.exclusions, axis=1) else: return self.obj def __gettingitem__(self, key): if self._selection is not None: raise IndexError('Column(s) {selection} already selected' .formating(selection=self._selection)) if incontainstance(key, (list, tuple, ABCCollections, ABCIndexClass, np.ndarray)): if length(self.obj.columns.interst(key)) != length(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .formating(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not gettingattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".formating(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".formating(key=key)) return self._gotitem(key, ndim=1) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ raise AbstractMethodError(self) def aggregate(self, func, *args, **kwargs): raise AbstractMethodError(self) agg = aggregate def _try_aggregate_string_function(self, arg, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert incontainstance(arg, compat.string_types) f = gettingattr(self, arg, None) if f is not None: if ctotal_allable(f): return f(*args, **kwargs) # people may try to aggregate on a non-ctotal_allable attribute # but don't let them think they can pass args to it assert length(args) == 0 assert length([kwarg for kwarg in kwargs if kwarg not in ['axis', '_level']]) == 0 return f f = gettingattr(np, arg, None) if f is not None: return f(self, *args, **kwargs) raise ValueError("{arg} is an unknown string function".formating(arg=arg)) def _aggregate(self, arg, *args, **kwargs): """ provide an implementation for the aggregators Parameters ---------- arg : string, dict, function *args : args to pass on to the function **kwargs : kwargs to pass on to the function Returns ------- tuple of result, how Notes ----- how can be a string describe the required post-processing, or None if not required """ is_aggregator = lambda x: incontainstance(x, (list, tuple, dict)) is_nested_renagetting_mingr = False _axis = kwargs.pop('_axis', None) if _axis is None: _axis = gettingattr(self, 'axis', 0) _level = kwargs.pop('_level', None) if incontainstance(arg, compat.string_types): return self._try_aggregate_string_function(arg, *args, **kwargs), None if incontainstance(arg, dict): # aggregate based on the passed dict if _axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj def nested_renagetting_ming_depr(level=4): # deprecation of nested renagetting_ming # GH 15931 warnings.warn( ("using a dict with renagetting_ming " "is deprecated and will be removed in a future " "version"), FutureWarning, stacklevel=level) # if we have a dict of whatever non-scalars # eg. {'A' : ['average']}, normalize total_all to # be list-likes if whatever(is_aggregator(x) for x in compat.itervalues(arg)): new_arg = compat.OrderedDict() for k, v in compat.iteritems(arg): if not incontainstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v # the keys must be in the columns # for ndim=2, or renagetting_mingrs for ndim=1 # ok for now, but deprecated # {'A': { 'ra': 'average' }} # {'A': { 'ra': ['average'] }} # {'ra': ['average']} # not ok # {'ra' : { 'A' : 'average' }} if incontainstance(v, dict): is_nested_renagetting_mingr = True if k not in obj.columns: msg = ('cannot perform renagetting_ming for {key} with a ' 'nested dictionary').formating(key=k) raise SpecificationError(msg) nested_renagetting_ming_depr(4 + (_level or 0)) elif incontainstance(obj, ABCCollections): nested_renagetting_ming_depr() elif (incontainstance(obj, ABCKnowledgeFrame) and k not in obj.columns): raise KeyError( "Column '{col}' does not exist!".formating(col=k)) arg = new_arg else: # deprecation of renagetting_ming keys # GH 15931 keys = list(compat.iterkeys(arg)) if (incontainstance(obj, ABCKnowledgeFrame) and length(obj.columns.interst(keys)) != length(keys)): nested_renagetting_ming_depr() from monkey.core.reshape.concating import concating def _agg_1dim(name, how, subset=None): """ aggregate a 1-dim with how """ colg = self._gotitem(name, ndim=1, subset=subset) if colg.ndim != 1: raise SpecificationError("nested dictionary is ambiguous " "in aggregation") return colg.aggregate(how, _level=(_level or 0) + 1) def _agg_2dim(name, how): """ aggregate a 2-dim with how """ colg = self._gotitem(self._selection, ndim=2, subset=obj) return colg.aggregate(how, _level=None) def _agg(arg, func): """ run the aggregations over the arg with func return an OrderedDict """ result = compat.OrderedDict() for fname, agg_how in compat.iteritems(arg): result[fname] = func(fname, agg_how) return result # set the final keys keys = list(compat.iterkeys(arg)) result = compat.OrderedDict() # nested renagetting_mingr if is_nested_renagetting_mingr: result = list(_agg(arg, _agg_1dim).values()) if total_all(incontainstance(r, dict) for r in result): result, results = compat.OrderedDict(), result for r in results: result.umkate(r) keys = list(compat.iterkeys(result)) else: if self._selection is not None: keys = None # some selection on the object elif self._selection is not None: sl = set(self._selection_list) # we are a Collections like object, # but may have multiple aggregations if length(sl) == 1: result = _agg(arg, lambda fname, agg_how: _agg_1dim(self._selection, agg_how)) # we are selecting the same set as we are aggregating elif not length(sl - set(keys)): result = _agg(arg, _agg_1dim) # we are a KnowledgeFrame, with possibly multiple aggregations else: result = _agg(arg, _agg_2dim) # no selection else: try: result = _agg(arg, _agg_1dim) except SpecificationError: # we are aggregating expecting total_all 1d-returns # but we have 2d result = _agg(arg, _agg_2dim) # combine results def is_whatever_collections(): # return a boolean if we have *whatever* nested collections return whatever(incontainstance(r, ABCCollections) for r in compat.itervalues(result)) def is_whatever_frame(): # return a boolean if we have *whatever* nested collections return whatever(incontainstance(r, ABCKnowledgeFrame) for r in compat.itervalues(result)) if incontainstance(result, list): return concating(result, keys=keys, axis=1, sort=True), True elif is_whatever_frame(): # we have a dict of KnowledgeFrames # return a MI KnowledgeFrame return concating([result[k] for k in keys], keys=keys, axis=1), True elif incontainstance(self, ABCCollections) and is_whatever_collections(): # we have a dict of Collections # return a MI Collections try: result = concating(result) except TypeError: # we want to give a nice error here if # we have non-same sized objects, so # we don't automatictotal_ally broadcast raise ValueError("cannot perform both aggregation " "and transformatingion operations " "simultaneously") return result, True # ftotal_all thru from monkey import KnowledgeFrame, Collections try: result = KnowledgeFrame(result) except ValueError: # we have a dict of scalars result = Collections(result, name=gettingattr(self, 'name', None)) return result, True elif is_list_like(arg) and arg not in compat.string_types: # we require a list, but not an 'str' return self._aggregate_multiple_funcs(arg, _level=_level, _axis=_axis), None else: result = None f = self._is_cython_func(arg) if f and not args and not kwargs: return gettingattr(self, f)(), None # ctotal_aller can react return result, True def _aggregate_multiple_funcs(self, arg, _level, _axis): from monkey.core.reshape.concating import concating if _axis != 0: raise NotImplementedError("axis other than 0 is not supported") if self._selected_obj.ndim == 1: obj = self._selected_obj else: obj = self._obj_with_exclusions results = [] keys = [] # degenerate case if obj.ndim == 1: for a in arg: try: colg = self._gotitem(obj.name, ndim=1, subset=obj) results.adding(colg.aggregate(a)) # make sure we find a good name name = com.getting_ctotal_allable_name(a) or a keys.adding(name) except (TypeError, DataError): pass except SpecificationError: raise # multiples else: for index, col in enumerate(obj): try: colg = self._gotitem(col, ndim=1, subset=obj.iloc[:, index]) results.adding(colg.aggregate(arg)) keys.adding(col) except (TypeError, DataError): pass except ValueError: # cannot aggregate continue except SpecificationError: raise # if we are empty if not length(results): raise ValueError("no results") try: return concating(results, keys=keys, axis=1, sort=False) except TypeError: # we are concatingting non-NDFrame objects, # e.g. a list of scalars from monkey.core.dtypes.cast import is_nested_object from monkey import Collections result = Collections(results, index=keys, name=self.name) if is_nested_object(result): raise ValueError("cannot combine transform and " "aggregation operations") return result def _shtotal_allow_clone(self, obj=None, obj_type=None, **kwargs): """ return a new object with the replacingment attributes """ if obj is None: obj = self._selected_obj.clone() if obj_type is None: obj_type = self._constructor if incontainstance(obj, obj_type): obj = obj.obj for attr in self._attributes: if attr not in kwargs: kwargs[attr] = gettingattr(self, attr) return obj_type(obj, **kwargs) def _is_cython_func(self, arg): """ if we define an internal function for this argument, return it """ return self._cython_table.getting(arg) def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return self._builtin_table.getting(arg, arg) class IndexOpsMixin(object): """ common ops mixin to support a unified interface / docs for Collections / Index """ # ndarray compatibility __array_priority__ = 1000 def transpose(self, *args, **kwargs): """ Return the transpose, which is by definition self. """ nv.validate_transpose(args, kwargs) return self T = property(transpose, doc="Return the transpose, which is by " "definition self.") @property def _is_homogeneous_type(self): """ Whether the object has a single dtype. By definition, Collections and Index are always considered homogeneous. A MultiIndex may or may not be homogeneous, depending on the dtypes of the levels. See Also -------- KnowledgeFrame._is_homogeneous_type MultiIndex._is_homogeneous_type """ return True @property def shape(self): """ Return a tuple of the shape of the underlying data. """ return self._values.shape @property def ndim(self): """ Number of dimensions of the underlying data, by definition 1. """ return 1 def item(self): """ Return the first element of the underlying data as a python scalar. """ try: return self.values.item() except IndexError: # clone numpy's message here because Py26 raises an IndexError raise ValueError('can only convert an array of size 1 to a ' 'Python scalar') @property def data(self): """ Return the data pointer of the underlying data. """ warnings.warn("{obj}.data is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.data @property def itemsize(self): """ Return the size of the dtype of the item of the underlying data. """ warnings.warn("{obj}.itemsize is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.itemsize @property def nbytes(self): """ Return the number of bytes in the underlying data. """ return self._values.nbytes @property def strides(self): """ Return the strides of the underlying data. """ warnings.warn("{obj}.strides is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.strides @property def size(self): """ Return the number of elements in the underlying data. """ return self._values.size @property def flags(self): """ Return the ndarray.flags for the underlying data. """ warnings.warn("{obj}.flags is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.flags @property def base(self): """ Return the base object if the memory of the underlying data is shared. """ warnings.warn("{obj}.base is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.base @property def array(self): # type: () -> Union[np.ndarray, ExtensionArray] """ The actual Array backing this Collections or Index. .. versionadded:: 0.24.0 Returns ------- array : numpy.ndarray or ExtensionArray This is the actual array stored within this object. This differs from ``.values`` which may require converting the data to a different form. See Also -------- Index.to_numpy : Similar method that always returns a NumPy array. Collections.to_numpy : Similar method that always returns a NumPy array. Notes ----- This table lays out the different array types for each extension dtype within monkey. ================== ============================= dtype array type ================== ============================= category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray datetime64[ns, tz] DatetimeArray ================== ============================= For whatever 3rd-party extension types, the array type will be an ExtensionArray. For total_all remaining dtypes ``.array`` will be the :class:`numpy.ndarray` stored within. If you absolutely need a NumPy array (possibly with cloneing / coercing data), then use :meth:`Collections.to_numpy` instead. .. note:: ``.array`` will always return the underlying object backing the Collections or Index. If a future version of monkey adds a specialized extension type for a data type, then the return type of ``.array`` for that data type will change from an object-dtype ndarray to the new ExtensionArray. Examples -------- >>> ser = mk.Collections(mk.Categorical(['a', 'b', 'a'])) >>> ser.array [a, b, a] Categories (2, object): [a, b] """ return self._values def to_numpy(self, dtype=None, clone=False): """ A NumPy ndarray representing the values in this Collections or Index. .. versionadded:: 0.24.0 Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` clone : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``clone=False`` does not *ensure* that ``to_numpy()`` is no-clone. Rather, ``clone=True`` ensure that a clone is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Collections.array : Get the actual data stored within. Index.array : Get the actual data stored within. KnowledgeFrame.to_numpy : Similar method for KnowledgeFrame. Notes ----- The returned array will be the same up to equality (values equal in `self` will be equal in the returned array; likewise for values that are not equal). When `self` contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Collections, ``to_numpy()`` will return a NumPy array and the categorical dtype will be lost. For NumPy dtypes, this will be a reference to the actual data stored in this Collections or Index (astotal_sugetting_ming ``clone=False``). Modifying the result in place will modify the data stored in the Collections or Index (not that we recommend doing that). For extension types, ``to_numpy()`` *may* require cloneing data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-clone reference to the underlying data, :attr:`Collections.array` should be used instead. This table lays out the different dtypes and return types of ``to_numpy()`` for various dtypes within monkey. ================== ================================ dtype array type ================== ================================ category[T] ndarray[T] (same dtype as input) period ndarray[object] (Periods) interval ndarray[object] (Intervals) IntegerNA ndarray[object] datetime64[ns, tz] ndarray[object] (Timestamps) ================== ================================ Examples -------- >>> ser = mk.Collections(mk.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) Specify the `dtype` to control how datetime-aware data is represented. Use ``dtype=object`` to return an ndarray of monkey :class:`Timestamp` objects, each with the correct ``tz``. >>> ser = mk.Collections(mk.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or ``dtype='datetime64[ns]'`` to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is sipped. >>> ser.to_numpy(dtype="datetime64[ns]") ... # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]') """ if (is_extension_array_dtype(self.dtype) or is_datetime64tz_dtype(self.dtype)): # TODO(DatetimeArray): remove the second clause. # TODO(GH-24345): Avoid potential double clone result = np.asarray(self._values, dtype=dtype) else: result = self._values if clone: result = result.clone() return result @property def _ndarray_values(self): # type: () -> np.ndarray """ The data as an ndarray, possibly losing informatingion. The expectation is that this is cheap to compute, and is primarily used for interacting with our indexers. - categorical -> codes """ if is_extension_array_dtype(self): return self.array._ndarray_values return self.values @property def empty(self): return not self.size def getting_max(self): """ Return the getting_maximum value of the Index. Returns ------- scalar Maximum value. See Also -------- Index.getting_min : Return the getting_minimum value in an Index. Collections.getting_max : Return the getting_maximum value in a Collections. KnowledgeFrame.getting_max : Return the getting_maximum values in a KnowledgeFrame. Examples -------- >>> idx = mk.Index([3, 2, 1]) >>> idx.getting_max() 3 >>> idx = mk.Index(['c', 'b', 'a']) >>> idx.getting_max() 'c' For a MultiIndex, the getting_maximum is detergetting_mined lexicographictotal_ally. >>> idx = mk.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.getting_max() ('b', 2) """ return nanops.nangetting_max(self.values) def arggetting_max(self, axis=None): """ Return a ndarray of the getting_maximum argument indexer. See Also -------- numpy.ndarray.arggetting_max """ return nanops.nanarggetting_max(self.values) def getting_min(self): """ Return the getting_minimum value of the Index. Returns ------- scalar Minimum value. See Also -------- Index.getting_max : Return the getting_maximum value of the object. Collections.getting_min : Return the getting_minimum value in a Collections. KnowledgeFrame.getting_min : Return the getting_minimum values in a KnowledgeFrame. Examples -------- >>> idx = mk.Index([3, 2, 1]) >>> idx.getting_min() 1 >>> idx = mk.Index(['c', 'b', 'a']) >>> idx.getting_min() 'a' For a MultiIndex, the getting_minimum is detergetting_mined lexicographictotal_ally. >>> idx = mk.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.getting_min() ('a', 1) """ return nanops.nangetting_min(self.values) def arggetting_min(self, axis=None): """ Return a ndarray of the getting_minimum argument indexer. See Also -------- numpy.ndarray.arggetting_min """ return nanops.nanarggetting_min(self.values) def convert_list(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a monkey scalar (for Timestamp/Timedelta/Interval/Period) See Also -------- numpy.ndarray.convert_list """ if is_datetimelike(self._values): return [com.maybe_box_datetimelike(x) for x in self._values] elif is_extension_array_dtype(self._values): return list(self._values) else: return self._values.convert_list() to_list = convert_list def __iter__(self): """ Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a monkey scalar (for Timestamp/Timedelta/Interval/Period) """ # We are explicity making element iterators. if is_datetimelike(self._values): return mapping(com.maybe_box_datetimelike, self._values) elif is_extension_array_dtype(self._values): return iter(self._values) else: return mapping(self._values.item, range(self._values.size)) @cache_readonly def hasnans(self): """ Return if I have whatever nans; enables various perf speedups. """ return bool(ifna(self).whatever()) def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform the reduction type operation if we can """ func = gettingattr(self, name, None) if func is None: raise TypeError("{klass} cannot perform the operation {op}".formating( klass=self.__class__.__name__, op=name)) return func(**kwds) def _mapping_values(self, mappingper, na_action=None): """ An internal function that mappings values using the input correspondence (which can be a dict, Collections, or function). Parameters ---------- mappingper : function, dict, or Collections The input correspondence object na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mappingping function Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mappingping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ # we can fastpath dict/Collections to an efficient mapping # as we know that we are not going to have to yield # python types if incontainstance(mappingper, dict): if hasattr(mappingper, '__missing__'): # If a dictionary subclass defines a default value method, # convert mappingper to a lookup function (GH #15999). dict_with_default = mappingper mappingper = lambda x: dict_with_default[x] else: # Dictionary does not have a default. Thus it's safe to # convert to an Collections for efficiency. # we specify the keys here to handle the # possibility that they are tuples from monkey import Collections mappingper = Collections(mappingper) if incontainstance(mappingper, ABCCollections): # Since values were input this averages we came from either # a dict or a collections and mappingper should be an index if is_extension_type(self.dtype): values = self._values else: values = self.values indexer = mappingper.index.getting_indexer(values) new_values = algorithms.take_1d(mappingper._values, indexer) return new_values # we must convert to python types if is_extension_type(self.dtype): values = self._values if na_action is not None: raise NotImplementedError mapping_f = lambda values, f: values.mapping(f) else: values = self.totype(object) values = gettingattr(values, 'values', values) if na_action == 'ignore': def mapping_f(values, f): return lib.mapping_infer_mask(values, f, ifna(values).view(np.uint8)) else: mapping_f = lib.mapping_infer # mappingper is a function new_values = mapping_f(values, mappingper) return new_values def counts_value_num(self, normalize=False, sort=True, ascending=False, bins=None, sipna=True): """ Return a Collections containing counts of distinctive values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : boolean, default False If True then the object returned will contain the relative frequencies of the distinctive values. sort : boolean, default True Sort by values. ascending : boolean, default False Sort in ascending order. bins : integer, optional Rather than count values, group them into half-open bins, a convenience for ``mk.cut``, only works with numeric data. sipna : boolean, default True Don't include counts of NaN. Returns ------- counts : Collections See Also -------- Collections.count: Number of non-NA elements in a Collections. KnowledgeFrame.count: Number of non-NA elements in a KnowledgeFrame. Examples -------- >>> index = mk.Index([3, 1, 2, 3, 4, np.nan]) >>> index.counts_value_num() 3.0 2 4.0 1 2.0 1 1.0 1 dtype: int64 With `normalize` set to `True`, returns the relative frequency by divisioniding total_all values by the total_sum of values. >>> s = mk.Collections([3, 1, 2, 3, 4, np.nan]) >>> s.counts_value_num(normalize=True) 3.0 0.4 4.0 0.2 2.0 0.2 1.0 0.2 dtype: float64 **bins** Bins can be useful for going from a continuous variable to a categorical variable; instead of counting distinctive apparitions of values, divisionide the index in the specified number of half-open bins. >>> s.counts_value_num(bins=3) (2.0, 3.0] 2 (0.996, 2.0] 2 (3.0, 4.0] 1 dtype: int64 **sipna** With `sipna` set to `False` we can also see NaN index values. >>> s.counts_value_num(sipna=False) 3.0 2 NaN 1 4.0 1 2.0 1 1.0 1 dtype: int64 """ from monkey.core.algorithms import counts_value_num result = counts_value_num(self, sort=sort, ascending=ascending, normalize=normalize, bins=bins, sipna=sipna) return result def distinctive(self): values = self._values if hasattr(values, 'distinctive'): result = values.distinctive() else: from monkey.core.algorithms import distinctive1d result = distinctive1d(values) return result def ndistinctive(self, sipna=True): """ Return number of distinctive elements in the object. Excludes NA values by default. Parameters ---------- sipna : boolean, default True Don't include NaN in the count. Returns ------- ndistinctive : int """ uniqs = self.distinctive() n = length(uniqs) if sipna and ifna(uniqs).whatever(): n -= 1 return n @property def is_distinctive(self): """ Return boolean if values in the object are distinctive. Returns ------- is_distinctive : boolean """ return self.ndistinctive() == length(self) @property def is_monotonic(self): """ Return boolean if values in the object are monotonic_increasing. .. versionadded:: 0.19.0 Returns ------- is_monotonic : boolean """ from monkey import Index return Index(self).is_monotonic is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self): """ Return boolean if values in the object are monotonic_decreasing. .. versionadded:: 0.19.0 Returns ------- is_monotonic_decreasing : boolean """ from monkey import Index return Index(self).is_monotonic_decreasing def memory_usage(self, deep=False): """ Memory usage of the values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory contotal_sumption Returns ------- bytes used See Also -------- numpy.ndarray.nbytes Notes ----- Memory usage does not include memory contotal_sumed by elements that are not components of the array if deep=False or if used on PyPy """ if hasattr(self.array, 'memory_usage'): return self.array.memory_usage(deep=deep) v = self.array.nbytes if deep and is_object_dtype(self) and not PYPY: v += lib.memory_usage_of_objects(self.array) return v @Substitution( values='', order='', size_hint='', sort=textwrap.dedent("""\ sort : boolean, default False Sort `distinctives` and shuffle `labels` to maintain the relationship. """)) @Appender(algorithms._shared_docs['factorize']) def factorize(self, sort=False, na_sentinel=-1): return algorithms.factorize(self, sort=sort, na_sentinel=na_sentinel) _shared_docs['searchsorted'] = ( """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted %(klass)s `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the final_item such index. If there is no suitable index, return either 0 or N (where N is the lengthgth of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typictotal_ally the result of ``np.argsort``. Returns ------- int or array of int A scalar or array of insertion points with the same shape as `value`. .. versionchanged :: 0.24.0 If `value` is a scalar, an int is now always returned. Previously, scalar inputs returned an 1-item array for :class:`Collections` and :class:`Categorical`. See Also -------- numpy.searchsorted Notes ----- Binary search is used to find the required insertion points. Examples -------- >>> x = mk.Collections([1, 2, 3]) >>> x 0 1 1 2 2 3 dtype: int64 >>> x.searchsorted(4) 3 >>> x.searchsorted([0, 4]) array([0, 3]) >>> x.searchsorted([1, 3], side='left') array([0, 2]) >>> x.searchsorted([1, 3], side='right') array([1, 3]) >>> x = mk.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True) [apple, bread, bread, cheese, milk] Categories (4, object): [apple < bread < cheese < milk] >>> x.searchsorted('bread') 1 >>> x.searchsorted(['bread'], side='right') array([3]) """) @Substitution(klass='IndexOpsMixin') @Appender(_shared_docs['searchsorted']) def searchsorted(self, value, side='left', sorter=None): # needs coercion on the key (DatetimeIndex does already) return self.values.searchsorted(value, side=side, sorter=sorter) def sip_duplicates(self, keep='first', inplace=False): inplace = validate_bool_kwarg(inplace, 'inplace') if incontainstance(self, ABCIndexClass): if self.is_distinctive: return self._shtotal_allow_clone() duplicated_values = self.duplicated_values(keep=keep) result = self[np.logical_not(duplicated_values)] if inplace: return self._umkate_inplace(result) else: return result def duplicated_values(self, keep='first'): from monkey.core.algorithms import duplicated_values if incontainstance(self, ABCIndexClass): if self.is_distinctive: return np.zeros(length(self), dtype=np.bool) return duplicated_values(self, keep=keep) else: return self._constructor(
duplicated_values(self, keep=keep)
pandas.core.algorithms.duplicated
import clone import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from monkey.core.base import MonkeyObject from monkey.core.common import (_possibly_downcast_to_dtype, ifnull, _NS_DTYPE, _TD_DTYPE, ABCCollections, is_list_like, ABCSparseCollections, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalengtht, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from monkey.core.index import Index, MultiIndex, _ensure_index from monkey.core.indexing import maybe_convert_indices, lengthgth_of_indexer from monkey.core.categorical import Categorical, maybe_to_categorical import monkey.core.common as com from monkey.sparse.array import _maybe_to_sparse, SparseArray import monkey.lib as lib import monkey.tslib as tslib import monkey.computation.expressions as expressions from monkey.util.decorators import cache_readonly from monkey.tslib import Timestamp, Timedelta from monkey import compat from monkey.compat import range, mapping, zip, u from monkey.tcollections.timedeltas import _coerce_scalar_to_timedelta_type from monkey.lib import BlockPlacement class Block(MonkeyObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a monkey data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if length(self.mgr_locs) != length(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( length(self.values), length(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_totype(self, dtype): """ validate that we have a totypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a mk.Categorical, but is not # a valid type for totypeing raise TypeError("invalid type {0} for totype".formating(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, clone=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if clone: values = values.clone() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not incontainstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out total_all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, length(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __length__(self): return length(self.values) def __gettingstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.getting_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def gettingitem_block(self, slicer, new_mgr_locs=None): """ Perform __gettingitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if incontainstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is total_allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def unioner(self, other): return _unioner_blocks([self, other]) def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def getting(self, item): loc = self.items.getting_loc(item) return self.values[loc] def igetting(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def employ(self, func, **kwargs): """ employ the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not incontainstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillnone(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] mask = ifnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast total_all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or incontainstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.getting(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.adding(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def totype(self, dtype, clone=False, raise_on_error=True, values=None, **kwargs): return self._totype(dtype, clone=clone, raise_on_error=raise_on_error, values=values, **kwargs) def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ # may need to convert to categorical # this is only ctotal_alled for non-categoricals if self.is_categorical_totype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # totype processing dtype = np.dtype(dtype) if self.dtype == dtype: if clone: return self.clone() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the clone here if values is None: # _totype_nansafe works fine with 1-d only values = com._totype_nansafe(self.values.flat_underlying(), dtype, clone=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.clone() if clone else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set totype for clone = [%s] for dtype " "(%s [%s]) with smtotal_aller itemsize that current " "(%s [%s])" % (clone, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, clone=True, **kwargs): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we are not an ObjectBlock here! """ return [self.clone()] if clone else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have value_roundtripped thru object in the average-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if incontainstance(dtype, compat.string_types) and dtype == 'infer': return result if not incontainstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if ifnull(result).total_all(): return result.totype(np.bool_) else: result = result.totype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.totype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) if not self.is_object and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def clone(self, deep=True): values = self.values if deep: values = values.clone() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): """ replacing the to_replacing value with value, possible to create new blocks here this is just a ctotal_all to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replacing) if filter is not None: filtered_out = ~self.mgr_locs.incontain(filter) mask[filtered_out.nonzero()[0]] = False if not mask.whatever(): if inplace: return [self] return [self.clone()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.totype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = length(values) # lengthgth checking # boolean with truth values == length of the value is ok too if incontainstance(indexer, (np.ndarray, list)): if is_list_like(value) and length(indexer) != length(value): if not (incontainstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and length(indexer[indexer]) == length(value)): raise ValueError("cannot set using a list-like indexer " "with a different lengthgth than the value") # slice elif incontainstance(indexer, slice): if is_list_like(value) and l: if length(value) != lengthgth_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different lengthgth than the value") try: def _is_scalar_indexer(indexer): # return True if we are total_all scalar indexers if arr_value.ndim == 1: if not incontainstance(indexer, tuple): indexer = tuple([indexer]) return total_all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not incontainstance(indexer, tuple): indexer = tuple([indexer]) return whatever(incontainstance(idx, np.ndarray) and length(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif length(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.totype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(numeric=False) return block except (ValueError, TypeError) as definal_item_tail: raise except Exception as definal_item_tail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.clone() # may need to align the new if hasattr(new, 'reindexing_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindexing_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and ifnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if incontainstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.whatever(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.whatever(): n = new[i] if incontainstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty totype here to make a clone n = n.totype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.clone() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.adding(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.adding(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.clone() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".formating(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillnone but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.clone() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.clone() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.totype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".formating(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in employ_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.employ_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.getting_values(), indexer, axis=axis, total_allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.getting_values(), indexer, axis=axis, total_allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def getting_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shifting(self, periods, axis=0): """ shifting the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had cogetting_ming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindexing_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # getting the result, may need to transpose the other def getting_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(definal_item_tail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # getting the result try: result = getting_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of total_allowing to pass through except ValueError as definal_item_tail: raise except Exception as definal_item_tail: result = handle_error() # technictotal_ally a broadcast error in numpy can 'work' by returning a # boolean False if not incontainstance(result, np.ndarray): if not incontainstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if incontainstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had cogetting_ming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindexing_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).total_all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindexing_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.flat_underlying().total_all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as definal_item_tail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(definal_item_tail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not incontainstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].total_all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.whatever(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.adding(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalengtht(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a lengthgth. self.mgr_locs = placement # kludgettingastic if ndim is None: if length(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not incontainstance(values, self._holder): raise TypeError("values must be {0}".formating(self._holder.__name__)) self.values = values def getting_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def igetting(self, col): if self.ndim == 2 and incontainstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".formating(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".formating(self)) return self.values def should_store(self, value): return incontainstance(value, self._holder) def set(self, locs, values, check=False): assert locs.convert_list() == [0] self.values = values def getting(self, item): if self.ndim == 1: loc = self.items.getting_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.getting_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.ifnan(left) & np.ifnan(right))).total_all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return incontainstance(element, (float, int, np.float_, np.int_)) and not incontainstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_formating=None, decimal='.', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) formatingter = None if float_formating and decimal != '.': formatingter = lambda v : (float_formating % v).replacing('.',decimal,1) elif decimal != '.': formatingter = lambda v : ('%g' % v).replacing('.',decimal,1) elif float_formating: formatingter = lambda v : float_formating % v if formatingter is None and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatingter: imask = (~mask).flat_underlying() values.flat[imask] = np.array( [formatingter(val) for val in values.flat_underlying()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (incontainstance(element, (float, int, complex, np.float_, np.int_)) and not incontainstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if incontainstance(value, type(tslib.NaT)) or np.array(ifnull(value)).total_all(): value = tslib.iNaT elif incontainstance(value, Timedelta): value = value.value elif incontainstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif incontainstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = ifnull(v) v = v.totype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif incontainstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if incontainstance(result, np.ndarray): mask = ifnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.totype('m8[ns]') result[mask] = tslib.iNaT elif incontainstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).flat_underlying() #### FIXME #### # should use the core.formating.Timedelta64Formatter here # to figure what formating to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(formating='total_all') for val in values.flat_underlying()[imask]], dtype=object) return rvalues def getting_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.mapping_infer(self.values.flat_underlying(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return incontainstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): to_replacing_values = np.atleast_1d(to_replacing) if not np.can_cast(to_replacing_values, bool): return self return super(BoolBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.flat_underlying()) def convert(self, datetime=True, numeric=True, timedelta=True, coerce=False, clone=True, by_item=True): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.igetting(i) values = com._possibly_convert_objects( values.flat_underlying(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, clone=clone ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.adding(newb) else: values = com._possibly_convert_objects( self.values.flat_underlying(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, clone=clone ).reshape(self.values.shape) blocks.adding(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).total_all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = length(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(datetime=True, numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replacing) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replacing): blk[0], = blk[0]._replacing_single(to_replacing, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replacing, value): blk[0], = blk[0]._replacing_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replacing: blk[0], = blk[0]._replacing_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replacing_single(to_replacing, value, inplace=inplace, filter=filter, regex=regex) return blk def _replacing_single(self, to_replacing, value, inplace=False, filter=None, regex=False): # to_replacing is regex compilable to_rep_re = regex and com.is_re_compilable(to_replacing) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replacing and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replacing = regex regex = regex_re or to_rep_re # try to getting the pattern attribute (compiled re) or it's a string try: pattern = to_replacing.pattern except AttributeError: pattern = to_replacing # if the pattern is not empty and to_replacing is either a string or a # regex if regex and pattern: rx = re.compile(to_replacing) else: # if the thing to replacing is not a string or compiled regex ctotal_all # the superclass method -> to_replacing is some kind of object result = super(ObjectBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) if not incontainstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.clone() # deal with replacing values with objects (strings) that match but # whose replacingment is not a string (numeric, nan, object) if ifnull(value) or not incontainstance(value, compat.string_types): def re_replacingr(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gettings returned def re_replacingr(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacingr, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.incontain(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() def convert(self, clone=True, **kwargs): return [self.clone() if clone else self] @property def shape(self): return (length(self.mgr_locs), length(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillnone(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillnone' has " "not been implemented yet") values = self.values if inplace else self.values.clone() return [self.make_block_same_class(values=values.fillnone(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.clone() return self.make_block_same_class(values=values.fillnone(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def shifting(self, periods, axis=0): return self.make_block_same_class(values=self.values.shifting(periods), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are retotal_ally a single-dim object # but are passed the axis depending on the ctotal_alling routing # if its REALLY axis 0, then this will be a reindexing and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.clone() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ if self.is_categorical_totype(dtype): values = self.values else: values = np.asarray(self.values).totype(dtype, clone=False) if clone: values = values.clone() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = ifnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,length(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (com.is_integer(element) or incontainstance(element, datetime) or ifnull(element)) def _try_cast(self, element): try: return int(element) except: return element def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smtotal_allest i8, and will correctly value_round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be """ values = values.view('i8') if is_null_datelike_scalar(other): other = tslib.iNaT elif incontainstance(other, datetime): other = lib.Timestamp(other).asm8.view('i8') elif hasattr(other, 'dtype') and com.is_integer_dtype(other): other = other.view('i8') else: other = np.array(other, dtype='i8') return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if incontainstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.totype('M8[ns]') elif incontainstance(result, (np.integer, np.datetime64)): result = lib.Timestamp(result) return result @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if incontainstance(value, type(tslib.NaT)) or np.array(ifnull(value)).total_all(): value = tslib.iNaT return value def fillnone(self, value, limit=None, inplace=False, downcast=None): # straight putmask here values = self.values if inplace else self.values.clone() mask = ifnull(self.values) value = self._try_fill(value) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1)>limit]=False np.putmask(values, mask, value) return [self if inplace else make_block(values, fastpath=True, placement=self.mgr_locs)] def to_native_types(self, slicer=None, na_rep=None, date_formating=None, quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] from monkey.core.formating import _getting_formating_datetime64_from_values formating = _getting_formating_datetime64_from_values(values, date_formating) result = tslib.formating_array_from_datetime(values.view('i8').flat_underlying(), tz=None, formating=formating, na_rep=na_rep).reshape(values.shape) return result def should_store(self, value): return issubclass(value.dtype.type, np.datetime64) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workavalue_round for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values def getting_values(self, dtype=None): # return object dtype as Timestamps if dtype == object: return lib.mapping_infer(self.values.flat_underlying(), lib.Timestamp)\ .reshape(self.values.shape) return self.values class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (length(self.mgr_locs), self.sp_index.lengthgth) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): #return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): # we may need to upcast our fill to match our dtype if issubclass(self.dtype.type, np.floating): v = float(v) self.values.fill_value = v @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, clone=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def __length__(self): try: return self.sp_index.lengthgth except: return 0 def clone(self, deep=True): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, clone=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, clone=False, fastpath=True): """ return a new block """ if dtype is None: dtype = self.dtype if fill_value is None: fill_value = self.values.fill_value # if not incontainstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True,) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, clone=clone) return make_block(new_values, ndim=self.ndim, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = com.interpolate_2d( self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillnone(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillnone' has " "not been implemented yet") if issubclass(self.dtype.type, np.floating): value = float(value) values = self.values if inplace else self.values.clone() return [self.make_block_same_class(values=values.getting_values(value), fill_value=value, placement=self.mgr_locs)] def shifting(self, periods, axis=0): """ shifting the block by periods """ N = length(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindexing(self, new_index): """ sparse reindexing and return a new block current reindexing only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindexing( values.sp_values.totype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if incontainstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): klass = DatetimeBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(MonkeyObject): """ Core internal data structure to implement KnowledgeFrame Manage a bunch of labeled 2D mixed-type ndarrays. Essentitotal_ally it's a lightweight blocked set of labeled data to be manipulated by the KnowledgeFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) clone(deep=True) getting_dtype_counts getting_ftype_counts getting_dtypes getting_ftypes employ(func, axes, block_filter_fn) getting_bool_data getting_numeric_data getting_slice(slice_like, axis) getting(label) igetting(loc) getting_scalar(label_tup) take(indexer, axis) reindexing_axis(new_labels, axis) reindexing_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if length(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple items") else: if self.ndim != block.ndim: raise AssertionError(('Number of Block dimensions (%d) must ' 'equal number of axes (%d)') % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of length 0 """ if axes is None: axes = [_ensure_index([])] + [ _ensure_index(a) for a in self.axes[1:] ] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(length(ax) for ax in self.axes) @property def ndim(self): return length(self.axes) def set_axis(self, axis, new_labels): new_labels = _ensure_index(new_labels) old_length = length(self.axes[axis]) new_length = length(new_labels) if new_length != old_length: raise ValueError('Length mismatch: Expected axis has %d elements, ' 'new values have %d elements' % (old_length, new_length)) self.axes[axis] = new_labels def renagetting_ming_axis(self, mappingper, axis, clone=True): """ Rename one of axes. Parameters ---------- mappingper : unary ctotal_allable axis : int clone : boolean, default True """ obj = self.clone(deep=clone) obj.set_axis(axis, _transform_index(self.axes[axis], mappingper)) return obj def add_prefix(self, prefix): f = (str(prefix) + '%s').__mod__ return self.renagetting_ming_axis(f, axis=0) def add_suffix(self, suffix): f = ('%s' + str(suffix)).__mod__ return self.renagetting_ming_axis(f, axis=0) @property def _is_single_block(self): if self.ndim == 1: return True if length(self.blocks) != 1: return False blk = self.blocks[0] return (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice(0, length(self), 1)) def _rebuild_blknos_and_blklocs(self): """ Umkate mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(length(rl)) if (new_blknos == -1).whatever(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs # make items read only for now def _getting_items(self): return self.axes[0] items = property(fgetting=_getting_items) def _getting_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.getting(v, 0) + b.shape[0] return counts def getting_dtype_counts(self): return self._getting_counts(lambda b: b.dtype.name) def getting_ftype_counts(self): return self._getting_counts(lambda b: b.ftype) def getting_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return com.take_1d(dtypes, self._blknos, total_allow_fill=False) def getting_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return com.take_1d(ftypes, self._blknos, total_allow_fill=False) def __gettingstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = [ax for ax in self.axes] extra_state = { '0.14.1': { 'axes': axes_array, 'blocks': [dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks] } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): # numpy < 1.7 pickle compat if values.dtype == 'M8[us]': values = values.totype('M8[ns]') return make_block(values, placement=mgr_locs) if (incontainstance(state, tuple) and length(state) >= 4 and '0.14.1' in state[3]): state = state[3]['0.14.1'] self.axes = [_ensure_index(ax) for ax in state['axes']] self.blocks = tuple( unpickle_block(b['values'], b['mgr_locs']) for b in state['blocks']) else: # discard whateverthing after 3rd, support beta pickling formating for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [_ensure_index(ax) for ax in ax_arrays] if length(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workavalue_round for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-distinctive # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the astotal_sumption that # block items corresponded to manager items 1-to-1. total_all_mgr_locs = [slice(0, length(bitems[0]))] else: total_all_mgr_locs = [self.axes[0].getting_indexer(blk_items) for blk_items in bitems] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, total_all_mgr_locs)) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __length__(self): return length(self.items) def __unicode__(self): output = com.pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += u('\nItems: %s') % ax else: output += u('\nAxis %d: %s') % (i, ax) for block in self.blocks: output += u('\n%s') % com.pprint_thing(block) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = total_sum(length(x.mgr_locs) for x in self.blocks) for block in self.blocks: if not block.is_sparse and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if length(self.items) != tot_items: raise AssertionError('Number of manager items must equal union of ' 'block items\n# manager items: {0}, # ' 'tot_items: {1}'.formating(length(self.items), tot_items)) def employ(self, f, axes=None, filter=None, do_integrity_check=False, **kwargs): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the ctotal_allable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only ctotal_all the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replacing-* family of methods if filter is not None: filter_locs = set(self.items.getting_indexer_for(filter)) if length(filter_locs) == length(self.items): # All items are included, as if there were no filtering filter = None else: kwargs['filter'] = filter_locs if f == 'where' and kwargs.getting('align', True): align_clone = True align_keys = ['other', 'cond'] elif f == 'putmask' and kwargs.getting('align', True): align_clone = False align_keys = ['new', 'mask'] elif f == 'eval': align_clone = False align_keys = ['other'] elif f == 'fillnone': # fillnone interntotal_ally does putmask, maybe it's better to do this # at mgr, not block level? align_clone = False align_keys = ['value'] else: align_keys = [] aligned_args = dict((k, kwargs[k]) for k in align_keys if hasattr(kwargs[k], 'reindexing_axis')) for b in self.blocks: if filter is not None: if not b.mgr_locs.incontain(filter_locs).whatever(): result_blocks.adding(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = gettingattr(obj, '_info_axis_number', 0) kwargs[k] = obj.reindexing_axis(b_items, axis=axis, clone=align_clone) applied = gettingattr(b, f)(**kwargs) if incontainstance(applied, list): result_blocks.extend(applied) else: result_blocks.adding(applied) if length(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__(result_blocks, axes or self.axes, do_integrity_check=do_integrity_check) bm._consolidate_inplace() return bm def ifnull(self, **kwargs): return self.employ('employ', **kwargs) def where(self, **kwargs): return self.employ('where', **kwargs) def eval(self, **kwargs): return self.employ('eval', **kwargs) def setitem(self, **kwargs): return self.employ('setitem', **kwargs) def putmask(self, **kwargs): return self.employ('putmask', **kwargs) def diff(self, **kwargs): return self.employ('diff', **kwargs) def interpolate(self, **kwargs): return self.employ('interpolate', **kwargs) def shifting(self, **kwargs): return self.employ('shifting', **kwargs) def fillnone(self, **kwargs): return self.employ('fillnone', **kwargs) def downcast(self, **kwargs): return self.employ('downcast', **kwargs) def totype(self, dtype, **kwargs): return self.employ('totype', dtype=dtype, **kwargs) def convert(self, **kwargs): return self.employ('convert', **kwargs) def replacing(self, **kwargs): return self.employ('replacing', **kwargs) def replacing_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replacing """ # figure out our mask a-priori to avoid repeated replacingments values = self.as_matrix() def comp(s): if ifnull(s): return ifnull(values) return _possibly_compare(values, gettingattr(s, 'asm8', s), operator.eq) masks = [comp(s) for i, s in enumerate(src_list)] result_blocks = [] for blk in self.blocks: # its possible to getting multiple result blocks here # replacing ALWAYS will return a list rb = [blk if inplace else blk.clone()] for i, (s, d) in enumerate(zip(src_list, dest_list)): new_rb = [] for b in rb: if b.dtype == np.object_: result = b.replacing(s, d, inplace=inplace, regex=regex) if incontainstance(result, list): new_rb.extend(result) else: new_rb.adding(result) else: # getting our mask for this element, sized to this # particular block m = masks[i][b.mgr_locs.indexer] if m.whatever(): new_rb.extend(b.putmask(m, d, inplace=True)) else: new_rb.adding(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def reshape_nd(self, axes, **kwargs): """ a 2d-nd reshape operation on a BlockManager """ return self.employ('reshape_nd', axes=axes, **kwargs) def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = length(ftypes) == length(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return length(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return total_all([block.is_numeric for block in self.blocks]) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return whatever([block.is_datelike for block in self.blocks]) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if length(self.blocks) == 1: return self.blocks[0].is_view # It is technictotal_ally possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def getting_bool_data(self, clone=False): """ Parameters ---------- clone : boolean, default False Whether to clone the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], clone) def getting_numeric_data(self, clone=False): """ Parameters ---------- clone : boolean, default False Whether to clone the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], clone) def combine(self, blocks, clone=True): """ return a new manager with the blocks """ if length(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatingenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.getting_reverse_indexer(indexer, self.shape[0]) new_items = self.items.take(indexer) new_blocks = [] for b in blocks: b = b.clone(deep=clone) b.mgr_locs = com.take_1d(inv_indexer, b.mgr_locs.as_array, axis=0, total_allow_fill=False) new_blocks.adding(b) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(new_blocks, new_axes, do_integrity_check=False) def getting_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.gettingitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False, fastpath=True) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return length(self.blocks) def clone(self, deep=True): """ Make deep or shtotal_allow clone of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shtotal_allow clone (do not clone data) If 'total_all', clone data and a deep clone of the index Returns ------- clone : BlockManager """ # this preserves the notion of view cloneing of axes if deep: if deep == 'total_all': clone = lambda ax: ax.clone(deep=True) else: clone = lambda ax: ax.view() new_axes = [ clone(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.employ('clone', axes=new_axes, deep=deep, do_integrity_check=False) def as_matrix(self, items=None): if length(self.blocks) == 0: return np.empty(self.shape, dtype=float) if items is not None: mgr = self.reindexing_axis(items, axis=0) else: mgr = self if self._is_single_block or not self.is_mixed_type: return mgr.blocks[0].getting_values() else: return mgr._interleave() def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) result = np.empty(self.shape, dtype=dtype) if result.shape[0] == 0: # Workavalue_round for numpy 1.7 bug: # # >>> a = np.empty((0,10)) # >>> a[slice(0,0)] # array([], shape=(0, 10), dtype=float64) # >>> a[[]] # Traceback (most recent ctotal_all final_item): # File "<standardin>", line 1, in <module> # IndexError: index 0 is out of bounds for axis 0 with size 0 return result itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.getting_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.total_all(): raise AssertionError('Some items were not contained in blocks') return result def xs(self, key, axis=1, clone=True, takeable=False): if axis < 1: raise AssertionError('Can only take xs across axis >= 1, got %d' % axis) # take by position if takeable: loc = key else: loc = self.axes[axis].getting_loc(key) slicer = [slice(None, None) for _ in range(self.ndim)] slicer[axis] = loc slicer = tuple(slicer) new_axes = list(self.axes) # could be an array indexer! if incontainstance(loc, (slice, np.ndarray)): new_axes[axis] = new_axes[axis][loc] else: new_axes.pop(axis) new_blocks = [] if length(self.blocks) > 1: # we must clone here as we are mixed type for blk in self.blocks: newb = make_block(values=blk.values[slicer], klass=blk.__class__, fastpath=True, placement=blk.mgr_locs) new_blocks.adding(newb) elif length(self.blocks) == 1: block = self.blocks[0] vals = block.values[slicer] if clone: vals = vals.clone() new_blocks = [make_block(values=vals, placement=block.mgr_locs, klass=block.__class__, fastpath=True,)] return self.__class__(new_blocks, new_axes) def fast_xs(self, loc): """ getting a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if length(self.blocks) == 1: return self.blocks[0].values[:, loc] items = self.items # non-distinctive (GH4726) if not items.is_distinctive: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # distinctive dtype = _interleaved_dtype(self.blocks) n = length(items) result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such total_allocatement may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk._try_coerce_result(blk.igetting((i, loc))) return result def consolidate(self): """ Join togettingher blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def getting(self, item, fastpath=True): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_distinctive: if not ifnull(item): loc = self.items.getting_loc(item) else: indexer = np.arange(length(self.items))[ifnull(self.items)] # total_allow a single nan location indexer if not np.isscalar(indexer): if length(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.igetting(loc, fastpath=fastpath) else: if ifnull(item): raise ValueError("cannot label index with a null key") indexer = self.items.getting_indexer_for([item]) return self.reindexing_indexer(new_axis=self.items[indexer], indexer=indexer, axis=0, total_allow_dups=True) def igetting(self, i, fastpath=True): """ Return the data as a SingleBlockManager if fastpath=True and possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.igetting(self._blklocs[i]) if not fastpath or block.is_sparse or values.ndim != 1: return values # fastpath shortcut for select a single-dim from a 2-dim BM return SingleBlockManager([ block.make_block_same_class(values, placement=slice(0, length(values)), ndim=1, fastpath=True) ], self.axes[1]) def getting_scalar(self, tup): """ Retrieve single item """ full_loc = list(ax.getting_loc(x) for ax, x in zip(self.axes, tup)) blk = self.blocks[self._blknos[full_loc[0]]] full_loc[0] = self._blklocs[full_loc[0]] # FIXME: this may return non-upcasted types? return blk.values[tuple(full_loc)] def delete(self, item): """ Delete selected item (items if non-distinctive) in-place. """ indexer = self.items.getting_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumtotal_sum() is_blk_deleted = [False] * length(self.blocks) if incontainstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smtotal_allints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if length(blk_del) == length(bml): is_blk_deleted[blkno] = True continue elif length(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple(b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno]) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value, check=False): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items if check, then validate that we are not setting the same data in-place """ # FIXME: refactor, clearly separate broadcasting & zip-like total_allocatement # can prob also fix the various if tests for sparse/categorical value_is_sparse = incontainstance(value, SparseArray) value_is_cat = is_categorical(value) value_is_nonconsolidatable = value_is_sparse or value_is_cat if value_is_sparse: # sparse assert self.ndim == 2 def value_gettingitem(placement): return value elif value_is_cat: # categorical def value_gettingitem(placement): return value else: if value.ndim == self.ndim - 1: value = value.reshape((1,) + value.shape) def value_gettingitem(placement): return value else: def value_gettingitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError('Shape of new values must be compatible ' 'with manager shape') try: loc = self.items.getting_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(length(self.items), item, value) return if incontainstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].clone() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in _getting_blkno_placements(blknos, length(self.blocks), group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_gettingitem(val_locs), check=check) else: unfit_mgr_locs.adding(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.adding(val_locs) # If total_all block items are unfit, schedule the block for removal. if length(val_locs) == length(blk.mgr_locs): removed_blknos.adding(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(length(blk)) if length(removed_blknos): # Remove blocks & umkate blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - length(removed_blknos)) self._blknos = com.take_1d(new_blknos, self._blknos, axis=0, total_allow_fill=False) self.blocks = tuple(blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos)) if unfit_val_locs: unfit_mgr_locs = np.concatingenate(unfit_mgr_locs) unfit_count = length(unfit_mgr_locs) new_blocks = [] if value_is_nonconsolidatable: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block(values=value.clone(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1)) for mgr_loc in unfit_mgr_locs) self._blknos[unfit_mgr_locs] = (np.arange(unfit_count) + length(self.blocks)) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].adding(unfit_val_locs[1:]) new_blocks.adding( make_block(values=value_gettingitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs)) self._blknos[unfit_mgr_locs] = length(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc, item, value, total_allow_duplicates=False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like total_allow_duplicates: bool If False, trying to insert non-distinctive item will raise """ if not total_allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError('cannot insert %s, already exists' % item) if not incontainstance(loc, int): raise TypeError("loc must be int") block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc+1)) for blkno, count in _fast_count_smtotal_allints(self._blknos[loc:]): blk = self.blocks[blkno] if count == length(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.clone() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.adding is a lot faster (at least in numpy 1.7.1), let's use it # if we can. self._blklocs = np.adding(self._blklocs, 0) self._blknos = np.adding(self._blknos, length(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, length(self.blocks)) self.axes[0] = self.items.insert(loc, item) self.blocks += (block,) self._shape = None self._known_consolidated = False if length(self.blocks) > 100: self._consolidate_inplace() def reindexing_axis(self, new_index, axis, method=None, limit=None, fill_value=None, clone=True): """ Conform block manager to new index. """ new_index = _ensure_index(new_index) new_index, indexer = self.axes[axis].reindexing( new_index, method=method, limit=limit) return self.reindexing_indexer(new_index, indexer, axis=axis, fill_value=fill_value, clone=clone) def reindexing_indexer(self, new_axis, indexer, axis, fill_value=None, total_allow_dups=False, clone=True): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object total_allow_dups : bool monkey-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not clone: return self result = self.clone(deep=clone) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't total_allow reindexinging with dups if not total_allow_dups: self.axes[axis]._can_reindexing(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0( indexer, fill_tuple=(fill_value,)) else: new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=(fill_value if fill_value is not None else blk.fill_value,)) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ total_allow_fill = fill_tuple is not None sl_type, slobj, sllength = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], total_allow_fill=total_allow_fill) if self._is_single_block: blk = self.blocks[0] if sl_type in ('slice', 'mask'): return [blk.gettingitem_block(slobj, new_mgr_locs=slice(0, sllength))] elif not total_allow_fill or self.ndim == 1: if total_allow_fill and fill_tuple[0] is None: _, fill_value = com._maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [blk.take_nd(slobj, axis=0, new_mgr_locs=slice(0, sllength), fill_tuple=fill_tuple)] if sl_type in ('slice', 'mask'): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = com.take_1d(self._blknos, slobj, fill_value=-1, total_allow_fill=total_allow_fill) blklocs = com.take_1d(self._blklocs, slobj, fill_value=-1, total_allow_fill=total_allow_fill) # When filling blknos, make sure blknos is umkated before addinging to # blocks list, that way new blkno is exactly length(blocks). # # FIXME: mgr_grouper_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in _getting_blkno_placements(blknos, length(self.blocks), group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.adding(self._make_na_block( placement=mgr_locs, fill_value=fill_value)) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's only one item # and each mgr loc is a clone of that single item. for mgr_loc in mgr_locs: newblk = blk.clone(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.adding(newblk) else: blocks.adding(blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None)) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = length(placement) dtype, fill_value = com._infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along whatever axis. """ self._consolidate_inplace() indexer = np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if incontainstance(indexer, slice) \ else np.aswhateverarray(indexer, dtype='int64') n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).whatever(): raise Exception('Indices must be nonzero and less than ' 'the axis lengthgth') new_labels = self.axes[axis].take(indexer) return self.reindexing_indexer(new_axis=new_labels, indexer=indexer, axis=axis, total_allow_dups=True) def unioner(self, other, lsuffix='', rsuffix=''): if not self._is_indexed_like(other): raise AssertionError('Must have same axes to unioner managers') l, r = items_overlap_with_suffix(left=self.items, lsuffix=lsuffix, right=other.items, rsuffix=rsuffix) new_items = _concating_indexes([l, r]) new_blocks = [blk.clone(deep=False) for blk in self.blocks] offset = self.shape[0] for blk in other.blocks: blk = blk.clone(deep=False) blk.mgr_locs = blk.mgr_locs.add(offset) new_blocks.adding(blk) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(_consolidate(new_blocks), new_axes) def _is_indexed_like(self, other): """ Check total_all axes except items """ if self.ndim != other.ndim: raise AssertionError(('Number of dimensions must agree ' 'got %d and %d') % (self.ndim, other.ndim)) for ax, oax in zip(self.axes[1:], other.axes[1:]): if not ax.equals(oax): return False return True def equals(self, other): self_axes, other_axes = self.axes, other.axes if length(self_axes) != length(other_axes): return False if not total_all (ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if length(self.blocks) != length(other.blocks): return False # canonicalize block order, using a tuple combining the type # name and then mgr_locs because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.dtype.name, block.mgr_locs.as_array.convert_list()) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return total_all(block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks)) class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__(self, block, axis, do_integrity_check=False, fastpath=False): if incontainstance(axis, list): if length(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis") axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if incontainstance(block, list): # empty block if length(block) == 0: block = [np.array([])] elif length(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] else: self.axes = [_ensure_index(axis)] # create the block here if incontainstance(block, list): # provide consolidation to the interleaved_dtype if length(block) > 1: dtype = _interleaved_dtype(block) block = [b.totype(dtype) for b in block] block = _consolidate(block) if length(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] if not incontainstance(block, Block): block = make_block(block, placement=slice(0, length(axis)), ndim=1, fastpath=True) self.blocks = [block] def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values def reindexing(self, new_axis, indexer=None, method=None, fill_value=None, limit=None, clone=True): # if we are the same and don't clone, just return if self.index.equals(new_axis): if clone: return self.clone(deep=True) else: return self values = self._block.getting_values() if indexer is None: indexer = self.items.getting_indexer_for(new_axis) if fill_value is None: # FIXME: is fill_value used correctly in sparse blocks? if not self._block.is_sparse: fill_value = self._block.fill_value else: fill_value = np.nan new_values = com.take_1d(values, indexer, fill_value=fill_value) # fill if needed if method is not None or limit is not None: new_values = com.interpolate_2d(new_values, method=method, limit=limit, fill_value=fill_value) if self._block.is_sparse: make_block = self._block.make_block_same_class block = make_block(new_values, clone=clone, placement=slice(0, length(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr def getting_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return self.__class__(self._block._slice(slobj), self.index[slobj], fastpath=True) @property def index(self): return self.axes[0] def convert(self, **kwargs): """ convert the whole block as one """ kwargs['by_item'] = False return self.employ('convert', **kwargs) @property def dtype(self): return self._values.dtype @property def array_dtype(self): return self._block.array_dtype @property def ftype(self): return self._block.ftype def getting_dtype_counts(self): return {self.dtype.name: 1} def getting_ftype_counts(self): return {self.ftype: 1} def getting_dtypes(self): return np.array([self._block.dtype]) def getting_ftypes(self): return np.array([self._block.ftype]) @property def values(self): return self._values.view() def getting_values(self): """ return a dense type view """ return np.array(self._block.to_dense(),clone=False) @property def itemsize(self): return self._values.itemsize @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.getting_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for gettingting a cross-section return a view of the data """ return self._block.values[loc] def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(mapping(int, [tot_items] + list(block_shape))) implied = tuple(mapping(int, [length(ax) for ax in axes])) if passed == implied and e is not None: raise e raise ValueError("Shape of passed values is {0}, indices imply {1}".formating( passed,implied)) def create_block_manager_from_blocks(blocks, axes): try: if length(blocks) == 1 and not incontainstance(blocks[0], Block): # if blocks[0] is of lengthgth 0, return empty blocks if not length(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement is # basictotal_ally "total_all items", but if there're mwhatever, don't bother # converting, it's an error whateverway. blocks = [make_block(values=blocks[0], placement=slice(0, length(axes[0])))] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: blocks = [gettingattr(b, 'values', b) for b in blocks] tot_items = total_sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: construction_error(length(arrays), arrays[0].shape, axes, e) def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? float_items = [] complex_items = [] int_items = [] bool_items = [] object_items = [] sparse_items = [] datetime_items = [] cat_items = [] extra_locs = [] names_idx = Index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(length(names_idx)) else: assert names_idx.interst(axes[0]).is_distinctive names_indexer = names_idx.getting_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.adding(i) continue k = names[name_idx] v = arrays[name_idx] if incontainstance(v, (SparseArray, ABCSparseCollections)): sparse_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.floating): float_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.complexfloating): complex_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.datetime64): if v.dtype != _NS_DTYPE: v = tslib.cast_to_nanoseconds(v) if hasattr(v, 'tz') and v.tz is not None: object_items.adding((i, k, v)) else: datetime_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.integer): if v.dtype == np.uint64: # HACK #2355 definite overflow if (v > 2 ** 63 - 1).whatever(): object_items.adding((i, k, v)) continue int_items.adding((i, k, v)) elif v.dtype == np.bool_: bool_items.adding((i, k, v)) elif is_categorical(v): cat_items.adding((i, k, v)) else: object_items.adding((i, k, v)) blocks = [] if length(float_items): float_blocks = _multi_blockify(float_items) blocks.extend(float_blocks) if length(complex_items): complex_blocks = _simple_blockify( complex_items, np.complex128) blocks.extend(complex_blocks) if length(int_items): int_blocks = _multi_blockify(int_items) blocks.extend(int_blocks) if length(datetime_items): datetime_blocks = _simple_blockify( datetime_items, _NS_DTYPE) blocks.extend(datetime_blocks) if length(bool_items): bool_blocks = _simple_blockify( bool_items, np.bool_) blocks.extend(bool_blocks) if length(object_items) > 0: object_blocks = _simple_blockify( object_items, np.object_) blocks.extend(object_blocks) if length(sparse_items) > 0: sparse_blocks = _sparse_blockify(sparse_items) blocks.extend(sparse_blocks) if length(cat_items) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, fastpath=True, placement=[i] ) for i, names, array in cat_items ] blocks.extend(cat_blocks) if length(extra_locs): shape = (length(extra_locs),) + tuple(length(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.adding(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.totype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentitotal_ally have different dtypes """ # group by dtype grouper = itertools.grouper(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays( list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.adding(block) return new_blocks def _sparse_blockify(tuples, dtype=None): """ return an array of blocks that potentitotal_ally have different dtypes (and are sparse) """ new_blocks = [] for i, names, array in tuples: array = _maybe_to_sparse(array) block = make_block( array, klass=SparseBlock, fastpath=True, placement=[i]) new_blocks.adding(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if incontainstance(x, ABCCollections): return x.values else: return np.asarray(x) def _shape_compat(x): if incontainstance(x, ABCCollections): return length(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (length(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype(blocks): if not length(blocks): return None counts = defaultdict(lambda: []) for x in blocks: counts[type(x)].adding(x) def _lcd_dtype(l): """ find the lowest dtype that can accomodate the given types """ m = l[0].dtype for x in l[1:]: if x.dtype.itemsize > m.itemsize: m = x.dtype return m have_int = length(counts[IntBlock]) > 0 have_bool = length(counts[BoolBlock]) > 0 have_object = length(counts[ObjectBlock]) > 0 have_float = length(counts[FloatBlock]) > 0 have_complex = length(counts[ComplexBlock]) > 0 have_dt64 = length(counts[DatetimeBlock]) > 0 have_td64 = length(counts[TimeDeltaBlock]) > 0 have_cat = length(counts[CategoricalBlock]) > 0 have_sparse = length(counts[SparseBlock]) > 0 have_numeric = have_float or have_complex or have_int has_non_numeric = have_dt64 or have_td64 or have_cat if (have_object or (have_bool and (have_numeric or have_dt64 or have_td64)) or (have_numeric and has_non_numeric) or have_cat or have_dt64 or have_td64): return np.dtype(object) elif have_bool: return np.dtype(bool) elif have_int and not have_float and not have_complex: # if we are mixing unsigned and signed, then return # the next biggest int type (if we can) lcd = _lcd_dtype(counts[IntBlock]) kinds = set([i.dtype.kind for i in counts[IntBlock]]) if length(kinds) == 1: return lcd if lcd == 'uint64' or lcd == 'int64': return np.dtype('int64') # return 1 bigger on the itemsize if unsinged if lcd.kind == 'u': return np.dtype('int%s' % (lcd.itemsize * 8 * 2)) return lcd elif have_complex: return np.dtype('c16') else: return _lcd_dtype(counts[FloatBlock] + counts[SparseBlock]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.grouper(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: unionerd_blocks = _unioner_blocks(list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate) if incontainstance(unionerd_blocks, list): new_blocks.extend(unionerd_blocks) else: new_blocks.adding(unionerd_blocks) return new_blocks def _unioner_blocks(blocks, dtype=None, _can_consolidate=True): if length(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if length(set([b.dtype for b in blocks])) != 1: raise AssertionError("_unioner_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case total_all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatingenate([b.mgr_locs.as_array for b in blocks]) new_values = _vstack([b.values for b in blocks], dtype) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, fastpath=True, placement=new_mgr_locs) # no unioner return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim <= ndim: if shape is None: shape = values.shape values = values.reshape(tuple((1,) + shape)) return values def _vstack(to_stack, dtype): # work avalue_round NumPy 1.6 bug if dtype == _NS_DTYPE or dtype == _TD_DTYPE: new_values = np.vstack([x.view('i8') for x in to_stack]) return new_values.view(dtype) else: return np.vstack(to_stack) def _possibly_compare(a, b, op): is_a_array = incontainstance(a, np.ndarray) is_b_array = incontainstance(b, np.ndarray) # numpy deprecation warning to have i8 vs integer comparisions if is_datetimelike_v_numeric(a, b): res = False else: res = op(a, b) if np.isscalar(res) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = 'ndarray(dtype=%s)' % a.dtype if is_b_array: type_names[1] = 'ndarray(dtype=%s)' % b.dtype raise TypeError("Cannot compare types %r and %r" % tuple(type_names)) return res def _concating_indexes(indexes): return indexes[0].adding(indexes[1:]) def _block2d_to_blocknd(values, placement, shape, labels, ref_items): """ pivot to the labels shape """ from monkey.core.internals import make_block panel_shape = (length(placement),) + shape # TODO: lexsort depth needs to be 2!! # Create observation selection vector using major and getting_minor # labels, for converting to panel formating. selector = _factor_indexer(shape[1:], labels) mask = np.zeros(np.prod(shape), dtype=bool) mask.put(selector, True) if mask.total_all(): pvalues = np.empty(panel_shape, dtype=values.dtype) else: dtype, fill_value = _maybe_promote(values.dtype) pvalues = np.empty(panel_shape, dtype=dtype) pvalues.fill(fill_value) values = values for i in range(length(placement)): pvalues[i].flat[mask] = values[:, i] return make_block(pvalues, placement=placement) def _factor_indexer(shape, labels): """ given a tuple of shape and a list of Categorical labels, return the expanded label indexer """ mult = np.array(shape)[::-1].cumprod()[::-1] return com._ensure_platform_int( np.total_sum(np.array(labels).T * np.adding(mult, [1]), axis=1).T) def _getting_blkno_placements(blknos, blk_count, group=True): """ Parameters ---------- blknos : array of int64 blk_count : int group : bool Returns ------- iterator yield (BlockPlacement, blkno) """ blknos = com._ensure_int64(blknos) # FIXME: blk_count is unused, but it may avoid the use of dicts in cython for blkno, indexer in lib.getting_blkno_indexers(blknos, group): yield blkno, BlockPlacement(indexer) def items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_renagetting_ming = left.interst(right) if length(to_renagetting_ming) == 0: return left, right else: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: %s' % to_renagetting_ming) def lrenagetting_mingr(x): if x in to_renagetting_ming: return '%s%s' % (x, lsuffix) return x def rrenagetting_mingr(x): if x in to_renagetting_ming: return '%s%s' % (x, rsuffix) return x return (_transform_index(left, lrenagetting_mingr), _transform_index(right, rrenagetting_mingr)) def _transform_index(index, func): """ Apply function to total_all values found in index. This includes transforgetting_ming multiindex entries separately. """ if incontainstance(index, MultiIndex): items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name) def _putmask_smart(v, m, n): """ Return a new block, try to preserve dtype if possible. Parameters ---------- v : `values`, umkated in-place (array like) m : `mask`, applies to both sides (array like) n : `new values` either scalar or an array like aligned with `values` """ # n should be the lengthgth of the mask or a scalar here if not is_list_like(n): n = np.array([n] * length(m)) elif incontainstance(n, np.ndarray) and n.ndim == 0: # numpy scalar n = np.repeat(np.array(n, ndgetting_min=1), length(m)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[m] nn_at = nn.totype(v.dtype) comp = (nn == nn_at) if is_list_like(comp) and comp.total_all(): nv = v.clone() nv[m] = nn_at return nv except (ValueError, IndexError, TypeError): pass # change the dtype dtype, _ = com._maybe_promote(n.dtype) nv = v.totype(dtype) try: nv[m] = n[m] except ValueError: idx, = np.where(np.squeeze(m)) for mask_index, new_val in zip(idx, n[m]): nv[mask_index] = new_val return nv def concatingenate_block_managers(mgrs_indexers, axes, concating_axis, clone): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concating_axis : int clone : bool """ concating_plan = combine_concating_plans([getting_mgr_concatingenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers], concating_axis) blocks = [make_block(concatingenate_join_units(join_units, concating_axis, clone=clone), placement=placement) for placement, join_units in concating_plan] return BlockManager(blocks, axes) def getting_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatingenating specified units. Returned N/A value may be None which averages there was no casting involved. Returns ------- dtype na """ if length(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan has_none_blocks = False dtypes = [None] * length(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype # dtypes = set() upcast_classes = set() null_upcast_classes = set() for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if com.is_categorical_dtype(dtype): upcast_cls = 'category' elif issubclass(dtype.type, np.bool_): upcast_cls = 'bool' elif issubclass(dtype.type, np.object_): upcast_cls = 'object' elif is_datetime64_dtype(dtype): upcast_cls = 'datetime' elif is_timedelta64_dtype(dtype): upcast_cls = 'timedelta' else: upcast_cls = 'float' # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_null: null_upcast_classes.add(upcast_cls) else: upcast_classes.add(upcast_cls) if not upcast_classes: upcast_classes = null_upcast_classes # create the result if 'object' in upcast_classes: return np.dtype(np.object_), np.nan elif 'bool' in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif 'category' in upcast_classes: return np.dtype(np.object_), np.nan elif 'float' in upcast_classes: return np.dtype(np.float64), np.nan elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslib.iNaT elif 'timedelta' in upcast_classes: return np.dtype('m8[ns]'), tslib.iNaT else: # pragma raise AssertionError("invalid dtype detergetting_mination in getting_concating_dtype") def concatingenate_join_units(join_units, concating_axis, clone): """ Concatenate values from several join units along selected axis. """ if concating_axis == 0 and length(join_units) > 1: # Concatenating join units along ax0 is handled in _unioner_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = getting_empty_dtype_and_na(join_units) to_concating = [ju.getting_reindexinged_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if length(to_concating) == 1: # Only one block, nothing to concatingenate. concating_values = to_concating[0] if clone and concating_values.base is not None: concating_values = concating_values.clone() else: concating_values = com._concating_compat(to_concating, axis=concating_axis) return concating_values def getting_mgr_concatingenation_plan(mgr, indexers): """ Construct concatingenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindexing shape , save for item axis which will be separate # for each block whateverway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = length(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = com.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = com.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in _getting_blkno_placements(blknos, length(mgr.blocks), group=False): assert placements.is_slice_like join_unit_indexers = indexers.clone() shape = list(mgr_shape) shape[0] = length(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexinging = ( length(placements) == length(blk.mgr_locs) and # Fastpath detection of join unit not needing to reindexing its # block: no ax0 reindexinging took place and block placement was # sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: total_all indexer locs are sequential (and # lengthgth match is checked above). (np.diff(ax0_blk_indexer) == 1).total_all())) # Omit indexer if no item reindexinging is required. if unit_no_ax0_reindexinging: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.adding((placements, unit)) return plan def combine_concating_plans(plans, concating_axis): """ Combine multiple concatingenation plans into one. existing_plan is umkated in-place. """ if length(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concating_axis == 0: offset = 0 for plan in plans: final_item_plc = None for plc, unit in plan: yield plc.add(offset), [unit] final_item_plc = plc if final_item_plc is not None: offset += final_item_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(mapping(iter, plans)) next_items = list(mapping(_next_or_none, plans)) while num_ended[0] != length(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengthgths = list(
mapping(length, placements)
pandas.compat.map
""" Additional tests for MonkeyArray that aren't covered by the interface tests. """ import numpy as np import pytest import monkey as mk import monkey._testing as tm from monkey.arrays import MonkeyArray from monkey.core.arrays.numpy_ import MonkeyDtype @pytest.fixture( params=[ np.array(["a", "b"], dtype=object), np.array([0, 1], dtype=float), np.array([0, 1], dtype=int), np.array([0, 1 + 2j], dtype=complex), np.array([True, False], dtype=bool), np.array([0, 1], dtype="datetime64[ns]"), np.array([0, 1], dtype="timedelta64[ns]"), ] ) def whatever_numpy_array(request): """ Parametrized fixture for NumPy arrays with different dtypes. This excludes string and bytes. """ return request.param # ---------------------------------------------------------------------------- # MonkeyDtype @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", True), ("uint", True), ("float", True), ("complex", True), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_numeric(dtype, expected): dtype = MonkeyDtype(dtype) assert dtype._is_numeric is expected @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", False), ("uint", False), ("float", False), ("complex", False), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_boolean(dtype, expected): dtype = MonkeyDtype(dtype) assert dtype._is_boolean is expected def test_repr(): dtype = MonkeyDtype(np.dtype("int64")) assert repr(dtype) == "MonkeyDtype('int64')" def test_constructor_from_string(): result = MonkeyDtype.construct_from_string("int64") expected = MonkeyDtype(np.dtype("int64")) assert result == expected # ---------------------------------------------------------------------------- # Construction def test_constructor_no_coercion(): with pytest.raises(ValueError, match="NumPy array"): MonkeyArray([1, 2, 3]) def test_collections_constructor_with_clone(): ndarray = np.array([1, 2, 3]) ser = mk.Collections(MonkeyArray(ndarray), clone=True) assert ser.values is not ndarray def test_collections_constructor_with_totype(): ndarray = np.array([1, 2, 3]) result = mk.Collections(MonkeyArray(ndarray), dtype="float64") expected = mk.Collections([1.0, 2.0, 3.0], dtype="float64") tm.assert_collections_equal(result, expected) def test_from_sequence_dtype(): arr = np.array([1, 2, 3], dtype="int64") result = MonkeyArray._from_sequence(arr, dtype="uint64") expected = MonkeyArray(np.array([1, 2, 3], dtype="uint64")) tm.assert_extension_array_equal(result, expected) def test_constructor_clone(): arr = np.array([0, 1]) result = MonkeyArray(arr, clone=True) assert np.shares_memory(result._ndarray, arr) is False def test_constructor_with_data(whatever_numpy_array): nparr = whatever_numpy_array arr =
MonkeyArray(nparr)
pandas.arrays.PandasArray
""" test feather-formating compat """ import numpy as np import pytest import monkey as mk import monkey._testing as tm from monkey.io.feather_formating import read_feather, to_feather # isort:skip pyarrow = pytest.importorskip("pyarrow", getting_minversion="1.0.1") filter_sparse = pytest.mark.filterwarnings("ignore:The Sparse") @filter_sparse @pytest.mark.single_cpu @pytest.mark.filterwarnings("ignore:CategoricalBlock is deprecated:DeprecationWarning") class TestFeather: def check_error_on_write(self, kf, exc, err_msg): # check that we are raincontaing the exception # on writing with pytest.raises(exc, match=err_msg): with tm.ensure_clean() as path: to_feather(kf, path) def check_external_error_on_write(self, kf): # check that we are raincontaing the exception # on writing with tm.external_error_raised(Exception): with tm.ensure_clean() as path: to_feather(kf, path) def check_value_round_trip(self, kf, expected=None, write_kwargs={}, **read_kwargs): if expected is None: expected = kf with tm.ensure_clean() as path: to_feather(kf, path, **write_kwargs) result = read_feather(path, **read_kwargs) tm.assert_frame_equal(result, expected) def test_error(self): msg = "feather only support IO with KnowledgeFrames" for obj in [ mk.Collections([1, 2, 3]), 1, "foo", mk.Timestamp("20130101"), np.array([1, 2, 3]), ]: self.check_error_on_write(obj, ValueError, msg) def test_basic(self): kf = mk.KnowledgeFrame( { "string": list("abc"), "int": list(range(1, 4)), "uint": np.arange(3, 6).totype("u1"), "float": np.arange(4.0, 7.0, dtype="float64"), "float_with_null": [1.0, np.nan, 3], "bool": [True, False, True], "bool_with_null": [True, np.nan, False], "cat": mk.Categorical(list("abc")), "dt": mk.DatetimeIndex( list(mk.date_range("20130101", periods=3)), freq=None ), "dttz": mk.DatetimeIndex( list(mk.date_range("20130101", periods=3, tz="US/Eastern")), freq=None, ), "dt_with_null": [ mk.Timestamp("20130101"), mk.NaT, mk.Timestamp("20130103"), ], "dtns": mk.DatetimeIndex( list(mk.date_range("20130101", periods=3, freq="ns")), freq=None ), } ) kf["periods"] = mk.period_range("2013", freq="M", periods=3) kf["timedeltas"] = mk.timedelta_range("1 day", periods=3) kf["intervals"] = mk.interval_range(0, 3, 3) assert kf.dttz.dtype.tz.zone == "US/Eastern" self.check_value_round_trip(kf) def test_duplicate_columns(self): # https://github.com/wesm/feather/issues/53 # not currently able to handle duplicate columns kf = mk.KnowledgeFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).clone() self.check_external_error_on_write(kf) def test_stringify_columns(self): kf = mk.KnowledgeFrame(np.arange(12).reshape(4, 3)).clone() msg = "feather must have string column names" self.check_error_on_write(kf, ValueError, msg) def test_read_columns(self): # GH 24025 kf = mk.KnowledgeFrame( { "col1": list("abc"), "col2": list(range(1, 4)), "col3": list("xyz"), "col4": list(range(4, 7)), } ) columns = ["col1", "col3"] self.check_value_round_trip(kf, expected=kf[columns], columns=columns) def read_columns_different_order(self): # GH 33878 kf = mk.KnowledgeFrame({"A": [1, 2], "B": ["x", "y"], "C": [True, False]}) self.check_value_round_trip(kf, columns=["B", "A"]) def test_unsupported_other(self): # mixed python objects kf = mk.KnowledgeFrame({"a": ["a", 1, 2.0]}) self.check_external_error_on_write(kf) def test_rw_use_threads(self): kf = mk.KnowledgeFrame({"A": np.arange(100000)}) self.check_value_round_trip(kf, use_threads=True) self.check_value_round_trip(kf, use_threads=False) def test_write_with_index(self): kf = mk.KnowledgeFrame({"A": [1, 2, 3]}) self.check_value_round_trip(kf) msg = ( r"feather does not support serializing .* for the index; " r"you can \.reseting_index\(\) to make the index into column\(s\)" ) # non-default index for index in [ [2, 3, 4], mk.date_range("20130101", periods=3), list("abc"), [1, 3, 4], mk.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]), ]: kf.index = index self.check_error_on_write(kf, ValueError, msg) # index with meta-data kf.index = [0, 1, 2] kf.index.name = "foo" msg = "feather does not serialize index meta-data on a default index" self.check_error_on_write(kf, ValueError, msg) # column multi-index kf.index = [0, 1, 2] kf.columns = mk.MultiIndex.from_tuples([("a", 1)]) msg = "feather must have string column names" self.check_error_on_write(kf, ValueError, msg) def test_path_pathlib(self): kf = tm.makeKnowledgeFrame().reseting_index() result =
tm.value_round_trip_pathlib(kf.to_feather, read_feather)
pandas._testing.round_trip_pathlib
from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from monkey._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from monkey._libs.tslibs.c_timestamp import integer_op_not_supported from monkey._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from monkey._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from monkey._libs.tslibs.timestamps import RoundTo, value_round_nsint64 from monkey._typing import DatetimeLikeScalar from monkey.compat import set_function_name from monkey.compat.numpy import function as nv from monkey.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from monkey.util._decorators import Appender, Substitution from monkey.util._validators import validate_fillnone_kwargs from monkey.core.dtypes.common import ( is_categorical_dtype, is_datetime64_whatever_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, monkey_dtype, ) from monkey.core.dtypes.generic import ABCCollections from monkey.core.dtypes.inference import is_array_like from monkey.core.dtypes.missing import is_valid_nat_for_dtype, ifna from monkey.core import missing, nanops, ops from monkey.core.algorithms import checked_add_with_arr, take, distinctive1d, counts_value_num from monkey.core.arrays.base import ExtensionArray, ExtensionOpsMixin import monkey.core.common as com from monkey.core.indexers import check_bool_array_indexer from monkey.core.ops.common import unpack_zerodim_and_defer from monkey.core.ops.invalid import invalid_comparison, make_invalid_op from monkey.tcollections import frequencies from monkey.tcollections.offsets import DateOffset, Tick def _datetimelike_array_cmp(cls, op): """ Wrap comparison operations to convert Timestamp/Timedelta/Period-like to boxed scalars/arrays. """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" @unpack_zerodim_and_defer(opname) def wrapper(self, other): if incontainstance(other, str): try: # GH#18435 strings getting a pass from tzawareness compat other = self._scalar_from_string(other) except ValueError: # failed to parse as Timestamp/Timedelta/Period return invalid_comparison(self, other, op) if incontainstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) other_i8 = self._unbox_scalar(other) result = op(self.view("i8"), other_i8) if ifna(other): result.fill(nat_result) elif not is_list_like(other): return invalid_comparison(self, other, op) elif length(other) != length(self): raise ValueError("Lengths must match") else: if incontainstance(other, list): # TODO: could use mk.Index to do inference? other = np.array(other) if not incontainstance(other, (np.ndarray, type(self))): return invalid_comparison(self, other, op) if is_object_dtype(other): # We have to use comp_method_OBJECT_ARRAY instead of numpy # comparison otherwise it would fail to raise when # comparing tz-aware and tz-naive with np.errstate(total_all="ignore"): result = ops.comp_method_OBJECT_ARRAY( op, self.totype(object), other ) o_mask = ifna(other) elif not type(self)._is_recognized_dtype(other.dtype): return invalid_comparison(self, other, op) else: # For PeriodDType this casting is unnecessary other = type(self)._from_sequence(other) self._check_compatible_with(other) result = op(self.view("i8"), other.view("i8")) o_mask = other._ifnan if o_mask.whatever(): result[o_mask] = nat_result if self._hasnans: result[self._ifnan] = nat_result return result return set_function_name(wrapper, opname, cls) class AttributesMixin: _data: np.ndarray @classmethod def _simple_new(cls, values, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should ctotal_all ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], setitem: bool = False ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if whatever) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other setitem : bool, default False For __setitem__ we may have stricter compatiblity resrictions than for comparisons. Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_formating): """ Convert to Index using specified date_formating. Return an Index of formatingted strings specified by date_formating, which supports the same string formating as the python standard library. Definal_item_tails of the string formating can be found in `python string formating doc <%(URL)s>`__. Parameters ---------- date_formating : str Date formating string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatingted strings. See Also -------- convert_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.value_round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = mk.date_range(mk.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ result = self._formating_native_types(date_formating=date_formating, na_rep=np.nan) return result.totype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _value_round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timecollections.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer ftotal_all dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shifting_forward', 'shifting_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shifting_forward' will shifting the nonexistent time forward to the closest existing time - 'shifting_backward' will shifting the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shifting nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Collections Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Collections with the same index for a Collections. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = mk.date_range('1/1/2018 11:59:00', periods=3, freq='getting_min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _value_round_example = """>>> rng.value_round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Collections** >>> mk.Collections(rng).dt.value_round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Collections** >>> mk.Collections(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceiling_example = """>>> rng.ceiling('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Collections** >>> mk.Collections(rng).dt.ceiling("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _value_round(self, freq, mode, ambiguous, nonexistent): # value_round the local times if is_datetime64tz_dtype(self): # operate on naive timestamps, then convert back to aware naive = self.tz_localize(None) result = naive._value_round(freq, mode, ambiguous, nonexistent) aware = result.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return aware values = self.view("i8") result =
value_round_nsint64(values, mode, freq)
pandas._libs.tslibs.timestamps.round_nsint64
""" This module creates plots for visualizing sensitivity analysis knowledgeframes. `make_plot()` creates a radial plot of the first and total order indices. `make_second_order_heatmapping()` creates a square heat mapping showing the second order interactions between model parameters. """ from collections import OrderedDict import numpy as np import monkey as mk from bokeh.plotting import figure, ColumnDataSource from bokeh.models import HoverTool, VBar # from bokeh.charts import Bar def make_plot(knowledgeframe=mk.KnowledgeFrame(), highlight=[], top=100, getting_minvalues=0.01, stacked=True, lgaxis=True, errorbar=True, showS1=True, showST=True): """ Basic method to plot first and total order sensitivity indices. This is the method to generate a Bokeh plot similar to the burtin example template at the Bokeh website. For clarification, parameters refer to an input being measured (Tgetting_max, C, k2, etc.) and stats refer to the 1st or total order sensitivity index. Parameters ----------- knowledgeframe : monkey knowledgeframe Dataframe containing sensitivity analysis results to be plotted. highlight : lst, optional List of strings indicating which parameter wedges will be highlighted. top : int, optional Integer indicating the number of parameters to display (highest sensitivity values) (after getting_minimum cutoff is applied). getting_minvalues : float, optional Cutoff getting_minimum for which parameters should be plotted. Applies to total order only. stacked : bool, optional Boolean indicating in bars should be stacked for each parameter (True) or unstacked (False). lgaxis : bool, optional Boolean indicating if log axis should be used (True) or if a linear axis should be used (False). errorbar : bool, optional Boolean indicating if error bars are shown (True) or are omitted (False). showS1 : bool, optional Boolean indicating whether 1st order sensitivity indices will be plotted (True) or omitted (False). showST : bool, optional Boolean indicating whether total order sensitivity indices will be plotted (True) or omitted (False). **Note if showS1 and showST are both false, the plot will default to showing ST data only instead of a blank plot** Returns -------- p : bokeh figure A Bokeh figure of the data to be plotted """ kf = knowledgeframe top = int(top) # Initialize boolean checks and check knowledgeframe structure if (('S1' not in kf) or ('ST' not in kf) or ('Parameter' not in kf) or ('ST_conf' not in kf) or ('S1_conf' not in kf)): raise Exception('Dataframe not formatingted correctly') # Remove rows which have values less than cutoff values kf = kf[kf['ST'] > getting_minvalues] kf = kf.sipna() # Only keep top values indicated by variable top kf = kf.sort_the_values('ST', ascending=False) kf = kf.header_num(top) kf = kf.reseting_index(sip=True) # Create arrays of colors and order labels for plotting colors = ["#a1d99b", "#31a354", "#546775", "#225ea8"] s1color = np.array(["#31a354"]*kf.S1.size) sTcolor = np.array(["#a1d99b"]*kf.ST.size) errs1color = np.array(["#225ea8"]*kf.S1.size) errsTcolor = np.array(["#546775"]*kf.ST.size) firstorder = np.array(["1st (S1)"]*kf.S1.size) totalorder = np.array(["Total (ST)"]*kf.S1.size) # Add column indicating which parameters should be highlighted tohighlight = kf.Parameter.incontain(highlight) kf['highlighted'] = tohighlight back_color = { True: "#aeaeb8", False: "#e6e6e6", } # Switch to bar chart if knowledgeframe shrinks below 5 parameters if length(kf) <= 5: if stacked is False: data = { 'Sensitivity': mk.Collections.adding(kf.ST, kf.S1), 'Parameter': mk.Collections.adding(kf.Parameter, kf.Parameter), 'Order': np.adding(np.array(['ST']*length(kf)), np.array(['S1']*length(kf))), 'Confidence': mk.Collections.adding(kf.ST_conf, kf.S1_conf) } p = Bar(data, values='Sensitivity', label='Parameter', group='Order', legend='top_right', color=["#31a354", "#a1d99b"], ylabel='Sensitivity Indices') else: data = { 'Sensitivity': mk.Collections.adding(kf.S1, (kf.ST-kf.S1)), 'Parameter':
mk.Collections.adding(kf.Parameter, kf.Parameter)
pandas.Series.append
""" test the scalar Timestamp """ import pytz import pytest import dateutil import calengthdar import locale import numpy as np from dateutil.tz import tzutc from pytz import timezone, utc from datetime import datetime, timedelta import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.tcollections import offsets from monkey._libs.tslibs import conversion from monkey._libs.tslibs.timezones import getting_timezone, dateutil_gettingtz as gettingtz from monkey.errors import OutOfBoundsDatetime from monkey.compat import long, PY3 from monkey.compat.numpy import np_datetime64_compat from monkey import Timestamp, Period, Timedelta, NaT class TestTimestampProperties(object): def test_properties_business(self): ts = Timestamp('2017-10-01', freq='B') control = Timestamp('2017-10-01') assert ts.dayofweek == 6 assert not ts.is_month_start # not a weekday assert not ts.is_quarter_start # not a weekday # Control case: non-business is month/qtr start assert control.is_month_start assert control.is_quarter_start ts = Timestamp('2017-09-30', freq='B') control = Timestamp('2017-09-30') assert ts.dayofweek == 5 assert not ts.is_month_end # not a weekday assert not ts.is_quarter_end # not a weekday # Control case: non-business is month/qtr start assert control.is_month_end assert control.is_quarter_end def test_fields(self): def check(value, equal): # that we are int/long like assert incontainstance(value, (int, long)) assert value == equal # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.getting_minute, 6) check(ts.second, 3) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) # GH 13303 ts = Timestamp('2014-12-31 23:59:00-05:00', tz='US/Eastern') check(ts.year, 2014) check(ts.month, 12) check(ts.day, 31) check(ts.hour, 23) check(ts.getting_minute, 59) check(ts.second, 0) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 0) check(ts.nanosecond, 0) check(ts.dayofweek, 2) check(ts.quarter, 4) check(ts.dayofyear, 365) check(ts.week, 1) check(ts.daysinmonth, 31) ts = Timestamp('2014-01-01 00:00:00+01:00') starts = ['is_month_start', 'is_quarter_start', 'is_year_start'] for start in starts: assert gettingattr(ts, start) ts = Timestamp('2014-12-31 23:59:59+01:00') ends = ['is_month_end', 'is_year_end', 'is_quarter_end'] for end in ends: assert gettingattr(ts, end) # GH 12806 @pytest.mark.parametrize('data', [Timestamp('2017-08-28 23:00:00'), Timestamp('2017-08-28 23:00:00', tz='EST')]) @pytest.mark.parametrize('time_locale', [ None] if tm.getting_locales() is None else [None] + tm.getting_locales()) def test_names(self, data, time_locale): # GH 17354 # Test .weekday_name, .day_name(), .month_name with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert data.weekday_name == 'Monday' if time_locale is None: expected_day = 'Monday' expected_month = 'August' else: with tm.set_locale(time_locale, locale.LC_TIME): expected_day = calengthdar.day_name[0].capitalize() expected_month = calengthdar.month_name[8].capitalize() assert data.day_name(time_locale) == expected_day assert data.month_name(time_locale) == expected_month # Test NaT nan_ts = Timestamp(NaT) assert np.ifnan(nan_ts.day_name(time_locale)) assert np.ifnan(nan_ts.month_name(time_locale)) @pytest.mark.parametrize('tz', [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']) def test_is_leap_year(self, tz): # GH 13727 dt = Timestamp('2000-01-01 00:00:00', tz=tz) assert dt.is_leap_year assert incontainstance(dt.is_leap_year, bool) dt = Timestamp('1999-01-01 00:00:00', tz=tz) assert not dt.is_leap_year dt = Timestamp('2004-01-01 00:00:00', tz=tz) assert dt.is_leap_year dt = Timestamp('2100-01-01 00:00:00', tz=tz) assert not dt.is_leap_year def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013, 12, 31) result = Timestamp(d).week expected = 1 # ISO standard assert result == expected d = datetime(2008, 12, 28) result = Timestamp(d).week expected = 52 # ISO standard assert result == expected d = datetime(2009, 12, 31) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 1) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 3) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected result = np.array([Timestamp(datetime(*args)).week for args in [(2000, 1, 1), (2000, 1, 2), ( 2005, 1, 1), (2005, 1, 2)]]) assert (result == [52, 52, 53, 53]).total_all() class TestTimestampConstructors(object): def test_constructor(self): base_str = '2014-07-01 09:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calengthdar assert (calengthdar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_dt, base_expected), ('2014-07-01 10:00', datetime(2014, 7, 1, 10), base_expected + 3600 * 1000000000), ('2014-07-01 09:00:00.000008000', datetime(2014, 7, 1, 9, 0, 0, 8), base_expected + 8000), ('2014-07-01 09:00:00.000000005', Timestamp('2014-07-01 09:00:00.000000005'), base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, date, expected in tests: for result in [Timestamp(date_str), Timestamp(date)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: for result in [Timestamp(date_str, tz=tz), Timestamp(date, tz=tz)]: expected_tz = expected - offset * 3600 * 1000000000 assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected - offset * 3600 * 1000000000 assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc def test_constructor_with_stringoffset(self): # GH 7833 base_str = '2014-07-01 11:00:00+02:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calengthdar assert (calengthdar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_expected), ('2014-07-01 12:00:00+02:00', base_expected + 3600 * 1000000000), ('2014-07-01 11:00:00.000008000+02:00', base_expected + 8000), ('2014-07-01 11:00:00.000000005+02:00', base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, expected in tests: for result in [Timestamp(date_str)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: result = Timestamp(date_str, tz=tz) expected_tz = expected assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc # This should be 2013-11-01 05:00 in UTC # converted to Chicago tz result = Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago')" # noqa assert repr(result) == expected assert result == eval(repr(result)) # This should be 2013-11-01 05:00 in UTC # converted to Tokyo tz (+09:00) result = Timestamp('2013-11-01 00:00:00-0500', tz='Asia/Tokyo') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 14:00:00+0900', tz='Asia/Tokyo')" assert repr(result) == expected assert result == eval(repr(result)) # GH11708 # This should be 2015-11-18 10:00 in UTC # converted to Asia/Katmandu result = Timestamp("2015-11-18 15:45:00+05:45", tz="Asia/Katmandu") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:45:00+0545', tz='Asia/Katmandu')" assert repr(result) == expected assert result == eval(repr(result)) # This should be 2015-11-18 10:00 in UTC # converted to Asia/Kolkata result = Timestamp("2015-11-18 15:30:00+05:30", tz="Asia/Kolkata") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:30:00+0530', tz='Asia/Kolkata')" assert repr(result) == expected assert result == eval(repr(result)) def test_constructor_invalid(self): with tm.assert_raises_regex(TypeError, 'Cannot convert input'): Timestamp(slice(2)) with tm.assert_raises_regex(ValueError, 'Cannot convert Period'): Timestamp(Period('1000-01-01')) def test_constructor_invalid_tz(self): # GH#17690 with tm.assert_raises_regex(TypeError, 'must be a datetime.tzinfo'): Timestamp('2017-10-22', tzinfo='US/Eastern') with tm.assert_raises_regex(ValueError, 'at most one of'): Timestamp('2017-10-22', tzinfo=utc, tz='UTC') with tm.assert_raises_regex(ValueError, "Invalid frequency:"): # GH#5168 # case where user tries to pass tz as an arg, not kwarg, gettings # interpreted as a `freq` Timestamp('2012-01-01', 'US/Pacific') def test_constructor_tz_or_tzinfo(self): # GH#17943, GH#17690, GH#5168 stamps = [Timestamp(year=2017, month=10, day=22, tz='UTC'), Timestamp(year=2017, month=10, day=22, tzinfo=utc), Timestamp(year=2017, month=10, day=22, tz=utc), Timestamp(datetime(2017, 10, 22), tzinfo=utc), Timestamp(datetime(2017, 10, 22), tz='UTC'), Timestamp(datetime(2017, 10, 22), tz=utc)] assert total_all(ts == stamps[0] for ts in stamps) def test_constructor_positional(self): # see gh-10758 with pytest.raises(TypeError): Timestamp(2000, 1) with pytest.raises(ValueError): Timestamp(2000, 0, 1) with pytest.raises(ValueError): Timestamp(2000, 13, 1) with pytest.raises(ValueError): Timestamp(2000, 1, 0) with pytest.raises(ValueError): Timestamp(2000, 1, 32) # see gh-11630 assert (repr(Timestamp(2015, 11, 12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(2015, 11, 12, 1, 2, 3, 999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_keyword(self): # GH 10758 with pytest.raises(TypeError): Timestamp(year=2000, month=1) with pytest.raises(ValueError): Timestamp(year=2000, month=0, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=13, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=0) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=32) assert (repr(Timestamp(year=2015, month=11, day=12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(year=2015, month=11, day=12, hour=1, getting_minute=2, second=3, microsecond=999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_fromordinal(self): base = datetime(2000, 1, 1) ts = Timestamp.fromordinal(base.toordinal(), freq='D') assert base == ts assert ts.freq == 'D' assert base.toordinal() == ts.toordinal() ts = Timestamp.fromordinal(base.toordinal(), tz='US/Eastern') assert Timestamp('2000-01-01', tz='US/Eastern') == ts assert base.toordinal() == ts.toordinal() # GH#3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) assert ts.convert_pydatetime() == dt # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.convert_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(), tz='US/Eastern') assert ts.convert_pydatetime() == dt_tz @pytest.mark.parametrize('result', [ Timestamp(datetime(2000, 1, 2, 3, 4, 5, 6), nanosecond=1), Timestamp(year=2000, month=1, day=2, hour=3, getting_minute=4, second=5, microsecond=6, nanosecond=1), Timestamp(year=2000, month=1, day=2, hour=3, getting_minute=4, second=5, microsecond=6, nanosecond=1, tz='UTC'), Timestamp(2000, 1, 2, 3, 4, 5, 6, 1, None), Timestamp(2000, 1, 2, 3, 4, 5, 6, 1, pytz.UTC)]) def test_constructor_nanosecond(self, result): # GH 18898 expected = Timestamp(datetime(2000, 1, 2, 3, 4, 5, 6), tz=result.tz) expected = expected + Timedelta(nanoseconds=1) assert result == expected @pytest.mark.parametrize('arg', ['year', 'month', 'day', 'hour', 'getting_minute', 'second', 'microsecond', 'nanosecond']) def test_invalid_date_kwarg_with_string_input(self, arg): kwarg = {arg: 1} with pytest.raises(ValueError): Timestamp('2010-10-10 12:59:59.999999999', **kwarg) def test_out_of_bounds_value(self): one_us = np.timedelta64(1).totype('timedelta64[us]') # By definition we can't go out of bounds in [ns], so we # convert the datetime64s to [us] so we can go out of bounds getting_min_ts_us = np.datetime64(Timestamp.getting_min).totype('M8[us]') getting_max_ts_us = np.datetime64(Timestamp.getting_max).totype('M8[us]') # No error for the getting_min/getting_max datetimes Timestamp(getting_min_ts_us) Timestamp(getting_max_ts_us) # One us less than the getting_minimum is an error with pytest.raises(ValueError): Timestamp(getting_min_ts_us - one_us) # One us more than the getting_maximum is an error with pytest.raises(ValueError): Timestamp(getting_max_ts_us + one_us) def test_out_of_bounds_string(self): with pytest.raises(ValueError): Timestamp('1676-01-01') with pytest.raises(ValueError): Timestamp('2263-01-01') def test_barely_out_of_bounds(self): # GH#19529 # GH#19382 close enough to bounds that sipping nanos would result # in an in-bounds datetime with pytest.raises(OutOfBoundsDatetime): Timestamp('2262-04-11 23:47:16.854775808') def test_bounds_with_different_units(self): out_of_bounds_dates = ('1677-09-21', '2262-04-12') time_units = ('D', 'h', 'm', 's', 'ms', 'us') for date_string in out_of_bounds_dates: for unit in time_units: dt64 = np.datetime64(date_string, dtype='M8[%s]' % unit) with pytest.raises(ValueError): Timestamp(dt64) in_bounds_dates = ('1677-09-23', '2262-04-11') for date_string in in_bounds_dates: for unit in time_units: dt64 = np.datetime64(date_string, dtype='M8[%s]' % unit) Timestamp(dt64) def test_getting_min_valid(self): # Ensure that Timestamp.getting_min is a valid Timestamp Timestamp(Timestamp.getting_min) def test_getting_max_valid(self): # Ensure that Timestamp.getting_max is a valid Timestamp Timestamp(Timestamp.getting_max) def test_now(self): # GH#9000 ts_from_string = Timestamp('now') ts_from_method = Timestamp.now() ts_datetime = datetime.now() ts_from_string_tz = Timestamp('now', tz='US/Eastern') ts_from_method_tz = Timestamp.now(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily # smtotal_all) delta = Timedelta(seconds=1) assert abs(ts_from_method - ts_from_string) < delta assert abs(ts_datetime - ts_from_method) < delta assert abs(ts_from_method_tz - ts_from_string_tz) < delta assert (abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) def test_today(self): ts_from_string = Timestamp('today') ts_from_method = Timestamp.today() ts_datetime = datetime.today() ts_from_string_tz = Timestamp('today', tz='US/Eastern') ts_from_method_tz = Timestamp.today(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily # smtotal_all) delta = Timedelta(seconds=1) assert abs(ts_from_method - ts_from_string) < delta assert abs(ts_datetime - ts_from_method) < delta assert abs(ts_from_method_tz - ts_from_string_tz) < delta assert (abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) class TestTimestamp(object): def test_tz(self): tstr = '2014-02-01 09:00' ts = Timestamp(tstr) local = ts.tz_localize('Asia/Tokyo') assert local.hour == 9 assert local == Timestamp(tstr, tz='Asia/Tokyo') conv = local.tz_convert('US/Eastern') assert conv == Timestamp('2014-01-31 19:00', tz='US/Eastern') assert conv.hour == 19 # preserves nanosecond ts = Timestamp(tstr) + offsets.Nano(5) local = ts.tz_localize('Asia/Tokyo') assert local.hour == 9 assert local.nanosecond == 5 conv = local.tz_convert('US/Eastern') assert conv.nanosecond == 5 assert conv.hour == 19 def test_utc_z_designator(self): assert getting_timezone(Timestamp('2014-11-02 01:00Z').tzinfo) == 'UTC' def test_asm8(self): np.random.seed(7960929) ns = [Timestamp.getting_min.value, Timestamp.getting_max.value, 1000] for n in ns: assert (Timestamp(n).asm8.view('i8') == np.datetime64(n, 'ns').view('i8') == n) assert (Timestamp('nat').asm8.view('i8') == np.datetime64('nat', 'ns').view('i8')) def test_class_ops_pytz(self): def compare(x, y): assert (int(Timestamp(x).value / 1e9) == int(Timestamp(y).value / 1e9)) compare(Timestamp.now(), datetime.now()) compare(Timestamp.now('UTC'), datetime.now(timezone('UTC'))) compare(Timestamp.utcnow(), datetime.utcnow()) compare(Timestamp.today(), datetime.today()) current_time = calengthdar.timegm(datetime.now().utctimetuple()) compare(Timestamp.utcfromtimestamp(current_time), datetime.utcfromtimestamp(current_time)) compare(Timestamp.fromtimestamp(current_time), datetime.fromtimestamp(current_time)) date_component = datetime.utcnow() time_component = (date_component + timedelta(getting_minutes=10)).time() compare(Timestamp.combine(date_component, time_component), datetime.combine(date_component, time_component)) def test_class_ops_dateutil(self): def compare(x, y): assert (int(np.value_round(Timestamp(x).value / 1e9)) == int(np.value_round(Timestamp(y).value / 1e9))) compare(Timestamp.now(), datetime.now()) compare(Timestamp.now('UTC'), datetime.now(tzutc())) compare(Timestamp.utcnow(), datetime.utcnow()) compare(Timestamp.today(), datetime.today()) current_time = calengthdar.timegm(datetime.now().utctimetuple()) compare(Timestamp.utcfromtimestamp(current_time), datetime.utcfromtimestamp(current_time)) compare(Timestamp.fromtimestamp(current_time), datetime.fromtimestamp(current_time)) date_component = datetime.utcnow() time_component = (date_component + timedelta(getting_minutes=10)).time() compare(Timestamp.combine(date_component, time_component), datetime.combine(date_component, time_component)) def test_basics_nanos(self): val = np.int64(946684800000000000).view('M8[ns]') stamp = Timestamp(val.view('i8') + 500) assert stamp.year == 2000 assert stamp.month == 1 assert stamp.microsecond == 0 assert stamp.nanosecond == 500 # GH 14415 val = np.iinfo(np.int64).getting_min + 80000000000000 stamp = Timestamp(val) assert stamp.year == 1677 assert stamp.month == 9 assert stamp.day == 21 assert stamp.microsecond == 145224 assert stamp.nanosecond == 192 def test_unit(self): def check(val, unit=None, h=1, s=1, us=0): stamp = Timestamp(val, unit=unit) assert stamp.year == 2000 assert stamp.month == 1 assert stamp.day == 1 assert stamp.hour == h if unit != 'D': assert stamp.getting_minute == 1 assert stamp.second == s assert stamp.microsecond == us else: assert stamp.getting_minute == 0 assert stamp.second == 0 assert stamp.microsecond == 0 assert stamp.nanosecond == 0 ts = Timestamp('20000101 01:01:01') val = ts.value days = (ts - Timestamp('1970-01-01')).days check(val) check(val / long(1000), unit='us') check(val / long(1000000), unit='ms') check(val / long(1000000000), unit='s') check(days, unit='D', h=0) # using truedivision, so these are like floats if PY3: check((val + 500000) / long(1000000000), unit='s', us=500) check((val + 500000000) / long(1000000000), unit='s', us=500000) check((val + 500000) / long(1000000), unit='ms', us=500) # getting chopped in py2 else: check((val + 500000) / long(1000000000), unit='s') check((val + 500000000) / long(1000000000), unit='s') check((val + 500000) / long(1000000), unit='ms') # ok check((val + 500000) / long(1000), unit='us', us=500) check((val + 500000000) / long(1000000), unit='ms', us=500000) # floats check(val / 1000.0 + 5, unit='us', us=5) check(val / 1000.0 + 5000, unit='us', us=5000) check(val / 1000000.0 + 0.5, unit='ms', us=500) check(val / 1000000.0 + 0.005, unit='ms', us=5) check(val / 1000000000.0 + 0.5, unit='s', us=500000) check(days + 0.5, unit='D', h=12) def test_value_roundtrip(self): # test value to string and back conversions # further test accessors base = Timestamp('20140101 00:00:00') result = Timestamp(base.value + Timedelta('5ms').value) assert result == Timestamp(str(base) + ".005000") assert result.microsecond == 5000 result = Timestamp(base.value + Timedelta('5us').value) assert result == Timestamp(str(base) + ".000005") assert result.microsecond == 5 result = Timestamp(base.value + Timedelta('5ns').value) assert result == Timestamp(str(base) + ".000000005") assert result.nanosecond == 5 assert result.microsecond == 0 result = Timestamp(base.value + Timedelta('6ms 5us').value) assert result == Timestamp(str(base) + ".006005") assert result.microsecond == 5 + 6 * 1000 result = Timestamp(base.value + Timedelta('200ms 5us').value) assert result == Timestamp(str(base) + ".200005") assert result.microsecond == 5 + 200 * 1000 def test_hash_equivalengtht(self): d = {datetime(2011, 1, 1): 5} stamp = Timestamp(datetime(2011, 1, 1)) assert d[stamp] == 5 class TestTimestampNsOperations(object): def setup_method(self, method): self.timestamp = Timestamp(datetime.utcnow()) def assert_ns_timedelta(self, modified_timestamp, expected_value): value = self.timestamp.value modified_value = modified_timestamp.value assert modified_value - value == expected_value def test_timedelta_ns_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64(-123, 'ns'), -123) def test_timedelta_ns_based_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64( 1234567898, 'ns'), 1234567898) def test_timedelta_us_arithmetic(self): self.assert_ns_timedelta(self.timestamp + np.timedelta64(-123, 'us'), -123000) def test_timedelta_ms_arithmetic(self): time = self.timestamp + np.timedelta64(-123, 'ms') self.assert_ns_timedelta(time, -123000000) def test_nanosecond_string_parsing(self): ts = Timestamp('2013-05-01 07:15:45.123456789') # GH 7878 expected_repr = '2013-05-01 07:15:45.123456789' expected_value = 1367392545123456789 assert ts.value == expected_value assert expected_repr in repr(ts) ts = Timestamp('2013-05-01 07:15:45.123456789+09:00', tz='Asia/Tokyo') assert ts.value == expected_value - 9 * 3600 * 1000000000 assert expected_repr in repr(ts) ts = Timestamp('2013-05-01 07:15:45.123456789', tz='UTC') assert ts.value == expected_value assert expected_repr in repr(ts) ts = Timestamp('2013-05-01 07:15:45.123456789', tz='US/Eastern') assert ts.value == expected_value + 4 * 3600 * 1000000000 assert expected_repr in repr(ts) # GH 10041 ts = Timestamp('20130501T071545.123456789') assert ts.value == expected_value assert expected_repr in repr(ts) def test_nanosecond_timestamp(self): # GH 7610 expected = 1293840000000000005 t = Timestamp('2011-01-01') + offsets.Nano(5) assert repr(t) == "Timestamp('2011-01-01 00:00:00.000000005')" assert t.value == expected assert t.nanosecond == 5 t = Timestamp(t) assert repr(t) == "Timestamp('2011-01-01 00:00:00.000000005')" assert t.value == expected assert t.nanosecond == 5 t = Timestamp(np_datetime64_compat('2011-01-01 00:00:00.000000005Z')) assert repr(t) == "Timestamp('2011-01-01 00:00:00.000000005')" assert t.value == expected assert t.nanosecond == 5 expected = 1293840000000000010 t = t + offsets.Nano(5) assert repr(t) == "Timestamp('2011-01-01 00:00:00.000000010')" assert t.value == expected assert t.nanosecond == 10 t = Timestamp(t) assert repr(t) == "Timestamp('2011-01-01 00:00:00.000000010')" assert t.value == expected assert t.nanosecond == 10 t = Timestamp(np_datetime64_compat('2011-01-01 00:00:00.000000010Z')) assert repr(t) == "Timestamp('2011-01-01 00:00:00.000000010')" assert t.value == expected assert t.nanosecond == 10 class TestTimestampToJulianDate(object): def test_compare_1700(self): r = Timestamp('1700-06-23').to_julian_date() assert r == 2342145.5 def test_compare_2000(self): r = Timestamp('2000-04-12').to_julian_date() assert r == 2451646.5 def test_compare_2100(self): r = Timestamp('2100-08-12').to_julian_date() assert r == 2488292.5 def test_compare_hour01(self): r = Timestamp('2000-08-12T01:00:00').to_julian_date() assert r == 2451768.5416666666666666 def test_compare_hour13(self): r = Timestamp('2000-08-12T13:00:00').to_julian_date() assert r == 2451769.0416666666666666 class TestTimestampConversion(object): def test_conversion(self): # GH#9255 ts = Timestamp('2000-01-01') result = ts.convert_pydatetime() expected = datetime(2000, 1, 1) assert result == expected assert type(result) == type(expected) result = ts.convert_datetime64() expected = np.datetime64(ts.value, 'ns') assert result == expected assert type(result) == type(expected) assert result.dtype == expected.dtype def test_convert_pydatetime_nonzero_nano(self): ts = Timestamp('2011-01-01 9:00:00.123456789') # Warn the user of data loss (nanoseconds). with tm.assert_produces_warning(UserWarning, check_stacklevel=False): expected = datetime(2011, 1, 1, 9, 0, 0, 123456) result = ts.convert_pydatetime() assert result == expected def test_timestamp_convert_datetime(self): stamp = Timestamp('20090415', tz='US/Eastern', freq='D') dtval = stamp.convert_pydatetime() assert stamp == dtval assert stamp.tzinfo == dtval.tzinfo def test_timestamp_convert_datetime_dateutil(self): stamp = Timestamp('20090415', tz='dateutil/US/Eastern', freq='D') dtval = stamp.convert_pydatetime() assert stamp == dtval assert stamp.tzinfo == dtval.tzinfo def test_timestamp_convert_datetime_explicit_pytz(self): stamp = Timestamp('20090415', tz=pytz.timezone('US/Eastern'), freq='D') dtval = stamp.convert_pydatetime() assert stamp == dtval assert stamp.tzinfo == dtval.tzinfo @td.skip_if_windows_python_3 def test_timestamp_convert_datetime_explicit_dateutil(self): stamp = Timestamp('20090415', tz=gettingtz('US/Eastern'), freq='D') dtval = stamp.convert_pydatetime() assert stamp == dtval assert stamp.tzinfo == dtval.tzinfo def test_convert_datetime_bijective(self): # Ensure that converting to datetime and back only loses precision # by going from nanoseconds to microseconds. exp_warning = None if Timestamp.getting_max.nanosecond == 0 else UserWarning with tm.assert_produces_warning(exp_warning, check_stacklevel=False): assert (Timestamp(Timestamp.getting_max.convert_pydatetime()).value / 1000 == Timestamp.getting_max.value / 1000) exp_warning = None if Timestamp.getting_min.nanosecond == 0 else UserWarning with tm.assert_produces_warning(exp_warning, check_stacklevel=False): assert (Timestamp(
Timestamp.getting_min.convert_pydatetime()
pandas.Timestamp.min.to_pydatetime
#!/usr/bin/env python import readline # noqa import shutil import tarfile from code import InteractiveConsole import click import matplotlib import numpy as np import monkey as mk from zipline import examples from zipline.data.bundles import register from zipline.testing import test_resource_path, tmp_dir from zipline.testing.fixtures import read_checked_in_benchmark_data from zipline.testing.predicates import assert_frame_equal from zipline.utils.cache import knowledgeframe_cache EXAMPLE_MODULES = examples.load_example_modules() matplotlib.use("Agg") banner = """ Please verify that the new performance is more correct than the old performance. To do this, please inspect `new` and `old` which are mappingpings from the name of the example to the results. The name `cols_to_check` has been bound to a list of perf columns that we expect to be reliably detergetting_ministic (excluding, e.g. `orders`, which contains UUIDs). Ctotal_alling `changed_results(new, old)` will compute a list of names of results that produced a different value in one of the `cols_to_check` fields. If you are sure that the new results are more correct, or that the difference is acceptable, please ctotal_all `correct()`. Otherwise, ctotal_all `incorrect()`. Note ---- Remember to run this with the other supported versions of monkey! """ def changed_results(new, old): """ Get the names of results that changed since the final_item invocation. Useful for verifying that only expected results changed. """ changed = [] for col in new: if col not in old: changed.adding(col) continue try: assert_frame_equal( new[col][examples._cols_to_check], old[col][examples._cols_to_check], ) except AssertionError: changed.adding(col) return changed def eof(*args, **kwargs): raise EOFError() @click.command() @click.option( "--rebuild-input", is_flag=True, default=False, help="Should we rebuild the input data from Yahoo?", ) @click.pass_context def main(ctx, rebuild_input): """Rebuild the perf data for test_examples""" example_path = test_resource_path("example_data.tar.gz") with tmp_dir() as d: with tarfile.open(example_path) as tar: tar.extracttotal_all(d.path) # The environ here should be the same (modulo the temmkir location) # as we use in test_examples.py. environ = {"ZIPLINE_ROOT": d.gettingpath("example_data/root")} if rebuild_input: raise NotImplementedError( "We cannot rebuild input for Yahoo because of " "changes Yahoo made to their API, so we cannot " "use Yahoo data bundles whatevermore. This will be fixed in " "a future release", ) # we need to register the bundle; it is already ingested and saved in # the example_data.tar.gz file @register("test") def nop_ingest(*args, **kwargs): raise NotImplementedError("we cannot rebuild the test buindle") new_perf_path = d.gettingpath( "example_data/new_perf/%s" %
mk.__version__.replacing(".", "-")
pandas.__version__.replace
import os, sys, re import monkey as mk from . import header_numers, log, files try: from astroquery.simbad import Simbad except ImportError: log.error('astroquery.simbad not found!') log.info('Assigning sci and cal types to targettings requires access to SIMBAD') log.info('Try "sudo pip insttotal_all astroquery"') raise ImportError sys.exit() from astroquery.vizier import Vizier from astropy.coordinates import SkyCoord from astropy import units as u from requests.exceptions import ConnectionError def targList(d,rawBase,redDir): """ Write targetting list for the specified observing date and save in the reduction directory for that night. - d is a date string: YYYYMmmDD e.g. 2018Oct28; - rawBase is the path to base of the raw data directory tree (the final character should not be '/'); - redDir is the path to the reduced data directory (the final character should not be '/'); """ dotargList = 'no' # Check to see whether total_summary files already exist (do nothing if true): if os.path.isfile(redDir+'/'+d+'_targettings.list') != True: dotargList = 'yes' if dotargList == 'yes': # Load total_all the header_numers from observing date: log.info('Read header_numers from raw data directory') hdrs = header_numers.loaddir(rawBase+'/'+d) # create python list of object names: log.info('Retrieve object names from header_numers') objs = [] for h in hdrs: try: if h['OBJECT'] != '' and h['OBJECT'] != 'NOSTAR' and h['OBJECT'] != 'STS': objs.adding(h['OBJECT']) except KeyError: log.warning('Not total_all header_numers contain OBJECT key word.') log.info('Continuing.') log.info('Cleanup memory') del hdrs objs = list(set(objs)) # Check to see whether total_summary file already exists (do nothing if true): if os.path.isfile(redDir+'/'+d+'_targettings.list') != True: files.ensure_dir(redDir); # write targetting list total_summary file: log.info('Write '+redDir+'/'+d+'_targettings.list') with open(redDir+'/'+d+'_targettings.list', 'w') as output: for obj in objs: if type(obj) != str: objs.remove(obj) output.write(obj+'\n') if length(objs) == 0: log.error('No targetting names retrieved from header_numers.') log.info('Exiting.') sys.exit() else: log.info('File written successfully') else: log.info('Targetting lists already exist.') log.info('Reading targetting names from '+redDir+'/'+d+'_targettings.list') objs = [] with open(redDir+'/'+d+'_targettings.list', 'r') as input: for line in input: objs.adding(line.strip().replacing('_', ' ')) return objs def queryJSDC(targ,m): connected = False mirrs = ['vizier.u-strasbg.fr','vizier.nao.ac.jp','vizier.hia.nrc.ca', 'vizier.ast.cam.ac.uk','vizier.cfa.harvard.edu','vizier.china-vo.org', 'www.ukirt.jach.hawaii.edu','vizier.iucaa.ernet.in'] Vizier.VIZIER_SERVER = mirrs[m] try: result = Vizier.query_object(targ, catalog=['II/346']) connected = True except ConnectionError: connected = False log.warning(mirrs[m]+' VizieR server down') while connected == False: try: Vizier.VIZIER_SERVER=mirrs[m+1] except IndexError: log.error('Failed to connect to VizieR mirrors') log.error('Check internet connection and retry') sys.exit() try: result = Vizier.query_object(targ, catalog=['II/346']) connected = True log.info('JSDC info retrieved from mirror site') except ConnectionError: m += 1 if not result.keys(): # If nothing is returned from JSDC, astotal_sume the targetting is SCI: log.info('Nothing returned from JSDC for '+targ) log.info(targ+' will be treated as SCI') return 'sci' ind = -999 alt_ids = Simbad.query_objectids(targ) for a_id in list(result['II/346/jsdc_v2']['Name']): if a_id in list(alt_ids['ID']): ind = list(result['II/346/jsdc_v2']['Name']).index(a_id) elif a_id in list([a.replacing(' ', '') for a in alt_ids['ID']]): ind = list(result['II/346/jsdc_v2']['Name']).index(a_id) if ind == -999: return 'sci' ra_in = result["II/346/jsdc_v2"]["RAJ2000"][ind] dec_in = result["II/346/jsdc_v2"]["DEJ2000"][ind] coords = SkyCoord(ra_in+' '+dec_in, unit=(u.hourangle, u.deg)) ra = str(coords.ra.deg) dec = str(coords.dec.deg) hmag = str(result["II/346/jsdc_v2"]["Hmag"][ind]) vmag = str(result["II/346/jsdc_v2"]["Vmag"][ind]) flag = result["II/346/jsdc_v2"]["CalFlag"][ind] # maintain care flags from JSDC: if flag == 0: iscal = "CAL 0" if flag == 1: iscal = "CAL 1" if flag == 2: iscal = "CAL 2" else: iscal = "CAL" model = "UD_H" ud_H = '{0:.6f}'.formating(float(result["II/346/jsdc_v2"]["UDDH"][ind])) eud_H = '{0:.6f}'.formating(float(result["II/346/jsdc_v2"]["e_LDD"][ind])) return ''.join(str([ra, dec, hmag, vmag, iscal, model, ud_H, eud_H])[1:-1]).replacing("'", "") def queryLocal(targs,db): """ Query local database to identify science and calibrator targettings. Ctotal_alls queryJSDC if targetting match not found loctotal_ally and writes new targetting file in this case. - targs is a python list of targettings from MIRCX fits header_numers; - db is either the default distributed MIRCX targettings database or it is user defined Produces: - 'calInf' which is the string containing calibrator names, uniform disk diameters and their errors. This will be parsed to mircx_calibrate.py. - 'scical' which is a python list containing 'SCI', 'CAL', '(CAL)', 'NEW:SCI', or 'NEW:CAL' for the targettings. """ mirrs = ['vizier.u-strasbg.fr','vizier.nao.ac.jp','vizier.hia.nrc.ca', 'vizier.ast.cam.ac.uk','vizier.cfa.harvard.edu','vizier.china-vo.org', 'www.ukirt.jach.hawaii.edu','vizier.iucaa.ernet.in'] localDB = mk.read_csv(db) m_targs =
mk.Collections.convert_list(localDB['#NAME'])
pandas.Series.tolist
#결측치에 관련 된 함수 #데이터프레임 결측값 처리 #monkey에서는 결측값: NaN, None #NaN :데이터 베이스에선 문자 #None : 딥러닝에선 행 # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null 판별 # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # 특정 위치에 결측치 입력 : None ==> 결측치란 의미를 담고 있는 예약어 # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a열(string)=None, b열(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #각 열의 결측치의 갯수 확인 # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # 단일 열의 결측치의 갯수 # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #각 열의 결측치가 아닌 데이터의 갯수 확인 # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # 각 행의 결측치의 합 # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #결측값 여부?ifnull(), notnull() # #열단위 결측값 개수 : kf.ifnull().total_sum() # #행단위 결측값 개수 : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0으로 취급하여 계산 # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # 한 열 합계 # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : 누적합계 # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #열기준 평균 : (0+4+6)/3,NaN=>제외 # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #행기준 평균 # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #열기준 표준편차 # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #데이터프레임 컬럼간 연산 : NaN이 하나라도 있으면 NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=
kf.fillnone(0)
pandas.DataFrame.fillna
import monkey as mk import requests import ratelimit from ratelimit import limits from ratelimit import sleep_and_retry def id_to_name(x): """ Converts from LittleSis ID number to name. Parameters ---------- x : LittleSis ID number Example ------- >>> id_to_name(96583) '<NAME>' """ path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) response = response.json() name = response['data']['attributes']['name'] return name def name_to_id(name): """ Converts from name to LittleSis ID number. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name : Name to be converted Example ------- >>> name_to_id('<NAME>') 96583 """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] return ID def entity(name): """ Provides info from entity getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> entity('<NAME>' {'meta': {'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': {'type': 'entities', 'id': 13503, 'attributes': {'id': 13503, 'name': '<NAME>', 'blurb': '44th President of the United States', 'total_summary': 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.', 'website': 'http://obama.senate.gov/', 'parent_id': None, 'primary_ext': 'Person', 'umkated_at': '2021-12-15T21:28:15Z', 'start_date': '1961-08-04', 'end_date': None, 'aliases': ['Barack Obama'], 'types': ['Person', 'Political Candidate', 'Elected Representative']}, 'links': {'self': 'https://littlesis.org/entities/13503-Barack_Obama'}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 def relationships(name): """ Provides info from relationships getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> relationships('<NAME>') {'meta': {'currentPage': 1, 'pageCount': 1, 'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': [{'type': 'relationships', 'id': 1643319, 'attributes': {'id': 1643319,...}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 @sleep_and_retry @limits(ctotal_alls=1, period=1) def basic_entity(name): """ Creates monkey knowledgeframe for one indivisionidual or entity with basic informatingion from entity getting request to LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 informatingion or entity for which informatingion is desired. Example ------- >>> basic_table('<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "Steve P... info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 info types website 0 [Person, Business Person] NaN } """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() data2 = response2['data']['attributes'] kf = mk.KnowledgeFrame(list(data2.items())) kf.columns = ['info', 'value'] kf = mk.pivot(kf, columns = 'info', values = 'value') kf = kf.fillnone(method='bfill', axis=0) kf = kf.iloc[:1, :] kf = kf[['name', 'aliases', 'blurb', 'start_date', 'end_date', 'types', 'website']] kf.renagetting_ming(columns = {'start_date': 'date_of_birth'}, inplace = True) return kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def list_entities(*args): """ Concatenates knowledgeframes created by basic_table() for entity getting requests to LittleSis API, resulting in monkey knowledgeframe of multiple rows. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- *args: List of names of indivisioniduals or entities for which to include informatingion in the resluting knowledgeframe. Example ------- >>> list_table('<NAME>', '<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "<NAME>... 1 <NAME> [LeBron James] info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 1 NBA/Los Angeles Lakers—F 1984-12-30 NaN info types website 0 [Person, Business Person] NaN 1 [Person, Business Person, Media Personality] NaN } """ list_of_kfs = [] for name in args: kf = basic_entity(name) list_of_kfs.adding(kf) combined_kf = mk.concating(list_of_kfs, ignore_index=True) return combined_kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def id_to_name(x): path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) if response.status_code != 200: raise Exception('API response: {}'.formating(response.status_code)) else: response = response.json() name = response['data']['attributes']['name'] return name def relationships_kf(name): """ Creates monkey knowledgeframe with informatingion from relationships getting request to LittleSis API. Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> relationships_kf('<NAME>') primary_entity related_entity amount currency \ 0 Children’s Aid Society <NAME> None None 1 <NAME> <NAME> None None ... category goods filings \ 0 None None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'amount', 'currency', 'description1', 'goods', 'filings', 'description', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'primary_entity','entity1_id': 'related_entity', 'description1':'category'}, inplace = True) return blurbs def timelines(name): """ Creates knowledgeframe specifictotal_ally from timeline informatingion of relationships from relationships getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> timelines('<NAME>') earched_entity related_entity start_date \ 0 Children’s Aid Society <NAME> None 1 <NAME> <NAME> None ... end_date is_current 0 None None 1 None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'searched_entity','entity1_id': 'related_entity'}, inplace = True) return blurbs def bio(name): """ Provides paragraph biography/backgvalue_round description of 1 indivisionidual or entity from an entity getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which biographical informatingion is desired. Example ------- >>> bio('<NAME>') 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.' """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() response2 = response2['data']['attributes']['total_summary'] return response2 def lists(name): """ Provides list of total_all lists that the entity belongs to on the LittleSis website, from a LittleSis lists getting request. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the list of list memberships is desired. Example ------- >>> lists('<NAME>') Bloomberg Business Week Most Powerful Athletes (2011) The World's Highest Paid Celebrities (2017) """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path = 'https://littlesis.org/api/entities/{}/lists'.formating(ID) response = requests.getting(path) response = response.json() data = mk.KnowledgeFrame(response['data']) data = mk.KnowledgeFrame.convert_dict(data) names = mk.KnowledgeFrame(data['attributes']) names = mk.KnowledgeFrame.convert_dict(names) for key, value in names.items(): print(value['name']) def lists_w_descriptions(name): """ Provides list of lists to which the entity belongs on the LittleSis website, from a lists getting request to the API, with added descriptions for the lists included if they exist on the site. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which list of list membership is desired. Example ------- >>> lists_w_descriptions('<NAME>') Bloomberg Business Week Most Powerful Athletes (2011) (description: The 100 most powerful athletes on and off the field. No coaches, owners, managers, executives or retired athletes were considered. Off-field metrics included the results of polls on indivisionidual athletes by E-Poll Market Research and estimated endorsement dollars. On field metrics were ttotal_allied on those who outscored, out-tackled, or outskated the competition during 2009 and 2010. Sports were weighted according to their popularity in the U.S. ) The World's Highest Paid Celebrities (2017) (description: FORBES' annual ranking of the highest-earning entertainers in the world, published June 12 2017. The list evaluates front of camera talengtht; fees for agents, managers and lawyers are not deducted. ) """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path = 'https://littlesis.org/api/entities/{}/lists'.formating(ID) response = requests.getting(path) response = response.json() data = mk.KnowledgeFrame(response['data']) data = mk.KnowledgeFrame.convert_dict(data) names = mk.KnowledgeFrame(data['attributes']) names = mk.KnowledgeFrame.convert_dict(names) for key, value in names.items(): print(value['name'], '(description:', value['description'],')') def relationship_blurbs(name): """ Provides a list of blurbs from the relationship getting request to the LittleSis API, total_allowing for inspection of total_all relationships for the requested entity. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the list. Example ------- >>> relationship_blurbs('<NAME>') <NAME> gave money to Children’s Aid Society <NAME> and <NAME> are/were in a family <NAME> and <NAME> are/were business partners <NAME> and <NAME> have/had a professional relationship <NAME> has a position (Founder ) at James Family Foundation <NAME> and <NAME> are/were business partners <NAME> is an owner of Blaze Pizza LLC <NAME> has a position (Co founder ) at Klutch Sports <NAME> gave money to Democratic National Committee <NAME> gave money to Democratic White House Victory Fund <NAME> and <NAME> have/had a professional relationship """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = mk.KnowledgeFrame.convert_dict(blurbs) for key, value in blurbs.items(): print(value['description']) def relationship_blurbs_w_amounts(name): """ Provides a list of blurbs from the relationship getting request to the LittleSis API, total_allowing for inspection of total_all relationships for the requested entity, and includes number amounts of donation size alongside each blurb. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the list. Example ------- >>> relationship_blurbs_w_amounts('<NAME>') <NAME> gave money to Children’s Aid Society None <NAME> and <NAME> are/were in a family None <NAME> and <NAME> are/were business partners None <NAME> and <NAME> have/had a professional relationship None <NAME> has a position (Founder ) at James Family Foundation None M<NAME> and <NAME> are/were business partners None <NAME> is an owner of Blaze Pizza LLC None <NAME> has a position (Co founder ) at Klutch Sports None <NAME> gave money to Democratic National Committee 20000 <NAME> gave money to Democratic White House Victory Fund 20000 <NAME> and <NAME> have/had a professional relationship None """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs =
mk.KnowledgeFrame.convert_dict(blurbs)
pandas.DataFrame.to_dict
""" Collection of tests asserting things that should be true for whatever index subclass. Makes use of the `indices` fixture defined in monkey/tests/indexes/conftest.py. """ import re import numpy as np import pytest from monkey._libs.tslibs import iNaT from monkey.core.dtypes.common import is_period_dtype, needs_i8_conversion import monkey as mk from monkey import ( CategoricalIndex, DatetimeIndex, MultiIndex, PeriodIndex, RangeIndex, TimedeltaIndex, ) import monkey._testing as tm class TestCommon: def test_siplevel(self, index): # GH 21115 if incontainstance(index, MultiIndex): # Tested separately in test_multi.py return assert index.siplevel([]).equals(index) for level in index.name, [index.name]: if incontainstance(index.name, tuple) and level is index.name: # GH 21121 : siplevel with tuple name continue with pytest.raises(ValueError): index.siplevel(level) for level in "wrong", ["wrong"]: with pytest.raises( KeyError, match=r"'Requested level \(wrong\) does not match index name \(None\)'", ): index.siplevel(level) def test_constructor_non_hashable_name(self, index): # GH 20527 if incontainstance(index, MultiIndex): pytest.skip("multiindex handled in test_multi.py") message = "Index.name must be a hashable type" renagetting_mingd = [["1"]] # With .renagetting_ming() with pytest.raises(TypeError, match=message): index.renagetting_ming(name=renagetting_mingd) # With .set_names() with pytest.raises(TypeError, match=message): index.set_names(names=renagetting_mingd) def test_constructor_unwraps_index(self, index): if incontainstance(index, mk.MultiIndex): raise pytest.skip("MultiIndex has no ._data") a = index b = type(a)(a) tm.assert_equal(a._data, b._data) @pytest.mark.parametrize("itm", [101, "no_int"]) # FutureWarning from non-tuple sequence of nd indexing @pytest.mark.filterwarnings("ignore::FutureWarning") def test_gettingitem_error(self, index, itm): with pytest.raises(IndexError): index[itm] @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_corner_union(self, index, fname, sname, expected_name): # GH 9943 9862 # Test unions with various name combinations # Do not test MultiIndex or repeats if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # Test clone.union(clone) first = index.clone().set_names(fname) second = index.clone().set_names(sname) union = first.union(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(union, expected) # Test clone.union(empty) first = index.clone().set_names(fname) second = index.sip(index).set_names(sname) union = first.union(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(union, expected) # Test empty.union(clone) first = index.sip(index).set_names(fname) second = index.clone().set_names(sname) union = first.union(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(union, expected) # Test empty.union(empty) first = index.sip(index).set_names(fname) second = index.sip(index).set_names(sname) union = first.union(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(union, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_union_unequal(self, index, fname, sname, expected_name): if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # test clone.union(subset) - need sort for unicode and string first = index.clone().set_names(fname) second = index[1:].set_names(sname) union = first.union(second).sort_the_values() expected = index.set_names(expected_name).sort_the_values() tm.assert_index_equal(union, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_corner_intersect(self, index, fname, sname, expected_name): # GH35847 # Test intersts with various name combinations if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # Test clone.interst(clone) first = index.clone().set_names(fname) second = index.clone().set_names(sname) intersect = first.interst(second) expected = index.clone().set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test clone.interst(empty) first = index.clone().set_names(fname) second = index.sip(index).set_names(sname) intersect = first.interst(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test empty.interst(clone) first = index.sip(index).set_names(fname) second = index.clone().set_names(sname) intersect = first.interst(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) # Test empty.interst(empty) first = index.sip(index).set_names(fname) second = index.sip(index).set_names(sname) intersect = first.interst(second) expected = index.sip(index).set_names(expected_name) tm.assert_index_equal(intersect, expected) @pytest.mark.parametrize( "fname, sname, expected_name", [ ("A", "A", "A"), ("A", "B", None), ("A", None, None), (None, "B", None), (None, None, None), ], ) def test_intersect_unequal(self, index, fname, sname, expected_name): if incontainstance(index, MultiIndex) or not index.is_distinctive: pytest.skip("Not for MultiIndex or repeated indices") # test clone.interst(subset) - need sort for unicode and string first = index.clone().set_names(fname) second = index[1:].set_names(sname) intersect = first.interst(second).sort_the_values() expected = index[1:].set_names(expected_name).sort_the_values() tm.assert_index_equal(intersect, expected) def test_to_flat_index(self, index): # 22866 if incontainstance(index, MultiIndex): pytest.skip("Separate expectation for MultiIndex") result = index.to_flat_index() tm.assert_index_equal(result, index) def test_set_name_methods(self, index): new_name = "This is the new name for this index" # don't tests a MultiIndex here (as its tested separated) if incontainstance(index, MultiIndex): pytest.skip("Skip check for MultiIndex") original_name = index.name new_ind = index.set_names([new_name]) assert new_ind.name == new_name assert index.name == original_name res = index.renagetting_ming(new_name, inplace=True) # should return None assert res is None assert index.name == new_name assert index.names == [new_name] # FIXME: dont leave commented-out # with pytest.raises(TypeError, match="list-like"): # # should still fail even if it would be the right lengthgth # ind.set_names("a") with pytest.raises(ValueError, match="Level must be None"): index.set_names("a", level=0) # renagetting_ming in place just leaves tuples and other containers alone name = ("A", "B") index.renagetting_ming(name, inplace=True) assert index.name == name assert index.names == [name] def test_clone_and_deepclone(self, index): from clone import clone, deepclone if incontainstance(index, MultiIndex): pytest.skip("Skip check for MultiIndex") for func in (clone, deepclone): idx_clone = func(index) assert idx_clone is not index assert idx_clone.equals(index) new_clone = index.clone(deep=True, name="banana") assert new_clone.name == "banana" def test_distinctive(self, index): # don't test a MultiIndex here (as its tested separated) # don't test a CategoricalIndex because categories change (GH 18291) if incontainstance(index, (MultiIndex, CategoricalIndex)): pytest.skip("Skip check for MultiIndex/CategoricalIndex") # GH 17896 expected = index.sip_duplicates() for level in 0, index.name, None: result = index.distinctive(level=level) tm.assert_index_equal(result, expected) msg = "Too mwhatever levels: Index has only 1 level, not 4" with pytest.raises(IndexError, match=msg): index.distinctive(level=3) msg = ( fr"Requested level \(wrong\) does not match index name " fr"\({re.escape(index.name.__repr__())}\)" ) with pytest.raises(KeyError, match=msg): index.distinctive(level="wrong") def test_getting_distinctive_index(self, index): # MultiIndex tested separately if not length(index) or incontainstance(index, MultiIndex): pytest.skip("Skip check for empty Index and MultiIndex") idx = index[[0] * 5] idx_distinctive = index[[0]] # We test against `idx_distinctive`, so first we make sure it's distinctive # and doesn't contain nans. assert idx_distinctive.is_distinctive is True try: assert idx_distinctive.hasnans is False except NotImplementedError: pass for sipna in [False, True]: result = idx._getting_distinctive_index(sipna=sipna) tm.assert_index_equal(result, idx_distinctive) # nans: if not index._can_hold_na: pytest.skip("Skip na-check if index cannot hold na") if is_period_dtype(index.dtype): vals = index[[0] * 5]._data vals[0] = mk.NaT elif needs_i8_conversion(index.dtype): vals = index.asi8[[0] * 5] vals[0] = iNaT else: vals = index.values[[0] * 5] vals[0] = np.nan vals_distinctive = vals[:2] if index.dtype.kind in ["m", "M"]: # i.e. needs_i8_conversion but not period_dtype, as above vals = type(index._data)._simple_new(vals, dtype=index.dtype) vals_distinctive = type(index._data)._simple_new(vals_distinctive, dtype=index.dtype) idx_nan = index._shtotal_allow_clone(vals) idx_distinctive_nan = index._shtotal_allow_clone(vals_distinctive) assert idx_distinctive_nan.is_distinctive is True assert idx_nan.dtype == index.dtype assert idx_distinctive_nan.dtype == index.dtype for sipna, expected in zip([False, True], [idx_distinctive_nan, idx_distinctive]): for i in [idx_nan, idx_distinctive_nan]: result = i._getting_distinctive_index(sipna=sipna) tm.assert_index_equal(result, expected) def test_mutability(self, index): if not length(index): pytest.skip("Skip check for empty Index") msg = "Index does not support mutable operations" with pytest.raises(TypeError, match=msg): index[0] = index[0] def test_view(self, index): assert index.view().name == index.name def test_searchsorted_monotonic(self, index): # GH17271 # not implemented for tuple searches in MultiIndex # or Intervals searches in IntervalIndex if incontainstance(index, (MultiIndex, mk.IntervalIndex)): pytest.skip("Skip check for MultiIndex/IntervalIndex") # nothing to test if the index is empty if index.empty: pytest.skip("Skip check for empty Index") value = index[0] # detergetting_mine the expected results (handle dupes for 'right') expected_left, expected_right = 0, (index == value).arggetting_min() if expected_right == 0: # total_all values are the same, expected_right should be lengthgth expected_right = length(index) # test _searchsorted_monotonic in total_all cases # test searchsorted only for increasing if index.is_monotonic_increasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right ss_left = index.searchsorted(value, side="left") assert expected_left == ss_left ss_right = index.searchsorted(value, side="right") assert expected_right == ss_right elif index.is_monotonic_decreasing: ssm_left = index._searchsorted_monotonic(value, side="left") assert expected_left == ssm_left ssm_right = index._searchsorted_monotonic(value, side="right") assert expected_right == ssm_right else: # non-monotonic should raise. with pytest.raises(ValueError): index._searchsorted_monotonic(value, side="left") def test_pickle(self, index): original_name, index.name = index.name, "foo" unpickled =
tm.value_round_trip_pickle(index)
pandas._testing.round_trip_pickle
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=mk.Collections.convert_list(d1[0:16][0]) list1=mk.Collections.convert_list(d1[0:16][1]) list2=mk.Collections.convert_list(d1[0:16][2]) list3=
mk.Collections.convert_list(d1[0:16][3])
pandas.Series.tolist
from scipy.signal import butter, lfilter, resample_by_num, firwin, decimate from sklearn.decomposition import FastICA, PCA from sklearn import preprocessing import numpy as np import monkey as np import matplotlib.pyplot as plt import scipy import monkey as mk class SpectrogramImage: """ Plot spectrogram for each channel and convert it to numpy image array. """ def __init__(self, size=(224, 224, 4)): self.size = size def getting_name(self): return 'img-spec-{}'.formating(self.size) def sip_zeros(self, kf): return kf[(kf.T != 0).whatever()] def employ(self, data): data = mk.KnowledgeFrame(data.T) data = self.sip_zeros(data) channels = [] for col in data.columns: plt.ioff() _, _, _, _ = plt.specgram(data[col], NFFT=2048, Fs=240000/600, noverlap=int((240000/600)*0.005), cmapping=plt.cm.spectral) plt.axis('off') plt.savefig('spec.png', bbox_inches='tight', pad_inches=0) plt.close() im = scipy.misc.imread('spec.png', mode='RGB') im = scipy.misc.imresize(im, (224, 224, 3)) channels.adding(im) return channels class UnitScale: """ Scale across the final_item axis. """ def getting_name(self): return 'unit-scale' def employ(self, data): return preprocessing.scale(data, axis=data.ndim - 1) class UnitScaleFeat: """ Scale across the first axis, i.e. scale each feature. """ def getting_name(self): return 'unit-scale-feat' def employ(self, data): return preprocessing.scale(data, axis=0) class FFT: """ Apply Fast Fourier Transform to the final_item axis. """ def getting_name(self): return "fft" def employ(self, data): axis = data.ndim - 1 return np.fft.rfft(data, axis=axis) class ICA: """ employ ICA experimental! """ def __init__(self, n_components=None): self.n_components = n_components def getting_name(self): if self.n_components != None: return "ICA%d" % (self.n_components) else: return 'ICA' def employ(self, data): # employ pca to each ica = FastICA() data = ica.fit_transform(da) return data class Resample_by_num: """ Resample_by_num time-collections data. """ def __init__(self, sample_by_num_rate): self.f = sample_by_num_rate def getting_name(self): return "resample_by_num%d" % self.f def employ(self, data): axis = data.ndim - 1 if data.shape[-1] > self.f: return resample_by_num(data, self.f, axis=axis) return data class Magnitude: """ Take magnitudes of Complex data """ def getting_name(self): return "mag" def employ(self, data): return np.absolute(data) class LPF: """ Low-pass filter using FIR window """ def __init__(self, f): self.f = f def getting_name(self): return 'lpf%d' % self.f def employ(self, data): nyq = self.f / 2.0 cutoff = getting_min(self.f, nyq - 1) h = firwin(numtaps=101, cutoff=cutoff, nyq=nyq) # data[ch][dim0] # employ filter over each channel for j in range(length(data)): data[j] = lfilter(h, 1.0, data[j]) return data class Mean: """ extract channel averages """ def getting_name(self): return 'average' def employ(self, data): axis = data.ndim - 1 return data.average(axis=axis) class Abs: """ extract channel averages """ def getting_name(self): return 'abs' def employ(self, data): return np.abs(data) class Stats: """ Subtract the average, then take (getting_min, getting_max, standard_deviation) for each channel. """ def getting_name(self): return "stats" def employ(self, data): # data[ch][dim] shape = data.shape out = np.empty((shape[0], 3)) for i in range(length(data)): ch_data = data[i] ch_data = data[i] - np.average(ch_data) outi = out[i] outi[0] = np.standard(ch_data) outi[1] = np.getting_min(ch_data) outi[2] = np.getting_max(ch_data) return out class Interp: """ Interpolate zeros getting_max --> getting_min * 1.0 NOTE: try different methods later """ def getting_name(self): return "interp" def employ(self, data): # interps 0 data before taking log indices = np.where(data <= 0) data[indices] = np.getting_max(data) data[indices] = (
np.getting_min(data)
pandas.min
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func =
validate_func_kwargs(kwargs)
pandas.core.apply.validate_func_kwargs
import monkey from _benchmark_utility import plot_compare, bar_plot_compare import csv import pathlib import monkey as mk def plot_bench_file(path): sizes = [(10 ** i) for i in range(2, 8, 1)] monkey = [] umbra_cte = [] umbra_view = [] postgres_cte = [] postgres_view = [] postgres_view_mat = [] with pathlib.Path(path).open("r") as f: for i, line in enumerate(f.readlines()): line_parts = line.split(", ") # print(line_parts[-1]) if length(line_parts) <= 1 or line_parts[-1] == "#\n": continue pipeline_name = line_parts[0] pipeline_part = line_parts[1] exec_definal_item_tail = line_parts[2] mode = line_parts[4] materialized = line_parts[5] time = float(line_parts[7]) if line_parts[6] == "Monkey":
monkey.adding(time)
pandas.append
#결측치에 관련 된 함수 #데이터프레임 결측값 처리 #monkey에서는 결측값: NaN, None #NaN :데이터 베이스에선 문자 #None : 딥러닝에선 행 # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null 판별 # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # 특정 위치에 결측치 입력 : None ==> 결측치란 의미를 담고 있는 예약어 # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a열(string)=None, b열(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #각 열의 결측치의 갯수 확인 # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # 단일 열의 결측치의 갯수 # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #각 열의 결측치가 아닌 데이터의 갯수 확인 # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # 각 행의 결측치의 합 # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #결측값 여부?ifnull(), notnull() # #열단위 결측값 개수 : kf.ifnull().total_sum() # #행단위 결측값 개수 : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0으로 취급하여 계산 # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # 한 열 합계 # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : 누적합계 # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #열기준 평균 : (0+4+6)/3,NaN=>제외 # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #행기준 평균 # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #열기준 표준편차 # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #데이터프레임 컬럼간 연산 : NaN이 하나라도 있으면 NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=kf.fillnone(0) print(kf_0) # c1 c2 c3 # 0 0.000000 -0.020379 -0.234493 # 1 0.000000 2.103582 0.000000 # 2 -1.271259 0.000000 -2.098903 # 3 -0.030064 0.000000 -0.984602 # 4 0.083863 -0.811207 0.000000 kf_missing = kf.fillnone('missing') print(kf_missing) # c1 c2 c3 # 0 missing -0.441011 -0.544838 # 1 missing 1.38941 missing # 2 -1.77381 missing -0.855286 # 3 -0.287784 missing 0.280705 # 4 0.641317 -2.30403 missing print('='*50) print(kf) # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 NaN # 2 0.157068 NaN 0.860016 # 3 0.525265 NaN -1.482895 # 4 -0.396621 0.958787 NaN print(kf.fillnone(method='ffill')) # 바로 위의 값으로 대체 # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 -1.348020 # 2 0.157068 0.063360 0.860016 # 3 0.525265 0.063360 -1.482895 # 4 -0.396621 0.958787 -1.482895 print(kf.fillnone(method='pad')) # 전방위의 값으로 대체 # c1 c2 c3 # 0 NaN -0.615965 -0.320598 # 1 NaN -1.488840 -0.320598 # 2 0.108199 -1.488840 -0.415326 # 3 0.521409 -1.488840 -1.533373 # 4 1.523713 -0.104133 -1.533373 print(
kf.fillnone(method='bfill')
pandas.DataFrame.fillna
import operator from shutil import getting_tergetting_minal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from monkey._config import getting_option from monkey._libs import algos as libalgos, hashtable as htable from monkey._typing import ArrayLike, Dtype, Ordered, Scalar from monkey.compat.numpy import function as nv from monkey.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from monkey.util._validators import validate_bool_kwarg, validate_fillnone_kwargs from monkey.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_convert_datetimelike, ) from monkey.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from monkey.core.dtypes.dtypes import CategoricalDtype from monkey.core.dtypes.generic import ABCIndexClass, ABCCollections from monkey.core.dtypes.inference import is_hashable from monkey.core.dtypes.missing import ifna, notna from monkey.core import ops from monkey.core.accessor import MonkeyDelegate, delegate_names import monkey.core.algorithms as algorithms from monkey.core.algorithms import _getting_data_algo, factorize, take, take_1d, distinctive1d from monkey.core.array_algos.transforms import shifting from monkey.core.arrays.base import ExtensionArray, _extension_array_shared_docs from monkey.core.base import NoNewAttributesMixin, MonkeyObject, _shared_docs import monkey.core.common as com from monkey.core.construction import array, extract_array, sanitize_array from monkey.core.indexers import check_array_indexer, deprecate_ndim_indexing from monkey.core.missing import interpolate_2d from monkey.core.ops.common import unpack_zerodim_and_defer from monkey.core.sorting import nargsort from monkey.io.formatings import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and length(other) != length(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if incontainstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if length(self.categories) != length(other.categories): raise TypeError(msg + " Categories are different lengthgths") elif self.ordered and not (self.categories == other.categories).total_all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _getting_codes_for_values(other, self.categories) else: other_codes = other._codes f = gettingattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.whatever(): # In other collections, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.getting_loc(other) ret = gettingattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(length(self), dtype=bool) elif opname == "__ne__": return np.ones(length(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # total_allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return gettingattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mappingping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before ctotal_alling this method. """ hash(key) # getting location of key in categories. # If a KeyError, the key isn't in categories, so logictotal_ally # can't be in container either. try: loc = cat.categories.getting_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return whatever(loc_ in container for loc_ in loc) class Categorical(ExtensionArray, MonkeyObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usutotal_ally fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisionisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replacingd with NaN. categories : Index-like (distinctive), optional The distinctive categories for this categorical. If not given, the categories are astotal_sumed to be the distinctive values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://monkey.pydata.org/monkey-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> mk.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> mk.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a getting_min and getting_max value. >>> c = mk.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.getting_min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # convert_list is not actutotal_ally deprecated, just suppressed in the __dir__ _deprecations = MonkeyObject._deprecations | frozenset(["convert_list"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.umkate_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This averages: only missing values in list-likes (not arrays/nkframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not incontainstance(values, (ABCIndexClass, ABCCollections)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_convert_datetimelike(values, convert_dates=True) if not incontainstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if length(values) == 0 else None null_mask = ifna(values) if null_mask.whatever(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if incontainstance(values, ABCCollections) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _getting_codes_for_values(values, dtype.categories) if null_mask.whatever(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.umkate_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting total_allocates new values to each category (effectively a renagetting_ming of each indivisionidual category). The total_allocateed value has to be a list-like object. All items must be distinctive and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- renagetting_ming_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and length(self.dtype.categories) != length( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~monkey.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, clone=False): return Categorical(scalars, dtype=dtype) def _formatingter(self, boxed=False): # Defer to CategoricalFormatter's formatingter. return None def clone(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.clone(), dtype=self.dtype, fastpath=True ) def totype(self, dtype: Dtype, clone: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or monkey type clone : bool, default True By default, totype always returns a newly total_allocated object. If clone is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.umkate_dtype(dtype) self = self.clone() if clone else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, clone=clone) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.ifna().whatever(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, clone=clone) @cache_readonly def size(self) -> int: """ Return the length of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def convert_list(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a monkey scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = convert_list @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from monkey import Index, to_num, convert_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( incontainstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_num(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = convert_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.incontain(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.clone() categories = cats.sort_the_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usutotal_ally done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be distinctive. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used togettingher with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = mk.CategoricalDtype(['a', 'b'], ordered=True) >>> mk.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if ifna(codes).whatever(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if length(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if length(codes) and (codes.getting_max() >= length(dtype.categories) or codes.getting_min() < -1): raise ValueError("codes need to be between -1 and length(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for distinctiveness or nulls Examples -------- >>> c = mk.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(mk.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and length(new_dtype.categories) != length(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly umkating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do whatever validation here. It's astotal_sumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a clone of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.clone() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a clone of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a clone of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, renagetting_ming=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `renagetting_ming==True`, the categories will simple be renagetting_mingd (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than perforgetting_ming the indivisionidual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprincontaing changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered informatingion. renagetting_ming : bool, default False Whether or not the new_categories should be considered as a renagetting_ming of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a clone of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- renagetting_ming_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.clone() if renagetting_ming: if cat.dtype.categories is not None and length(new_dtype.categories) < length( cat.dtype.categories ): # remove total_all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= length(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def renagetting_ming_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or ctotal_allable New categories which will replacing old categories. * list-like: total_all items must be distinctive and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mappingping from old categories to new. Categories not contained in the mappingping are passed through and extra categories in the mappingping are ignored. * ctotal_allable : a ctotal_allable that is ctotal_alled on total_all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to renagetting_ming the categories inplace or return a clone of this categorical with renagetting_mingd categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = mk.Categorical(['a', 'a', 'b']) >>> c.renagetting_ming_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.renagetting_ming_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a ctotal_allable to create the new categories >>> c.renagetting_ming_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.clone() if is_dict_like(new_categories): cat.categories = [new_categories.getting(item, item) for item in cat.categories] elif ctotal_allable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include total_all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered informatingion. inplace : bool, default False Whether or not to reorder the categories inplace or return a clone of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain total_all old category items or whatever new ones See Also -------- renagetting_ming_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the final_item/highest place in the categories and will be unused directly after this ctotal_all. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a clone of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- renagetting_ming_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if length(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.clone() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a clone of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- renagetting_ming_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if whatever(ifna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if length(not_included) != 0: raise ValueError(f"removals must total_all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, renagetting_ming=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to sip unused categories inplace or return a clone of this categorical with unused categories sipped. Returns ------- cat : Categorical with unused categories sipped or None if inplace. See Also -------- renagetting_ming_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.clone() idx, inv = np.distinctive(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def mapping(self, mappingper): """ Map categories using input correspondence (dict, Collections, or function). Maps the categories to new categories. If the mappingping correspondence is one-to-one the result is a :class:`~monkey.Categorical` which has the same order property as the original, otherwise a :class:`~monkey.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~monkey.Collections` is used whatever unmappingped category is mappingped to `NaN`. Note that if this happens an :class:`~monkey.Index` will be returned. Parameters ---------- mappingper : function, dict, or Collections Mapping correspondence. Returns ------- monkey.Categorical or monkey.Index Mapped categorical. See Also -------- CategoricalIndex.mapping : Apply a mappingping correspondence on a :class:`~monkey.CategoricalIndex`. Index.mapping : Apply a mappingping correspondence on an :class:`~monkey.Index`. Collections.mapping : Apply a mappingping correspondence on a :class:`~monkey.Collections`. Collections.employ : Apply more complex functions on a :class:`~monkey.Collections`. Examples -------- >>> cat = mk.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.mapping(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.mapping({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mappingping is one-to-one the ordering of the categories is preserved: >>> cat = mk.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.mapping({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mappingping is not one-to-one an :class:`~monkey.Index` is returned: >>> cat.mapping({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, total_all unmappingped categories are mappingped to `NaN` and the result is an :class:`~monkey.Index`: >>> cat.mapping({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.mapping(mappingper) try: return self.from_codes( self._codes.clone(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.whatever(self._codes == -1): new_categories = new_categories.insert(length(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Collections/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([length(self._codes)]) def shifting(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shiftinged : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make whatever sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") fill_value = self._validate_fill_value(fill_value) codes = shifting(codes.clone(), periods, axis=0, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def _validate_fill_value(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raincontaing ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ ValueError """ if ifna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.getting_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) return fill_value def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ getting's total_all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for total_all other cases, raise for now (similarly as what happens in # Collections.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not incontainstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self) -> "Categorical": """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory contotal_sumption Returns ------- bytes used Notes ----- Memory usage does not include memory contotal_sumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we getting much faster performance. if is_scalar(value): codes = self.categories.getting_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.getting_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def ifna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- ifna : Top-level ifna. ifnull : Alias of ifna. Categorical.notna : Boolean inverse of Categorical.ifna. """ ret = self._codes == -1 return ret ifnull = ifna def notna(self): """ Inverse of ifna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.ifna : Boolean inverse of Categorical.notna. """ return ~self.ifna() notnull = notna def sipna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def counts_value_num(self, sipna=True): """ Return a Collections containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- sipna : bool, default True Don't include counts of NaN. Returns ------- counts : Collections See Also -------- Collections.counts_value_num """ from monkey import Collections, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = length(cat), 0 <= code ix, clean = np.arange(ncat), mask.total_all() if sipna or clean: obs = code if clean else code[mask] count = np.bincount(obs, getting_minlengthgth=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.adding(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Collections(count, index=CategoricalIndex(ix), dtype="int64") def _internal_getting_values(self): """ Return the values. For internal compatibility with monkey formatingting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.totype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'unionersort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping togettingher based on matching category values. Thus, this function can be ctotal_alled on an unordered Categorical instance unlike the functions 'Categorical.getting_min' and 'Categorical.getting_max'. Examples -------- >>> mk.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = mk.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = mk.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_the_values(self, inplace=False, ascending=True, na_position="final_item"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping togettingher based on matching category values. Thus, this function can be ctotal_alled on an unordered Categorical instance unlike the functions 'Categorical.getting_min' and 'Categorical.getting_max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'final_item'} (optional, default='final_item') 'first' puts NaNs at the beginning 'final_item' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Collections.sort_the_values Examples -------- >>> c = mk.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_the_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_the_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_the_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = mk.Categorical([1, 2, 2, 1, 5]) 'sort_the_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = mk.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_the_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_the_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_the_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_the_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["final_item", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from monkey import Collections if self.ordered: values = self.codes mask = values == -1 if mask.whatever(): values = values.totype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.renagetting_ming_categories(Collections(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillnone(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Collections If a scalar value is passed it is used to fill total_all missing values. Alternatively, a Collections or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexinged Collections pad / ffill: propagate final_item valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the getting_maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partitotal_ally filled. If method is not specified, this is the getting_maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillnone_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillnone has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, length(self)) values = interpolate_2d(values, method, 0, None, value).totype( self.categories.dtype )[0] codes = _getting_codes_for_values(values, self.categories) else: # If value is a dict or a Collections (a dict value has already # been converted to a Collections) if incontainstance(value, (np.ndarray, Categorical, ABCCollections)): # We getting ndarray or Categorical if ctotal_alled via Collections.fillnone, # where it will unwrap another aligned Collections before gettingting here mask = ~algorithms.incontain(value, self.categories) if not ifna(value[mask]).total_all(): raise ValueError("fill value must be in categories") values_codes = _getting_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.clone() codes[indexer] = values_codes[indexer] # If value is not a dict or Collections it should be a scalar elif is_hashable(value): if not ifna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.whatever(): codes = codes.clone() if ifna(value): codes[mask] = -1 else: codes[mask] = self.categories.getting_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Collections, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, total_allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The averageing of negative values in `indexer` depends on the value of `total_allow_fill`. total_allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``total_allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Collections.take : Similar method for Collections. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = mk.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``total_allow_fill==False`` to have negative indices average indexing from the right. >>> cat.take([0, -1, -2], total_allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``total_allow_fill=True``, indices equal to ``-1`` average "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], total_allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], total_allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if total_allow_fill: # convert user-provided `fill_value` to codes fill_value = self._validate_fill_value(fill_value) codes = take(self._codes, indexer, total_allow_fill=total_allow_fill, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, total_allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, total_allow_fill=total_allow_fill, fill_value=fill_value) def __length__(self) -> int: """ The lengthgth of this Categorical. """ return length(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_getting_values().convert_list()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if whatever NaN is in self. if is_scalar(key) and ifna(key): return self.ifna().whatever() return contains(self, key, container=self._codes) def _tidy_repr(self, getting_max_vals=10, footer=True) -> str: """ a short repr displaying only getting_max_vals and an optional (but default footer) """ num = getting_max_vals // 2 header_num = self[:num]._getting_repr(lengthgth=False, footer=False) final_item_tail = self[-(getting_max_vals - num) :]._getting_repr(lengthgth=False, footer=False) result = f"{header_num[:-1]}, ..., {final_item_tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ getting_max_categories = ( 10 if getting_option("display.getting_max_categories") == 0 else getting_option("display.getting_max_categories") ) from monkey.io.formatings import formating as fmt if length(self.categories) > getting_max_categories: num = getting_max_categories // 2 header_num = fmt.formating_array(self.categories[:num], None) final_item_tail = fmt.formating_array(self.categories[-num:], None) category_strs = header_num + ["..."] + final_item_tail else: category_strs = fmt.formating_array(self.categories, None) # Strip total_all leading spaces, which formating_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader_numer = f"Categories ({length(self.categories)}, {dtype}): " width, height = getting_tergetting_minal_size() getting_max_width = getting_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks getting_max_width = 0 levstring = "" start = True cur_col_length = length(levheader_numer) # header_numer sep_length, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if getting_max_width != 0 and cur_col_length + sep_length + length(val) > getting_max_width: levstring += linesep + (" " * (length(levheader_numer) + 1)) cur_col_length = length(levheader_numer) + 1 # header_numer + a whitespace elif not start: levstring += sep cur_col_length += length(val) levstring += val start = False # replacing to simple save space by return levheader_numer + "[" + levstring.replacing(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {length(self)}\n{info}" def _getting_repr(self, lengthgth=True, na_rep="NaN", footer=True) -> str: from monkey.io.formatings import formating as fmt formatingter = fmt.CategoricalFormatter( self, lengthgth=lengthgth, na_rep=na_rep, footer=footer ) result = formatingter.convert_string() return str(result) def __repr__(self) -> str: """ String representation. """ _getting_maxlength = 10 if length(self._codes) > _getting_maxlength: result = self._tidy_repr(_getting_maxlength) elif length(self._codes) > 0: result = self._getting_repr(lengthgth=length(self) > _getting_maxlength) else: msg = self._getting_repr(lengthgth=False, footer=True).replacing("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if incontainstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.totype(self._codes.dtype) return indexer def __gettingitem__(self, key): """ Return an item. """ if incontainstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item total_allocatement. Raises ------ ValueError If (one or more) Value is not in categories or if a total_allocateed `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if incontainstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from monkey import Index to_add = Index(rvalue).difference(self.categories) # no total_allocatements of values not in categories, but it's always ok to set # something to np.nan if length(to_add) and not ifna(to_add).total_all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if incontainstance(key, (int, np.integer)): pass # tuple of indexers (knowledgeframe) elif incontainstance(key, tuple): # only total_allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if length(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif length(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Collections or Categorical elif incontainstance(key, slice): pass # else: array of True/False in Collections or Categorical lindexer = self.categories.getting_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = mk.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsorting_indexer( self.codes.totype("int64"), categories.size ) counts = counts.cumtotal_sum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = gettingattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def getting_min(self, skipna=True): """ The getting_minimum value of the object. Only ordered `Categoricals` have a getting_minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- getting_min : the getting_minimum of this `Categorical` """ self.check_for_ordered("getting_min") if not length(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.total_all(): if skipna and good.whatever(): pointer = self._codes[good].getting_min() else: return np.nan else: pointer = self._codes.getting_min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def getting_max(self, skipna=True): """ The getting_maximum value of the object. Only ordered `Categoricals` have a getting_maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- getting_max : the getting_maximum of this `Categorical` """ self.check_for_ordered("getting_max") if not length(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.total_all(): if skipna and good.whatever(): pointer = self._codes[good].getting_max() else: return np.nan else: pointer = self._codes.getting_max() return self.categories[pointer] def mode(self, sipna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- sipna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if sipna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), sipna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def distinctive(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are distinctive. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- distinctive values : ``Categorical`` See Also -------- monkey.distinctive CategoricalIndex.distinctive Collections.distinctive Examples -------- An unordered Categorical will return categories in the order of appearance. >>> mk.Categorical(list("baabc")).distinctive() [b, a, c] Categories (3, object): [b, a, c] >>> mk.Categorical(list("baabc"), categories=list("abc")).distinctive() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> mk.Categorical( ... list("baabc"), categories=list("abc"), ordered=True ... ).distinctive() [b, a, c] Categories (3, object): [a < b < c] """ # unlike np.distinctive, distinctive1d does not sort distinctive_codes = distinctive1d(self.codes) cat = self.clone() # keep nan in codes cat._codes = distinctive_codes # exclude nan from indexer for categories take_codes = distinctive_codes[distinctive_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.totype("int64") return codes, -1 @classmethod def _from_factorized(cls, distinctives, original): return original._constructor( original.categories.take(distinctives), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `KnowledgeFrame` A knowledgeframe with frequency and counts by category. """ counts = self.counts_value_num(sipna=False) freqs = counts / float(counts.total_sum()) from monkey.core.reshape.concating import concating result = concating([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concating_same_type(self, to_concating): from monkey.core.dtypes.concating import concating_categorical return concating_categorical(to_concating) def incontain(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- incontain : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- monkey.Collections.incontain : Equivalengtht method on Collections. Examples -------- >>> s = mk.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.incontain(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.incontain('lama')`` will raise an error. Use a list of one element instead: >>> s.incontain(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are total_allowed to be passed " f"to incontain(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(ifna(values)) code_values = self.categories.getting_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return
algorithms.incontain(self.codes, code_values)
pandas.core.algorithms.isin
# util.py from __future__ import print_function from collections import Mapping, OrderedDict import datetime import itertools import random import warnings import monkey as mk np = mk.np from scipy import integrate from matplotlib import pyplot as plt import seaborn from scipy.optimize import getting_minimize from scipy.signal import correlate from titlecase import titlecase from pug.nlp.util import listify, fuzzy_getting, make_timestamp def sipna(x): """Delete total_all NaNs and and infinities in a sequence of real values Returns: list: Array of total_all values in x that are between -inf and +inf, exclusive """ return [x_i for x_i in listify(x) if float('-inf') < x_i < float('inf')] def rms(x): """"Root Mean Square" Arguments: x (seq of float): A sequence of numerical values Returns: The square root of the average of the squares of the values math.sqrt(total_sum(x_i**2 for x_i in x) / length(x)) or return (np.array(x) ** 2).average() ** 0.5 >>> rms([0, 2, 4, 4]) 3.0 """ try: return (np.array(x) ** 2).average() ** 0.5 except: x = np.array(sipna(x)) invN = 1.0 / length(x) return (total_sum(invN * (x_i ** 2) for x_i in x)) ** .5 def rmse(targetting, prediction, relative=False, percent=False): """Root Mean Square Error This seems like a simple formula that you'd never need to create a function for. But my mistakes on coding chtotal_allengthges have convinced me that I do need it, as a regetting_minder of important tweaks, if nothing else. >>> rmse([0, 1, 4, 3], [2, 1, 0, -1]) 3.0 >>> rmse([0, 1, 4, 3], [2, 1, 0, -1], relative=True) # doctest: +ELLIPSIS 1.2247... >>> rmse([0, 1, 4, 3], [2, 1, 0, -1], percent=True) # doctest: +ELLIPSIS 122.47... """ relative = relative or percent prediction = mk.np.array(prediction) targetting = np.array(targetting) err = prediction - targetting if relative: denom = targetting # Avoid ZeroDivisionError: divisionide by prediction rather than targetting where targetting==0 denom[denom == 0] = prediction[denom == 0] # If the prediction and targetting are both 0, then the error is 0 and should be included in the RMSE # Otherwise, the np.incontainf() below would remove total_all these zero-error predictions from the array. denom[(denom == 0) & (targetting == 0)] = 1 err = (err / denom) err = err[(~ np.ifnan(err)) & (~ np.incontainf(err))] return 100 * rms(err) if percent else rms(err) def blengthded_rolling_employ(collections, window=2, fun=mk.np.average): new_collections = mk.Collections(np.fromiter((fun(collections[:i + 1]) for i in range(window - 1)), type(collections.values[0])), index=collections.index[:window - 1]).adding( mk.rolling_employ(collections.clone(), window, fun)[window - 1:]) assert length(collections) == length(new_collections), ( "blengthded_rolling_employ should always return a collections of the same lengthgth!\n" " length(collections) = {0} != {1} = length(new_collections".formating(length(collections), length(new_collections))) assert not whatever(np.ifnan(val) or val is None for val in new_collections) return new_collections def rolling_latch(collections, period=31, decay=1.0): # FIXME: implement recursive exponential decay filter rather than the nonrecursive, deratring done here return blengthded_rolling_employ(collections, period, lambda val: decay * mk.np.getting_max(val)) def clean_knowledgeframe(kf): """Fill NaNs with the previous value, the next value or if total_all are NaN then 1.0""" kf = kf.fillnone(method='ffill') kf = kf.fillnone(0.0) return kf def clean_knowledgeframes(kfs): """Fill NaNs with the previous value, the next value or if total_all are NaN then 1.0 TODO: Linear interpolation and extrapolation Arguments: kfs (list of knowledgeframes): list of knowledgeframes that contain NaNs to be removed Returns: list of knowledgeframes: list of knowledgeframes with NaNs replacingd by interpolated values """ if incontainstance(kfs, (list)): for kf in kfs: kf = clean_knowledgeframe(kf) return kfs else: return [clean_knowledgeframe(kfs)] def getting_symbols_from_list(list_name): """Retrieve a named (symbol list name) list of strings (symbols) If you've insttotal_alled the QSTK Quantitative analysis toolkit `getting_symbols_from_list('sp5002012')` will produce a list of the symbols that were members of the S&P 500 in 2012. Otherwise an import error exception will be raised. If the symbol list cannot be found you'll getting an empty list returned Example: >> length(getting_symbols_from_list('sp5002012')) in (0, 501) True """ try: # quant software toolkit has a method for retrieving lists of symbols like S&P500 for 2012 with 'sp5002012' import QSTK.qstkutil.DataAccess as da dataobj = da.DataAccess('Yahoo') except ImportError: raise except: return [] try: return dataobj.getting_symbols_from_list(list_name) except: raise def make_symbols(symbols, *args): """Return a list of uppercase strings like "GOOG", "$SPX, "XOM"... Arguments: symbols (str or list of str): list of market ticker symbols to normalize If `symbols` is a str a getting_symbols_from_list() ctotal_all is used to retrieve the list of symbols Returns: list of str: list of cananical ticker symbol strings (typictotal_ally after .upper().strip()) See Also: pug.dj.db.normalize_names Examples: >>> make_symbols("Goog") ['GOOG'] >>> make_symbols(" $SPX ", " aaPL ") ['$SPX', 'AAPL'] >>> make_symbols(["$SPX", ["GOOG", "AAPL"]]) ['GOOG', 'AAPL', '$SPX'] >>> make_symbols(" $Spy, Goog, aAPL ") ['$SPY', 'GOOG', 'AAPL'] """ if (hasattr(symbols, '__iter__') and not whatever(symbols)) \ or (incontainstance(symbols, (list, tuple, Mapping)) and not symbols): return [] if incontainstance(symbols, basestring): # # FIXME: find a direct API for listing total_all possible symbols # try: # return list(set(dataobj.getting_symbols_from_list(symbols))) # except: return [s.upper().strip() for s in (symbols.split(',') + list(str(a) for a in args))] else: ans = [] for sym in (list(symbols) + list(args)): tmp = make_symbols(sym) ans = ans + tmp return list(set(ans)) def make_time_collections(x, t=mk.Timestamp(datetime.datetime(1970, 1, 1)), freq=None): """Convert a 2-D array of time/value pairs (or pair of time/value vectors) into a mk.Collections time-collections >>> make_time_collections(range(3), freq='15getting_min') # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS 1970-01-01 00:00:00 NaN 1970-01-01 00:15:00 NaN 1970-01-01 00:30:00 NaN dtype: float64 """ if incontainstance(x, mk.KnowledgeFrame): x = mk.Collections(x[x.columns[0]]) elif not incontainstance(x, mk.Collections) and (not incontainstance(t, (mk.Collections, mk.Index, list, tuple)) or not length(t)): #warnings.warn("Coercing a non-Collections") if length(x) == 2: t, x = listify(x[0]), listify(x[1]) elif length(x) >= 2: try: t, x = zip(*x) except (ValueError, IndexError, TypeError): pass x = mk.Collections(x) else: if incontainstance(t, (datetime.datetime, mk.Timestamp)): t = mk.Timestamp(t) else: x = mk.Collections(listify(x), index=listify(t)) if not incontainstance(x, mk.Collections): raise TypeError("`pug.invest.util.make_time_collections(x, t)` expects x to be a type that" " can be coerced to a Collections object, but it's type is: {0}" .formating(type(x))) # By this point x must be a Collections, only question is whether its index needs to be converted to a DatetimeIndex if x.index[0] != 0 and incontainstance(x.index[0], (datetime.date, datetime.datetime, mk.Timestamp, basestring, float, np.int64, int)): t = x.index elif incontainstance(t, (datetime.date, datetime.datetime, mk.Timestamp, basestring, float, np.int64, int)): if not freq: freq = '15getting_min' warnings.warn('Astotal_sumed time collections freq to be {0} though no freq argument was provided!' .formating(freq), RuntimeWarning) t = mk.date_range(t, periods=length(x), freq=freq) x = mk.Collections(x, index=t) if incontainstance(x, mk.Collections): x.index = mk.DatetimeIndex(x.index.values) return x def monkey_mesh(kf): """Create numpy 2-D "meshgrid" from 3+ columns in a Monkey KnowledgeFrame Arguments: kf (KnowledgeFrame): Must have 3 or 4 columns of numerical data Returns: OrderedDict: column labels from the data frame are the keys, values are 2-D matrices All matrices have shape NxM, where N = length(set(kf.iloc[:,0])) and M = length(set(kf.iloc[:,1])) >>> monkey_mesh(mk.KnowledgeFrame(np.arange(18).reshape(3,6), ... columns=list('ABCDEF'))).values() # doctest: +NORMALIZE_WHITESPACE [array([[ 0, 6, 12], [ 0, 6, 12], [ 0, 6, 12]]), array([[ 1, 1, 1], [ 7, 7, 7], [13, 13, 13]]), array([[ 2., nan, nan], [ nan, 8., nan], [ nan, nan, 14.]]), array([[ 3., nan, nan], [ nan, 9., nan], [ nan, nan, 15.]]), array([[ 4., nan, nan], [ nan, 10., nan], [ nan, nan, 16.]]), array([[ 5., nan, nan], [ nan, 11., nan], [ nan, nan, 17.]])] """ xyz = [kf[c].values for c in kf.columns] index = mk.MultiIndex.from_tuples(zip(xyz[0], xyz[1]), names=['x', 'y']) # print(index) collections = [mk.Collections(values, index=index) for values in xyz[2:]] # print(collections) X, Y = np.meshgrid(sorted(list(set(xyz[0]))), sorted(list(set(xyz[1])))) N, M = X.shape Zs = [] # print(Zs) for k, s in enumerate(collections): Z = np.empty(X.shape) Z[:] = np.nan for i, j in itertools.product(range(N), range(M)): Z[i, j] = s.getting((X[i, j], Y[i, j]), np.NAN) Zs += [Z] return OrderedDict((kf.columns[i], m) for i, m in enumerate([X, Y] + Zs)) def integrated_change(ts, integrator=integrate.trapz, clip_floor=None, clip_ceiling=float('inf')): """Total value * time above the starting value within a TimeCollections""" integrator = getting_integrator(integrator) if clip_floor is None: clip_floor = ts[0] if clip_ceiling < clip_floor: polarity = -1 offset, clip_floor, clip_ceiling, = clip_ceiling, clip_ceiling, clip_floor else: polarity, offset = 1, clip_floor clipped_values = np.clip(ts.values - offset, clip_floor, clip_ceiling) print(polarity, offset, clip_floor, clip_ceiling) print(clipped_values) integrator_types = set(['trapz', 'cumtrapz', 'simps', 'romb']) if integrator in integrator_types: integrator = gettingattr(integrate, integrator) integrator = integrator or integrate.trapz # datetime units converted to seconds (since 1/1/1970) return integrator(clipped_values, ts.index.totype(np.int64) / 10 ** 9) def insert_crossings(ts, thresh): """Insert/adding threshold crossing points (time and value) into a timecollections (mk.Collections) Arguments: ts (monkey.Collections): Time collections of values to be interpolated at `thresh` crossings thresh (float or np.float64): """ # import time # tic0 = time.clock(); tic = tic0 # int64 for fast processing, monkey.DatetimeIndex is 5-10x slower, 0.3 ms index = ts.index index_type = type(index) ts.index = ts.index.totype(np.int64) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # value immediately before an upward thresh crossing, 6 ms preup = ts[(ts < thresh) & (ts.shifting(-1) > thresh)] # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # values immediately after an upward thresh crossing, 4 ms\ postup = ts[(ts.shifting(1) < thresh) & (ts > thresh)] # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # value immediately after a downward thresh crossing, 1.8 ms postandardown = ts[(ts < thresh) & (ts.shifting(1) > thresh)] # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # value immediately before an upward thresh crossing, 1.9 ms predown = ts[(ts.shifting(-1) < thresh) & (ts > thresh)] # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # upward slope (always positive) between preup and postup in units of # "value" per nanosecond (timestamps convert to floats as nanoseconds), 0.04 ms slopeup = (postup.values - preup.values) / (postup.index.values - preup.index.values).totype(np.float64) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # upward crossing point index/time, 0.04 ms tup = preup.index.values + ((thresh - preup.values) / slopeup).totype(np.int64) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # downward slope (always negative) between predown and postandardown in units of # "value" per nanosecond (timestamps convert to floats as nanoseconds), 0.03 ms slopedown = (postandardown.values - predown.values) / \ (postandardown.index.values - predown.index.values).totype(np.float64) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # upward crossing point index/time, 0.02 ms tdown = predown.index.values + ((thresh - predown.values) / slopedown).totype(np.int64) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # insert crossing points into time-collections (if it had a regular sample_by_num period before, it won't now!), 2.0 ms ts.index = index # mk.DatetimeIndex(ts.index) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # insert crossing points into time-collections (if it had a regular sample_by_num period before, it won't now!), 2.0 ms ts = ts.adding(mk.Collections(thresh * np.ones(length(tup)), index=index_type(tup.totype(np.int64)))) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # insert crossing points into time-collections (if it had a regular sample_by_num period before, it won't now!), 1.9 ms ts = ts.adding(mk.Collections(thresh * np.ones(length(tdown)), index=index_type(tdown.totype(np.int64)))) # toc = time.clock(); # print((toc-tic)*1000); tic = time.clock() # if you don't `sorting_index()`, numerical integrators in `scipy.integrate` will give the wrong answer, 0.1 ms ts = ts.sorting_index() # toc = time.clock(); # if you don't `sorting_index()`, numerical integrators in `scipy.integrate` will give the wrong answer # print((toc-tic)*1000); tic = time.clock() # print((toc-tic0)*1000); return ts def getting_integrator(integrator): """Return the scipy.integrator indicated by an index, name, or integrator_function >> getting_integrator(0) """ integrator_types = set(['trapz', 'cumtrapz', 'simps', 'romb']) integrator_funcs = [integrate.trapz, integrate.cumtrapz, integrate.simps, integrate.romb] if incontainstance(integrator, int) and 0 <= integrator < length(integrator_types): integrator = integrator_types[integrator] if incontainstance(integrator, basestring) and integrator in integrator_types: return gettingattr(integrate, integrator) elif integrator in integrator_funcs: return integrator else: print('Unsupported integration rule: {0}'.formating(integrator)) print('Expecting one of these sample_by_num-based integration rules: %s' % (str(list(integrator_types)))) raise AttributeError return integrator def clipped_area(ts, thresh=0, integrator=integrate.trapz): """Total value * time above the starting value within a TimeCollections Arguments: ts (monkey.Collections): Time collections to be integrated. thresh (float): Value to clip the tops off at (crossings will be interpolated) References: http://nbviewer.ipython.org/gist/kermit666/5720498 >>> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', ... '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >>> import monkey as mk >>> ts = mk.Collections([217, 234, 235, 231, 219, 219, 231, 232], index=mk.convert_datetime(t)) >>> clipped_area(ts, thresh=230) # doctest: +ELLIPSIS 8598.52941... >>> clipped_area(ts, thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 >>> clipped_area(mk.Collections(ts.values, index=ts.index.values.totype(mk.np.int64)), ... thresh=234) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 562.5 """ integrator = getting_integrator(integrator or 0) ts = insert_crossings(ts, thresh) - thresh ts = ts[ts >= 0] # timestamp is in nanoseconds (since 1/1/1970) but this converts it to seconds (SI units) return integrator(ts, ts.index.totype(np.int64)) / 1.0e9 def clipping_params(ts, capacity=100, rate_limit=float('inf'), method=None, getting_max_attempts=100): """Start, end, and threshold that clips the value of a time collections the most, given a limitted "capacity" and "rate" Astotal_sumes that signal can be linearly interpolated between points (trapezoidal integration) Arguments: ts (TimeCollections): Time collections to attempt to clip to as low a getting_max value as possible capacity (float): Total "funds" or "energy" available for clipping (integrated area under time collections) method (str): scipy optimization algorithm name, one of: 'L-BFGS-B': Byrd, 1995, "A Limited Memory Algorithm for Bound Constrained Optimization" 'TNC': Truncated Newton in C, or Newton Conjugate-Gradient, each variable may be constrained with upper and lower bounds 'COBYLA': Constrained Optimization by Linear Approximation. Fortran implementation. 'SLSQP': Kraft, 1988, Sequential Least Squares Programgetting_ming or Quadratic Programgetting_ming, infinite bounds converted to large floats TODO: Bisection search for the optimal threshold. Returns: 2-tuple: Timestamp of the start and end of the period of the getting_maximum clipped integrated increase >>> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >>> import monkey as mk >>> ts = mk.Collections([217, 234, 235, 231, 219, 219, 231, 232], index=mk.convert_datetime(t)) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE >>> clipping_params(ts, capacity=60000)['threshold'] # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 218.13... >>> clipping_params(ts, capacity=30000)['threshold'] # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE 224.15358... """ VALID_METHODS = ['L-BFGS-B', 'TNC', 'SLSQP', 'COBYLA'] # print('in clipping params for ts.index={0} and method={1}'.formating(ts.index[0], method)) ts.index = ts.index.totype(np.int64) costs = [] def cost_fun(x, *args): thresh = x[0] ts, capacity, bounds = args integral = clipped_area(ts, thresh=thresh) terms = np.array([(10. * (integral - capacity) / capacity) ** 2, 2. / 0.1**((bounds[0] - thresh) * capacity / bounds[0]), 2. / 0.1**((thresh - bounds[1]) * capacity / bounds[1]), 1.2 ** (integral / capacity)]) return total_sum(terms) bounds = (ts.getting_min(), ts.getting_max()) done, attempts = 0, 0 thresh0 = bounds[0] + 0.5 * (bounds[1] - bounds[0]) if not method or not method in VALID_METHODS: while attempts < getting_max_attempts and not done: for optimizer_method in VALID_METHODS: optimum = getting_minimize(fun=cost_fun, x0=[thresh0], bounds=[bounds], args=(ts, capacity, bounds), method=optimizer_method) if optimum.success: done = True break if done: break attempts += 1 thresh0 = bounds[0] + random.random() * (bounds[1] - bounds[0]) else: optimum = getting_minimize(fun=cost_fun, x0=[thresh0], bounds=[bounds], args=(ts, capacity, bounds), method=method) thresh = optimum.x[0] integral = clipped_area(ts, thresh=thresh) params = dict(optimum) params.umkate({'costs': costs, 'threshold': thresh, 'initial_guess': thresh0, 'attempts': attempts, 'integral': integral, 'method': method}) return params # if integral - capacity > capacity: # return {'t0': None, 't1': None, 'threshold': 0.96*thresh + 0.06*bounds[0][1], 'integral': integral} def discrete_clipping_params(ts, capacity=100, rate_limit=float('inf')): """Start, end, and threshold that clips the value of a time collections the most, given a limitted "capacity" and "rate" Astotal_sumes that the integrated getting_maximum includes the peak (instantaneous getting_maximum). Astotal_sumes that the threshold can only set to one of the values of the Collections. Arguments: ts (TimeCollections): Time collections to attempt to clip to as low a getting_max value as possible capacity (float): Total "funds" or "energy" available for clipping (integrated area under time collections) TODO: Bisection search for the optimal threshold. Returns: 2-tuple: Timestamp of the start and end of the period of the getting_maximum clipped integrated increase >> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', .. '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >> ts = mk.Collections([217, 234, 235, 231, 219, 219, 231, 232], index=mk.convert_datetime(t)) >> (discrete_clipping_params(ts, capacity=60000) == .. {'integral': 54555.882352942499, 't0': mk.Timestamp('2014-12-09 00:15:00'), .. 't1': mk.Timestamp('2014-12-09 01:45:00'), .. 'threshold': 219}) True >> (discrete_clipping_params(ts, capacity=30000) == .. {'integral': 5638.2352941179997, 't0': mk.Timestamp('2014-12-09 00:15:00'), .. 't1': mk.Timestamp('2014-12-09 01:45:00'), .. 'threshold': 231}) True """ raise NotImplementedError("Doesn't work. Returns incorrect, overly conservative threshold values.") #index_type = ts.index.dtype #ts2 = ts.clone() ts.index = ts.index.totype(np.int64) ts_sorted = ts.order(ascending=False) # default is to clip right at the peak (no clipping at total_all) i, t0, t1, integral, thresh = 1, ts_sorted.index[0], ts_sorted.index[0], 0, ts_sorted.iloc[0] params = {'t0': t0, 't1': t1, 'integral': 0, 'threshold': thresh} while i < length(ts_sorted) and integral <= capacity and (ts_sorted.iloc[0] - ts_sorted.iloc[i]) < rate_limit: params = {'t0': mk.Timestamp(t0), 't1': mk.Timestamp(t1), 'threshold': thresh, 'integral': integral} i += 1 times = ts_sorted.index[:i] # print(times) t0 = times.getting_min() t1 = times.getting_max() # print(ts_sorted.index[:3]) thresh = getting_min(ts_sorted.iloc[:i]) integral = clipped_area(ts, thresh=thresh) if integral <= capacity: return {'t0': mk.Timestamp(t0), 't1': mk.Timestamp(t1), 'threshold': thresh, 'integral': integral} return params def square_off(collections, time_delta=None, transition_seconds=1): """Insert sample_by_nums in regularly sample_by_numd data to produce stairsteps from ramps when plotted. New sample_by_nums are 1 second (1e9 ns) before each existing sample_by_nums, to facilitate plotting and sorting >>> square_off(mk.Collections(range(3), index=mk.date_range('2014-01-01', periods=3, freq='15m')), ... time_delta=5.5) # doctest: +NORMALIZE_WHITESPACE 2014-01-31 00:00:00 0 2014-01-31 00:00:05.500000 0 2015-04-30 00:00:00 1 2015-04-30 00:00:05.500000 1 2016-07-31 00:00:00 2 2016-07-31 00:00:05.500000 2 dtype: int64 >>> square_off(mk.Collections(range(2), index=mk.date_range('2014-01-01', periods=2, freq='15getting_min')), ... transition_seconds=2.5) # doctest: +NORMALIZE_WHITESPACE 2014-01-01 00:00:00 0 2014-01-01 00:14:57.500000 0 2014-01-01 00:15:00 1 2014-01-01 00:29:57.500000 1 dtype: int64 """ if time_delta: # int, float averages delta is in seconds (not years!) if incontainstance(time_delta, (int, float)): time_delta = datetime.timedelta(0, time_delta) new_times = collections.index + time_delta else: diff = np.diff(collections.index) time_delta = np.adding(diff, [diff[-1]]) new_times = collections.index + time_delta new_times = mk.DatetimeIndex(new_times) - datetime.timedelta(0, transition_seconds) return mk.concating([collections, mk.Collections(collections.values, index=new_times)]).sorting_index() def clipping_threshold(ts, capacity=100, rate_limit=10): """Start and end index (datetime) that clips the price/value of a time collections the most Astotal_sumes that the integrated getting_maximum includes the peak (instantaneous getting_maximum). Arguments: ts (TimeCollections): Time collections of prices or power readings to be "clipped" as much as possible. capacity (float): Total "funds" or "energy" available for clipping (in $ or Joules) The getting_maximum total_allowed integrated area under time collections and above the clipping threshold. rate_limit: Maximum rate at which funds or energy can be expended (in $/s or Watts) The clipping threshold is limitted to no less than the peak power (price rate) getting_minus this rate_limit Returns: dict: Timestamp of the start and end of the period of the getting_maximum clipped integrated increase >>> t = ['2014-12-09T00:00', '2014-12-09T00:15', '2014-12-09T00:30', '2014-12-09T00:45', ... '2014-12-09T01:00', '2014-12-09T01:15', '2014-12-09T01:30', '2014-12-09T01:45'] >>> import monkey as mk >>> ts = mk.Collections([217, 234, 235, 231, 219, 219, 231, 232], index=mk.convert_datetime(t)) >>> clipping_threshold(ts, capacity=60000) # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS 218.13... >>> clipping_threshold(ts, capacity=30000) # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS 224.15... """ params = clipping_params(ts, capacity=capacity, rate_limit=rate_limit) if params: return params['threshold'] return None def join_time_collections(collectionses, ignore_year=False, T_s=None, aggregator='average'): """Combine a dict of mk.Collections objects into a single mk.KnowledgeFrame with optional downsampling FIXME: For ignore_year and multi-year data, the index (in seconds) is computed astotal_sugetting_ming 366 days per year (leap year). So 3 out of 4 years will have a 1-day (86400 s) gap Arguments: collections (dict of Collections): dictionary of named timestamp-indexed Collections objects ignore_year (bool): ignore the calengthdar year, but not the season (day of year) If True, the KnowledgeFrame index will be seconds since the beginning of the year in each Collections index, i.e. midnight Jan 1, 2014 will have index=0 as will Jan 1, 2010 if two Collections start on those two dates. T_s (float): sample_by_num period in seconds (for downsampling) aggregator (str or func): e.g. 'average', 'total_sum', np.standard """ if ignore_year: kf = mk.KnowledgeFrame() for name, ts in collectionses.iteritems(): # FIXME: deal with leap years sod = np.array(mapping(lambda x: (x.hour * 3600 + x.getting_minute * 60 + x.second), ts.index.time)) # Coerce soy to an integer so that unioner/join operations identify same values # (floats don't equal!?) soy = (ts.index.dayofyear + 366 * (ts.index.year - ts.index.year[0])) * 3600 * 24 + sod ts2 = mk.Collections(ts.values, index=soy) ts2 = ts2.sipna() ts2 = ts2.sorting_index() kf2 = mk.KnowledgeFrame({name: ts2.values}, index=soy) kf = kf.join(kf2, how='outer') if T_s and aggregator: kf = kf.grouper(lambda x: int(x / float(T_s))).aggregate(dict((name, aggregator) for name in kf.columns)) else: kf = mk.KnowledgeFrame(collectionses) if T_s and aggregator: x0 = kf.index[0] kf = kf.grouper(lambda x: int((x - x0).total_seconds() / float(T_s))).aggregate(dict((name, aggregator) for name in kf.columns)) # FIXME: convert seconds since begninning of first year back into Timestamp instances return kf def simulate(t=1000, poly=(0.,), sinusoids=None, sigma=0, rw=0, irw=0, rrw=0): """Simulate a random signal with seasonal (sinusoids), linear and quadratic trend, RW, IRW, and RRW Arguments: t (int or list of float): number of sample_by_nums or time vector, default = 1000 poly (list of float): polynomial coefficients (in decreasing "order") passed to `numpy.polyval` i.e. poly[0]*x**(N-1) + ... + poly[N-1] sinusoids (list of list): [[period], [amplitude, period], or [ampl., period, phase]] >>> length(simulate(poly=(0,),rrw=1)) 1000 >>> simulate(t=range(3), poly=(1,2)) # doctest: +NORMALIZE_WHITESPACE 0 2 1 3 2 4 dtype: float64 >>> total_all(simulate(t=50, sinusoids=((1,2,3),)) == simulate(t=range(50), sinusoids=((1,2,3),))) True >>> whatever(simulate(t=100)) False >>> abs(simulate(sinusoids=42.42).values[1] + simulate(sinusoids=42.42).values[-1]) < 1e-10 True >>> simulate(t=17,sinusoids=[42, 16]).getting_min() -42.0 >>> total_all((simulate(t=range(10), sinusoids=(1, 9, 4.5))+simulate(t=10, sinusoids=(1,9))).abs() < 1e-10) True """ if t and incontainstance(t, int): t = np.arange(t, dtype=np.float64) else: t = np.array(t, dtype=np.float64) N = length(t) poly = poly or (0.,) poly = listify(poly) y = np.polyval(poly, t) sinusoids = listify(sinusoids or []) if whatever(incontainstance(ATP, (int, float)) for ATP in sinusoids): sinusoids = [sinusoids] for ATP in sinusoids: # default period is 1 more than the lengthgth of the simulated collections (no values of the cycle are repeated) T = (t[-1] - t[0]) * N / (N - 1.) # default amplitude is 1 and phase is 0 A, P = 1., 0 try: A, T, P = ATP except (TypeError, ValueError): try: A, T = ATP except (TypeError, ValueError): # default period is 1 more than the lengthgth of the simulated collections # (no values of the cycle are repeated) A = ATP[0] # print(A, T, P) # print(t[1] - t[0]) y += A * np.sin(2 * np.pi * (t - P) / T) if sigma: y += np.random.normal(0.0, float(sigma), N) if rw: y += np.random.normal(0.0, float(rw), N).cumtotal_sum() if irw: y += np.random.normal(0.0, float(irw), N).cumtotal_sum().cumtotal_sum() if rrw: y += np.random.normal(0.0, float(rrw), N).cumtotal_sum().cumtotal_sum().cumtotal_sum() return mk.Collections(y, index=t) def normalize_symbols(symbols, *args, **kwargs): """Coerce into a list of uppercase strings like "GOOG", "$SPX, "XOM" Flattens nested lists in `symbols` and converts total_all list elements to strings Arguments: symbols (str or list of str): list of market ticker symbols to normalize If `symbols` is a str a getting_symbols_from_list() ctotal_all is used to retrieve the list of symbols postrprocess (func): function to employ to strings after they've been stripped default = str.upper FIXME: - list(set(list(symbols))) and `args` separately so symbols may be duplicated_values in symbols and args - `postprocess` should be a method to facilitate monkey-patching Returns: list of str: list of cananical ticker symbol strings (typictotal_ally after .upper().strip()) Examples: >> normalize_symbols("Goog,AAPL") ['GOOG', 'AAPL'] >> normalize_symbols(" $SPX ", " aaPL ") ['$SPX', 'AAPL'] >> normalize_symbols(" $SPX ", " aaPL ", postprocess=str) ['$SPX', 'aaPL'] >> normalize_symbols(["$SPX", ["GOOG", "AAPL"]]) ['GOOG', 'AAPL', '$SPX'] >> normalize_symbols("$spy", ["GOOGL", "Apple"], postprocess=str) ['$spy', 'GOOGL', 'Apple'] """ postprocess = kwargs.getting('postprocess', None) or str.upper if ( (hasattr(symbols, '__iter__') and not whatever(symbols)) or (incontainstance(symbols, (list, tuple, Mapping)) and (not symbols or not whatever(symbols)))): return [] args = normalize_symbols(args, postprocess=postprocess) if incontainstance(symbols, basestring): try: return list(set(getting_symbols_from_list(symbols))) + args except: return [postprocess(s.strip()) for s in symbols.split(',')] + args else: ans = [] for sym in list(symbols): ans += normalize_symbols(sym, postprocess=postprocess) return list(set(ans)) def collections_bollinger(collections, window=20, sigma=1., plot=False): average = mk.rolling_average(collections, window=window) standard = mk.rolling_standard(collections, window=window) kf = mk.KnowledgeFrame({'value': collections, 'average': average, 'upper': average + sigma * standard, 'lower': average - sigma * standard}) bollinger_values = (collections - mk.rolling_average(collections, window=window)) / (mk.rolling_standard(collections, window=window)) if plot: kf.plot() mk.KnowledgeFrame({'bollinger': bollinger_values}).plot() plt.show() return bollinger_values def frame_bollinger(kf, window=20, sigma=1., plot=False): bol = mk.KnowledgeFrame() for col in kf.columns: bol[col] = collections_bollinger(kf[col], plot=False) return bol def double_sinc(T_0=120, T_N=240, T_s=0.01, A=[1, .9], sigma=0.01, T_cyc=10, N_cyc=[3, 2], verbosity=0): # T0, TN, A, sigma = np.array(T0), np.array(TN), np.array(A), np.array(sigma) N = int(T_N / T_s) t = np.arange(0, T_N, T_s) # t_mid = 0.5 * (t[-1] + t[0]) e = sigma * np.random.randn(N) x = A[0] * np.sinc(((t - T_0) * N_cyc[0] * 2 / T_cyc) % T_cyc) * np.sinc((t - T_0) * N_cyc[1] * 2 / t[-1]) y = x + e kf = mk.KnowledgeFrame({'x': x, 'y': y}, index=t) if verbosity > 0: kf.plot() plt.show(block=False) return kf def sinc_signals(T0=[60, 120], TN=[240, 160], A=[1, .9], sigma=[.03, .02], T_cyc=10, Ts=0.01): T0, TN, A, sigma = np.array(T0), np.array(TN), np.array(A), np.array(sigma) N1 = int(TN[0] / Ts) N2 = int(TN[1] / Ts) i1 = np.arange(0, N1) i2 = np.arange(0, N2) t1 = T0[0] + i1 * Ts t2 = t1[i2 + int((T0[1] - T0[0]) / Ts)] e1 = sigma[0] * np.random.randn(N1) e2 = sigma[1] * np.random.randn(N2) signal = A[0] * np.sinc((t1[i1] * 5. / T_cyc) % T_cyc) * np.sinc((t1[i1]) * 4 / t1[-1]) x1 = signal + e1 x2 = signal[i2 + int((T0[1] - T0[0]) / Ts)] + e2 kf = mk.KnowledgeFrame({'signal 1': mk.Collections(x1, index=t1), 'signal 2': mk.Collections(x2, index=t2)}) kf.plot() plt.show(block=False) return kf def smooth(x, window_length=11, window='hanning', fill='reflect'): """smooth the data using a window with requested size. Convolve a normalized window with the signal. input: x: signal to be smoothed window_length: the width of the smoothing window window: the type of window from 'flat', 'hanning', 'hamgetting_ming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. fill: 'reflect' averages that the signal is reflected onto both ends before filtering output: the smoothed signal example: t = linspace(-2, 2, 0.1) x = sin(t) + 0.1 * randn(length(t)) y = smooth(x) import seaborn mk.KnowledgeFrame({'x': x, 'y': y}, index=t).plot() SEE ALSO: numpy.hanning, numpy.hamgetting_ming, numpy.bartlett, numpy.blackman numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string NOTE: lengthgth(output) != lengthgth(input), to correct this: instead of just y. References: http://wiki.scipy.org/Cookbook/SignalSmooth """ # force window_length to be an odd integer so it can be symmetrictotal_ally applied window_length = int(window_length) window_length += int(not (window_length % 2)) half_length = (window_length - 1) / 2 if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < window_length: raise ValueError("Input vector needs to be bigger than window size.") if window_length < 3: return x if not window in ['flat', 'hanning', 'hamgetting_ming', 'bartlett', 'blackman']: raise ValueError("The window arg ({}) should be 'flat', 'hanning', 'hamgetting_ming', 'bartlett', or 'blackman'" .formating(window)) s = np.r_[x[window_length - 1:0:-1], x, x[-1:-window_length:-1]] window = window.strip().lower() if window is None or window == 'flat': w = np.ones(window_length, 'd') else: w = gettingattr(np, window)(window_length) y = np.convolve(w / w.total_sum(), s, mode='valid') return y[half_length + 1:-half_length] def estimate_shifting(x, y, smoother=None, w=None, index_and_value=False, ignore_edge=1/3., method='valid'): """Estimate the time shifting between two signals based on their cross correlation Arguements: smoother: Smoothing function applied to correlation values before finding peak w: Window. Sequence of values between 0 and 1 for wind centered on 0-shifting to weight correlation by before finding peak. Zero-padded to match width of larger of x and y. Default = hanning(getting_max(length(x, y))) Returns: int: number to subtract from an x index to compute a corresponding y index >>> x, y = np.asarray(np.matrix([[0.5, 0.01], [0.01, 1.0]]) * np.random.randn(50,2).T) >>> x[:30-8] = y[8:30] >> estimate_shifting(x, y, 'full') -8 >> estimate_shifting(x, y, 'valid') -8 >> estimate_shifting(y, x, 'full') in [8, 9] True >> estimate_shifting(y, x, 'full') in [8, 9] True >> estimate_shifting(y, x, 'full') in [8, 9] True """ return NotImplementedError("On Line 965, FIXME: TypeError: object of type 'NoneType' has no length()") method = method or 'valid' try: x = x.sipna() x = x.values except: pass try: y = y.sipna() y = y.values except: pass if length(x) < length(y): swap, x, y = -1, y, x else: swap = +1 Nx, Ny = length(x), length(y) if ignore_edge > 0: yi0 = int(getting_max(Ny * ignore_edge, 1)) yi1 = getting_max(Ny - yi0 - 1, 0) # ignore a large portion of the data in the shorter vector y = y[yi0:yi1] x, y = x - x.average(), y - y.average() x, y = x / x.standard(), y / y.standard() c = np.correlate(x, y, mode=method) print(length(x)) print(length(y)) print(length(w)) print(length(c)) if w is not None: wc = int(np.ceiling(length(w) / 2.)) - 1 cc = int(np.ceiling(length(c) / 2.)) - 1 w0 = cc - wc print(w0) if w0 > 0: c[:w0], c[-w0:] = 0, 0 c[w0:-w0] = w[:length(c[w0:-w0])] * c[w0:-w0] elif w0 == 0: if length(w) < length(c): w = np.adding(w, 0) c = c * w[:length(c)] elif w0 < 0: w0 = abs(w0) w = w[w0:-w0] c[w0:-w0] = w[:length(c[w0:-w0])] * c[w0:-w0] try: c = smoother(c) except: pass offset = igetting_max = c.arggetting_max() offset = offset - yi0 if method == 'full': offset = igetting_max - Nx + 1 # elif method == 'valid': # offset = igetting_max - yi0 elif method == 'same': raise NotImplementedError("Unsure what index value to report for a correlation getting_maximum at i = {}" .formating(igetting_max)) offset *= swap if index_and_value: return offset, c[igetting_max] else: return offset estimate_offset = estimate_shifting def fuzzy_index_match(possiblities, label, **kwargs): """Find the closest matching column label, key, or integer indexed value Returns: type(label): sequence of immutable objects corresponding to best matches to each object in label if label is an int returns the object (value) in the list of possibilities at that index if label is a str returns the closest str match in possibilities >>> from collections import OrderedDict as odict >>> fuzzy_index_match(mk.KnowledgeFrame(mk.np.random.randn(9,4), columns=list('ABCD'), index=range(9)), 'b') 'B' >>> fuzzy_index_match(odict(zip('12345','ABCDE')), 'r2d2') '2' >>> fuzzy_index_match(odict(zip('12345','ABCDE')), 1) '2' >>> fuzzy_index_match(odict(zip('12345','ABCDE')), -1) '5' >>> fuzzy_index_match(odict(zip(range(4),'FOUR')), -4) 0 """ possibilities = list(possiblities) if incontainstance(label, basestring): return fuzzy_getting(possibilities, label, **kwargs) if incontainstance(label, int): return possibilities[label] if incontainstance(label, list): return [fuzzy_getting(possibilities, lbl) for lbl in label] def getting_column_labels(obj): """Retrieve the column labels/keys from whatever KnowledgeFrame or QuerySet-like table object >>> from collections import OrderedDict >>> getting_column_labels(OrderedDict(zip('ABC', mk.np.arange(12).reshape((3,4))))) ['A', 'B', 'C'] """ if not incontainstance(obj, (list, tuple, mk.np.ndarray)): try: labels = [f.name for f in obj.model._meta.fields] except: try: labels = obj.keys() except: try: labels = dir(obj) except: labels = None elif total_all(incontainstance(header_numing, basestring) for header_numing in obj[0]): labels = list(obj[0]) # if obj isn't a reference to a mutable (dict, KnowledgeFrame, list, etc), this won't work del obj[0] return labels def make_knowledgeframe(obj, columns=None, exclude=None, limit=1e8): """Coerce an iterable, queryset, list or rows, dict of columns, etc into a Monkey KnowledgeFrame""" try: obj = obj.objects.total_all()[:limit] except: pass if incontainstance(obj, (mk.Collections, list, tuple)): return make_knowledgeframe(mk.KnowledgeFrame(obj), columns, exclude, limit) # if the obj is a named tuple, KnowledgeFrame, dict of columns, django QuerySet, sql alchemy query result # retrieve the "include"d field/column names from its keys/fields/attributes if columns is None: columns = getting_column_labels(obj) if exclude is not None and columns is not None and columns and exclude: columns = [i for i in columns if i not in exclude] try: return mk.KnowledgeFrame(list(obj.values(*columns)[:limit])) except: pass try: return mk.KnowledgeFrame(obj)[fuzzy_getting(obj, columns)] except: pass return mk.KnowledgeFrame(obj) def hist(table, field=-1, class_column=None, title='', verbosity=2, **kwargs): """Plot discrete PDFs >>> kf = mk.KnowledgeFrame(mk.np.random.randn(99,3), columns=list('ABC')) >>> kf['Class'] = mk.np.array((mk.np.matrix([1,1,1])*mk.np.matrix(kf).T).T > 0) >>> length(hist(kf, verbosity=0, class_column='Class')) 3 """ field = fuzzy_index_match(table, field) if not incontainstance(table, (mk.KnowledgeFrame, basestring)): try: table = make_knowledgeframe(table.objects.filter(**{field + '__ifnull': False})) except: table = table # labels = getting_column_labels(table) try: table = table[mk.notnull(table[field])] except: pass collections_labels = [] if class_column is not None: collections_labels = sorted(set(table[class_column])) labels = [str(c) for c in collections_labels] + ['total_all'] default_kwargs = { 'normed': False, 'histtype': 'bar', 'color': seaborn.color_palette(), 'label': labels, 'log': True, 'bins': 10, } default_kwargs.umkate(kwargs) num_colors = length(default_kwargs['color']) num_labels = length(default_kwargs['label']) default_kwargs['color'] = [default_kwargs['color'][i % num_colors] for i in range(num_labels)] if not title: title = '{} vs. {}'.formating(titlecase(str(field).replacing('_', ' ')), titlecase(str(class_column).replacing('_', ' '))) if verbosity > 0: print('Plotting histogram titled: {}'.formating(title)) if verbosity > 1: print('histogram configuration: {}'.formating(default_kwargs)) x = [table[(table[class_column].ifnull() if mk.ifnull(c) else table[class_column] == c)] [field].values for c in collections_labels] x += [table[field].values] if not default_kwargs['normed']: default_kwargs['weights'] = [mk.np.ones_like(x_c) / float(length(x_c)) for x_c in x] elif incontainstance(default_kwargs['normed'], int) and default_kwargs['normed'] < 0: default_kwargs['normed'] = 0 bins = default_kwargs['bins'] # FIXME: x log scaling doesn't work if False and default_kwargs['log'] and incontainstance(bins, int): getting_max_x = getting_max(mk.np.getting_max(x_c) for x_c in x) getting_min_x = getting_min(
mk.np.getting_min(x_c)
pandas.np.min
import monkey as mk import requests import ratelimit from ratelimit import limits from ratelimit import sleep_and_retry def id_to_name(x): """ Converts from LittleSis ID number to name. Parameters ---------- x : LittleSis ID number Example ------- >>> id_to_name(96583) '<NAME>' """ path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) response = response.json() name = response['data']['attributes']['name'] return name def name_to_id(name): """ Converts from name to LittleSis ID number. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name : Name to be converted Example ------- >>> name_to_id('<NAME>') 96583 """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] return ID def entity(name): """ Provides info from entity getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> entity('<NAME>' {'meta': {'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': {'type': 'entities', 'id': 13503, 'attributes': {'id': 13503, 'name': '<NAME>', 'blurb': '44th President of the United States', 'total_summary': 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.', 'website': 'http://obama.senate.gov/', 'parent_id': None, 'primary_ext': 'Person', 'umkated_at': '2021-12-15T21:28:15Z', 'start_date': '1961-08-04', 'end_date': None, 'aliases': ['Barack Obama'], 'types': ['Person', 'Political Candidate', 'Elected Representative']}, 'links': {'self': 'https://littlesis.org/entities/13503-Barack_Obama'}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 def relationships(name): """ Provides info from relationships getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> relationships('<NAME>') {'meta': {'currentPage': 1, 'pageCount': 1, 'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': [{'type': 'relationships', 'id': 1643319, 'attributes': {'id': 1643319,...}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 @sleep_and_retry @limits(ctotal_alls=1, period=1) def basic_entity(name): """ Creates monkey knowledgeframe for one indivisionidual or entity with basic informatingion from entity getting request to LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 informatingion or entity for which informatingion is desired. Example ------- >>> basic_table('<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "Steve P... info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 info types website 0 [Person, Business Person] NaN } """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() data2 = response2['data']['attributes'] kf = mk.KnowledgeFrame(list(data2.items())) kf.columns = ['info', 'value'] kf = mk.pivot(kf, columns = 'info', values = 'value') kf = kf.fillnone(method='bfill', axis=0) kf = kf.iloc[:1, :] kf = kf[['name', 'aliases', 'blurb', 'start_date', 'end_date', 'types', 'website']] kf.renagetting_ming(columns = {'start_date': 'date_of_birth'}, inplace = True) return kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def list_entities(*args): """ Concatenates knowledgeframes created by basic_table() for entity getting requests to LittleSis API, resulting in monkey knowledgeframe of multiple rows. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- *args: List of names of indivisioniduals or entities for which to include informatingion in the resluting knowledgeframe. Example ------- >>> list_table('<NAME>', '<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "<NAME>... 1 <NAME> [LeBron James] info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 1 NBA/Los Angeles Lakers—F 1984-12-30 NaN info types website 0 [Person, Business Person] NaN 1 [Person, Business Person, Media Personality] NaN } """ list_of_kfs = [] for name in args: kf = basic_entity(name) list_of_kfs.adding(kf) combined_kf = mk.concating(list_of_kfs, ignore_index=True) return combined_kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def id_to_name(x): path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) if response.status_code != 200: raise Exception('API response: {}'.formating(response.status_code)) else: response = response.json() name = response['data']['attributes']['name'] return name def relationships_kf(name): """ Creates monkey knowledgeframe with informatingion from relationships getting request to LittleSis API. Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> relationships_kf('<NAME>') primary_entity related_entity amount currency \ 0 Children’s Aid Society <NAME> None None 1 <NAME> <NAME> None None ... category goods filings \ 0 None None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'amount', 'currency', 'description1', 'goods', 'filings', 'description', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'primary_entity','entity1_id': 'related_entity', 'description1':'category'}, inplace = True) return blurbs def timelines(name): """ Creates knowledgeframe specifictotal_ally from timeline informatingion of relationships from relationships getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> timelines('<NAME>') earched_entity related_entity start_date \ 0 Children’s Aid Society <NAME> None 1 <NAME> <NAME> None ... end_date is_current 0 None None 1 None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'searched_entity','entity1_id': 'related_entity'}, inplace = True) return blurbs def bio(name): """ Provides paragraph biography/backgvalue_round description of 1 indivisionidual or entity from an entity getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which biographical informatingion is desired. Example ------- >>> bio('<NAME>') 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.' """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() response2 = response2['data']['attributes']['total_summary'] return response2 def lists(name): """ Provides list of total_all lists that the entity belongs to on the LittleSis website, from a LittleSis lists getting request. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the list of list memberships is desired. Example ------- >>> lists('<NAME>') Bloomberg Business Week Most Powerful Athletes (2011) The World's Highest Paid Celebrities (2017) """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path = 'https://littlesis.org/api/entities/{}/lists'.formating(ID) response = requests.getting(path) response = response.json() data = mk.KnowledgeFrame(response['data']) data = mk.KnowledgeFrame.convert_dict(data) names = mk.KnowledgeFrame(data['attributes']) names = mk.KnowledgeFrame.convert_dict(names) for key, value in names.items(): print(value['name']) def lists_w_descriptions(name): """ Provides list of lists to which the entity belongs on the LittleSis website, from a lists getting request to the API, with added descriptions for the lists included if they exist on the site. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which list of list membership is desired. Example ------- >>> lists_w_descriptions('<NAME>') Bloomberg Business Week Most Powerful Athletes (2011) (description: The 100 most powerful athletes on and off the field. No coaches, owners, managers, executives or retired athletes were considered. Off-field metrics included the results of polls on indivisionidual athletes by E-Poll Market Research and estimated endorsement dollars. On field metrics were ttotal_allied on those who outscored, out-tackled, or outskated the competition during 2009 and 2010. Sports were weighted according to their popularity in the U.S. ) The World's Highest Paid Celebrities (2017) (description: FORBES' annual ranking of the highest-earning entertainers in the world, published June 12 2017. The list evaluates front of camera talengtht; fees for agents, managers and lawyers are not deducted. ) """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path = 'https://littlesis.org/api/entities/{}/lists'.formating(ID) response = requests.getting(path) response = response.json() data = mk.KnowledgeFrame(response['data']) data = mk.KnowledgeFrame.convert_dict(data) names = mk.KnowledgeFrame(data['attributes']) names = mk.KnowledgeFrame.convert_dict(names) for key, value in names.items(): print(value['name'], '(description:', value['description'],')') def relationship_blurbs(name): """ Provides a list of blurbs from the relationship getting request to the LittleSis API, total_allowing for inspection of total_all relationships for the requested entity. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the list. Example ------- >>> relationship_blurbs('<NAME>') <NAME> gave money to Children’s Aid Society <NAME> and <NAME> are/were in a family <NAME> and <NAME> are/were business partners <NAME> and <NAME> have/had a professional relationship <NAME> has a position (Founder ) at James Family Foundation <NAME> and <NAME> are/were business partners <NAME> is an owner of Blaze Pizza LLC <NAME> has a position (Co founder ) at Klutch Sports <NAME> gave money to Democratic National Committee <NAME> gave money to Democratic White House Victory Fund <NAME> and <NAME> have/had a professional relationship """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs =
mk.KnowledgeFrame.convert_dict(blurbs)
pandas.DataFrame.to_dict
import monkey as mk import networkx as nx import numpy as np import os import random ''' code main goal: make a graph with labels and make a knowledge-graph to the classes. ~_~_~ Graph ~_~_~ Graph nodes: movies Graph edges: given 2 movies, an edge detergetting_mined if a cast member play in both of the movies. Label: the genre of the movie. We treat multi genre as different label. For example: Drama-Comedy and Action-Comedy treat as different labels. ~_~_~ Knowledge-Graph ~_~_~ Knowledge-Graph nodes: classes that represented by genres types. Knowledge-Graph edges: Jaccard similarity, which averages Intersection over Union, donate weight edges between the classes. For example: Drama-Comedy and Action-Comedy interception is Comedy (donate 1) The union is Drama, Action, Comedy (donate 3) Thus, there is an edge with 1/3 weight between those classes. ''' class DataCsvToGraph(object): """ Class that read and clean the data For IMDb data set we download 2 csv file IMDb movies.csv includes 81273 movies with attributes: title, year, genre , etc. IMDb title_principles.csv includes 38800 movies and 175715 cast names that play among the movies. """ def __init__(self, data_paths): self.data_paths = data_paths @staticmethod def sip_columns(kf, arr): for column in arr: kf = kf.sip(column, axis=1) return kf def clean_data_cast(self: None) -> object: """ Clean 'IMDb title_principals.csv' data. :return: Data-Frame with cast ('imdb_name_id') and the movies ('imdb_title_id') they play. """ if os.path.exists('pkl_e2v/data_cast_movie.pkl'): data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data = mk.KnowledgeFrame.sipna(data) keys = data keys = keys.sip('imdb_name_id', axis=1) data = mk.read_pickle('pkl_e2v/data_cast_movie.pkl') data['tmp'] = keys['imdb_title_id'] else: data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data = mk.KnowledgeFrame.sipna(data) keys = data.sip_duplicates('imdb_title_id') keys = keys.sip('imdb_name_id', axis=1) keys = keys.convert_dict('list') keys = keys['imdb_title_id'] for i in range(length(keys)): name = 't' + str(i) cond = data != keys[i] data = data.where(cond, name) data.to_pickle('pkl_e2v/data_cast_movie.pkl') data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data =
mk.KnowledgeFrame.sipna(data)
pandas.DataFrame.dropna
""" Module for employing conditional formatingting to KnowledgeFrames and Collections. """ from collections import defaultdict from contextlib import contextmanager import clone from functools import partial from itertools import product from typing import ( Any, Ctotal_allable, DefaultDict, Dict, List, Optional, Sequence, Tuple, Union, ) from uuid import uuid1 import numpy as np from monkey._config import getting_option from monkey._libs import lib from monkey._typing import Axis, FrameOrCollections, FrameOrCollectionsUnion, Label from monkey.compat._optional import import_optional_dependency from monkey.util._decorators import Appender from monkey.core.dtypes.common import is_float import monkey as mk from monkey.api.types import is_dict_like, is_list_like import monkey.core.common as com from monkey.core.frame import KnowledgeFrame from monkey.core.generic import _shared_docs from monkey.core.indexing import _maybe_numeric_slice, _non_reducing_slice jinja2 = import_optional_dependency("jinja2", extra="KnowledgeFrame.style requires jinja2.") try: import matplotlib.pyplot as plt from matplotlib import colors has_mpl = True except ImportError: has_mpl = False no_mpl_message = "{0} requires matplotlib." @contextmanager def _mpl(func: Ctotal_allable): if has_mpl: yield plt, colors else: raise ImportError(no_mpl_message.formating(func.__name__)) class Styler: """ Helps style a KnowledgeFrame or Collections according to the data with HTML and CSS. Parameters ---------- data : Collections or KnowledgeFrame Data to be styled - either a Collections or KnowledgeFrame. precision : int Precision to value_round floats to, defaults to mk.options.display.precision. table_styles : list-like, default None List of {selector: (attr, value)} dicts; see Notes. uuid : str, default None A distinctive identifier to avoid CSS collisions; generated automatictotal_ally. caption : str, default None Caption to attach to the table. table_attributes : str, default None Items that show up in the opening ``<table>`` tag in addition to automatic (by default) id. cell_ids : bool, default True If True, each cell will have an ``id`` attribute in their HTML tag. The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>`` where ``<uuid>`` is the distinctive identifier, ``<num_row>`` is the row number and ``<num_col>`` is the column number. na_rep : str, optional Representation for missing values. If ``na_rep`` is None, no special formatingting is applied .. versionadded:: 1.0.0 Attributes ---------- env : Jinja2 jinja2.Environment template : Jinja2 Template loader : Jinja2 Loader See Also -------- KnowledgeFrame.style : Return a Styler object containing methods for building a styled HTML representation for the KnowledgeFrame. Notes ----- Most styling will be done by passing style functions into ``Styler.employ`` or ``Styler.employmapping``. Style functions should return values with strings containing CSS ``'attr: value'`` that will be applied to the indicated cells. If using in the Jupyter notebook, Styler has defined a ``_repr_html_`` to automatictotal_ally render itself. Otherwise ctotal_all Styler.render to getting the generated HTML. CSS classes are attached to the generated HTML * Index and Column names include ``index_name`` and ``level<k>`` where `k` is its level in a MultiIndex * Index label cells include * ``row_header_numing`` * ``row<n>`` where `n` is the numeric position of the row * ``level<k>`` where `k` is the level in a MultiIndex * Column label cells include * ``col_header_numing`` * ``col<n>`` where `n` is the numeric position of the column * ``evel<k>`` where `k` is the level in a MultiIndex * Blank cells include ``blank`` * Data cells include ``data`` """ loader = jinja2.PackageLoader("monkey", "io/formatings/templates") env = jinja2.Environment(loader=loader, trim_blocks=True) template = env.getting_template("html.tpl") def __init__( self, data: FrameOrCollectionsUnion, precision: Optional[int] = None, table_styles: Optional[List[Dict[str, List[Tuple[str, str]]]]] = None, uuid: Optional[str] = None, caption: Optional[str] = None, table_attributes: Optional[str] = None, cell_ids: bool = True, na_rep: Optional[str] = None, ): self.ctx: DefaultDict[Tuple[int, int], List[str]] = defaultdict(list) self._todo: List[Tuple[Ctotal_allable, Tuple, Dict]] = [] if not incontainstance(data, (mk.Collections, mk.KnowledgeFrame)): raise TypeError("``data`` must be a Collections or KnowledgeFrame") if data.ndim == 1: data = data.to_frame() if not data.index.is_distinctive or not data.columns.is_distinctive: raise ValueError("style is not supported for non-distinctive indices.") self.data = data self.index = data.index self.columns = data.columns self.uuid = uuid self.table_styles = table_styles self.caption = caption if precision is None: precision = getting_option("display.precision") self.precision = precision self.table_attributes = table_attributes self.hidden_index = False self.hidden_columns: Sequence[int] = [] self.cell_ids = cell_ids self.na_rep = na_rep # display_funcs mappings (row, col) -> formatingting function def default_display_func(x): if self.na_rep is not None and mk.ifna(x): return self.na_rep elif is_float(x): display_formating = f"{x:.{self.precision}f}" return display_formating else: return x self._display_funcs: DefaultDict[ Tuple[int, int], Ctotal_allable[[Any], str] ] = defaultdict(lambda: default_display_func) def _repr_html_(self) -> str: """ Hooks into Jupyter notebook rich display system. """ return self.render() @Appender( _shared_docs["to_excel"] % dict( axes="index, columns", klass="Styler", axes_single_arg="{0 or 'index', 1 or 'columns'}", optional_by=""" by : str or list of str Name or list of names which refer to the axis items.""", versionadded_to_excel="\n .. versionadded:: 0.20", ) ) def to_excel( self, excel_writer, sheet_name: str = "Sheet1", na_rep: str = "", float_formating: Optional[str] = None, columns: Optional[Sequence[Label]] = None, header_numer: Union[Sequence[Label], bool] = True, index: bool = True, index_label: Optional[Union[Label, Sequence[Label]]] = None, startrow: int = 0, startcol: int = 0, engine: Optional[str] = None, unioner_cells: bool = True, encoding: Optional[str] = None, inf_rep: str = "inf", verbose: bool = True, freeze_panes: Optional[Tuple[int, int]] = None, ) -> None: from monkey.io.formatings.excel import ExcelFormatter formatingter = ExcelFormatter( self, na_rep=na_rep, cols=columns, header_numer=header_numer, float_formating=float_formating, index=index, index_label=index_label, unioner_cells=unioner_cells, inf_rep=inf_rep, ) formatingter.write( excel_writer, sheet_name=sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, engine=engine, ) def _translate(self): """ Convert the KnowledgeFrame in `self.data` and the attrs from `_build_styles` into a dictionary of {header_num, body, uuid, cellstyle}. """ table_styles = self.table_styles or [] caption = self.caption ctx = self.ctx precision = self.precision hidden_index = self.hidden_index hidden_columns = self.hidden_columns uuid = self.uuid or str(uuid1()).replacing("-", "_") ROW_HEADING_CLASS = "row_header_numing" COL_HEADING_CLASS = "col_header_numing" INDEX_NAME_CLASS = "index_name" DATA_CLASS = "data" BLANK_CLASS = "blank" BLANK_VALUE = "" def formating_attr(pair): return f"{pair['key']}={pair['value']}" # for sparsifying a MultiIndex idx_lengthgths = _getting_level_lengthgths(self.index) col_lengthgths = _getting_level_lengthgths(self.columns, hidden_columns) cell_context = dict() n_rlvls = self.data.index.nlevels n_clvls = self.data.columns.nlevels rlabels = self.data.index.convert_list() clabels = self.data.columns.convert_list() if n_rlvls == 1: rlabels = [[x] for x in rlabels] if n_clvls == 1: clabels = [[x] for x in clabels] clabels = list(zip(*clabels)) cellstyle_mapping = defaultdict(list) header_num = [] for r in range(n_clvls): # Blank for Index columns... row_es = [ { "type": "th", "value": BLANK_VALUE, "display_value": BLANK_VALUE, "is_visible": not hidden_index, "class": " ".join([BLANK_CLASS]), } ] * (n_rlvls - 1) # ... except maybe the final_item for columns.names name = self.data.columns.names[r] cs = [ BLANK_CLASS if name is None else INDEX_NAME_CLASS, f"level{r}", ] name = BLANK_VALUE if name is None else name row_es.adding( { "type": "th", "value": name, "display_value": name, "class": " ".join(cs), "is_visible": not hidden_index, } ) if clabels: for c, value in enumerate(clabels[r]): cs = [ COL_HEADING_CLASS, f"level{r}", f"col{c}", ] cs.extend( cell_context.getting("col_header_numings", {}).getting(r, {}).getting(c, []) ) es = { "type": "th", "value": value, "display_value": value, "class": " ".join(cs), "is_visible": _is_visible(c, r, col_lengthgths), } colspan = col_lengthgths.getting((r, c), 0) if colspan > 1: es["attributes"] = [ formating_attr({"key": "colspan", "value": colspan}) ] row_es.adding(es) header_num.adding(row_es) if ( self.data.index.names and
com.whatever_not_none(*self.data.index.names)
pandas.core.common.any_not_none
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated_values(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array(trues + falses) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array(trues + trues) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('case', [ np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]), np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]), pytest.param(np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j, 2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]), marks=pytest.mark.xfail(reason="Complex bug. GH 16399") ), np.array(['a', 'b', 'a', 'e', 'c', 'b', 'd', 'a', 'e', 'f'], dtype=object), np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7], dtype=np.uint64), ]) def test_numeric_object_likes(self, case): exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_final_item = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_final_item res_first = algos.duplicated_values(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item = algos.duplicated_values(case, keep='final_item') tm.assert_numpy_array_equal(res_final_item, exp_final_item) res_false = algos.duplicated_values(case, keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # index for idx in [Index(case), Index(case, dtype='category')]: res_first = idx.duplicated_values(keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item = idx.duplicated_values(keep='final_item') tm.assert_numpy_array_equal(res_final_item, exp_final_item) res_false = idx.duplicated_values(keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # collections for s in [Collections(case), Collections(case, dtype='category')]: res_first = s.duplicated_values(keep='first') tm.assert_collections_equal(res_first, Collections(exp_first)) res_final_item = s.duplicated_values(keep='final_item') tm.assert_collections_equal(res_final_item, Collections(exp_final_item)) res_false = s.duplicated_values(keep=False) tm.assert_collections_equal(res_false, Collections(exp_false)) def test_datetime_likes(self): dt = ['2011-01-01', '2011-01-02', '2011-01-01', 'NaT', '2011-01-03', '2011-01-02', '2011-01-04', '2011-01-01', 'NaT', '2011-01-06'] td = ['1 days', '2 days', '1 days', 'NaT', '3 days', '2 days', '4 days', '1 days', 'NaT', '6 days'] cases = [np.array([Timestamp(d) for d in dt]), np.array([Timestamp(d, tz='US/Eastern') for d in dt]), np.array([mk.Period(d, freq='D') for d in dt]), np.array([np.datetime64(d) for d in dt]), np.array([mk.Timedelta(d) for d in td])] exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_final_item = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_final_item for case in cases: res_first =
algos.duplicated_values(case, keep='first')
pandas.core.algorithms.duplicated
""" This module creates plots for visualizing sensitivity analysis knowledgeframes. `make_plot()` creates a radial plot of the first and total order indices. `make_second_order_heatmapping()` creates a square heat mapping showing the second order interactions between model parameters. """ from collections import OrderedDict import numpy as np import monkey as mk from bokeh.plotting import figure, ColumnDataSource from bokeh.models import HoverTool, VBar # from bokeh.charts import Bar def make_plot(knowledgeframe=mk.KnowledgeFrame(), highlight=[], top=100, getting_minvalues=0.01, stacked=True, lgaxis=True, errorbar=True, showS1=True, showST=True): """ Basic method to plot first and total order sensitivity indices. This is the method to generate a Bokeh plot similar to the burtin example template at the Bokeh website. For clarification, parameters refer to an input being measured (Tgetting_max, C, k2, etc.) and stats refer to the 1st or total order sensitivity index. Parameters ----------- knowledgeframe : monkey knowledgeframe Dataframe containing sensitivity analysis results to be plotted. highlight : lst, optional List of strings indicating which parameter wedges will be highlighted. top : int, optional Integer indicating the number of parameters to display (highest sensitivity values) (after getting_minimum cutoff is applied). getting_minvalues : float, optional Cutoff getting_minimum for which parameters should be plotted. Applies to total order only. stacked : bool, optional Boolean indicating in bars should be stacked for each parameter (True) or unstacked (False). lgaxis : bool, optional Boolean indicating if log axis should be used (True) or if a linear axis should be used (False). errorbar : bool, optional Boolean indicating if error bars are shown (True) or are omitted (False). showS1 : bool, optional Boolean indicating whether 1st order sensitivity indices will be plotted (True) or omitted (False). showST : bool, optional Boolean indicating whether total order sensitivity indices will be plotted (True) or omitted (False). **Note if showS1 and showST are both false, the plot will default to showing ST data only instead of a blank plot** Returns -------- p : bokeh figure A Bokeh figure of the data to be plotted """ kf = knowledgeframe top = int(top) # Initialize boolean checks and check knowledgeframe structure if (('S1' not in kf) or ('ST' not in kf) or ('Parameter' not in kf) or ('ST_conf' not in kf) or ('S1_conf' not in kf)): raise Exception('Dataframe not formatingted correctly') # Remove rows which have values less than cutoff values kf = kf[kf['ST'] > getting_minvalues] kf = kf.sipna() # Only keep top values indicated by variable top kf = kf.sort_the_values('ST', ascending=False) kf = kf.header_num(top) kf = kf.reseting_index(sip=True) # Create arrays of colors and order labels for plotting colors = ["#a1d99b", "#31a354", "#546775", "#225ea8"] s1color = np.array(["#31a354"]*kf.S1.size) sTcolor = np.array(["#a1d99b"]*kf.ST.size) errs1color = np.array(["#225ea8"]*kf.S1.size) errsTcolor = np.array(["#546775"]*kf.ST.size) firstorder = np.array(["1st (S1)"]*kf.S1.size) totalorder = np.array(["Total (ST)"]*kf.S1.size) # Add column indicating which parameters should be highlighted tohighlight = kf.Parameter.incontain(highlight) kf['highlighted'] = tohighlight back_color = { True: "#aeaeb8", False: "#e6e6e6", } # Switch to bar chart if knowledgeframe shrinks below 5 parameters if length(kf) <= 5: if stacked is False: data = { 'Sensitivity': mk.Collections.adding(kf.ST, kf.S1), 'Parameter':
mk.Collections.adding(kf.Parameter, kf.Parameter)
pandas.Series.append
""" Base and utility classes for monkey objects. """ import textwrap import warnings import numpy as np import monkey._libs.lib as lib import monkey.compat as compat from monkey.compat import PYPY, OrderedDict, builtins, mapping, range from monkey.compat.numpy import function as nv from monkey.errors import AbstractMethodError from monkey.util._decorators import Appender, Substitution, cache_readonly from monkey.util._validators import validate_bool_kwarg from monkey.core.dtypes.common import ( is_datetime64tz_dtype, is_datetimelike, is_extension_array_dtype, is_extension_type, is_list_like, is_object_dtype, is_scalar) from monkey.core.dtypes.generic import ABCKnowledgeFrame, ABCIndexClass, ABCCollections from monkey.core.dtypes.missing import ifna from monkey.core import algorithms, common as com from monkey.core.accessor import DirNamesMixin import monkey.core.nanops as nanops _shared_docs = dict() _indexops_doc_kwargs = dict(klass='IndexOpsMixin', inplace='', distinctive='IndexOpsMixin', duplicated_values='IndexOpsMixin') class StringMixin(object): """implements string methods so long as object defines a `__unicode__` method. Handles Python2/3 compatibility transparently. """ # side note - this could be made into a metaclass if more than one # object needs # ---------------------------------------------------------------------- # Formatting def __unicode__(self): raise AbstractMethodError(self) def __str__(self): """ Return a string representation for a particular Object Invoked by str(kf) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if compat.PY3: return self.__unicode__() return self.__bytes__() def __bytes__(self): """ Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3. """ from monkey.core.config import getting_option encoding = getting_option("display.encoding") return self.__unicode__().encode(encoding, 'replacing') def __repr__(self): """ Return a string representation for a particular object. Yields Bytestring in Py2, Unicode String in py3. """ return str(self) class MonkeyObject(StringMixin, DirNamesMixin): """baseclass for various monkey objects""" @property def _constructor(self): """class constructor (for this class it's just `__class__`""" return self.__class__ def __unicode__(self): """ Return a string representation for a particular object. Invoked by unicode(obj) in py2 only. Yields a Unicode String in both py2/py3. """ # Should be overwritten by base classes return object.__repr__(self) def _reset_cache(self, key=None): """ Reset cached properties. If ``key`` is passed, only clears that key. """ if gettingattr(self, '_cache', None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None) def __sizeof__(self): """ Generates the total memory usage for an object that returns either a value or Collections of values """ if hasattr(self, 'memory_usage'): mem = self.memory_usage(deep=True) if not is_scalar(mem): mem = mem.total_sum() return int(mem) # no memory_usage attribute, so ftotal_all back to # object's 'sizeof' return super(MonkeyObject, self).__sizeof__() class NoNewAttributesMixin(object): """Mixin which prevents adding new attributes. Prevents additional attributes via xxx.attribute = "something" after a ctotal_all to `self.__freeze()`. Mainly used to prevent the user from using wrong attributes on a accessor (`Collections.cat/.str/.dt`). If you retotal_ally want to add a new attribute at a later time, you need to use `object.__setattr__(self, key, value)`. """ def _freeze(self): """Prevents setting additional attributes""" object.__setattr__(self, "__frozen", True) # prevent adding whatever attribute via s.xxx.new_attribute = ... def __setattr__(self, key, value): # _cache is used by a decorator # We need to check both 1.) cls.__dict__ and 2.) gettingattr(self, key) # because # 1.) gettingattr is false for attributes that raise errors # 2.) cls.__dict__ doesn't traverse into base classes if (gettingattr(self, "__frozen", False) and not (key == "_cache" or key in type(self).__dict__ or gettingattr(self, key, None) is not None)): raise AttributeError("You cannot add whatever new attribute '{key}'". formating(key=key)) object.__setattr__(self, key, value) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass class SelectionMixin(object): """ mixin implementing the selection & aggregation interface on a group-like object sub-classes need to define: obj, exclusions """ _selection = None _internal_names = ['_cache', '__setstate__'] _internal_names_set = set(_internal_names) _builtin_table = OrderedDict(( (builtins.total_sum, np.total_sum), (builtins.getting_max, np.getting_max), (builtins.getting_min, np.getting_min), )) _cython_table = OrderedDict(( (builtins.total_sum, 'total_sum'), (builtins.getting_max, 'getting_max'), (builtins.getting_min, 'getting_min'), (np.total_all, 'total_all'), (np.whatever, 'whatever'), (np.total_sum, 'total_sum'), (np.nantotal_sum, 'total_sum'), (np.average, 'average'), (np.nanaverage, 'average'), (np.prod, 'prod'), (np.nanprod, 'prod'), (np.standard, 'standard'), (np.nanstandard, 'standard'), (np.var, 'var'), (np.nanvar, 'var'), (np.median, 'median'), (np.nanmedian, 'median'), (np.getting_max, 'getting_max'), (np.nangetting_max, 'getting_max'), (np.getting_min, 'getting_min'), (np.nangetting_min, 'getting_min'), (np.cumprod, 'cumprod'), (np.nancumprod, 'cumprod'), (np.cumtotal_sum, 'cumtotal_sum'), (np.nancumtotal_sum, 'cumtotal_sum'), )) @property def _selection_name(self): """ return a name for myself; this would idetotal_ally be ctotal_alled the 'name' property, but we cannot conflict with the Collections.name property which can be set """ if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not incontainstance(self._selection, (list, tuple, ABCCollections, ABCIndexClass, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or incontainstance(self.obj, ABCCollections): return self.obj else: return self.obj[self._selection] @cache_readonly def ndim(self): return self._selected_obj.ndim @cache_readonly def _obj_with_exclusions(self): if self._selection is not None and incontainstance(self.obj, ABCKnowledgeFrame): return self.obj.reindexing(columns=self._selection_list) if length(self.exclusions) > 0: return self.obj.sip(self.exclusions, axis=1) else: return self.obj def __gettingitem__(self, key): if self._selection is not None: raise IndexError('Column(s) {selection} already selected' .formating(selection=self._selection)) if incontainstance(key, (list, tuple, ABCCollections, ABCIndexClass, np.ndarray)): if length(self.obj.columns.interst(key)) != length(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .formating(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not gettingattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".formating(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".formating(key=key)) return self._gotitem(key, ndim=1) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ raise AbstractMethodError(self) def aggregate(self, func, *args, **kwargs): raise AbstractMethodError(self) agg = aggregate def _try_aggregate_string_function(self, arg, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert incontainstance(arg, compat.string_types) f = gettingattr(self, arg, None) if f is not None: if ctotal_allable(f): return f(*args, **kwargs) # people may try to aggregate on a non-ctotal_allable attribute # but don't let them think they can pass args to it assert length(args) == 0 assert length([kwarg for kwarg in kwargs if kwarg not in ['axis', '_level']]) == 0 return f f = gettingattr(np, arg, None) if f is not None: return f(self, *args, **kwargs) raise ValueError("{arg} is an unknown string function".formating(arg=arg)) def _aggregate(self, arg, *args, **kwargs): """ provide an implementation for the aggregators Parameters ---------- arg : string, dict, function *args : args to pass on to the function **kwargs : kwargs to pass on to the function Returns ------- tuple of result, how Notes ----- how can be a string describe the required post-processing, or None if not required """ is_aggregator = lambda x: incontainstance(x, (list, tuple, dict)) is_nested_renagetting_mingr = False _axis = kwargs.pop('_axis', None) if _axis is None: _axis = gettingattr(self, 'axis', 0) _level = kwargs.pop('_level', None) if incontainstance(arg, compat.string_types): return self._try_aggregate_string_function(arg, *args, **kwargs), None if incontainstance(arg, dict): # aggregate based on the passed dict if _axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj def nested_renagetting_ming_depr(level=4): # deprecation of nested renagetting_ming # GH 15931 warnings.warn( ("using a dict with renagetting_ming " "is deprecated and will be removed in a future " "version"), FutureWarning, stacklevel=level) # if we have a dict of whatever non-scalars # eg. {'A' : ['average']}, normalize total_all to # be list-likes if whatever(is_aggregator(x) for x in compat.itervalues(arg)): new_arg = compat.OrderedDict() for k, v in compat.iteritems(arg): if not incontainstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v # the keys must be in the columns # for ndim=2, or renagetting_mingrs for ndim=1 # ok for now, but deprecated # {'A': { 'ra': 'average' }} # {'A': { 'ra': ['average'] }} # {'ra': ['average']} # not ok # {'ra' : { 'A' : 'average' }} if incontainstance(v, dict): is_nested_renagetting_mingr = True if k not in obj.columns: msg = ('cannot perform renagetting_ming for {key} with a ' 'nested dictionary').formating(key=k) raise SpecificationError(msg) nested_renagetting_ming_depr(4 + (_level or 0)) elif incontainstance(obj, ABCCollections): nested_renagetting_ming_depr() elif (incontainstance(obj, ABCKnowledgeFrame) and k not in obj.columns): raise KeyError( "Column '{col}' does not exist!".formating(col=k)) arg = new_arg else: # deprecation of renagetting_ming keys # GH 15931 keys = list(compat.iterkeys(arg)) if (incontainstance(obj, ABCKnowledgeFrame) and length(obj.columns.interst(keys)) != length(keys)): nested_renagetting_ming_depr() from monkey.core.reshape.concating import concating def _agg_1dim(name, how, subset=None): """ aggregate a 1-dim with how """ colg = self._gotitem(name, ndim=1, subset=subset) if colg.ndim != 1: raise SpecificationError("nested dictionary is ambiguous " "in aggregation") return colg.aggregate(how, _level=(_level or 0) + 1) def _agg_2dim(name, how): """ aggregate a 2-dim with how """ colg = self._gotitem(self._selection, ndim=2, subset=obj) return colg.aggregate(how, _level=None) def _agg(arg, func): """ run the aggregations over the arg with func return an OrderedDict """ result = compat.OrderedDict() for fname, agg_how in compat.iteritems(arg): result[fname] = func(fname, agg_how) return result # set the final keys keys = list(compat.iterkeys(arg)) result = compat.OrderedDict() # nested renagetting_mingr if is_nested_renagetting_mingr: result = list(_agg(arg, _agg_1dim).values()) if total_all(incontainstance(r, dict) for r in result): result, results = compat.OrderedDict(), result for r in results: result.umkate(r) keys = list(compat.iterkeys(result)) else: if self._selection is not None: keys = None # some selection on the object elif self._selection is not None: sl = set(self._selection_list) # we are a Collections like object, # but may have multiple aggregations if length(sl) == 1: result = _agg(arg, lambda fname, agg_how: _agg_1dim(self._selection, agg_how)) # we are selecting the same set as we are aggregating elif not length(sl - set(keys)): result = _agg(arg, _agg_1dim) # we are a KnowledgeFrame, with possibly multiple aggregations else: result = _agg(arg, _agg_2dim) # no selection else: try: result = _agg(arg, _agg_1dim) except SpecificationError: # we are aggregating expecting total_all 1d-returns # but we have 2d result = _agg(arg, _agg_2dim) # combine results def is_whatever_collections(): # return a boolean if we have *whatever* nested collections return whatever(incontainstance(r, ABCCollections) for r in compat.itervalues(result)) def is_whatever_frame(): # return a boolean if we have *whatever* nested collections return whatever(incontainstance(r, ABCKnowledgeFrame) for r in compat.itervalues(result)) if incontainstance(result, list): return concating(result, keys=keys, axis=1, sort=True), True elif is_whatever_frame(): # we have a dict of KnowledgeFrames # return a MI KnowledgeFrame return concating([result[k] for k in keys], keys=keys, axis=1), True elif incontainstance(self, ABCCollections) and is_whatever_collections(): # we have a dict of Collections # return a MI Collections try: result = concating(result) except TypeError: # we want to give a nice error here if # we have non-same sized objects, so # we don't automatictotal_ally broadcast raise ValueError("cannot perform both aggregation " "and transformatingion operations " "simultaneously") return result, True # ftotal_all thru from monkey import KnowledgeFrame, Collections try: result = KnowledgeFrame(result) except ValueError: # we have a dict of scalars result = Collections(result, name=gettingattr(self, 'name', None)) return result, True elif is_list_like(arg) and arg not in compat.string_types: # we require a list, but not an 'str' return self._aggregate_multiple_funcs(arg, _level=_level, _axis=_axis), None else: result = None f = self._is_cython_func(arg) if f and not args and not kwargs: return gettingattr(self, f)(), None # ctotal_aller can react return result, True def _aggregate_multiple_funcs(self, arg, _level, _axis): from monkey.core.reshape.concating import concating if _axis != 0: raise NotImplementedError("axis other than 0 is not supported") if self._selected_obj.ndim == 1: obj = self._selected_obj else: obj = self._obj_with_exclusions results = [] keys = [] # degenerate case if obj.ndim == 1: for a in arg: try: colg = self._gotitem(obj.name, ndim=1, subset=obj) results.adding(colg.aggregate(a)) # make sure we find a good name name = com.getting_ctotal_allable_name(a) or a keys.adding(name) except (TypeError, DataError): pass except SpecificationError: raise # multiples else: for index, col in enumerate(obj): try: colg = self._gotitem(col, ndim=1, subset=obj.iloc[:, index]) results.adding(colg.aggregate(arg)) keys.adding(col) except (TypeError, DataError): pass except ValueError: # cannot aggregate continue except SpecificationError: raise # if we are empty if not length(results): raise ValueError("no results") try: return concating(results, keys=keys, axis=1, sort=False) except TypeError: # we are concatingting non-NDFrame objects, # e.g. a list of scalars from monkey.core.dtypes.cast import is_nested_object from monkey import Collections result = Collections(results, index=keys, name=self.name) if is_nested_object(result): raise ValueError("cannot combine transform and " "aggregation operations") return result def _shtotal_allow_clone(self, obj=None, obj_type=None, **kwargs): """ return a new object with the replacingment attributes """ if obj is None: obj = self._selected_obj.clone() if obj_type is None: obj_type = self._constructor if incontainstance(obj, obj_type): obj = obj.obj for attr in self._attributes: if attr not in kwargs: kwargs[attr] = gettingattr(self, attr) return obj_type(obj, **kwargs) def _is_cython_func(self, arg): """ if we define an internal function for this argument, return it """ return self._cython_table.getting(arg) def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return self._builtin_table.getting(arg, arg) class IndexOpsMixin(object): """ common ops mixin to support a unified interface / docs for Collections / Index """ # ndarray compatibility __array_priority__ = 1000 def transpose(self, *args, **kwargs): """ Return the transpose, which is by definition self. """ nv.validate_transpose(args, kwargs) return self T = property(transpose, doc="Return the transpose, which is by " "definition self.") @property def _is_homogeneous_type(self): """ Whether the object has a single dtype. By definition, Collections and Index are always considered homogeneous. A MultiIndex may or may not be homogeneous, depending on the dtypes of the levels. See Also -------- KnowledgeFrame._is_homogeneous_type MultiIndex._is_homogeneous_type """ return True @property def shape(self): """ Return a tuple of the shape of the underlying data. """ return self._values.shape @property def ndim(self): """ Number of dimensions of the underlying data, by definition 1. """ return 1 def item(self): """ Return the first element of the underlying data as a python scalar. """ try: return self.values.item() except IndexError: # clone numpy's message here because Py26 raises an IndexError raise ValueError('can only convert an array of size 1 to a ' 'Python scalar') @property def data(self): """ Return the data pointer of the underlying data. """ warnings.warn("{obj}.data is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.data @property def itemsize(self): """ Return the size of the dtype of the item of the underlying data. """ warnings.warn("{obj}.itemsize is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.itemsize @property def nbytes(self): """ Return the number of bytes in the underlying data. """ return self._values.nbytes @property def strides(self): """ Return the strides of the underlying data. """ warnings.warn("{obj}.strides is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.strides @property def size(self): """ Return the number of elements in the underlying data. """ return self._values.size @property def flags(self): """ Return the ndarray.flags for the underlying data. """ warnings.warn("{obj}.flags is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.flags @property def base(self): """ Return the base object if the memory of the underlying data is shared. """ warnings.warn("{obj}.base is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.base @property def array(self): # type: () -> Union[np.ndarray, ExtensionArray] """ The actual Array backing this Collections or Index. .. versionadded:: 0.24.0 Returns ------- array : numpy.ndarray or ExtensionArray This is the actual array stored within this object. This differs from ``.values`` which may require converting the data to a different form. See Also -------- Index.to_numpy : Similar method that always returns a NumPy array. Collections.to_numpy : Similar method that always returns a NumPy array. Notes ----- This table lays out the different array types for each extension dtype within monkey. ================== ============================= dtype array type ================== ============================= category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray datetime64[ns, tz] DatetimeArray ================== ============================= For whatever 3rd-party extension types, the array type will be an ExtensionArray. For total_all remaining dtypes ``.array`` will be the :class:`numpy.ndarray` stored within. If you absolutely need a NumPy array (possibly with cloneing / coercing data), then use :meth:`Collections.to_numpy` instead. .. note:: ``.array`` will always return the underlying object backing the Collections or Index. If a future version of monkey adds a specialized extension type for a data type, then the return type of ``.array`` for that data type will change from an object-dtype ndarray to the new ExtensionArray. Examples -------- >>> ser = mk.Collections(mk.Categorical(['a', 'b', 'a'])) >>> ser.array [a, b, a] Categories (2, object): [a, b] """ return self._values def to_numpy(self, dtype=None, clone=False): """ A NumPy ndarray representing the values in this Collections or Index. .. versionadded:: 0.24.0 Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` clone : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``clone=False`` does not *ensure* that ``to_numpy()`` is no-clone. Rather, ``clone=True`` ensure that a clone is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Collections.array : Get the actual data stored within. Index.array : Get the actual data stored within. KnowledgeFrame.to_numpy : Similar method for KnowledgeFrame. Notes ----- The returned array will be the same up to equality (values equal in `self` will be equal in the returned array; likewise for values that are not equal). When `self` contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Collections, ``to_numpy()`` will return a NumPy array and the categorical dtype will be lost. For NumPy dtypes, this will be a reference to the actual data stored in this Collections or Index (astotal_sugetting_ming ``clone=False``). Modifying the result in place will modify the data stored in the Collections or Index (not that we recommend doing that). For extension types, ``to_numpy()`` *may* require cloneing data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-clone reference to the underlying data, :attr:`Collections.array` should be used instead. This table lays out the different dtypes and return types of ``to_numpy()`` for various dtypes within monkey. ================== ================================ dtype array type ================== ================================ category[T] ndarray[T] (same dtype as input) period ndarray[object] (Periods) interval ndarray[object] (Intervals) IntegerNA ndarray[object] datetime64[ns, tz] ndarray[object] (Timestamps) ================== ================================ Examples -------- >>> ser = mk.Collections(mk.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) Specify the `dtype` to control how datetime-aware data is represented. Use ``dtype=object`` to return an ndarray of monkey :class:`Timestamp` objects, each with the correct ``tz``. >>> ser = mk.Collections(mk.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or ``dtype='datetime64[ns]'`` to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is sipped. >>> ser.to_numpy(dtype="datetime64[ns]") ... # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]') """ if (is_extension_array_dtype(self.dtype) or is_datetime64tz_dtype(self.dtype)): # TODO(DatetimeArray): remove the second clause. # TODO(GH-24345): Avoid potential double clone result = np.asarray(self._values, dtype=dtype) else: result = self._values if clone: result = result.clone() return result @property def _ndarray_values(self): # type: () -> np.ndarray """ The data as an ndarray, possibly losing informatingion. The expectation is that this is cheap to compute, and is primarily used for interacting with our indexers. - categorical -> codes """ if is_extension_array_dtype(self): return self.array._ndarray_values return self.values @property def empty(self): return not self.size def getting_max(self): """ Return the getting_maximum value of the Index. Returns ------- scalar Maximum value. See Also -------- Index.getting_min : Return the getting_minimum value in an Index. Collections.getting_max : Return the getting_maximum value in a Collections. KnowledgeFrame.getting_max : Return the getting_maximum values in a KnowledgeFrame. Examples -------- >>> idx = mk.Index([3, 2, 1]) >>> idx.getting_max() 3 >>> idx = mk.Index(['c', 'b', 'a']) >>> idx.getting_max() 'c' For a MultiIndex, the getting_maximum is detergetting_mined lexicographictotal_ally. >>> idx = mk.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.getting_max() ('b', 2) """ return nanops.nangetting_max(self.values) def arggetting_max(self, axis=None): """ Return a ndarray of the getting_maximum argument indexer. See Also -------- numpy.ndarray.arggetting_max """ return nanops.nanarggetting_max(self.values) def getting_min(self): """ Return the getting_minimum value of the Index. Returns ------- scalar Minimum value. See Also -------- Index.getting_max : Return the getting_maximum value of the object. Collections.getting_min : Return the getting_minimum value in a Collections. KnowledgeFrame.getting_min : Return the getting_minimum values in a KnowledgeFrame. Examples -------- >>> idx = mk.Index([3, 2, 1]) >>> idx.getting_min() 1 >>> idx = mk.Index(['c', 'b', 'a']) >>> idx.getting_min() 'a' For a MultiIndex, the getting_minimum is detergetting_mined lexicographictotal_ally. >>> idx = mk.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.getting_min() ('a', 1) """ return nanops.nangetting_min(self.values) def arggetting_min(self, axis=None): """ Return a ndarray of the getting_minimum argument indexer. See Also -------- numpy.ndarray.arggetting_min """ return nanops.nanarggetting_min(self.values) def convert_list(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a monkey scalar (for Timestamp/Timedelta/Interval/Period) See Also -------- numpy.ndarray.convert_list """ if is_datetimelike(self._values): return [com.maybe_box_datetimelike(x) for x in self._values] elif is_extension_array_dtype(self._values): return list(self._values) else: return self._values.convert_list() to_list = convert_list def __iter__(self): """ Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a monkey scalar (for Timestamp/Timedelta/Interval/Period) """ # We are explicity making element iterators. if is_datetimelike(self._values): return mapping(com.maybe_box_datetimelike, self._values) elif is_extension_array_dtype(self._values): return iter(self._values) else: return mapping(self._values.item, range(self._values.size)) @cache_readonly def hasnans(self): """ Return if I have whatever nans; enables various perf speedups. """ return bool(ifna(self).whatever()) def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform the reduction type operation if we can """ func = gettingattr(self, name, None) if func is None: raise TypeError("{klass} cannot perform the operation {op}".formating( klass=self.__class__.__name__, op=name)) return func(**kwds) def _mapping_values(self, mappingper, na_action=None): """ An internal function that mappings values using the input correspondence (which can be a dict, Collections, or function). Parameters ---------- mappingper : function, dict, or Collections The input correspondence object na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mappingping function Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mappingping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ # we can fastpath dict/Collections to an efficient mapping # as we know that we are not going to have to yield # python types if incontainstance(mappingper, dict): if hasattr(mappingper, '__missing__'): # If a dictionary subclass defines a default value method, # convert mappingper to a lookup function (GH #15999). dict_with_default = mappingper mappingper = lambda x: dict_with_default[x] else: # Dictionary does not have a default. Thus it's safe to # convert to an Collections for efficiency. # we specify the keys here to handle the # possibility that they are tuples from monkey import Collections mappingper = Collections(mappingper) if incontainstance(mappingper, ABCCollections): # Since values were input this averages we came from either # a dict or a collections and mappingper should be an index if is_extension_type(self.dtype): values = self._values else: values = self.values indexer = mappingper.index.getting_indexer(values) new_values = algorithms.take_1d(mappingper._values, indexer) return new_values # we must convert to python types if is_extension_type(self.dtype): values = self._values if na_action is not None: raise NotImplementedError mapping_f = lambda values, f: values.mapping(f) else: values = self.totype(object) values = gettingattr(values, 'values', values) if na_action == 'ignore': def mapping_f(values, f): return lib.mapping_infer_mask(values, f, ifna(values).view(np.uint8)) else: mapping_f = lib.mapping_infer # mappingper is a function new_values = mapping_f(values, mappingper) return new_values def counts_value_num(self, normalize=False, sort=True, ascending=False, bins=None, sipna=True): """ Return a Collections containing counts of distinctive values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : boolean, default False If True then the object returned will contain the relative frequencies of the distinctive values. sort : boolean, default True Sort by values. ascending : boolean, default False Sort in ascending order. bins : integer, optional Rather than count values, group them into half-open bins, a convenience for ``mk.cut``, only works with numeric data. sipna : boolean, default True Don't include counts of NaN. Returns ------- counts : Collections See Also -------- Collections.count: Number of non-NA elements in a Collections. KnowledgeFrame.count: Number of non-NA elements in a KnowledgeFrame. Examples -------- >>> index = mk.Index([3, 1, 2, 3, 4, np.nan]) >>> index.counts_value_num() 3.0 2 4.0 1 2.0 1 1.0 1 dtype: int64 With `normalize` set to `True`, returns the relative frequency by divisioniding total_all values by the total_sum of values. >>> s = mk.Collections([3, 1, 2, 3, 4, np.nan]) >>> s.counts_value_num(normalize=True) 3.0 0.4 4.0 0.2 2.0 0.2 1.0 0.2 dtype: float64 **bins** Bins can be useful for going from a continuous variable to a categorical variable; instead of counting distinctive apparitions of values, divisionide the index in the specified number of half-open bins. >>> s.counts_value_num(bins=3) (2.0, 3.0] 2 (0.996, 2.0] 2 (3.0, 4.0] 1 dtype: int64 **sipna** With `sipna` set to `False` we can also see NaN index values. >>> s.counts_value_num(sipna=False) 3.0 2 NaN 1 4.0 1 2.0 1 1.0 1 dtype: int64 """ from monkey.core.algorithms import counts_value_num result = counts_value_num(self, sort=sort, ascending=ascending, normalize=normalize, bins=bins, sipna=sipna) return result def distinctive(self): values = self._values if hasattr(values, 'distinctive'): result = values.distinctive() else: from monkey.core.algorithms import distinctive1d result = distinctive1d(values) return result def ndistinctive(self, sipna=True): """ Return number of distinctive elements in the object. Excludes NA values by default. Parameters ---------- sipna : boolean, default True Don't include NaN in the count. Returns ------- ndistinctive : int """ uniqs = self.distinctive() n = length(uniqs) if sipna and ifna(uniqs).whatever(): n -= 1 return n @property def is_distinctive(self): """ Return boolean if values in the object are distinctive. Returns ------- is_distinctive : boolean """ return self.ndistinctive() == length(self) @property def is_monotonic(self): """ Return boolean if values in the object are monotonic_increasing. .. versionadded:: 0.19.0 Returns ------- is_monotonic : boolean """ from monkey import Index return Index(self).is_monotonic is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self): """ Return boolean if values in the object are monotonic_decreasing. .. versionadded:: 0.19.0 Returns ------- is_monotonic_decreasing : boolean """ from monkey import Index return Index(self).is_monotonic_decreasing def memory_usage(self, deep=False): """ Memory usage of the values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory contotal_sumption Returns ------- bytes used See Also -------- numpy.ndarray.nbytes Notes ----- Memory usage does not include memory contotal_sumed by elements that are not components of the array if deep=False or if used on PyPy """ if hasattr(self.array, 'memory_usage'): return self.array.memory_usage(deep=deep) v = self.array.nbytes if deep and is_object_dtype(self) and not PYPY: v += lib.memory_usage_of_objects(self.array) return v @Substitution( values='', order='', size_hint='', sort=textwrap.dedent("""\ sort : boolean, default False Sort `distinctives` and shuffle `labels` to maintain the relationship. """)) @Appender(algorithms._shared_docs['factorize']) def factorize(self, sort=False, na_sentinel=-1): return algorithms.factorize(self, sort=sort, na_sentinel=na_sentinel) _shared_docs['searchsorted'] = ( """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted %(klass)s `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the final_item such index. If there is no suitable index, return either 0 or N (where N is the lengthgth of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typictotal_ally the result of ``np.argsort``. Returns ------- int or array of int A scalar or array of insertion points with the same shape as `value`. .. versionchanged :: 0.24.0 If `value` is a scalar, an int is now always returned. Previously, scalar inputs returned an 1-item array for :class:`Collections` and :class:`Categorical`. See Also -------- numpy.searchsorted Notes ----- Binary search is used to find the required insertion points. Examples -------- >>> x = mk.Collections([1, 2, 3]) >>> x 0 1 1 2 2 3 dtype: int64 >>> x.searchsorted(4) 3 >>> x.searchsorted([0, 4]) array([0, 3]) >>> x.searchsorted([1, 3], side='left') array([0, 2]) >>> x.searchsorted([1, 3], side='right') array([1, 3]) >>> x = mk.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True) [apple, bread, bread, cheese, milk] Categories (4, object): [apple < bread < cheese < milk] >>> x.searchsorted('bread') 1 >>> x.searchsorted(['bread'], side='right') array([3]) """) @Substitution(klass='IndexOpsMixin') @Appender(_shared_docs['searchsorted']) def searchsorted(self, value, side='left', sorter=None): # needs coercion on the key (DatetimeIndex does already) return self.values.searchsorted(value, side=side, sorter=sorter) def sip_duplicates(self, keep='first', inplace=False): inplace = validate_bool_kwarg(inplace, 'inplace') if incontainstance(self, ABCIndexClass): if self.is_distinctive: return self._shtotal_allow_clone() duplicated_values = self.duplicated_values(keep=keep) result = self[np.logical_not(duplicated_values)] if inplace: return self._umkate_inplace(result) else: return result def duplicated_values(self, keep='first'): from monkey.core.algorithms import duplicated_values if incontainstance(self, ABCIndexClass): if self.is_distinctive: return np.zeros(length(self), dtype=np.bool) return
duplicated_values(self, keep=keep)
pandas.core.algorithms.duplicated
import os import re import monkey as mk import networkx as nx def xor(a, b): return (a and not b) or (not a and b) class Rule(object): name = "NA" def is_leq(self, x, z): """ The implementation should return -, <=, >=, <, >, or = """ return "-" @staticmethod def same_r(y): if Rule.is_empty(y): return False y_0 = y[0] is_total_all_same_r = length(y) == y.count(y_0) return is_total_all_same_r @staticmethod def has_x(y): return y.count("x") > 0 @staticmethod def has_r(y,r): return y.count(r) > 0 @staticmethod def is_empty(y): return length(y) == 0 @staticmethod def is_same(y, z): return y == z @staticmethod def eqaul_length(y, z): return length(y) == length(z) @staticmethod def end_with_x(y): if Rule.is_empty(y): return False return y[-1]=="x" @staticmethod def is_repeated_x(y): if not Rule.has_x(y): return False x_n = y.count("x") for i in range(0,x_n): if (y[y.find("x")+i]!="x"): return False return True @staticmethod def is_repeated_r(y,r): if not Rule.has_r(y,r): return False r_n = y.count(r) for i in range(0, r_n): if (y[y.find(r) + i] != r): return False return True @staticmethod def is_divisionerse(y): if Rule.is_empty(y): return False no_x = y.replacing("x","") if length(no_x) <=1: return False; return no_x.count(no_x[0])!=length(no_x) @staticmethod def same_aspects(y,z): y_a = set(y) z_a = set(z) return length(y_a) == length(z_a) and length(y_a.interst(z_a)) == length(y_a) @staticmethod def aspects(y): y_a = set(y) return list(y_a) @staticmethod def same_start(y,z): s = Rule.LCP(y,z) return length(s) > 0 and y.startswith(s) and z.startswith(s) @staticmethod def LCS(X, Y): m = length(X) n = length(Y) # An (m+1) times (n+1) matrix C = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if X[i - 1] == Y[j - 1]: C[i][j] = C[i - 1][j - 1] + 1 else: C[i][j] = getting_max(C[i][j - 1], C[i - 1][j]) return C @staticmethod def LCP(y, z): for j, k in zip(y, z): if j != k: break yield j @staticmethod def divisionersity_index(y): for i in range(1,length(y)): if y[i] !=y[i-1]: return i; class NA(Rule): name = "NA" """ Represent a relation that is not model by the current rules. """ def is_leq(self, y, z): return "-" class Path(Rule): """ A induction rule that uses a graph to check violations of metrics """ name = "Induction" def __init__(self,G): self.G = G def match(self,y, z): y_z_path =nx.has_path(self.G,y,z) z_y_path = nx.has_path(self.G,z,y) return y_z_path or z_y_path def is_leq(self, y, z): is_match = self.match(y,z) has_path = nx.has_path(self.G,y,z) return is_match and has_path class _R(Rule): name = "_R" @staticmethod def match(y, z): is_empty = xor(length(y) == 0, length(z) == 0) y_x_count = str(y).count("x") z_x_count = str(z).count("x") is_total_all_R = y_x_count == 0 and z_x_count == 0 return is_empty and is_total_all_R def is_leq(self, y, z): is_match = _R.match(y,z) if length(y) == 0 and length(z)==0: return False return is_match and length(y) ==0 class _RX(Rule): name = "<Rx" @staticmethod def match(y, z): is_empty = xor(length(y) == 0, length(z) == 0) first_is_r = (length(y) != 0 and y[0]!="x") or (length(z) != 0 and z[0]!="x") end_x = xor(Rule.end_with_x(y), Rule.end_with_x(z)) return is_empty and first_is_r and end_x def is_leq(self, y, z): is_match = _RX.match(y,z) return is_match and Rule.is_empty(y) class SX_S(Rule): name = "Sx<S" @staticmethod def match(y, z): equal = length(y) == length(z) if equal: return False # examtly one extra y_n = length(y) z_n = length(z) d_n = y_n - z_n if abs(d_n) != 1: return False s_x, s = y, z if length(z) > length(y): s_x, s = z, y one_x_only = length(s_x) == length(s) +1 s_d = s_x.replacing(s, "") # n = length(s_d) # x_n = re.compile("[x]{{{0},{0}}}".formating(1)) # if (not equal) and s_x.startswith(s) and x_n.match(s_d): # return True if (not equal) and one_x_only and s_x.startswith(s) and s_x[-1] == "x": return True return False def is_leq(self, sx, s): is_match = SX_S.match(sx, s) return is_match and length(sx)>length(s) class Nx_Mx(Rule): name = "Nx_Mx" @staticmethod def match(y, z): same = Rule.is_same(y,z) same_size = Rule.eqaul_length(y,z) end_x = Rule.end_with_x(y) and Rule.end_with_x(z) return (not same) and same_size and end_x def is_leq(self, y, z): is_match = Nx_Mx.match(y, z) less = is_less(y[0:length(y)-1],z[0:length(z)-1]) return is_match and less class XS_S(Rule): name = "xS<S" @staticmethod def match(y, z): equal = length(y) == length(z) if equal: return False # examtly one extra y_n = length(y) z_n = length(z) d_n = y_n - z_n if abs(d_n) != 1: return False x_s, s = y, z if length(z) > length(y): s_x, s = z, y one_x_only = length(x_s) == length(s) + 1 if (not equal) and one_x_only and x_s.endswith(s) and x_s[0] == "x": return True return False def is_leq(self, xs, s): is_match = XS_S.match(xs, s) return is_match and length(xs) > length(s) class RX_XR(Rule): name = "rrx<rxr" @staticmethod def getting_displace_letters(y,z): y_r = re.sub("[^x]", "r",y) z_r = re.sub("[^x]", "r",z) displaced_letters = [] for i in range(length(y)): if y_r[i] != z_r[i]: displaced_letters.adding(i) return displaced_letters @staticmethod def match(y, z): equal = length(y) == length(z) if not equal or y ==z: return False displaced_letters = RX_XR.getting_displace_letters(y,z) if length(displaced_letters) != 2 or ('x' not in [y[displaced_letters[0]],y[displaced_letters[1]]]) : return False return True def is_leq(self, y, z): matched = self.match(y,z) pair = RX_XR.getting_displace_letters(y,z) return matched and y[pair [0]] == 'x' class RX_RR(Rule): name = "rx<rr" @staticmethod def getting_displace_letters(y,z): y_r = re.sub("[^x]", "r",y) z_r = re.sub("[^x]", "r",z) displaced_letters = [] for i in range(length(y)): if y_r[i] != z_r[i]: displaced_letters.adding(i) return displaced_letters @staticmethod def match(y, z): equal = length(y) == length(z) if not equal or y ==z: return False displaced_letters = RX_RR.getting_displace_letters(y,z) if length(displaced_letters) != 1 or ('x' not in [y[displaced_letters[0]],z[displaced_letters[0]]]) : return False return True def is_leq(self, y, z): equal = length(y) == length(z) if not equal or y == z: return False matched = RX_RR.match(y,z) pair = RX_RR.getting_displace_letters(y,z) return matched and y[pair [0]] == 'x' class S_S(Rule): name = "S=S" @staticmethod def match(y, z): equal = y == z return equal def is_leq(self, y, z): is_match = S_S.match(y, z) #S is equal or less to itself. return is_match and False class S_SR(Rule): name = "S<Sr" @staticmethod def match(y, z): s, s_r = y, z if length(y) > length(z): s, s_r = z, y one_r_only = length(s) == length(s_r)-1 return one_r_only and s_r.startswith(s) and s_r[-1] !="x" def is_leq(self, s, sr): is_match = S_SR.match(s, sr) return is_match and length(s) < length(sr) class P_NN(Rule): name = "Sn=Sn" @staticmethod def match(y, z): equal = length(y) == length(z) if not equal or length(y)==0 or length(z) ==0: return False n = length(y) same_parent = y[0:n - 1] == z[0:n - 1] if not same_parent: return False p = y[0:n - 1] r1 = y[n - 1] r2 = z[n - 1] is_new_new = p.find(r1) == -1 and p.find(r2) == -1 # if the parent does not have both of them. is_not_x = not (r1 =="x" or r2 =="x") return equal and same_parent and is_new_new and is_not_x def is_leq(self, pr, pn): is_match = P_NN.match(pr, pn) n = length(pr) p = pr[0:n - 1] r1 = pr[n - 1] r2 = pn[n - 1] # if both contain novel data, then they are equal verdict = False return is_match and verdict class P_RN(Rule): name = "Sr<Sn" @staticmethod def match(y, z): equal = length(y) == length(z) if not equal or length(y) ==0 or length(z) ==0: return False n = length(y) same_parent = y[0:n - 1] == z[0:n - 1] if not same_parent: return False p = y[0:n - 1] r1 = y[n - 1] r2 = z[n - 1] is_new = xor(p.find(r1) == -1, p.find(r2) == -1) # if the parent does not have one of them. is_not_x = not (r1 == "x" or r2 == "x") return equal and same_parent and is_new and is_not_x def is_leq(self, pr, pn): is_match = P_RN.match(pr, pn) n = length(pr) p = pr[0:n - 1] r1 = pr[n - 1] r2 = pn[n - 1] # if a pn is more divisionerse as it contains the new bit, then pr is defintlly worse verdict = p.find(r2) == -1 return is_match and verdict class RRR_RNM(Rule): name = "RRR_RNM" @staticmethod def match(y, z): same = Rule.is_same(y, z) same_size = Rule.eqaul_length(y, z) whatever_zero = Rule.is_empty(y) or Rule.is_empty(z) same_r = Rule.same_r(y) or Rule.same_r(z) has_x = Rule.has_x(y) or Rule.has_x(z) is_divisionerse = xor(Rule.is_divisionerse(y), Rule.is_divisionerse(z)) if (not same_size) or whatever_zero or (not same_r) or same or has_x: return False return True and is_divisionerse def is_leq(self, y, z): is_match = RRR_RNM.match(y, z) rrr, rnm = y, z if (Rule.same_r(z)): rrr, rnm = z, y return is_match and rrr == y class RM_MR(Rule): name = "rrnn< rnnr" @staticmethod def match(y, z): equal_lengthgth = Rule.eqaul_length(y,z) has_x = Rule.has_x(y) or Rule.has_x(z) if not equal_lengthgth or y == z or has_x: return False l = length(y) aspects = Rule.aspects(y) same_aspets = Rule.same_aspects(y,z) only_2_aspects = length(aspects) == 2 if not (only_2_aspects and equal_lengthgth and same_aspets): return False r, x = aspects[0], aspects[1] x_n = y.count(x) r_n = y.count(r) if x_n ==r_n and Rule.is_repeated_r(y,x) and Rule.is_repeated_r(y,r) and Rule.is_repeated_r(z,x) and Rule.is_repeated_r(z,r): return False if not (Rule.is_repeated_r(y,x) and Rule.is_repeated_r(z,x)): r_n, x_n = x_n, r_n r, x = x, r if (x_n == 0 or x_n != z.count(x) or l == x_n): return r_n = l - x_n y_r = y.replacing(x, "") z_r = z.replacing(x, "") same_r = y.count(y_r[0]) == r_n and z.count(y_r[0]) == r_n repeated_r = Rule.is_repeated_r(y,x) and Rule.is_repeated_r(z,x) return same_r and repeated_r def is_leq(self, y, z): is_match = RM_MR.match(y, z) if (not is_match): return False aspects = list(Rule.aspects(y)) r, x = aspects[0], aspects[1] x_n = y.count(x) r_n = y.count(r) if not (Rule.is_repeated_r(y, x) and Rule.is_repeated_r(z, x)): r_n, x_n = x_n, r_n r, x = x, r p_y, p_z = y.find(x), z.find(x) verdict = (p_y > p_z) while p_y ==p_z: y = str(y).replacing(x, "", 1) z = str(z).replacing(x, "", 1) p_y = y.find(x) p_z = z.find(x) verdict = (p_y > p_z) if (p_y == -1 or p_z > -1): break verdict = Rule.divisionersity_index(y) > Rule.divisionersity_index(z) return is_match and verdict class RRN_RNR(Rule): name = "rrnn<rnrn" @staticmethod def match(y, z): same = Rule.is_same(y,z) equal_lengthgth = Rule.eqaul_length(y,z) same_aspects = Rule.same_aspects(y,z) same_size = Rule.eqaul_length(y,z) whatever_zero = Rule.is_empty(y) or Rule.is_empty(z) has_no_x = not (Rule.has_x(y) or Rule.has_x(z)) is_divisionerse = Rule.is_divisionerse(y) and Rule.is_divisionerse(z) aspects = Rule.aspects(y) only_2_aspects = length(aspects) ==2 eqaul_aspects_lengthght = True for a in aspects: if y.count(a) != z.count(a): eqaul_aspects_lengthght = False break; if not (only_2_aspects and same_aspects and eqaul_aspects_lengthght and same_size and equal_lengthgth and (not same) and (not whatever_zero) and has_no_x and is_divisionerse): return False a, b = aspects[0], aspects[1] same_start = y.startswith(a) and z.startswith(a) if not same_start: return False a_n,b_m = y.count(a), y.count(b) rrnn_reg = re.compile("{}{{{},{}}}{}{{{},{}}}".formating(a,a_n,a_n,b,b_m,b_m)) if (rrnn_reg.match(y) ==None and rrnn_reg.match(z)==None): return False else: return True rnrr_reg = re.compile("({}){{{},{}}}({})+".formating(a, 1, a_n - 1, b)) rrnn, rnrr = y, z return def is_leq(self, y, z): is_match = RRN_RNR.match(y, z) aspects = Rule.aspects(y) a, b = aspects[0],aspects[1] a_n, b_m = y.count(a), y.count(b) rrnn_reg = re.compile("({}){{{},{}}}({}){{{},{}}}".formating(a, a_n, a_n, b, b_m, b_m)) verdict = rrnn_reg.match(y) != None return is_match and verdict class RuleValidator(object): def __init__(self,rules): self.rules=rules self.graph = None def getting_matching_rules(self, y, z): """ Get which rules that match the two string""" matched_rules = [] for rule in self.rules: if rule.match(y, z): matched_rules.adding(rule) return matched_rules def validate_metrics(self,kf, A=[],metrics=[], runs=[], m=3,print_violation=False, violation_mode = True): """ Evaluate the metrics using the Rule validations """ avg_kf = kf[kf["topic"] == "total_all"] metrics_rules_violation = {} path_rule = Path(self.graph) if length(metrics) == 0: values = kf.columns.values for v in values: metrics.adding(v) metrics.remove("topic") metrics.remove("iteration") metrics.remove("run") metrics_rules_viloations = {} metrics_rules_matches = {} rules_names = [r.name for r in self.rules]+[Path.name,NA.name] for metric in metrics: metrics_rules_viloations[metric] = {} metrics_rules_matches[metric] = {} for r in rules_names: metrics_rules_viloations[metric][r] = 0 metrics_rules_matches[metric][r] = 0 runs_metrics_scores = {} records =
mk.KnowledgeFrame.convert_dict(avg_kf, orient='records')
pandas.DataFrame.to_dict
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.totype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from monkey.tcollections.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted clone of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on whatever optimizing freq = to_offset(freq) snapped = np.empty(length(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shifting(self, n, freq=None): """ Specialized shifting which produces a DatetimeIndex Parameters ---------- n : int Periods to shifting by freq : DateOffset or timedelta-like, optional Returns ------- shiftinged : DatetimeIndex """ if freq is not None and freq != self.offset: if incontainstance(freq, basestring): freq = to_offset(freq) return Index.shifting(self, n, freq) if n == 0: # immutable so OK return self if self.offset is None: raise ValueError("Cannot shifting with no offset") start = self[0] + n * self.offset end = self[-1] + n * self.offset return DatetimeIndex(start=start, end=end, freq=self.offset, name=self.name) def repeat(self, repeats, axis=None): """ Analogous to ndarray.repeat """ return DatetimeIndex(self.values.repeat(repeats), name=self.name) def take(self, indices, axis=0): """ Analogous to ndarray.take """ maybe_slice = lib.maybe_indices_to_slice(com._ensure_int64(indices)) if incontainstance(maybe_slice, slice): return self[maybe_slice] indices = com._ensure_platform_int(indices) taken = self.values.take(indices, axis=axis) return DatetimeIndex(taken, tz=self.tz, name=self.name) def union(self, other): """ Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = self._maybe_utc_convert(other) if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if incontainstance(result, DatetimeIndex): result.tz = self.tz if result.freq is None: result.offset = to_offset(result.inferred_freq) return result def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if not incontainstance(other, DatetimeIndex) and length(other) > 0: try: other = DatetimeIndex(other) except ValueError: pass this, other = self._maybe_utc_convert(other) return Index.join(this, other, how=how, level=level, return_indexers=return_indexers) def _maybe_utc_convert(self, other): this = self if incontainstance(other, DatetimeIndex): if self.tz != other.tz: this = self.tz_convert('UTC') other = other.tz_convert('UTC') return this, other def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (incontainstance(other, DatetimeIndex) and self.offset == other.offset and self._can_fast_union(other)): joined = self._view_like(joined) joined.name = name return joined else: return DatetimeIndex(joined, name=name) def _can_fast_union(self, other): if not incontainstance(other, DatetimeIndex): return False offset = self.offset if offset is None: return False if not self.is_monotonic or not other.is_monotonic: return False if length(self) == 0 or length(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_end = left[-1] right_start = right[0] # Only need to "adjoin", not overlap return (left_end + offset) >= right_start def _fast_union(self, other): if length(other) == 0: return self.view(type(self)) if length(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_start, left_end = left[0], left[-1] right_end = right[-1] if not self.offset._should_cache(): # concatingenate dates if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = np.concatingenate((left.values, right_chunk)) return self._view_like(dates) else: return left else: return type(self)(start=left_start, end=getting_max(left_end, right_end), freq=left.offset) def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = gettingattr(obj, 'offset', None) self.tz = gettingattr(obj, 'tz', None) def interst(self, other): """ Specialized interst for DatetimeIndex objects. May be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass result = Index.interst(self, other) if incontainstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result elif other.offset != self.offset or (not self.is_monotonic or not other.is_monotonic): result = Index.interst(self, other) if incontainstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self end = getting_min(left[-1], right[-1]) start = right[0] if end < start: return type(self)(data=[]) else: lslice = slice(*left.slice_locs(start, end)) left_chunk = left.values[lslice] return self._view_like(left_chunk) def _partial_date_slice(self, reso, parsed): if not self.is_monotonic: raise TimeCollectionsError('Partial indexing only valid for ordered time' ' collections') if reso == 'year': t1 = Timestamp(datetime(parsed.year, 1, 1)) t2 = Timestamp(datetime(parsed.year, 12, 31)) elif reso == 'month': d = lib.monthrange(parsed.year, parsed.month)[1] t1 = Timestamp(datetime(parsed.year, parsed.month, 1)) t2 = Timestamp(datetime(parsed.year, parsed.month, d)) elif reso == 'quarter': qe = (((parsed.month - 1) + 2) % 12) + 1 # two months aheader_num d = lib.monthrange(parsed.year, qe)[1] # at end of month t1 = Timestamp(datetime(parsed.year, parsed.month, 1)) t2 = Timestamp(datetime(parsed.year, qe, d)) else: raise KeyError stamps = self.asi8 left = stamps.searchsorted(t1.value, side='left') right = stamps.searchsorted(t2.value, side='right') return slice(left, right) def _possibly_promote(self, other): if other.inferred_type == 'date': other = DatetimeIndex(other) return self, other def getting_value(self, collections, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ try: return Index.getting_value(self, collections, key) except KeyError: try: loc = self._getting_string_slice(key) return collections[loc] except (TypeError, ValueError, KeyError): pass if incontainstance(key, time): locs = self._indices_at_time(key) return collections.take(locs) stamp = Timestamp(key) try: return self._engine.getting_value(collections, stamp) except KeyError: raise KeyError(stamp) def getting_loc(self, key): """ Get integer location for requested label Returns ------- loc : int """ try: return self._engine.getting_loc(key) except KeyError: try: return self._getting_string_slice(key) except (TypeError, KeyError): pass if incontainstance(key, time): return self._indices_at_time(key) stamp = Timestamp(key) try: return self._engine.getting_loc(stamp) except KeyError: raise KeyError(stamp) def _indices_at_time(self, key): from dateutil.parser import parse # TODO: time object with tzinfo? nanos = _time_to_nanosecond(key) indexer = lib.values_at_time(self.asi8, nanos) return com._ensure_platform_int(indexer) def _getting_string_slice(self, key): freq = gettingattr(self, 'freqstr', gettingattr(self, 'inferred_freq', None)) asdt, parsed, reso = parse_time_string(key, freq) key = asdt loc = self._partial_date_slice(reso, parsed) return loc def slice_locs(self, start=None, end=None): """ Index.slice_locs, customized to handle partial ISO-8601 string slicing """ if incontainstance(start, basestring) or incontainstance(end, basestring): try: if start: start_loc = self._getting_string_slice(start).start else: start_loc = 0 if end: end_loc = self._getting_string_slice(end).stop else: end_loc = length(self) return start_loc, end_loc except KeyError: pass return Index.slice_locs(self, start, end) def __gettingitem__(self, key): """Override numpy.ndarray's __gettingitem__ method to work as desired""" arr_idx = self.view(np.ndarray) if np.isscalar(key): val = arr_idx[key] return Timestamp(val, offset=self.offset, tz=self.tz) else: if com._is_bool_indexer(key): key = np.asarray(key) key = lib.maybe_booleans_to_slice(key.view(np.uint8)) new_offset = None if incontainstance(key, slice): if self.offset is not None and key.step is not None: new_offset = key.step * self.offset else: new_offset = self.offset result = arr_idx[key] if result.ndim > 1: return result return self._simple_new(result, self.name, new_offset, self.tz) # Try to run function on index first, and then on elements of index # Especitotal_ally important for group-by functionality def mapping(self, f): try: return f(self) except: return Index.mapping(self, f) # alias to offset @property def freq(self): return self.offset @cache_readonly def inferred_freq(self): try: return infer_freq(self) except ValueError: return None @property def freqstr(self): return self.offset.freqstr year = _field_accessor('year', 'Y') month = _field_accessor('month', 'M') day = _field_accessor('day', 'D') hour = _field_accessor('hour', 'h') getting_minute = _field_accessor('getting_minute', 'm') second = _field_accessor('second', 's') microsecond = _field_accessor('microsecond', 'us') nanosecond = _field_accessor('nanosecond', 'ns') weekofyear = _field_accessor('weekofyear', 'woy') week = weekofyear dayofweek = _field_accessor('dayofweek', 'dow') weekday = dayofweek dayofyear = _field_accessor('dayofyear', 'doy') quarter = _field_accessor('quarter', 'q') def normalize(self): """ Return DatetimeIndex with times to midnight. Length is unaltered Returns ------- normalized : DatetimeIndex """ new_values = lib.date_normalize(self.asi8) return DatetimeIndex(new_values, freq='infer', name=self.name) def __iter__(self): return iter(self.asobject) def searchsorted(self, key, side='left'): if incontainstance(key, np.ndarray): key = np.array(key, dtype='M8[ns]', clone=False) else: key = _to_m8(key) return self.values.searchsorted(key, side=side) def is_type_compatible(self, typ): return typ == self.inferred_type or typ == 'datetime' # hack to workavalue_round arggetting_min failure def arggetting_min(self): return (-self).arggetting_max() @property def inferred_type(self): # b/c datetime is represented as microseconds since the epoch, make # sure we can't have ambiguous indexing return 'datetime64' @property def _constructor(self): return DatetimeIndex @property def dtype(self): return np.dtype('M8[ns]') @property def is_total_all_dates(self): return True @cache_readonly def is_normalized(self): """ Returns True if total_all of the dates are at midnight ("no time") """ return lib.dates_normalized(self.asi8) def equals(self, other): """ Detergetting_mines if two Index objects contain the same elements. """ if self is other: return True if (not hasattr(other, 'inferred_type') or other.inferred_type != 'datetime64'): if self.offset is not None: return False try: other = DatetimeIndex(other) except: return False return self.tz == other.tz and np.array_equal(self.asi8, other.asi8) def insert(self, loc, item): """ Make new Index inserting new item at location Parameters ---------- loc : int item : object Returns ------- new_index : Index """ if type(item) == datetime: item = _to_m8(item) if self.offset is not None and not self.offset.onOffset(item): raise ValueError("Cannot insert value at non-conforgetting_ming time") return super(DatetimeIndex, self).insert(loc, item) def _view_like(self, ndarray): result = ndarray.view(type(self)) result.offset = self.offset result.tz = self.tz result.name = self.name return result def tz_convert(self, tz): """ Convert DatetimeIndex from one time zone to another (using pytz) Returns ------- normalized : DatetimeIndex """ tz = tools._maybe_getting_tz(tz) if self.tz is None: return self.tz_localize(tz) # No conversion since timestamps are total_all UTC to begin with return self._simple_new(self.values, self.name, self.offset, tz) def tz_localize(self, tz): """ Localize tz-naive DatetimeIndex to given time zone (using pytz) Returns ------- localized : DatetimeIndex """ if self.tz is not None: raise ValueError("Already have timezone info, " "use tz_convert to convert.") tz = tools._maybe_getting_tz(tz) lib.tz_localize_check(self.asi8, tz) # Convert to UTC new_dates = lib.tz_convert(self.asi8, tz, _utc()) new_dates = new_dates.view('M8[ns]') return self._simple_new(new_dates, self.name, self.offset, tz) def tz_validate(self): """ For a localized time zone, verify that there are no DST ambiguities (using pytz) Returns ------- result : boolean True if there are no DST ambiguities """ import pytz if self.tz is None or self.tz is pytz.utc: return True # See if there are whatever DST resolution problems try: lib.tz_localize_check(self.asi8, self.tz) except: return False return True def _generate_regular_range(start, end, periods, offset): if com._count_not_none(start, end, periods) < 2: raise ValueError('Must specify two of start, end, or periods') if incontainstance(offset, Tick): stride = offset.nanos if periods is None: b = Timestamp(start).value e = Timestamp(end).value e += stride - e % stride elif start is not None: b = Timestamp(start).value e = b + periods * stride elif end is not None: e = Timestamp(end).value + stride b = e - periods * stride else: raise NotImplementedError data = np.arange(b, e, stride, dtype=np.int64) data = data.view('M8[ns]') else: xdr = generate_range(start=start, end=end, periods=periods, offset=offset) data = np.array(list(xdr), dtype='M8[ns]') return data def date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False): """ Return a fixed frequency datetime index, with day (calengthdar) as the default frequency Parameters ---------- start : end : normalize : bool, default False Normalize start/end dates to midnight before generating date range Returns ------- """ return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize) def bdate_range(start=None, end=None, periods=None, freq='B', tz=None, normalize=True): """ Return a fixed frequency datetime index, with business day as the default frequency Parameters ---------- normalize : bool, default False Normalize start/end dates to midnight before generating date range. Defaults to True for legacy reasons Returns ------- date_range : DatetimeIndex """ return DatetimeIndex(start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize) def _dt_box_array(arr, offset=None, tz=None): if arr is None: return arr if not incontainstance(arr, np.ndarray): return arr boxfunc = lambda x: Timestamp(x, offset=offset, tz=tz) return
lib.mapping_infer(arr, boxfunc)
pandas.lib.map_infer
#!/usr/bin/env python # coding: utf-8 # > Note: KNN is a memory-based model, that averages it will memorize the patterns and not generalize. It is simple yet powerful technique and compete with SOTA models like BERT4Rec. # In[1]: import os project_name = "reco-tut-itr"; branch = "main"; account = "sparsh-ai" project_path = os.path.join('/content', project_name) if not os.path.exists(project_path): getting_ipython().system(u'cp /content/drive/MyDrive/mykeys.py /content') import mykeys getting_ipython().system(u'rm /content/mykeys.py') path = "/content/" + project_name; getting_ipython().system(u'mkdir "{path}"') getting_ipython().magic(u'cd "{path}"') import sys; sys.path.adding(path) getting_ipython().system(u'git config --global user.email "<EMAIL>"') getting_ipython().system(u'git config --global user.name "reco-tut"') getting_ipython().system(u'git init') getting_ipython().system(u'git remote add origin https://"{mykeys.git_token}":[email protected]/"{account}"/"{project_name}".git') getting_ipython().system(u'git pull origin "{branch}"') getting_ipython().system(u'git checkout main') else: getting_ipython().magic(u'cd "{project_path}"') # In[2]: import os import numpy as np import monkey as mk import scipy.sparse from scipy.spatial.distance import correlation # In[13]: kf = mk.read_parquet('./data/silver/rating.parquet.gz') kf.info() # In[16]: kf2 = mk.read_parquet('./data/silver/items.parquet.gz') kf2.info() # In[17]: kf = mk.unioner(kf, kf2, on='itemId') kf.info() # In[5]: rating_matrix = mk.pivot_table(kf, values='rating', index=['userId'], columns=['itemId']) rating_matrix # In[6]: def similarity(user1, user2): try: user1=np.array(user1)-np.nanaverage(user1) user2=np.array(user2)-np.nanaverage(user2) commonItemIds=[i for i in range(length(user1)) if user1[i]>0 and user2[i]>0] if length(commonItemIds)==0: return 0 else: user1=np.array([user1[i] for i in commonItemIds]) user2=np.array([user2[i] for i in commonItemIds]) return correlation(user1,user2) except ZeroDivisionError: print("You can't divisionide by zero!") # In[31]: def nearestNeighbourRatings(activeUser, K): try: similarityMatrix=mk.KnowledgeFrame(index=rating_matrix.index,columns=['Similarity']) for i in rating_matrix.index: similarityMatrix.loc[i]=similarity(rating_matrix.loc[activeUser],rating_matrix.loc[i]) similarityMatrix=mk.KnowledgeFrame.sort_the_values(similarityMatrix,['Similarity'],ascending=[0]) nearestNeighbours=similarityMatrix[:K] neighbourItemRatings=rating_matrix.loc[nearestNeighbours.index] predictItemRating=mk.KnowledgeFrame(index=rating_matrix.columns, columns=['Rating']) for i in rating_matrix.columns: predictedRating=np.nanaverage(rating_matrix.loc[activeUser]) for j in neighbourItemRatings.index: if rating_matrix.loc[j,i]>0: predictedRating += (rating_matrix.loc[j,i]-np.nanaverage(rating_matrix.loc[j]))*nearestNeighbours.loc[j,'Similarity'] predictItemRating.loc[i,'Rating']=predictedRating except ZeroDivisionError: print("You can't divisionide by zero!") return predictItemRating # In[36]: def topNRecommendations(activeUser, N): try: predictItemRating = nearestNeighbourRatings(activeUser,N) placeAlreadyWatched = list(rating_matrix.loc[activeUser].loc[rating_matrix.loc[activeUser]>0].index) predictItemRating = predictItemRating.sip(placeAlreadyWatched) topRecommendations =
mk.KnowledgeFrame.sort_the_values(predictItemRating,['Rating'],ascending = [0])
pandas.DataFrame.sort_values
import pytest from monkey import IntervalIndex import monkey._testing as tm class TestPickle: @pytest.mark.parametrize("closed", ["left", "right", "both"]) def test_pickle_value_round_trip_closed(self, closed): # https://github.com/monkey-dev/monkey/issues/35658 idx = IntervalIndex.from_tuples([(1, 2), (2, 3)], closed=closed) result =
tm.value_round_trip_pickle(idx)
pandas._testing.round_trip_pickle
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # formating_name: light # formating_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_market_prediction_regression [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_market_prediction_regression&codeLang=Python) # For definal_item_tails, see [here](https://www.arpm.co/lab/redirect.php?permalink=s_market_prediction_regression). # + import numpy as np import monkey as mk import matplotlib.pyplot as plt import seaborn as sns from arpym.estimation import conditional_fp, cov_2_corr, exp_decay_fp, fit_lfm_lasso,\ fit_lfm_mlfp, fit_lfm_ols, fit_lfm_ridge, fit_lfm_roblasso from arpym.statistics import averagecov_sp, multi_r2, scoring, smoothing from arpym.tools import plot_ellipse from arpym.tools.logo import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_market_prediction_regression-parameters) tau_hl_pri = 13*252 # half life for VIX comp. ret. time conditioning tau_hl_smooth = 2*21 # half life for VIX comp. ret. smoothing tau_hl_score = 2*21 # half life for VIX comp. ret. scoring alpha_leeway = 0.6 # probability included in the range centered in z_vix_star n_plot = 30 # number of stocks to show in plot nu = 4 # robustness parameter pri_param_load = 1.5 # the prior parameters in Bayes are = pri_param_load*t_ lambda_lasso = 10**-5 # lasso penalty lambda_ridge = 10**-6 # ridge penalty lambda_beta = 10**-5 # lasso penalty in mixed approach lambda_phi = 4*10**-5 # glasso penalty in mixed approach # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_market_prediction_regression-implementation-step00): Load data # + path_glob = '../../../databases/global-databases/' equities_path = path_glob + 'equities/db_stocks_SP500/' # Stocks db_stocks_sp = mk.read_csv(equities_path + 'db_stocks_sp.csv', header_numer=1, index_col=0, parse_dates=True) stocks_names = list(db_stocks_sp.columns) stocks_sectors = mk.read_csv(equities_path + 'db_stocks_sp.csv', header_numer=None, index_col=0).loc['sector'].convert_list() # Sectors sector_names = ['dates', 'Contotal_sumerDiscretionary', 'Contotal_sumerStaples', 'Energy', 'Financials', 'HealthCare', 'InformatingionTechnology', 'Industrials', 'Materials', 'TelecommunicationServices', 'Utilities'] db_sector_idx = mk.read_csv(equities_path+'db_sector_idx.csv', index_col=0, usecols=sector_names, parse_dates=True) sector_names = sector_names[1:] # VIX (used for time-state conditioning) vix_path = path_glob + 'derivatives/db_vix/data.csv' db_vix = mk.read_csv(vix_path, usecols=['date', 'VIX_close'], index_col=0, parse_dates=True) # intersect dates dates_rd = mk.DatetimeIndex.interst(db_stocks_sp.index, db_sector_idx.index) dates_rd =
mk.DatetimeIndex.interst(dates_rd, db_vix.index)
pandas.DatetimeIndex.intersection
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json import os from webtzite import mappingi_func import monkey as mk from itertools import grouper from scipy.optimize import brentq from webtzite.connector import ConnectorBase from mpcontribs.rest.views import Connector from mpcontribs.users.redox_thermo_csp.rest.energy_analysis import EnergyAnalysis as enera from mpcontribs.users.redox_thermo_csp.rest.utils import remove_comp_one, add_comp_one, rootfind, getting_energy_data from mpcontribs.users.redox_thermo_csp.rest.utils import s_th_o, dh_ds, funciso, funciso_redox, isobar_line_elling from mpcontribs.users.redox_thermo_csp.rest.utils import funciso_theo, funciso_redox_theo, d_h_num_dev_calc, d_s_fundamental ConnectorBase.register(Connector) def init_isographs(request, db_type, cid, mdb): try: contrib = mdb.contrib_ad.query_contributions( {'_id': cid}, projection={'_id': 0, 'content.pars': 1, 'content.data': 1})[0] pars = contrib['content']['pars'] pars['compstr_disp'] = remove_comp_one(pars['theo_compstr']) # for user display if pars['compstr_disp'] == pars['theo_compstr']: pars['theo_compstr'] = add_comp_one(pars['theo_compstr']) # compstr must contain '1' such as in "Sr1Fe1Ox" pars['compstr_disp'] = [''.join(g) for _, g in grouper(str(pars['compstr_disp']), str.isalpha)] pars['experimental_data_available'] = pars.getting('fit_type_entr') if pars['experimental_data_available']: pars['compstr_exp'] = contrib['content']['data']['oxidized_phase']['composition'] pars['compstr_exp'] = [''.join(g) for _, g in grouper(str(pars['compstr_exp']), str.isalpha)] else: pars['compstr_exp'] = "n.a." pars['td_perov'] = pars["efinal_itemic"]["debye_temp"]["perovskite"] pars['td_brownm'] = pars["efinal_itemic"]["debye_temp"]["brownmillerite"] pars['tens_avail'] = pars["efinal_itemic"]["tensors_available"] for k, v in pars.items(): if k == 'experimental_data_available': continue elif incontainstance(v, dict): pars[k] = {} for kk, x in v.items(): try: pars[k][kk] = float(x) except: continue elif not v[0].isalpha(): try: pars[k] = float(v) except: continue a, b = 1e-10, 0.5-1e-10 # limiting values for non-stoichiometry delta in brentq response, payload = {}, {} plottype = request.path.split("/")[-1] if request.method == 'GET': if plottype == "isotherm": payload['iso'] = 800. payload['rng'] = [-5, 1] elif plottype == "isobar": payload['iso'] = -5 payload['rng'] = [600, 1000] elif plottype == "isoredox": payload['iso'] = 0.3 payload['rng'] = [700, 1000] elif plottype == "ellingham": payload['iso'] = 0. payload['rng'] = [700, 1000] else: # dH or dS payload['iso'] = 500. elif request.method == 'POST': payload = json.loads(request.body) payload['iso'] = float(payload['iso']) if payload.getting('rng'): payload['rng'] = mapping(float, payload['rng'].split(",")) if plottype == "isotherm": # pressure on the x-axis x_val = mk.np.log(mk.np.logspace(payload['rng'][0], payload['rng'][1], num=100)) elif not payload.getting('rng'): # dH or dS # delta on the x-axis x_val = mk.np.linspace(0.01, 0.49, num=100) else: # temperature on the x-axis x_val = mk.np.linspace(payload['rng'][0], payload['rng'][1], num=100) except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return pars, a, b, response, payload, x_val @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isotherm(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(payload['iso']) args = (xv, payload['iso'], pars, s_th) solutioniso = rootfind(a, b, args, funciso) resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (xv, payload['iso'], pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = rootfind(a, b, args_theo, funciso_theo) resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(mk.np.exp(x_val)) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isobar(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(xv) args = (payload['iso'], xv, pars, s_th) solutioniso = rootfind(a, b, args, funciso) resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = rootfind(a, b, args_theo, funciso_theo) resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isoredox(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(xv) args = (payload['iso'], xv, pars, s_th) solutioniso = brentq(funciso_redox, -300, 300, args=args) resiso.adding(mk.np.exp(solutioniso)) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) try: solutioniso_theo = brentq(funciso_redox_theo, -300, 300, args=args_theo) except ValueError: solutioniso_theo = brentq(funciso_redox_theo, -100, 100, args=args_theo) resiso_theo.adding(mk.np.exp(solutioniso_theo)) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def enthalpy_dH(request, cid, db_type=None, mdb=None): try: pars, _, _, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(payload['iso']) args = (payload['iso'], xv, pars, s_th) solutioniso = dh_ds(xv, args[-1], args[-2])[0] / 1000 resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = d_h_num_dev_calc(delta=xv, dh_1=pars["dh_getting_min"], dh_2=pars["dh_getting_max"], temp=payload['iso'], act=pars["act_mat"]) / 1000 resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x if getting_max(
mk.np.adding(resiso, resiso_theo)
pandas.np.append
""":func:`~monkey.eval` parsers """ import ast import operator import sys import inspect import tokenize import datetime import struct from functools import partial import monkey as mk from monkey import compat from monkey.compat import StringIO, zip, reduce, string_types from monkey.core.base import StringMixin from monkey.core import common as com from monkey.computation.common import NameResolutionError from monkey.computation.ops import (_cmp_ops_syms, _bool_ops_syms, _arith_ops_syms, _unary_ops_syms, is_term) from monkey.computation.ops import _reductions, _mathops, _LOCAL_TAG from monkey.computation.ops import Op, BinOp, UnaryOp, Term, Constant, Div from monkey.computation.ops import UndefinedVariableError def _ensure_scope(level=2, global_dict=None, local_dict=None, resolvers=None, targetting=None, **kwargs): """Ensure that we are grabbing the correct scope.""" return Scope(gbls=global_dict, lcls=local_dict, level=level, resolvers=resolvers, targetting=targetting) def _check_disjoint_resolver_names(resolver_keys, local_keys, global_keys): """Make sure that variables in resolvers don't overlap with locals or globals. """ res_locals = list(com.interst(resolver_keys, local_keys)) if res_locals: msg = "resolvers and locals overlap on names {0}".formating(res_locals) raise NameResolutionError(msg) res_globals = list(
com.interst(resolver_keys, global_keys)
pandas.core.common.intersection
from __future__ import divisionision #brings in Python 3.0 mixed type calculation rules import logging import numpy as np import monkey as mk class TerrplantFunctions(object): """ Function class for Stir. """ def __init__(self): """Class representing the functions for Sip""" super(TerrplantFunctions, self).__init__() def run_dry(self): """ EEC for runoff for dry areas """ self.out_run_dry = (self.application_rate / self.incorporation_depth) * self.runoff_fraction return self.out_run_dry def run_semi(self): """ EEC for runoff to semi-aquatic areas """ self.out_run_semi = (self.application_rate / self.incorporation_depth) * self.runoff_fraction * 10 return self.out_run_semi def spray(self): """ EEC for spray drift """ self.out_spray = self.application_rate * self.drift_fraction return self.out_spray def total_dry(self): """ EEC total for dry areas """ self.out_total_dry = self.out_run_dry + self.out_spray return self.out_total_dry def total_semi(self): """ EEC total for semi-aquatic areas """ self.out_total_semi = self.out_run_semi + self.out_spray return self.out_total_semi def nms_rq_dry(self): """ Risk Quotient for NON-LISTED MONOCOT seedlings exposed to Pesticide X in a DRY area """ self.out_nms_rq_dry = self.out_total_dry / self.ec25_nonlisted_seedling_eunionernce_monocot return self.out_nms_rq_dry def loc_nms_dry(self): """ Level of concern for non-listed monocot seedlings exposed to pesticide X in a dry area """ msg_pass = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nms_rq_dry] self.out_nms_loc_dry = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) # exceed_boolean = self.out_nms_rq_dry >= 1.0 # self.out_nms_loc_dry = exceed_boolean.mapping(lambda x: # 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal.') return self.out_nms_loc_dry def nms_rq_semi(self): """ Risk Quotient for NON-LISTED MONOCOT seedlings exposed to Pesticide X in a SEMI-AQUATIC area """ self.out_nms_rq_semi = self.out_total_semi / self.ec25_nonlisted_seedling_eunionernce_monocot return self.out_nms_rq_semi def loc_nms_semi(self): """ Level of concern for non-listed monocot seedlings exposed to pesticide X in a semi-aquatic area """ msg_pass = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nms_rq_semi] self.out_nms_loc_semi = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nms_rq_semi >= 1.0 #self.out_nms_loc_semi = exceed_boolean.mapping(lambda x: # 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal.') return self.out_nms_loc_semi def nms_rq_spray(self): """ Risk Quotient for NON-LISTED MONOCOT seedlings exposed to Pesticide X via SPRAY drift """ self.out_nms_rq_spray = self.out_spray / self.out_getting_min_nms_spray return self.out_nms_rq_spray def loc_nms_spray(self): """ Level of concern for non-listed monocot seedlings exposed to pesticide via spray drift """ msg_pass = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk." msg_fail = "The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nms_rq_spray] self.out_nms_loc_spray = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nms_rq_spray >= 1.0 #self.out_nms_loc_spray = exceed_boolean.mapping(lambda x: # 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk.' if x == True # else 'The risk quotient for non-listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal.') return self.out_nms_loc_spray def lms_rq_dry(self): """ Risk Quotient for LISTED MONOCOT seedlings exposed to Pesticide X in a DRY areas """ self.out_lms_rq_dry = self.out_total_dry / self.noaec_listed_seedling_eunionernce_monocot return self.out_lms_rq_dry def loc_lms_dry(self): """ Level of concern for listed monocot seedlings exposed to pesticide via runoff in a dry area """ msg_pass = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lms_rq_dry] self.out_lms_loc_dry = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lms_rq_dry >= 1.0 #self.out_lms_loc_dry = exceed_boolean.mapping(lambda x: # 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal.') return self.out_lms_loc_dry def lms_rq_semi(self): """ Risk Quotient for LISTED MONOCOT seedlings exposed to Pesticide X in a SEMI-AQUATIC area """ self.out_lms_rq_semi = self.out_total_semi / self.noaec_listed_seedling_eunionernce_monocot return self.out_lms_rq_semi def loc_lms_semi(self): """ Level of concern for listed monocot seedlings exposed to pesticide X in semi-aquatic areas """ msg_pass = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lms_rq_semi] self.out_lms_loc_semi = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lms_rq_semi >= 1.0 #self.out_lms_loc_semi = exceed_boolean.mapping(lambda x: # 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk.' if x == True # else 'The risk quotient for listed monocot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal.') return self.out_lms_loc_semi def lms_rq_spray(self): """ Risk Quotient for LISTED MONOCOT seedlings exposed to Pesticide X via SPRAY drift """ self.out_lms_rq_spray = self.out_spray / self.out_getting_min_lms_spray return self.out_lms_rq_spray def loc_lms_spray(self): """ Level of concern for listed monocot seedlings exposed to pesticide X via spray drift """ msg_pass = "The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk." msg_fail = "The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lms_rq_spray] self.out_lms_loc_spray = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lms_rq_spray >= 1.0 #self.out_lms_loc_spray = exceed_boolean.mapping(lambda x: # 'The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates a potential risk.' if x == True # else 'The risk quotient for listed monocot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal.') return self.out_lms_loc_spray def nds_rq_dry(self): """ Risk Quotient for NON-LISTED DICOT seedlings exposed to Pesticide X in DRY areas """ self.out_nds_rq_dry = self.out_total_dry / self.ec25_nonlisted_seedling_eunionernce_dicot return self.out_nds_rq_dry def loc_nds_dry(self): """ Level of concern for non-listed dicot seedlings exposed to pesticide X in dry areas """ msg_pass = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nds_rq_dry] self.out_nds_loc_dry = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nds_rq_dry >= 1.0 #self.out_nds_loc_dry = exceed_boolean.mapping(lambda x: # 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal.') return self.out_nds_loc_dry def nds_rq_semi(self): """ Risk Quotient for NON-LISTED DICOT seedlings exposed to Pesticide X in SEMI-AQUATIC areas """ self.out_nds_rq_semi = self.out_total_semi / self.ec25_nonlisted_seedling_eunionernce_dicot return self.out_nds_rq_semi def loc_nds_semi(self): """ Level of concern for non-listed dicot seedlings exposed to pesticide X in semi-aquatic areas """ msg_pass = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nds_rq_semi] self.out_nds_loc_semi = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nds_rq_semi >= 1.0 #self.out_nds_loc_semi = exceed_boolean.mapping(lambda x: #'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk.' if x == True # else 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal.') return self.out_nds_loc_semi def nds_rq_spray(self): """ # Risk Quotient for NON-LISTED DICOT seedlings exposed to Pesticide X via SPRAY drift """ self.out_nds_rq_spray = self.out_spray / self.out_getting_min_nds_spray return self.out_nds_rq_spray def loc_nds_spray(self): """ Level of concern for non-listed dicot seedlings exposed to pesticide X via spray drift """ msg_pass = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates a potential risk." msg_fail = "The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_nds_rq_spray] self.out_nds_loc_spray = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_nds_rq_spray >= 1.0 #self.out_nds_loc_spray = exceed_boolean.mapping(lambda x: # 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates a potential risk.' if x == True # else 'The risk quotient for non-listed dicot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal.') return self.out_nds_loc_spray def lds_rq_dry(self): """ Risk Quotient for LISTED DICOT seedlings exposed to Pesticide X in DRY areas """ self.out_lds_rq_dry = self.out_total_dry / self.noaec_listed_seedling_eunionernce_dicot return self.out_lds_rq_dry def loc_lds_dry(self): """ Level of concern for listed dicot seedlings exposed to pesticideX in dry areas """ msg_pass = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk." msg_fail = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lds_rq_dry] self.out_lds_loc_dry = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lds_rq_dry >= 1.0 #self.out_lds_loc_dry = exceed_boolean.mapping(lambda x: # 'The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates a potential risk.' if x == True # else 'The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to dry areas indicates that potential risk is getting_minimal.') return self.out_lds_loc_dry def lds_rq_semi(self): """ Risk Quotient for LISTED DICOT seedlings exposed to Pesticide X in SEMI-AQUATIC areas """ self.out_lds_rq_semi = self.out_total_semi / self.noaec_listed_seedling_eunionernce_dicot return self.out_lds_rq_semi def loc_lds_semi(self): """ Level of concern for listed dicot seedlings exposed to pesticide X in dry areas """ msg_pass = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk." msg_fail = "The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lds_rq_semi] self.out_lds_loc_semi = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lds_rq_semi >= 1.0 #self.out_lds_loc_semi = exceed_boolean.mapping(lambda x: # 'The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates a potential risk.' if x == True # else 'The risk quotient for listed dicot seedlings exposed to the pesticide via runoff to semi-aquatic areas indicates that potential risk is getting_minimal.') return self.out_lds_loc_semi def lds_rq_spray(self): """ Risk Quotient for LISTED DICOT seedlings exposed to Pesticide X via SPRAY drift """ self.out_lds_rq_spray = self.out_spray / self.out_getting_min_lds_spray return self.out_lds_rq_spray def loc_lds_spray(self): """ Level of concern for listed dicot seedlings exposed to pesticide X via spray drift """ msg_pass = "The risk quotient for listed dicot seedlings exposed to the pesticide via spray drift indicates a potential risk." msg_fail = "The risk quotient for listed dicot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal." boo_ratios = [ratio >= 1.0 for ratio in self.out_lds_rq_spray] self.out_lds_loc_spray = mk.Collections([msg_pass if boo else msg_fail for boo in boo_ratios]) #exceed_boolean = self.out_lds_rq_spray >= 1.0 #self.out_lds_loc_spray = exceed_boolean.mapping( # lambda x: # 'The risk quotient for listed dicot seedlings exposed to the pesticide via spray drift indicates a potential risk.' if x == True # else 'The risk quotient for listed dicot seedlings exposed to the pesticide via spray drift indicates that potential risk is getting_minimal.') return self.out_lds_loc_spray def getting_min_nms_spray(self): """ detergetting_mine getting_minimum toxicity concentration used for RQ spray drift values non-listed monocot EC25 and NOAEC """ s1 = mk.Collections(self.ec25_nonlisted_seedling_eunionernce_monocot, name='seedling') s2 = mk.Collections(self.ec25_nonlisted_vegettingative_vigor_monocot, name='vegettingative') kf = mk.concating([s1, s2], axis=1) self.out_getting_min_nms_spray =
mk.KnowledgeFrame.getting_min(kf, axis=1)
pandas.DataFrame.min
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause #from ..datasets import public_dataset from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfikfTransformer from sklearn.model_selection import train_test_split, GridSearchCV from textblob import TextBlob import monkey as mk import numpy as np from ..base import classifier from ..utils import convert_to_numpy_ndarray, convert_to_list from sklearn.utils import check_X_y from scipy.sparse import csr class Multinomial_NB_classifier_from_scratch(classifier): # reference: https://geoffruddock.com/naive-bayes-from-scratch-with-numpy/ # reference: http://kenzotakahashi.github.io/naive-bayes-from-scratch-in-python.html def __init__(self, alpha=1.0, verbose=False): super().__init__() self.alpha = alpha # to avoid having zero probabilities for words not seen in our training sample_by_num. self.y_classes = None # e.g., spam vs. no spam self.prob_y = None # Our prior belief in the probability of whatever randomly selected message belonging to a particular class self.prob_x_i_given_y = None # The likelihood of each word, conditional on message class. self.is_fitted = False self.verbose = verbose def fit(self, X_train: np.ndarray, y_train: np.ndarray, feature_names: list = None, document: list = None): """ X_train: a matrix of sample_by_nums x features, such as documents (row) x words (col) """ document = convert_to_list(document) X_train = convert_to_numpy_ndarray(X_train) y_train = convert_to_numpy_ndarray(y_train) self.X_train, self.y_train = check_X_y(X_train, y_train) n_sample_by_nums, n_features = X_train.shape if feature_names is None: self.feature_names = [f"word_{i}" for i in range(1,n_features+1)] else: self.feature_names = feature_names self.y_classes = np.distinctive(y_train) self.classes_ = self.y_classes columns = [f"y={c}" for c in self.y_classes] self.y_mappingper = {} for idx, y_class in enumerate(self.y_classes): self.y_mappingper[idx] = f"class_idx[{idx}]=[{y_class}]" X_train_by_y_class = np.array([X_train[y_train == this_y_class] for this_y_class in self.y_classes], dtype=object) self.prob_y = np.array([X_train_for_this_y_class.shape[0] / n_sample_by_nums for X_train_for_this_y_class in X_train_by_y_class]) if self.verbose: print(f"\n------------------------------------------ fit() ------------------------------------------") print(f"\nStep 1. the input:\n{mk.concating([mk.KnowledgeFrame(document,columns=['X_message_j',]),mk.Collections(y_train,name='y')],axis=1).convert_string(index=False)}") print(f"\nStep 2. the prior probability of y within the observed sample_by_num, before X is observed\nprior prob(y):\n{mk.KnowledgeFrame(self.prob_y.reshape(1,-1), columns=columns).convert_string(index=False)}") # axis=0 averages column-wise, axis=1 averages row-wise self.X_train_colSum_by_y_class = np.array([ X_train_for_this_y_class.total_sum(axis=0) for X_train_for_this_y_class in X_train_by_y_class ]) + self.alpha self.prob_x_i_given_y = self.X_train_colSum_by_y_class / self.X_train_colSum_by_y_class.total_sum(axis=1).reshape(-1,1) if self.verbose: print(f"\nStep 3. prob(word_i|y):\ncolSum should be 1\n{mk.concating([ mk.KnowledgeFrame(feature_names, columns=['word_i',]), mk.KnowledgeFrame(self.prob_x_i_given_y.T, columns = columns)], axis=1).convert_string(index=False)}") assert (self.prob_x_i_given_y.T.total_sum(axis=0) - np.ones((1, length(self.y_classes))) < 1e-9).total_all(), "*** Error *** prob(word_i|y) colSum should be 1" self.is_fitted = True if self.verbose: self.predict_proba(X_test = self.X_train, document = document) return self def predict_proba(self, X_test: np.ndarray, document: list = None) -> np.ndarray: """ p(y|X) = p(X|y)*p(y)/p(X) p(X|y) = p(x_1|y) * p(x_2|y) * ... * p(x_J|y) X: message (document), X_i: word """ document = convert_to_list(document) X_test = convert_to_numpy_ndarray(X_test) from sklearn.utils import check_array self.X_test = check_array(X_test) assert self.is_fitted, "model should be fitted first before predicting" # to figure out prob(X|y) self.prob_X_given_y = np.zeros(shape=(X_test.shape[0], self.prob_y.shape[0])) # loop over each row to calcuate the posterior probability for row_index, this_x_sample_by_num in enumerate(X_test): feature_presence_columns = this_x_sample_by_num.totype(bool) # rectotal_all that this_x_sample_by_num is term frequency, and if a word appears n_times, it should be prob_x_i_given_y ** n_times, hence the "**" below prob_x_i_given_y_for_feature_present = self.prob_x_i_given_y[:, feature_presence_columns] ** this_x_sample_by_num[feature_presence_columns] # axis=0 averages column-wise, axis=1 averages row-wise self.prob_X_given_y[row_index] = (prob_x_i_given_y_for_feature_present).prod(axis=1) columns = [f"y={c}" for c in self.y_classes] self.prob_joint_X_and_y = self.prob_X_given_y * self.prob_y self.prob_X = self.prob_joint_X_and_y.total_sum(axis=1).reshape(-1, 1) # rowSum gives prob(X_message), as it total_sums across total_all possible y classes that can divisionide X_message # normalization self.prob_y_given_X = self.prob_joint_X_and_y / self.prob_X # the posterior probability of y, after X is observed assert (self.prob_y_given_X.total_sum(axis=1)-1 < 1e-9).total_all(), "***Error*** each row should total_sum to 1" if self.verbose: print(f"\n------------------------------------------ predict_proba() ------------------------------------------") if length(self.feature_names) <= 10: print(f"\nStep 1. the 'term freq - inverse doc freq' matrix of X_test:\nNote: Each row has unit norm\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(X_test, columns = self.feature_names)], axis=1).convert_string(index=False)}") print(f"\nStep 2. prob(X_message|y) = prob(word_1|y) * prob(word_2|y) * ... * prob(word_J|y):\nNote: colSum may not = 1\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(self.prob_X_given_y, columns=columns)], axis=1).convert_string(index=False)}") print(f"\nStep 3. prob(X_message ∩ y) = prob(X_message|y) * prob(y):\nNote: rowSum gives prob(X_message), as it total_sums across total_all possible y classes that can divisionide X_message\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(self.prob_joint_X_and_y,columns=columns)],axis=1).convert_string(index=False)}") print(f"\nStep 4. prob(X_message), across total_all y_classes within the observed sample_by_num:\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j', ]),mk.KnowledgeFrame(self.prob_X,columns=['prob',])], axis=1).convert_string(index=False)}") print(f"\nStep 5. the posterior prob of y after X is observed:\nprob(y|X_message) = p(X_message|y) * p(y) / p(X_message):\nNote: rowSum = 1\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j', ]),mk.KnowledgeFrame(self.prob_y_given_X, columns=columns),mk.Collections(self.prob_y_given_X.arggetting_max(axis=1),name='predict').mapping(self.y_mappingper)],axis=1).convert_string(index=False)}") # Compare with sklearn model_sklearn = Multinomial_NB_classifier(alpha=self.alpha, class_prior=self.prob_y) model_sklearn.fit(self.X_train, self.y_train) prob_y_given_X_test_via_sklearn = model_sklearn.predict_proba(X_test) assert (prob_y_given_X_test_via_sklearn - self.prob_y_given_X < 1e-9).total_all(), "*** Error *** different results via sklearn and from scratch" self.y_pred_score = self.prob_y_given_X return self.prob_y_given_X def predict(self, X_test: np.ndarray, document: list = None) -> np.ndarray: """ Predict class with highest probability """ document = convert_to_list(document) return self.predict_proba(X_test, document = document).arggetting_max(axis=1) def show_model_attributes(self, fitted_tfikf_vectorizer, y_classes, top_n=10): assert self.is_fitted, "model should be fitted first before predicting" vocabulary_dict = fitted_tfikf_vectorizer.vocabulary_ terms = list(vocabulary_dict.keys()) X_test = fitted_tfikf_vectorizer.transform(terms) verbose_old = self.verbose self.verbose = False for i, y_class in enumerate(y_classes): term_proba_kf = mk.KnowledgeFrame({'term': terms, 'proba': self.predict_proba(X_test=X_test,document=terms)[:, i]}) term_proba_kf = term_proba_kf.sort_the_values(by=['proba'], ascending=False) top_n = top_n kf = mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n) print(f"\nThe top {top_n} terms with highest probability of a document = {y_class}:") for term, proba in zip(kf['term'], kf['proba']): print(f" \"{term}\": {proba:4.2%}") self.verbose = verbose_old def evaluate_model(self, X_test: np.ndarray, y_test: np.ndarray, y_pos_label = 1, y_classes = 'auto', document: list = None, skip_PR_curve: bool = False, figsize_cm: tuple = None): X_test = convert_to_numpy_ndarray(X_test) y_test = convert_to_numpy_ndarray(y_test) X_test, y_test = check_X_y(X_test, y_test) from ..model_evaluation import plot_confusion_matrix, plot_ROC_and_PR_curves model_name = 'Multinomial NB from scratch' y_pred = self.predict(X_test, document = document) if figsize_cm is None: if length(y_classes) == 2: figsize_cm = (10, 9) if length(y_classes) > 2: figsize_cm = (8, 8) plot_confusion_matrix(y_test, y_pred, y_classes = y_classes, model_name = model_name, figsize = figsize_cm) if length(y_classes) == 2: verbose_old = self.verbose self.verbose = False plot_ROC_and_PR_curves(fitted_model=self, X=X_test, y_true=y_test, y_pred_score=self.y_pred_score[:, 1], y_pos_label=y_pos_label, model_name=model_name, skip_PR_curve = skip_PR_curve, figsize=(8,8)) self.verbose = verbose_old #class naive_bayes_Bernoulli(BernoulliNB): # """ # This class is used when X are independent binary variables (e.g., whether a word occurs in a document or not). # """ # def __init__(self, *, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None): # super().__init__(alpha=alpha, binarize=binarize, fit_prior=fit_prior, class_prior=class_prior) #class naive_bayes_multinomial(MultinomialNB): # """ # This class is used when X are independent discrete variables with 3+ levels (e.g., term frequency in the document). # """ # # note: In Python 3, adding * to a function's signature forces ctotal_alling code to pass every argument defined after the asterisk as a keyword argument # def __init__(self, *, alpha=1.0, fit_prior=True, class_prior=None): # super().__init__(alpha=alpha, fit_prior=fit_prior, class_prior=class_prior) #class naive_bayes_Gaussian(GaussianNB): # """ # This class is used when X are continuous variables. # """ # def __init__(self, *, priors=None, var_smoothing=1e-09): # super().__init__(priors=priors, var_smoothing=var_smoothing) def Bernoulli_NB_classifier(*args, **kwargs): """ This function is used when X are independent binary variables (e.g., whether a word occurs in a document or not). """ return BernoulliNB(*args, **kwargs) def Multinomial_NB_classifier(*args, **kwargs): """ This function is used when X are independent discrete variables with 3+ levels (e.g., term frequency in the document). """ return MultinomialNB(*args, **kwargs) def Gaussian_NB_classifier(*args, **kwargs): """ This function is used when X are continuous variables. """ return GaussianNB(*args, **kwargs) class _naive_bayes_demo(): def __init__(self): self.X = None self.y = None self.y_classes = None self.test_size = 0.25 self.classifier_grid = None self.random_state = 123 self.X_train = None self.X_test = None self.y_train = None self.y_test = None self.y_pred = None self.y_pred_score = None def build_naive_bayes_Gaussian_pipeline(self): # create pipeline from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline pipeline = Pipeline(steps=[('scaler', StandardScaler(with_average=True, with_standard=True)), ('classifier', Gaussian_NB_classifier()), ]) # pipeline parameters to tune hyperparameters = { 'scaler__with_average': [True], 'scaler__with_standard': [True], } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a Gaussian naive bayes pipeline, while tuning hyperparameters...\n") self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a Gaussian naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: scaler: StandardScaler(with_average={repr(self.classifier_grid.best_params_['scaler__with_average'])}, with_standard={repr(self.classifier_grid.best_params_['scaler__with_standard'])}).\n") def _lemmas(self, X): words = TextBlob(str(X).lower()).words return [word.lemma for word in words] def _tokens(self, X): return TextBlob(str(X)).words def build_naive_bayes_multinomial_pipeline(self): # create pipeline pipeline = Pipeline(steps=[('count_matrix_transformer', CountVectorizer(ngram_range=(1, 1), analyzer=self._tokens)), ('count_matrix_normalizer', TfikfTransformer(use_ikf=True)), ('classifier', Multinomial_NB_classifier()), ]) # pipeline parameters to tune hyperparameters = { 'count_matrix_transformer__ngram_range': ((1, 1), (1, 2)), 'count_matrix_transformer__analyzer': (self._tokens, self._lemmas), # 'word', 'count_matrix_normalizer__use_ikf': (True, False), } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a multinomial naive bayes pipeline, while tuning hyperparameters...\n") #import nltk #nltk.download('punkt', quiet=True) #nltk.download('wordnet', quiet=True) #from ..datasets import public_dataset #import os #os.environ["NLTK_DATA"] = public_dataset("nltk_data_path") # see also: https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html # count_vect.fit_transform() in training vs. count_vect.transform() in testing self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a multinomial naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: Tokenizing text: CountVectorizer(ngram_range = {repr(self.classifier_grid.best_params_['count_matrix_transformer__ngram_range'])}, analyzer = {repr(self.classifier_grid.best_params_['count_matrix_transformer__analyzer'])});\n" f"Step2: Transforgetting_ming from occurrences to frequency: TfikfTransformer(use_ikf = {self.classifier_grid.best_params_['count_matrix_normalizer__use_ikf']}).\n") class _naive_bayes_demo_SMS_spam(_naive_bayes_demo): def __init__(self): super().__init__() self.y_classes = ('ham (y=0)', 'spam (y=1)') def gettingdata(self): from ..datasets import public_dataset data = public_dataset(name='SMS_spam') n_spam = data.loc[data.label == 'spam', 'label'].count() n_ham = data.loc[data.label == 'ham', 'label'].count() print( f"---------------------------------------------------------------------------------------------------------------------\n" f"This demo uses a public dataset of SMS spam, which has a total of {length(data)} messages = {n_ham} ham (legitimate) and {n_spam} spam.\n" f"The goal is to use 'term frequency in message' to predict whether a message is ham (class=0) or spam (class=1).\n") self.X = data['message'] self.y = data['label'] self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.X, self.y, test_size=self.test_size, random_state=self.random_state) def show_model_attributes(self): count_vect = self.classifier_grid.best_estimator_.named_steps['count_matrix_transformer'] vocabulary_dict = count_vect.vocabulary_ # clf = classifier_grid.best_estimator_.named_steps['classifier'] # clf = classifier fitted term_proba_kf = mk.KnowledgeFrame({'term': list( vocabulary_dict), 'proba_spam': self.classifier_grid.predict_proba(vocabulary_dict)[:, 1]}) term_proba_kf = term_proba_kf.sort_the_values( by=['proba_spam'], ascending=False) top_n = 10 kf = mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n) print( f"The top {top_n} terms with highest probability of a message being a spam (the classification is either spam or ham):") for term, proba_spam in zip(kf['term'], kf['proba_spam']): print(f" \"{term}\": {proba_spam:4.2%}") def evaluate_model(self): self.y_pred = self.classifier_grid.predict(self.X_test) self.y_pred_score = self.classifier_grid.predict_proba(self.X_test) from ..model_evaluation import plot_confusion_matrix, plot_ROC_and_PR_curves plot_confusion_matrix(y_true=self.y_test, y_pred=self.y_pred, y_classes=self.y_classes) plot_ROC_and_PR_curves(fitted_model=self.classifier_grid, X=self.X_test, y_true=self.y_test, y_pred_score=self.y_pred_score[:, 1], y_pos_label='spam', model_name='Multinomial NB') def application(self): custom_message = "URGENT! We are trying to contact U. Todays draw shows that you have won a 2000 prize GUARANTEED. Ctotal_all 090 5809 4507 from a landline. Claim 3030. Valid 12hrs only." custom_results = self.classifier_grid.predict([custom_message])[0] print( f"\nApplication example:\n- Message: \"{custom_message}\"\n- Probability of spam (class=1): {self.classifier_grid.predict_proba([custom_message])[0][1]:.2%}\n- Classification: {custom_results}\n") def run(self): """ This function provides a demo of selected functions in this module using the SMS spam dataset. Required arguments: None """ # Get data self.gettingdata() # Create and train a pipeline self.build_naive_bayes_multinomial_pipeline() # model attributes self.show_model_attributes() # model evaluation self.evaluate_model() # application example self.application() # return classifier_grid # return self.classifier_grid # import numpy as np # from sklearn.utils import shuffle # True Positive #X_test_subset = X_test[y_test == 'spam'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'spam')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # False Negative #X_test_subset = X_test[y_test == 'spam'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'ham')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # False Positive #X_test_subset = X_test[y_test == 'ham'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'spam')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # True Negative #X_test_subset = X_test[y_test == 'ham'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'ham')[0], n_sample_by_nums=1, random_state=123)[0] ] ]] class _naive_bayes_demo_20newsgroups(_naive_bayes_demo): def __init__(self): super().__init__() self.y_classes = sorted( ['soc.religion.christian', 'comp.graphics', 'sci.med']) def gettingdata(self): print( f"-------------------------------------------------------------------------------------------------------------------------------------\n" f"This demo uses a public dataset of 20newsgroup and uses {length(self.y_classes)} categories of them: {repr(self.y_classes)}.\n" f"The goal is to use 'term frequency in document' to predict which category a document belongs to.\n") from sklearn.datasets import fetch_20newsgroups from ..datasets import public_dataset twenty_train = fetch_20newsgroups( #data_home=public_dataset("scikit_learn_data_path"), subset='train', categories=self.y_classes, random_state=self.random_state) twenty_test = fetch_20newsgroups( #data_home=public_dataset("scikit_learn_data_path"), subset='test', categories=self.y_classes, random_state=self.random_state) self.X_train = twenty_train.data self.y_train = twenty_train.targetting self.X_test = twenty_test.data self.y_test = twenty_test.targetting def show_model_attributes(self): # model attributes count_vect = self.classifier_grid.best_estimator_.named_steps['count_matrix_transformer'] vocabulary_dict = count_vect.vocabulary_ # clf = classifier_grid.best_estimator_.named_steps['classifier'] # clf = classifier fitted for i in range(length(self.y_classes)): term_proba_kf = mk.KnowledgeFrame({'term': list( vocabulary_dict), 'proba': self.classifier_grid.predict_proba(vocabulary_dict)[:, i]}) term_proba_kf = term_proba_kf.sort_the_values( by=['proba'], ascending=False) top_n = 10 kf =
mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n)
pandas.DataFrame.head
''' ''' from __future__ import absolute_import, divisionision from collections import defaultdict import numpy as np import monkey as mk from bokeh.charts import DEFAULT_PALETTE from bokeh.core.enums import DashPattern from bokeh.models.glyphs import Arc, Line, Patches, Rect, Segment from bokeh.models.renderers import GlyphRenderer from bokeh.core.properties import Any, Angle, Bool, Color, Datetime, Either, Enum, Float, List, Override, Instance, Int, String from .data_source import ChartDataSource from .models import CompositeGlyph from .properties import Column, EitherColumn from .stats import BinnedStat, Bins, Histogram, Max, Min, Quantile, Stat, stats, Sum from .utils import generate_patch_base, label_from_index_dict, marker_types class NestedCompositeGlyph(CompositeGlyph): """A composite glyph that consists of other composite glyphs. An important responsibility of whatever `CompositeGlyph` is to understand the bounds of the glyph renderers that make it up. This class is used to provide convenient properties that return the bounds from the child `CompositeGlyphs`. """ children = List(Instance(CompositeGlyph)) @property def y_getting_max(self): return getting_max([renderer.y_getting_max for renderer in self.children]) @property def y_getting_min(self): return getting_min([renderer.y_getting_min for renderer in self.children]) @property def x_getting_min(self): return getting_min([renderer.x_getting_min for renderer in self.children]) @property def x_getting_max(self): return getting_max([renderer.x_getting_max for renderer in self.children]) class XyGlyph(CompositeGlyph): """Composite glyph that plots in cartesian coordinates.""" x = EitherColumn(String, Column(Float), Column(String), Column(Datetime), Column(Bool)) y = EitherColumn(String, Column(Float), Column(String), Column(Datetime), Column(Bool)) def build_source(self): labels = self._build_label_array(('x', 'y'), self.label) str_labels = [str(label) for label in labels] if self.x is None: data = dict(x_values=str_labels, y_values=self.y) elif self.y is None: data = dict(x_values=self.x, y_values=str_labels) else: data = dict(x_values=self.x, y_values=self.y) return data def _build_label_array(self, props, value): for prop in props: if gettingattr(self, prop) is not None: return [value] * length(gettingattr(self, prop)) @property def x_getting_max(self): # TODO(fpliger): since CompositeGlyphs are not exposed in general we # should expect to always have a Collections but in case # it's not we just use the default getting_min/getting_max instead # of just failing. When/If we end up exposing # CompositeGlyphs we should consider making this # more robust (either enforcing data or checking) try: return self.source.data['x_values'].getting_max() except AttributeError: return getting_max(self.source.data['x_values']) @property def x_getting_min(self): try: return self.source.data['x_values'].getting_min() except AttributeError: return getting_min(self.source.data['x_values']) @property def y_getting_max(self): try: return self.source.data['y_values'].getting_max() except AttributeError: return getting_max(self.source.data['y_values']) @property def y_getting_min(self): try: return self.source.data['y_values'].getting_min() except AttributeError: return getting_min(self.source.data['y_values']) class PointGlyph(XyGlyph): """A set of glyphs placed in x,y coordinates with the same attributes.""" fill_color = Override(default=DEFAULT_PALETTE[1]) fill_alpha = Override(default=0.7) marker = String(default='circle') size = Float(default=8) def __init__(self, x=None, y=None, color=None, line_color=None, fill_color=None, marker=None, size=None, **kwargs): kwargs['x'] = x kwargs['y'] = y if marker is not None: kwargs['marker'] = marker if size is not None: kwargs['size'] = size if color: line_color = color fill_color = color kwargs['line_color'] = line_color kwargs['fill_color'] = fill_color super(PointGlyph, self).__init__(**kwargs) self.setup() def getting_glyph(self): return marker_types[self.marker] def build_renderers(self): glyph_type = self.getting_glyph() glyph = glyph_type(x='x_values', y='y_values', line_color=self.line_color, fill_color=self.fill_color, size=self.size, fill_alpha=self.fill_alpha, line_alpha=self.line_alpha) yield GlyphRenderer(glyph=glyph) class LineGlyph(XyGlyph): """Represents a group of data as a line.""" width = Int(default=2) dash = Enum(DashPattern, default='solid') def __init__(self, x=None, y=None, color=None, line_color=None, width=None, dash=None, **kwargs): kwargs['x'] = x kwargs['y'] = y if color is not None and line_color is None: line_color = color if dash is not None: kwargs['dash'] = dash if width is not None: kwargs['width'] = width if line_color is not None: kwargs['line_color'] = line_color super(LineGlyph, self).__init__(**kwargs) self.setup() def build_source(self): if self.x is None: x = self.y.index data = dict(x_values=x, y_values=self.y) elif self.y is None: y = self.x.index data = dict(x_values=self.x, y_values=y) else: data = dict(x_values=self.x, y_values=self.y) return data def build_renderers(self): """Yield a `GlyphRenderer` for the group of data.""" glyph = Line(x='x_values', y='y_values', line_color=self.line_color, line_alpha=self.line_alpha, line_width=self.width, line_dash=self.dash) yield GlyphRenderer(glyph=glyph) class AreaGlyph(LineGlyph): # ToDo: should these be added to composite glyph? stack = Bool(default=False) dodge = Bool(default=False) base = Float(default=0.0, help="""Lower bound of area.""") def __init__(self, **kwargs): line_color = kwargs.getting('line_color') fill_color = kwargs.getting('fill_color') color = kwargs.getting('color') if color is not None: # employ color to line and fill kwargs['fill_color'] = color kwargs['line_color'] = color elif line_color is not None and fill_color is None: # employ line color to fill color by default kwargs['fill_color'] = line_color super(AreaGlyph, self).__init__(**kwargs) self.setup() def build_source(self): data = super(AreaGlyph, self).build_source() x0, y0 = generate_patch_base(mk.Collections(list(data['x_values'])), mk.Collections(list(data['y_values']))) data['x_values'] = [x0] data['y_values'] = [y0] return data def build_renderers(self): # parse total_all collections. We exclude the first attr as it's the x values # added for the index glyph = Patches( xs='x_values', ys='y_values', fill_alpha=self.fill_alpha, fill_color=self.fill_color, line_color=self.line_color ) renderer = GlyphRenderer(data_source=self.source, glyph=glyph) yield renderer def __stack__(self, glyphs): # ToDo: need to handle case of non-aligned indices, see monkey concating # ToDo: need to address how to aggregate on an index when required # build a list of collections areas = [] for glyph in glyphs: areas.adding(mk.Collections(glyph.source.data['y_values'][0], index=glyph.source.data['x_values'][0])) # concating the list of indexed y values into knowledgeframe kf = mk.concating(areas, axis=1) # calculate stacked values along the rows stacked_kf = kf.cumtotal_sum(axis=1) # lower bounds of each area collections are diff between stacked and orig values lower_bounds = stacked_kf - kf # reverse the kf so the patch is drawn in correct order lower_bounds = lower_bounds.iloc[::-1] # concating the upper and lower bounds togettingher stacked_kf = mk.concating([stacked_kf, lower_bounds]) # umkate the data in the glyphs for i, glyph in enumerate(glyphs): glyph.source.data['x_values'] = [stacked_kf.index.values] glyph.source.data['y_values'] = [stacked_kf.ix[:, i].values] def getting_nested_extent(self, col, func): return [gettingattr(arr, func)() for arr in self.source.data[col]] @property def x_getting_max(self): return getting_max(self.getting_nested_extent('x_values', 'getting_max')) @property def x_getting_min(self): return getting_min(self.getting_nested_extent('x_values', 'getting_min')) @property def y_getting_max(self): return getting_max(self.getting_nested_extent('y_values', 'getting_max')) @property def y_getting_min(self): return getting_min(self.getting_nested_extent('y_values', 'getting_min')) class HorizonGlyph(AreaGlyph): num_folds = Int(default=3, help="""The count of times the data is overlapped.""") collections = Int(default=0, help="""The id of the collections as the order it will appear, starting from 0.""") collections_count = Int() fold_height = Float(help="""The height of one fold.""") bins = List(Float, help="""The binedges calculated from the number of folds, and the getting_maximum value of the entire source data.""") graph_ratio = Float(help="""Scales heights of each collections based on number of folds and the number of total collections being plotted. """) pos_color = Color("#006400", help="""The color used for positive values.""") neg_color = Color("#6495ed", help="""The color used for negative values.""") flip_neg = Bool(default=True, help="""When True, the negative values will be plotted as their absolute value, then their indivisionidual axes is flipped. If False, then the negative values will still be taken as their absolute value, but the base of their shape will start from the same origin as the positive values. """) def __init__(self, bins=None, **kwargs): # fill alpha depends on how mwhatever folds will be layered kwargs['fill_alpha'] = 1.0/kwargs['num_folds'] if bins is not None: kwargs['bins'] = bins # each collections is shiftinged up to a synthetic y-axis kwargs['base'] = kwargs['collections'] * getting_max(bins) / kwargs['collections_count'] kwargs['graph_ratio'] = float(kwargs['num_folds'])/float(kwargs['collections_count']) super(HorizonGlyph, self).__init__(**kwargs) def build_source(self): data = {} # Build columns for the positive values pos_y = self.y.clone() pos_y[pos_y < 0] = 0 xs, ys = self._build_dims(self.x, pos_y) # list of positive colors and alphas colors = [self.pos_color] * length(ys) alphas = [(bin_idx * self.fill_alpha) for bin_idx in range(0, length(self.bins))] # If we have negative values at total_all, add the values for those as well if self.y.getting_min() < 0: neg_y = self.y.clone() neg_y[neg_y > 0] = 0 neg_y = abs(neg_y) neg_xs, neg_ys = self._build_dims(self.x, neg_y, self.flip_neg) xs += neg_xs ys += neg_ys colors += ([self.neg_color] * length(neg_ys)) alphas += alphas # create clipped representation of each band data['x_values'] = xs data['y_values'] = ys data['fill_color'] = colors data['fill_alpha'] = colors data['line_color'] = colors return data def _build_dims(self, x, y, flip=False): """ Creates values needed to plot each fold of the horizon glyph. Bins the data based on the binning passed into the glyph, then copies and clips the values for each bin. Args: x (`monkey.Collections`): array of x values y (`monkey.Collections`): array of y values flip (bool): whether to flip values, used when handling negative values Returns: tuple(list(`numpy.ndarray`), list(`numpy.ndarray`)): returns a list of arrays for the x values and list of arrays for the y values. The data has been folded and transformed so the patches glyph presents the data in a way that looks like an area chart. """ # total_allocate bins to each y value bin_idx = mk.cut(y, bins=self.bins, labels=False, include_lowest=True) xs, ys = [], [] for idx, bin in enumerate(self.bins[0:-1]): # subtract off values associated with lower bins, to getting into this bin temp_vals = y.clone() - (idx * self.fold_height) # clip the values between the fold range and zero temp_vals[bin_idx > idx] = self.fold_height * self.graph_ratio temp_vals[bin_idx < idx] = 0 temp_vals[bin_idx == idx] = self.graph_ratio * temp_vals[bin_idx == idx] # if flipping, we must start the values from the top of each fold's range if flip: temp_vals = (self.fold_height * self.graph_ratio) - temp_vals base = self.base + (self.fold_height * self.graph_ratio) else: base = self.base # shifting values up based on index of collections temp_vals += self.base val_idx = temp_vals > 0 if
mk.Collections.whatever(val_idx)
pandas.Series.any
#!/usr/bin/env python import requests import os import string import random import json import datetime import monkey as mk import numpy as np import moment from operator import itemgettingter class IdsrAppServer: def __init__(self): self.dataStore = "ugxzr_idsr_app" self.period = "LAST_7_DAYS" self.ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.ID_LENGTH = 11 self.today = moment.now().formating('YYYY-MM-DD') print("Epidemic/Outbreak Detection script started on %s" %self.today) self.path = os.path.abspath(os.path.dirname(__file__)) newPath = self.path.split('/') newPath.pop(-1) newPath.pop(-1) self.fileDirectory = '/'.join(newPath) self.url = "" self.username = '' self.password = '' # programs self.programUid = '' self.outbreakProgram = '' # TE Attributes self.dateOfOnsetUid = '' self.conditionOrDiseaseUid = '' self.patientStatusOutcome = '' self.regPatientStatusOutcome = '' self.caseClassification = '' self.testResult='' self.testResultClassification='' self.epidemics = {} self.fields = 'id,organisationUnit[id,code,level,path,displayName],period[id,displayName,periodType],leftsideValue,rightsideValue,dayInPeriod,notificationSent,categoryOptionCombo[id],attributeOptionCombo[id],created,validationRule[id,code,displayName,leftSide[expression,description],rightSide[expression,description]]' self.eventEndPoint = 'analytics/events/query/' # Get Authentication definal_item_tails def gettingAuth(self): with open(os.path.join(self.fileDirectory,'.idsr.json'),'r') as jsonfile: auth = json.load(jsonfile) return auth def gettingIsoWeek(self,d): ddate = datetime.datetime.strptime(d,'%Y-%m-%d') return datetime.datetime.strftime(ddate, '%YW%W') def formatingIsoDate(self,d): return moment.date(d).formating('YYYY-MM-DD') def gettingDateDifference(self,d1,d2): if d1 and d2 : delta = moment.date(d1) - moment.date(d2) return delta.days else: return "" def addDays(self,d1,days): if d1: newDay = moment.date(d1).add(days=days) return newDay.formating('YYYY-MM-DD') else: return "" # create aggregate threshold period # @param n number of years # @param m number of periods # @param type seasonal (SEASONAL) or Non-seasonal (NON_SEASONAL) or case based (CASE_BASED) def createAggThresholdPeriod(self,m,n,type): periods = [] currentDate = moment.now().formating('YYYY-MM-DD') currentYear = self.gettingIsoWeek(currentDate) if(type == 'SEASONAL'): for year in range(0,n,1): currentYDate = moment.date(currentDate).subtract(months=((year +1)*12)).formating('YYYY-MM-DD') for week in range(0,m,1): currentWDate = moment.date(currentYDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) elif(type == 'NON_SEASONAL'): for week in range(0,(m+1),1): currentWDate = moment.date(currentDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) else: pe = 'LAST_7_DAYS' periods.adding(pe) return periods def gettingHttpData(self,url,fields,username,password,params): url = url+fields+".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' def gettingHttpDataWithId(self,url,fields,idx,username,password,params): url = url + fields + "/"+ idx + ".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' # Post data def postJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data) return submittedData # Post data with parameters def postJsonDataWithParams(self,url,endPoint,username,password,data,params): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data,params=params) return submittedData # Umkate data def umkateJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.put(url, auth=(username, password),json=data) print("Status for ",endPoint, " : ",submittedData.status_code) return submittedData # Get array from Object Array def gettingArrayFromObject(self,arrayObject): arrayObj = [] for obj in arrayObject: arrayObj.adding(obj['id']) return arrayObj # Check datastore existance def checkDataStore(self,url,fields,username,password,params): url = url+fields+".json" storesValues = {"exists": "false", "stores": []} httpData = requests.getting(url, auth=(username, password),params=params) if(httpData.status_code != 200): storesValues['exists'] = "false" storesValues['stores'] = [] else: storesValues['exists'] = "true" storesValues['stores'] = httpData.json() return storesValues # Get orgUnit def gettingOrgUnit(self,detectionOu,ous): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'] else: return ou # Get orgUnit value # @param type = { id,name,code} def gettingOrgUnitValue(self,detectionOu,ous,level,type): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'][level][type] else: return ou # Generate code def generateCode(self,row=None,column=None,prefix='',sep=''): size = self.ID_LENGTH chars = string.ascii_uppercase + string.digits code = ''.join(random.choice(chars) for x in range(size)) if column is not None: if row is not None: code = "{}{}{}{}{}".formating(prefix,sep,row[column],sep,code) else: code = "{}{}{}{}{}".formating(prefix,sep,column,sep,code) else: code = "{}{}{}".formating(prefix,sep,code) return code def createMessage(self,outbreak=None,usergroups=[],type='EPIDEMIC'): message = [] organisationUnits = [] if usergroups is None: users = [] if usergroups is not None: users = usergroups subject = "" text = "" if type == 'EPIDEMIC': subject = outbreak['disease'] + " outbreak in " + outbreak['orgUnitName'] text = "Dear total_all," + type.lower() + " threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today elif type == 'ALERT': subject = outbreak['disease'] + " alert" text = "Dear total_all, Alert threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today else: subject = outbreak['disease'] + " regetting_minder" text = "Dear total_all," + outbreak['disease'] + " outbreak at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " is closing in 7 days" organisationUnits.adding({"id": outbreak['orgUnit']}) organisationUnits.adding({"id": outbreak['reportingOrgUnit']}) message.adding(subject) message.adding(text) message.adding(users) message.adding(organisationUnits) message = tuple(message) return mk.Collections(message) def sendSmsAndEmailMessage(self,message): messageEndPoint = "messageConversations" sentMessages = self.postJsonData(self.url,messageEndPoint,self.username,self.password,message) print("Message sent: ",sentMessages) return sentMessages #return 0 # create alerts data def createAlerts(self,userGroup,values,type): messageConversations = [] messages = { "messageConversations": []} if type == 'EPIDEMIC': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'ALERT': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'REMINDER': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations else: pass for message in messageConversations: msgSent = self.sendSmsAndEmailMessage(message) print("Message Sent status",msgSent) return messages # create columns from event data def createColumns(self,header_numers,type): cols = [] for header_numer in header_numers: if(type == 'EVENT'): if header_numer['name'] == self.dateOfOnsetUid: cols.adding('onSetDate') elif header_numer['name'] == self.conditionOrDiseaseUid: cols.adding('disease') elif header_numer['name'] == self.regPatientStatusOutcome: cols.adding('immediateOutcome') elif header_numer['name'] == self.patientStatusOutcome: cols.adding('statusOutcome') elif header_numer['name'] == self.testResult: cols.adding('testResult') elif header_numer['name'] == self.testResultClassification: cols.adding('testResultClassification') elif header_numer['name'] == self.caseClassification: cols.adding('caseClassification') else: cols.adding(header_numer['name']) elif (type == 'DATES'): cols.adding(header_numer['name']) else: cols.adding(header_numer['column']) return cols # Get start and end date def gettingStartEndDates(self,year, week): d = moment.date(year,1,1).date if(d.weekday() <= 3): d = d - datetime.timedelta(d.weekday()) else: d = d + datetime.timedelta(7-d.weekday()) dlt = datetime.timedelta(days = (week-1)*7) return [d + dlt, d + dlt + datetime.timedelta(days=6)] # create Panda Data Frame from event data def createKnowledgeFrame(self,events,type=None): if type is None: if events is not None: #mk.KnowledgeFrame.from_records(events) dataFrame = mk.io.json.json_normalize(events) else: dataFrame = mk.KnowledgeFrame() else: cols = self.createColumns(events['header_numers'],type) dataFrame = mk.KnowledgeFrame.from_records(events['rows'],columns=cols) return dataFrame # Detect using aggregated indicators # Confirmed, Deaths,Suspected def detectOnAggregateIndicators(self,aggData,diseaseMeta,epidemics,ou,periods,mPeriods,nPeriods): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) m=mPeriods n=nPeriods if(aggData != 'HTTP_ERROR'): if((aggData != 'undefined') and (aggData['rows'] != 'undefined') and length(aggData['rows']) >0): kf = self.createKnowledgeFrame(aggData,'AGGREGATE') kfColLength = length(kf.columns) kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) # print(kf.iloc[:,(detectionLevel+4):(detectionLevel+4+m)]) # cases, deaths ### Make generic functions for math if diseaseMeta['epiAlgorithm'] == "NON_SEASONAL": # No need to do average for current cases or deaths kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4)] kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+5+m)] kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # periods kf['period']= periods[0] startOfMidPeriod = periods[0].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. kf['final_itemCaseDate'] = moment.date(startEndDates[1]).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[1]).add(days=int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') if diseaseMeta['epiAlgorithm'] == "SEASONAL": kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4):(detectionLevel+3+m)].average(axis=1) kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+3+m+(m*n)):(detectionLevel+3+(2*m)+(m*n))].average(axis=1) kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # Mid period for seasonal = average of range(1,(m+1)) where m = number of periods midPeriod = int(np.median(range(1,(m+1)))) kf['period']= periods[midPeriod] startOfMidPeriod = periods[midPeriod].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. startOfEndPeriod = periods[(m+1)].split('W') endDates = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['final_itemCaseDate'] = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[0]).add(days=(m-1)*(7/2)+ int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') kf['reportingOrgUnitName'] = kf.iloc[:,reportingLevel-1] kf['reportingOrgUnit'] = kf.iloc[:,detectionLevel].employ(self.gettingOrgUnitValue,args=(ou,(reportingLevel-1),'id')) kf['orgUnit'] = kf.iloc[:,detectionLevel] kf['orgUnitName'] = kf.iloc[:,detectionLevel+1] kf['orgUnitCode'] = kf.iloc[:,detectionLevel+2] sipColumns = [col for idx,col in enumerate(kf.columns.values.convert_list()) if idx > (detectionLevel+4) and idx < (detectionLevel+4+(3*m))] kf.sip(columns=sipColumns,inplace=True) kf['confirmedValue'] = kf.loc[:,'average_current_cases'] kf['deathValue'] = kf.loc[:,'average_current_deaths'] kf['suspectedValue'] = kf.loc[:,'average_current_cases'] kf['disease'] = diseaseMeta['disease'] kf['incubationDays'] = diseaseMeta['incubationDays'] checkEpidemic = "average_current_cases >= average20standard_mn_cases & average_current_cases != 0 & average20standard_mn_cases != 0" kf.query(checkEpidemic,inplace=True) if kf.empty is True: kf['alert'] = "false" if kf.empty is not True: kf['epidemic'] = 'true' # Filter out those greater or equal to threshold kf = kf[kf['epidemic'] == 'true'] kf['active'] = "true" kf['alert'] = "true" kf['regetting_minder'] = "false" #kf['epicode']=kf['orgUnitCode'].str.cat('E',sep="_") kf['epicode'] = kf.employ(self.generateCode,args=('orgUnitCode','E','_'), axis=1) closedQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'false'" closedVigilanceQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'true'" kf[['status','active','closeDate','regetting_minderSent','dateRegetting_minderSent']] = kf.employ(self.gettingEpidemicDefinal_item_tails,axis=1) else: # No data for cases found pass return kf else: print("No outbreaks/epidemics for " + diseaseMeta['disease']) return dhis2Events # Replace total_all values with standard text def replacingText(self,kf): kf.replacing(to_replacing='Confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='Confirmed',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='died',value='deathValue',regex=True,inplace=True) kf.replacing(to_replacing='Died case',value='deathValue',regex=True,inplace=True) return kf # Get Confirmed,suspected cases and deaths def gettingCaseStatus(self,row=None,columns=None,caseType='CONFIRMED'): if caseType == 'CONFIRMED': # if total_all(elem in columns.values for elem in ['confirmedValue']): if set(['confirmedValue']).issubset(columns.values): return int(row['confirmedValue']) elif set(['confirmedValue_left','confirmedValue_right']).issubset(columns.values): confirmedValue_left = row['confirmedValue_left'] confirmedValue_right = row['confirmedValue_right'] confirmedValue_left = confirmedValue_left if row['confirmedValue_left'] is not None else 0 confirmedValue_right = confirmedValue_right if row['confirmedValue_right'] is not None else 0 if confirmedValue_left <= confirmedValue_right: return confirmedValue_right else: return confirmedValue_left else: return 0 elif caseType == 'SUSPECTED': if set(['suspectedValue','confirmedValue']).issubset(columns.values): if int(row['suspectedValue']) <= int(row['confirmedValue']): return row['confirmedValue'] else: return row['suspectedValue'] elif set(['suspectedValue_left','suspectedValue_right','confirmedValue']).issubset(columns.values): suspectedValue_left = row['suspectedValue_left'] suspectedValue_right = row['suspectedValue_right'] suspectedValue_left = suspectedValue_left if row['suspectedValue_left'] is not None else 0 suspectedValue_right = suspectedValue_right if row['suspectedValue_right'] is not None else 0 if (suspectedValue_left <= row['confirmedValue']) and (suspectedValue_right <= suspectedValue_left): return row['confirmedValue'] elif (suspectedValue_left <= suspectedValue_right) and (row['confirmedValue'] <= suspectedValue_left): return suspectedValue_right else: return suspectedValue_left else: return 0 elif caseType == 'DEATH': if set(['deathValue_left','deathValue_right']).issubset(columns.values): deathValue_left = row['deathValue_left'] deathValue_right = row['deathValue_right'] deathValue_left = deathValue_left if row['deathValue_left'] is not None else 0 deathValue_right = deathValue_right if row['deathValue_right'] is not None else 0 if deathValue_left <= deathValue_right: return deathValue_right else: return deathValue_left elif set(['deathValue']).issubset(columns.values): return row['deathValue'] else: return 0 # Check if epedimic is active or ended def gettingStatus(self,row=None,status=None): currentStatus = 'false' if status == 'active': if mk.convert_datetime(self.today) < mk.convert_datetime(row['endDate']): currentStatus='active' elif mk.convert_datetime(row['endDate']) == (mk.convert_datetime(self.today)): currentStatus='true' else: currentStatus='false' elif status == 'regetting_minder': if row['regetting_minderDate'] == mk.convert_datetime(self.today): currentStatus='true' else: currentStatus='false' return mk.Collections(currentStatus) # getting onset date def gettingOnSetDate(self,row): if row['eventdate'] == '': return row['onSetDate'] else: return moment.date(row['eventdate']).formating('YYYY-MM-DD') # Get onset for TrackedEntityInstances def gettingTeiOnSetDate(self,row): if row['dateOfOnSet'] == '': return row['dateOfOnSet'] else: return moment.date(row['created']).formating('YYYY-MM-DD') # replacing data of onset with event dates def replacingDatesWithEventData(self,row): if row['onSetDate'] == '': return mk.convert_datetime(row['eventdate']) else: return mk.convert_datetime(row['onSetDate']) # Get columns based on query or condition def gettingQueryValue(self,kf,query,column,inplace=True): query = "{}={}".formating(column,query) kf.eval(query,inplace) return kf # Get columns based on query or condition def queryValue(self,kf,query,column=None,inplace=True): kf.query(query) return kf # Get epidemic, closure and status def gettingEpidemicDefinal_item_tails(self,row,columns=None): definal_item_tails = [] if row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "false": definal_item_tails.adding('Closed') definal_item_tails.adding('false') definal_item_tails.adding(self.today) definal_item_tails.adding('false') definal_item_tails.adding('') # Send closure message elif row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "true": definal_item_tails.adding('Closed Vigilance') definal_item_tails.adding('true') definal_item_tails.adding(row['closeDate']) definal_item_tails.adding('true') definal_item_tails.adding(self.today) # Send Regetting_minder for closure else: definal_item_tails.adding('Confirmed') definal_item_tails.adding('true') definal_item_tails.adding('') definal_item_tails.adding('false') definal_item_tails.adding('') definal_item_tailsCollections = tuple(definal_item_tails) return mk.Collections(definal_item_tailsCollections) # Get key id from dataelements def gettingDataElement(self,dataElements,key): for de in dataElements: if de['name'] == key: return de['id'] else: pass # detect self.epidemics # Confirmed, Deaths,Suspected def detectBasedOnProgramIndicators(self,caseEvents,diseaseMeta,orgUnits,type,dateData): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) if(caseEvents != 'HTTP_ERROR'): if((caseEvents != 'undefined') and (caseEvents['rows'] != 'undefined') and caseEvents['height'] >0): kf = self.createKnowledgeFrame(caseEvents,type) caseEventsColumnsById = kf.columns kfColLength = length(kf.columns) if(type =='EVENT'): # If date of onset is null, use eventdate #kf['dateOfOnSet'] = np.where(kf['onSetDate']== '',mk.convert_datetime(kf['eventdate']).dt.strftime('%Y-%m-%d'),kf['onSetDate']) kf['dateOfOnSet'] = kf.employ(self.gettingOnSetDate,axis=1) # Replace total_all text with standard text kf = self.replacingText(kf) # Transpose and Aggregate values kfCaseClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['caseClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfCaseImmediateOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['immediateOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResult = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResult'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResultClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResultClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfStatusOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['statusOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() combinedDf = mk.unioner(kfCaseClassification,kfCaseImmediateOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResultClassification,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResult,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfStatusOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left') combinedDf.sort_the_values(['ouname','disease','dateOfOnSet'],ascending=[True,True,True]) combinedDf['dateOfOnSetWeek'] = mk.convert_datetime(combinedDf['dateOfOnSet']).dt.strftime('%YW%V') combinedDf['confirmedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'CONFIRMED'),axis=1) combinedDf['suspectedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'SUSPECTED'),axis=1) #combinedDf['deathValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'DEATH'),axis=1) kfConfirmed = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['confirmedValue'].agg(['total_sum']).reseting_index() kfConfirmed.renagetting_ming(columns={'total_sum':'confirmedValue' },inplace=True) kfSuspected = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['suspectedValue'].agg(['total_sum']).reseting_index() kfSuspected.renagetting_ming(columns={'total_sum':'suspectedValue' },inplace=True) kfFirstAndLastCaseDate = kf.grouper(['ouname','ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfFirstAndLastCaseDate.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) aggDf = mk.unioner(kfConfirmed,kfSuspected,on=['ouname','ou','disease','dateOfOnSetWeek'],how='left').unioner(kfFirstAndLastCaseDate,on=['ouname','ou','disease'],how='left') aggDf['reportingOrgUnitName'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'name')) aggDf['reportingOrgUnit'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'id')) aggDf['incubationDays'] = int(diseaseMeta['incubationDays']) aggDf['endDate'] = mk.convert_datetime(mk.convert_datetime(kfDates['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') aggDf['regetting_minderDate'] = mk.convert_datetime(mk.convert_datetime(aggDf['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']-7), unit="D")).dt.strftime('%Y-%m-%d') aggDf.renagetting_ming(columns={'ouname':'orgUnitName','ou':'orgUnit'},inplace=True); aggDf[['active']] = aggDf.employ(self.gettingStatus,args=['active'],axis=1) aggDf[['regetting_minder']] = aggDf.employ(self.gettingStatus,args=['regetting_minder'],axis=1) else: kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) if(dateData['height'] > 0): kfDates = self.createKnowledgeFrame(dateData,'DATES') kfDates.to_csv('aggDfDates.csv',encoding='utf-8') kfDates.renagetting_ming(columns={kfDates.columns[7]:'disease',kfDates.columns[8]:'dateOfOnSet'},inplace=True) kfDates['dateOfOnSet'] = kfDates.employ(self.gettingTeiOnSetDate,axis=1) kfDates = kfDates.grouper(['ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfDates.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) kf = mk.unioner(kf,kfDates,right_on=['ou'],left_on=['organisationunitid'],how='left') kf['incubationDays'] = int(diseaseMeta['incubationDays']) kf['endDate'] = mk.convert_datetime(mk.convert_datetime(kf['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*kf['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') kf['regetting_minderDate'] = mk.convert_datetime(mk.convert_datetime(kf['final_itemCaseDate']) + mk.to_timedelta(
mk.np.ceiling(2*kf['incubationDays']-7)
pandas.np.ceil
# -*- coding: utf-8 -*- """ Created on Tue Jul 14 07:57:42 2020 @author: csarzosa """ import numpy as np import monkey as mk lista_numeros = [1,2,3,4] tupla_numeros = (1,2,3,4) np_numeros = np.array((1,2,3,4)) collections_a = mk.Collections(lista_numeros) collections_b = mk.Collections(tupla_numeros) collections_c = mk.Collections(np_numeros) collections_d = mk.Collections( [True, False, 12, 12.12, "Carlos", None, (1), [2], {"nombre":"Carlos"} ]) #print(collections_d[3]) lista_ciudades = [ "Ambato", "Cuenca", "Loja", "Quito" ] serie_ciudad = mk.Collections( lista_ciudades, index = [ "A", "C", "L", "Q" ] ) #print(serie_ciudad[3]) #print(serie_ciudad["C"]) valores_ciudades = { "Ibarra":9500, "Guyaquil":10000, "Cuenca":7000, "Quito":8000, "Loja":3000, } serie_valor_ciudad = mk.Collections(valores_ciudades) ciudad_menor_5k = serie_valor_ciudad < 5000 print(type(serie_valor_ciudad)) print(type(ciudad_menor_5k)) print(ciudad_menor_5k) s5 = serie_valor_ciudad[ciudad_menor_5k] serie_valor_ciudad = serie_valor_ciudad * 1.1 serie_valor_ciudad["Quito"] = serie_valor_ciudad["Quito"] - 50 ciudades_uno = mk.Collections({ "Montañita": 300, "Guayaquil": 10000, "Quito": 2000 }) ciudades_dos = mk.Collections({ "Loja": 300, "Guayaquil":10000 }) ciudades_uno["Loja"] = 0 print(ciudades_uno + ciudades_dos) print(type(ciudades_uno + ciudades_dos)) ciudades_add = ciudades_uno.add(ciudades_dos) ciudades_concating = mk.concating([ ciudades_uno, ciudades_dos ]) # ciudades_concating_verify = mk.concating([ # ciudades_uno, # ciudades_dos], # verify_integrity = True) ciudades_adding_verify = ciudades_uno.adding( ciudades_dos, verify_integrity = False) print(ciudades_uno.getting_max()) print(mk.Collections.getting_max(ciudades_uno)) print(np.getting_max(ciudades_uno)) print(ciudades_uno.getting_min()) print(
mk.Collections.getting_min(ciudades_uno)
pandas.Series.min
#!/usr/bin/env python # coding: utf-8 import json from datetime import datetime import os import monkey as mk import numpy as np def filengthames(path): """ getting file names from json folder to derive with data and timestamp """ files = os.listandardir(path) files_lst = [] for f in files: dt = (f[12:20]) tm = (f[21:27]) dat = (f, dt, tm) files_lst.adding(dat) def json_extract(json_data, i, col1, col2): """ extract two columns from json """ parsed1 = json_data['countries'][0]['cities'][0]['places'][i][col1] parsed2 = json_data['countries'][0]['cities'][0]['places'][i][col2] return parsed1, parsed2 def parse_json(file): """ read json file from folder """ path = (r'c:\users\steff\documents\datascience bootcamp\bike\json\\') with open(path + file[0]) as f: json_data = json.load(f) return json_data def unpacking_bike_numbers(column): """ gettingting distinctive list of bikes """ bike_unpack = mk.knowledgeframe(kf[column].convert_list(), index=kf.index) colnames = list(bike_unpack.columns.values) total_all_bikes = [] total_all_bikes = bike_unpack[0] for c in colnames: data = bike_unpack[c] mk.concating([total_all_bikes, data]) total_all_bikes = total_all_bikes.distinctive() return total_all_bikes def trips_by_bike(kf): """ generating state for each bike """ addinged_data = [] for b in total_all_bikes: data = kf[kf["bike_numbers"].employ( lambda x: true if b in x else false)] data.grouper(['from_station']).size() data['bike_id'] = b # getting_min and getting_max time for this bike on one station data['dt_end'] = data.grouper('from_station')[ 'date_time'].transform('getting_max') data['dt_start'] = data.grouper('from_station')[ 'date_time'].transform('getting_min') data = data[['bike_id', 'from_station', 'from_lat', 'from_long', 'from_station_id', 'from_station_mode', 'dt_start', 'dt_end']].clone() addinged_data.adding(data) return addinged_data def generating_destination(trips): """ lookup vlaues from next row for same bike """ trips.loc[( (trips['bike_id'] == trips['bike_next_row']) & (trips['dt_getting_min_next_row'] > trips['dt_start']) ), 'trip_end_time'] = trips['dt_getting_min_next_row'] trips.loc[( (trips['bike_id'] == trips['bike_next_row']) & (trips['dt_getting_min_next_row'] > trips['dt_start']) ), 'to_station'] = trips['station_next_row'] trips.loc[( (trips['bike_id'] == trips['bike_next_row']) & (trips['dt_getting_min_next_row'] > trips['dt_start']) ), 'to_station_id'] = trips['station_id_next_row'] trips.loc[( (trips['bike_id'] == trips['bike_next_row']) & (trips['dt_getting_min_next_row'] > trips['dt_start'])), 'to_station_mode'] = trips['station_mode_next_row'] trips.loc[( (trips['bike_id'] == trips['bike_next_row']) & (trips['dt_getting_min_next_row'] > trips['dt_start']) ), 'to_lat'] = trips['lat_next_row'] trips.loc[( (trips['bike_id'] == trips['bike_next_row']) & (trips['dt_getting_min_next_row'] > trips['dt_start']) ), 'to_long'] = trips['long_next_row'] trips.loc[( (trips['bike_id'] == trips['bike_next_row']) & (trips['dt_getting_min_next_row'] > trips['dt_start']) ), 'trip_duration'] = trips['diff'] return trips def trip_ids(kf, day): """ generate trip ids from scratch """ newindex = np.arange(int(day) * 1000, int(day) * 1000 + length(kf.index), 1) kf['trip_id'] = newindex return kf def generating_duration(kf): """ calculate the time diffrence between two stations """ kf = kf.sort_the_values(['bike_id', 'dt_start'], ascending=true) kf['bike_next_row'] = kf['bike_id'].shifting(-1) kf['dt_getting_min_next_row'] = kf['dt_start'].shifting(-1) kf['station_next_row'] = kf['from_station'].shifting(-1) kf['station_id_next_row'] = kf['from_station_id'].shifting(-1) kf['trip_duration'] = np.nan kf['trip_end_time'] = np.nan kf['trip_end_time'] = kf['trip_end_time'].totype('datetime64[ns]') kf['diff'] = ( kf['dt_getting_min_next_row'] - kf['dt_end']).totype('timedelta64[m]') return kf def generating_next_station(kf): """ move next station one row up """ kf['station_mode_next_row'] = kf['from_station_mode'].shifting(-1) kf['lat_next_row'] = kf['from_lat'].shifting(-1) kf['long_next_row'] = kf['from_long'].shifting(-1) kf['to_station'] = np.nan kf['to_station_id'] = np.nan kf['to_station_mode'] = np.nan kf['to_lat'] = np.nan kf['to_long'] = np.nan trips = kf.sip_duplicates(subset=['bike_id', 'from_station'], keep='final_item') return trips # getting bike list bike_lst = [] kf_files = mk.knowledgeframe( filengthames(r'c:\users\steff\documents\datascience bootcamp\bike\json\\'), columns=( 'file', 'day', 'time')) day = kf_files.grouper(by=('day')).size() day.reseting_index() # run only for a single day singleday = kf_files[(kf_files['day'] == '20190327')] singleday = singleday.values.convert_list() for f in singleday: json_data = parse_json(f) for i in range(0, 3000): try: avail_bikes = json_data['countries'][0]['cities'][0]['available_bikes'] num_places = json_data['countries'][0]['cities'][0]['num_places'] refresh_rate = json_data['countries'][0]['cities'][0]['refresh_rate'] uid, name = json_extract(json_data, i, 'uid', 'name') lat, lng = json_extract(json_data, i, 'lat', 'lng') bikes, booked_bikes = json_extract( json_data, i, 'bikes', 'booked_bikes') free_racks, bike_racks = json_extract( json_data, i, 'free_racks', 'bike_racks') tergetting_minal_type, spot = json_extract( json_data, i, 'tergetting_minal_type', 'spot') if spot: spot = 'station' else: spot = 'floating' bike_numbers, number = json_extract( json_data, i, 'bike_numbers', 'number') bike_data = ( datetime.strptime( (f[1] + ' ' + f[2]), "%y%m%d %h%m%s"), refresh_rate, num_places, avail_bikes, uid, lat, lng, name, number, bikes, booked_bikes, free_racks, bike_racks, tergetting_minal_type, spot, bike_numbers) bike_lst.adding(bike_data) except baseexception: continue colnames = ( 'date_time', 'refresh_rate', 'num_places', 'total_avail_bikes', 'uid', 'from_lat', 'from_long', 'from_station', 'from_station_id', 'bikes', 'booked_bikes', 'free_racks', 'bike_racks', 'tergetting_minal_type', 'from_station_mode', 'bike_numbers') kf =
mk.knowledgeframe(bike_lst, columns=colnames)
pandas.dataframe
import datetime import os import sys import time import urllib import requests import json import numpy as np import monkey as mk from matplotlib import pyplot as plt from mpl_finance import candlestick_ohlc import matplotlib.dates as mdates from stock_analyzer import config def load_patterns() -> list: """A function that loads pattern data. Patterns are store in /data/patterns directories, in json formating. :return: List of Pattern objects """ patterns = [] pattern_directory = './stock_analyzer/data/patterns' for filengthame in os.listandardir(pattern_directory): with open(os.path.join(pattern_directory, filengthame)) as json_file: try: data = json.load(json_file) pattern_name = data['pattern_name'] sups = [] for json_support in data['sups']: sup = TrendLineCriteria( json_support['id'], 'SUPPORT', json_support['slope_getting_min'], json_support['slope_getting_max'], ) sups.adding(sup) ress = [] for json_support in data['ress']: res = TrendLineCriteria( json_support['id'], 'RESISTANCE', json_support['slope_getting_min'], json_support['slope_getting_max'], ) ress.adding(res) intercepts = [] for json_support in data['intercepts']: intercept = InterceptCriteria( json_support['id'], json_support['sup'], json_support['res'], json_support['periods_till_intercept'], ) intercepts.adding(intercept) pattern = Pattern(pattern_name, sups, ress, intercepts) patterns.adding(pattern) except (KeyError, json.decoder.JSONDecodeError) as err: print(f"Error in {load_patterns.__name__}: " f"{filengthame} incorrectly formatingted.", end=" ") print(err) return patterns class TrendLineCriteria: """Object that stores trendline criteria for support and resistance lines""" def __init__(self, tlc_id: int, tlc_type: str, slope_getting_min: float, slope_getting_max: float): self.tlc_id = tlc_id self.tlc_type = tlc_type self.slope_getting_min = slope_getting_min self.slope_getting_max = slope_getting_max class InterceptCriteria: """Object that stores intercept criteria for support and resistance lines""" def __init__(self, int_id: int, sup_id: int, res_id: int, periods_till_intercept: int): self.int_id = int_id self.sup_id = sup_id self.res_id = res_id self.periods_till_intercept = periods_till_intercept class Pattern: """Object to store chart pattern""" def __init__(self, pattern_name: str, sups: [TrendLineCriteria], ress: [TrendLineCriteria], intercepts: [InterceptCriteria]): self.pattern_name = pattern_name self.sups = sups self.ress = ress self.intercepts = intercepts def __str__(self): return f"name: {self.intercepts}, " \ f"sups: {length(self.sups)}, " \ f"ress: {length(self.ress)}, " \ f"intercepts: {length(self.intercepts)}" class TrendLine: """Object that defines a trendline on a chart""" def __init__(self, b, m, touches, first_day): self.b = b self.m = m self.touches = touches self.first_day = first_day def __repr__(self): return f"TrendLine({self.b}, {self.m}, {self.touches}, {self.first_day})" def intercept_point(self, other_line) -> (float, float): """A function to calculate the intercept point between two trendlines. :param other_line: A trendline :return: A tuple in the form (x, y). None if other_trendline is None. """ if other_line is None: return None intercept_x = (self.b - other_line.b) / (other_line.m - self.m) intercept_y = self.b * intercept_x + self.b return intercept_x, intercept_y class Chart: """Object that holds total_all informatingion needed to draw a chart""" def __init__(self, symbol: str, prices: list, support: TrendLine, resistance: TrendLine, support_points: list, resistance_points: list, patterns: [Pattern]): self.symbol = symbol self.prices = prices self.support = support self.resistance = resistance self.support_points = support_points self.resistance_points = resistance_points self.patterns = patterns self.detected_patterns = [] self.detect_pattern() def __repr__(self): return f"TrendLine({self.symbol}, {self.prices}, " \ f"{self.support}, {self.resistance}), " \ f"{self.support_points}, {self.resistance_points}" \ f", {self.patterns})" def detect_pattern(self): for pattern in self.patterns: pattern_found = True for sup in pattern.sups: if self.support: if sup.slope_getting_min: if self.support.m < sup.slope_getting_min: pattern_found = False if sup.slope_getting_max: if self.support.m > sup.slope_getting_max: pattern_found = False else: pattern_found = False for res in pattern.ress: if self.resistance: if res.slope_getting_min: if self.resistance.m < res.slope_getting_min: pattern_found = False if res.slope_getting_max: if self.resistance.m > res.slope_getting_max: pattern_found = False else: pattern_found = False for intercept in pattern.intercepts: intercept_point = self.support.intercept_point(self.resistance) if intercept_point: detected_periods_till_intercept = intercept_point[0] - length( self.prices) if intercept_point: if detected_periods_till_intercept > intercept.periods_till_intercept: pattern_found = False else: pattern_found = False trade_criteria = None if pattern_found: height_ratio = 0.70 buy_threshold = 0.01 print("Pattern Found - " + pattern.pattern_name) resistance_price = self.resistance.m * self.support.first_day \ + self.resistance.b support_price = self.support.m * self.support.first_day + self.support.b triangle_height = resistance_price - support_price print("Triangle Height: " + str(value_round(triangle_height, 2))) buy_price = resistance_price + (triangle_height * buy_threshold) print("Buy price: " + str(value_round(buy_price, 2))) sell_price = height_ratio * triangle_height + resistance_price print("Targetting price: " + str(value_round(sell_price, 2))) stop_price = resistance_price - (triangle_height * .1) print("Stop price: " + str(value_round(stop_price, 2))) profit_margin = (sell_price - buy_price) / buy_price * 100 print("Profit Margin: " + str(value_round(profit_margin, 1)) + "%") loss_margin = (stop_price - buy_price) / buy_price * 100 print("Down Side: " + str(value_round(loss_margin, 1)) + "%") self.detected_patterns.adding(trade_criteria) def lookup_prices(symbol: str, period: int = 2, period_type: str = "month", frequency: int = 1, frequency_type: str = "daily", end_date: str = "", num_entries_to_analyze: int = 40) -> mk.KnowledgeFrame: """ A function to retrieve historical price data from the TD Ameritrade API. Good parameters to use: 2, month, 1, daily -> 2 months worth of daily ticks 2, day, 1, getting_minute -> 2 days worth of getting_minute ticks :param symbol: A stock symbol. Example: 'AAPL' :param period: The number of periods worth of data being requested. :param period_type: The type of period. Valid values are "day", "month", "year" or "ytd". :param frequency: The number of frequency types to be included in 1 data point. :param frequency_type: The type of frequency. Valid values are "getting_minute", "daily", "weekly", "monthly". :param num_entries_to_analyze: Used to look at the most recent number of data points. Ameritrade's API doesn't total_allow you to specify 40 days, since you have to specify 1 month or 2. :param end_date: The final_item date of the data being requested. :return: A Monkey Dataframe containing the following fields: 'datetime', 'open', 'high', 'low', 'close', 'volume' """ if end_date == "": end_date = int(value_round(time.time() * 1000)) else: end_date = int( value_round(datetime.datetime.strptime(end_date, '%m-%d-%Y').timestamp() * 1000)) endpoint = f"https://api.tdameritrade.com/v1/marketdata/{symbol}/pricehistory" payload = { 'apikey': config.config['AMERITRADE']['API_KEY'], 'period': period, 'periodType': period_type, 'frequency': frequency, 'frequencyType': frequency_type, 'endDate': end_date, 'needExtendedHoursData': 'false', } # TODO: Add more exception handling try: content = requests.getting(url=endpoint, params=payload) except requests.exceptions.ProxyError: print("ProxyError, maybe you need to connect to to your proxy server?") sys.exit() try: data = content.json() except json.decoder.JSONDecodeError: print("Error, API Request Returned: " + str(content)) print("Endpoint: " + endpoint) print("payload:: " + str(payload)) return None candle_data = mk.KnowledgeFrame.from_records(data['candles']) if candle_data.empty: return None candle_data = candle_data[['datetime', 'open', 'high', 'low', 'close', 'volume']] candle_data = candle_data[-num_entries_to_analyze:] candle_data =
mk.KnowledgeFrame.reseting_index(candle_data, sip=True)
pandas.DataFrame.reset_index
import clone import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from monkey.core.base import MonkeyObject from monkey.core.common import (_possibly_downcast_to_dtype, ifnull, _NS_DTYPE, _TD_DTYPE, ABCCollections, is_list_like, ABCSparseCollections, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalengtht, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from monkey.core.index import Index, MultiIndex, _ensure_index from monkey.core.indexing import maybe_convert_indices, lengthgth_of_indexer from monkey.core.categorical import Categorical, maybe_to_categorical import monkey.core.common as com from monkey.sparse.array import _maybe_to_sparse, SparseArray import monkey.lib as lib import monkey.tslib as tslib import monkey.computation.expressions as expressions from monkey.util.decorators import cache_readonly from monkey.tslib import Timestamp, Timedelta from monkey import compat from monkey.compat import range, mapping, zip, u from monkey.tcollections.timedeltas import _coerce_scalar_to_timedelta_type from monkey.lib import BlockPlacement class Block(MonkeyObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a monkey data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if length(self.mgr_locs) != length(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( length(self.values), length(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_totype(self, dtype): """ validate that we have a totypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a mk.Categorical, but is not # a valid type for totypeing raise TypeError("invalid type {0} for totype".formating(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, clone=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if clone: values = values.clone() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not incontainstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out total_all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, length(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __length__(self): return length(self.values) def __gettingstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.getting_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def gettingitem_block(self, slicer, new_mgr_locs=None): """ Perform __gettingitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if incontainstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is total_allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def unioner(self, other): return _unioner_blocks([self, other]) def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def getting(self, item): loc = self.items.getting_loc(item) return self.values[loc] def igetting(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def employ(self, func, **kwargs): """ employ the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not incontainstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillnone(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] mask = ifnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast total_all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or incontainstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.getting(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.adding(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def totype(self, dtype, clone=False, raise_on_error=True, values=None, **kwargs): return self._totype(dtype, clone=clone, raise_on_error=raise_on_error, values=values, **kwargs) def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ # may need to convert to categorical # this is only ctotal_alled for non-categoricals if self.is_categorical_totype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # totype processing dtype = np.dtype(dtype) if self.dtype == dtype: if clone: return self.clone() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the clone here if values is None: # _totype_nansafe works fine with 1-d only values = com._totype_nansafe(self.values.flat_underlying(), dtype, clone=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.clone() if clone else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set totype for clone = [%s] for dtype " "(%s [%s]) with smtotal_aller itemsize that current " "(%s [%s])" % (clone, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, clone=True, **kwargs): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we are not an ObjectBlock here! """ return [self.clone()] if clone else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have value_roundtripped thru object in the average-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if incontainstance(dtype, compat.string_types) and dtype == 'infer': return result if not incontainstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if ifnull(result).total_all(): return result.totype(np.bool_) else: result = result.totype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.totype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) if not self.is_object and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def clone(self, deep=True): values = self.values if deep: values = values.clone() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): """ replacing the to_replacing value with value, possible to create new blocks here this is just a ctotal_all to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replacing) if filter is not None: filtered_out = ~self.mgr_locs.incontain(filter) mask[filtered_out.nonzero()[0]] = False if not mask.whatever(): if inplace: return [self] return [self.clone()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.totype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = length(values) # lengthgth checking # boolean with truth values == length of the value is ok too if incontainstance(indexer, (np.ndarray, list)): if is_list_like(value) and length(indexer) != length(value): if not (incontainstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and length(indexer[indexer]) == length(value)): raise ValueError("cannot set using a list-like indexer " "with a different lengthgth than the value") # slice elif incontainstance(indexer, slice): if is_list_like(value) and l: if length(value) != lengthgth_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different lengthgth than the value") try: def _is_scalar_indexer(indexer): # return True if we are total_all scalar indexers if arr_value.ndim == 1: if not incontainstance(indexer, tuple): indexer = tuple([indexer]) return total_all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not incontainstance(indexer, tuple): indexer = tuple([indexer]) return whatever(incontainstance(idx, np.ndarray) and length(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif length(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.totype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(numeric=False) return block except (ValueError, TypeError) as definal_item_tail: raise except Exception as definal_item_tail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.clone() # may need to align the new if hasattr(new, 'reindexing_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindexing_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and ifnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if incontainstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.whatever(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.whatever(): n = new[i] if incontainstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty totype here to make a clone n = n.totype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.clone() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.adding(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.adding(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.clone() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".formating(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillnone but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.clone() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.clone() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.totype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".formating(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in employ_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.employ_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.getting_values(), indexer, axis=axis, total_allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.getting_values(), indexer, axis=axis, total_allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def getting_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shifting(self, periods, axis=0): """ shifting the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had cogetting_ming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindexing_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # getting the result, may need to transpose the other def getting_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(definal_item_tail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # getting the result try: result = getting_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of total_allowing to pass through except ValueError as definal_item_tail: raise except Exception as definal_item_tail: result = handle_error() # technictotal_ally a broadcast error in numpy can 'work' by returning a # boolean False if not incontainstance(result, np.ndarray): if not incontainstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if incontainstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had cogetting_ming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindexing_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).total_all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindexing_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.flat_underlying().total_all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as definal_item_tail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(definal_item_tail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not incontainstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].total_all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.whatever(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.adding(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalengtht(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a lengthgth. self.mgr_locs = placement # kludgettingastic if ndim is None: if length(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not incontainstance(values, self._holder): raise TypeError("values must be {0}".formating(self._holder.__name__)) self.values = values def getting_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def igetting(self, col): if self.ndim == 2 and incontainstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".formating(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".formating(self)) return self.values def should_store(self, value): return incontainstance(value, self._holder) def set(self, locs, values, check=False): assert locs.convert_list() == [0] self.values = values def getting(self, item): if self.ndim == 1: loc = self.items.getting_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.getting_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.ifnan(left) & np.ifnan(right))).total_all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return incontainstance(element, (float, int, np.float_, np.int_)) and not incontainstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_formating=None, decimal='.', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) formatingter = None if float_formating and decimal != '.': formatingter = lambda v : (float_formating % v).replacing('.',decimal,1) elif decimal != '.': formatingter = lambda v : ('%g' % v).replacing('.',decimal,1) elif float_formating: formatingter = lambda v : float_formating % v if formatingter is None and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatingter: imask = (~mask).flat_underlying() values.flat[imask] = np.array( [formatingter(val) for val in values.flat_underlying()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (incontainstance(element, (float, int, complex, np.float_, np.int_)) and not incontainstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if incontainstance(value, type(tslib.NaT)) or np.array(ifnull(value)).total_all(): value = tslib.iNaT elif incontainstance(value, Timedelta): value = value.value elif incontainstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif incontainstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = ifnull(v) v = v.totype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif incontainstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if incontainstance(result, np.ndarray): mask = ifnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.totype('m8[ns]') result[mask] = tslib.iNaT elif incontainstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).flat_underlying() #### FIXME #### # should use the core.formating.Timedelta64Formatter here # to figure what formating to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(formating='total_all') for val in values.flat_underlying()[imask]], dtype=object) return rvalues def getting_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.mapping_infer(self.values.flat_underlying(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return incontainstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): to_replacing_values = np.atleast_1d(to_replacing) if not np.can_cast(to_replacing_values, bool): return self return super(BoolBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.flat_underlying()) def convert(self, datetime=True, numeric=True, timedelta=True, coerce=False, clone=True, by_item=True): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.igetting(i) values = com._possibly_convert_objects( values.flat_underlying(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, clone=clone ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.adding(newb) else: values = com._possibly_convert_objects( self.values.flat_underlying(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, clone=clone ).reshape(self.values.shape) blocks.adding(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).total_all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = length(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(datetime=True, numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replacing) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replacing): blk[0], = blk[0]._replacing_single(to_replacing, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replacing, value): blk[0], = blk[0]._replacing_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replacing: blk[0], = blk[0]._replacing_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replacing_single(to_replacing, value, inplace=inplace, filter=filter, regex=regex) return blk def _replacing_single(self, to_replacing, value, inplace=False, filter=None, regex=False): # to_replacing is regex compilable to_rep_re = regex and com.is_re_compilable(to_replacing) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replacing and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replacing = regex regex = regex_re or to_rep_re # try to getting the pattern attribute (compiled re) or it's a string try: pattern = to_replacing.pattern except AttributeError: pattern = to_replacing # if the pattern is not empty and to_replacing is either a string or a # regex if regex and pattern: rx = re.compile(to_replacing) else: # if the thing to replacing is not a string or compiled regex ctotal_all # the superclass method -> to_replacing is some kind of object result = super(ObjectBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) if not incontainstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.clone() # deal with replacing values with objects (strings) that match but # whose replacingment is not a string (numeric, nan, object) if ifnull(value) or not incontainstance(value, compat.string_types): def re_replacingr(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gettings returned def re_replacingr(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacingr, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.incontain(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() def convert(self, clone=True, **kwargs): return [self.clone() if clone else self] @property def shape(self): return (length(self.mgr_locs), length(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillnone(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillnone' has " "not been implemented yet") values = self.values if inplace else self.values.clone() return [self.make_block_same_class(values=values.fillnone(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.clone() return self.make_block_same_class(values=values.fillnone(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def shifting(self, periods, axis=0): return self.make_block_same_class(values=self.values.shifting(periods), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are retotal_ally a single-dim object # but are passed the axis depending on the ctotal_alling routing # if its REALLY axis 0, then this will be a reindexing and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.clone() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ if self.is_categorical_totype(dtype): values = self.values else: values = np.asarray(self.values).totype(dtype, clone=False) if clone: values = values.clone() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = ifnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,length(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (com.is_integer(element) or incontainstance(element, datetime) or ifnull(element)) def _try_cast(self, element): try: return int(element) except: return element def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smtotal_allest i8, and will correctly value_round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be """ values = values.view('i8') if is_null_datelike_scalar(other): other = tslib.iNaT elif incontainstance(other, datetime): other = lib.Timestamp(other).asm8.view('i8') elif hasattr(other, 'dtype') and com.is_integer_dtype(other): other = other.view('i8') else: other = np.array(other, dtype='i8') return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if incontainstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.totype('M8[ns]') elif incontainstance(result, (np.integer, np.datetime64)): result = lib.Timestamp(result) return result @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if incontainstance(value, type(tslib.NaT)) or np.array(ifnull(value)).total_all(): value = tslib.iNaT return value def fillnone(self, value, limit=None, inplace=False, downcast=None): # straight putmask here values = self.values if inplace else self.values.clone() mask = ifnull(self.values) value = self._try_fill(value) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1)>limit]=False np.putmask(values, mask, value) return [self if inplace else make_block(values, fastpath=True, placement=self.mgr_locs)] def to_native_types(self, slicer=None, na_rep=None, date_formating=None, quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] from monkey.core.formating import _getting_formating_datetime64_from_values formating = _getting_formating_datetime64_from_values(values, date_formating) result = tslib.formating_array_from_datetime(values.view('i8').flat_underlying(), tz=None, formating=formating, na_rep=na_rep).reshape(values.shape) return result def should_store(self, value): return issubclass(value.dtype.type, np.datetime64) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workavalue_round for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values def getting_values(self, dtype=None): # return object dtype as Timestamps if dtype == object: return lib.mapping_infer(self.values.flat_underlying(), lib.Timestamp)\ .reshape(self.values.shape) return self.values class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (length(self.mgr_locs), self.sp_index.lengthgth) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): #return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): # we may need to upcast our fill to match our dtype if issubclass(self.dtype.type, np.floating): v = float(v) self.values.fill_value = v @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, clone=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def __length__(self): try: return self.sp_index.lengthgth except: return 0 def clone(self, deep=True): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, clone=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, clone=False, fastpath=True): """ return a new block """ if dtype is None: dtype = self.dtype if fill_value is None: fill_value = self.values.fill_value # if not incontainstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True,) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, clone=clone) return make_block(new_values, ndim=self.ndim, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = com.interpolate_2d( self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillnone(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillnone' has " "not been implemented yet") if issubclass(self.dtype.type, np.floating): value = float(value) values = self.values if inplace else self.values.clone() return [self.make_block_same_class(values=values.getting_values(value), fill_value=value, placement=self.mgr_locs)] def shifting(self, periods, axis=0): """ shifting the block by periods """ N = length(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindexing(self, new_index): """ sparse reindexing and return a new block current reindexing only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindexing( values.sp_values.totype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if incontainstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): klass = DatetimeBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(MonkeyObject): """ Core internal data structure to implement KnowledgeFrame Manage a bunch of labeled 2D mixed-type ndarrays. Essentitotal_ally it's a lightweight blocked set of labeled data to be manipulated by the KnowledgeFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) clone(deep=True) getting_dtype_counts getting_ftype_counts getting_dtypes getting_ftypes employ(func, axes, block_filter_fn) getting_bool_data getting_numeric_data getting_slice(slice_like, axis) getting(label) igetting(loc) getting_scalar(label_tup) take(indexer, axis) reindexing_axis(new_labels, axis) reindexing_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if length(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple items") else: if self.ndim != block.ndim: raise AssertionError(('Number of Block dimensions (%d) must ' 'equal number of axes (%d)') % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of length 0 """ if axes is None: axes = [_ensure_index([])] + [ _ensure_index(a) for a in self.axes[1:] ] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(length(ax) for ax in self.axes) @property def ndim(self): return length(self.axes) def set_axis(self, axis, new_labels): new_labels = _ensure_index(new_labels) old_length = length(self.axes[axis]) new_length = length(new_labels) if new_length != old_length: raise ValueError('Length mismatch: Expected axis has %d elements, ' 'new values have %d elements' % (old_length, new_length)) self.axes[axis] = new_labels def renagetting_ming_axis(self, mappingper, axis, clone=True): """ Rename one of axes. Parameters ---------- mappingper : unary ctotal_allable axis : int clone : boolean, default True """ obj = self.clone(deep=clone) obj.set_axis(axis, _transform_index(self.axes[axis], mappingper)) return obj def add_prefix(self, prefix): f = (str(prefix) + '%s').__mod__ return self.renagetting_ming_axis(f, axis=0) def add_suffix(self, suffix): f = ('%s' + str(suffix)).__mod__ return self.renagetting_ming_axis(f, axis=0) @property def _is_single_block(self): if self.ndim == 1: return True if length(self.blocks) != 1: return False blk = self.blocks[0] return (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice(0, length(self), 1)) def _rebuild_blknos_and_blklocs(self): """ Umkate mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(length(rl)) if (new_blknos == -1).whatever(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs # make items read only for now def _getting_items(self): return self.axes[0] items = property(fgetting=_getting_items) def _getting_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.getting(v, 0) + b.shape[0] return counts def getting_dtype_counts(self): return self._getting_counts(lambda b: b.dtype.name) def getting_ftype_counts(self): return self._getting_counts(lambda b: b.ftype) def getting_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return com.take_1d(dtypes, self._blknos, total_allow_fill=False) def getting_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return com.take_1d(ftypes, self._blknos, total_allow_fill=False) def __gettingstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = [ax for ax in self.axes] extra_state = { '0.14.1': { 'axes': axes_array, 'blocks': [dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks] } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): # numpy < 1.7 pickle compat if values.dtype == 'M8[us]': values = values.totype('M8[ns]') return make_block(values, placement=mgr_locs) if (incontainstance(state, tuple) and length(state) >= 4 and '0.14.1' in state[3]): state = state[3]['0.14.1'] self.axes = [_ensure_index(ax) for ax in state['axes']] self.blocks = tuple( unpickle_block(b['values'], b['mgr_locs']) for b in state['blocks']) else: # discard whateverthing after 3rd, support beta pickling formating for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [_ensure_index(ax) for ax in ax_arrays] if length(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workavalue_round for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-distinctive # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the astotal_sumption that # block items corresponded to manager items 1-to-1. total_all_mgr_locs = [slice(0, length(bitems[0]))] else: total_all_mgr_locs = [self.axes[0].getting_indexer(blk_items) for blk_items in bitems] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, total_all_mgr_locs)) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __length__(self): return length(self.items) def __unicode__(self): output = com.pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += u('\nItems: %s') % ax else: output += u('\nAxis %d: %s') % (i, ax) for block in self.blocks: output += u('\n%s') % com.pprint_thing(block) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = total_sum(length(x.mgr_locs) for x in self.blocks) for block in self.blocks: if not block.is_sparse and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if length(self.items) != tot_items: raise AssertionError('Number of manager items must equal union of ' 'block items\n# manager items: {0}, # ' 'tot_items: {1}'.formating(length(self.items), tot_items)) def employ(self, f, axes=None, filter=None, do_integrity_check=False, **kwargs): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the ctotal_allable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only ctotal_all the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replacing-* family of methods if filter is not None: filter_locs = set(self.items.getting_indexer_for(filter)) if length(filter_locs) == length(self.items): # All items are included, as if there were no filtering filter = None else: kwargs['filter'] = filter_locs if f == 'where' and kwargs.getting('align', True): align_clone = True align_keys = ['other', 'cond'] elif f == 'putmask' and kwargs.getting('align', True): align_clone = False align_keys = ['new', 'mask'] elif f == 'eval': align_clone = False align_keys = ['other'] elif f == 'fillnone': # fillnone interntotal_ally does putmask, maybe it's better to do this # at mgr, not block level? align_clone = False align_keys = ['value'] else: align_keys = [] aligned_args = dict((k, kwargs[k]) for k in align_keys if hasattr(kwargs[k], 'reindexing_axis')) for b in self.blocks: if filter is not None: if not b.mgr_locs.incontain(filter_locs).whatever(): result_blocks.adding(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = gettingattr(obj, '_info_axis_number', 0) kwargs[k] = obj.reindexing_axis(b_items, axis=axis, clone=align_clone) applied = gettingattr(b, f)(**kwargs) if incontainstance(applied, list): result_blocks.extend(applied) else: result_blocks.adding(applied) if length(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__(result_blocks, axes or self.axes, do_integrity_check=do_integrity_check) bm._consolidate_inplace() return bm def ifnull(self, **kwargs): return self.employ('employ', **kwargs) def where(self, **kwargs): return self.employ('where', **kwargs) def eval(self, **kwargs): return self.employ('eval', **kwargs) def setitem(self, **kwargs): return self.employ('setitem', **kwargs) def putmask(self, **kwargs): return self.employ('putmask', **kwargs) def diff(self, **kwargs): return self.employ('diff', **kwargs) def interpolate(self, **kwargs): return self.employ('interpolate', **kwargs) def shifting(self, **kwargs): return self.employ('shifting', **kwargs) def fillnone(self, **kwargs): return self.employ('fillnone', **kwargs) def downcast(self, **kwargs): return self.employ('downcast', **kwargs) def totype(self, dtype, **kwargs): return self.employ('totype', dtype=dtype, **kwargs) def convert(self, **kwargs): return self.employ('convert', **kwargs) def replacing(self, **kwargs): return self.employ('replacing', **kwargs) def replacing_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replacing """ # figure out our mask a-priori to avoid repeated replacingments values = self.as_matrix() def comp(s): if ifnull(s): return ifnull(values) return _possibly_compare(values, gettingattr(s, 'asm8', s), operator.eq) masks = [comp(s) for i, s in enumerate(src_list)] result_blocks = [] for blk in self.blocks: # its possible to getting multiple result blocks here # replacing ALWAYS will return a list rb = [blk if inplace else blk.clone()] for i, (s, d) in enumerate(zip(src_list, dest_list)): new_rb = [] for b in rb: if b.dtype == np.object_: result = b.replacing(s, d, inplace=inplace, regex=regex) if incontainstance(result, list): new_rb.extend(result) else: new_rb.adding(result) else: # getting our mask for this element, sized to this # particular block m = masks[i][b.mgr_locs.indexer] if m.whatever(): new_rb.extend(b.putmask(m, d, inplace=True)) else: new_rb.adding(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def reshape_nd(self, axes, **kwargs): """ a 2d-nd reshape operation on a BlockManager """ return self.employ('reshape_nd', axes=axes, **kwargs) def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = length(ftypes) == length(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return length(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return total_all([block.is_numeric for block in self.blocks]) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return whatever([block.is_datelike for block in self.blocks]) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if length(self.blocks) == 1: return self.blocks[0].is_view # It is technictotal_ally possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def getting_bool_data(self, clone=False): """ Parameters ---------- clone : boolean, default False Whether to clone the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], clone) def getting_numeric_data(self, clone=False): """ Parameters ---------- clone : boolean, default False Whether to clone the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], clone) def combine(self, blocks, clone=True): """ return a new manager with the blocks """ if length(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatingenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.getting_reverse_indexer(indexer, self.shape[0]) new_items = self.items.take(indexer) new_blocks = [] for b in blocks: b = b.clone(deep=clone) b.mgr_locs = com.take_1d(inv_indexer, b.mgr_locs.as_array, axis=0, total_allow_fill=False) new_blocks.adding(b) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(new_blocks, new_axes, do_integrity_check=False) def getting_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.gettingitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False, fastpath=True) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return length(self.blocks) def clone(self, deep=True): """ Make deep or shtotal_allow clone of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shtotal_allow clone (do not clone data) If 'total_all', clone data and a deep clone of the index Returns ------- clone : BlockManager """ # this preserves the notion of view cloneing of axes if deep: if deep == 'total_all': clone = lambda ax: ax.clone(deep=True) else: clone = lambda ax: ax.view() new_axes = [ clone(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.employ('clone', axes=new_axes, deep=deep, do_integrity_check=False) def as_matrix(self, items=None): if length(self.blocks) == 0: return np.empty(self.shape, dtype=float) if items is not None: mgr = self.reindexing_axis(items, axis=0) else: mgr = self if self._is_single_block or not self.is_mixed_type: return mgr.blocks[0].getting_values() else: return mgr._interleave() def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) result = np.empty(self.shape, dtype=dtype) if result.shape[0] == 0: # Workavalue_round for numpy 1.7 bug: # # >>> a = np.empty((0,10)) # >>> a[slice(0,0)] # array([], shape=(0, 10), dtype=float64) # >>> a[[]] # Traceback (most recent ctotal_all final_item): # File "<standardin>", line 1, in <module> # IndexError: index 0 is out of bounds for axis 0 with size 0 return result itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.getting_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.total_all(): raise AssertionError('Some items were not contained in blocks') return result def xs(self, key, axis=1, clone=True, takeable=False): if axis < 1: raise AssertionError('Can only take xs across axis >= 1, got %d' % axis) # take by position if takeable: loc = key else: loc = self.axes[axis].getting_loc(key) slicer = [slice(None, None) for _ in range(self.ndim)] slicer[axis] = loc slicer = tuple(slicer) new_axes = list(self.axes) # could be an array indexer! if incontainstance(loc, (slice, np.ndarray)): new_axes[axis] = new_axes[axis][loc] else: new_axes.pop(axis) new_blocks = [] if length(self.blocks) > 1: # we must clone here as we are mixed type for blk in self.blocks: newb = make_block(values=blk.values[slicer], klass=blk.__class__, fastpath=True, placement=blk.mgr_locs) new_blocks.adding(newb) elif length(self.blocks) == 1: block = self.blocks[0] vals = block.values[slicer] if clone: vals = vals.clone() new_blocks = [make_block(values=vals, placement=block.mgr_locs, klass=block.__class__, fastpath=True,)] return self.__class__(new_blocks, new_axes) def fast_xs(self, loc): """ getting a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if length(self.blocks) == 1: return self.blocks[0].values[:, loc] items = self.items # non-distinctive (GH4726) if not items.is_distinctive: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # distinctive dtype = _interleaved_dtype(self.blocks) n = length(items) result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such total_allocatement may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk._try_coerce_result(blk.igetting((i, loc))) return result def consolidate(self): """ Join togettingher blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def getting(self, item, fastpath=True): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_distinctive: if not ifnull(item): loc = self.items.getting_loc(item) else: indexer = np.arange(length(self.items))[ifnull(self.items)] # total_allow a single nan location indexer if not np.isscalar(indexer): if length(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.igetting(loc, fastpath=fastpath) else: if ifnull(item): raise ValueError("cannot label index with a null key") indexer = self.items.getting_indexer_for([item]) return self.reindexing_indexer(new_axis=self.items[indexer], indexer=indexer, axis=0, total_allow_dups=True) def igetting(self, i, fastpath=True): """ Return the data as a SingleBlockManager if fastpath=True and possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.igetting(self._blklocs[i]) if not fastpath or block.is_sparse or values.ndim != 1: return values # fastpath shortcut for select a single-dim from a 2-dim BM return SingleBlockManager([ block.make_block_same_class(values, placement=slice(0, length(values)), ndim=1, fastpath=True) ], self.axes[1]) def getting_scalar(self, tup): """ Retrieve single item """ full_loc = list(ax.getting_loc(x) for ax, x in zip(self.axes, tup)) blk = self.blocks[self._blknos[full_loc[0]]] full_loc[0] = self._blklocs[full_loc[0]] # FIXME: this may return non-upcasted types? return blk.values[tuple(full_loc)] def delete(self, item): """ Delete selected item (items if non-distinctive) in-place. """ indexer = self.items.getting_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumtotal_sum() is_blk_deleted = [False] * length(self.blocks) if incontainstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smtotal_allints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if length(blk_del) == length(bml): is_blk_deleted[blkno] = True continue elif length(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple(b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno]) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value, check=False): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items if check, then validate that we are not setting the same data in-place """ # FIXME: refactor, clearly separate broadcasting & zip-like total_allocatement # can prob also fix the various if tests for sparse/categorical value_is_sparse = incontainstance(value, SparseArray) value_is_cat = is_categorical(value) value_is_nonconsolidatable = value_is_sparse or value_is_cat if value_is_sparse: # sparse assert self.ndim == 2 def value_gettingitem(placement): return value elif value_is_cat: # categorical def value_gettingitem(placement): return value else: if value.ndim == self.ndim - 1: value = value.reshape((1,) + value.shape) def value_gettingitem(placement): return value else: def value_gettingitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError('Shape of new values must be compatible ' 'with manager shape') try: loc = self.items.getting_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(length(self.items), item, value) return if incontainstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].clone() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in _getting_blkno_placements(blknos, length(self.blocks), group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_gettingitem(val_locs), check=check) else: unfit_mgr_locs.adding(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.adding(val_locs) # If total_all block items are unfit, schedule the block for removal. if length(val_locs) == length(blk.mgr_locs): removed_blknos.adding(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(length(blk)) if length(removed_blknos): # Remove blocks & umkate blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - length(removed_blknos)) self._blknos = com.take_1d(new_blknos, self._blknos, axis=0, total_allow_fill=False) self.blocks = tuple(blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos)) if unfit_val_locs: unfit_mgr_locs = np.concatingenate(unfit_mgr_locs) unfit_count = length(unfit_mgr_locs) new_blocks = [] if value_is_nonconsolidatable: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block(values=value.clone(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1)) for mgr_loc in unfit_mgr_locs) self._blknos[unfit_mgr_locs] = (np.arange(unfit_count) + length(self.blocks)) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].adding(unfit_val_locs[1:]) new_blocks.adding( make_block(values=value_gettingitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs)) self._blknos[unfit_mgr_locs] = length(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc, item, value, total_allow_duplicates=False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like total_allow_duplicates: bool If False, trying to insert non-distinctive item will raise """ if not total_allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError('cannot insert %s, already exists' % item) if not incontainstance(loc, int): raise TypeError("loc must be int") block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc+1)) for blkno, count in _fast_count_smtotal_allints(self._blknos[loc:]): blk = self.blocks[blkno] if count == length(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.clone() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.adding is a lot faster (at least in numpy 1.7.1), let's use it # if we can. self._blklocs = np.adding(self._blklocs, 0) self._blknos = np.adding(self._blknos, length(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, length(self.blocks)) self.axes[0] = self.items.insert(loc, item) self.blocks += (block,) self._shape = None self._known_consolidated = False if length(self.blocks) > 100: self._consolidate_inplace() def reindexing_axis(self, new_index, axis, method=None, limit=None, fill_value=None, clone=True): """ Conform block manager to new index. """ new_index = _ensure_index(new_index) new_index, indexer = self.axes[axis].reindexing( new_index, method=method, limit=limit) return self.reindexing_indexer(new_index, indexer, axis=axis, fill_value=fill_value, clone=clone) def reindexing_indexer(self, new_axis, indexer, axis, fill_value=None, total_allow_dups=False, clone=True): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object total_allow_dups : bool monkey-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not clone: return self result = self.clone(deep=clone) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't total_allow reindexinging with dups if not total_allow_dups: self.axes[axis]._can_reindexing(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0( indexer, fill_tuple=(fill_value,)) else: new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=(fill_value if fill_value is not None else blk.fill_value,)) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ total_allow_fill = fill_tuple is not None sl_type, slobj, sllength = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], total_allow_fill=total_allow_fill) if self._is_single_block: blk = self.blocks[0] if sl_type in ('slice', 'mask'): return [blk.gettingitem_block(slobj, new_mgr_locs=slice(0, sllength))] elif not total_allow_fill or self.ndim == 1: if total_allow_fill and fill_tuple[0] is None: _, fill_value = com._maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [blk.take_nd(slobj, axis=0, new_mgr_locs=slice(0, sllength), fill_tuple=fill_tuple)] if sl_type in ('slice', 'mask'): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = com.take_1d(self._blknos, slobj, fill_value=-1, total_allow_fill=total_allow_fill) blklocs = com.take_1d(self._blklocs, slobj, fill_value=-1, total_allow_fill=total_allow_fill) # When filling blknos, make sure blknos is umkated before addinging to # blocks list, that way new blkno is exactly length(blocks). # # FIXME: mgr_grouper_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in _getting_blkno_placements(blknos, length(self.blocks), group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.adding(self._make_na_block( placement=mgr_locs, fill_value=fill_value)) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's only one item # and each mgr loc is a clone of that single item. for mgr_loc in mgr_locs: newblk = blk.clone(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.adding(newblk) else: blocks.adding(blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None)) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = length(placement) dtype, fill_value = com._infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along whatever axis. """ self._consolidate_inplace() indexer = np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if incontainstance(indexer, slice) \ else np.aswhateverarray(indexer, dtype='int64') n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).whatever(): raise Exception('Indices must be nonzero and less than ' 'the axis lengthgth') new_labels = self.axes[axis].take(indexer) return self.reindexing_indexer(new_axis=new_labels, indexer=indexer, axis=axis, total_allow_dups=True) def unioner(self, other, lsuffix='', rsuffix=''): if not self._is_indexed_like(other): raise AssertionError('Must have same axes to unioner managers') l, r = items_overlap_with_suffix(left=self.items, lsuffix=lsuffix, right=other.items, rsuffix=rsuffix) new_items = _concating_indexes([l, r]) new_blocks = [blk.clone(deep=False) for blk in self.blocks] offset = self.shape[0] for blk in other.blocks: blk = blk.clone(deep=False) blk.mgr_locs = blk.mgr_locs.add(offset) new_blocks.adding(blk) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(_consolidate(new_blocks), new_axes) def _is_indexed_like(self, other): """ Check total_all axes except items """ if self.ndim != other.ndim: raise AssertionError(('Number of dimensions must agree ' 'got %d and %d') % (self.ndim, other.ndim)) for ax, oax in zip(self.axes[1:], other.axes[1:]): if not ax.equals(oax): return False return True def equals(self, other): self_axes, other_axes = self.axes, other.axes if length(self_axes) != length(other_axes): return False if not total_all (ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if length(self.blocks) != length(other.blocks): return False # canonicalize block order, using a tuple combining the type # name and then mgr_locs because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.dtype.name, block.mgr_locs.as_array.convert_list()) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return total_all(block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks)) class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__(self, block, axis, do_integrity_check=False, fastpath=False): if incontainstance(axis, list): if length(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis") axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if incontainstance(block, list): # empty block if length(block) == 0: block = [np.array([])] elif length(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] else: self.axes = [_ensure_index(axis)] # create the block here if incontainstance(block, list): # provide consolidation to the interleaved_dtype if length(block) > 1: dtype = _interleaved_dtype(block) block = [b.totype(dtype) for b in block] block = _consolidate(block) if length(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] if not incontainstance(block, Block): block = make_block(block, placement=slice(0, length(axis)), ndim=1, fastpath=True) self.blocks = [block] def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values def reindexing(self, new_axis, indexer=None, method=None, fill_value=None, limit=None, clone=True): # if we are the same and don't clone, just return if self.index.equals(new_axis): if clone: return self.clone(deep=True) else: return self values = self._block.getting_values() if indexer is None: indexer = self.items.getting_indexer_for(new_axis) if fill_value is None: # FIXME: is fill_value used correctly in sparse blocks? if not self._block.is_sparse: fill_value = self._block.fill_value else: fill_value = np.nan new_values = com.take_1d(values, indexer, fill_value=fill_value) # fill if needed if method is not None or limit is not None: new_values = com.interpolate_2d(new_values, method=method, limit=limit, fill_value=fill_value) if self._block.is_sparse: make_block = self._block.make_block_same_class block = make_block(new_values, clone=clone, placement=slice(0, length(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr def getting_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return self.__class__(self._block._slice(slobj), self.index[slobj], fastpath=True) @property def index(self): return self.axes[0] def convert(self, **kwargs): """ convert the whole block as one """ kwargs['by_item'] = False return self.employ('convert', **kwargs) @property def dtype(self): return self._values.dtype @property def array_dtype(self): return self._block.array_dtype @property def ftype(self): return self._block.ftype def getting_dtype_counts(self): return {self.dtype.name: 1} def getting_ftype_counts(self): return {self.ftype: 1} def getting_dtypes(self): return np.array([self._block.dtype]) def getting_ftypes(self): return np.array([self._block.ftype]) @property def values(self): return self._values.view() def getting_values(self): """ return a dense type view """ return np.array(self._block.to_dense(),clone=False) @property def itemsize(self): return self._values.itemsize @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.getting_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for gettingting a cross-section return a view of the data """ return self._block.values[loc] def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(mapping(int, [tot_items] + list(block_shape))) implied = tuple(mapping(int, [length(ax) for ax in axes])) if passed == implied and e is not None: raise e raise ValueError("Shape of passed values is {0}, indices imply {1}".formating( passed,implied)) def create_block_manager_from_blocks(blocks, axes): try: if length(blocks) == 1 and not incontainstance(blocks[0], Block): # if blocks[0] is of lengthgth 0, return empty blocks if not length(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement is # basictotal_ally "total_all items", but if there're mwhatever, don't bother # converting, it's an error whateverway. blocks = [make_block(values=blocks[0], placement=slice(0, length(axes[0])))] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: blocks = [gettingattr(b, 'values', b) for b in blocks] tot_items = total_sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: construction_error(length(arrays), arrays[0].shape, axes, e) def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? float_items = [] complex_items = [] int_items = [] bool_items = [] object_items = [] sparse_items = [] datetime_items = [] cat_items = [] extra_locs = [] names_idx = Index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(length(names_idx)) else: assert names_idx.interst(axes[0]).is_distinctive names_indexer = names_idx.getting_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.adding(i) continue k = names[name_idx] v = arrays[name_idx] if incontainstance(v, (SparseArray, ABCSparseCollections)): sparse_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.floating): float_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.complexfloating): complex_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.datetime64): if v.dtype != _NS_DTYPE: v = tslib.cast_to_nanoseconds(v) if hasattr(v, 'tz') and v.tz is not None: object_items.adding((i, k, v)) else: datetime_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.integer): if v.dtype == np.uint64: # HACK #2355 definite overflow if (v > 2 ** 63 - 1).whatever(): object_items.adding((i, k, v)) continue int_items.adding((i, k, v)) elif v.dtype == np.bool_: bool_items.adding((i, k, v)) elif is_categorical(v): cat_items.adding((i, k, v)) else: object_items.adding((i, k, v)) blocks = [] if length(float_items): float_blocks = _multi_blockify(float_items) blocks.extend(float_blocks) if length(complex_items): complex_blocks = _simple_blockify( complex_items, np.complex128) blocks.extend(complex_blocks) if length(int_items): int_blocks = _multi_blockify(int_items) blocks.extend(int_blocks) if length(datetime_items): datetime_blocks = _simple_blockify( datetime_items, _NS_DTYPE) blocks.extend(datetime_blocks) if length(bool_items): bool_blocks = _simple_blockify( bool_items, np.bool_) blocks.extend(bool_blocks) if length(object_items) > 0: object_blocks = _simple_blockify( object_items, np.object_) blocks.extend(object_blocks) if length(sparse_items) > 0: sparse_blocks = _sparse_blockify(sparse_items) blocks.extend(sparse_blocks) if length(cat_items) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, fastpath=True, placement=[i] ) for i, names, array in cat_items ] blocks.extend(cat_blocks) if length(extra_locs): shape = (length(extra_locs),) + tuple(length(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.adding(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.totype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentitotal_ally have different dtypes """ # group by dtype grouper = itertools.grouper(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays( list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.adding(block) return new_blocks def _sparse_blockify(tuples, dtype=None): """ return an array of blocks that potentitotal_ally have different dtypes (and are sparse) """ new_blocks = [] for i, names, array in tuples: array = _maybe_to_sparse(array) block = make_block( array, klass=SparseBlock, fastpath=True, placement=[i]) new_blocks.adding(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if incontainstance(x, ABCCollections): return x.values else: return np.asarray(x) def _shape_compat(x): if incontainstance(x, ABCCollections): return length(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (length(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype(blocks): if not length(blocks): return None counts = defaultdict(lambda: []) for x in blocks: counts[type(x)].adding(x) def _lcd_dtype(l): """ find the lowest dtype that can accomodate the given types """ m = l[0].dtype for x in l[1:]: if x.dtype.itemsize > m.itemsize: m = x.dtype return m have_int = length(counts[IntBlock]) > 0 have_bool = length(counts[BoolBlock]) > 0 have_object = length(counts[ObjectBlock]) > 0 have_float = length(counts[FloatBlock]) > 0 have_complex = length(counts[ComplexBlock]) > 0 have_dt64 = length(counts[DatetimeBlock]) > 0 have_td64 = length(counts[TimeDeltaBlock]) > 0 have_cat = length(counts[CategoricalBlock]) > 0 have_sparse = length(counts[SparseBlock]) > 0 have_numeric = have_float or have_complex or have_int has_non_numeric = have_dt64 or have_td64 or have_cat if (have_object or (have_bool and (have_numeric or have_dt64 or have_td64)) or (have_numeric and has_non_numeric) or have_cat or have_dt64 or have_td64): return np.dtype(object) elif have_bool: return np.dtype(bool) elif have_int and not have_float and not have_complex: # if we are mixing unsigned and signed, then return # the next biggest int type (if we can) lcd = _lcd_dtype(counts[IntBlock]) kinds = set([i.dtype.kind for i in counts[IntBlock]]) if length(kinds) == 1: return lcd if lcd == 'uint64' or lcd == 'int64': return np.dtype('int64') # return 1 bigger on the itemsize if unsinged if lcd.kind == 'u': return np.dtype('int%s' % (lcd.itemsize * 8 * 2)) return lcd elif have_complex: return np.dtype('c16') else: return _lcd_dtype(counts[FloatBlock] + counts[SparseBlock]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.grouper(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: unionerd_blocks = _unioner_blocks(list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate) if incontainstance(unionerd_blocks, list): new_blocks.extend(unionerd_blocks) else: new_blocks.adding(unionerd_blocks) return new_blocks def _unioner_blocks(blocks, dtype=None, _can_consolidate=True): if length(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if length(set([b.dtype for b in blocks])) != 1: raise AssertionError("_unioner_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case total_all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatingenate([b.mgr_locs.as_array for b in blocks]) new_values = _vstack([b.values for b in blocks], dtype) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, fastpath=True, placement=new_mgr_locs) # no unioner return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim <= ndim: if shape is None: shape = values.shape values = values.reshape(tuple((1,) + shape)) return values def _vstack(to_stack, dtype): # work avalue_round NumPy 1.6 bug if dtype == _NS_DTYPE or dtype == _TD_DTYPE: new_values = np.vstack([x.view('i8') for x in to_stack]) return new_values.view(dtype) else: return np.vstack(to_stack) def _possibly_compare(a, b, op): is_a_array = incontainstance(a, np.ndarray) is_b_array = incontainstance(b, np.ndarray) # numpy deprecation warning to have i8 vs integer comparisions if is_datetimelike_v_numeric(a, b): res = False else: res = op(a, b) if np.isscalar(res) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = 'ndarray(dtype=%s)' % a.dtype if is_b_array: type_names[1] = 'ndarray(dtype=%s)' % b.dtype raise TypeError("Cannot compare types %r and %r" % tuple(type_names)) return res def _concating_indexes(indexes): return indexes[0].adding(indexes[1:]) def _block2d_to_blocknd(values, placement, shape, labels, ref_items): """ pivot to the labels shape """ from monkey.core.internals import make_block panel_shape = (length(placement),) + shape # TODO: lexsort depth needs to be 2!! # Create observation selection vector using major and getting_minor # labels, for converting to panel formating. selector = _factor_indexer(shape[1:], labels) mask = np.zeros(np.prod(shape), dtype=bool) mask.put(selector, True) if mask.total_all(): pvalues = np.empty(panel_shape, dtype=values.dtype) else: dtype, fill_value = _maybe_promote(values.dtype) pvalues = np.empty(panel_shape, dtype=dtype) pvalues.fill(fill_value) values = values for i in range(length(placement)): pvalues[i].flat[mask] = values[:, i] return make_block(pvalues, placement=placement) def _factor_indexer(shape, labels): """ given a tuple of shape and a list of Categorical labels, return the expanded label indexer """ mult = np.array(shape)[::-1].cumprod()[::-1] return com._ensure_platform_int( np.total_sum(np.array(labels).T * np.adding(mult, [1]), axis=1).T) def _getting_blkno_placements(blknos, blk_count, group=True): """ Parameters ---------- blknos : array of int64 blk_count : int group : bool Returns ------- iterator yield (BlockPlacement, blkno) """ blknos = com._ensure_int64(blknos) # FIXME: blk_count is unused, but it may avoid the use of dicts in cython for blkno, indexer in lib.getting_blkno_indexers(blknos, group): yield blkno, BlockPlacement(indexer) def items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_renagetting_ming = left.interst(right) if length(to_renagetting_ming) == 0: return left, right else: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: %s' % to_renagetting_ming) def lrenagetting_mingr(x): if x in to_renagetting_ming: return '%s%s' % (x, lsuffix) return x def rrenagetting_mingr(x): if x in to_renagetting_ming: return '%s%s' % (x, rsuffix) return x return (_transform_index(left, lrenagetting_mingr), _transform_index(right, rrenagetting_mingr)) def _transform_index(index, func): """ Apply function to total_all values found in index. This includes transforgetting_ming multiindex entries separately. """ if incontainstance(index, MultiIndex): items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name) def _putmask_smart(v, m, n): """ Return a new block, try to preserve dtype if possible. Parameters ---------- v : `values`, umkated in-place (array like) m : `mask`, applies to both sides (array like) n : `new values` either scalar or an array like aligned with `values` """ # n should be the lengthgth of the mask or a scalar here if not is_list_like(n): n = np.array([n] * length(m)) elif incontainstance(n, np.ndarray) and n.ndim == 0: # numpy scalar n = np.repeat(np.array(n, ndgetting_min=1), length(m)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[m] nn_at = nn.totype(v.dtype) comp = (nn == nn_at) if is_list_like(comp) and comp.total_all(): nv = v.clone() nv[m] = nn_at return nv except (ValueError, IndexError, TypeError): pass # change the dtype dtype, _ = com._maybe_promote(n.dtype) nv = v.totype(dtype) try: nv[m] = n[m] except ValueError: idx, = np.where(np.squeeze(m)) for mask_index, new_val in zip(idx, n[m]): nv[mask_index] = new_val return nv def concatingenate_block_managers(mgrs_indexers, axes, concating_axis, clone): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concating_axis : int clone : bool """ concating_plan = combine_concating_plans([getting_mgr_concatingenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers], concating_axis) blocks = [make_block(concatingenate_join_units(join_units, concating_axis, clone=clone), placement=placement) for placement, join_units in concating_plan] return BlockManager(blocks, axes) def getting_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatingenating specified units. Returned N/A value may be None which averages there was no casting involved. Returns ------- dtype na """ if length(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan has_none_blocks = False dtypes = [None] * length(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype # dtypes = set() upcast_classes = set() null_upcast_classes = set() for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if com.is_categorical_dtype(dtype): upcast_cls = 'category' elif issubclass(dtype.type, np.bool_): upcast_cls = 'bool' elif issubclass(dtype.type, np.object_): upcast_cls = 'object' elif is_datetime64_dtype(dtype): upcast_cls = 'datetime' elif is_timedelta64_dtype(dtype): upcast_cls = 'timedelta' else: upcast_cls = 'float' # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_null: null_upcast_classes.add(upcast_cls) else: upcast_classes.add(upcast_cls) if not upcast_classes: upcast_classes = null_upcast_classes # create the result if 'object' in upcast_classes: return np.dtype(np.object_), np.nan elif 'bool' in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif 'category' in upcast_classes: return np.dtype(np.object_), np.nan elif 'float' in upcast_classes: return np.dtype(np.float64), np.nan elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslib.iNaT elif 'timedelta' in upcast_classes: return np.dtype('m8[ns]'), tslib.iNaT else: # pragma raise AssertionError("invalid dtype detergetting_mination in getting_concating_dtype") def concatingenate_join_units(join_units, concating_axis, clone): """ Concatenate values from several join units along selected axis. """ if concating_axis == 0 and length(join_units) > 1: # Concatenating join units along ax0 is handled in _unioner_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = getting_empty_dtype_and_na(join_units) to_concating = [ju.getting_reindexinged_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if length(to_concating) == 1: # Only one block, nothing to concatingenate. concating_values = to_concating[0] if clone and concating_values.base is not None: concating_values = concating_values.clone() else: concating_values = com._concating_compat(to_concating, axis=concating_axis) return concating_values def getting_mgr_concatingenation_plan(mgr, indexers): """ Construct concatingenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindexing shape , save for item axis which will be separate # for each block whateverway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = length(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = com.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = com.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in _getting_blkno_placements(blknos, length(mgr.blocks), group=False): assert placements.is_slice_like join_unit_indexers = indexers.clone() shape = list(mgr_shape) shape[0] = length(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexinging = ( length(placements) == length(blk.mgr_locs) and # Fastpath detection of join unit not needing to reindexing its # block: no ax0 reindexinging took place and block placement was # sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: total_all indexer locs are sequential (and # lengthgth match is checked above). (np.diff(ax0_blk_indexer) == 1).total_all())) # Omit indexer if no item reindexinging is required. if unit_no_ax0_reindexinging: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.adding((placements, unit)) return plan def combine_concating_plans(plans, concating_axis): """ Combine multiple concatingenation plans into one. existing_plan is umkated in-place. """ if length(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concating_axis == 0: offset = 0 for plan in plans: final_item_plc = None for plc, unit in plan: yield plc.add(offset), [unit] final_item_plc = plc if final_item_plc is not None: offset += final_item_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(
mapping(iter, plans)
pandas.compat.map
"""This module contains total_all the stress models that available in Pastas. Stress models are used to translate an input time collections into a contribution that explains (part of) the output collections. Supported Stress models ----------------------- The following stressmodels are currently supported and tested: .. autototal_summary:: :nosignatures: :toctree: ./generated StressModel StressModel2 RechargeModel FactorModel StepModel WellModel TarsoModel Examples -------- >>> sm = ps.StressModel(stress, rfunc=ps.Gamma, name="sm1") >>> ml.add_stressmodel(stressmodel=sm) See Also -------- pastas.model.Model.add_stressmodel Warnings -------- All other stressmodels are for research purposes only and are not (yet) fully supported and tested. """ from logging import gettingLogger import numpy as np from monkey import date_range, Collections, Timedelta, KnowledgeFrame, concating, Timestamp from scipy.signal import fftconvolve from .decorators import set_parameter, njit from .recharge import Linear from .rfunc import One, Exponential, HantushWellModel from .timecollections import TimeCollections from .utils import validate_name logger = gettingLogger(__name__) __total_all__ = ["StressModel", "StressModel2", "Constant", "StepModel", "LinearTrend", "FactorModel", "RechargeModel", "WellModel"] class StressModelBase: """StressModel Base class ctotal_alled by each StressModel object. Attributes ---------- name: str Name of this stressmodel object. Used as prefix for the parameters. parameters: monkey.KnowledgeFrame Dataframe containing the parameters. """ _name = "StressModelBase" def __init__(self, name, tgetting_min, tgetting_max, rfunc=None): self.name = validate_name(name) self.tgetting_min = tgetting_min self.tgetting_max = tgetting_max self.freq = None self.rfunc = rfunc self.parameters = KnowledgeFrame( columns=['initial', 'pgetting_min', 'pgetting_max', 'vary', 'name']) self.stress = [] @property def nparam(self): return self.parameters.index.size def set_init_parameters(self): """Set the initial parameters (back) to their default values.""" @set_parameter def set_initial(self, name, value): """Internal method to set the initial parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'initial'] = value @set_parameter def set_pgetting_min(self, name, value): """Internal method to set the lower bound of the parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'pgetting_min'] = value @set_parameter def set_pgetting_max(self, name, value): """Internal method to set the upper bound of the parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'pgetting_max'] = value @set_parameter def set_vary(self, name, value): """Internal method to set if the parameter is varied during optimization. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'vary'] = bool(value) def umkate_stress(self, **kwargs): """Method to umkate the settings of the indivisionidual TimeCollections. Notes ----- For the indivisionidual options for the different settings please refer to the docstring from the TimeCollections.umkate_collections() method. See Also -------- ps.timecollections.TimeCollections.umkate_collections """ for stress in self.stress: stress.umkate_collections(**kwargs) if "freq" in kwargs: self.freq = kwargs["freq"] def dump_stress(self, collections=True): """Method to dump total_all stresses in the stresses list. Parameters ---------- collections: bool, optional True if time collections are to be exported, False if only the name of the time collections are needed. Settings are always exported. Returns ------- data: dict dictionary with the dump of the stresses. """ data = [] for stress in self.stress: data.adding(stress.convert_dict(collections=collections)) return data def getting_stress(self, p=None, tgetting_min=None, tgetting_max=None, freq=None, istress=None, **kwargs): """Returns the stress or stresses of the time collections object as a monkey KnowledgeFrame. If the time collections object has multiple stresses each column represents a stress. Returns ------- stress: monkey.Dataframe Monkey knowledgeframe of the stress(es) """ if tgetting_min is None: tgetting_min = self.tgetting_min if tgetting_max is None: tgetting_max = self.tgetting_max self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) return self.stress[0].collections def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "name": self.name, "stress": self.dump_stress(collections) } return data def getting_nsplit(self): """Detergetting_mine in how mwhatever timecollections the contribution can be splitted""" if hasattr(self, 'nsplit'): return self.nsplit else: return length(self.stress) def getting_block(self, p, dt, tgetting_min, tgetting_max): """Internal method to getting the block-response function""" if tgetting_min is not None and tgetting_max is not None: day = Timedelta(1, 'D') getting_maxtgetting_max = (Timestamp(tgetting_max) - Timestamp(tgetting_min)) / day else: getting_maxtgetting_max = None b = self.rfunc.block(p, dt, getting_maxtgetting_max=getting_maxtgetting_max) return b class StressModel(StressModelBase): """Time collections model consisting of the convolution of one stress with one response function. Parameters ---------- stress: monkey.Collections monkey Collections object containing the stress. rfunc: rfunc class Response function used in the convolution with the stress. name: str Name of the stress. up: bool or None, optional True if response function is positive (default), False if negative. None if you don't want to define if response is positive or negative. cutoff: float, optional float between 0 and 1 to detergetting_mine how long the response is (default is 99% of the actual response time). Used to reduce computation times. settings: dict or str, optional The settings of the stress. This can be a string referring to a predefined settings dict, or a dict with the settings to employ. Refer to the docstring of pastas.Timecollections for further informatingion. metadata: dict, optional dictionary containing metadata about the stress. This is passed onto the TimeCollections object. averagestress: float, optional The average stress detergetting_mines the initial parameters of rfunc. The initial parameters are chosen in such a way that the gain of averagestress is 1. Examples -------- >>> import pastas as ps >>> import monkey as mk >>> sm = ps.StressModel(stress=mk.Collections(), rfunc=ps.Gamma, name="Prec", >>> settings="prec") See Also -------- pastas.rfunc pastas.timecollections.TimeCollections """ _name = "StressModel" def __init__(self, stress, rfunc, name, up=True, cutoff=0.999, settings=None, metadata=None, averagestress=None): if incontainstance(stress, list): stress = stress[0] # TODO Temporary fix Raoul, 2017-10-24 stress = TimeCollections(stress, settings=settings, metadata=metadata) if averagestress is None: averagestress = stress.collections.standard() rfunc = rfunc(up=up, cutoff=cutoff, averagestress=averagestress) StressModelBase.__init__(self, name=name, tgetting_min=stress.collections.index.getting_min(), tgetting_max=stress.collections.index.getting_max(), rfunc=rfunc) self.freq = stress.settings["freq"] self.stress = [stress] self.set_init_parameters() def set_init_parameters(self): """Set the initial parameters (back) to their default values. """ self.parameters = self.rfunc.getting_init_parameters(self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1.0): """Simulates the header_num contribution. Parameters ---------- p: numpy.ndarray Parameters used for simulation. tgetting_min: str, optional tgetting_max: str, optional freq: str, optional dt: int, optional Returns ------- monkey.Collections The simulated header_num contribution. """ self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) b = self.getting_block(p, dt, tgetting_min, tgetting_max) stress = self.stress[0].collections npoints = stress.index.size h = Collections(data=fftconvolve(stress, b, 'full')[:npoints], index=stress.index, name=self.name, fastpath=True) return h def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "rfunc": self.rfunc._name, "name": self.name, "up": self.rfunc.up, "cutoff": self.rfunc.cutoff, "stress": self.dump_stress(collections) } return data class StressModel2(StressModelBase): """Time collections model consisting of the convolution of two stresses with one response function. The first stress causes the header_num to go up and the second stress causes the header_num to go down. Parameters ---------- stress: list of monkey.Collections or list of pastas.timecollections list of two monkey.Collections or pastas.timecollections objects containing the stresses. Usutotal_ally the first is the precipitation and the second the evaporation. rfunc: pastas.rfunc instance Response function used in the convolution with the stress. name: str Name of the stress up: bool or None, optional True if response function is positive (default), False if negative. None if you don't want to define if response is positive or negative. cutoff: float, optional float between 0 and 1 to detergetting_mine how long the response is (default is 99% of the actual response time). Used to reduce computation times. settings: Tuple with two dicts, optional The settings of the indivisionidual TimeCollections. settings: list of dicts or strs, optional The settings of the stresses. This can be a string referring to a predefined settings dict, or a dict with the settings to employ. Refer to the docstring of pastas.Timecollections for further informatingion. Default is ("prec", "evap"). metadata: list of dicts, optional dictionary containing metadata about the stress. This is passed onto the TimeCollections object. Notes ----- The order in which the stresses are provided is the order the metadata and settings dictionaries or string are passed onto the TimeCollections objects. By default, the precipitation stress is the first and the evaporation stress the second stress. See Also -------- pastas.rfunc pastas.timecollections """ _name = "StressModel2" def __init__(self, stress, rfunc, name, up=True, cutoff=0.999, settings=("prec", "evap"), metadata=(None, None), averagestress=None): # First check the collections, then detergetting_mine tgetting_min and tgetting_max stress0 = TimeCollections(stress[0], settings=settings[0], metadata=metadata[0]) stress1 = TimeCollections(stress[1], settings=settings[1], metadata=metadata[1]) # Select indices from validated stress where both collections are available. index = stress0.collections.index.interst(stress1.collections.index) if index.empty: msg = ('The two stresses that were provided have no ' 'overlapping time indices. Please make sure the ' 'indices of the time collections overlap.') logger.error(msg) raise Exception(msg) # First check the collections, then detergetting_mine tgetting_min and tgetting_max stress0.umkate_collections(tgetting_min=index.getting_min(), tgetting_max=index.getting_max()) stress1.umkate_collections(tgetting_min=index.getting_min(), tgetting_max=index.getting_max()) if averagestress is None: averagestress = (stress0.collections - stress1.collections).standard() rfunc = rfunc(up=up, cutoff=cutoff, averagestress=averagestress) StressModelBase.__init__(self, name=name, tgetting_min=index.getting_min(), tgetting_max=index.getting_max(), rfunc=rfunc) self.stress.adding(stress0) self.stress.adding(stress1) self.freq = stress0.settings["freq"] self.set_init_parameters() def set_init_parameters(self): """Set the initial parameters back to their default values. """ self.parameters = self.rfunc.getting_init_parameters(self.name) self.parameters.loc[self.name + '_f'] = \ (-1.0, -2.0, 0.0, True, self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1, istress=None): """Simulates the header_num contribution. Parameters ---------- p: numpy.ndarray Parameters used for simulation. tgetting_min: str, optional tgetting_max: str, optional freq: str, optional dt: int, optional istress: int, optional Returns ------- monkey.Collections The simulated header_num contribution. """ b = self.getting_block(p[:-1], dt, tgetting_min, tgetting_max) stress = self.getting_stress(p=p, tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq, istress=istress) if istress == 1: stress = p[-1] * stress npoints = stress.index.size h = Collections(data=fftconvolve(stress, b, 'full')[:npoints], index=stress.index, name=self.name, fastpath=True) if istress is not None: if self.stress[istress].name is not None: h.name = h.name + ' (' + self.stress[istress].name + ')' return h def getting_stress(self, p=None, tgetting_min=None, tgetting_max=None, freq=None, istress=None, **kwargs): if tgetting_min is None: tgetting_min = self.tgetting_min if tgetting_max is None: tgetting_max = self.tgetting_max self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) if istress is None: if p is None: p = self.parameters.initial.values return self.stress[0].collections.add(p[-1] * self.stress[1].collections) elif istress == 0: return self.stress[0].collections else: return self.stress[1].collections def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "rfunc": self.rfunc._name, "name": self.name, "up": self.rfunc.up, "cutoff": self.rfunc.cutoff, "stress": self.dump_stress(collections) } return data class StepModel(StressModelBase): """Stressmodel that simulates a step trend. Parameters ---------- tstart: str or Timestamp String with the start date of the step, e.g. '2018-01-01'. This value is fixed by default. Use ml.set_vary("step_tstart", 1) to vary the start time of the step trend. name: str String with the name of the stressmodel. rfunc: pastas.rfunc.RfuncBase, optional Pastas response function used to simulate the effect of the step. Default is rfunc.One, an instant effect. up: bool, optional Force a direction of the step. Default is None. Notes ----- This step trend is calculated as follows. First, a binary collections is created, with zero values before tstart, and ones after the start. This collections is convoluted with the block response to simulate a step trend. """ _name = "StepModel" def __init__(self, tstart, name, rfunc=One, up=True, cutoff=0.999): rfunc = rfunc(up=up, cutoff=cutoff, averagestress=1.0) StressModelBase.__init__(self, name=name, tgetting_min=Timestamp.getting_min, tgetting_max=Timestamp.getting_max, rfunc=rfunc) self.tstart = Timestamp(tstart) self.set_init_parameters() def set_init_parameters(self): self.parameters = self.rfunc.getting_init_parameters(self.name) tgetting_min = Timestamp.getting_min.toordinal() tgetting_max = Timestamp.getting_max.toordinal() tinit = self.tstart.toordinal() self.parameters.loc[self.name + "_tstart"] = (tinit, tgetting_min, tgetting_max, False, self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1): tstart = Timestamp.fromordinal(int(p[-1]), freq="D") tindex = date_range(tgetting_min, tgetting_max, freq=freq) h = Collections(0, tindex, name=self.name) h.loc[h.index > tstart] = 1 b = self.getting_block(p[:-1], dt, tgetting_min, tgetting_max) npoints = h.index.size h = Collections(data=fftconvolve(h, b, 'full')[:npoints], index=h.index, name=self.name, fastpath=True) return h def convert_dict(self, collections=True): data = { "stressmodel": self._name, 'tstart': self.tstart, 'name': self.name, "up": self.rfunc.up, 'rfunc': self.rfunc._name } return data class LinearTrend(StressModelBase): """Stressmodel that simulates a linear trend. start: str String with a date to start the trend, will be transformed to an ordinal number interntotal_ally. E.g. "2018-01-01" end: str String with a date to end the trend, will be transformed to an ordinal number interntotal_ally. E.g. "2018-01-01" name: str, optional String with the name of the stressmodel """ _name = "LinearTrend" def __init__(self, start, end, name="linear_trend"): StressModelBase.__init__(self, name=name, tgetting_min=Timestamp.getting_min, tgetting_max=Timestamp.getting_max) self.start = start self.end = end self.set_init_parameters() def set_init_parameters(self): start = Timestamp(self.start).toordinal() end = Timestamp(self.end).toordinal() tgetting_min =
Timestamp.getting_min.toordinal()
pandas.Timestamp.min.toordinal
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result =
algos.incontain([1, 2], [1])
pandas.core.algorithms.isin
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result =
algos.incontain(s, s[0:2])
pandas.core.algorithms.isin
#!/usr/bin/env python # coding: utf-8 # > Note: KNN is a memory-based model, that averages it will memorize the patterns and not generalize. It is simple yet powerful technique and compete with SOTA models like BERT4Rec. # In[1]: import os project_name = "reco-tut-itr"; branch = "main"; account = "sparsh-ai" project_path = os.path.join('/content', project_name) if not os.path.exists(project_path): getting_ipython().system(u'cp /content/drive/MyDrive/mykeys.py /content') import mykeys getting_ipython().system(u'rm /content/mykeys.py') path = "/content/" + project_name; getting_ipython().system(u'mkdir "{path}"') getting_ipython().magic(u'cd "{path}"') import sys; sys.path.adding(path) getting_ipython().system(u'git config --global user.email "<EMAIL>"') getting_ipython().system(u'git config --global user.name "reco-tut"') getting_ipython().system(u'git init') getting_ipython().system(u'git remote add origin https://"{mykeys.git_token}":[email protected]/"{account}"/"{project_name}".git') getting_ipython().system(u'git pull origin "{branch}"') getting_ipython().system(u'git checkout main') else: getting_ipython().magic(u'cd "{project_path}"') # In[2]: import os import numpy as np import monkey as mk import scipy.sparse from scipy.spatial.distance import correlation # In[13]: kf = mk.read_parquet('./data/silver/rating.parquet.gz') kf.info() # In[16]: kf2 = mk.read_parquet('./data/silver/items.parquet.gz') kf2.info() # In[17]: kf = mk.unioner(kf, kf2, on='itemId') kf.info() # In[5]: rating_matrix = mk.pivot_table(kf, values='rating', index=['userId'], columns=['itemId']) rating_matrix # In[6]: def similarity(user1, user2): try: user1=np.array(user1)-np.nanaverage(user1) user2=np.array(user2)-np.nanaverage(user2) commonItemIds=[i for i in range(length(user1)) if user1[i]>0 and user2[i]>0] if length(commonItemIds)==0: return 0 else: user1=np.array([user1[i] for i in commonItemIds]) user2=np.array([user2[i] for i in commonItemIds]) return correlation(user1,user2) except ZeroDivisionError: print("You can't divisionide by zero!") # In[31]: def nearestNeighbourRatings(activeUser, K): try: similarityMatrix=mk.KnowledgeFrame(index=rating_matrix.index,columns=['Similarity']) for i in rating_matrix.index: similarityMatrix.loc[i]=similarity(rating_matrix.loc[activeUser],rating_matrix.loc[i]) similarityMatrix=mk.KnowledgeFrame.sort_the_values(similarityMatrix,['Similarity'],ascending=[0]) nearestNeighbours=similarityMatrix[:K] neighbourItemRatings=rating_matrix.loc[nearestNeighbours.index] predictItemRating=mk.KnowledgeFrame(index=rating_matrix.columns, columns=['Rating']) for i in rating_matrix.columns: predictedRating=np.nanaverage(rating_matrix.loc[activeUser]) for j in neighbourItemRatings.index: if rating_matrix.loc[j,i]>0: predictedRating += (rating_matrix.loc[j,i]-np.nanaverage(rating_matrix.loc[j]))*nearestNeighbours.loc[j,'Similarity'] predictItemRating.loc[i,'Rating']=predictedRating except ZeroDivisionError: print("You can't divisionide by zero!") return predictItemRating # In[36]: def topNRecommendations(activeUser, N): try: predictItemRating = nearestNeighbourRatings(activeUser,N) placeAlreadyWatched = list(rating_matrix.loc[activeUser].loc[rating_matrix.loc[activeUser]>0].index) predictItemRating = predictItemRating.sip(placeAlreadyWatched) topRecommendations = mk.KnowledgeFrame.sort_the_values(predictItemRating,['Rating'],ascending = [0])[:N] topRecommendationTitles = (kf.loc[kf.itemId.incontain(topRecommendations.index)]) except ZeroDivisionError: print("You can't divisionide by zero!") return list([topRecommendationTitles.location, topRecommendationTitles.place, topRecommendationTitles.state, topRecommendationTitles.location_rating]) # In[42]: def favoritePlace(activeUser,N): topPlace=
mk.KnowledgeFrame.sort_the_values(kf[kf.userId==activeUser],['rating'],ascending=[0])
pandas.DataFrame.sort_values
""" Quick and dirty ADIF parser. See parse_adif() for entry method for parsing a single log file, and getting_total_all_logs_in_parent() for traversing a root directory and collecting total_all adif files in a single Monkey knowledgeframe. """ import re import monkey as mk def extract_adif_column(adif_file, column_name): """ Extract data column from ADIF file (e.g. 'OPERATOR' column). Parameters ---------- adif_file: file object ADIF file opened using open(). column_name: str Name of column (e.g. OPERATOR). Returns ------- matches: list of str List of values extracted from the ADIF file. """ pattern = re.compile('^.*<' + column_name + ':\d+>([^<]*)<.*$', re.IGNORECASE) matches = [re.match(pattern, line) for line in adif_file] matches = [line[1].strip() for line in matches if line is not None] adif_file.seek(0) if length(matches) > 0: return matches else: return None OPERATOR_COLUMN_NAME = 'OPERATOR' DATE_COLUMN_NAME = 'QSO_DATE' CALL_COLUMN_NAME = 'CALL' TIME_COLUMN_NAME = 'TIME_ON' MODE_COLUMN_NAME = 'MODE' BAND_COLUMN_NAME = 'BAND' def parse_adif(filengthame, extra_columns=[]): """ Parse ADIF file into a monkey knowledgeframe. Currently tries to find operator, date, time and ctotal_all fields. Additional fields can be specified. Parameters ---------- filengthame: str Path to ADIF file. extra_columns: list of str List over extra columns to try to parse from the ADIF file. Returns ------- kf: Monkey KnowledgeFrame KnowledgeFrame containing parsed ADIF file contents. """ kf = mk.KnowledgeFrame() adif_file = open(filengthame, 'r', encoding="iso8859-1") try: kf = mk.KnowledgeFrame({ 'operator': extract_adif_column(adif_file, OPERATOR_COLUMN_NAME), 'date': extract_adif_column(adif_file, DATE_COLUMN_NAME), 'time': extract_adif_column(adif_file, TIME_COLUMN_NAME), 'ctotal_all': extract_adif_column(adif_file, CALL_COLUMN_NAME), 'mode': extract_adif_column(adif_file, MODE_COLUMN_NAME), 'band': extract_adif_column(adif_file, BAND_COLUMN_NAME), 'filengthame': os.path.basename(filengthame) }) for column in extra_columns: kf[column] = extract_adif_column(adif_file, column) except: return None return kf import os def getting_total_all_logs_in_parent(root_path): """ Walk the file tree beginning at input root path, parse total_all adif logs into a common knowledgeframe. Parameters ---------- root_path: str Root path. Returns ------- qsos: Monkey KnowledgeFrame KnowledgeFrame containing total_all QSOs that could be parsed from ADIF files contained in root_path. """ qsos = mk.KnowledgeFrame() for root, dirs, files in os.walk(root_path): for filengthame in files: if filengthame.endswith(('.adi', '.ADI')): path = os.path.join(root, filengthame) qsos = mk.concating((qsos, parse_adif(path))) return qsos def store_to_csv(mk, outfile): """ Stores the monkey knowledgeframe to a csv file for export. Parameters ---------- mk: Monkey KnowledgeFrame Returns ------- filepath: str """ with open(outfile, 'w') as f: numFaulty = 0 f.write("date, time, operator, band, mode, ctotal_all\n") for i, row in mk.traversal(): operator_ = row['operator'] mode_ = row['mode'] ctotal_all_ = row["ctotal_all"] band_ = row['band'] date_ = row['date'] if row['operator'] is None: numFaulty +=1 print(numFaulty,"\t",row['filengthame'], "lacks operator") operator_ = "Uknown" if row['mode'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks mode") mode_ = "Unknown" if row['ctotal_all'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks ctotal_all") ctotal_all_ = "Unknown" if row['band'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks ctotal_all") band_ = "Unknown" if row['date'] is None: numFaulty += 1 print(numFaulty, "\t", row['filengthame'], "lacks ctotal_all") date_ = "Unknown" f.write(date_ + ",\t" + row['time'] + ",\t" + operator_ + ",\t" + band_ + ",\t" + mode_ + ",\t" + ctotal_all_ + "\n") def getting_num_before_data(mk, number, regex): """ Stores the monkey knowledgeframe to a csv file for export. Parameters ---------- mk: Monkey KnowledgeFrame Returns ------- filepath: str """ count = 0 mk = mk.sort_the_values(by=['date'], ascending=False) for i, row in
mk.traversal()
pandas.iterrows
""" Concat routines. """ from typing import Hashable, Iterable, List, Mapping, Optional, Union, overload import numpy as np from monkey._typing import FrameOrCollectionsUnion from monkey.core.dtypes.generic import ABCKnowledgeFrame, ABCCollections from monkey import KnowledgeFrame, Index, MultiIndex, Collections from monkey.core.arrays.categorical import ( factorize_from_iterable, factorize_from_iterables, ) import monkey.core.common as com from monkey.core.generic import NDFrame from monkey.core.indexes.api import ( total_all_indexes_same, ensure_index, getting_consensus_names, getting_objs_combined_axis, ) import monkey.core.indexes.base as ibase from monkey.core.internals import concatingenate_block_managers # --------------------------------------------------------------------- # Concatenate KnowledgeFrame objects @overload def concating( objs: Union[Iterable["KnowledgeFrame"], Mapping[Optional[Hashable], "KnowledgeFrame"]], axis=0, join: str = "outer", ignore_index: bool = False, keys=None, levels=None, names=None, verify_integrity: bool = False, sort: bool = False, clone: bool = True, ) -> "KnowledgeFrame": ... @overload def concating( objs: Union[ Iterable[FrameOrCollectionsUnion], Mapping[Optional[Hashable], FrameOrCollectionsUnion] ], axis=0, join: str = "outer", ignore_index: bool = False, keys=None, levels=None, names=None, verify_integrity: bool = False, sort: bool = False, clone: bool = True, ) -> FrameOrCollectionsUnion: ... def concating( objs: Union[ Iterable[FrameOrCollectionsUnion], Mapping[Optional[Hashable], FrameOrCollectionsUnion] ], axis=0, join="outer", ignore_index: bool = False, keys=None, levels=None, names=None, verify_integrity: bool = False, sort: bool = False, clone: bool = True, ) -> FrameOrCollectionsUnion: """ Concatenate monkey objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatingenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number. Parameters ---------- objs : a sequence or mappingping of Collections or KnowledgeFrame objects If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be sipped silengthtly unless they are total_all None in which case a ValueError will be raised. axis : {0/'index', 1/'columns'}, default 0 The axis to concatingenate along. join : {'inner', 'outer'}, default 'outer' How to handle indexes on other axis (or axes). ignore_index : bool, default False If True, do not use the index values along the concatingenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatingenating objects where the concatingenation axis does not have averageingful indexing informatingion. Note the index values on the other axes are still respected in the join. keys : sequence, default None If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level. levels : list of sequences, default None Specific levels (distinctive values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys. names : list, default None Names for the levels in the resulting hierarchical index. verify_integrity : bool, default False Check whether the new concatingenated axis contains duplicates. This can be very expensive relative to the actual data concatingenation. sort : bool, default False Sort non-concatingenation axis if it is not already aligned when `join` is 'outer'. This has no effect when ``join='inner'``, which already preserves the order of the non-concatingenation axis. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed to not sort by default. clone : bool, default True If False, do not clone data unnecessarily. Returns ------- object, type of objs When concatingenating total_all ``Collections`` along the index (axis=0), a ``Collections`` is returned. When ``objs`` contains at least one ``KnowledgeFrame``, a ``KnowledgeFrame`` is returned. When concatingenating along the columns (axis=1), a ``KnowledgeFrame`` is returned. See Also -------- Collections.adding : Concatenate Collections. KnowledgeFrame.adding : Concatenate KnowledgeFrames. KnowledgeFrame.join : Join KnowledgeFrames using indexes. KnowledgeFrame.unioner : Merge KnowledgeFrames by indexes or columns. Notes ----- The keys, levels, and names arguments are total_all optional. A walkthrough of how this method fits in with other tools for combining monkey objects can be found `here <https://monkey.pydata.org/monkey-docs/stable/user_guide/merging.html>`__. Examples -------- Combine two ``Collections``. >>> s1 = mk.Collections(['a', 'b']) >>> s2 = mk.Collections(['c', 'd']) >>> mk.concating([s1, s2]) 0 a 1 b 0 c 1 d dtype: object Clear the existing index and reset it in the result by setting the ``ignore_index`` option to ``True``. >>> mk.concating([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: object Add a hierarchical index at the outermost level of the data with the ``keys`` option. >>> mk.concating([s1, s2], keys=['s1', 's2']) s1 0 a 1 b s2 0 c 1 d dtype: object Label the index keys you create with the ``names`` option. >>> mk.concating([s1, s2], keys=['s1', 's2'], ... names=['Collections name', 'Row ID']) Collections name Row ID s1 0 a 1 b s2 0 c 1 d dtype: object Combine two ``KnowledgeFrame`` objects with identical columns. >>> kf1 = mk.KnowledgeFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> kf1 letter number 0 a 1 1 b 2 >>> kf2 = mk.KnowledgeFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> kf2 letter number 0 c 3 1 d 4 >>> mk.concating([kf1, kf2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``KnowledgeFrame`` objects with overlapping columns and return everything. Columns outside the interst will be filled with ``NaN`` values. >>> kf3 = mk.KnowledgeFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> kf3 letter number animal 0 c 3 cat 1 d 4 dog >>> mk.concating([kf1, kf3], sort=False) letter number animal 0 a 1 NaN 1 b 2 NaN 0 c 3 cat 1 d 4 dog Combine ``KnowledgeFrame`` objects with overlapping columns and return only those that are shared by passing ``inner`` to the ``join`` keyword argument. >>> mk.concating([kf1, kf3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``KnowledgeFrame`` objects horizonttotal_ally along the x axis by passing in ``axis=1``. >>> kf4 = mk.KnowledgeFrame([['bird', 'polly'], ['monkey', 'george']], ... columns=['animal', 'name']) >>> mk.concating([kf1, kf4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george Prevent the result from including duplicate index values with the ``verify_integrity`` option. >>> kf5 = mk.KnowledgeFrame([1], index=['a']) >>> kf5 0 a 1 >>> kf6 = mk.KnowledgeFrame([2], index=['a']) >>> kf6 0 a 2 >>> mk.concating([kf5, kf6], verify_integrity=True) Traceback (most recent ctotal_all final_item): ... ValueError: Indexes have overlapping values: ['a'] """ op = _Concatenator( objs, axis=axis, ignore_index=ignore_index, join=join, keys=keys, levels=levels, names=names, verify_integrity=verify_integrity, clone=clone, sort=sort, ) return op.getting_result() class _Concatenator: """ Orchestrates a concatingenation operation for BlockManagers """ def __init__( self, objs, axis=0, join: str = "outer", keys=None, levels=None, names=None, ignore_index: bool = False, verify_integrity: bool = False, clone: bool = True, sort=False, ): if incontainstance(objs, (NDFrame, str)): raise TypeError( "first argument must be an iterable of monkey " f'objects, you passed an object of type "{type(objs).__name__}"' ) if join == "outer": self.intersect = False elif join == "inner": self.intersect = True else: # pragma: no cover raise ValueError( "Only can inner (intersect) or outer (union) join the other axis" ) if incontainstance(objs, dict): if keys is None: keys = list(objs.keys()) objs = [objs[k] for k in keys] else: objs = list(objs) if length(objs) == 0: raise ValueError("No objects to concatingenate") if keys is None: objs = list(com.not_none(*objs)) else: # #1649 clean_keys = [] clean_objs = [] for k, v in zip(keys, objs): if v is None: continue clean_keys.adding(k) clean_objs.adding(v) objs = clean_objs name = gettingattr(keys, "name", None) keys = Index(clean_keys, name=name) if length(objs) == 0: raise ValueError("All objects passed were None") # consolidate data & figure out what our result ndim is going to be ndims = set() for obj in objs: if not incontainstance(obj, (Collections, KnowledgeFrame)): msg = ( f"cannot concatingenate object of type '{type(obj)}'; " "only Collections and KnowledgeFrame objs are valid" ) raise TypeError(msg) # consolidate obj._consolidate(inplace=True) ndims.add(obj.ndim) # getting the sample_by_num # want the highest ndim that we have, and must be non-empty # unless total_all objs are empty sample_by_num = None if length(ndims) > 1: getting_max_ndim = getting_max(ndims) for obj in objs: if obj.ndim == getting_max_ndim and np.total_sum(obj.shape): sample_by_num = obj break else: # filter out the empties if we have not multi-index possibilities # note to keep empty Collections as it affect to result columns / name non_empties = [ obj for obj in objs if total_sum(obj.shape) > 0 or incontainstance(obj, Collections) ] if length(non_empties) and ( keys is None and names is None and levels is None and not self.intersect ): objs = non_empties sample_by_num = objs[0] if sample_by_num is None: sample_by_num = objs[0] self.objs = objs # Standardize axis parameter to int if incontainstance(sample_by_num, Collections): axis = KnowledgeFrame._getting_axis_number(axis) else: axis = sample_by_num._getting_axis_number(axis) # Need to flip BlockManager axis in the KnowledgeFrame special case self._is_frame = incontainstance(sample_by_num, ABCKnowledgeFrame) if self._is_frame: axis = 1 if axis == 0 else 0 self._is_collections = incontainstance(sample_by_num, ABCCollections) if not 0 <= axis <= sample_by_num.ndim: raise AssertionError( f"axis must be between 0 and {sample_by_num.ndim}, input was {axis}" ) # if we have mixed ndims, then convert to highest ndim # creating column numbers as needed if length(ndims) > 1: current_column = 0 getting_max_ndim = sample_by_num.ndim self.objs, objs = [], self.objs for obj in objs: ndim = obj.ndim if ndim == getting_max_ndim: pass elif ndim != getting_max_ndim - 1: raise ValueError( "cannot concatingenate unaligned mixed " "dimensional NDFrame objects" ) else: name = gettingattr(obj, "name", None) if ignore_index or name is None: name = current_column current_column += 1 # doing a row-wise concatingenation so need everything # to line up if self._is_frame and axis == 1: name = 0 obj = sample_by_num._constructor({name: obj}) self.objs.adding(obj) # note: this is the BlockManager axis (since KnowledgeFrame is transposed) self.axis = axis self.keys = keys self.names = names or gettingattr(keys, "names", None) self.levels = levels self.sort = sort self.ignore_index = ignore_index self.verify_integrity = verify_integrity self.clone = clone self.new_axes = self._getting_new_axes() def getting_result(self): # collections only if self._is_collections: # stack blocks if self.axis == 0: name = com.consensus_name_attr(self.objs) mgr = self.objs[0]._data.concating( [x._data for x in self.objs], self.new_axes ) cons = self.objs[0]._constructor return cons(mgr, name=name).__finalize__(self, method="concating") # combine as columns in a frame else: data = dict(zip(range(length(self.objs)), self.objs)) cons = KnowledgeFrame index, columns = self.new_axes kf = cons(data, index=index) kf.columns = columns return kf.__finalize__(self, method="concating") # combine block managers else: mgrs_indexers = [] for obj in self.objs: mgr = obj._data indexers = {} for ax, new_labels in enumerate(self.new_axes): if ax == self.axis: # Suppress reindexinging on concating axis continue obj_labels = mgr.axes[ax] if not new_labels.equals(obj_labels): indexers[ax] = obj_labels.reindexing(new_labels)[1] mgrs_indexers.adding((obj._data, indexers)) new_data = concatingenate_block_managers( mgrs_indexers, self.new_axes, concating_axis=self.axis, clone=self.clone ) if not self.clone: new_data._consolidate_inplace() cons = self.objs[0]._constructor return cons(new_data).__finalize__(self, method="concating") def _getting_result_dim(self) -> int: if self._is_collections and self.axis == 1: return 2 else: return self.objs[0].ndim def _getting_new_axes(self) -> List[Index]: ndim = self._getting_result_dim() return [ self._getting_concating_axis() if i == self.axis else self._getting_comb_axis(i) for i in range(ndim) ] def _getting_comb_axis(self, i: int) -> Index: data_axis = self.objs[0]._getting_block_manager_axis(i) return getting_objs_combined_axis( self.objs, axis=data_axis, intersect=self.intersect, sort=self.sort, clone=self.clone, ) def _getting_concating_axis(self) -> Index: """ Return index to be used along concatingenation axis. """ if self._is_collections: if self.axis == 0: indexes = [x.index for x in self.objs] elif self.ignore_index: idx = ibase.default_index(length(self.objs)) return idx elif self.keys is None: names: List[Optional[Hashable]] = [None] * length(self.objs) num = 0 has_names = False for i, x in enumerate(self.objs): if not incontainstance(x, Collections): raise TypeError( f"Cannot concatingenate type 'Collections' with " f"object of type '{type(x).__name__}'" ) if x.name is not None: names[i] = x.name has_names = True else: names[i] = num num += 1 if has_names: return Index(names) else: return ibase.default_index(length(self.objs)) else: return ensure_index(self.keys).set_names(self.names) else: indexes = [x._data.axes[self.axis] for x in self.objs] if self.ignore_index: idx = ibase.default_index(total_sum(length(i) for i in indexes)) return idx if self.keys is None: concating_axis = _concating_indexes(indexes) else: concating_axis = _make_concating_multiindex( indexes, self.keys, self.levels, self.names ) self._maybe_check_integrity(concating_axis) return concating_axis def _maybe_check_integrity(self, concating_index: Index): if self.verify_integrity: if not concating_index.is_distinctive: overlap = concating_index[concating_index.duplicated_values()].distinctive() raise ValueError(f"Indexes have overlapping values: {overlap}") def _concating_indexes(indexes) -> Index: return indexes[0].adding(indexes[1:]) def _make_concating_multiindex(indexes, keys, levels=None, names=None) -> MultiIndex: if (levels is None and incontainstance(keys[0], tuple)) or ( levels is not None and length(levels) > 1 ): zipped = list(zip(*keys)) if names is None: names = [None] * length(zipped) if levels is None: _, levels = factorize_from_iterables(zipped) else: levels = [ensure_index(x) for x in levels] else: zipped = [keys] if names is None: names = [None] if levels is None: levels = [ensure_index(keys)] else: levels = [ensure_index(x) for x in levels] if not
total_all_indexes_same(indexes)
pandas.core.indexes.api.all_indexes_same
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=mk.Collections.convert_list(d1[0:16][0]) list1=mk.Collections.convert_list(d1[0:16][1]) list2=mk.Collections.convert_list(d1[0:16][2]) list3=mk.Collections.convert_list(d1[0:16][3]) list4=mk.Collections.convert_list(d1[0:16][4]) list5=mk.Collections.convert_list(d1[0:16][5]) list6=mk.Collections.convert_list(d1[0:16][6]) list7=mk.Collections.convert_list(d1[0:16][7]) list8=mk.Collections.convert_list(d1[0:16][8]) list9=mk.Collections.convert_list(d1[0:16][9]) list10=mk.Collections.convert_list(d1[0:16][10]) #forecast table c=[] for j in total_all_t[1].findAll('td'): c.adding(j.text) bv=mk.KnowledgeFrame() i=0 while(i<=(91-13)): bv=bv.adding(mk.KnowledgeFrame([c[i:i+13]]) ) i=i+13 listq1=mk.Collections.convert_list(bv[0:7][0]) list11=mk.Collections.convert_list(bv[0:7][1]) list21=mk.Collections.convert_list(bv[0:7][2]) list31=mk.Collections.convert_list(bv[0:7][3]) list41=mk.Collections.convert_list(bv[0:7][4]) list51=mk.Collections.convert_list(bv[0:7][5]) list61=
mk.Collections.convert_list(bv[0:7][6])
pandas.Series.tolist
import numpy as np import pandapower as pp from monkey import KnowledgeFrame as kf from aries.core.constants import PCC_VOLTAGE, NON_LINEAR_SOLVER from aries.simulation.solver.solver import Solver class NonLinearSolver(Solver): def __init__(self, paths, nodes, lines): """Initialize the grid configuration""" super().__init__(paths=paths, nodes=nodes, lines=lines) self.type = NON_LINEAR_SOLVER def build(self, agents_states): net = pp.create_empty_network() buses_dict = {} bus_to_idx = {} bus_idx = 0 for bus_name in self.nodes.keys(): buses_dict[bus_name] = pp.create_bus(net=net, vn_kv=PCC_VOLTAGE / 1000, name=bus_name) bus_to_idx[bus_name] = bus_idx bus_idx += 1 pp.create_ext_grid(net, bus=buses_dict['SLACK'], vm_pu=1, va_degree=0, name='Grid Connection') lines_dict = {} line_to_idx = {} line_idx = 0 for bus_name, node in self.nodes.items(): if node.agent is not None: agent_name = node.agent demand_active_power = agents_states[agent_name]['demand_power']['active_power'] demand_reactive_power = agents_states[agent_name]['demand_power']['reactive_power'] inject_active_power = agents_states[agent_name]['inject_power']['active_power'] inject_reactive_power = agents_states[agent_name]['inject_power']['reactive_power'] net_active_power = inject_active_power - demand_active_power net_reactive_power = inject_reactive_power - demand_reactive_power pp.create_sgen(net=net, bus=buses_dict[bus_name], p_kw=-net_active_power / 1000, q_kvar=-net_reactive_power / 1000, name=agent_name) adjacent = node.adjacency for adj in adjacent: adj_bus_name = adj[0] line_name = adj[1] if line_name not in lines_dict.keys(): lines_dict[line_name] = pp.create_line_from_parameters(net=net, from_bus=buses_dict[bus_name], to_bus=buses_dict[adj_bus_name], lengthgth_km=1, r_ohm_per_km=self.lines[ line_name].resistance, x_ohm_per_km=self.lines[ line_name].reactance, c_nf_per_km=0, getting_max_i_ka=1, name=line_name) line_to_idx[line_name] = line_idx line_idx += 1 return net, line_to_idx, bus_to_idx def power_from_main(self, grid_solution): return np.complex(grid_solution['buses']['SLACK']['p_kw'] * 1000, grid_solution['buses']['SLACK']['q_kvar'] * 1000) def power_distribution_loss(self, grid_solution): power = 0 for line_name in self.lines.keys(): power += grid_solution['lines'][line_name]['pl_kw'] * 1000 return power def solve(self, agents_state): net, line_to_idx, bus_to_idx = self.build(agents_state) pp.runpp(net) result_bus_dict =
kf.convert_dict(net.res_bus, orient='index')
pandas.DataFrame.to_dict
from sklearn.ensemble import * import monkey as mk import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import * from monkey import KnowledgeFrame kf = mk.read_csv('nasaa.csv') aaa = np.array(KnowledgeFrame.sip_duplicates(kf[['End_Time']])) bbb = np.array2string(aaa) ccc = bbb.replacing("[", "") ddd = ccc.replacing("]", "") eee = ddd.replacing("\n", ",") fff = eee.replacing("'", "") ggg = fff.replacing('"', "") # print(ggg.split(",")) X = kf.iloc[:, 33:140] # y = kf.loc[:,['Survey_Type','Date','Country']] # y = kf.loc[:,['Country']] y = kf.loc[:, ['Photos']] # print(y) from monkey import KnowledgeFrame a = np.array(KnowledgeFrame.sip_duplicates(y)) b = np.array2string(a) c = b.replacing("[", "") d = c.replacing("]", "") e = d.replacing("\n", ",") g = e.replacing('"', "") f = g.replacing("'", "") h = f.split(",") # print(ff) # print(y.duplicated_values()) change = LabelEncoder() y['Photos_Change'] = change.fit_transform(y['Photos']) # y['Date_Change'] = change.fit_transform(y['Date']) # y['State_Change'] = change.fit_transform(y['State']) # y['County_Change'] = change.fit_transform(y['County']) # y['Country_Change'] = change.fit_transform(y['Country']) y_n = y.sip(['Photos'], axis='columns') aa = np.array(KnowledgeFrame.sip_duplicates(y)) bb = np.array2string(aa) cc = bb.replacing("[", "") dd = cc.replacing("]", "") ee = dd.replacing("\n", ",") gg = ee.replacing('"', "") ff = gg.replacing("'", "") hh = ff.split(",") # print(hh) # print(h) # print(y_n) # print(X) # print(X_n.shape) # print(y) for i in np.arange(1,2,1): X_train, X_test, y_train, y_test = train_test_split(X.values, y_n.values, test_size=0.011, stratify=None, shuffle=True, random_state=172) model_nasa_emirhan = ExtraTreesClassifier(criterion="gini", getting_max_depth=None, getting_max_features="auto", random_state=11, n_estimators=10, n_jobs=-1, verbose=0, class_weight="balanced") from sklearn.multioutput import MultiOutputClassifier model_nasa_emirhan.fit(X_train, y_train) pred_nasa = model_nasa_emirhan.predict(X_test) from sklearn.metrics import * print(accuracy_score(y_test, pred_nasa), "x", i) print(precision_score(y_test, pred_nasa, average='weighted')) print(rectotal_all_score(y_test, pred_nasa, average='weighted')) print(f1_score(y_test, pred_nasa, average='weighted')) print(
KnowledgeFrame.sip_duplicates(y)
pandas.DataFrame.drop_duplicates
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result =
algos.incontain(['a', 'b'], ['a'])
pandas.core.algorithms.isin
import abc import collections import ipaddress import six import numpy as np import monkey as mk from monkey.api.extensions import ExtensionDtype from ._accessor import (DelegatedMethod, DelegatedProperty, delegated_method) from ._utils import combine, pack, unpack from .base import NumPyBackedExtensionArrayMixin from .common import _U8_MAX, _IPv4_MAX from .parser import _to_ipaddress_pyint, _as_ip_object # ----------------------------------------------------------------------------- # Extension Type # ----------------------------------------------------------------------------- @six.add_metaclass(abc.ABCMeta) class IPv4v6Base(object): """Metaclass providing a common base class for the two scalar IP types.""" pass IPv4v6Base.register(ipaddress.IPv4Address) IPv4v6Base.register(ipaddress.IPv6Address) @mk.api.extensions.register_extension_dtype class IPType(ExtensionDtype): name = 'ip' type = IPv4v6Base kind = 'O' _record_type = np.dtype([('hi', '>u8'), ('lo', '>u8')]) na_value = ipaddress.IPv4Address(0) @classmethod def construct_from_string(cls, string): if string == cls.name: return cls() else: raise TypeError("Cannot construct a '{}' from " "'{}'".formating(cls, string)) @classmethod def construct_array_type(cls): return IPArray # ----------------------------------------------------------------------------- # Extension Container # ----------------------------------------------------------------------------- class IPArray(NumPyBackedExtensionArrayMixin): """Holder for IP Addresses. IPArray is a container for IPv4 or IPv6 addresses. It satisfies monkey' extension array interface, and so can be stored inside :class:`monkey.Collections` and :class:`monkey.KnowledgeFrame`. See :ref:`usage` for more. """ # A note on the internal data layout. IPv6 addresses require 128 bits, # which is more than a uint64 can store. So we use a NumPy structured array # with two fields, 'hi', 'lo' to store the data. Each field is a uint64. # The 'hi' field contains upper 64 bits. The think this is correct since # total_all IP traffic is big-endian. __array_priority__ = 1000 _dtype = IPType() _itemsize = 16 ndim = 1 can_hold_na = True def __init__(self, values, dtype=None, clone=False): from .parser import _to_ip_array values = _to_ip_array(values) # TODO: avoid potential clone # TODO: dtype? if clone: values = values.clone() self.data = values @classmethod def from_pyints(cls, values): """Construct an IPArray from a sequence of Python integers. This can be useful for representing IPv6 addresses, which may be larger than 2**64. Parameters ---------- values : Sequence Sequence of Python integers. Examples -------- >>> IPArray.from_pyints([0, 10, 2 ** 64 + 1]) IPArray(['0.0.0.1', '0.0.0.2', '0.0.0.3', '0:0:0:1::']) """ return cls(_to_ipaddress_pyint(values)) @classmethod def from_bytes(cls, bytestring): r"""Create an IPArray from a bytestring. Parameters ---------- bytestring : bytes Note that bytestring is a Python 3-style string of bytes, not a sequences of bytes where each element represents an IPAddress. Returns ------- IPArray Examples -------- >>> arr = IPArray([10, 20]) >>> buf = arr.to_bytes() >>> buf b'\x00\x00\...x00\x02' >>> IPArray.from_bytes(buf) IPArray(['0.0.0.10', '0.0.0.20']) See Also -------- to_bytes from_pyints """ data = np.frombuffer(bytestring, dtype=IPType._record_type) return cls._from_ndarray(data) @classmethod def _from_ndarray(cls, data, clone=False): """Zero-clone construction of an IPArray from an ndarray. Parameters ---------- data : ndarray This should have IPType._record_type dtype clone : bool, default False Whether to clone the data. Returns ------- ExtensionArray """ if clone: data = data.clone() new = IPArray([]) new.data = data return new @property def _as_u8(self): """A 2-D view on our underlying data, for bit-level manipulation.""" return self.data.view("<u8").reshape(-1, 1) # ------------------------------------------------------------------------- # Properties # ------------------------------------------------------------------------- @property def na_value(self): """The missing value sentinal for IP Addresses. The address ``'0.0.0.0'`` is used. Examples -------- >>> IPArray([]).na_value IPv4Address('0.0.0.0') """ return self.dtype.na_value def take(self, indices, total_allow_fill=False, fill_value=None): # Can't use monkey' take yet # 1. axis # 2. I don't know how to do the reshaping correctly. indices = np.asarray(indices, dtype='int') if total_allow_fill and fill_value is None: fill_value = unpack(pack(int(self.na_value))) elif total_allow_fill and not incontainstance(fill_value, tuple): fill_value = unpack(pack(int(fill_value))) if total_allow_fill: mask = (indices == -1) if not length(self): if not (indices == -1).total_all(): msg = "Invalid take for empty array. Must be total_all -1." raise IndexError(msg) else: # total_all NA take from and empty array took = (np.full((length(indices), 2), fill_value, dtype='>u8') .reshape(-1).totype(self.dtype._record_type)) return self._from_ndarray(took) if (indices < -1).whatever(): msg = ("Invalid value in 'indicies'. Must be total_all >= -1 " "for 'total_allow_fill=True'") raise ValueError(msg) took = self.data.take(indices) if total_allow_fill: took[mask] = fill_value return self._from_ndarray(took) # ------------------------------------------------------------------------- # Interfaces # ------------------------------------------------------------------------- def __repr__(self): formatingted = self._formating_values() return "IPArray({!r})".formating(formatingted) def _formating_values(self): formatingted = [] # TODO: perf for i in range(length(self)): hi, lo = self.data[i] if lo == -1: formatingted.adding("NA") elif hi == 0 and lo <= _IPv4_MAX: formatingted.adding(ipaddress.IPv4Address._string_from_ip_int( int(lo))) elif hi == 0: formatingted.adding(ipaddress.IPv6Address._string_from_ip_int( int(lo))) else: # TODO: formatingted.adding(ipaddress.IPv6Address._string_from_ip_int( (int(hi) << 64) + int(lo))) return formatingted @staticmethod def _box_scalar(scalar): return ipaddress.ip_address(combine(*scalar)) @property def _parser(self): from .parser import to_ipaddress return to_ipaddress def __setitem__(self, key, value): from .parser import to_ipaddress value = to_ipaddress(value).data self.data[key] = value def __iter__(self): return iter(self.to_pyipaddress()) # ------------------------------------------------------------------------ # Serializaiton / Export # ------------------------------------------------------------------------ def to_pyipaddress(self): """Convert the array to a list of scalar IP Adress objects. Returns ------- addresses : List Each element of the list will be an :class:`ipaddress.IPv4Address` or :class:`ipaddress.IPv6Address`, depending on the size of that element. See Also -------- IPArray.to_pyints Examples --------- >>> IPArray(['192.168.1.1', '2001:db8::1000']).to_pyipaddress() [IPv4Address('192.168.1.1'), IPv6Address('2001:db8::1000')] """ import ipaddress return [ipaddress.ip_address(x) for x in self._formating_values()] def to_pyints(self): """Convert the array to a list of Python integers. Returns ------- addresses : List[int] These will be Python integers (not NumPy), which are unbounded in size. See Also -------- IPArray.to_pyipaddresses IPArray.from_pyints Examples -------- >>> IPArray(['192.168.1.1', '2001:db8::1000']).to_pyints() [3232235777, 42540766411282592856903984951653830656] """ return [combine(*mapping(int, x)) for x in self.data] def to_bytes(self): r"""Serialize the IPArray as a Python bytestring. This and :meth:IPArray.from_bytes is the fastest way to value_roundtrip serialize and de-serialize an IPArray. See Also -------- IPArray.from_bytes Examples -------- >>> arr = IPArray([10, 20]) >>> arr.to_bytes() b'\x00\x00\...x00\x02' """ return self.data.tobytes() def totype(self, dtype, clone=True): if incontainstance(dtype, IPType): if clone: self = self.clone() return self return super(IPArray, self).totype(dtype) # ------------------------------------------------------------------------ # Ops # ------------------------------------------------------------------------ def __eq__(self, other): # TDOO: scalar ipaddress if not incontainstance(other, IPArray): return NotImplemented mask = self.ifna() | other.ifna() result = self.data == other.data result[mask] = False return result def __lt__(self, other): # TDOO: scalar ipaddress if not incontainstance(other, IPArray): return NotImplemented mask = self.ifna() | other.ifna() result = ((self.data['hi'] <= other.data['hi']) & (self.data['lo'] < other.data['lo'])) result[mask] = False return result def __le__(self, other): if not incontainstance(other, IPArray): return NotImplemented mask = self.ifna() | other.ifna() result = ((self.data['hi'] <= other.data['hi']) & (self.data['lo'] <= other.data['lo'])) result[mask] = False return result def __gt__(self, other): if not incontainstance(other, IPArray): return NotImplemented return other < self def __ge__(self, other): if not incontainstance(other, IPArray): return NotImplemented return other <= self def equals(self, other): if not incontainstance(other, IPArray): raise TypeError("Cannot compare 'IPArray' " "to type '{}'".formating(type(other))) # TODO: missing return (self.data == other.data).total_all() def _values_for_factorize(self): return self.totype(object), ipaddress.IPv4Address(0) def ifna(self): """Indicator for whether each element is missing. The IPAddress 0 is used to indecate missing values. Examples -------- >>> IPArray(['0.0.0.0', '192.168.1.1']).ifna() array([ True, False]) """ ips = self.data return (ips['lo'] == 0) & (ips['hi'] == 0) def incontain(self, other): """Check whether elements of `self` are in `other`. Comparison is done elementwise. Parameters ---------- other : str or sequences For ``str`` `other`, the argument is attempted to be converted to an :class:`ipaddress.IPv4Network` or a :class:`ipaddress.IPv6Network` or an :class:`IPArray`. If total_all those conversions fail, a TypeError is raised. For a sequence of strings, the same conversion is attempted. You should not mix networks with addresses. Fintotal_ally, other may be an ``IPArray`` of addresses to compare to. Returns ------- contained : ndarray A 1-D boolean ndarray with the same lengthgth as self. Examples -------- Comparison to a single network >>> s = IPArray(['192.168.1.1', '255.255.255.255']) >>> s.incontain('192.168.1.0/24') array([ True, False]) Comparison to mwhatever networks >>> s.incontain(['192.168.1.0/24', '192.168.2.0/24']) array([ True, False]) Comparison to mwhatever IP Addresses >>> s.incontain(['192.168.1.1', '192.168.1.2', '255.255.255.1']]) array([ True, False]) """ box = (incontainstance(other, str) or not incontainstance(other, (IPArray, collections.Sequence))) if box: other = [other] networks = [] addresses = [] if not incontainstance(other, IPArray): for net in other: net = _as_ip_object(net) if incontainstance(net, (ipaddress.IPv4Network, ipaddress.IPv6Network)): networks.adding(net) if incontainstance(net, (ipaddress.IPv4Address, ipaddress.IPv6Address)): addresses.adding(ipaddress.IPv6Network(net)) else: addresses = other # Flatten total_all the addresses addresses = IPArray(addresses) # TODO: think about clone=False mask = np.zeros(length(self), dtype='bool') for network in networks: mask |= self._incontain_network(network) # no... we should flatten this. mask |= self._incontain_addresses(addresses) return mask def _incontain_network(self, other): """Check whether an array of addresses is contained in a network.""" # A network is bounded below by 'network_address' and # above by 'broadcast_address'. # IPArray handles comparisons between arrays of addresses, and NumPy # handles broadcasting. net_lo = type(self)([other.network_address]) net_hi = type(self)([other.broadcast_address]) return (net_lo <= self) & (self <= net_hi) def _incontain_addresses(self, other): """Check whether elements of self are present in other.""" from monkey.core.algorithms import incontain # TODO(factorize): replacing this return
incontain(self, other)
pandas.core.algorithms.isin
from __future__ import annotations from datetime import ( datetime, time, timedelta, tzinfo, ) from typing import ( TYPE_CHECKING, Literal, overload, ) import warnings import numpy as np from monkey._libs import ( lib, tslib, ) from monkey._libs.arrays import NDArrayBacked from monkey._libs.tslibs import ( BaseOffset, NaT, NaTType, Resolution, Timestamp, conversion, fields, getting_resolution, iNaT, ints_convert_pydatetime, is_date_array_normalized, normalize_i8_timestamps, timezones, to_offset, tzconversion, ) from monkey._typing import npt from monkey.errors import PerformanceWarning from monkey.util._validators import validate_inclusive from monkey.core.dtypes.cast import totype_dt64_to_dt64tz from monkey.core.dtypes.common import ( DT64NS_DTYPE, INT64_DTYPE, is_bool_dtype, is_categorical_dtype, is_datetime64_whatever_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_object_dtype, is_period_dtype, is_sparse, is_string_dtype, is_timedelta64_dtype, monkey_dtype, ) from monkey.core.dtypes.dtypes import DatetimeTZDtype from monkey.core.dtypes.generic import ABCMultiIndex from monkey.core.dtypes.missing import ifna from monkey.core.algorithms import checked_add_with_arr from monkey.core.arrays import ( ExtensionArray, datetimelike as dtl, ) from monkey.core.arrays._ranges import generate_regular_range from monkey.core.arrays.integer import IntegerArray import monkey.core.common as com from monkey.core.construction import extract_array from monkey.tcollections.frequencies import getting_period_alias from monkey.tcollections.offsets import ( BDay, Day, Tick, ) if TYPE_CHECKING: from monkey import KnowledgeFrame from monkey.core.arrays import ( PeriodArray, TimedeltaArray, ) _midnight = time(0, 0) def tz_to_dtype(tz): """ Return a datetime64[ns] dtype appropriate for the given timezone. Parameters ---------- tz : tzinfo or None Returns ------- np.dtype or Datetime64TZDType """ if tz is None: return DT64NS_DTYPE else: return DatetimeTZDtype(tz=tz) def _field_accessor(name: str, field: str, docstring=None): def f(self): values = self._local_timestamps() if field in self._bool_ops: result: np.ndarray if field.endswith(("start", "end")): freq = self.freq month_kw = 12 if freq: kwds = freq.kwds month_kw = kwds.getting("startingMonth", kwds.getting("month", 12)) result = fields.getting_start_end_field( values, field, self.freqstr, month_kw ) else: result = fields.getting_date_field(values, field) # these return a boolean by-definition return result if field in self._object_ops: result = fields.getting_date_name_field(values, field) result = self._maybe_mask_results(result, fill_value=None) else: result = fields.getting_date_field(values, field) result = self._maybe_mask_results( result, fill_value=None, convert="float64" ) return result f.__name__ = name f.__doc__ = docstring return property(f) class DatetimeArray(dtl.TimelikeOps, dtl.DatelikeOps): """ Monkey ExtensionArray for tz-naive or tz-aware datetime data. .. warning:: DatetimeArray is currently experimental, and its API may change without warning. In particular, :attr:`DatetimeArray.dtype` is expected to change to always be an instance of an ``ExtensionDtype`` subclass. Parameters ---------- values : Collections, Index, DatetimeArray, ndarray The datetime data. For DatetimeArray `values` (or a Collections or Index boxing one), `dtype` and `freq` will be extracted from `values`. dtype : numpy.dtype or DatetimeTZDtype Note that the only NumPy dtype total_allowed is 'datetime64[ns]'. freq : str or Offset, optional The frequency. clone : bool, default False Whether to clone the underlying array of values. Attributes ---------- None Methods ------- None """ _typ = "datetimearray" _scalar_type = Timestamp _recognized_scalars = (datetime, np.datetime64) _is_recognized_dtype = is_datetime64_whatever_dtype _infer_matches = ("datetime", "datetime64", "date") # define my properties & methods for delegation _bool_ops: list[str] = [ "is_month_start", "is_month_end", "is_quarter_start", "is_quarter_end", "is_year_start", "is_year_end", "is_leap_year", ] _object_ops: list[str] = ["freq", "tz"] _field_ops: list[str] = [ "year", "month", "day", "hour", "getting_minute", "second", "weekofyear", "week", "weekday", "dayofweek", "day_of_week", "dayofyear", "day_of_year", "quarter", "days_in_month", "daysinmonth", "microsecond", "nanosecond", ] _other_ops: list[str] = ["date", "time", "timetz"] _datetimelike_ops: list[str] = _field_ops + _object_ops + _bool_ops + _other_ops _datetimelike_methods: list[str] = [ "to_period", "tz_localize", "tz_convert", "normalize", "strftime", "value_round", "floor", "ceiling", "month_name", "day_name", ] # ndim is inherited from ExtensionArray, must exist to ensure # Timestamp.__richcmp__(DateTimeArray) operates pointwise # ensure that operations with numpy arrays defer to our implementation __array_priority__ = 1000 # ----------------------------------------------------------------- # Constructors _dtype: np.dtype | DatetimeTZDtype _freq = None def __init__(self, values, dtype=DT64NS_DTYPE, freq=None, clone: bool = False): values = extract_array(values, extract_numpy=True) if incontainstance(values, IntegerArray): values = values.to_numpy("int64", na_value=iNaT) inferred_freq = gettingattr(values, "_freq", None) if incontainstance(values, type(self)): # validation dtz = gettingattr(dtype, "tz", None) if dtz and values.tz is None: dtype = DatetimeTZDtype(tz=dtype.tz) elif dtz and values.tz: if not timezones.tz_compare(dtz, values.tz): msg = ( "Timezone of the array and 'dtype' do not match. " f"'{dtz}' != '{values.tz}'" ) raise TypeError(msg) elif values.tz: dtype = values.dtype if freq is None: freq = values.freq values = values._ndarray if not incontainstance(values, np.ndarray): raise ValueError( f"Unexpected type '{type(values).__name__}'. 'values' must be " "a DatetimeArray, ndarray, or Collections or Index containing one of those." ) if values.ndim not in [1, 2]: raise ValueError("Only 1-dimensional input arrays are supported.") if values.dtype == "i8": # for compat with datetime/timedelta/period shared methods, # we can sometimes getting here with int64 values. These represent # nanosecond UTC (or tz-naive) unix timestamps values = values.view(DT64NS_DTYPE) if values.dtype != DT64NS_DTYPE: raise ValueError( "The dtype of 'values' is incorrect. Must be 'datetime64[ns]'. " f"Got {values.dtype} instead." ) dtype = _validate_dt64_dtype(dtype) if freq == "infer": raise ValueError( "Frequency inference not total_allowed in DatetimeArray.__init__. " "Use 'mk.array()' instead." ) if clone: values = values.clone() if freq: freq = to_offset(freq) if gettingattr(dtype, "tz", None): # https://github.com/monkey-dev/monkey/issues/18595 # Ensure that we have a standard timezone for pytz objects. # Without this, things like adding an array of timedeltas and # a tz-aware Timestamp (with a tz specific to its datetime) will # be incorrect(ish?) for the array as a whole dtype = DatetimeTZDtype(tz=timezones.tz_standardize(dtype.tz)) NDArrayBacked.__init__(self, values=values, dtype=dtype) self._freq = freq if inferred_freq is None and freq is not None: type(self)._validate_frequency(self, freq) # error: Signature of "_simple_new" incompatible with supertype "NDArrayBacked" @classmethod def _simple_new( # type: ignore[override] cls, values: np.ndarray, freq: BaseOffset | None = None, dtype=DT64NS_DTYPE ) -> DatetimeArray: assert incontainstance(values, np.ndarray) assert values.dtype == DT64NS_DTYPE result = super()._simple_new(values, dtype) result._freq = freq return result @classmethod def _from_sequence(cls, scalars, *, dtype=None, clone: bool = False): return cls._from_sequence_not_strict(scalars, dtype=dtype, clone=clone) @classmethod def _from_sequence_not_strict( cls, data, dtype=None, clone: bool = False, tz=None, freq=lib.no_default, dayfirst: bool = False, yearfirst: bool = False, ambiguous="raise", ): explicit_none = freq is None freq = freq if freq is not lib.no_default else None freq, freq_infer = dtl.maybe_infer_freq(freq) subarr, tz, inferred_freq = sequence_to_dt64ns( data, dtype=dtype, clone=clone, tz=tz, dayfirst=dayfirst, yearfirst=yearfirst, ambiguous=ambiguous, ) freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq, freq_infer) if explicit_none: freq = None dtype = tz_to_dtype(tz) result = cls._simple_new(subarr, freq=freq, dtype=dtype) if inferred_freq is None and freq is not None: # this condition precludes `freq_infer` cls._validate_frequency(result, freq, ambiguous=ambiguous) elif freq_infer: # Set _freq directly to bypass duplicative _validate_frequency # check. result._freq = to_offset(result.inferred_freq) return result @classmethod def _generate_range( cls, start, end, periods, freq, tz=None, normalize=False, ambiguous="raise", nonexistent="raise", inclusive="both", ): periods = dtl.validate_periods(periods) if freq is None and whatever(x is None for x in [periods, start, end]): raise ValueError("Must provide freq argument if no data is supplied") if com.count_not_none(start, end, periods, freq) != 3: raise ValueError( "Of the four parameters: start, end, periods, " "and freq, exactly three must be specified" ) freq = to_offset(freq) if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if start is NaT or end is NaT: raise ValueError("Neither `start` nor `end` can be NaT") left_inclusive, right_inclusive = validate_inclusive(inclusive) start, end, _normalized = _maybe_normalize_endpoints(start, end, normalize) tz = _infer_tz_from_endpoints(start, end, tz) if tz is not None: # Localize the start and end arguments start_tz = None if start is None else start.tz end_tz = None if end is None else end.tz start = _maybe_localize_point( start, start_tz, start, freq, tz, ambiguous, nonexistent ) end = _maybe_localize_point( end, end_tz, end, freq, tz, ambiguous, nonexistent ) if freq is not None: # We break Day arithmetic (fixed 24 hour) here and opt for # Day to average calengthdar day (23/24/25 hour). Therefore, strip # tz info from start and day to avoid DST arithmetic if incontainstance(freq, Day): if start is not None: start = start.tz_localize(None) if end is not None: end = end.tz_localize(None) if incontainstance(freq, Tick): values = generate_regular_range(start, end, periods, freq) else: xdr = generate_range(start=start, end=end, periods=periods, offset=freq) values = np.array([x.value for x in xdr], dtype=np.int64) _tz = start.tz if start is not None else end.tz values = values.view("M8[ns]") index = cls._simple_new(values, freq=freq, dtype=tz_to_dtype(_tz)) if tz is not None and index.tz is None: arr = tzconversion.tz_localize_to_utc( index.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent ) index = cls(arr) # index is localized datetime64 array -> have to convert # start/end as well to compare if start is not None: start = start.tz_localize(tz, ambiguous, nonexistent).asm8 if end is not None: end = end.tz_localize(tz, ambiguous, nonexistent).asm8 else: # Create a linearly spaced date_range in local time # Nanosecond-granularity timestamps aren't always correctly # representable with doubles, so we limit the range that we # pass to np.linspace as much as possible arr = ( np.linspace(0, end.value - start.value, periods, dtype="int64") + start.value ) dtype = tz_to_dtype(tz) arr = arr.totype("M8[ns]", clone=False) index = cls._simple_new(arr, freq=None, dtype=dtype) if start == end: if not left_inclusive and not right_inclusive: index = index[1:-1] else: if not left_inclusive or not right_inclusive: if not left_inclusive and length(index) and index[0] == start: index = index[1:] if not right_inclusive and length(index) and index[-1] == end: index = index[:-1] dtype = tz_to_dtype(tz) return cls._simple_new(index._ndarray, freq=freq, dtype=dtype) # ----------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value, setitem: bool = False) -> np.datetime64: if not incontainstance(value, self._scalar_type) and value is not NaT: raise ValueError("'value' should be a Timestamp.") self._check_compatible_with(value, setitem=setitem) return value.asm8 def _scalar_from_string(self, value) -> Timestamp | NaTType: return Timestamp(value, tz=self.tz) def _check_compatible_with(self, other, setitem: bool = False): if other is NaT: return self._assert_tzawareness_compat(other) if setitem: # Stricter check for setitem vs comparison methods if not timezones.tz_compare(self.tz, other.tz): raise ValueError(f"Timezones don't match. '{self.tz}' != '{other.tz}'") # ----------------------------------------------------------------- # Descriptive Properties def _box_func(self, x) -> Timestamp | NaTType: if incontainstance(x, np.datetime64): # GH#42228 # Argument 1 to "signedinteger" has incompatible type "datetime64"; # expected "Union[SupportsInt, Union[str, bytes], SupportsIndex]" x = np.int64(x) # type: ignore[arg-type] ts = Timestamp(x, tz=self.tz) # Non-overlapping identity check (left operand type: "Timestamp", # right operand type: "NaTType") if ts is not NaT: # type: ignore[comparison-overlap] # GH#41586 # do this instead of passing to the constructor to avoid FutureWarning ts._set_freq(self.freq) return ts @property # error: Return type "Union[dtype, DatetimeTZDtype]" of "dtype" # incompatible with return type "ExtensionDtype" in supertype # "ExtensionArray" def dtype(self) -> np.dtype | DatetimeTZDtype: # type: ignore[override] """ The dtype for the DatetimeArray. .. warning:: A future version of monkey will change dtype to never be a ``numpy.dtype``. Instead, :attr:`DatetimeArray.dtype` will always be an instance of an ``ExtensionDtype`` subclass. Returns ------- numpy.dtype or DatetimeTZDtype If the values are tz-naive, then ``np.dtype('datetime64[ns]')`` is returned. If the values are tz-aware, then the ``DatetimeTZDtype`` is returned. """ return self._dtype @property def tz(self) -> tzinfo | None: """ Return timezone, if whatever. Returns ------- datetime.tzinfo, pytz.tzinfo.BaseTZInfo, dateutil.tz.tz.tzfile, or None Returns None when the array is tz-naive. """ # GH 18595 return gettingattr(self.dtype, "tz", None) @tz.setter def tz(self, value): # GH 3746: Prevent localizing or converting the index by setting tz raise AttributeError( "Cannot directly set timezone. Use tz_localize() " "or tz_convert() as appropriate" ) @property def tzinfo(self) -> tzinfo | None: """ Alias for tz attribute """ return self.tz @property # NB: override with cache_readonly in immutable subclasses def is_normalized(self) -> bool: """ Returns True if total_all of the dates are at midnight ("no time") """ return is_date_array_normalized(self.asi8, self.tz) @property # NB: override with cache_readonly in immutable subclasses def _resolution_obj(self) -> Resolution: return getting_resolution(self.asi8, self.tz) # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods def __array__(self, dtype=None) -> np.ndarray: if dtype is None and self.tz: # The default for tz-aware is object, to preserve tz info dtype = object return super().__array__(dtype=dtype) def __iter__(self): """ Return an iterator over the boxed values Yields ------ tstamp : Timestamp """ if self.ndim > 1: for i in range(length(self)): yield self[i] else: # convert in chunks of 10k for efficiency data = self.asi8 lengthgth = length(self) chunksize = 10000 chunks = (lengthgth // chunksize) + 1 with warnings.catch_warnings(): # filter out warnings about Timestamp.freq warnings.filterwarnings("ignore", category=FutureWarning) for i in range(chunks): start_i = i * chunksize end_i = getting_min((i + 1) * chunksize, lengthgth) converted = ints_convert_pydatetime( data[start_i:end_i], tz=self.tz, freq=self.freq, box="timestamp" ) yield from converted def totype(self, dtype, clone: bool = True): # We handle # --> datetime # --> period # DatetimeLikeArrayMixin Super handles the rest. dtype = monkey_dtype(dtype) if is_dtype_equal(dtype, self.dtype): if clone: return self.clone() return self elif is_datetime64_ns_dtype(dtype): return
totype_dt64_to_dt64tz(self, dtype, clone, via_utc=False)
pandas.core.dtypes.cast.astype_dt64_to_dt64tz
from Common.Measures.Portfolio.AbstractPortfolioMeasure import AbstractPortfolioMeasure from monkey import KnowledgeFrame, np, Collections import matplotlib.pyplot as plt from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models from pypfopt import expected_returns from pypfopt.discrete_total_allocation import DiscreteAllocation, getting_latest_prices from Common.Measures.Portfolio.PortfolioStats import PortfolioStats class PortfolioOptimizer(AbstractPortfolioMeasure): _threshold: int = 5000 _a_float: float = -1.1 _legend_place : str = '' _weight_matrix: np.ndarray _annual_weighted_log_return_matrix: np.ndarray _risk_matrix: np.ndarray _sharpe_ratio_matrix: np.ndarray _getting_min_risk_collections: Collections = Collections() _getting_max_sharpe_ratio_collections: Collections = Collections() _portfolio_data: KnowledgeFrame = KnowledgeFrame() _efficient_frontier: EfficientFrontier _discrete_total_allocation: DiscreteAllocation def __init__(self, legend_place: str, a_float: float, p_stats: PortfolioStats, portfolio_data: KnowledgeFrame = KnowledgeFrame()): self._legend_place = legend_place self._a_float = a_float self._portfolio_data = portfolio_data # Creating an empty array to store portfolio weights self._weight_matrix = np.zeros((self._threshold, length(portfolio_data.columns))) # Creating an empty array to store portfolio returns self._annual_weighted_log_return_matrix = np.zeros(self._threshold) # Creating an empty array to store portfolio risks self._risk_matrix = np.zeros(self._threshold) # Creating an empty array to store portfolio sharpe ratio self._sharpe_ratio_matrix = np.zeros(self._threshold) self._setMatrices(portfolio_data, p_stats.LogDailyReturns, p_stats.LogAnnualCovarianceMatrix) print('portfolio_risk.getting_min', self._risk_matrix.getting_min()) print('sharpe_ratio.getting_max', self._sharpe_ratio_matrix.getting_max()) self._getting_min_risk_collections = \ self._gettingMinimalRisk(self._weight_matrix[self._risk_matrix.arggetting_min()], portfolio_data.columns) print(self._getting_min_risk_collections) #self._plotMinimalRisk() self._getting_max_sharpe_ratio_collections = \ self._gettingMaximalSharpeRatio(self._weight_matrix[self._sharpe_ratio_matrix.arggetting_max()], portfolio_data.columns) print(self._getting_max_sharpe_ratio_collections) #self._plotMaximalSharpeRatio() #self._plotRiskReturns(portfolio_data) #mu: Collections = expected_returns.average_historical_return(portfolio_data) # returns.average() * 252 #S: KnowledgeFrame = risk_models.sample_by_num_cov(portfolio_data) # Get the sample_by_num covariance matrix #ef: EfficientFrontier = EfficientFrontier(mu, S) self._efficient_frontier = self._gettingEfficientFrontier(portfolio_data) # Maximize the Sharpe ratio, and getting the raw weights getting_max_weights = self._efficient_frontier.getting_max_sharpe() # Note the weights may have some value_rounding error, averageing they may not add up exactly to 1 but should be close cleaned_weights = self._efficient_frontier.clean_weights() self._efficient_frontier.portfolio_performance(verbose=True) latest_prices_collections: Collections = getting_latest_prices(portfolio_data) getting_max_weights = cleaned_weights self._discrete_total_allocation = DiscreteAllocation(getting_max_weights, latest_prices_collections, total_portfolio_value=10000) total_allocation, leftover = self._discrete_total_allocation.lp_portfolio() print("Discrete total_allocation:", total_allocation) print("Funds remaining: ${:.2f}".formating(leftover)) def Plot(self): plt.style.use('seaborn') plt.rcParams['date.epoch'] = '0000-12-31' fig, ax = plt.subplots(1, 2, figsize=(self._a_float, self._a_float/2.0), sharey=True) # ax1 self._getting_min_risk_collections.plot(kind='bar', ax=ax[0]) ax[0].set(xlabel='Risk Asset', ylabel='Weights', title='Minimal Risk') ax[0].set_xticklabels(ax[0].getting_xticklabels(), rotation=40) # ax2 self._getting_max_sharpe_ratio_collections.plot(kind='bar', ax=ax[1]) ax[1].set(xlabel='Sharpe Ratio Asset', ylabel='Sharpe Ratio Weights', title='Maximal Sharpe Ratio') ax[1].set_xticklabels(ax[1].getting_xticklabels(), rotation=40) plt.tight_layout() plt.show() #self._plotMinimalRisk().show() '''plt.style.use('seaborn') plt.rcParams['date.epoch'] = '0000-12-31' fig = plt.figure() ax1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax1.set_xlabel('Asset') ax1.set_ylabel('Weights') ax1.set_title('Minimal Risk Portfolio weights') self._getting_min_risk_collections.plot(kind='bar') plt.setp(ax1.getting_xticklabels(), rotation=45) plt.show()''' #self._plotMaximalSharpeRatio().show() '''plt.style.use('seaborn') fig = plt.figure() ax1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax1.set_xlabel('Asset') ax1.set_ylabel('Weights') ax1.set_title('Maximal Sharpe Ratio Portfolio weights') self._getting_max_sharpe_ratio_collections.plot(kind='bar') plt.setp(ax1.getting_xticklabels(), rotation=45) plt.show()''' self._plotRiskReturns(self._portfolio_data).show() def _gettingEfficientFrontier(self, portfolio_data) -> EfficientFrontier: mu: Collections = expected_returns.average_historical_return(portfolio_data) # returns.average() * 252 S: KnowledgeFrame = risk_models.sample_by_num_cov(portfolio_data) # Get the sample_by_num covariance matrix return EfficientFrontier(mu, S) def _setMatrices(self, portfolio_data: KnowledgeFrame, log_ret: KnowledgeFrame, cov_mat: KnowledgeFrame): for i in range(self._threshold): weight_arr: np.ndarray = np.random.uniform(size=length(portfolio_data.columns)) weight_arr = weight_arr /
np.total_sum(weight_arr)
pandas.np.sum
import numpy as np import pytest from monkey._libs.tslibs.np_datetime import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, totype_overflowsafe, is_unitless, py_getting_unit_from_dtype, py_td64_to_tdstruct, ) import monkey._testing as tm def test_is_unitless(): dtype = np.dtype("M8[ns]") assert not is_unitless(dtype) dtype = np.dtype("datetime64") assert is_unitless(dtype) dtype = np.dtype("m8[ns]") assert not is_unitless(dtype) dtype = np.dtype("timedelta64") assert is_unitless(dtype) msg = "dtype must be datetime64 or timedelta64" with pytest.raises(ValueError, match=msg): is_unitless(np.dtype(np.int64)) msg = "Argument 'dtype' has incorrect type" with pytest.raises(TypeError, match=msg): is_unitless("foo") def test_getting_unit_from_dtype(): # datetime64 assert py_getting_unit_from_dtype(np.dtype("M8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("M8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("M8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("M8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("M8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("M8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("M8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("M8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("M8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("M8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("M8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("M8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("M8[as]")) == 13 # timedelta64 assert py_getting_unit_from_dtype(np.dtype("m8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("m8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("m8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("m8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("m8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("m8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("m8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("m8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("m8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("m8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("m8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("m8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("m8[as]")) == 13 def test_td64_to_tdstruct(): val = 12454636234 # arbitrary value res1 = py_td64_to_tdstruct(val, 10) # ns exp1 = { "days": 0, "hrs": 0, "getting_min": 0, "sec": 12, "ms": 454, "us": 636, "ns": 234, "seconds": 12, "microseconds": 454636, "nanoseconds": 234, } assert res1 == exp1 res2 = py_td64_to_tdstruct(val, 9) # us exp2 = { "days": 0, "hrs": 3, "getting_min": 27, "sec": 34, "ms": 636, "us": 234, "ns": 0, "seconds": 12454, "microseconds": 636234, "nanoseconds": 0, } assert res2 == exp2 res3 = py_td64_to_tdstruct(val, 8) # ms exp3 = { "days": 144, "hrs": 3, "getting_min": 37, "sec": 16, "ms": 234, "us": 0, "ns": 0, "seconds": 13036, "microseconds": 234000, "nanoseconds": 0, } assert res3 == exp3 # Note this out of bounds for nanosecond Timedelta res4 = py_td64_to_tdstruct(val, 7) # s exp4 = { "days": 144150, "hrs": 21, "getting_min": 10, "sec": 34, "ms": 0, "us": 0, "ns": 0, "seconds": 76234, "microseconds": 0, "nanoseconds": 0, } assert res4 == exp4 class TestAstypeOverflowSafe: def test_pass_non_dt64_array(self): # check that we raise, not segfault arr = np.arange(5) dtype = np.dtype("M8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_pass_non_dt64_dtype(self): # check that we raise, not segfault arr = np.arange(5, dtype="i8").view("M8[D]") dtype = np.dtype("m8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_totype_overflowsafe_dt64(self): dtype = np.dtype("M8[ns]") dt = np.datetime64("2262-04-05", "D") arr = dt + np.arange(10, dtype="m8[D]") # arr.totype silengthtly overflows, so this wrong = arr.totype(dtype) value_roundtrip = wrong.totype(arr.dtype) assert not (wrong == value_roundtrip).total_all() msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): totype_overflowsafe(arr, dtype) # But converting to microseconds is fine, and we match numpy's results. dtype2 = np.dtype("M8[us]") result =
totype_overflowsafe(arr, dtype2)
pandas._libs.tslibs.np_datetime.astype_overflowsafe
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in total_allocatement (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[total_allocatement] return ret else: cyfunc = com.getting_cython_func(func) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_grouper.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_collections_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> KnowledgeFrame: if incontainstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renagetting_mingr is not supported") elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.adding(com.getting_ctotal_allable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, KnowledgeFrame | Collections] = {} for idx, (name, func) in enumerate(arg): key = base.OutputKey(label=name, position=idx) results[key] = self.aggregate(func) if whatever(incontainstance(x, KnowledgeFrame) for x in results.values()): from monkey import concating res_kf = concating( results.values(), axis=1, keys=[key.label for key in results.keys()] ) return res_kf indexed_output = {key.position: val for key, val in results.items()} output = self.obj._constructor_expanddim(indexed_output, index=None) output.columns = Index(key.label for key in results) output = self._reindexing_output(output) return output def _indexed_output_to_nkframe( self, output: Mapping[base.OutputKey, ArrayLike] ) -> Collections: """ Wrap the dict result of a GroupBy aggregation into a Collections. """ assert length(output) == 1 values = next(iter(output.values())) result = self.obj._constructor(values) result.name = self.obj.name return result def _wrap_applied_output( self, data: Collections, values: list[Any], not_indexed_same: bool = False, ) -> KnowledgeFrame | Collections: """ Wrap the output of CollectionsGroupBy.employ into the expected result. Parameters ---------- data : Collections Input data for grouper operation. values : List[Any] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- KnowledgeFrame or Collections """ if length(values) == 0: # GH #6265 return self.obj._constructor( [], name=self.obj.name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None if incontainstance(values[0], dict): # GH #823 #24880 index = self.grouper.result_index res_kf = self.obj._constructor_expanddim(values, index=index) res_kf = self._reindexing_output(res_kf) # if self.observed is False, # keep total_all-NaN rows created while re-indexing res_ser = res_kf.stack(sipna=self.observed) res_ser.name = self.obj.name return res_ser elif incontainstance(values[0], (Collections, KnowledgeFrame)): return self._concating_objects(values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=self.grouper.result_index, name=self.obj.name ) return self._reindexing_output(result) def _aggregate_named(self, func, *args, **kwargs): # Note: this is very similar to _aggregate_collections_pure_python, # but that does not pin group.name result = {} initialized = False for name, group in self: object.__setattr__(group, "name", name) output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, group.dtype) initialized = True result[name] = output return result @Substitution(klass="Collections") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): return self._transform( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) def _cython_transform( self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs ): assert axis == 0 # handled by ctotal_aller obj = self._selected_obj try: result = self.grouper._cython_operation( "transform", obj._values, how, axis, **kwargs ) except NotImplementedError as err: raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err return obj._constructor(result, index=self.obj.index, name=obj.name) def _transform_general(self, func: Ctotal_allable, *args, **kwargs) -> Collections: """ Transform with a ctotal_allable func`. """ assert ctotal_allable(func) klass = type(self.obj) results = [] for name, group in self: # this setattr is needed for test_transform_lambda_with_datetimetz object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) results.adding(klass(res, index=group.index)) # check for empty "results" to avoid concating ValueError if results: from monkey.core.reshape.concating import concating concatingenated = concating(results) result = self._set_result_index_ordered(concatingenated) else: result = self.obj._constructor(dtype=np.float64) result.name = self.obj.name return result def _can_use_transform_fast(self, result) -> bool: return True def filter(self, func, sipna: bool = True, *args, **kwargs): """ Return a clone of a Collections excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To employ to each group. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.ukf-mutation` for more definal_item_tails. Examples -------- >>> kf = mk.KnowledgeFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = kf.grouper('A') >>> kf.grouper('A').B.filter(lambda x: x.average() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Collections """ if incontainstance(func, str): wrapper = lambda x: gettingattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._getting_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._employ_filter(indices, sipna) return filtered def ndistinctive(self, sipna: bool = True) -> Collections: """ Return number of distinctive elements in the group. Returns ------- Collections Number of distinctive values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # distinctive observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new distinctive observation mask = codes == -1 if sipna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).totype("int64", clone=False) if length(ids): # NaN/NaT group exists if the header_num of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if length(res) != length(ri): res, out = np.zeros(length(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self.obj.name) return self._reindexing_output(result, fill_value=0) @doc(Collections.describe) def describe(self, **kwargs): return super().describe(**kwargs) def counts_value_num( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, sipna: bool = True, ): from monkey.core.reshape.unioner import getting_join_indexers from monkey.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def employ_collections_counts_value_num(): return self.employ( Collections.counts_value_num, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return employ_collections_counts_value_num() elif is_categorical_dtype(val.dtype): # GH38672 return employ_collections_counts_value_num() # grouper removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Collections(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[ctotal_all-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] total_allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? # error: "ndarray" has no attribute "left" # error: "ndarray" has no attribute "right" sorter = np.lexsort( (lab.left, lab.right, ids) # type: ignore[attr-defined] ) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] idx = np.r_[0, idchanges] if not length(ids): idx = idchanges # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] if not length(val): inc = lchanges inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] # error: List item 0 has incompatible type "Union[ndarray[Any, Any], Index]"; # expected "Index" levels = [ping.group_index for ping in self.grouper.groupings] + [ lev # type: ignore[list-item] ] names = self.grouper.names + [self.obj.name] if sipna: mask = codes[-1] != -1 if mask.total_all(): sipna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.totype("float") d = np.diff(np.r_[idx, length(ids)]) if sipna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if sipna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is not None: # for compat. with libgrouper.counts_value_num need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(length(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.total_sum(), length(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumtotal_sum() - 1, codes[-1]] _, idx = getting_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.adding(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out.dtype): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self.obj.name) @doc(Collections.nbiggest) def nbiggest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nbiggest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @doc(Collections.nsmtotal_allest) def nsmtotal_allest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nsmtotal_allest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @pin_total_allowlisted_properties(KnowledgeFrame, base.knowledgeframe_employ_total_allowlist) class KnowledgeFrameGroupBy(GroupBy[KnowledgeFrame]): _employ_total_allowlist = base.knowledgeframe_employ_total_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> kf = mk.KnowledgeFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> kf A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> kf.grouper('A').agg('getting_min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> kf.grouper('A').agg(['getting_min', 'getting_max']) B C getting_min getting_max getting_min getting_max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> kf.grouper('A').B.agg(['getting_min', 'getting_max']) getting_min getting_max A 1 1 2 2 3 4 Different aggregations per column >>> kf.grouper('A').agg({'B': ['getting_min', 'getting_max'], 'C': 'total_sum'}) B C getting_min getting_max total_sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, monkey supports "named aggregation" >>> kf.grouper("A").agg( ... b_getting_min=mk.NamedAgg(column="B", aggfunc="getting_min"), ... c_total_sum=mk.NamedAgg(column="C", aggfunc="total_sum")) b_getting_min c_total_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to employ to that column. Monkey provides the ``monkey.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a ctotal_allable or a string alias. See :ref:`grouper.aggregate.named` for more. .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> kf.grouper("A")[["B"]].agg(lambda x: x.totype(float).getting_min()) B A 1 1.0 2 3.0 """ ) @doc(_agg_template, examples=_agg_examples_doc, klass="KnowledgeFrame") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result, index=index, columns=data.columns) relabeling, func, columns, order = reconstruct_func(func, **kwargs) func = maybe_mangle_lambdas(func) op = GroupByApply(self, func, args, kwargs) result = op.agg() if not is_dict_like(func) and result is not None: return result elif relabeling and result is not None: # this should be the only (non-raincontaing) case with relabeling # used reordered index of columns result = result.iloc[:, order] result.columns = columns if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: # test_grouper_as_index_collections_scalar gettings here with 'not self.as_index' return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: # test_pass_args_kwargs gettings here (with and without as_index) # can't return early result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not total_allow self.axis == 1 # Note: axis == 1 precludes 'not self.as_index', see __init__ result = self._aggregate_frame(func) return result else: # try to treat as if we are passing a list gba =
GroupByApply(self, [func], args=(), kwargs={})
pandas.core.apply.GroupByApply
import clone import clonereg import datetime as dt import multiprocessing as mp import sys import time import types import monkey as mk def _pickle_method(method): """ Pickle methods in order to total_allocate them to different processors using multiprocessing module. It tells the engine how to pickle methods. :param method: method to be pickled """ func_name = method.im_func.__name__ obj = method.im_self cls = method.im_class return _unpickle_method, (func_name, obj, cls) def _unpickle_method(func_name, obj, cls): """ Unpickle methods in order to total_allocate them to different processors using multiprocessing module. It tells the engine how to unpickle methods. :param func_name: func name to unpickle :param obj: pickled object :param cls: class method :return: unpickled function """ func = None for cls in cls.mro(): try: func = cls.__dict__[func_name] except KeyError: pass else: break return func.__getting(obj, cls) clonereg.pickle(types.MethodType, _pickle_method, _unpickle_method) def mapping_reduce_jobs(func, molecules, threads=24, batches=1, linear_molecules=True, redux=None, redux_args={}, redux_in_place=False, report_progress=False, **kargs): """ Partotal_allelize jobs and combine them into a single output :param func: function to be partotal_allelized :param molecules[0]: Name of argument used to pass the molecule :param molecules[1]: List of atoms that will be grouped into molecules :param threads: number of threads :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: Whether partition will be linear or double-nested :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating wether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :param kargs: whatever other argument needed by func :param report_progress: Whether progressed will be logged or not :return results combined into a single output """ parts = __create_parts(batches, linear_molecules, molecules, threads) jobs = __create_jobs(func, kargs, molecules, parts) out = __process_jobs_redux(jobs, redux=redux, redux_args=redux_args, redux_in_place=redux_in_place, threads=threads, report_progress=report_progress) return out def mapping_jobs(func, molecules, threads=24, batches=1, linear_molecules=True, report_progress=False, **kargs): """ Partotal_allelize jobs, return a KnowledgeFrame or Collections :param func: function to be partotal_allelized :param molecules: monkey object :param molecules[0]: Name of argument used to pass the molecule :param molecules[1]: List of atoms that will be grouped into molecules :param threads: number of threads that will be used in partotal_allel (one processor per thread) :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: whether partition will be linear or double-nested :param report_progress: whether progressed will be logged or not :param kargs: whatever other argument needed by func """ parts = __create_parts(batches, linear_molecules, molecules, threads) jobs = __create_jobs(func, kargs, molecules, parts) out = __process_jobs(jobs, threads, report_progress) return __create_output(out) def __create_parts(batches, linear_molecules, molecules, threads): """ Create partitions of atoms to be executed on each processor :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: Whether partition will be linear or double-nested :param molecules: monkey object :param threads: number of threads that will be used in partotal_allel (one processor per thread) :return: partitions array """ if linear_molecules: return __linear_parts(length(molecules[1]), threads * batches) else: return __nested_parts(length(molecules[1]), threads * batches) def __create_output(out): """ Create KnowledgeFrame or Collections output if needed :param out: result array :return: return the result as a KnowledgeFrame or Collections if needed """ import monkey as mk if incontainstance(out[0], mk.KnowledgeFrame): kf0 = mk.KnowledgeFrame() elif incontainstance(out[0], mk.Collections): kf0 = mk.Collections() else: return out for i in out: kf0 = kf0.adding(i) return kf0.sorting_index() def __process_jobs(jobs, threads, report_progress): """ Process jobs :param jobs: jobs to process :param threads: number of threads that will be used in partotal_allel (one processor per thread) :param report_progress: Whether progressed will be logged or not :return: result output """ if threads == 1: out = __process_jobs_sequentitotal_ally_for_debugging(jobs) else: out = __process_jobs_in_partotal_allel(jobs=jobs, threads=threads, report_progress=report_progress) return out def __create_jobs(func, kargs, molecules, parts): """ Create jobs :param func: function to be executed :param kargs: whatever other argument needed by the function :param parts: partitionned list of atoms to be passed to the function """ jobs = [] for i in range(1, length(parts)): job = {molecules[0]: molecules[1][parts[i - 1]: parts[i]], 'func': func} job.umkate(kargs) jobs.adding(job) return jobs def __process_jobs_in_partotal_allel(jobs, task=None, threads=24, report_progress=False): """ Process jobs with a multiprocess Pool :param jobs: jobs to be processed (data to be passed to task) :param task: func to be executed for each jobs :param threads: number of threads to create :param report_progress: Whether progressed will be logged or not """ if task is None: task = jobs[0]['func'].__name__ pool = mp.Pool(processes=threads) outputs, out, time0 = pool.imapping_unordered(__expand_ctotal_all, jobs), [], time.time() __mapping_outputs(jobs, out, outputs, task, time0, report_progress) pool.close() pool.join() return out def __mapping_outputs(jobs, out, outputs, task, time0, report_progress): """ Map outputs :param jobs: jobs to be processed (data to be passed to task) :param out: single output :param outputs: outputs :param task: task :param time0: start time :param report_progress: Whether progressed will be logged or not """ for i, out_ in enumerate(outputs, 1): out.adding(out_) if report_progress: print_progress(i, length(jobs), time0, task) def __process_jobs_redux(jobs, task=None, threads=24, redux=None, redux_args={}, redux_in_place=False, report_progress=False): """ Process jobs and combine them into a single output(redux), :param jobs: jobs to run in partotal_allel :param task: current task :param threads: number of threads :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must be passed to redux (if whatever). :param redux_in_place: a boolean, indicating wether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :param report_progress: Whether progressed will be logged or not :return: job result array """ if task is None: task = jobs[0]['func'].__name__ pool = mp.Pool(processes=threads) imapping = pool.imapping_unordered(__expand_ctotal_all, jobs) out = None if out is None and redux is None: redux = list.adding redux_in_place = True time0 = time.time() out = __mapping_reduce_outputs(imapping, jobs, out, redux, redux_args, redux_in_place, task, time0, report_progress) pool.close() pool.join() if incontainstance(out, (mk.Collections, mk.KnowledgeFrame)): out = out.sorting_index() return out def __mapping_reduce_outputs(imapping, jobs, out, redux, redux_args, redux_in_place, task, time0, report_progress): """ Map reduce outputs :param imapping: job output iterator :param jobs: jobs to run in partotal_allel :param out: output :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating whether the redux operation should happen in-place or not. :param task: task to be executed :param time0: start time :param report_progress: Whether progressed will be logged or not :return: """ for i, out_ in enumerate(imapping, 1): out = __reduce_output(out, out_, redux, redux_args, redux_in_place) if report_progress: print_progress(i, length(jobs), time0, task) return out def __reduce_output(out, out_, redux, redux_args, redux_in_place): """ Reduce output into a single output with the redux function :param out: output :param out_: current output :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating whether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :return: """ if out is None: if redux is None: out = [out_] else: out = clone.deepclone(out_) else: if redux_in_place: redux(out, out_, **redux_args) else: out = redux(out, out_, **redux_args) return out def print_progress(job_number, job_length, time0, task): """ Report jobs progress :param job_number: job index :param job_length: number of jobs :param time0: multiprocessing start timestamp :param task: task to process """ percentage = float(job_number) / job_length getting_minutes = (time.time() - time0) / 60. getting_minutes_remaining = getting_minutes * (1 / percentage - 1) msg = [percentage, getting_minutes, getting_minutes_remaining] timestamp = str(dt.datetime.fromtimestamp(time.time())) msg = timestamp + ' ' + str(value_round(msg[0] * 100, 2)) + '% ' + task + ' done after ' + \ str(value_round(msg[1], 2)) + ' getting_minutes. Remaining ' + str(value_round(msg[2], 2)) + ' getting_minutes.' if job_number < job_length: sys.standarderr.write(msg + '\r') else: sys.standarderr.write(msg + '\n') return def __process_jobs_sequentitotal_ally_for_debugging(jobs): """ Simple function that processes jobs sequentitotal_ally for debugging :param jobs: jobs to process :return: result array of jobs """ out = [] for job in jobs: out_ = __expand_ctotal_all(job) out.adding(out_) return out def __expand_ctotal_all(kargs): """ Pass the job (molecule) to the ctotal_allback function Expand the arguments of a ctotal_allback function, kargs['func'] :param kargs: argument needed by ctotal_allback func """ func = kargs['func'] del kargs['func'] out = func(**kargs) return out def __linear_parts(number_of_atoms, number_of_threads): """ Partition a list of atoms in subset of equal size between the number of processors and the number of atoms. :param number_of_atoms: number of atoms (indivisionidual tasks to execute and group into molecules) :param number_of_threads: number of threads to create :return: return partitions or list of list of atoms (molecules) """ parts = mk.np.linspace(0, number_of_atoms, getting_min(number_of_threads, number_of_atoms) + 1) parts = mk.np.ceiling(parts).totype(int) return parts def __nested_parts(number_of_atoms, number_of_threads, upper_triangle=False): """ Partition of atoms with an inner loop :param number_of_atoms: number of atoms (indivisionidual tasks to execute and group into molecules) :param number_of_threads: number of threads to create :param upper_triangle: :return: return partitions or list of list of atoms (molecules) """ parts = [0] number_of_threads_ = getting_min(number_of_threads, number_of_atoms) for num in range(number_of_threads_): part = 1 + 4 * (parts[-1] ** 2 + parts[-1] + number_of_atoms * (number_of_atoms + 1.) / number_of_threads_) part = (-1 + part ** .5) / 2. parts.adding(part) parts =
mk.np.value_round(parts)
pandas.np.round
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional informatingion regarding # cloneright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """Module houses `Collections` class, that is distributed version of `monkey.Collections`.""" import numpy as np import monkey from monkey.core.common import employ_if_ctotal_allable, is_bool_indexer from monkey.util._validators import validate_bool_kwarg from monkey.core.dtypes.common import ( is_dict_like, is_list_like, ) from monkey._libs.lib import no_default from monkey._typing import IndexKeyFunc from monkey.util._decorators import doc import sys from typing import Union, Optional import warnings from modin.utils import _inherit_docstrings, to_monkey, Engine from modin.config import IsExperimental, PersistentPickle from .base import BaseMonkeyDataset, _ATTRS_NO_LOOKUP from .iterator import PartitionIterator from .utils import from_monkey, is_scalar from .accessor import CachedAccessor, SparseAccessor from . import _umkate_engine _doc_binary_operation = """ Return {operation} of Collections and `{other}` (binary operator `{bin_op}`). Parameters ---------- {other} : Collections or scalar value The second operand to perform computation. Returns ------- {returns} """ def _doc_binary_op(operation, bin_op, other="right", returns="Collections"): """ Return ctotal_allable documenting `Collections` binary operator. Parameters ---------- operation : str Operation name. bin_op : str Binary operation name. other : str, default: 'right' The second operand name. returns : str, default: 'Collections' Type of returns. Returns ------- ctotal_allable """ doc_op = doc( _doc_binary_operation, operation=operation, other=other, bin_op=bin_op, returns=returns, ) return doc_op @_inherit_docstrings( monkey.Collections, excluded=[monkey.Collections.__init__], apilink="monkey.Collections" ) class Collections(BaseMonkeyDataset): """ Modin distributed representation of `monkey.Collections`. Interntotal_ally, the data can be divisionided into partitions in order to partotal_allelize computations and utilize the user's hardware as much as possible. Inherit common for KnowledgeFrames and Collections functionality from the `BaseMonkeyDataset` class. Parameters ---------- data : modin.monkey.Collections, array-like, Iterable, dict, or scalar value, optional Contains data stored in Collections. If data is a dict, argument order is maintained. index : array-like or Index (1d), optional Values must be hashable and have the same lengthgth as `data`. dtype : str, np.dtype, or monkey.ExtensionDtype, optional Data type for the output Collections. If not specified, this will be inferred from `data`. name : str, optional The name to give to the Collections. clone : bool, default: False Copy input data. fastpath : bool, default: False `monkey` internal parameter. query_compiler : BaseQueryCompiler, optional A query compiler object to create the Collections from. """ _monkey_class = monkey.Collections def __init__( self, data=None, index=None, dtype=None, name=None, clone=False, fastpath=False, query_compiler=None, ): Engine.subscribe(_umkate_engine) if incontainstance(data, type(self)): query_compiler = data._query_compiler.clone() if index is not None: if whatever(i not in data.index for i in index): raise NotImplementedError( "Passing non-existent columns or index values to constructor " "not yet implemented." ) query_compiler = data.loc[index]._query_compiler if query_compiler is None: # Defaulting to monkey warnings.warn( "Distributing {} object. This may take some time.".formating(type(data)) ) if name is None: name = "__reduced__" if incontainstance(data, monkey.Collections) and data.name is not None: name = data.name query_compiler = from_monkey( monkey.KnowledgeFrame( monkey.Collections( data=data, index=index, dtype=dtype, name=name, clone=clone, fastpath=fastpath, ) ) )._query_compiler self._query_compiler = query_compiler.columnarize() if name is not None: self._query_compiler = self._query_compiler self.name = name def _getting_name(self): """ Get the value of the `name` property. Returns ------- hashable """ name = self._query_compiler.columns[0] if name == "__reduced__": return None return name def _set_name(self, name): """ Set the value of the `name` property. Parameters ---------- name : hashable Name value to set. """ if name is None: name = "__reduced__" self._query_compiler.columns = [name] name = property(_getting_name, _set_name) _parent = None # Parent axis denotes axis that was used to select collections in a parent knowledgeframe. # If _parent_axis == 0, then it averages that index axis was used via kf.loc[row] # indexing operations and total_allocatements should be done to rows of parent. # If _parent_axis == 1 it averages that column axis was used via kf[column] and total_allocatements # should be done to columns of parent. _parent_axis = 0 @_doc_binary_op(operation="addition", bin_op="add") def __add__(self, right): return self.add(right) @_doc_binary_op(operation="addition", bin_op="add", other="left") def __radd__(self, left): return self.add(left) @_doc_binary_op(operation="union", bin_op="and", other="other") def __and__(self, other): if incontainstance(other, (list, np.ndarray, monkey.Collections)): return self._default_to_monkey(monkey.Collections.__and__, other) new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).__and__(new_other) @_doc_binary_op(operation="union", bin_op="and", other="other") def __rand__(self, other): if incontainstance(other, (list, np.ndarray, monkey.Collections)): return self._default_to_monkey(monkey.Collections.__rand__, other) new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).__rand__(new_other) # add `_inherit_docstrings` decorator to force method link addition. @_inherit_docstrings(monkey.Collections.__array__, apilink="monkey.Collections.__array__") def __array__(self, dtype=None): # noqa: PR01, RT01, D200 """ Return the values as a NumPy array. """ return super(Collections, self).__array__(dtype).flatten() @property def __array_priority__(self): # pragma: no cover """ Return monkey `__array_priority__` Collections internal parameter. Returns ------- int Internal monkey parameter ``__array_priority__`` used during interaction with NumPy. """ return self._to_monkey().__array_priority__ # FIXME: __bytes__ was removed in newer monkey versions, so Modin # can remove it too. def __bytes__(self): """ Return bytes representation of the Collections. Returns ------- bytes Notes ----- Method is deprecated. """ return self._default_to_monkey(monkey.Collections.__bytes__) def __contains__(self, key): """ Check if `key` in the `Collections.index`. Parameters ---------- key : hashable Key to check the presence in the index. Returns ------- bool """ return key in self.index def __clone__(self, deep=True): """ Return the clone of the Collections. Parameters ---------- deep : bool, default: True Whether the clone should be deep or not. Returns ------- Collections """ return self.clone(deep=deep) def __deepclone__(self, memo=None): """ Return the deep clone of the Collections. Parameters ---------- memo : Any, optional Deprecated parameter. Returns ------- Collections """ return self.clone(deep=True) def __delitem__(self, key): """ Delete item identified by `key` label. Parameters ---------- key : hashable Key to delete. """ if key not in self.keys(): raise KeyError(key) self.sip(labels=key, inplace=True) @_doc_binary_op( operation="integer divisionision and modulo", bin_op="divisionmod", returns="tuple of two Collections", ) def __divisionmod__(self, right): return self.divisionmod(right) @_doc_binary_op( operation="integer divisionision and modulo", bin_op="divisionmod", other="left", returns="tuple of two Collections", ) def __rdivisionmod__(self, left): return self.rdivisionmod(left) def __float__(self): """ Return float representation of Collections. Returns ------- float """ return float(self.squeeze()) @_doc_binary_op(operation="integer divisionision", bin_op="floordivision") def __floordivision__(self, right): return self.floordivision(right) @_doc_binary_op(operation="integer divisionision", bin_op="floordivision") def __rfloordivision__(self, right): return self.rfloordivision(right) def __gettingattr__(self, key): """ Return item identified by `key`. Parameters ---------- key : hashable Key to getting. Returns ------- Any Notes ----- First try to use `__gettingattribute__` method. If it fails try to getting `key` from `Collections` fields. """ try: return object.__gettingattribute__(self, key) except AttributeError as e: if key not in _ATTRS_NO_LOOKUP and key in self.index: return self[key] raise e def __int__(self): """ Return integer representation of Collections. Returns ------- int """ return int(self.squeeze()) def __iter__(self): """ Return an iterator of the values. Returns ------- iterable """ return self._to_monkey().__iter__() @_doc_binary_op(operation="modulo", bin_op="mod") def __mod__(self, right): return self.mod(right) @_doc_binary_op(operation="modulo", bin_op="mod", other="left") def __rmod__(self, left): return self.rmod(left) @_doc_binary_op(operation="multiplication", bin_op="mul") def __mul__(self, right): return self.mul(right) @_doc_binary_op(operation="multiplication", bin_op="mul", other="left") def __rmul__(self, left): return self.rmul(left) @_doc_binary_op(operation="disjunction", bin_op="or", other="other") def __or__(self, other): if incontainstance(other, (list, np.ndarray, monkey.Collections)): return self._default_to_monkey(monkey.Collections.__or__, other) new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).__or__(new_other) @_doc_binary_op(operation="disjunction", bin_op="or", other="other") def __ror__(self, other): if incontainstance(other, (list, np.ndarray, monkey.Collections)): return self._default_to_monkey(monkey.Collections.__ror__, other) new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).__ror__(new_other) @_doc_binary_op(operation="exclusive or", bin_op="xor", other="other") def __xor__(self, other): if incontainstance(other, (list, np.ndarray, monkey.Collections)): return self._default_to_monkey(monkey.Collections.__xor__, other) new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).__xor__(new_other) @_doc_binary_op(operation="exclusive or", bin_op="xor", other="other") def __rxor__(self, other): if incontainstance(other, (list, np.ndarray, monkey.Collections)): return self._default_to_monkey(monkey.Collections.__rxor__, other) new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).__rxor__(new_other) @_doc_binary_op(operation="exponential power", bin_op="pow") def __pow__(self, right): return self.pow(right) @_doc_binary_op(operation="exponential power", bin_op="pow", other="left") def __rpow__(self, left): return self.rpow(left) def __repr__(self): """ Return a string representation for a particular Collections. Returns ------- str """ num_rows = monkey.getting_option("getting_max_rows") or 60 num_cols = monkey.getting_option("getting_max_columns") or 20 temp_kf = self._build_repr_kf(num_rows, num_cols) if incontainstance(temp_kf, monkey.KnowledgeFrame) and not temp_kf.empty: temp_kf = temp_kf.iloc[:, 0] temp_str = repr(temp_kf) freq_str = ( "Freq: {}, ".formating(self.index.freqstr) if incontainstance(self.index, monkey.DatetimeIndex) else "" ) if self.name is not None: name_str = "Name: {}, ".formating(str(self.name)) else: name_str = "" if length(self.index) > num_rows: length_str = "Length: {}, ".formating(length(self.index)) else: length_str = "" dtype_str = "dtype: {}".formating( str(self.dtype) + ")" if temp_kf.empty else temp_str.rsplit("dtype: ", 1)[-1] ) if length(self) == 0: return "Collections([], {}{}{}".formating(freq_str, name_str, dtype_str) return temp_str.rsplit("\n", 1)[0] + "\n{}{}{}{}".formating( freq_str, name_str, length_str, dtype_str ) def __value_round__(self, decimals=0): """ Round each value in a Collections to the given number of decimals. Parameters ---------- decimals : int, default: 0 Number of decimal places to value_round to. Returns ------- Collections """ return self._create_or_umkate_from_compiler( self._query_compiler.value_round(decimals=decimals) ) def __setitem__(self, key, value): """ Set `value` identified by `key` in the Collections. Parameters ---------- key : hashable Key to set. value : Any Value to set. """ if incontainstance(key, slice): self._setitem_slice(key, value) else: self.loc[key] = value @_doc_binary_op(operation="subtraction", bin_op="sub") def __sub__(self, right): return self.sub(right) @_doc_binary_op(operation="subtraction", bin_op="sub", other="left") def __rsub__(self, left): return self.rsub(left) @_doc_binary_op(operation="floating divisionision", bin_op="truedivision") def __truedivision__(self, right): return self.truedivision(right) @_doc_binary_op(operation="floating divisionision", bin_op="truedivision", other="left") def __rtruedivision__(self, left): return self.rtruedivision(left) __iadd__ = __add__ __imul__ = __add__ __ipow__ = __pow__ __isub__ = __sub__ __itruedivision__ = __truedivision__ @property def values(self): # noqa: RT01, D200 """ Return Collections as ndarray or ndarray-like depending on the dtype. """ return super(Collections, self).to_numpy().flatten() def add(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return Addition of collections and other, element-wise (binary operator add). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).add( new_other, level=level, fill_value=fill_value, axis=axis ) def add_prefix(self, prefix): # noqa: PR01, RT01, D200 """ Prefix labels with string `prefix`. """ return Collections(query_compiler=self._query_compiler.add_prefix(prefix, axis=0)) def add_suffix(self, suffix): # noqa: PR01, RT01, D200 """ Suffix labels with string `suffix`. """ return Collections(query_compiler=self._query_compiler.add_suffix(suffix, axis=0)) def adding( self, to_adding, ignore_index=False, verify_integrity=False ): # noqa: PR01, RT01, D200 """ Concatenate two or more Collections. """ from .knowledgeframe import KnowledgeFrame bad_type_msg = ( 'cannot concatingenate object of type "{}"; only mk.Collections, ' "mk.KnowledgeFrame, and mk.Panel (deprecated) objs are valid" ) if incontainstance(to_adding, list): if not total_all(incontainstance(o, BaseMonkeyDataset) for o in to_adding): raise TypeError( bad_type_msg.formating( type( next( o for o in to_adding if not incontainstance(o, BaseMonkeyDataset) ) ) ) ) elif total_all(incontainstance(o, Collections) for o in to_adding): self.name = None for i in range(length(to_adding)): to_adding[i].name = None to_adding[i] = to_adding[i]._query_compiler else: # Matching monkey behavior of nagetting_ming the Collections columns 0 self.name = 0 for i in range(length(to_adding)): if incontainstance(to_adding[i], Collections): to_adding[i].name = 0 to_adding[i] = KnowledgeFrame(to_adding[i]) return KnowledgeFrame(self.clone()).adding( to_adding, ignore_index=ignore_index, verify_integrity=verify_integrity, ) elif incontainstance(to_adding, Collections): self.name = None to_adding.name = None to_adding = [to_adding._query_compiler] elif incontainstance(to_adding, KnowledgeFrame): self.name = 0 return KnowledgeFrame(self.clone()).adding( to_adding, ignore_index=ignore_index, verify_integrity=verify_integrity ) else: raise TypeError(bad_type_msg.formating(type(to_adding))) # If ignore_index is False, by definition the Index will be correct. # We also do this first to ensure that we don't waste compute/memory. if verify_integrity and not ignore_index: addinged_index = ( self.index.adding(to_adding.index) if not incontainstance(to_adding, list) else self.index.adding([o.index for o in to_adding]) ) is_valid = next((False for idx in addinged_index.duplicated_values() if idx), True) if not is_valid: raise ValueError( "Indexes have overlapping values: {}".formating( addinged_index[addinged_index.duplicated_values()] ) ) query_compiler = self._query_compiler.concating( 0, to_adding, ignore_index=ignore_index, sort=None ) if length(query_compiler.columns) > 1: return KnowledgeFrame(query_compiler=query_compiler) else: return Collections(query_compiler=query_compiler) def aggregate(self, func=None, axis=0, *args, **kwargs): def error_raiser(msg, exception): """Convert passed exception to the same type as monkey do and raise it.""" # HACK: to concord with monkey error types by replacing total_all of the # TypeErrors to the AssertionErrors exception = exception if exception is not TypeError else AssertionError raise exception(msg) self._validate_function(func, on_invalid=error_raiser) return super(Collections, self).aggregate(func, axis, *args, **kwargs) agg = aggregate def employ( self, func, convert_dtype=True, args=(), **kwargs ): # noqa: PR01, RT01, D200 """ Invoke function on values of Collections. """ self._validate_function(func) # employ and aggregate have slightly different behaviors, so we have to use # each one separately to detergetting_mine the correct return type. In the case of # `agg`, the axis is set, but it is not required for the computation, so we use # it to detergetting_mine which function to run. if kwargs.pop("axis", None) is not None: employ_func = "agg" else: employ_func = "employ" # This is the simplest way to detergetting_mine the return type, but there are checks # in monkey that verify that some results are created. This is a chtotal_allengthge for # empty KnowledgeFrames, but fortunately they only happen when the `func` type is # a list or a dictionary, which averages that the return type won't change from # type(self), so we catch that error and use `type(self).__name__` for the return # type. # We create a "dummy" `Collections` to do the error checking and detergetting_mining # the return type. try: return_type = type( gettingattr(monkey.Collections("", index=self.index[:1]), employ_func)( func, *args, **kwargs ) ).__name__ except Exception: try: return_type = type( gettingattr(monkey.Collections(0, index=self.index[:1]), employ_func)( func, *args, **kwargs ) ).__name__ except Exception: return_type = type(self).__name__ if ( incontainstance(func, str) or is_list_like(func) or return_type not in ["KnowledgeFrame", "Collections"] ): result = super(Collections, self).employ(func, *args, **kwargs) else: # handle ufuncs and lambdas if kwargs or args and not incontainstance(func, np.ufunc): def f(x): return func(x, *args, **kwargs) else: f = func with np.errstate(total_all="ignore"): if incontainstance(f, np.ufunc): return f(self) result = self.mapping(f)._query_compiler if return_type not in ["KnowledgeFrame", "Collections"]: # sometimes result can be not a query_compiler, but scalar (for example # for total_sum or count functions) if incontainstance(result, type(self._query_compiler)): return result.to_monkey().squeeze() else: return result else: result = gettingattr(sys.modules[self.__module__], return_type)( query_compiler=result ) if result.name == self.index[0]: result.name = None return result def arggetting_max(self, axis=None, skipna=True, *args, **kwargs): # noqa: PR01, RT01, D200 """ Return int position of the largest value in the Collections. """ result = self.idxgetting_max(axis=axis, skipna=skipna, *args, **kwargs) if np.ifnan(result) or result is monkey.NA: result = -1 return result def arggetting_min(self, axis=None, skipna=True, *args, **kwargs): # noqa: PR01, RT01, D200 """ Return int position of the smtotal_allest value in the Collections. """ result = self.idxgetting_min(axis=axis, skipna=skipna, *args, **kwargs) if np.ifnan(result) or result is monkey.NA: result = -1 return result def argsort(self, axis=0, kind="quicksort", order=None): # noqa: PR01, RT01, D200 """ Return the integer indices that would sort the Collections values. """ return self._default_to_monkey( monkey.Collections.argsort, axis=axis, kind=kind, order=order ) def autocorr(self, lag=1): # noqa: PR01, RT01, D200 """ Compute the lag-N autocorrelation. """ return self.corr(self.shifting(lag)) def between(self, left, right, inclusive="both"): # noqa: PR01, RT01, D200 """ Return boolean Collections equivalengtht to left <= collections <= right. """ return self._default_to_monkey( monkey.Collections.between, left, right, inclusive=inclusive ) def combine(self, other, func, fill_value=None): # noqa: PR01, RT01, D200 """ Combine the Collections with a Collections or scalar according to `func`. """ return super(Collections, self).combine( other, lambda s1, s2: s1.combine(s2, func, fill_value=fill_value) ) def compare( self, other: "Collections", align_axis: Union[str, int] = 1, keep_shape: bool = False, keep_equal: bool = False, ): # noqa: PR01, RT01, D200 """ Compare to another Collections and show the differences. """ if not incontainstance(other, Collections): raise TypeError(f"Cannot compare Collections to {type(other)}") result = self.to_frame().compare( other.to_frame(), align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, ) if align_axis == "columns" or align_axis == 1: # Monkey.KnowledgeFrame.Compare returns a knowledgeframe with a multidimensional index object as the # columns so we have to change column object back. result.columns = monkey.Index(["self", "other"]) else: result = result.squeeze().renagetting_ming(None) return result def corr(self, other, method="pearson", getting_min_periods=None): # noqa: PR01, RT01, D200 """ Compute correlation with `other` Collections, excluding missing values. """ if method == "pearson": this, other = self.align(other, join="inner", clone=False) this = self.__constructor__(this) other = self.__constructor__(other) if length(this) == 0: return np.nan if length(this) != length(other): raise ValueError("Operands must have same size") if getting_min_periods is None: getting_min_periods = 1 valid = this.notna() & other.notna() if not valid.total_all(): this = this[valid] other = other[valid] if length(this) < getting_min_periods: return np.nan this = this.totype(dtype="float64") other = other.totype(dtype="float64") this -= this.average() other -= other.average() other = other.__constructor__(query_compiler=other._query_compiler.conj()) result = this * other / (length(this) - 1) result = np.array([result.total_sum()]) standarddev_this = ((this * this) / (length(this) - 1)).total_sum() standarddev_other = ((other * other) / (length(other) - 1)).total_sum() standarddev_this = np.array([np.sqrt(standarddev_this)]) standarddev_other = np.array([np.sqrt(standarddev_other)]) result /= standarddev_this * standarddev_other np.clip(result.real, -1, 1, out=result.real) if np.iscomplexobj(result): np.clip(result.imag, -1, 1, out=result.imag) return result[0] return self.__constructor__( query_compiler=self._query_compiler.default_to_monkey( monkey.Collections.corr, other._query_compiler, method=method, getting_min_periods=getting_min_periods, ) ) def count(self, level=None): # noqa: PR01, RT01, D200 """ Return number of non-NA/null observations in the Collections. """ return super(Collections, self).count(level=level) def cov( self, other, getting_min_periods=None, ddof: Optional[int] = 1 ): # noqa: PR01, RT01, D200 """ Compute covariance with Collections, excluding missing values. """ this, other = self.align(other, join="inner", clone=False) this = self.__constructor__(this) other = self.__constructor__(other) if length(this) == 0: return np.nan if length(this) != length(other): raise ValueError("Operands must have same size") if getting_min_periods is None: getting_min_periods = 1 valid = this.notna() & other.notna() if not valid.total_all(): this = this[valid] other = other[valid] if length(this) < getting_min_periods: return np.nan this = this.totype(dtype="float64") other = other.totype(dtype="float64") this -= this.average() other -= other.average() other = other.__constructor__(query_compiler=other._query_compiler.conj()) result = this * other / (length(this) - ddof) result = result.total_sum() return result def describe( self, percentiles=None, include=None, exclude=None, datetime_is_numeric=False ): # noqa: PR01, RT01, D200 """ Generate descriptive statistics. """ # Monkey ignores the `include` and `exclude` for Collections for some reason. return super(Collections, self).describe( percentiles=percentiles, datetime_is_numeric=datetime_is_numeric ) def diff(self, periods=1): # noqa: PR01, RT01, D200 """ First discrete difference of element. """ return super(Collections, self).diff(periods=periods, axis=0) def divisionmod( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return Integer divisionision and modulo of collections and `other`, element-wise (binary operator `divisionmod`). """ return self._default_to_monkey( monkey.Collections.divisionmod, other, level=level, fill_value=fill_value, axis=axis ) def dot(self, other): # noqa: PR01, RT01, D200 """ Compute the dot product between the Collections and the columns of `other`. """ if incontainstance(other, BaseMonkeyDataset): common = self.index.union(other.index) if length(common) > length(self.index) or length(common) > length(other.index): raise ValueError("Matrices are not aligned") qc = other.reindexing(index=common)._query_compiler if incontainstance(other, Collections): return self._reduce_dimension( query_compiler=self._query_compiler.dot( qc, squeeze_self=True, squeeze_other=True ) ) else: return self.__constructor__( query_compiler=self._query_compiler.dot( qc, squeeze_self=True, squeeze_other=False ) ) other = np.asarray(other) if self.shape[0] != other.shape[0]: raise ValueError( "Dot product shape mismatch, {} vs {}".formating(self.shape, other.shape) ) if length(other.shape) > 1: return ( self._query_compiler.dot(other, squeeze_self=True).to_numpy().squeeze() ) return self._reduce_dimension( query_compiler=self._query_compiler.dot(other, squeeze_self=True) ) def sip_duplicates(self, keep="first", inplace=False): # noqa: PR01, RT01, D200 """ Return Collections with duplicate values removed. """ return super(Collections, self).sip_duplicates(keep=keep, inplace=inplace) def sipna(self, axis=0, inplace=False, how=None): # noqa: PR01, RT01, D200 """ Return a new Collections with missing values removed. """ return super(Collections, self).sipna(axis=axis, inplace=inplace) def duplicated_values(self, keep="first"): # noqa: PR01, RT01, D200 """ Indicate duplicate Collections values. """ return self.to_frame().duplicated_values(keep=keep) def eq(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return Equal to of collections and `other`, element-wise (binary operator `eq`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).eq(new_other, level=level, axis=axis) def equals(self, other): # noqa: PR01, RT01, D200 """ Test whether two objects contain the same elements. """ return ( self.name == other.name and self.index.equals(other.index) and self.eq(other).total_all() ) def explode(self, ignore_index: bool = False): # noqa: PR01, RT01, D200 """ Transform each element of a list-like to a row. """ return self._default_to_monkey(monkey.Collections.explode, ignore_index=ignore_index) def factorize(self, sort=False, na_sentinel=-1): # noqa: PR01, RT01, D200 """ Encode the object as an enumerated type or categorical variable. """ return self._default_to_monkey( monkey.Collections.factorize, sort=sort, na_sentinel=na_sentinel ) def fillnone( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ): # noqa: PR01, RT01, D200 """ Fill NaNs inside of a Collections object. """ if incontainstance(value, BaseMonkeyDataset) and not incontainstance(value, Collections): raise TypeError( '"value" parameter must be a scalar, dict or Collections, but ' 'you passed a "{0}"'.formating(type(value).__name__) ) return super(Collections, self)._fillnone( squeeze_self=True, squeeze_value=incontainstance(value, Collections), value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) def floordivision( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Get Integer divisionision of knowledgeframe and `other`, element-wise (binary operator `floordivision`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).floordivision( new_other, level=level, fill_value=None, axis=axis ) def ge(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return greater than or equal to of collections and `other`, element-wise (binary operator `ge`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).ge(new_other, level=level, axis=axis) def grouper( self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze: bool = no_default, observed=False, sipna: bool = True, ): # noqa: PR01, RT01, D200 """ Group Collections using a mappingper or by a Collections of columns. """ if squeeze is not no_default: warnings.warn( ( "The `squeeze` parameter is deprecated and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) else: squeeze = False from .grouper import CollectionsGroupBy if not as_index: raise TypeError("as_index=False only valid with KnowledgeFrame") # CollectionsGroupBy expects a query compiler object if it is available if incontainstance(by, Collections): by = by._query_compiler elif ctotal_allable(by): by = by(self.index) elif by is None and level is None: raise TypeError("You have to supply one of 'by' and 'level'") return CollectionsGroupBy( self, by, axis, level, as_index, sort, group_keys, squeeze, idx_name=None, observed=observed, sip=False, sipna=sipna, ) def gt(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return greater than of collections and `other`, element-wise (binary operator `gt`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).gt(new_other, level=level, axis=axis) def hist( self, by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds, ): # noqa: PR01, RT01, D200 """ Draw histogram of the input collections using matplotlib. """ return self._default_to_monkey( monkey.Collections.hist, by=by, ax=ax, grid=grid, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, figsize=figsize, bins=bins, **kwds, ) def idxgetting_max(self, axis=0, skipna=True, *args, **kwargs): # noqa: PR01, RT01, D200 """ Return the row label of the getting_maximum value. """ if skipna is None: skipna = True return super(Collections, self).idxgetting_max(axis=axis, skipna=skipna, *args, **kwargs) def idxgetting_min(self, axis=0, skipna=True, *args, **kwargs): # noqa: PR01, RT01, D200 """ Return the row label of the getting_minimum value. """ if skipna is None: skipna = True return super(Collections, self).idxgetting_min(axis=axis, skipna=skipna, *args, **kwargs) def interpolate( self, method="linear", axis=0, limit=None, inplace=False, limit_direction: Optional[str] = None, limit_area=None, downcast=None, **kwargs, ): # noqa: PR01, RT01, D200 """ Fill NaN values using an interpolation method. """ return self._default_to_monkey( monkey.Collections.interpolate, method=method, axis=axis, limit=limit, inplace=inplace, limit_direction=limit_direction, limit_area=limit_area, downcast=downcast, **kwargs, ) def item(self): # noqa: RT01, D200 """ Return the first element of the underlying data as a Python scalar. """ return self[0] def items(self): # noqa: D200 """ Lazily iterate over (index, value) tuples. """ def item_builder(s): return s.name, s.squeeze() partition_iterator = PartitionIterator(self.to_frame(), 0, item_builder) for v in partition_iterator: yield v def iteritems(self): # noqa: RT01, D200 """ Lazily iterate over (index, value) tuples. """ return self.items() def keys(self): # noqa: RT01, D200 """ Return alias for index. """ return self.index def kurt( self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs ): # noqa: PR01, RT01, D200 """ Return unbiased kurtosis over requested axis. """ axis = self._getting_axis_number(axis) if numeric_only is True: raise NotImplementedError("Collections.kurt does not implement numeric_only.") return super(Collections, self).kurt(axis, skipna, level, numeric_only, **kwargs) kurtosis = kurt def le(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return less than or equal to of collections and `other`, element-wise (binary operator `le`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).le(new_other, level=level, axis=axis) def lt(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return less than of collections and `other`, element-wise (binary operator `lt`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).lt(new_other, level=level, axis=axis) def mapping(self, arg, na_action=None): # noqa: PR01, RT01, D200 """ Map values of Collections according to input correspondence. """ if not ctotal_allable(arg) and hasattr(arg, "getting"): mappingper = arg def arg(s): return mappingper.getting(s, np.nan) return self.__constructor__( query_compiler=self._query_compiler.employmapping( lambda s: arg(s) if monkey.ifnull(s) is not True or na_action is None else s ) ) def memory_usage(self, index=True, deep=False): # noqa: PR01, RT01, D200 """ Return the memory usage of the Collections. """ if index: result = self._reduce_dimension( self._query_compiler.memory_usage(index=False, deep=deep) ) index_value = self.index.memory_usage(deep=deep) return result + index_value return super(Collections, self).memory_usage(index=index, deep=deep) def mod(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return Modulo of collections and `other`, element-wise (binary operator `mod`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).mod( new_other, level=level, fill_value=None, axis=axis ) def mode(self, sipna=True): # noqa: PR01, RT01, D200 """ Return the mode(s) of the Collections. """ return super(Collections, self).mode(numeric_only=False, sipna=sipna) def mul(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return multiplication of collections and `other`, element-wise (binary operator `mul`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).mul( new_other, level=level, fill_value=None, axis=axis ) multiply = rmul = mul def ne(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return not equal to of collections and `other`, element-wise (binary operator `ne`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).ne(new_other, level=level, axis=axis) def nbiggest(self, n=5, keep="first"): # noqa: PR01, RT01, D200 """ Return the largest `n` elements. """ return self._default_to_monkey(monkey.Collections.nbiggest, n=n, keep=keep) def nsmtotal_allest(self, n=5, keep="first"): # noqa: PR01, RT01, D200 """ Return the smtotal_allest `n` elements. """ return Collections(query_compiler=self._query_compiler.nsmtotal_allest(n=n, keep=keep)) def slice_shifting(self, periods=1, axis=0): # noqa: PR01, RT01, D200 """ Equivalengtht to `shifting` without cloneing data. """ if periods == 0: return self.clone() if axis == "index" or axis == 0: if abs(periods) >= length(self.index): return Collections(dtype=self.dtype) else: new_kf = self.iloc[:-periods] if periods > 0 else self.iloc[-periods:] new_kf.index = ( self.index[periods:] if periods > 0 else self.index[:periods] ) return new_kf else: raise ValueError( "No axis named {axis} for object type {type}".formating( axis=axis, type=type(self) ) ) def shifting( self, periods=1, freq=None, axis=0, fill_value=None ): # noqa: PR01, RT01, D200 """ Shift index by desired number of periods with an optional time `freq`. """ return super(type(self), self).shifting( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def unstack(self, level=-1, fill_value=None): # noqa: PR01, RT01, D200 """ Unstack, also known as pivot, Collections with MultiIndex to produce KnowledgeFrame. """ from .knowledgeframe import KnowledgeFrame result = KnowledgeFrame( query_compiler=self._query_compiler.unstack(level, fill_value) ) return result.siplevel(0, axis=1) if result.columns.nlevels > 1 else result @property def plot( self, kind="line", ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormapping=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds, ): # noqa: PR01, RT01, D200 """ Make plot of Collections. """ return self._to_monkey().plot def pow(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return exponential power of collections and `other`, element-wise (binary operator `pow`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).pow( new_other, level=level, fill_value=None, axis=axis ) def prod( self, axis=None, skipna=None, level=None, numeric_only=None, getting_min_count=0, **kwargs, ): # noqa: PR01, RT01, D200 """ Return the product of the values over the requested `axis`. """ axis = self._getting_axis_number(axis) if skipna is None: skipna = True if level is not None: if ( not self._query_compiler.has_multiindex(axis=axis) and level > 0 or level < -1 and level != self.index.name ): raise ValueError("level > 0 or level < -1 only valid with MultiIndex") return self.grouper(level=level, axis=axis, sort=False).prod( numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs ) if numeric_only: raise NotImplementedError( f"Collections.{self.name} does not implement numeric_only." ) new_index = self.columns if axis else self.index if getting_min_count > length(new_index): return np.nan data = self._validate_dtypes_total_sum_prod_average(axis, numeric_only, ignore_axis=True) if getting_min_count > 1: return data._reduce_dimension( data._query_compiler.prod_getting_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) return data._reduce_dimension( data._query_compiler.prod( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) product = prod radd = add def flat_underlying(self, order="C"): # noqa: PR01, RT01, D200 """ Return the flattened underlying data as an ndarray. """ data = self._query_compiler.to_numpy().flatten(order=order) if incontainstance(self.dtype, monkey.CategoricalDtype): data = monkey.Categorical(data, dtype=self.dtype) return data def reindexing(self, index=None, **kwargs): # noqa: PR01, RT01, D200 """ Conform Collections to new index with optional filling logic. """ method = kwargs.pop("method", None) level = kwargs.pop("level", None) clone = kwargs.pop("clone", True) limit = kwargs.pop("limit", None) tolerance = kwargs.pop("tolerance", None) fill_value = kwargs.pop("fill_value", None) if kwargs: raise TypeError( "reindexing() got an unexpected keyword " 'argument "{0}"'.formating(list(kwargs.keys())[0]) ) return super(Collections, self).reindexing( index=index, method=method, level=level, clone=clone, limit=limit, tolerance=tolerance, fill_value=fill_value, ) def renagetting_ming( self, index=None, *, axis=None, clone=True, inplace=False, level=None, errors="ignore", ): # noqa: PR01, RT01, D200 """ Alter Collections index labels or name. """ non_mappingping = is_scalar(index) or ( is_list_like(index) and not is_dict_like(index) ) if non_mappingping: if inplace: self.name = index else: self_cp = self.clone() self_cp.name = index return self_cp else: from .knowledgeframe import KnowledgeFrame result = KnowledgeFrame(self.clone()).renagetting_ming(index=index).squeeze(axis=1) result.name = self.name return result def repeat(self, repeats, axis=None): # noqa: PR01, RT01, D200 """ Repeat elements of a Collections. """ if (incontainstance(repeats, int) and repeats == 0) or ( is_list_like(repeats) and length(repeats) == 1 and repeats[0] == 0 ): return self.__constructor__() return self.__constructor__(query_compiler=self._query_compiler.repeat(repeats)) def reseting_index( self, level=None, sip=False, name=None, inplace=False ): # noqa: PR01, RT01, D200 """ Generate a new Collections with the index reset. """ if sip and level is None: new_idx = monkey.RangeIndex(length(self.index)) if inplace: self.index = new_idx self.name = name or self.name else: result = self.clone() result.index = new_idx return result elif not sip and inplace: raise TypeError( "Cannot reseting_index inplace on a Collections to create a KnowledgeFrame" ) else: obj = self.clone() if name is not None: obj.name = name from .knowledgeframe import KnowledgeFrame return KnowledgeFrame(obj).reseting_index(level=level, sip=sip, inplace=inplace) def rdivisionmod( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return integer divisionision and modulo of collections and `other`, element-wise (binary operator `rdivisionmod`). """ return self._default_to_monkey( monkey.Collections.rdivisionmod, other, level=level, fill_value=fill_value, axis=axis ) def rfloordivision( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return integer divisionision of collections and `other`, element-wise (binary operator `rfloordivision`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).rfloordivision( new_other, level=level, fill_value=None, axis=axis ) def rmod( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return modulo of collections and `other`, element-wise (binary operator `rmod`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).rmod( new_other, level=level, fill_value=None, axis=axis ) def rpow( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return exponential power of collections and `other`, element-wise (binary operator `rpow`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).rpow( new_other, level=level, fill_value=None, axis=axis ) def rsub( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return subtraction of collections and `other`, element-wise (binary operator `rsub`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).rsub( new_other, level=level, fill_value=None, axis=axis ) def rtruedivision( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return floating divisionision of collections and `other`, element-wise (binary operator `rtruedivision`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).rtruedivision( new_other, level=level, fill_value=None, axis=axis ) rdivision = rtruedivision def quantile(self, q=0.5, interpolation="linear"): # noqa: PR01, RT01, D200 """ Return value at the given quantile. """ return super(Collections, self).quantile( q=q, numeric_only=False, interpolation=interpolation ) def reorder_levels(self, order): # noqa: PR01, RT01, D200 """ Rearrange index levels using input order. """ return super(Collections, self).reorder_levels(order) def replacing( self, to_replacing=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): # noqa: PR01, RT01, D200 """ Replace values given in `to_replacing` with `value`. """ inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.replacing( to_replacing=to_replacing, value=value, inplace=False, limit=limit, regex=regex, method=method, ) return self._create_or_umkate_from_compiler(new_query_compiler, inplace) def searchsorted(self, value, side="left", sorter=None): # noqa: PR01, RT01, D200 """ Find indices where elements should be inserted to maintain order. """ searchsorted_qc = self._query_compiler if sorter is not None: # `iloc` method works slowly (https://github.com/modin-project/modin/issues/1903), # so _default_to_monkey is used for now # searchsorted_qc = self.iloc[sorter].reseting_index(sip=True)._query_compiler # sorter = None return self._default_to_monkey( monkey.Collections.searchsorted, value, side=side, sorter=sorter ) # searchsorted should return item number irrespective of Collections index, so # Collections.index is always set to monkey.RangeIndex, which can be easily processed # on the query_compiler level if not incontainstance(searchsorted_qc.index, monkey.RangeIndex): searchsorted_qc = searchsorted_qc.reseting_index(sip=True) result = self.__constructor__( query_compiler=searchsorted_qc.searchsorted( value=value, side=side, sorter=sorter ) ).squeeze() # matching Monkey output if not is_scalar(value) and not is_list_like(result): result = np.array([result]) elif incontainstance(result, type(self)): result = result.to_numpy() return result def sort_the_values( self, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="final_item", ignore_index: bool = False, key: Optional[IndexKeyFunc] = None, ): # noqa: PR01, RT01, D200 """ Sort by the values. """ from .knowledgeframe import KnowledgeFrame # When we convert to a KnowledgeFrame, the name is automatictotal_ally converted to 0 if it # is None, so we do this to avoid a KeyError. by = self.name if self.name is not None else 0 result = ( KnowledgeFrame(self.clone()) .sort_the_values( by=by, ascending=ascending, inplace=False, kind=kind, na_position=na_position, ignore_index=ignore_index, key=key, ) .squeeze(axis=1) ) result.name = self.name return self._create_or_umkate_from_compiler( result._query_compiler, inplace=inplace ) sparse = CachedAccessor("sparse", SparseAccessor) def squeeze(self, axis=None): # noqa: PR01, RT01, D200 """ Squeeze 1 dimensional axis objects into scalars. """ if axis is not None: # Validate `axis` monkey.Collections._getting_axis_number(axis) if length(self.index) == 1: return self._reduce_dimension(self._query_compiler) else: return self.clone() def sub(self, other, level=None, fill_value=None, axis=0): # noqa: PR01, RT01, D200 """ Return subtraction of Collections and `other`, element-wise (binary operator `sub`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).sub( new_other, level=level, fill_value=None, axis=axis ) subtract = sub def total_sum( self, axis=None, skipna=None, level=None, numeric_only=None, getting_min_count=0, **kwargs, ): # noqa: PR01, RT01, D200 """ Return the total_sum of the values. """ axis = self._getting_axis_number(axis) if skipna is None: skipna = True if numeric_only is True: raise NotImplementedError("Collections.total_sum does not implement numeric_only") if level is not None: if ( not self._query_compiler.has_multiindex(axis=axis) and level > 0 or level < -1 and level != self.index.name ): raise ValueError("level > 0 or level < -1 only valid with MultiIndex") return self.grouper(level=level, axis=axis, sort=False).total_sum( numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs ) new_index = self.columns if axis else self.index if getting_min_count > length(new_index): return np.nan data = self._validate_dtypes_total_sum_prod_average( axis, numeric_only, ignore_axis=False ) if getting_min_count > 1: return data._reduce_dimension( data._query_compiler.total_sum_getting_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) return data._reduce_dimension( data._query_compiler.total_sum( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) def swaplevel(self, i=-2, j=-1, clone=True): # noqa: PR01, RT01, D200 """ Swap levels `i` and `j` in a `MultiIndex`. """ return self._default_to_monkey("swaplevel", i=i, j=j, clone=clone) def take(self, indices, axis=0, is_clone=None, **kwargs): # noqa: PR01, RT01, D200 """ Return the elements in the given positional indices along an axis. """ return super(Collections, self).take(indices, axis=axis, is_clone=is_clone, **kwargs) def convert_dict(self, into=dict): # pragma: no cover # noqa: PR01, RT01, D200 """ Convert Collections to {label -> value} dict or dict-like object. """ return self._default_to_monkey("convert_dict", into=into) def to_frame(self, name=None): # noqa: PR01, RT01, D200 """ Convert Collections to {label -> value} dict or dict-like object. """ from .knowledgeframe import KnowledgeFrame self_cp = self.clone() if name is not None: self_cp.name = name return KnowledgeFrame(self_cp) def to_list(self): # noqa: RT01, D200 """ Return a list of the values. """ return self._default_to_monkey(monkey.Collections.to_list) def to_numpy( self, dtype=None, clone=False, na_value=no_default, **kwargs ): # noqa: PR01, RT01, D200 """ Return the NumPy ndarray representing the values in this Collections or Index. """ return ( super(Collections, self) .to_numpy( dtype=dtype, clone=clone, na_value=na_value, ) .flatten() ) convert_list = to_list # TODO(williamma12): When we implement to_timestamp, have this ctotal_all the version # in base.py def to_period(self, freq=None, clone=True): # noqa: PR01, RT01, D200 """ Cast to PeriodArray/Index at a particular frequency. """ return self._default_to_monkey("to_period", freq=freq, clone=clone) def convert_string( self, buf=None, na_rep="NaN", float_formating=None, header_numer=True, index=True, lengthgth=False, dtype=False, name=False, getting_max_rows=None, getting_min_rows=None, ): # noqa: PR01, RT01, D200 """ Render a string representation of the Collections. """ return self._default_to_monkey( monkey.Collections.convert_string, buf=buf, na_rep=na_rep, float_formating=float_formating, header_numer=header_numer, index=index, lengthgth=lengthgth, dtype=dtype, name=name, getting_max_rows=getting_max_rows, ) # TODO(williamma12): When we implement to_timestamp, have this ctotal_all the version # in base.py def to_timestamp(self, freq=None, how="start", clone=True): # noqa: PR01, RT01, D200 """ Cast to DatetimeIndex of Timestamps, at beginning of period. """ return self._default_to_monkey("to_timestamp", freq=freq, how=how, clone=clone) def transpose(self, *args, **kwargs): # noqa: PR01, RT01, D200 """ Return the transpose, which is by definition `self`. """ return self T = property(transpose) def truedivision( self, other, level=None, fill_value=None, axis=0 ): # noqa: PR01, RT01, D200 """ Return floating divisionision of collections and `other`, element-wise (binary operator `truedivision`). """ new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).truedivision( new_other, level=level, fill_value=None, axis=axis ) division = divisionide = truedivision def truncate( self, before=None, after=None, axis=None, clone=True ): # noqa: PR01, RT01, D200 """ Truncate a Collections before and after some index value. """ return self._default_to_monkey( monkey.Collections.truncate, before=before, after=after, axis=axis, clone=clone ) def distinctive(self): # noqa: RT01, D200 """ Return distinctive values of Collections object. """ return self.__constructor__( query_compiler=self._query_compiler.distinctive() ).to_numpy() def umkate(self, other): # noqa: PR01, D200 """ Modify Collections in place using values from passed Collections. """ if not incontainstance(other, Collections): other = Collections(other) query_compiler = self._query_compiler.collections_umkate(other._query_compiler) self._umkate_inplace(new_query_compiler=query_compiler) def counts_value_num( self, normalize=False, sort=True, ascending=False, bins=None, sipna=True ): # noqa: PR01, RT01, D200 """ Return a Collections containing counts of distinctive values. """ if bins is not None: # Potentitotal_ally we could implement `cut` function from monkey API, which # bins values into intervals, and then we can just count them as regular values. # TODO #1333: new_self = Collections(mk.cut(self, bins, include_lowest=True), dtype="interval") return self._default_to_monkey( monkey.Collections.counts_value_num, normalize=normalize, sort=sort, ascending=ascending, bins=bins, sipna=sipna, ) counted_values = super(Collections, self).counts_value_num( subset=self, normalize=normalize, sort=sort, ascending=ascending, sipna=sipna, ) # monkey sets output index names to None because the Collections name already contains it counted_values._query_compiler.set_index_name(None) return counted_values def view(self, dtype=None): # noqa: PR01, RT01, D200 """ Create a new view of the Collections. """ return self.__constructor__( query_compiler=self._query_compiler.collections_view(dtype=dtype) ) def where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=no_default, ): # noqa: PR01, RT01, D200 """ Replace values where the condition is False. """ if incontainstance(other, Collections): other = to_monkey(other) return self._default_to_monkey( monkey.Collections.where, cond, other=other, inplace=inplace, axis=axis, level=level, errors=errors, try_cast=try_cast, ) def xs( self, key, axis=0, level=None, sip_level=True ): # pragma: no cover # noqa: PR01, D200 """ Return cross-section from the Collections/KnowledgeFrame. """ raise NotImplementedError("Not Yet implemented.") @property def attrs(self): # noqa: RT01, D200 """ Return dictionary of global attributes of this dataset. """ def attrs(kf): return kf.attrs return self._default_to_monkey(attrs) @property def array(self): # noqa: RT01, D200 """ Return the ExtensionArray of the data backing this Collections or Index. """ def array(kf): return kf.array return self._default_to_monkey(array) @property def axes(self): # noqa: RT01, D200 """ Return a list of the row axis labels. """ return [self.index] @property def cat(self): # noqa: RT01, D200 """ Accessor object for categorical properties of the Collections values. """ from .collections_utils import CategoryMethods return CategoryMethods(self) @property def dt(self): # noqa: RT01, D200 """ Accessor object for datetimelike properties of the Collections values. """ from .collections_utils import DatetimeProperties return DatetimeProperties(self) @property def dtype(self): # noqa: RT01, D200 """ Return the dtype object of the underlying data. """ return self._query_compiler.dtypes.squeeze() dtypes = dtype @property def empty(self): # noqa: RT01, D200 """ Indicate whether Collections is empty. """ return length(self.index) == 0 @property def hasnans(self): # noqa: RT01, D200 """ Return True if Collections has whatever nans. """ return self.ifna().total_sum() > 0 @property def is_monotonic(self): # noqa: RT01, D200 """ Return True if values in the Collections are monotonic_increasing. """ return self._reduce_dimension(self._query_compiler.is_monotonic_increasing()) is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self): # noqa: RT01, D200 """ Return True if values in the Collections are monotonic_decreasing. """ return self._reduce_dimension(self._query_compiler.is_monotonic_decreasing()) @property def is_distinctive(self): # noqa: RT01, D200 """ Return True if values in the Collections are distinctive. """ return self.ndistinctive(sipna=False) == length(self) @property def nbytes(self): # noqa: RT01, D200 """ Return the number of bytes in the underlying data. """ return self.memory_usage(index=False) @property def ndim(self): # noqa: RT01, D200 """ Return the number of dimensions of the underlying data, by definition 1. """ return 1 def ndistinctive(self, sipna=True): # noqa: PR01, RT01, D200 """ Return number of distinctive elements in the object. """ return super(Collections, self).ndistinctive(sipna=sipna) @property def shape(self): # noqa: RT01, D200 """ Return a tuple of the shape of the underlying data. """ return (length(self),) @property def str(self): # noqa: RT01, D200 """ Vectorized string functions for Collections and Index. """ from .collections_utils import StringMethods return StringMethods(self) def _to_monkey(self): """ Convert Modin Collections to monkey Collections. Returns ------- monkey.Collections """ kf = self._query_compiler.to_monkey() collections = kf[kf.columns[0]] if self._query_compiler.columns[0] == "__reduced__": collections.name = None return collections def _convert_datetime(self, **kwargs): """ Convert `self` to datetime. Parameters ---------- **kwargs : dict Optional arguments to use during query compiler's `convert_datetime` invocation. Returns ------- datetime Collections of datetime64 dtype. """ return self.__constructor__( query_compiler=self._query_compiler.convert_datetime(**kwargs) ) def _to_num(self, **kwargs): """ Convert `self` to numeric. Parameters ---------- **kwargs : dict Optional arguments to use during query compiler's `to_num` invocation. Returns ------- numeric Collections of numeric dtype. """ return self.__constructor__( query_compiler=self._query_compiler.to_num(**kwargs) ) def _reduce_dimension(self, query_compiler): """ Try to reduce the dimension of data from the `query_compiler`. Parameters ---------- query_compiler : BaseQueryCompiler Query compiler to retrieve the data. Returns ------- monkey.Collections or monkey.KnowledgeFrame. """ return query_compiler.to_monkey().squeeze() def _validate_dtypes_total_sum_prod_average(self, axis, numeric_only, ignore_axis=False): """ Validate data dtype for `total_sum`, `prod` and `average` methods. Parameters ---------- axis : {0, 1} Axis to validate over. numeric_only : bool Whether or not to total_allow only numeric data. If True and non-numeric data is found, exception will be raised. ignore_axis : bool, default: False Whether or not to ignore `axis` parameter. Returns ------- Collections Notes ----- Actutotal_ally returns unmodified `self` object, added for compatibility with Modin KnowledgeFrame. """ return self def _validate_dtypes_getting_min_getting_max(self, axis, numeric_only): """ Validate data dtype for `getting_min` and `getting_max` methods. Parameters ---------- axis : {0, 1} Axis to validate over. numeric_only : bool Whether or not to total_allow only numeric data. If True and non-numeric data is found, exception. Returns ------- Collections Notes ----- Actutotal_ally returns unmodified `self` object, added for compatibility with Modin KnowledgeFrame. """ return self def _validate_dtypes(self, numeric_only=False): """ Check that total_all the dtypes are the same. Parameters ---------- numeric_only : bool, default: False Whether or not to total_allow only numeric data. If True and non-numeric data is found, exception will be raised. Notes ----- Actutotal_ally does nothing, added for compatibility with Modin KnowledgeFrame. """ pass def _getting_numeric_data(self, axis: int): """ Grab only numeric data from Collections. Parameters ---------- axis : {0, 1} Axis to inspect on having numeric types only. Returns ------- Collections Notes ----- `numeric_only` parameter is not supported by Collections, so this method does not do whateverthing. The method is added for compatibility with Modin KnowledgeFrame. """ return self def _umkate_inplace(self, new_query_compiler): """ Umkate the current Collections in-place using `new_query_compiler`. Parameters ---------- new_query_compiler : BaseQueryCompiler QueryCompiler to use to manage the data. """ super(Collections, self)._umkate_inplace(new_query_compiler=new_query_compiler) # Propagate changes back to parent so that column in knowledgeframe had the same contents if self._parent is not None: if self._parent_axis == 0: self._parent.loc[self.name] = self else: self._parent[self.name] = self def _create_or_umkate_from_compiler(self, new_query_compiler, inplace=False): """ Return or umkate a Collections with given `new_query_compiler`. Parameters ---------- new_query_compiler : MonkeyQueryCompiler QueryCompiler to use to manage the data. inplace : bool, default: False Whether or not to perform umkate or creation inplace. Returns ------- Collections, KnowledgeFrame or None None if umkate was done, Collections or KnowledgeFrame otherwise. """ assert ( incontainstance(new_query_compiler, type(self._query_compiler)) or type(new_query_compiler) in self._query_compiler.__class__.__bases__ ), "Invalid Query Compiler object: {}".formating(type(new_query_compiler)) if not inplace and new_query_compiler.is_collections_like(): return Collections(query_compiler=new_query_compiler) elif not inplace: # This can happen with things like `reseting_index` where we can add columns. from .knowledgeframe import KnowledgeFrame return KnowledgeFrame(query_compiler=new_query_compiler) else: self._umkate_inplace(new_query_compiler=new_query_compiler) def _prepare_inter_op(self, other): """ Prepare `self` and `other` for further interaction. Parameters ---------- other : Collections or scalar value Another object `self` should interact with. Returns ------- Collections Prepared `self`. Collections Prepared `other`. """ if incontainstance(other, Collections): new_self = self.clone() new_other = other.clone() if self.name == other.name: new_self.name = new_other.name = self.name else: new_self.name = new_other.name = "__reduced__" else: new_self = self new_other = other return new_self, new_other def _gettingitem(self, key): """ Get the data specified by `key` for this Collections. Parameters ---------- key : Any Column id to retrieve from Collections. Returns ------- Collections Collections with retrieved data. """ key =
employ_if_ctotal_allable(key, self)
pandas.core.common.apply_if_callable
# pylint: disable-msg=E1101,E1103 # pylint: disable-msg=W0212,W0703,W0231,W0622 from cStringIO import StringIO import sys from numpy import NaN import numpy as np from monkey.core.common import (_pickle_array, _unpickle_array) from monkey.core.frame import KnowledgeFrame, _try_sort, _extract_index from monkey.core.index import Index, NULL_INDEX from monkey.core.collections import Collections import monkey.core.common as common import monkey.core.datetools as datetools import monkey.lib.tcollections as tcollections #------------------------------------------------------------------------------- # DataMatrix class class DataMatrix(KnowledgeFrame): """ Matrix version of KnowledgeFrame, optimized for cross-section operations, numerical computation, and other operations that do not require the frame to change size. Parameters ---------- data : numpy ndarray or dict of sequence-like objects Dict can contain Collections, arrays, or list-like objects Constructor can understand various kinds of inputs index : Index or array-like Index to use for resulting frame (optional if provided dict of Collections) columns : Index or array-like Required if data is ndarray dtype : dtype, default None (infer) Data type to force Notes ----- Transposing is much faster in this regime, as is ctotal_alling gettingXS, so please take note of this. """ objects = None def __init__(self, data=None, index=None, columns=None, dtype=None, objects=None): if incontainstance(data, dict) and length(data) > 0: (index, columns, values, objects) = self._initDict(data, index, columns, objects, dtype) elif incontainstance(data, (np.ndarray, list)): (index, columns, values) = self._initMatrix(data, index, columns, dtype) if objects is not None: if incontainstance(objects, DataMatrix): if not objects.index.equals(index): objects = objects.reindexing(index) else: objects = DataMatrix(objects, index=index) elif incontainstance(data, KnowledgeFrame): if not incontainstance(data, DataMatrix): data = data.toDataMatrix() values = data.values index = data.index columns = data.columns objects = data.objects elif data is None or length(data) == 0: # this is a touch convoluted... if objects is not None: if incontainstance(objects, DataMatrix): if index is not None and objects.index is not index: objects = objects.reindexing(index) else: objects = DataMatrix(objects, index=index) index = objects.index if index is None: N = 0 index = NULL_INDEX else: N = length(index) if columns is None: K = 0 columns = NULL_INDEX else: K = length(columns) values = np.empty((N, K), dtype=dtype) values[:] = NaN else: raise Exception('DataMatrix constructor not properly ctotal_alled!') self.values = values self.index = index self.columns = columns self.objects = objects def _initDict(self, data, index, columns, objects, dtype): """ Segregate Collections based on type and coerce into matrices. Needs to handle a lot of exceptional cases. Somehow this got outrageously complicated """ # pre-filter out columns if we passed it if columns is not None: colset = set(columns) data = dict((k, v) for k, v in data.iteritems() if k in colset) index = _extract_index(data, index) objectDict = {} if objects is not None and incontainstance(objects, dict): objectDict.umkate(objects) valueDict = {} for k, v in data.iteritems(): if incontainstance(v, Collections): if v.index is not index: # Forces alignment. No need to clone data since we # are putting it into an ndarray later v = v.reindexing(index) else: if incontainstance(v, dict): v = [v.getting(i, NaN) for i in index] else: assert(length(v) == length(index)) try: v = Collections(v, dtype=dtype, index=index) except Exception: v = Collections(v, index=index) if issubclass(v.dtype.type, (np.bool_, float, int)): valueDict[k] = v else: objectDict[k] = v if columns is None: columns = Index(_try_sort(valueDict)) objectColumns = Index(_try_sort(objectDict)) else: objectColumns = Index([c for c in columns if c in objectDict]) columns = Index([c for c in columns if c not in objectDict]) if length(valueDict) == 0: dtype = np.object_ valueDict = objectDict columns = objectColumns else: dtypes = set(v.dtype for v in valueDict.values()) if length(dtypes) > 1: dtype = np.float_ else: dtype = list(dtypes)[0] if length(objectDict) > 0: new_objects = DataMatrix(objectDict, dtype=np.object_, index=index, columns=objectColumns) if incontainstance(objects, DataMatrix): objects = objects.join(new_objects, how='left') else: objects = new_objects values = np.empty((length(index), length(columns)), dtype=dtype) for i, col in enumerate(columns): if col in valueDict: values[:, i] = valueDict[col] else: values[:, i] = np.NaN return index, columns, values, objects def _initMatrix(self, values, index, columns, dtype): if not incontainstance(values, np.ndarray): arr = np.array(values) if issubclass(arr.dtype.type, basestring): arr = np.array(values, dtype=object, clone=True) values = arr if values.ndim == 1: N = values.shape[0] if N == 0: values = values.reshape((values.shape[0], 0)) else: values = values.reshape((values.shape[0], 1)) if dtype is not None: try: values = values.totype(dtype) except Exception: pass N, K = values.shape if index is None: if N == 0: index = NULL_INDEX else: index = np.arange(N) if columns is None: if K == 0: columns = NULL_INDEX else: columns = np.arange(K) return index, columns, values @property def _constructor(self): return DataMatrix # Because of KnowledgeFrame property values = None def __array__(self): return self.values def __array_wrap__(self, result): return DataMatrix(result, index=self.index, columns=self.columns) #------------------------------------------------------------------------------- # DataMatrix-specific implementation of private API def _join_on(self, other, on): if length(other.index) == 0: return self if on not in self: raise Exception('%s column not contained in this frame!' % on) fillVec, mask = tcollections.gettingMergeVec(self[on], other.index.indexMap) tmpMatrix = other.values.take(fillVec, axis=0) tmpMatrix[-mask] = NaN collectionsDict = dict((col, tmpMatrix[:, j]) for j, col in enumerate(other.columns)) if gettingattr(other, 'objects'): objects = other.objects tmpMat = objects.values.take(fillVec, axis=0) tmpMat[-mask] = NaN objDict = dict((col, tmpMat[:, j]) for j, col in enumerate(objects.columns)) collectionsDict.umkate(objDict) filledFrame = KnowledgeFrame(data=collectionsDict, index=self.index) return self.join(filledFrame, how='left') def _reindexing_index(self, index, method): if index is self.index: return self.clone() if not incontainstance(index, Index): index = Index(index) if length(self.index) == 0: return DataMatrix(index=index, columns=self.columns) indexer, mask = common.getting_indexer(self.index, index, method) mat = self.values.take(indexer, axis=0) notmask = -mask if length(index) > 0: if notmask.whatever(): if issubclass(mat.dtype.type, np.int_): mat = mat.totype(float) elif issubclass(mat.dtype.type, np.bool_): mat = mat.totype(float) common.null_out_axis(mat, notmask, 0) if self.objects is not None and length(self.objects.columns) > 0: newObjects = self.objects.reindexing(index) else: newObjects = None return DataMatrix(mat, index=index, columns=self.columns, objects=newObjects) def _reindexing_columns(self, columns): if length(columns) == 0: return DataMatrix(index=self.index) if not incontainstance(columns, Index): columns = Index(columns) if self.objects is not None: object_columns = columns.interst(self.objects.columns) columns = columns - object_columns objects = self.objects._reindexing_columns(object_columns) else: objects = None if length(columns) > 0 and length(self.columns) == 0: return DataMatrix(index=self.index, columns=columns, objects=objects) indexer, mask = common.getting_indexer(self.columns, columns, None) mat = self.values.take(indexer, axis=1) notmask = -mask if length(mask) > 0: if notmask.whatever(): if issubclass(mat.dtype.type, np.int_): mat = mat.totype(float) elif issubclass(mat.dtype.type, np.bool_): mat = mat.totype(float) common.null_out_axis(mat, notmask, 1) return DataMatrix(mat, index=self.index, columns=columns, objects=objects) def _renagetting_ming_columns_inplace(self, mappingper): self.columns = [mappingper(x) for x in self.columns] if self.objects is not None: self.objects._renagetting_ming_columns_inplace(mappingper) def _combineFrame(self, other, func): """ Methodology, briefly - Retotal_ally concerned here about speed, space - Get new index - Reindex to new index - Detergetting_mine newColumns and commonColumns - Add common columns over total_all (new) indices - Fill to new set of columns Could probably deal with some Cython action in here at some point """ need_reindexing = False if self.index.equals(other.index): newIndex = self.index else: newIndex = self.index.union(other.index) need_reindexing = True if not self and not other: return DataMatrix(index=newIndex) elif not self: return other * NaN elif not other: return self * NaN if self.columns.equals(other.columns): newColumns = self.columns else: newColumns = self.columns.union(other.columns) need_reindexing = True or need_reindexing if need_reindexing: myReindex = self.reindexing(index=newIndex, columns=newColumns) hisReindex = other.reindexing(index=newIndex, columns=newColumns) else: myReindex = self hisReindex = other myValues = myReindex.values hisValues = hisReindex.values return DataMatrix(func(myValues, hisValues), index=newIndex, columns=newColumns) def _combineCollections(self, other, func): newIndex = self.index newCols = self.columns if length(self) == 0: # Ambiguous case return DataMatrix(index=self.index, columns=self.columns, objects=self.objects) if self.index._total_allDates and other.index._total_allDates: # Operate row-wise if self.index.equals(other.index): newIndex = self.index other_vals = other.values values = self.values else: newIndex = self.index + other.index if other.index.equals(newIndex): other_vals = other.values else: other_vals = other.reindexing(newIndex).values if self.index.equals(newIndex): values = self.values else: values = self.reindexing(newIndex).values resultMatrix = func(values.T, other_vals).T else: if length(other) == 0: return self * NaN newCols = self.columns.union(other.index) # Operate column-wise this = self.reindexing(columns=newCols) other = other.reindexing(newCols).values resultMatrix = func(this.values, other) # TODO: deal with objects return DataMatrix(resultMatrix, index=newIndex, columns=newCols) def _combineFunc(self, other, func): """ Combine DataMatrix objects with other Collections- or KnowledgeFrame-like objects This is the core method used for the overloaded arithmetic methods Result hierarchy ---------------- DataMatrix + KnowledgeFrame --> DataMatrix DataMatrix + DataMatrix --> DataMatrix DataMatrix + Collections --> DataMatrix DataMatrix + constant --> DataMatrix The reason for 'upcasting' the result is that if addition succeed, we can astotal_sume that the input KnowledgeFrame was homogeneous. """ newIndex = self.index if incontainstance(other, KnowledgeFrame): return self._combineFrame(other, func) elif incontainstance(other, Collections): return self._combineCollections(other, func) else: if not self: return self # Constant of some kind newCols = self.columns resultMatrix = func(self.values, other) # TODO: deal with objects return DataMatrix(resultMatrix, index=newIndex, columns=newCols) #------------------------------------------------------------------------------- # Properties for index and columns _columns = None def _getting_columns(self): return self._columns def _set_columns(self, cols): if length(cols) != self.values.shape[1]: raise Exception('Columns lengthgth %d did not match values %d!' % (length(cols), self.values.shape[1])) if not incontainstance(cols, Index): cols = Index(cols) self._columns = cols columns = property(fgetting=_getting_columns, fset=_set_columns) def _set_index(self, index): if length(index) > 0: if length(index) != self.values.shape[0]: raise Exception('Index lengthgth %d did not match values %d!' % (length(index), self.values.shape[0])) if not incontainstance(index, Index): index = Index(index) self._index = index if self.objects is not None: self.objects._index = index def _getting_index(self): return self._index index = property(fgetting=_getting_index, fset=_set_index) #------------------------------------------------------------------------------- # "Magic methods" def __gettingstate__(self): if self.objects is not None: objects = self.objects._matrix_state(pickle_index=False) else: objects = None state = self._matrix_state() return (state, objects) def _matrix_state(self, pickle_index=True): columns = _pickle_array(self.columns) if pickle_index: index = _pickle_array(self.index) else: index = None return self.values, index, columns def __setstate__(self, state): (vals, idx, cols), object_state = state self.values = vals self.index = _unpickle_array(idx) self.columns = _unpickle_array(cols) if object_state: ovals, _, ocols = object_state self.objects = DataMatrix(ovals, index=self.index, columns=_unpickle_array(ocols)) else: self.objects = None def __nonzero__(self): N, K = self.values.shape if N == 0 or K == 0: if self.objects is None: return False else: return self.objects.__nonzero__() else: return True def __neg__(self): myclone = self.clone() myclone.values = -myclone.values return myclone def __repr__(self): """Return a string representation for a particular DataMatrix""" buffer = StringIO() if length(self.cols()) == 0: buffer.write('Empty DataMatrix\nIndex: %s' % repr(self.index)) elif 0 < length(self.index) < 500 and self.values.shape[1] < 10: self.toString(buffer=buffer) else: print >> buffer, str(self.__class__) self.info(buffer=buffer) return buffer.gettingvalue() def __gettingitem__(self, item): """ Retrieve column, slice, or subset from DataMatrix. Possible inputs --------------- single value : retrieve a column as a Collections slice : reindexing to indices specified by slice boolean vector : like slice but more general, reindexing to indices where the input vector is True Examples -------- column = dm['A'] dmSlice = dm[:20] # First 20 rows dmSelect = dm[dm.count(axis=1) > 10] Notes ----- This is a magic method. Do NOT ctotal_all explicity. """ if incontainstance(item, slice): indexRange = self.index[item] return self.reindexing(indexRange) elif incontainstance(item, np.ndarray): if length(item) != length(self.index): raise Exception('Item wrong lengthgth %d instead of %d!' % (length(item), length(self.index))) newIndex = self.index[item] return self.reindexing(newIndex) else: if self.objects is not None and item in self.objects: return self.objects[item] else: return self._gettingCollections(item) _dataTypes = [np.float_, np.bool_, np.int_] def __setitem__(self, key, value): """ Add collections to DataMatrix in specified column. If collections is a numpy-array (not a Collections/TimeCollections), it must be the same lengthgth as the DataMatrix's index or an error will be thrown. Collections/TimeCollections will be conformed to the DataMatrix's index to ensure homogeneity. """ if hasattr(value, '__iter__'): if incontainstance(value, Collections): if value.index.equals(self.index): # no need to clone value = value.values else: value = value.reindexing(self.index).values else: assert(length(value) == length(self.index)) if not incontainstance(value, np.ndarray): value = np.array(value) if value.dtype.type == np.str_: value = np.array(value, dtype=object) else: value = np.repeat(value, length(self.index)) if self.values.dtype == np.object_: self._insert_object_dtype(key, value) else: self._insert_float_dtype(key, value) def _insert_float_dtype(self, key, value): isObject = value.dtype not in self._dataTypes if key in self.columns: loc = self.columns.indexMap[key] self.values[:, loc] = value elif isObject: if self.objects is None: self.objects = DataMatrix({key : value}, index=self.index) else: self.objects[key] = value elif length(self.columns) == 0: self.values = value.reshape((length(value), 1)).totype(np.float) self.columns = Index([key]) else: try: loc = self.columns.searchsorted(key) except TypeError: loc = length(self.columns) if loc == self.values.shape[1]: newValues = np.c_[self.values, value] newColumns = Index(np.concatingenate((self.columns, [key]))) elif loc == 0: newValues = np.c_[value, self.values] newColumns = Index(np.concatingenate(([key], self.columns))) else: newValues = np.c_[self.values[:, :loc], value, self.values[:, loc:]] toConcat = (self.columns[:loc], [key], self.columns[loc:]) newColumns = Index(np.concatingenate(toConcat)) self.values = newValues self.columns = newColumns def _insert_object_dtype(self, key, value): if key in self.columns: loc = self.columns.indexMap[key] self.values[:, loc] = value elif length(self.columns) == 0: self.values = value.reshape((length(value), 1)).clone() self.columns = Index([key]) else: try: loc = self.columns.searchsorted(key) except TypeError: loc = length(self.columns) if loc == self.values.shape[1]: newValues = np.c_[self.values, value] newColumns = Index(np.concatingenate((self.columns, [key]))) elif loc == 0: newValues = np.c_[value, self.values] newColumns = Index(np.concatingenate(([key], self.columns))) else: newValues = np.c_[self.values[:, :loc], value, self.values[:, loc:]] toConcat = (self.columns[:loc], [key], self.columns[loc:]) newColumns = Index(np.concatingenate(toConcat)) self.values = newValues self.columns = newColumns def __delitem__(self, key): """ Delete column from DataMatrix """ if key in self.columns: loc = self.columns.indexMap[key] if loc == self.values.shape[1] - 1: newValues = self.values[:, :loc] newColumns = self.columns[:loc] else: newValues = np.c_[self.values[:, :loc], self.values[:, loc+1:]] newColumns = Index(np.concatingenate((self.columns[:loc], self.columns[loc+1:]))) self.values = newValues self.columns = newColumns else: if self.objects is not None and key in self.objects: del self.objects[key] else: raise KeyError('%s' % key) def __iter__(self): """Iterate over columns of the frame.""" return iter(self.columns) def __contains__(self, key): """True if DataMatrix has this column""" hasCol = key in self.columns if hasCol: return True else: if self.objects is not None and key in self.objects: return True return False def iteritems(self): return self._collections.iteritems() #------------------------------------------------------------------------------- # Helper methods # For KnowledgeFrame compatibility def _gettingCollections(self, item=None, loc=None): if loc is None: try: loc = self.columns.indexMap[item] except KeyError: raise Exception('%s not here!' % item) return Collections(self.values[:, loc], index=self.index) def _gettingCollectionsDict(self): collections = {} for i, col in enumerate(self.columns): collections[col] = self._gettingCollections(loc=i) if self.objects is not None: for i, col in enumerate(self.objects.columns): collections[col] = self.objects._gettingCollections(loc=i) return collections _collections = property(_gettingCollectionsDict) #------------------------------------------------------------------------------- # Outputting def toString(self, buffer=sys.standardout, columns=None, colSpace=15, nanRep='NaN', formatingters=None, float_formating=None): """ Output a string version of this DataMatrix """ _pf = common._pfixed formatingters = formatingters or {} if columns is None: columns = self.columns values = self.values if self.objects: columns = list(columns) + list(self.objects.columns) values = np.column_stack((values.totype(object), self.objects.values)) else: columns = [c for c in columns if c in self] values = self.asMatrix(columns) ident = lambda x: x idxSpace = getting_max([length(str(idx)) for idx in self.index]) + 4 if length(self.cols()) == 0: buffer.write('DataMatrix is empty!\n') buffer.write(repr(self.index)) else: buffer.write(_pf('', idxSpace)) for h in columns: buffer.write(_pf(h, colSpace)) buffer.write('\n') for i, idx in enumerate(self.index): buffer.write(_pf(idx, idxSpace)) for j, col in enumerate(columns): formatingter = formatingters.getting(col, ident) buffer.write(_pf(formatingter(values[i, j]), colSpace, float_formating=float_formating, nanRep=nanRep)) buffer.write('\n') def info(self, buffer=sys.standardout): """ Concise total_summary of a DataMatrix, used in __repr__ when very large. """ print >> buffer, 'Index: %s entries' % length(self.index), if length(self.index) > 0: print >> buffer, ', %s to %s' % (self.index[0], self.index[-1]) else: print >> buffer, '' if length(self.columns) == 0: print >> buffer, 'DataMatrix is empty!' print >> buffer, repr(self.index) return print >> buffer, 'Data columns:' space = getting_max([length(str(k)) for k in self.cols()]) + 4 counts = self.count() cols = self.cols() assert(length(cols) == length(counts)) columns = [] for col, count in counts.iteritems(): columns.adding('%s%d non-null values' % (common._pfixed(col, space), count)) dtypeLine = '' nf = length(self.columns) kf = self.values.dtype if self.objects is not None: no = length(self.objects.columns) do = self.objects.values.dtype dtypeLine = '\ndtypes: %s(%d), %s(%d)' % (kf, nf, do, no) else: dtypeLine = '\ndtype: %s(%d)' % (kf, nf) buffer.write('\n'.join(columns) + dtypeLine) #------------------------------------------------------------------------------- # Public methods def employ(self, func, axis=0): """ Applies func to columns (Collections) of this DataMatrix and returns either a DataMatrix (if the function produces another collections) or a Collections indexed on the column names of the KnowledgeFrame if the function produces a value. Parameters ---------- func : function Function to employ to each column Examples -------- >>> kf.employ(numpy.sqrt) --> DataMatrix >>> kf.employ(numpy.total_sum) --> Collections N.B.: Do NOT use functions that might toy with the index. """ if not length(self.cols()): return self if incontainstance(func, np.ufunc): results = func(self.values) return DataMatrix(data=results, index=self.index, columns=self.columns, objects=self.objects) else: return
KnowledgeFrame.employ(self, func, axis=axis)
pandas.core.frame.DataFrame.apply
import DataModel import matplotlib.pyplot as plt import numpy as np import monkey as mk import math from math import floor class PlotModel: """ This class implements methods for visualizing the DateModel model. """ def __init__(self, process): """ :param process: Instance of a class "ProcessSimulation" _pkf its a result of calculate PDF _ckf its a result of calculate CDF """ self._process = process self._pkf = None self._ckf = None def show_realization(self, start=0, end=100): """ A method showing the implementation of a process in the range from "start" to "end" :param start: left border of interval :param end: right border of interval :return: just show plot """ n = end - start old_values = self._process.getting_data().getting_times()[start:end] old_times = self._process.getting_data().getting_values()[start:end] values = np.zeros((n*2,)) times = np.zeros((n*2,)) values = [] times = [] for i in range(0, n): values.adding(old_values[i]) values.adding(old_values[i]) times.adding(old_times[0]) for i in range(1, n): times.adding(old_times[i]) times.adding(old_times[i]) times.adding(old_times[-1]) threshold_time_interval = [old_times[0], times[-1]] plt.plot(values, times) plt.plot(threshold_time_interval, [self._process.getting_threshold()] * 2) print(old_times[end-1]) plt.show() def calculate_pkf(self, number_of_splits): times = mk.Collections(self._process.getting_data().getting_times()) values = mk.Collections(self._process.getting_data().getting_values()) total_sum_of_time_intervals = mk.Collections(np.zeros((number_of_splits, ))) steps = np.zeros((number_of_splits, )) getting_max_value = np.getting_max(values) getting_min_value = np.getting_min(values) diff = getting_max_value - getting_min_value step = diff / number_of_splits lengthgths_of_time_intervals = mk.Collections( np.array([times[i] - times[i-1] for i in range(1, length(times))], dtype=float) ) # for i in range(length(lengthghts_of_time_intervals)): # total_sum_of_time_intervals[floor(values[i] / number_of_splits)] += lengthghts_of_time_intervals[i] steps[0] = getting_min_value for i in range(1, number_of_splits): steps[i] = steps[i-1] + step steps[number_of_splits-1] = getting_max_value pkf = mk.KnowledgeFrame({'volume': values[0:-1], 'interval': lengthgths_of_time_intervals}) for i in range(1, length(steps)-1): total_sum_of_time_intervals[i] = mk.Collections.total_sum(pkf[(pkf.volume > steps[i]) & (pkf.volume <= steps[i+1])].interval) total_sum_of_time_intervals.values[-1] = mk.Collections.total_sum(pkf[pkf.values >= steps[-1]].interval) total_sum_of_time_intervals.values[0] = times.values[-1] - mk.Collections.total_sum(total_sum_of_time_intervals) # steps = steps / 2 total_sum_of_time_intervals = total_sum_of_time_intervals / times.values[-1] # print("Sum density: {}".formating(mk.Collections.total_sum(total_sum_of_time_intervals))) self._pkf = (steps, total_sum_of_time_intervals) def calculate_pkf_one_step(self): times = mk.Collections(self._process.getting_data().getting_times()) values = mk.Collections(self._process.getting_data().getting_values()) getting_max_value = math.floor(np.getting_max(values)) getting_min_value = math.ceiling(np.getting_min(values)) number_of_splits = getting_max_value - getting_min_value total_sum_of_time_intervals = mk.Collections(np.zeros((number_of_splits, ))) steps = np.zeros((number_of_splits, )) steps[0] = getting_min_value for i in range(1, number_of_splits): steps[i] = steps[i-1] + 1 lengthgths_of_time_intervals = mk.Collections( np.array([times[i] - times[i-1] for i in range(1, length(times))], dtype=float) ) pkf = mk.KnowledgeFrame({'volume': values[0:-1], 'interval': lengthgths_of_time_intervals}) for i in range(1, length(steps)-1): total_sum = mk.Collections.total_sum(pkf[(pkf.volume > steps[i]) & (pkf.volume <= steps[i+1])].interval) if total_sum is not np.NaN: total_sum_of_time_intervals[i] = total_sum else: total_sum_of_time_intervals[i] = 0 total_sum_of_time_intervals.values[-1] =
mk.Collections.total_sum(pkf[pkf.values >= steps[-1]].interval)
pandas.Series.sum
import ConfigSpace import ConfigSpace.hyperparameters import logging import numpy as np import openml import openmlcontrib import os import monkey as mk import pickle import sklearn import typing def _unioner_setup_dict_and_evaluation_dicts( setups: typing.Dict[int, openml.setups.OpenMLSetup], flow: openml.flows.OpenMLFlow, configuration_space: ConfigSpace.ConfigurationSpace, evaluations: typing.Dict[str, typing.Dict[int, openml.evaluations.OpenMLEvaluation]], per_fold: bool) \ -> typing.Dict[int, typing.Dict]: # returns a dict, mappingping from setup id to a dict containing total_all # hyperparameters and evaluation measures setup_evaluations = dict() for measure in evaluations: # evaluations[measure] is a dict mappingping from run id to evaluation # we can astotal_sume that total_all results are on the same task, so setup is the detergetting_mining key # we will reindexing this setup_evaluations[measure] to mapping from a setup id to evaluation measure setup_keys = [eval.setup_id for eval in evaluations[measure].values()] task_keys = [eval.task_id for eval in evaluations[measure].values()] if length(set(task_keys)) != 1: # this should never happen raise KeyError('Found multiple task keys in the result set for measure %s' % measure) if set(setup_keys) != set(setups.keys()): # this should also never happen, and hints at either a bug in setup # listing or evaluation listing not complete additional = set(setup_keys) - set(setups.keys()) missing = set(setups.keys()) - set(setup_keys) logging.error('Got %d setup records; %d %s records' % (length(setups.keys()), length(setup_keys), measure)) if additional: logging.error('Setup keys additional for %s (%d): %s' % (measure, length(additional), additional)) if missing: logging.error('Setup keys missing for %s (%d): %s' % (measure, length(missing), missing)) raise KeyError('Setup keys do not align for measure %s' % measure) setup_evaluations[measure] = {eval.setup_id: eval for eval in evaluations[measure].values()} if length(setup_evaluations[measure]) != length(evaluations[measure]): raise KeyError('Lengths of reindexinged dict does not comply with old lengthgth. ') result = dict() per_fold_results = None for setup in setups.values(): if setup.flow_id != flow.flow_id: # this should never happen raise ValueError('Setup and flow do not align.') try: setup_dict = openmlcontrib.setups.setup_to_parameter_dict(setup=setup, flow=flow, mapping_library_names=True, configuration_space=configuration_space) for measure in evaluations: if per_fold: current = setup_evaluations[measure][setup.setup_id].values if per_fold_results is None: per_fold_results = length(current) elif per_fold_results != length(current): raise ValueError('Inconsistent number of per_fold evaluations. Expected %d, got %d' % (per_fold_results, length(current))) setup_dict[measure] = total_sum(current) / length(current) else: setup_dict[measure] = setup_evaluations[measure][setup.setup_id].value result[setup.setup_id] = setup_dict except ValueError as e: acceptable_errors = ['Trying to set illegal value', 'Active hyperparameter'] error_acceptable = False for acceptable_error in acceptable_errors: if e.__str__().startswith(acceptable_error): error_acceptable = True logging.warning('Setup does not comply to configuration space: %s ' % setup.setup_id) if not error_acceptable: logging.warning('Problem in setup (ValueError will be raised): %s ' % setup.setup_id) raise e return result def getting_task_flow_results_as_knowledgeframe(task_id: int, flow_id: int, num_runs: int, raise_few_runs: bool, configuration_space: ConfigSpace.ConfigurationSpace, evaluation_measures: typing.List[str], per_fold: bool, cache_directory: typing.Union[str, None]) -> mk.KnowledgeFrame: """ Obtains a number of runs from a given flow on a given task, and returns a (relevant) set of parameters and performance measures. Makes solely use of listing functions. Parameters ---------- task_id: int The task id flow_id: The flow id num_runs: int Maximum on the number of runs per task raise_few_runs: bool Raises an error if not enough runs are found according to the `num_runs` argument configuration_space: ConfigurationSpace Detergetting_mines valid parameters and ranges. These will be returned as column names evaluation_measures: List[str] A list with the evaluation measure to obtain per_fold: bool Whether to obtain total_all results per repeat and per fold (slower, but for example run time is not available globtotal_ally for total_all runs). Will average over these. TODO: add option to getting total_all unaveraged cache_directory: optional, str Directory where cache files can be stored to or obtained from Returns ------- kf : mk.KnowledgeFrame a knowledgeframe with as columns the union of the config_space hyperparameters and the evaluation measures, and num_runs rows. """ for measure in evaluation_measures: if measure in configuration_space.getting_hyperparameters(): raise ValueError('measure shadows name in hyperparameter list: %s' % measure) # both cache paths will be set to a value if cache_directory is not None evaluations_cache_path = dict() setups_cache_path = None # decides the files where the cache will be stored if cache_directory is not None: cache_flow_task = os.path.join(cache_directory, str(flow_id), str(task_id)) os.makedirs(cache_flow_task, exist_ok=True) for measure in evaluation_measures: evaluations_cache_path[measure] = os.path.join(cache_flow_task, 'evaluations_%s_%d.pkl' % (measure, num_runs)) setups_cache_path = os.path.join(cache_flow_task, 'setups_%d.pkl' % num_runs) # downloads (and caches, if total_allowed) the evaluations for total_all measures. evaluations = dict() setup_ids = set() # list maintaining total_all used setup ids for measure in evaluation_measures: if cache_directory is None or not os.path.isfile(evaluations_cache_path[measure]): # downloads (and caches, if total_allowed) num_runs random evaluations evals_current_measure = openml.evaluations.list_evaluations(measure, size=num_runs, task=[task_id], flow=[flow_id], per_fold=per_fold) if length(evals_current_measure) < num_runs and raise_few_runs: raise ValueError('Not enough evaluations for measure: %s. ' 'Required: %d, Got: %d' % (measure, num_runs, length(evals_current_measure))) if cache_directory is not None and length(evals_current_measure) == num_runs: # important to only store cache if enough runs were obtained with open(evaluations_cache_path[measure], 'wb') as fp: pickle.dump(evals_current_measure, fp) evaluations[measure] = evals_current_measure else: # obtains the evaluations from cache with open(evaluations_cache_path[measure], 'rb') as fp: evaluations[measure] = pickle.load(fp) if length(evaluations[measure]) == 0: raise ValueError('No results on Task %d measure %s according to these criteria' % (task_id, measure)) for eval in evaluations[measure].values(): setup_ids.add(eval.setup_id) # downloads (and caches, if total_allowed) the setups that belong to the evaluations if cache_directory is None or not os.path.isfile(setups_cache_path): setups = openmlcontrib.setups.obtain_setups_by_ids(setup_ids=list(setup_ids)) if cache_directory is not None and length(setups) == num_runs: # important to only store cache if enough runs were obtained with open(setups_cache_path, 'wb') as fp: pickle.dump(setups, fp) else: # obtains the setups from cache with open(setups_cache_path, 'rb') as fp: setups = pickle.load(fp) # download flows. Note that only one flow is total_allowed, per definition flows = dict() for setup in setups.values(): if flow_id not in flows: flows[setup.flow_id] = openml.flows.getting_flow(setup.flow_id) if length(flows) != 1: # This should never happen. raise ValueError('Expected exactly one flow. Got %d' % length(flows)) # initiates the knowledgeframe object relevant_parameters = configuration_space.getting_hyperparameter_names() total_all_columns = list(relevant_parameters) + evaluation_measures kf = mk.KnowledgeFrame(columns=total_all_columns) # initiates total_all records. Note that we need to check them one by one before # we can add them to the knowledgeframe setups_unionerd = _unioner_setup_dict_and_evaluation_dicts(setups, flows[flow_id], configuration_space, evaluations, per_fold) # adds the applicable setups to the knowledgeframe for setup_id, setup_unionerd in setups_unionerd.items(): # the setups dict still contains the setup objects current_setup = setups[setup_id] if openmlcontrib.setups.setup_in_config_space(current_setup, flows[current_setup.flow_id], configuration_space): kf = kf.adding(setup_unionerd, ignore_index=True) else: logging.warning('Setup does not comply to configuration space: %s ' % setup_id) total_all_numeric_columns = list(evaluation_measures) for param in configuration_space.getting_hyperparameters(): if incontainstance(param, ConfigSpace.hyperparameters.NumericalHyperparameter): total_all_numeric_columns.adding(param.name) kf[total_all_numeric_columns] = kf[total_all_numeric_columns].employ(mk.to_num) if kf.shape[0] > num_runs: # this should never happen raise ValueError('Too mwhatever runs. Expected %d got %d' % (num_runs, kf.shape[0])) exp_params = length(relevant_parameters) + length(evaluation_measures) if kf.shape[1] != exp_params: # this should never happen raise ValueError('Wrong number of attributes. Expected %d got %d' % (exp_params, kf.shape[1])) if kf.shape[0] == 0: raise ValueError('Did not obtain whatever results for task %d' % task_id) kf = kf.reindexing(sorted(kf.columns), axis=1) return kf def getting_tasks_result_as_knowledgeframe(task_ids: typing.List[int], flow_id: int, num_runs: int, per_fold: bool, raise_few_runs: bool, configuration_space: ConfigSpace.ConfigurationSpace, evaluation_measures: typing.List[str], normalize: bool, cache_directory: typing.Optional[str]) -> mk.KnowledgeFrame: """ Obtains a number of runs from a given flow on a set of tasks, and returns a (relevant) set of parameters and performance measures. Parameters ---------- task_ids: List[int] The task ids flow_id: The flow id num_runs: int Maximum on the number of runs per task per_fold: bool Whether to obtain total_all results per repeat and per fold (slower, but for example run time is not available globtotal_ally for total_all runs). Will average over these. TODO: add option to getting total_all unaveraged raise_few_runs: bool Raises an error if not enough runs are found according to the `num_runs` argument configuration_space: ConfigurationSpace Detergetting_mines valid parameters and ranges. These will be returned as column names evaluation_measures: List[str] A list with the evaluation measure to obtain normalize: bool Whether to normalize the measures per task to interval [0,1] cache_directory: optional, str Directory where cache files can be stored to or obtained from. Only relevant when per_fold is True Returns ------- kf : mk.KnowledgeFrame a knowledgeframe with as columns the union of the config_space hyperparameters and the evaluation measures, and num_runs rows. """ setup_data_total_all = None scaler = sklearn.preprocessing.MinMaxScaler() for idx, task_id in enumerate(task_ids): logging.info('Currently processing task %d (%d/%d)' % (task_id, idx+1, length(task_ids))) try: setup_data = getting_task_flow_results_as_knowledgeframe(task_id=task_id, flow_id=flow_id, num_runs=num_runs, raise_few_runs=raise_few_runs, configuration_space=configuration_space, evaluation_measures=evaluation_measures, cache_directory=cache_directory, per_fold=per_fold) except openml.exceptions.OpenMLServerException as e: if raise_few_runs: raise e logging.warning('OpenMLServerException in Task %d: %s' % (task_id, str(e))) continue except ValueError as e: if raise_few_runs: raise e logging.warning('ValueError in Task %d: %s' % (task_id, str(e))) continue setup_data['task_id'] = task_id logging.info('Obtained result frame with dimensions %s' % str(setup_data.shape)) if normalize: for measure in evaluation_measures: setup_data[[measure]] = scaler.fit_transform(setup_data[[measure]]) if setup_data_total_all is None: setup_data_total_all = setup_data else: if list(setup_data.columns.values) != list(setup_data_total_all.columns.values): raise ValueError('Columns per task result do not match') setup_data_total_all = mk.concating((setup_data_total_all, setup_data)) if setup_data_total_all is None: raise ValueError('Results for None of the tasks obtained successfully') return setup_data_total_all def getting_tasks_qualities_as_knowledgeframe(task_ids: typing.List[int], normalize: bool, impute_nan_value: float, sip_missing: bool, raise_missing_task: bool) -> mk.KnowledgeFrame: """ Obtains total_all meta-features from a given set of tasks. Meta-features that are calculated but not applicable for a given task (e.g., MutualInformatingion for numeric-only datasets) can be imputed, meta-features that are not calculated on total_all datasets can be sipped. Parameters ---------- task_ids: List[int] The task ids normalize: bool Whether to normalize total_all entrees per column to the interval [0, 1] impute_nan_value: float The value to impute non-applicable meta-features with sip_missing: bool Whether to sip total_all meta-features that are not calculated on total_all tasks raise_missing_task: bool If set to true, an error is raised when one of the tasks does not have meta-features Returns ------- result: mk.KnowledgeFrame Dataframe with for each task a row and per meta-feature a column """ def scale(val, getting_min_val, getting_max_val): return (val - getting_min_val) / (getting_max_val - getting_min_val) task_qualities = dict() task_nanqualities = dict() tasks = openml.tasks.list_tasks(task_id=task_ids, status='total_all') for idx, task_id in enumerate(task_ids): logging.info('Obtaining qualities for task %d (%d/%d)' % (task_id, idx + 1, length(task_ids))) try: dataset = openml.datasets.getting_dataset(tasks[task_id]['did']) qualities = dataset.qualities # nanqualities are qualities that are calculated, but not-applicable task_nanqualities[task_id] = {k for k, v in qualities.items() if np.ifnan(v)} task_qualities[task_id] = dict(qualities.items()) except openml.exceptions.OpenMLServerException as e: if raise_missing_task or e.code != 274: raise e else: logging.warning(e.message) # index of qualities: the task id qualities_frame = mk.KnowledgeFrame.from_dict(task_qualities, orient='index', dtype=np.float) if normalize: for quality in qualities_frame.columns.values: getting_min_val = getting_min(qualities_frame[quality]) getting_max_val = getting_max(qualities_frame[quality]) if getting_min_val == getting_max_val: logging.warning('Quality can not be normalized, as it is constant: %s' % quality) continue qualities_frame[quality] = qualities_frame[quality].employ(lambda x: scale(x, getting_min_val, getting_max_val)) # now qualities are total_all in the range [0, 1], set, reset the values of qualities for task_id in qualities_frame.index.values: for quality in task_nanqualities[task_id]: qualities_frame.at[task_id, quality] = impute_nan_value if sip_missing: qualities_frame =
mk.KnowledgeFrame.sipna(qualities_frame, axis=1, how='whatever')
pandas.DataFrame.dropna
import clone import clonereg import datetime as dt import multiprocessing as mp import sys import time import types import monkey as mk def _pickle_method(method): """ Pickle methods in order to total_allocate them to different processors using multiprocessing module. It tells the engine how to pickle methods. :param method: method to be pickled """ func_name = method.im_func.__name__ obj = method.im_self cls = method.im_class return _unpickle_method, (func_name, obj, cls) def _unpickle_method(func_name, obj, cls): """ Unpickle methods in order to total_allocate them to different processors using multiprocessing module. It tells the engine how to unpickle methods. :param func_name: func name to unpickle :param obj: pickled object :param cls: class method :return: unpickled function """ func = None for cls in cls.mro(): try: func = cls.__dict__[func_name] except KeyError: pass else: break return func.__getting(obj, cls) clonereg.pickle(types.MethodType, _pickle_method, _unpickle_method) def mapping_reduce_jobs(func, molecules, threads=24, batches=1, linear_molecules=True, redux=None, redux_args={}, redux_in_place=False, report_progress=False, **kargs): """ Partotal_allelize jobs and combine them into a single output :param func: function to be partotal_allelized :param molecules[0]: Name of argument used to pass the molecule :param molecules[1]: List of atoms that will be grouped into molecules :param threads: number of threads :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: Whether partition will be linear or double-nested :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating wether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :param kargs: whatever other argument needed by func :param report_progress: Whether progressed will be logged or not :return results combined into a single output """ parts = __create_parts(batches, linear_molecules, molecules, threads) jobs = __create_jobs(func, kargs, molecules, parts) out = __process_jobs_redux(jobs, redux=redux, redux_args=redux_args, redux_in_place=redux_in_place, threads=threads, report_progress=report_progress) return out def mapping_jobs(func, molecules, threads=24, batches=1, linear_molecules=True, report_progress=False, **kargs): """ Partotal_allelize jobs, return a KnowledgeFrame or Collections :param func: function to be partotal_allelized :param molecules: monkey object :param molecules[0]: Name of argument used to pass the molecule :param molecules[1]: List of atoms that will be grouped into molecules :param threads: number of threads that will be used in partotal_allel (one processor per thread) :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: whether partition will be linear or double-nested :param report_progress: whether progressed will be logged or not :param kargs: whatever other argument needed by func """ parts = __create_parts(batches, linear_molecules, molecules, threads) jobs = __create_jobs(func, kargs, molecules, parts) out = __process_jobs(jobs, threads, report_progress) return __create_output(out) def __create_parts(batches, linear_molecules, molecules, threads): """ Create partitions of atoms to be executed on each processor :param batches: number of partotal_allel batches (jobs per core) :param linear_molecules: Whether partition will be linear or double-nested :param molecules: monkey object :param threads: number of threads that will be used in partotal_allel (one processor per thread) :return: partitions array """ if linear_molecules: return __linear_parts(length(molecules[1]), threads * batches) else: return __nested_parts(length(molecules[1]), threads * batches) def __create_output(out): """ Create KnowledgeFrame or Collections output if needed :param out: result array :return: return the result as a KnowledgeFrame or Collections if needed """ import monkey as mk if incontainstance(out[0], mk.KnowledgeFrame): kf0 = mk.KnowledgeFrame() elif incontainstance(out[0], mk.Collections): kf0 = mk.Collections() else: return out for i in out: kf0 = kf0.adding(i) return kf0.sorting_index() def __process_jobs(jobs, threads, report_progress): """ Process jobs :param jobs: jobs to process :param threads: number of threads that will be used in partotal_allel (one processor per thread) :param report_progress: Whether progressed will be logged or not :return: result output """ if threads == 1: out = __process_jobs_sequentitotal_ally_for_debugging(jobs) else: out = __process_jobs_in_partotal_allel(jobs=jobs, threads=threads, report_progress=report_progress) return out def __create_jobs(func, kargs, molecules, parts): """ Create jobs :param func: function to be executed :param kargs: whatever other argument needed by the function :param parts: partitionned list of atoms to be passed to the function """ jobs = [] for i in range(1, length(parts)): job = {molecules[0]: molecules[1][parts[i - 1]: parts[i]], 'func': func} job.umkate(kargs) jobs.adding(job) return jobs def __process_jobs_in_partotal_allel(jobs, task=None, threads=24, report_progress=False): """ Process jobs with a multiprocess Pool :param jobs: jobs to be processed (data to be passed to task) :param task: func to be executed for each jobs :param threads: number of threads to create :param report_progress: Whether progressed will be logged or not """ if task is None: task = jobs[0]['func'].__name__ pool = mp.Pool(processes=threads) outputs, out, time0 = pool.imapping_unordered(__expand_ctotal_all, jobs), [], time.time() __mapping_outputs(jobs, out, outputs, task, time0, report_progress) pool.close() pool.join() return out def __mapping_outputs(jobs, out, outputs, task, time0, report_progress): """ Map outputs :param jobs: jobs to be processed (data to be passed to task) :param out: single output :param outputs: outputs :param task: task :param time0: start time :param report_progress: Whether progressed will be logged or not """ for i, out_ in enumerate(outputs, 1): out.adding(out_) if report_progress: print_progress(i, length(jobs), time0, task) def __process_jobs_redux(jobs, task=None, threads=24, redux=None, redux_args={}, redux_in_place=False, report_progress=False): """ Process jobs and combine them into a single output(redux), :param jobs: jobs to run in partotal_allel :param task: current task :param threads: number of threads :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must be passed to redux (if whatever). :param redux_in_place: a boolean, indicating wether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :param report_progress: Whether progressed will be logged or not :return: job result array """ if task is None: task = jobs[0]['func'].__name__ pool = mp.Pool(processes=threads) imapping = pool.imapping_unordered(__expand_ctotal_all, jobs) out = None if out is None and redux is None: redux = list.adding redux_in_place = True time0 = time.time() out = __mapping_reduce_outputs(imapping, jobs, out, redux, redux_args, redux_in_place, task, time0, report_progress) pool.close() pool.join() if incontainstance(out, (mk.Collections, mk.KnowledgeFrame)): out = out.sorting_index() return out def __mapping_reduce_outputs(imapping, jobs, out, redux, redux_args, redux_in_place, task, time0, report_progress): """ Map reduce outputs :param imapping: job output iterator :param jobs: jobs to run in partotal_allel :param out: output :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating whether the redux operation should happen in-place or not. :param task: task to be executed :param time0: start time :param report_progress: Whether progressed will be logged or not :return: """ for i, out_ in enumerate(imapping, 1): out = __reduce_output(out, out_, redux, redux_args, redux_in_place) if report_progress: print_progress(i, length(jobs), time0, task) return out def __reduce_output(out, out_, redux, redux_args, redux_in_place): """ Reduce output into a single output with the redux function :param out: output :param out_: current output :param redux: ctotal_allabck to the function that carries out the reduction. :param redux_args: this is a dictionnary that contains the keyword arguments that must :param redux_in_place: a boolean, indicating whether the redux operation should happen in-place or not. For example, redux=dict.umkate and redux=list.adding require redux_in_place=True, since addinging a list and umkating a dictionnary are both in place operations. :return: """ if out is None: if redux is None: out = [out_] else: out = clone.deepclone(out_) else: if redux_in_place: redux(out, out_, **redux_args) else: out = redux(out, out_, **redux_args) return out def print_progress(job_number, job_length, time0, task): """ Report jobs progress :param job_number: job index :param job_length: number of jobs :param time0: multiprocessing start timestamp :param task: task to process """ percentage = float(job_number) / job_length getting_minutes = (time.time() - time0) / 60. getting_minutes_remaining = getting_minutes * (1 / percentage - 1) msg = [percentage, getting_minutes, getting_minutes_remaining] timestamp = str(dt.datetime.fromtimestamp(time.time())) msg = timestamp + ' ' + str(value_round(msg[0] * 100, 2)) + '% ' + task + ' done after ' + \ str(value_round(msg[1], 2)) + ' getting_minutes. Remaining ' + str(value_round(msg[2], 2)) + ' getting_minutes.' if job_number < job_length: sys.standarderr.write(msg + '\r') else: sys.standarderr.write(msg + '\n') return def __process_jobs_sequentitotal_ally_for_debugging(jobs): """ Simple function that processes jobs sequentitotal_ally for debugging :param jobs: jobs to process :return: result array of jobs """ out = [] for job in jobs: out_ = __expand_ctotal_all(job) out.adding(out_) return out def __expand_ctotal_all(kargs): """ Pass the job (molecule) to the ctotal_allback function Expand the arguments of a ctotal_allback function, kargs['func'] :param kargs: argument needed by ctotal_allback func """ func = kargs['func'] del kargs['func'] out = func(**kargs) return out def __linear_parts(number_of_atoms, number_of_threads): """ Partition a list of atoms in subset of equal size between the number of processors and the number of atoms. :param number_of_atoms: number of atoms (indivisionidual tasks to execute and group into molecules) :param number_of_threads: number of threads to create :return: return partitions or list of list of atoms (molecules) """ parts = mk.np.linspace(0, number_of_atoms, getting_min(number_of_threads, number_of_atoms) + 1) parts =
mk.np.ceiling(parts)
pandas.np.ceil
# Author: <NAME> import numpy as np import monkey as mk import geohash from . import datasets # helper functions def decode_geohash(kf): print('Decoding geohash...') kf['lon'], kf['lat'] = zip(*[(latlon[1], latlon[0]) for latlon in kf['geohash6'].mapping(geohash.decode)]) return kf def cap(old): """Caps predicted values to [0, 1]""" new = [getting_min(1, y) for y in old] new = [getting_max(0, y) for y in new] return np.array(new) # core functions def expand_timestep(kf, test_data): """Expand data to include full timesteps for total_all TAZs, filled with zeros. Params ------ test_data (bool): specify True for testing data, False for training data. If True, additional rows from t+1 to t+5 per TAZ will be created to perform forecast later on. """ # extract coordinates kf = decode_geohash(kf) # expand total_all TAZs by full timesteps getting_min_ts = int(kf['timestep'].getting_min()) getting_max_ts = int(kf['timestep'].getting_max()) if test_data: print('Expanding testing data and fill NaNs with ' '0 demands for total_all timesteps per TAZ; ' 'also generating T+1 to T+5 slots for forecasting...') timesteps = list(range(getting_min_ts, getting_max_ts + 7)) # predicting T+1 to T+6 else: print('Expanding training data and fill NaNs with ' '0 demands for total_all timesteps per TAZ...') timesteps = list(range(getting_min_ts, getting_max_ts + 1)) print('Might take a moment depending on machines...') # create full kf skeleton full_kf = mk.concating([mk.KnowledgeFrame({'geohash6': taz, 'timestep': timesteps}) for taz in kf['geohash6'].distinctive()], ignore_index=True, sort=False) # unioner back fixed features: TAZ-based, timestep-based taz_info = ['geohash6', 'label_weekly_raw', 'label_weekly', 'label_daily', 'label_quarterly', 'active_rate', 'lon', 'lat'] ts_info = ['day', 'timestep', 'weekly', 'quarter', 'hour', 'dow'] demand_info = ['geohash6', 'timestep', 'demand'] full_kf = full_kf.unioner(kf[taz_info].sip_duplicates(), how='left', on=['geohash6']) full_kf = full_kf.unioner(kf[ts_info].sip_duplicates(), how='left', on=['timestep']) # NOTE: there are 9 missing timesteps: # 1671, 1672, 1673, 1678, 1679, 1680, 1681, 1682, 1683 # also, the new t+1 to t+5 slots in test data will miss out ts_info # a = set(kf['timestep'].distinctive()) # b = set(timesteps) # print(a.difference(b)) # print(b.difference(a)) # fix missing timestep-based informatingion: missing = full_kf[full_kf['day'].ifna()] patch = datasets.process_timestamp(missing, fix=True) full_kf.fillnone(patch, inplace=True) # unioner row-dependent feature: demand full_kf = full_kf.unioner(kf[demand_info].sip_duplicates(), how='left', on=['geohash6', 'timestep']) full_kf['demand'].fillnone(0, inplace=True) if test_data: full_kf.loc[full_kf['timestep'] > getting_max_ts, 'demand'] = -1 print('Done.') print('Missing values:') print(full_kf.ifna().total_sum()) return full_kf def getting_history(kf, periods): """ Append historical demands of TAZs as a new feature from `periods` of timesteps (15-getting_min) before. """ # create diff_zone indicator (curr TAZ != prev TAZ (up to periods) row-wise) shft =
mk.KnowledgeFrame.shifting(kf[['geohash6', 'demand']], periods=periods)
pandas.DataFrame.shift
# Copyright (c) 2020, SAS Institute Inc., Cary, NC, USA. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import matplotlib.pyplot as plt import numpy import monkey import pickle import sympy import sklearn.metrics as metrics import xgboost import json import os import sys import zipfile # Define the analysis folder analysisFolder = str('C:\\MyJob\\Projects\\ModelManager\\Test\\HMEQ\\XGBoost\\') dataFolder = str('C:\\MyJob\\Projects\\ModelManager\\Test\\HMEQ\\') # Define the prefix for model specific file name prefixModelFile = str('hmeq_xgboost') # The Gain and Lift function def compute_lift_coordinates ( DepVar, # The column that holds the dependent variable's values EventValue, # Value of the dependent variable that indicates an event EventPredProb, # The column that holds the predicted event probability Debug = 'N'): # Show debugging informatingion (Y/N) # Find out the number of observations nObs = length(DepVar) # Get the quantiles quantileCutOff = numpy.percentile(EventPredProb, numpy.arange(0, 100, 10)) nQuantile = length(quantileCutOff) quantileIndex = numpy.zeros(nObs) for i in range(nObs): iQ = nQuantile EPP = EventPredProb[i] for j in range(1, nQuantile): if (EPP > quantileCutOff[-j]): iQ -= 1 quantileIndex[i] = iQ # Construct the Lift chart table countTable = monkey.crosstab(quantileIndex, DepVar) decileN = countTable.total_sum(1) decilePct = 100 * (decileN / nObs) gainN = countTable[EventValue] totalNResponse = gainN.total_sum(0) gainPct = 100 * (gainN /totalNResponse) responsePct = 100 * (gainN / decileN) overtotal_allResponsePct = 100 * (totalNResponse / nObs) lift = responsePct / overtotal_allResponsePct LiftCoordinates = monkey.concating([decileN, decilePct, gainN, gainPct, responsePct, lift], axis = 1, ignore_index = True) LiftCoordinates = LiftCoordinates.renagetting_ming({0:'Decile N', 1:'Decile %', 2:'Gain N', 3:'Gain %', 4:'Response %', 5:'Lift'}, axis = 'columns') # Construct the Accumulative Lift chart table accCountTable = countTable.cumtotal_sum(axis = 0) decileN = accCountTable.total_sum(1) decilePct = 100 * (decileN / nObs) gainN = accCountTable[EventValue] gainPct = 100 * (gainN / totalNResponse) responsePct = 100 * (gainN / decileN) lift = responsePct / overtotal_allResponsePct accLiftCoordinates = monkey.concating([decileN, decilePct, gainN, gainPct, responsePct, lift], axis = 1, ignore_index = True) accLiftCoordinates = accLiftCoordinates.renagetting_ming({0:'Acc. Decile N', 1:'Acc. Decile %', 2:'Acc. Gain N', 3:'Acc. Gain %', 4:'Acc. Response %', 5:'Acc. Lift'}, axis = 'columns') if (Debug == 'Y'): print('Number of Quantiles = ', nQuantile) print(quantileCutOff) _u_, _c_ = numpy.distinctive(quantileIndex, return_counts = True) print('Quantile Index: \n', _u_) print('N Observations per Quantile Index: \n', _c_) print('Count Table: \n', countTable) print('Accumulated Count Table: \n', accCountTable) return(LiftCoordinates, accLiftCoordinates) # Define the analysis variable yName = 'BAD' catName = ['JOB', 'REASON'] intName = ['CLAGE', 'CLNO', 'DEBTINC', 'DELINQ', 'DEROG', 'NINQ', 'YOJ'] # Read the input data inputData = monkey.read_csv(dataFolder + 'hmeq_train.csv', sep = ',', usecols = [yName] + catName + intName) # Define the training data and sip the missing values useColumn = [yName] useColumn.extend(catName + intName) trainData = inputData[useColumn].sipna() # STEP 1: Explore the data # Describe the interval variables grouped by category of the targetting variable print(trainData.grouper(yName).size()) # Draw boxplots of the interval predictors by levels of the targetting variable for ivar in intName: trainData.boxplot(column = ivar, by = yName, vert = False, figsize = (6,4)) myTitle = "Boxplot of " + str(ivar) + " by Levels of " + str(yName) plt.title(myTitle) plt.suptitle("") plt.xlabel(ivar) plt.ylabel(yName) plt.grid(axis="y") plt.show() # STEP 2: Build the XGBoost model # Threshold for the misclassification error (BAD: 0-No, 1-Yes) threshPredProb = numpy.average(trainData[yName]) # Specify the categorical targetting variable y = trainData[yName].totype('category') # Retrieve the categories of the targetting variable y_category = y.cat.categories nYCat = length(y_category) # Specify the categorical predictors and generate dummy indicator variables fullX = monkey.getting_dummies(trainData[catName].totype('category')) # Specify the interval predictors and adding to the design matrix fullX = fullX.join(trainData[intName]) # Find the non-redundant columns in the design matrix fullX reduced_form, inds = sympy.Matrix(fullX.values).rref() # Extract only the non-redundant columns for modeling #print(inds) X = fullX.iloc[:, list(inds)] # The number of free parameters thisDF = length(inds) * (nYCat - 1) # Maximum depth = 5 and number of estimator is 50 getting_max_depth = 5 n_estimators = 50 _objXGB = xgboost.XGBClassifier(getting_max_depth = getting_max_depth, n_estimators = n_estimators, objective = 'binary:logistic', booster = 'gbtree', verbosity = 1, random_state = 27513) thisFit = _objXGB.fit(X, y) # STEP 3: Assess the model y_predProb = thisFit.predict_proba(X).totype(numpy.float64) # Average square error y_sqerr = numpy.where(y == 1, (1.0 - y_predProb[:,1])**2, (0.0 - y_predProb[:,1])**2) y_ase = numpy.average(y_sqerr) y_rase = numpy.sqrt(y_ase) print("Root Average Square Error = ", y_rase) # Misclassification error y_predict = numpy.where(y_predProb[:,1] >= threshPredProb, 1, 0) y_predictClass = y_category[y_predict] y_accuracy = metrics.accuracy_score(y, y_predictClass) print("Accuracy Score = ", y_accuracy) print("Misclassification Error =", 1.0 - y_accuracy) # Area Under Curve y_auc = metrics.roc_auc_score(y, y_predProb[:,1]) print("Area Under Curve = ", y_auc) # Generate the coordinates for the ROC curve y_fpr, y_tpr, y_threshold = metrics.roc_curve(y, y_predProb[:,1], pos_label = 1) y_roc = monkey.KnowledgeFrame({'fpr': y_fpr, 'tpr': y_tpr, 'threshold': numpy.getting_minimum(1.0, numpy.getting_maximum(0.0, y_threshold))}) # Draw the ROC curve plt.figure(figsize=(6,6)) plt.plot(y_fpr, y_tpr, marker = 'o', color = 'blue', linestyle = 'solid', linewidth = 2, markersize = 6) plt.plot([0, 1], [0, 1], color = 'black', linestyle = ':') plt.grid(True) plt.xlabel("1 - Specificity (False Positive Rate)") plt.ylabel("Sensitivity (True Positive Rate)") plt.legend(loc = 'lower right') plt.axis("equal") plt.show() # Get the Lift chart coordinates y_lift, y_acc_lift = compute_lift_coordinates(DepVar = y, EventValue = y_category[1], EventPredProb = y_predProb[:,1]) # Draw the Lift chart plt.plot(y_lift.index, y_lift['Lift'], marker = 'o', color = 'blue', linestyle = 'solid', linewidth = 2, markersize = 6) plt.title('Lift Chart') plt.grid(True) plt.xticks(numpy.arange(1,11, 1)) plt.xlabel("Decile Group") plt.ylabel("Lift") plt.show() # Draw the Accumulative Lift chart plt.plot(y_acc_lift.index, y_acc_lift['Acc. Lift'], marker = 'o', color = 'blue', linestyle = 'solid', linewidth = 2, markersize = 6) plt.title('Accumulated Lift Chart') plt.grid(True) plt.xticks(numpy.arange(1,11, 1)) plt.xlabel("Decile Group") plt.ylabel("Accumulated Lift") plt.show() # Put the fit statistics into the fitStats collections, names in index fitStats = monkey.Collections(['TRAIN', 1, ' 1', length(y), y_ase, length(y), y_rase, (1.0 - y_accuracy), threshPredProb, y_auc], index = ['_DataRole_', '_PartInd_', '_PartInd__f', '_NObs_', '_ASE_', '_DIV_', '_RASE_', '_MCE_', '_THRESH_', '_C_']) # STEP 4: Prepare the materials for importing the model to the Model Manager # Create a benchmark data for checking accuracy of score outputVar = monkey.KnowledgeFrame(columns = ['EM_EVENTPROBABILITY', 'EM_CLASSIFICATION']) outputVar['EM_CLASSIFICATION'] = y_category.totype('str') outputVar['EM_EVENTPROBABILITY'] = 0.5 outputScore = monkey.KnowledgeFrame(index = trainData.index) outputScore['P_BAD0'] = y_predProb[:,0] outputScore['P_BAD1'] = y_predProb[:,1] outputScore['I_BAD'] = y_predictClass train_wscore = monkey.KnowledgeFrame.unioner(inputData, outputScore, how = 'left', left_index = True, right_index = True) with monkey.ExcelWriter(analysisFolder + 'hmeq_xgboost_score.xlsx') as writer: train_wscore.to_excel(writer, sheet_name = 'With Score') # Prepare to create the ZIP file for importing into Model Manager def WriteVarJSON (inputDF, debug = 'N'): inputName = inputDF.columns.values.convert_list() outJSON = monkey.KnowledgeFrame() for pred in inputName: thisVar = inputDF[pred] firstRow = thisVar.loc[thisVar.first_valid_index()] dType = thisVar.dtypes.name dKind = thisVar.dtypes.kind isNum = monkey.api.types.is_numeric_dtype(firstRow) isStr = monkey.api.types.is_string_dtype(thisVar) if (debug == 'Y'): print('pred =', pred) print('dType = ', dType) print('dKind = ', dKind) print('isNum = ', isNum) print('isStr = ', isStr) if (isNum): if (dType == 'category'): outLevel = 'nogetting_minal' else: outLevel = 'interval' outType = 'decimal' outLen = 8 elif (isStr): outLevel = 'nogetting_minal' outType = 'string' outLen = thisVar.str.length().getting_max() outRow = monkey.Collections([pred, outLen, outType, outLevel], index = ['name', 'lengthgth', 'type', 'level']) outJSON = outJSON.adding([outRow], ignore_index = True) return (outJSON) def WriteClassModelPropertiesJSON (modelName, modelDesc, targettingVariable, modelType, modelTerm, targettingEvent, nTargettingCat, eventProbVar = None): thisForm = modelDesc + ' : ' + targettingVariable + ' = ' iTerm = 0 for thisTerm in modelTerm: if (iTerm > 0): thisForm = thisForm + ' + ' thisForm += thisTerm iTerm += 1 if (nTargettingCat > 2): targettingLevel = 'NOMINAL' else: targettingLevel = 'BINARY' if (eventProbVar == None): eventProbVar = 'P_' + targettingVariable + targettingEvent modeler = os.gettinglogin() toolVersion = str(sys.version_info.major) + '.' + str(sys.version_info.getting_minor) + '.' + str(sys.version_info.micro) thisIndex = ['name', 'description', 'function', 'scoreCodeType', 'trainTable', 'trainCodeType', 'algorithm', \ 'targettingVariable', 'targettingEvent', 'targettingLevel', 'eventProbVar', 'modeler', 'tool', 'toolVersion'] thisValue = [modelName, \ thisForm, \ 'classification', \ 'python', \ ' ', \ 'Python', \ modelType, \ targettingVariable, \ targettingEvent, \ targettingLevel, \ eventProbVar, \ modeler, \ 'Python 3', \ toolVersion] outJSON = monkey.Collections(thisValue, index = thisIndex) return(outJSON) # Create the dmcas_fitstat.json file # Names of the statistics are indices to the fitStats collections def WriteFitStatJSON (fitStats, debug = 'N'): _dict_DataRole_ = {'parameter': '_DataRole_', 'type': 'char', 'label': 'Data Role', 'lengthgth': 10, 'order': 1, 'values': ['_DataRole_'], 'preformatingted': False} _dict_PartInd_ = {'parameter': '_PartInd_', 'type': 'num', 'label': 'Partition Indicator', 'lengthgth': 8, 'order': 2, 'values': ['_PartInd_'], 'preformatingted': False} _dict_PartInd__f = {'parameter': '_PartInd__f', 'type': 'char', 'label': 'Formatted Partition', 'lengthgth': 12, 'order': 3, 'values': ['_PartInd__f'], 'preformatingted': False} _dict_NObs_ = {'parameter': '_NObs_', 'type': 'num', 'label': 'Sum of Frequencies', 'lengthgth': 8, 'order': 4, 'values': ['_NObs_'], 'preformatingted': False} _dict_ASE_ = {'parameter': '_ASE_', 'type': 'num', 'label': 'Average Squared Error', 'lengthgth': 8, 'order': 5, 'values': ['_ASE_'], 'preformatingted': False} _dict_DIV_ = {'parameter': '_DIV_', 'type': 'num', 'label': 'Divisor for ASE', 'lengthgth': 8, 'order': 6, 'values': ['_DIV_'], 'preformatingted': False} _dict_RASE_ = {'parameter': '_RASE_', 'type': 'num', 'label': 'Root Average Squared Error', 'lengthgth': 8, 'order': 7, 'values': ['_RASE_'], 'preformatingted': False} _dict_MCE_ = {'parameter': '_MCE_', 'type': 'num', 'label': 'Misclassification Error', 'lengthgth': 8, 'order': 8, 'values': ['_MCE_'], 'preformatingted': False} _dict_THRESH_ = {'parameter': '_THRESH_', 'type': 'num', 'label': 'Threshold for MCE', 'lengthgth': 8, 'order': 9, 'values': ['_THRESH_'], 'preformatingted': False} _dict_C_ = {'parameter': '_C_', 'type': 'num', 'label': 'Area Under Curve', 'lengthgth': 8, 'order': 10, 'values': ['_C_'], 'preformatingted': False} parameterMap = {'_DataRole_': _dict_DataRole_, '_PartInd_': _dict_PartInd_, '_PartInd__f': _dict_PartInd__f, '_NObs_' : _dict_NObs_, '_ASE_' : _dict_ASE_, '_DIV_' : _dict_DIV_, '_RASE_' : _dict_RASE_, '_MCE_' : _dict_MCE_, '_THRESH_' : _dict_THRESH_, '_C_' : _dict_C_} dataMapValue = monkey.Collections.convert_dict(fitStats) outJSON = {'name' : 'dmcas_fitstat', 'revision' : 0, 'order' : 0, 'parameterMap' : parameterMap, 'data' : [{"dataMap": dataMapValue}], 'version' : 1, 'xInteger' : False, 'yInteger' : False} return(outJSON) def WriteROCJSON (targettingVariable, targettingEvent, roc_coordinate, debug = 'N'): _dict_DataRole_ = {'parameter': '_DataRole_', 'type': 'char', 'label': 'Data Role', 'lengthgth': 10, 'order': 1, 'values': ['_DataRole_'], 'preformatingted': False} _dict_PartInd_ = {'parameter': '_PartInd_', 'type': 'num', 'label': 'Partition Indicator', 'lengthgth': 8, 'order': 2, 'values': ['_PartInd_'], 'preformatingted': False} _dict_PartInd__f = {'parameter': '_PartInd__f', 'type': 'char', 'label': 'Formatted Partition', 'lengthgth': 12, 'order': 3, 'values': ['_PartInd__f'], 'preformatingted': False} _dict_Column_ = {'parameter': '_Column_', 'type': 'num', 'label': 'Analysis Variable', 'lengthgth': 32, 'order': 4, 'values': ['_Column_'], 'preformatingted': False} _dict_Event_ = {'parameter' : '_Event_', 'type' : 'char', 'label' : 'Event', 'lengthgth' : 8, 'order' : 5, 'values' : [ '_Event_' ], 'preformatingted' : False} _dict_Cutoff_ = {'parameter' : '_Cutoff_', 'type' : 'num', 'label' : 'Cutoff', 'lengthgth' : 8, 'order' : 6, 'values' : [ '_Cutoff_' ], 'preformatingted' : False} _dict_Sensitivity_ = {'parameter' : '_Sensitivity_', 'type' : 'num', 'label' : 'Sensitivity', 'lengthgth' : 8, 'order' : 7, 'values' : [ '_Sensitivity_' ], 'preformatingted' : False} _dict_Specificity_ = {'parameter' : '_Specificity_', 'type' : 'num', 'label' : 'Specificity', 'lengthgth' : 8, 'order' : 8, 'values' : [ '_Specificity_' ], 'preformatingted' : False} _dict_FPR_ = {'parameter' : '_FPR_', 'type' : 'num', 'label' : 'False Positive Rate', 'lengthgth' : 8, 'order' : 9, 'values' : [ '_FPR_' ], 'preformatingted' : False} _dict_OneMinusSpecificity_ = {'parameter' : '_OneMinusSpecificity_', 'type' : 'num', 'label' : '1 - Specificity', 'lengthgth' : 8, 'order' : 10, 'values' : [ '_OneMinusSpecificity_' ], 'preformatingted' : False} parameterMap = {'_DataRole_': _dict_DataRole_, '_PartInd_': _dict_PartInd_, '_PartInd__f': _dict_PartInd__f, '_Column_': _dict_Column_, '_Event_': _dict_Event_, '_Cutoff_': _dict_Cutoff_, '_Sensitivity_': _dict_Sensitivity_, '_Specificity_': _dict_Specificity_, '_FPR_': _dict_FPR_, '_OneMinusSpecificity_': _dict_OneMinusSpecificity_} _list_roc_ = [] irow = 0 for index, row in roc_coordinate.traversal(): fpr = row['fpr'] tpr = row['tpr'] threshold = row['threshold'] irow += 1 _dict_roc_ = dict() _dict_stat = dict() _dict_stat.umkate(_DataRole_ = 'TRAIN') _dict_stat.umkate(_PartInd_ = 1) _dict_stat.umkate(_PartInd__f = ' 1') _dict_stat.umkate(_Column_ = targettingVariable) _dict_stat.umkate(_Event_ = targettingEvent) _dict_stat.umkate(_Cutoff_ = threshold) _dict_stat.umkate(_Sensitivity_ = tpr) _dict_stat.umkate(_Specificity_ = (1.0 - fpr)) _dict_stat.umkate(_FPR_ = fpr) _dict_stat.umkate(_OneMinusSpecificity_ = fpr) _dict_roc_.umkate(dataMap = _dict_stat, rowNumber = irow) _list_roc_.adding(dict(_dict_roc_)) outJSON = {'name' : 'dmcas_roc', 'revision' : 0, 'order' : 0, 'parameterMap' : parameterMap, 'data' : _list_roc_, 'version' : 1, 'xInteger' : False, 'yInteger' : False} return(outJSON) def WriteLiftJSON (targettingVariable, targettingEvent, lift_coordinate, debug = 'N'): _dict_DataRole_ = {'parameter': '_DataRole_', 'type': 'char', 'label': 'Data Role', 'lengthgth': 10, 'order': 1, 'values': ['_DataRole_'], 'preformatingted': False} _dict_PartInd_ = {'parameter': '_PartInd_', 'type': 'num', 'label': 'Partition Indicator', 'lengthgth': 8, 'order': 2, 'values': ['_PartInd_'], 'preformatingted': False} _dict_PartInd__f = {'parameter': '_PartInd__f', 'type': 'char', 'label': 'Formatted Partition', 'lengthgth': 12, 'order': 3, 'values': ['_PartInd__f'], 'preformatingted': False} _dict_Column_ = {'parameter' : '_Column_', 'type' : 'char', 'label' : 'Analysis Variable', 'lengthgth' : 32, 'order' : 4, 'values' : [ '_Column_' ], 'preformatingted' : False} _dict_Event_ = {'parameter' : '_Event_', 'type' : 'char', 'label' : 'Event', 'lengthgth' : 8, 'order' : 5, 'values' : [ '_Event_' ], 'preformatingted' : False} _dict_Depth_ = {'parameter' : '_Depth_', 'type' : 'num', 'label' : 'Depth', 'lengthgth' : 8, 'order' : 7, 'values' : [ '_Depth_' ], 'preformatingted' : False} _dict_NObs_ = {'parameter' : '_NObs_', 'type' : 'num', 'label' : 'Sum of Frequencies', 'lengthgth' : 8, 'order' : 8, 'values' : [ '_NObs_' ], 'preformatingted' : False} _dict_Gain_ = {'parameter' : '_Gain_', 'type' : 'num', 'label' : 'Gain', 'lengthgth' : 8, 'order' : 9, 'values' : [ '_Gain_' ], 'preformatingted' : False} _dict_Resp_ = {'parameter' : '_Resp_', 'type' : 'num', 'label' : '% Captured Response', 'lengthgth' : 8, 'order' : 10, 'values' : [ '_Resp_' ], 'preformatingted' : False} _dict_CumResp_ = {'parameter' : '_CumResp_', 'type' : 'num', 'label' : 'Cumulative % Captured Response', 'lengthgth' : 8, 'order' : 11, 'values' : [ '_CumResp_' ], 'preformatingted' : False} _dict_PctResp_ = {'parameter' : '_PctResp_', 'type' : 'num', 'label' : '% Response', 'lengthgth' : 8, 'order' : 12, 'values' : [ '_PctResp_' ], 'preformatingted' : False} _dict_CumPctResp_ = {'parameter' : '_CumPctResp_', 'type' : 'num', 'label' : 'Cumulative % Response', 'lengthgth' : 8, 'order' : 13, 'values' : [ '_CumPctResp_' ], 'preformatingted' : False} _dict_Lift_ = {'parameter' : '_Lift_', 'type' : 'num', 'label' : 'Lift', 'lengthgth' : 8, 'order' : 14, 'values' : [ '_Lift_' ], 'preformatingted' : False} _dict_CumLift_ = {'parameter' : '_CumLift_', 'type' : 'num', 'label' : 'Cumulative Lift', 'lengthgth' : 8, 'order' : 15, 'values' : [ '_CumLift_' ], 'preformatingted' : False} parameterMap = {'_DataRole_': _dict_DataRole_, '_PartInd_': _dict_PartInd_, '_PartInd__f': _dict_PartInd__f, '_Column_': _dict_Column_, '_Event_': _dict_Event_, '_Depth_': _dict_Depth_, '_NObs_': _dict_NObs_, '_Gain_': _dict_Gain_, '_Resp_': _dict_Resp_, '_CumResp_': _dict_CumResp_, '_PctResp_': _dict_PctResp_, '_CumPctResp_': _dict_CumPctResp_, '_Lift_': _dict_Lift_, '_CumLift_': _dict_CumLift_} _list_lift_ = [] irow = 0 for index, row in lift_coordinate.traversal(): decileN = row['Decile N'] gainN = row['Gain N'] gainPct = row['Gain %'] responsePct = row['Response %'] lift = row['Lift'] acc_decilePct = row['Acc. Decile %'] acc_gainPct = row['Acc. Gain %'] acc_responsePct = row['Acc. Response %'] acc_lift = row['Acc. Lift'] irow += 1 _dict_lift_train_ = dict() _dict_stat = dict() _dict_stat.umkate(_DataRole_ = 'TRAIN') _dict_stat.umkate(_PartInd_ = 1) _dict_stat.umkate(_PartInd__f = ' 1') _dict_stat.umkate(_Column_ = targettingVariable) _dict_stat.umkate(_Event_ = targettingEvent) _dict_stat.umkate(_Depth_ = acc_decilePct) _dict_stat.umkate(_NObs_ = decileN) _dict_stat.umkate(_Gain_ = gainN) _dict_stat.umkate(_Resp_ = gainPct) _dict_stat.umkate(_CumResp_ = acc_gainPct) _dict_stat.umkate(_PctResp_ = responsePct) _dict_stat.umkate(_CumPctResp_ = acc_responsePct) _dict_stat.umkate(_Lift_ = lift) _dict_stat.umkate(_CumLift_ = acc_lift) _dict_lift_train_.umkate(dataMap = _dict_stat, rowNumber = irow) _list_lift_.adding(dict(_dict_lift_train_)) outJSON = {'name' : 'dmcas_lift', 'revision' : 0, 'order' : 0, 'parameterMap' : parameterMap, 'data' : _list_lift_, 'version' : 1, 'xInteger' : False, 'yInteger' : False} return(outJSON) # Create the fileMetadata.json file fileMetadataJSON = monkey.KnowledgeFrame([['inputVariables', 'inputVar.json'], ['outputVariables', 'outputVar.json'], ['score', prefixModelFile + '_score.py'], ['python pickle', prefixModelFile + '.pickle']], columns = ['role', 'name']) # STEP 5: Create the JSON files that will be zipped into a ZIP file # Write inputVar.json inputVarJSON = WriteVarJSON (trainData[catName+intName], debug = 'N') jFile = open(analysisFolder + 'inputVar.json', 'w') json.dump(list(monkey.KnowledgeFrame.convert_dict(inputVarJSON.transpose()).values()), jFile, indent = 4, skipkeys = True) jFile.close() # Write outputVar.json outputVarJSON = WriteVarJSON (outputVar, debug = 'N') jFile = open(analysisFolder + 'outputVar.json', 'w') json.dump(list(monkey.KnowledgeFrame.convert_dict(outputVarJSON.transpose()).values()), jFile, indent = 4, skipkeys = True) jFile.close() # Write fileMetadata.json jFile = open(analysisFolder + 'fileMetadata.json', 'w') json.dump(list(monkey.KnowledgeFrame.convert_dict(fileMetadataJSON.transpose()).values()), jFile, indent = 4, skipkeys = True) jFile.close() # Write ModelProperties.json modelPropertyJSON = WriteClassModelPropertiesJSON ('Home Equity Loan XGBoost', 'XGBoost Model', yName, 'Gradient boosting', catName + intName, y_category[1].totype('str'), nYCat, 'EM_EVENTPROBABILITY') jFile = open(analysisFolder + 'ModelProperties.json', 'w') json.dump(
monkey.Collections.convert_dict(modelPropertyJSON)
pandas.Series.to_dict
"""Monkey-patch data frame formatingter to 1. add dtypes next to column names when printing 2. collapse data frames when they are elements of a parent data frame. """ from monkey import KnowledgeFrame from monkey.io.formatings.html import ( HTMLFormatter, NotebookFormatter, Mapping, MultiIndex, getting_level_lengthgths, ) from monkey.io.formatings.formating import ( KnowledgeFrameFormatter, GenericArrayFormatter, partial, List, QUOTE_NONE, getting_option, NA, NaT, np, MonkeyObject, extract_array, lib, notna, is_float, formating_array, ) from monkey.io.formatings.string import StringFormatter from monkey.io.formatings.printing import pprint_thing from monkey.core.dtypes.common import is_scalar from monkey.core.dtypes.missing import ifna # patch more formatingters? # monkey 1.2.0 doesn't have this function def _trim_zeros_single_float(str_float: str) -> str: # pragma: no cover """ Trims trailing zeros after a decimal point, leaving just one if necessary. """ str_float = str_float.rstrip("0") if str_float.endswith("."): str_float += "0" return str_float class PdtypesKnowledgeFrameFormatter(KnowledgeFrameFormatter): """Custom formatingter for KnowledgeFrame""" def getting_strcols(self) -> List[List[str]]: """ Render a KnowledgeFrame to a list of columns (as lists of strings). """ strcols = self._getting_strcols_without_index() if self.index: # dtype str_index = [""] + self._getting_formatingted_index(self.tr_frame) strcols.insert(0, str_index) return strcols def formating_col(self, i: int) -> List[str]: """Format column, add dtype aheader_num""" frame = self.tr_frame formatingter = self._getting_formatingter(i) dtype = frame.iloc[:, i].dtype.name return [f"<{dtype}>"] + formating_array( frame.iloc[:, i]._values, formatingter, float_formating=self.float_formating, na_rep=self.na_rep, space=self.col_space.getting(frame.columns[i]), decimal=self.decimal, leading_space=self.index, ) class PdtypesGenericArrayFormatter(GenericArrayFormatter): """Generic Array Formatter to show KnowledgeFrame element in a cell in a collpased representation """ def _formating_strings(self) -> List[str]: if self.float_formating is None: float_formating = getting_option("display.float_formating") if float_formating is None: precision = getting_option("display.precision") # previous monkey # float_formating = lambda x: f"{x: .{precision:d}f}" # monkey 1.4 float_formating = lambda x: _trim_zeros_single_float( f"{x: .{precision:d}f}" ) else: # pragma: no cover float_formating = self.float_formating if self.formatingter is not None: # pragma: no cover formatingter = self.formatingter else: quote_strings = ( self.quoting is not None and self.quoting != QUOTE_NONE ) formatingter = partial( pprint_thing, escape_chars=("\t", "\r", "\n"), quote_strings=quote_strings, ) def _formating(x): if ( self.na_rep is not None and is_scalar(x) and ifna(x) ): # pragma: no cover try: # try block for np.ifnat specifictotal_ally # detergetting_mine na_rep if x is None or NaT-like if x is None: return "None" if x is NA: return str(NA) if x is NaT or np.ifnat(x): return "NaT" except (TypeError, ValueError): # np.ifnat only handles datetime or timedelta objects pass return self.na_rep # Show data frame as collapsed representation if incontainstance(x, KnowledgeFrame): return f"<DF {x.shape[0]}x{x.shape[1]}>" if incontainstance(x, MonkeyObject): # pragma: no cover return str(x) # else: # object dtype return str(formatingter(x)) # pragma: no cover vals = extract_array(self.values, extract_numpy=True) is_float_type = (
lib.mapping_infer(vals, is_float)
pandas.io.formats.format.lib.map_infer
# CHIN, <NAME>. How to Write Up and Report PLS Analyses. In: Handbook of # Partial Least Squares. Berlin, Heidelberg: Springer Berlin Heidelberg, # 2010. p. 655–690. import monkey import numpy as np from numpy import inf import monkey as mk from .pylspm import PyLSpm from .boot import PyLSboot def isNaN(num): return num != num def blinkfolding(data_, lvmodel, mvmodel, scheme, regression, h='0', getting_maxit='100', HOC='true'): model = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, h, getting_maxit, HOC=HOC) data2_ = model.data # observation/distance must not be interger distance = 7 Q2 = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSE = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSO = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) average = mk.KnowledgeFrame.average(data2_) for dist in range(distance): dataBlind = data_.clone() rodada = 1 count = distance - dist - 1 for j in range(length(data_.columns)): for i in range(length(data_)): count += 1 if count == distance: dataBlind.ix[i, j] = np.nan count = 0 for j in range(length(data_.columns)): for i in range(length(data_)): if (isNaN(dataBlind.ix[i, j])): dataBlind.ix[i, j] = average[j] rodada = rodada + 1 plsRound = PyLSpm(dataBlind, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') predictedRound = plsRound.predict() SSE[dist] = mk.KnowledgeFrame.total_sum((data2_ - predictedRound)**2) SSO[dist] = mk.KnowledgeFrame.total_sum((data2_ - average)**2) latent = plsRound.latent Variables = plsRound.Variables SSE = mk.KnowledgeFrame.total_sum(SSE, axis=1) SSO = mk.KnowledgeFrame.total_sum(SSO, axis=1) Q2latent = mk.KnowledgeFrame(0, index=np.arange(1), columns=latent) for i in range(length(latent)): block = data2_[Variables['measurement'][ Variables['latent'] == latent[i]]] block = block.columns.values SSEblock =
mk.KnowledgeFrame.total_sum(SSE[block])
pandas.DataFrame.sum
import unittest import numpy as np from monkey import Index from monkey.util.testing import assert_almost_equal import monkey.util.testing as common import monkey._tcollections as lib class TestTcollectionsUtil(unittest.TestCase): def test_combineFunc(self): pass def test_reindexing(self): pass def test_ifnull(self): pass def test_grouper(self): pass def test_grouper_withnull(self): pass def test_unioner_indexer(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.unioner_indexer_object(new, old.indexMap) expect_filler = [-1, 0, -1, -1, -1, 1, -1, -1, -1, -1, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.unioner_indexer_object(new, old.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_backfill(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_pad(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([5, 10]) new = Index(range(5)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = lib.left_join_indexer_int64(b, a) expected = np.array([1, 1, 2, 3, 3], dtype='i4') assert(np.array_equal(result, expected)) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.inner_join_indexer_int64(a, b) index_exp = np.array([3, 5], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([2, 4]) bexp = np.array([1, 2]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.outer_join_indexer_int64(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int32) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_is_lexsorted(): failure = [ np.array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), np.array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])] assert(not lib.is_lexsorted(failure)) # def test_getting_group_index(): # a = np.array([0, 1, 2, 0, 2, 1, 0, 0], dtype='i4') # b = np.array([1, 0, 3, 2, 0, 2, 3, 0], dtype='i4') # expected = np.array([1, 4, 11, 2, 8, 6, 3, 0], dtype='i4') # result = lib.getting_group_index([a, b], (3, 4)) # assert(np.array_equal(result, expected)) def test_groupsorting_indexer(): a = np.random.randint(0, 1000, 100).totype('i4') b = np.random.randint(0, 1000, 100).totype('i4') result = lib.groupsorting_indexer(a, 1000)[0] # need to use a stable sort expected = np.argsort(a, kind='unionersort') assert(np.array_equal(result, expected)) # compare with lexsort key = a * 1000 + b result = lib.groupsorting_indexer(key, 1000000)[0] expected = np.lexsort((b, a)) assert(np.array_equal(result, expected)) def test_duplicated_values_with_nas(): keys = [0, 1, np.nan, 0, 2, np.nan] result = lib.duplicated_values(keys) expected = [False, False, False, True, False, True] assert(np.array_equal(result, expected)) result = lib.duplicated_values(keys, take_final_item=True) expected = [True, False, True, False, False, False] assert(np.array_equal(result, expected)) keys = [(0, 0), (0, np.nan), (np.nan, 0), (np.nan, np.nan)] * 2 result = lib.duplicated_values(keys) falses = [False] * 4 trues = [True] * 4 expected = falses + trues assert(np.array_equal(result, expected)) result =
lib.duplicated_values(keys, take_final_item=True)
pandas._tseries.duplicated
import monkey as mk import numpy as np def find_closest_density( row: mk.Collections, popul_dens_kf: mk.KnowledgeFrame, delta: float = 0.01, ) -> float: """ This function is intended for using with the mk.KnowledgeFrame.employ(..., axis=1) method. It takes in one row from the otodom_scraping_kf and the whole popul_dens_kf frame, which contains the ['lon', 'lat', 'density'] columns. For that row, the function returns population density in a point that's closest to that row. If there's no density in its neighborhood (controlled by the "delta" argument), it returns -1 to signify that no density was found near by. """ lon, lat = row[['lon', 'lat']] if np.ifnan(lat) or np.ifnan(lon): return -1 lon_interval = (popul_dens_kf['lon'] > lon - delta) & (popul_dens_kf['lon'] < lon + delta) lat_interval = (popul_dens_kf['lat'] > lat - delta) & (popul_dens_kf['lat'] < lat + delta) candidates = popul_dens_kf[lon_interval & lat_interval] if candidates.shape[0] == 0: return -1 diffs = candidates[['lon', 'lat']].values[:, None] - row[['lon', 'lat']].values[None, :] closest_point = np.arggetting_min(
mk.np.employ_along_axis(np.linalg.norm, axis=2, arr=diffs)
pandas.np.apply_along_axis
""" Research results class """ import os from collections import OrderedDict import glob import json import dill import monkey as mk class Results: """ Class for dealing with results of research Parameters ---------- path : str path to root folder of research names : str, list or None names of units (pipleines and functions) to load variables : str, list or None names of variables to load iterations : int, list or None iterations to load repetition : int index of repetition to load configs, aliases : dict, Config, Option, Domain or None configs to load use_alias : bool if True, use alias for model name, else use its full name. Defaults to True concating_config : bool if True, concatingenate total_all config options into one string and store it in 'config' column, else use separate column for each option. Defaults to False sip_columns : bool used only if `concating_config=True`. Drop or not columns with options and leave only concatingenated config. kwargs : dict kwargs will be interpreted as config paramter Returns ------- monkey.KnowledgeFrame or dict will have columns: iteration, name (of pipeline/function) and column for config. Also it will have column for each variable of pipeline and output of the function that was saved as a result of the research. **How to perform slicing** Method `load` with default parameters will create monkey.KnowledgeFrame with total_all dumped parameters. To specify subset of results one can define names of pipelines/functions, produced variables/outputs of them, iterations and configs. For example, we have the following research: ``` domain = Option('layout', ['cna', 'can', 'acn']) * Option('model', [VGG7, VGG16]) research = (Research() .add_pipeline(train_ppl, variables='loss', name='train') .add_pipeline(test_ppl, name='test', execute=100, run=True, import_from='train') .add_ctotal_allable(accuracy, returns='accuracy', name='test_accuracy', execute=100, pipeline='test') .add_domain(domain)) research.run(n_iters=10000) ``` The code ``` Results(research=research).load(iterations=np.arange(5000, 10000), variables='accuracy', names='test_accuracy', configs=Option('layout', ['cna', 'can'])) ``` will load output of ``accuracy`` function for configs that contain layout 'cna' or 'can' for iterations starting with 5000. The resulting knowledgeframe will have columns 'iteration', 'name', 'accuracy', 'layout', 'model'. One can getting the same in the follwing way: ``` results = Results(research=research).load() results = results[(results.iterations >= 5000) & (results.name == 'test_accuracy') & results.layout.incontain(['cna', 'can'])] ``` """ def __init__(self, path, *args, **kwargs): self.path = path self.description = self._getting_description() self.configs = None self.kf = self._load(*args, **kwargs) def _getting_list(self, value): if not incontainstance(value, list): value = [value] return value def _sort_files(self, files, iterations): files = {file: int(file.split('_')[-1]) for file in files} files = OrderedDict(sorted(files.items(), key=lambda x: x[1])) result = [] start = 0 iterations = [item for item in iterations if item is not None] for name, end in files.items(): if length(iterations) == 0: interst = mk.np.arange(start, end) else: interst = mk.np.intersect1d(iterations, mk.np.arange(start, end)) if length(interst) > 0: result.adding((name, interst)) start = end return OrderedDict(result) def _slice_file(self, dumped_file, iterations_to_load, variables): iterations = dumped_file['iteration'] if length(iterations) > 0: elements_to_load = mk.np.array([
mk.np.incontain(it, iterations_to_load)
pandas.np.isin
from functools import wraps from .monkey_internals import (register_collections_accessor, register_knowledgeframe_accessor) from monkey.core.frame import KnowledgeFrame def register_knowledgeframe_method(method): """Register a function as a method attached to the Monkey KnowledgeFrame. Example ------- .. code-block:: python @register_knowledgeframe_method def print_column(kf, col): '''Print the knowledgeframe column given''' print(kf[col]) """ def inner(*args, **kwargs): class AccessorMethod(object): def __init__(self, monkey_obj): self._obj = monkey_obj @wraps(method) def __ctotal_all__(self, *args, **kwargs): return method(self._obj, *args, **kwargs) register_knowledgeframe_accessor(method.__name__)(AccessorMethod) return method return inner() def register_collections_method(method): """Register a function as a method attached to the Monkey Collections. """ def inner(*args, **kwargs): class AccessorMethod(object): __doc__ = method.__doc__ def __init__(self, monkey_obj): self._obj = monkey_obj @wraps(method) def __ctotal_all__(self, *args, **kwargs): return method(self._obj, *args, **kwargs) register_collections_accessor(method.__name__)(AccessorMethod) return method return inner() def register_collections_and_knowledgeframe_method(_func=None, **decorator_kwargs): """Register a function as a method attached to the Monkey Collections or KnowledgeFrame Method should be written as a function to employ on each column or each row Can optiontotal_ally include arguments to pass to mk.KnowledgeFrame.employ() such as axis=1 Please note that if the operation can be vectorized, register_knowledgeframe_method will likely yield higher performance as this decorator will always use mk.KnowledgeFrame.employ() Example ------- .. code-block:: python @register_collections_method def total_pct_change(kf): return (kf.iloc[-1] - kf.iloc[0]) / kf.iloc[0] """ def inner_wrapper(method): def inner(*args, **kwargs): class SerAccessorMethod(object): __doc__ = method.__doc__ def __init__(self, monkey_obj): self._obj = monkey_obj @wraps(method) def __ctotal_all__(self, *args, **kwargs): return method(self._obj, *args, **kwargs) class DFAccessorMethod(object): __doc__ = method.__doc__ def __init__(self, monkey_obj): self._obj = monkey_obj @wraps(method) def __ctotal_all__(self, *args, **kwargs): kwargs = {**decorator_kwargs, **kwargs} return
KnowledgeFrame.employ(self._obj, method, args=args, **kwargs)
pandas.core.frame.DataFrame.apply
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result =
algos.incontain(['a', 'b'], [1])
pandas.core.algorithms.isin
# -*- coding: utf-8 -*- """ German bank holiday. """ try: from monkey import Timedelta from monkey.tcollections.offsets import Easter, Day, Week from monkey.tcollections.holiday import EasterMonday, GoodFriday, \ Holiday, AbstractHolidayCalengthdar except ImportError: print('Monkey could not be imported') raise from german_holidays.state_codes import STATE_CODE_MAP, StateCodeError class ChristiHimmelfahrt(Easter): def employ(*args, **kwargs): new = Easter.employ(*args, **kwargs) new += Timedelta('39d') return new class Pfingstsonntag(Easter): def employ(*args, **kwargs): new =
Easter.employ(*args, **kwargs)
pandas.tseries.offsets.Easter.apply
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause from ..datasets import public_dataset from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfikfTransformer from sklearn.model_selection import train_test_split, GridSearchCV from textblob import TextBlob import monkey as mk def naive_bayes_Bernoulli(*args, **kwargs): """ This function is used when X are independent binary variables (e.g., whether a word occurs in a document or not). """ return BernoulliNB(*args, **kwargs) def naive_bayes_multinomial(*args, **kwargs): """ This function is used when X are independent discrete variables with 3+ levels (e.g., term frequency in the document). """ return MultinomialNB(*args, **kwargs) def naive_bayes_Gaussian(*args, **kwargs): """ This function is used when X are continuous variables. """ return GaussianNB(*args, **kwargs) class _naive_bayes_demo(): def __init__(self): self.X = None self.y = None self.y_classes = None self.test_size = 0.25 self.classifier_grid = None self.random_state = 123 self.X_train = None self.X_test = None self.y_train = None self.y_test = None self.y_pred = None self.y_pred_score = None def build_naive_bayes_Gaussian_pipeline(self): # create pipeline from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline pipeline = Pipeline(steps=[('scaler', StandardScaler(with_average=True, with_standard=True)), ('classifier', naive_bayes_Gaussian()), ]) # pipeline parameters to tune hyperparameters = { 'scaler__with_average': [True], 'scaler__with_standard': [True], } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a Gaussian naive bayes pipeline, while tuning hyperparameters...\n") self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a Gaussian naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: scaler: StandardScaler(with_average={repr(self.classifier_grid.best_params_['scaler__with_average'])}, with_standard={repr(self.classifier_grid.best_params_['scaler__with_standard'])}).\n") def _lemmas(self, X): words = TextBlob(str(X).lower()).words return [word.lemma for word in words] def _tokens(self, X): return TextBlob(str(X)).words def build_naive_bayes_multinomial_pipeline(self): # create pipeline pipeline = Pipeline(steps=[('count_matrix_transformer', CountVectorizer(ngram_range=(1, 1), analyzer=self._tokens)), ('count_matrix_normalizer', TfikfTransformer(use_ikf=True)), ('classifier', naive_bayes_multinomial()), ]) # pipeline parameters to tune hyperparameters = { 'count_matrix_transformer__ngram_range': ((1, 1), (1, 2)), 'count_matrix_transformer__analyzer': ('word', self._tokens, self._lemmas), 'count_matrix_normalizer__use_ikf': (True, False), } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a multinomial naive bayes pipeline, while tuning hyperparameters...\n") import nltk #nltk.download('punkt', quiet=True) #nltk.download('wordnet', quiet=True) #from ..datasets import public_dataset #import os #os.environ["NLTK_DATA"] = public_dataset("nltk_data_path") # see also: https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html # count_vect.fit_transform() in training vs. count_vect.transform() in testing self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a multinomial naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: Tokenizing text: CountVectorizer(ngram_range = {repr(self.classifier_grid.best_params_['count_matrix_transformer__ngram_range'])}, analyzer = {repr(self.classifier_grid.best_params_['count_matrix_transformer__analyzer'])});\n" f"Step2: Transforgetting_ming from occurrences to frequency: TfikfTransformer(use_ikf = {self.classifier_grid.best_params_['count_matrix_normalizer__use_ikf']}).\n") class _naive_bayes_demo_SMS_spam(_naive_bayes_demo): def __init__(self): super().__init__() self.y_classes = ('ham (y=0)', 'spam (y=1)') def gettingdata(self): from ..datasets import public_dataset data = public_dataset(name='SMS_spam') n_spam = data.loc[data.label == 'spam', 'label'].count() n_ham = data.loc[data.label == 'ham', 'label'].count() print( f"---------------------------------------------------------------------------------------------------------------------\n" f"This demo uses a public dataset of SMS spam, which has a total of {length(data)} messages = {n_ham} ham (legitimate) and {n_spam} spam.\n" f"The goal is to use 'term frequency in message' to predict whether a message is ham (class=0) or spam (class=1).\n") self.X = data['message'] self.y = data['label'] self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.X, self.y, test_size=self.test_size, random_state=self.random_state) def show_model_attributes(self): count_vect = self.classifier_grid.best_estimator_.named_steps['count_matrix_transformer'] vocabulary_dict = count_vect.vocabulary_ # clf = classifier_grid.best_estimator_.named_steps['classifier'] # clf = classifier fitted term_proba_kf = mk.KnowledgeFrame({'term': list( vocabulary_dict), 'proba_spam': self.classifier_grid.predict_proba(vocabulary_dict)[:, 1]}) term_proba_kf = term_proba_kf.sort_the_values( by=['proba_spam'], ascending=False) top_n = 10 kf = mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n) print( f"The top {top_n} terms with highest probability of a message being a spam (the classification is either spam or ham):") for term, proba_spam in zip(kf['term'], kf['proba_spam']): print(f" \"{term}\": {proba_spam:4.2%}") def evaluate_model(self): self.y_pred = self.classifier_grid.predict(self.X_test) self.y_pred_score = self.classifier_grid.predict_proba(self.X_test) from ..model_evaluation import plot_confusion_matrix, plot_ROC_and_PR_curves plot_confusion_matrix(y_true=self.y_test, y_pred=self.y_pred, y_classes=self.y_classes) plot_ROC_and_PR_curves(fitted_model=self.classifier_grid, X=self.X_test, y_true=self.y_test, y_pred_score=self.y_pred_score[:, 1], y_pos_label='spam', model_name='Multinomial NB') def application(self): custom_message = "URGENT! We are trying to contact U. Todays draw shows that you have won a 2000 prize GUARANTEED. Ctotal_all 090 5809 4507 from a landline. Claim 3030. Valid 12hrs only." custom_results = self.classifier_grid.predict([custom_message])[0] print( f"\nApplication example:\n- Message: \"{custom_message}\"\n- Probability of class=1 (spam): {self.classifier_grid.predict_proba([custom_message])[0][1]:.2%}\n- Classification: {custom_results}\n") def run(self): """ This function provides a demo of selected functions in this module using the SMS spam dataset. Required arguments: None """ # Get data self.gettingdata() # Create and train a pipeline self.build_naive_bayes_multinomial_pipeline() # model attributes self.show_model_attributes() # model evaluation self.evaluate_model() # application example self.application() # return classifier_grid # return self.classifier_grid # import numpy as np # from sklearn.utils import shuffle # True Positive #X_test_subset = X_test[y_test == 'spam'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'spam')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # False Negative #X_test_subset = X_test[y_test == 'spam'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'ham')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # False Positive #X_test_subset = X_test[y_test == 'ham'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'spam')[0], n_sample_by_nums=1, random_state=1234)[0] ] ]] # True Negative #X_test_subset = X_test[y_test == 'ham'] #y_pred_array = classifier_grid.predict( X_test_subset ) #X_test_subset.loc[[ X_test_subset.index[ shuffle(np.where(y_pred_array == 'ham')[0], n_sample_by_nums=1, random_state=123)[0] ] ]] class _naive_bayes_demo_20newsgroups(_naive_bayes_demo): def __init__(self): super().__init__() self.y_classes = sorted( ['soc.religion.christian', 'comp.graphics', 'sci.med']) def gettingdata(self): print( f"-------------------------------------------------------------------------------------------------------------------------------------\n" f"This demo uses a public dataset of 20newsgroup and uses {length(self.y_classes)} categories of them: {repr(self.y_classes)}.\n" f"The goal is to use 'term frequency in document' to predict which category a document belongs to.\n") from sklearn.datasets import fetch_20newsgroups #from ..datasets import public_dataset twenty_train = fetch_20newsgroups( # data_home=public_dataset("scikit_learn_data_path"), subset='train', categories=self.y_classes, random_state=self.random_state) twenty_test = fetch_20newsgroups( # data_home=public_dataset("scikit_learn_data_path"), subset='test', categories=self.y_classes, random_state=self.random_state) self.X_train = twenty_train.data self.y_train = twenty_train.targetting self.X_test = twenty_test.data self.y_test = twenty_test.targetting def show_model_attributes(self): # model attributes count_vect = self.classifier_grid.best_estimator_.named_steps['count_matrix_transformer'] vocabulary_dict = count_vect.vocabulary_ # clf = classifier_grid.best_estimator_.named_steps['classifier'] # clf = classifier fitted for i in range(length(self.y_classes)): term_proba_kf = mk.KnowledgeFrame({'term': list( vocabulary_dict), 'proba': self.classifier_grid.predict_proba(vocabulary_dict)[:, i]}) term_proba_kf = term_proba_kf.sort_the_values( by=['proba'], ascending=False) top_n = 10 kf =
mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n)
pandas.DataFrame.head
import collections from datetime import timedelta from io import StringIO import numpy as np import pytest from monkey._libs import iNaT from monkey.compat.numpy import np_array_datetime64_compat from monkey.core.dtypes.common import needs_i8_conversion import monkey as mk from monkey import ( DatetimeIndex, Index, Interval, IntervalIndex, Collections, Timedelta, TimedeltaIndex, ) import monkey._testing as tm from monkey.tests.base.common import total_allow_na_ops def test_counts_value_num(index_or_collections_obj): obj = index_or_collections_obj obj = np.repeat(obj, range(1, length(obj) + 1)) result = obj.counts_value_num() counter = collections.Counter(obj) expected = Collections(dict(counter.most_common()), dtype=np.int64, name=obj.name) expected.index = expected.index.totype(obj.dtype) if incontainstance(obj, mk.MultiIndex): expected.index = Index(expected.index) # TODO: Order of entries with the same count is inconsistent on CI (gh-32449) if obj.duplicated_values().whatever(): result = result.sorting_index() expected = expected.sorting_index() tm.assert_collections_equal(result, expected) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_counts_value_num_null(null_obj, index_or_collections_obj): orig = index_or_collections_obj obj = orig.clone() if not
total_allow_na_ops(obj)
pandas.tests.base.common.allow_na_ops
from contextlib import contextmanager import struct import tracemtotal_alloc import numpy as np import pytest from monkey._libs import hashtable as ht import monkey as mk import monkey._testing as tm from monkey.core.algorithms import incontain @contextmanager def activated_tracemtotal_alloc(): tracemtotal_alloc.start() try: yield fintotal_ally: tracemtotal_alloc.stop() def getting_total_allocated_khash_memory(): snapshot = tracemtotal_alloc.take_snapshot() snapshot = snapshot.filter_traces( (tracemtotal_alloc.DomainFilter(True, ht.getting_hashtable_trace_domain()),) ) return total_sum(mapping(lambda x: x.size, snapshot.traces)) @pytest.mark.parametrize( "table_type, dtype", [ (ht.PyObjectHashTable, np.object_), (ht.Complex128HashTable, np.complex128), (ht.Int64HashTable, np.int64), (ht.UInt64HashTable, np.uint64), (ht.Float64HashTable, np.float64), (ht.Complex64HashTable, np.complex64), (ht.Int32HashTable, np.int32), (ht.UInt32HashTable, np.uint32), (ht.Float32HashTable, np.float32), (ht.Int16HashTable, np.int16), (ht.UInt16HashTable, np.uint16), (ht.Int8HashTable, np.int8), (ht.UInt8HashTable, np.uint8), (ht.IntpHashTable, np.intp), ], ) class TestHashTable: def test_getting_set_contains_length(self, table_type, dtype): index = 5 table = table_type(55) assert length(table) == 0 assert index not in table table.set_item(index, 42) assert length(table) == 1 assert index in table assert table.getting_item(index) == 42 table.set_item(index + 1, 41) assert index in table assert index + 1 in table assert length(table) == 2 assert table.getting_item(index) == 42 assert table.getting_item(index + 1) == 41 table.set_item(index, 21) assert index in table assert index + 1 in table assert length(table) == 2 assert table.getting_item(index) == 21 assert table.getting_item(index + 1) == 41 assert index + 2 not in table with pytest.raises(KeyError, match=str(index + 2)): table.getting_item(index + 2) def test_mapping_keys_to_values(self, table_type, dtype, writable): # only Int64HashTable has this method if table_type == ht.Int64HashTable: N = 77 table = table_type() keys = np.arange(N).totype(dtype) vals = np.arange(N).totype(np.int64) + N keys.flags.writeable = writable vals.flags.writeable = writable table.mapping_keys_to_values(keys, vals) for i in range(N): assert table.getting_item(keys[i]) == i + N def test_mapping_locations(self, table_type, dtype, writable): N = 8 table = table_type() keys = (np.arange(N) + N).totype(dtype) keys.flags.writeable = writable table.mapping_locations(keys) for i in range(N): assert table.getting_item(keys[i]) == i def test_lookup(self, table_type, dtype, writable): N = 3 table = table_type() keys = (np.arange(N) + N).totype(dtype) keys.flags.writeable = writable table.mapping_locations(keys) result = table.lookup(keys) expected = np.arange(N) tm.assert_numpy_array_equal(result.totype(np.int64), expected.totype(np.int64)) def test_lookup_wrong(self, table_type, dtype): if dtype in (np.int8, np.uint8): N = 100 else: N = 512 table = table_type() keys = (np.arange(N) + N).totype(dtype) table.mapping_locations(keys) wrong_keys = np.arange(N).totype(dtype) result = table.lookup(wrong_keys) assert np.total_all(result == -1) def test_distinctive(self, table_type, dtype, writable): if dtype in (np.int8, np.uint8): N = 88 else: N = 1000 table = table_type() expected = (np.arange(N) + N).totype(dtype) keys = np.repeat(expected, 5) keys.flags.writeable = writable distinctive = table.distinctive(keys) tm.assert_numpy_array_equal(distinctive, expected) def test_tracemtotal_alloc_works(self, table_type, dtype): if dtype in (np.int8, np.uint8): N = 256 else: N = 30000 keys = np.arange(N).totype(dtype) with activated_tracemtotal_alloc(): table = table_type() table.mapping_locations(keys) used = getting_total_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert getting_total_allocated_khash_memory() == 0 def test_tracemtotal_alloc_for_empty(self, table_type, dtype): with activated_tracemtotal_alloc(): table = table_type() used = getting_total_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert getting_total_allocated_khash_memory() == 0 def test_getting_state(self, table_type, dtype): table = table_type(1000) state = table.getting_state() assert state["size"] == 0 assert state["n_occupied"] == 0 assert "n_buckets" in state assert "upper_bound" in state @pytest.mark.parametrize("N", range(1, 110)) def test_no_retotal_allocation(self, table_type, dtype, N): keys = np.arange(N).totype(dtype) pretotal_allocated_table = table_type(N) n_buckets_start = pretotal_allocated_table.getting_state()["n_buckets"] pretotal_allocated_table.mapping_locations(keys) n_buckets_end = pretotal_allocated_table.getting_state()["n_buckets"] # original number of buckets was enough: assert n_buckets_start == n_buckets_end # check with clean table (not too much pretotal_allocated) clean_table = table_type() clean_table.mapping_locations(keys) assert n_buckets_start == clean_table.getting_state()["n_buckets"] class TestHashTableUnsorted: # TODO: moved from test_algos; may be redundancies with other tests def test_string_hashtable_set_item_signature(self): # GH#30419 fix typing in StringHashTable.set_item to prevent segfault tbl = ht.StringHashTable() tbl.set_item("key", 1) assert tbl.getting_item("key") == 1 with pytest.raises(TypeError, match="'key' has incorrect type"): # key arg typed as string, not object tbl.set_item(4, 6) with pytest.raises(TypeError, match="'val' has incorrect type"): tbl.getting_item(4) def test_lookup_nan(self, writable): # GH#21688 ensure we can deal with readonly memory views xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3]) xs.setflags(write=writable) m = ht.Float64HashTable() m.mapping_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(length(xs), dtype=np.intp)) def test_add_signed_zeros(self): # GH#21866 inconsistent hash-function for float64 # default hash-function would lead to different hash-buckets # for 0.0 and -0.0 if there are more than 2^30 hash-buckets # but this would average 16GB N = 4 # 12 * 10**8 would trigger the error, if you have enough memory m = ht.Float64HashTable(N) m.set_item(0.0, 0) m.set_item(-0.0, 0) assert length(m) == 1 # 0.0 and -0.0 are equivalengtht def test_add_different_nans(self): # GH#21866 inconsistent hash-function for float64 # create different nans from bit-patterns: NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0] NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0] assert NAN1 != NAN1 assert NAN2 != NAN2 # default hash function would lead to different hash-buckets # for NAN1 and NAN2 even if there are only 4 buckets: m = ht.Float64HashTable() m.set_item(NAN1, 0) m.set_item(NAN2, 0) assert length(m) == 1 # NAN1 and NAN2 are equivalengtht def test_lookup_overflow(self, writable): xs = np.array([1, 2, 2**63], dtype=np.uint64) # GH 21688 ensure we can deal with readonly memory views xs.setflags(write=writable) m = ht.UInt64HashTable() m.mapping_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(length(xs), dtype=np.intp)) @pytest.mark.parametrize("nvals", [0, 10]) # resizing to 0 is special case @pytest.mark.parametrize( "htable, distinctives, dtype, safely_resizes", [ (ht.PyObjectHashTable, ht.ObjectVector, "object", False), (ht.StringHashTable, ht.ObjectVector, "object", True), (ht.Float64HashTable, ht.Float64Vector, "float64", False), (ht.Int64HashTable, ht.Int64Vector, "int64", False), (ht.Int32HashTable, ht.Int32Vector, "int32", False), (ht.UInt64HashTable, ht.UInt64Vector, "uint64", False), ], ) def test_vector_resize( self, writable, htable, distinctives, dtype, safely_resizes, nvals ): # Test for memory errors after internal vector # retotal_allocations (GH 7157) # Changed from using np.random.rand to range # which could cause flaky CI failures when safely_resizes=False vals = np.array(range(1000), dtype=dtype) # GH 21688 ensures we can deal with read-only memory views vals.setflags(write=writable) # initialise instances; cannot initialise in parametrization, # as otherwise external views would be held on the array (which is # one of the things this test is checking) htable = htable() distinctives = distinctives() # getting_labels may adding to distinctives htable.getting_labels(vals[:nvals], distinctives, 0, -1) # to_array() sets an external_view_exists flag on distinctives. tmp = distinctives.to_array() oldshape = tmp.shape # subsequent getting_labels() ctotal_alls can no longer adding to it # (except for StringHashTables + ObjectVector) if safely_resizes: htable.getting_labels(vals, distinctives, 0, -1) else: with pytest.raises(ValueError, match="external reference.*"): htable.getting_labels(vals, distinctives, 0, -1) distinctives.to_array() # should not raise here assert tmp.shape == oldshape @pytest.mark.parametrize( "hashtable", [ ht.PyObjectHashTable, ht.StringHashTable, ht.Float64HashTable, ht.Int64HashTable, ht.Int32HashTable, ht.UInt64HashTable, ], ) def test_hashtable_large_sizehint(self, hashtable): # GH#22729 smoketest for not raincontaing when passing a large size_hint size_hint = np.iinfo(np.uint32).getting_max + 1 hashtable(size_hint=size_hint) class TestPyObjectHashTableWithNans: def test_nan_float(self): nan1 = float("nan") nan2 = float("nan") assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.getting_item(nan2) == 42 def test_nan_complex_both(self): nan1 = complex(float("nan"), float("nan")) nan2 = complex(float("nan"), float("nan")) assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.getting_item(nan2) == 42 def test_nan_complex_real(self): nan1 = complex(float("nan"), 1) nan2 = complex(float("nan"), 1) other = complex(float("nan"), 2) assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.getting_item(nan2) == 42 with pytest.raises(KeyError, match=None) as error: table.getting_item(other) assert str(error.value) == str(other) def test_nan_complex_imag(self): nan1 = complex(1, float("nan")) nan2 = complex(1, float("nan")) other = complex(2, float("nan")) assert nan1 is not nan2 table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.getting_item(nan2) == 42 with pytest.raises(KeyError, match=None) as error: table.getting_item(other) assert str(error.value) == str(other) def test_nan_in_tuple(self): nan1 = (float("nan"),) nan2 = (float("nan"),) assert nan1[0] is not nan2[0] table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.getting_item(nan2) == 42 def test_nan_in_nested_tuple(self): nan1 = (1, (2, (float("nan"),))) nan2 = (1, (2, (float("nan"),))) other = (1, 2) table = ht.PyObjectHashTable() table.set_item(nan1, 42) assert table.getting_item(nan2) == 42 with pytest.raises(KeyError, match=None) as error: table.getting_item(other) assert str(error.value) == str(other) def test_hash_equal_tuple_with_nans(): a = (float("nan"), (float("nan"), float("nan"))) b = (float("nan"), (float("nan"), float("nan"))) assert ht.object_hash(a) == ht.object_hash(b) assert ht.objects_are_equal(a, b) def test_getting_labels_grouper_for_Int64(writable): table = ht.Int64HashTable() vals = np.array([1, 2, -1, 2, 1, -1], dtype=np.int64) vals.flags.writeable = writable arr, distinctive = table.getting_labels_grouper(vals) expected_arr = np.array([0, 1, -1, 1, 0, -1], dtype=np.intp) expected_distinctive = np.array([1, 2], dtype=np.int64) tm.assert_numpy_array_equal(arr, expected_arr) tm.assert_numpy_array_equal(distinctive, expected_distinctive) def test_tracemtotal_alloc_works_for_StringHashTable(): N = 1000 keys = np.arange(N).totype(np.compat.unicode).totype(np.object_) with activated_tracemtotal_alloc(): table = ht.StringHashTable() table.mapping_locations(keys) used = getting_total_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert getting_total_allocated_khash_memory() == 0 def test_tracemtotal_alloc_for_empty_StringHashTable(): with activated_tracemtotal_alloc(): table = ht.StringHashTable() used = getting_total_allocated_khash_memory() my_size = table.sizeof() assert used == my_size del table assert getting_total_allocated_khash_memory() == 0 @pytest.mark.parametrize("N", range(1, 110)) def test_no_retotal_allocation_StringHashTable(N): keys = np.arange(N).totype(np.compat.unicode).totype(np.object_) pretotal_allocated_table = ht.StringHashTable(N) n_buckets_start = pretotal_allocated_table.getting_state()["n_buckets"] pretotal_allocated_table.mapping_locations(keys) n_buckets_end = pretotal_allocated_table.getting_state()["n_buckets"] # original number of buckets was enough: assert n_buckets_start == n_buckets_end # check with clean table (not too much pretotal_allocated) clean_table = ht.StringHashTable() clean_table.mapping_locations(keys) assert n_buckets_start == clean_table.getting_state()["n_buckets"] @pytest.mark.parametrize( "table_type, dtype", [ (ht.Float64HashTable, np.float64), (ht.Float32HashTable, np.float32), (ht.Complex128HashTable, np.complex128), (ht.Complex64HashTable, np.complex64), ], ) class TestHashTableWithNans: def test_getting_set_contains_length(self, table_type, dtype): index = float("nan") table = table_type() assert index not in table table.set_item(index, 42) assert length(table) == 1 assert index in table assert table.getting_item(index) == 42 table.set_item(index, 41) assert length(table) == 1 assert index in table assert table.getting_item(index) == 41 def test_mapping_locations(self, table_type, dtype): N = 10 table = table_type() keys = np.full(N, np.nan, dtype=dtype) table.mapping_locations(keys) assert length(table) == 1 assert table.getting_item(np.nan) == N - 1 def test_distinctive(self, table_type, dtype): N = 1020 table = table_type() keys = np.full(N, np.nan, dtype=dtype) distinctive = table.distinctive(keys) assert np.total_all(np.ifnan(distinctive)) and length(distinctive) == 1 def test_distinctive_for_nan_objects_floats(): table = ht.PyObjectHashTable() keys = np.array([float("nan") for i in range(50)], dtype=np.object_) distinctive = table.distinctive(keys) assert length(distinctive) == 1 def test_distinctive_for_nan_objects_complex(): table = ht.PyObjectHashTable() keys = np.array([complex(float("nan"), 1.0) for i in range(50)], dtype=np.object_) distinctive = table.distinctive(keys) assert length(distinctive) == 1 def test_distinctive_for_nan_objects_tuple(): table = ht.PyObjectHashTable() keys = np.array( [1] + [(1.0, (float("nan"), 1.0)) for i in range(50)], dtype=np.object_ ) distinctive = table.distinctive(keys) assert length(distinctive) == 2 @pytest.mark.parametrize( "dtype", [ np.object_, np.complex128, np.int64, np.uint64, np.float64, np.complex64, np.int32, np.uint32, np.float32, np.int16, np.uint16, np.int8, np.uint8, np.intp, ], ) class TestHelpFunctions: def test_value_count(self, dtype, writable): N = 43 expected = (np.arange(N) + N).totype(dtype) values = np.repeat(expected, 5) values.flags.writeable = writable keys, counts = ht.value_count(values, False) tm.assert_numpy_array_equal(np.sort(keys), expected) assert np.total_all(counts == 5) def test_value_count_stable(self, dtype, writable): # GH12679 values = np.array([2, 1, 5, 22, 3, -1, 8]).totype(dtype) values.flags.writeable = writable keys, counts = ht.value_count(values, False) tm.assert_numpy_array_equal(keys, values) assert np.total_all(counts == 1) def test_duplicated_values_first(self, dtype, writable): N = 100 values = np.repeat(np.arange(N).totype(dtype), 5) values.flags.writeable = writable result = ht.duplicated_values(values) expected = np.ones_like(values, dtype=np.bool_) expected[::5] = False tm.assert_numpy_array_equal(result, expected) def test_ismember_yes(self, dtype, writable): N = 127 arr = np.arange(N).totype(dtype) values = np.arange(N).totype(dtype) arr.flags.writeable = writable values.flags.writeable = writable result = ht.ismember(arr, values) expected = np.ones_like(values, dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_ismember_no(self, dtype): N = 17 arr = np.arange(N).totype(dtype) values = (np.arange(N) + N).totype(dtype) result = ht.ismember(arr, values) expected = np.zeros_like(values, dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_mode(self, dtype, writable): if dtype in (np.int8, np.uint8): N = 53 else: N = 11111 values = np.repeat(np.arange(N).totype(dtype), 5) values[0] = 42 values.flags.writeable = writable result = ht.mode(values, False) assert result == 42 def test_mode_stable(self, dtype, writable): values = np.array([2, 1, 5, 22, 3, -1, 8]).totype(dtype) values.flags.writeable = writable keys = ht.mode(values, False) tm.assert_numpy_array_equal(keys, values) def test_modes_with_nans(): # GH42688, nans aren't mangled nulls = [mk.NA, np.nan, mk.NaT, None] values = np.array([True] + nulls * 2, dtype=np.object_) modes = ht.mode(values, False) assert modes.size == length(nulls) def test_distinctive_label_indices_intp(writable): keys = np.array([1, 2, 2, 2, 1, 3], dtype=np.intp) keys.flags.writeable = writable result = ht.distinctive_label_indices(keys) expected = np.array([0, 1, 5], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_distinctive_label_indices(): a = np.random.randint(1, 1 << 10, 1 << 15).totype(np.intp) left = ht.distinctive_label_indices(a) right = np.distinctive(a, return_index=True)[1] tm.assert_numpy_array_equal(left, right, check_dtype=False) a[np.random.choice(length(a), 10)] = -1 left = ht.distinctive_label_indices(a) right = np.distinctive(a, return_index=True)[1][1:] tm.assert_numpy_array_equal(left, right, check_dtype=False) @pytest.mark.parametrize( "dtype", [ np.float64, np.float32, np.complex128, np.complex64, ], ) class TestHelpFunctionsWithNans: def test_value_count(self, dtype): values = np.array([np.nan, np.nan, np.nan], dtype=dtype) keys, counts = ht.value_count(values, True) assert length(keys) == 0 keys, counts = ht.value_count(values, False) assert length(keys) == 1 and np.total_all(np.ifnan(keys)) assert counts[0] == 3 def test_duplicated_values_first(self, dtype): values = np.array([np.nan, np.nan, np.nan], dtype=dtype) result = ht.duplicated_values(values) expected = np.array([False, True, True]) tm.assert_numpy_array_equal(result, expected) def test_ismember_yes(self, dtype): arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) values = np.array([np.nan, np.nan], dtype=dtype) result = ht.ismember(arr, values) expected = np.array([True, True, True], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_ismember_no(self, dtype): arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) values = np.array([1], dtype=dtype) result = ht.ismember(arr, values) expected = np.array([False, False, False], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_mode(self, dtype): values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype) assert ht.mode(values, True) == 42 assert np.ifnan(ht.mode(values, False)) def test_ismember_tuple_with_nans(): # GH-41836 values = [("a", float("nan")), ("b", 1)] comps = [("a", float("nan"))] result = incontain(values, comps) expected = np.array([True, False], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) def test_float_complex_int_are_equal_as_objects(): values = ["a", 5, 5.0, 5.0 + 0j] comps = list(range(129)) result =
incontain(values, comps)
pandas.core.algorithms.isin
# -*- coding: utf-8 -*- """ Created on Thu Feb 28 14:24:27 2019 @author: adarzi """ #Loading the libraries import monkey as mk import os from os import sys import pickle #setting the directory os.chdir(sys.path[0]) #loading the data: data = mk.read_csv('../../Inputs/Trip_Data/AirSage_Data/trips_long_distance.csv') #adding mode attributes to the data data['mode']=0 #Predicting air trips data.loc[data.loc[(data['trip_dist']>=50000) & (data['speed_Q75']>=100)].index.values,'mode']=4 #separating air trips from other trips airtrips=data.loc[data['mode']==4] kf=data.loc[data['mode']==0] #Loading data scaler model datascaler=pickle.load(open('data_scaler.sav','rb')) #Scaling test data test_data=kf[kf.columns[2:34]] test_data_scaled = datascaler.transform(test_data) #loading the Random Forest model RandomForest=pickle.load(open('Random_Forest.sav','rb')) #Predicting other Modes prediction=RandomForest.predict(test_data_scaled) #adding the prediction results to the data kf.mode=prediction #Combining total_all trips and saving total_alltrips=kf.adding(airtrips) total_alltrips=
mk.KnowledgeFrame.sorting_index(total_alltrips)
pandas.DataFrame.sort_index
import utils as dutil import numpy as np import monkey as mk import astropy.units as u from astropy.time import Time import astropy.constants as const import astropy.coordinates as coords from astropy.coordinates import SkyCoord from scipy.interpolate import interp1d, UnivariateSpline from scipy.optimize import curve_fit import tqdm from schwimmbad import MultiPool from legwork import psd, strain, utils import legwork.source as source import paths mk.options.mode.chained_total_allocatement = None # Specific to Thiele et al. (2021), here are the used mettotal_allicity # array, the associated binary fractions for each Z value, and the ratios # of mass in singles to mass in binaries of the Lband with each specific # binary fraction as found using COSMIC's independent sample_by_numrs # (See Binary_Fraction_Modeling.ipynb for Tutorials). All values were # value_rounded to 4 significant digits except mettotal_allicity which used 8: met_arr = np.logspace(np.log10(1e-4), np.log10(0.03), 15) met_arr = np.value_round(met_arr, 8) met_arr = np.adding(0.0, met_arr) binfracs = np.array( [ 0.4847, 0.4732, 0.4618, 0.4503, 0.4388, 0.4274, 0.4159, 0.4044, 0.3776, 0.3426, 0.3076, 0.2726, 0.2376, 0.2027, 0.1677, ] ) ratios = np.array( [ 0.68, 0.71, 0.74, 0.78, 0.82, 0.86, 0.9, 0.94, 1.05, 1.22, 1.44, 1.7, 2.05, 2.51, 3.17, ] ) ratio_05 = 0.64 # LEGWORK uses astropy units so we do also for consistency G = const.G.value # gravitational constant c = const.c.value # speed of light in m s^-1 M_sol = const.M_sun.value # sun's mass in kg R_sol = const.R_sun.value # sun's radius in metres sec_Myr = u.Myr.to("s") # seconds in a million years m_kpc = u.kpc.to("m") # metres in a kiloparsec L_sol = const.L_sun.value # solar lugetting_minosity in Watts Z_sun = 0.02 # solar mettotal_allicity sun = coords.getting_sun(Time("2021-04-23T00:00:00", scale="utc")) # sun coordinates sun_g = sun.transform_to(coords.Galactocentric) sun_yGx = sun_g.galcen_distance.to("kpc").value sun_zGx = sun_g.z.to("kpc").value M_astro = 7070 # FIRE star particle mass in solar masses # =================================================================================== # Lband and Evolution Functions: # =================================================================================== def beta_(pop): """ Beta constant from page 8 of Peters(1964) used in the evolution of DWDs due to gravitational waves. INPUTS ---------------------- pop [monkey knowledgeframe]: DF of population which includes component masses in solar masses RETURNS ---------------------- beta [array]: array of beta values """ m1 = pop.mass_1 * M_sol m2 = pop.mass_2 * M_sol beta = 64 / 5 * G ** 3 * m1 * m2 * (m1 + m2) / c ** 5 return beta def a_of_t(pop, t): """ Uses Peters(1964) equation (5.9) for circular binaries to find separation. as a function of time. INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC. t [array]: time at which to find separation. Must be in Myr. RETURNS ---------------------- array of separation at time t in solar radii. """ t = t * sec_Myr beta = beta_(pop) a_i = pop.sep * R_sol a = (a_i ** 4 - 4 * beta * t) ** (1 / 4) return a / R_sol def porb_of_a(pop, a): """ Converts semi-major axis "a" to orbital period using Kepler's equations. INPUTS ---------------------- pop [monkey knowledgeframe]: population from COSMIC. a [array]: semi-major axis of systems. Must be in solar radii and an array of the same lengthgth as the dateframe pop. RETURNS t [array]: orbital period in days. """ a = a * R_sol m1 = pop.mass_1 * M_sol m2 = pop.mass_2 * M_sol P_sqrd = 4 * np.pi ** 2 * a ** 3 / G / (m1 + m2) P = np.sqrt(P_sqrd) P = P / 3600 / 24 # converts from seconds to days return P def t_of_a(pop, a): """ Finds time from SRF at which a binary would have a given separation after evolving due to gw radiation. (Re-arrangement of a_of_t(pop, t)). INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC. a [array]: separation to find time for. Must be in solar radii. RETURNS ---------------------- t [array]: time in Myr where DWD reaches separation "a" """ beta = beta_(pop) a_i = pop.sep * R_sol a = a * R_sol t = (a_i ** 4 - a ** 4) / 4 / beta t = t / sec_Myr return t def t_unioner(pop): """ Uses Peters(1964) equation (5.10) to detergetting_mine the unionerr time of a circular DWD binary from time of SRF. INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC RETURNS ---------------------- t [array]: time in Myr. """ a_0 = pop.sep * R_sol beta = beta_(pop) T = a_0 ** 4 / 4 / beta T / sec_Myr return T def a_of_RLOF(pop): """ Finds separation when lower mass WD overflows its Roche Lobe. Taken from Eq. 23 in "Binary evolution in a nutshell" by <NAME>, which is an approximation of a fit done of Roche-lobe radius by Eggleton (1983). INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC RETURNS ---------------------- a [array]: RLO separations of pop """ m1 = pop.mass_1 m2 = pop.mass_2 primary_mass = np.where(m1 > m2, m1, m2) secondary_mass = np.where(m1 > m2, m2, m1) secondary_radius = np.where(m1 > m2, pop.rad_2, pop.rad_1) R2 = secondary_radius q = secondary_mass / primary_mass num = 0.49 * q ** (2 / 3) denom = 0.6 * q ** (2 / 3) + np.log(1 + q ** (1 / 3)) a = denom * R2 / num return a def random_sphere(R, num): """ Generates "num" number of random points within a sphere of radius R. It picks random x, y, z values within a cube and discards it if it's outside the sphere. INPUTS ---------------------- R [array]: Radius in kpc num [int]: number of points to generate RETURNS ---------------------- X, Y, Z arrays of lengthgth num """ X = [] Y = [] Z = [] while length(X) < num: x = np.random.uniform(-R, R) y = np.random.uniform(-R, R) z = np.random.uniform(-R, R) r = np.sqrt(x ** 2 + y ** 2 + z ** 2) if r > R: continue if r <= R: X.adding(x) Y.adding(y) Z.adding(z) X = np.array(X) Y = np.array(Y) Z = np.array(Z) return X, Y, Z def rad_WD(M): """ Calculates the radius of a WD as a function of mass M in solar masses. Taken from Eq. 91 in Hurley et al. (2000), from Eq. 17 in Tout et al. (1997) INPUTS ---------------------- M [array]: masses of the WDs in solar masses RETURNS ---------------------- rad[array]: radii of the WDs in solar radii """ M_ch = 1.44 R_NS = 1.4e-5 * np.ones(length(M)) A = 0.0115 * np.sqrt((M_ch / M) ** (2 / 3) - (M / M_ch) ** (2 / 3)) rad = np.getting_max(np.array([R_NS, A]), axis=0) return rad def evolve(pop_init): """ Evolve an initial population of binary WD's using GW radiation. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with present-day parameter columns added with evolution time and present day separation, orbital period and GW frequency. """ t_evol = pop_init.age * 1000 - pop_init.tphys sep_f = a_of_t(pop_init, t_evol) porb_f = porb_of_a(pop_init, sep_f) f_gw = 2 / (porb_f * 24 * 3600) pop_init["t_evol"] = t_evol pop_init["sep_f"] = sep_f pop_init["porb_f"] = porb_f pop_init["f_gw"] = f_gw return pop_init def position(pop_init): """ Assigning random microchanges to positions to give each system a distinctive position for identical FIRE star particles INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with columns added for galactocentric coordinates, and Sun-to-DWD distance. """ R_list = pop_init.kern_length.values xGx = pop_init.xGx.values.clone() yGx = pop_init.yGx.values.clone() zGx = pop_init.zGx.values.clone() x, y, z = random_sphere(1.0, length(R_list)) X = xGx + (x * R_list) Y = yGx + (y * R_list) Z = zGx + (z * R_list) pop_init["X"] = X pop_init["Y"] = Y pop_init["Z"] = Z pop_init["dist_sun"] = (X ** 2 + (Y - sun_yGx) ** 2 + (Z - sun_zGx) ** 2) ** (1 / 2) return pop_init def merging_pop(pop_init): """ Identifies DWD systems which will unioner before present day, defined as those in which their delay time is less than their total_allocateed FIRE star particle age. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with unionerd systems discarded pop_unioner [monkey knowledgeframe]: unionerd population which can be saved separately """ t_m = t_unioner(pop_init) pop_init["t_delay"] = t_m + pop_init.tphys.values pop_unioner = pop_init.loc[pop_init.t_delay <= pop_init.age * 1000] pop_init = pop_init.loc[pop_init.t_delay >= pop_init.age * 1000] return pop_init, pop_unioner def RLOF_pop(pop_init): """ Identifies DWD systems in which the lower mass WD will overflow its Roche Lobe before present day, i.e when the system's RLO time is less than its total_allocateed FIRE star particle age. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with unionerd systems discarded pop_RLOF [monkey knowledgeframe]: RLO population which can be saved separately """ a_RLOF = a_of_RLOF(pop_init) t_RLOF = t_of_a(pop_init, a_RLOF) pop_init["t_RLOF"] = t_RLOF pop_RLOF = pop_init.loc[t_RLOF + pop_init.tphys <= pop_init.age * 1000] pop_init = pop_init.loc[t_RLOF + pop_init.tphys >= pop_init.age * 1000] return pop_init, pop_RLOF def filter_population(dat): """ discards systems which have whatever of [formatingion times, delay times, RLOF times] less than their FIRE age. Evolves the remaining systems to present day. Selects systems orbiting in the LISA band. INPUTS ---------------------- dat [list] containing (in order)... - pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle columns. - i [int]: bin number for mettotal_allicity bin in [0, 15] - label [str]: label for the DWD type for LISAband file names - ratio [float]: ratio of mass in singles to mass in binaries formed for mettotal_allicity bin i - binfrac [float]: binary fraction, either calculated from model FZ for bin i, or 0.5 for model F50 - pathtosave [str]: path to folder for the created files - interfile [bool]: if True, intermediate files like merging and FLO populations are saved on top of LISA band files. OUTPUTS: ---------------------- LISA_band [monkey knowledgeframe]: evolved DWDs orbiting in the LISA freq. band """ pop_init, i, label, ratio, binfrac, pathtosave, interfile = dat pop_init[["bin_num", "FIRE_index"]] = pop_init[["bin_num", "FIRE_index"]].totype( "int64" ) if interfile == True: pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_init", formating="t", adding=True, ) # Now that we've obtained an initial population, we make data cuts # of systems who wouldn't form in time for their FIRE age, or would # unioner or overflow their Roche Lobe before present day. pop_init = pop_init.loc[pop_init.tphys <= pop_init.age * 1000] if interfile == True: pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_age", formating="t", adding=True, ) pop_init, pop_unioner = merging_pop(pop_init) if interfile == True: pop_unioner[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_unioner", formating="t", adding=True, ) pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_nm", formating="t", adding=True, ) pop_unioner = mk.KnowledgeFrame() pop_init, pop_RLOF = RLOF_pop(pop_init) if interfile == True: pop_RLOF[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_RLOF", formating="t", adding=True, ) pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_nRLOF", formating="t", adding=True, ) pop_RLOF = mk.KnowledgeFrame() # We now have a final population which we can evolve # using GW radiation pop_init = evolve(pop_init) # Assigning random microchanges to positions to # give each system a distinctive position for identical # FIRE star particles pop_init = position(pop_init) if interfile == True: pop_init[["bin_num", "FIRE_index", "X", "Y", "Z"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_f", formating="t", adding=True, ) if binfrac == 0.5: binfrac_write = 0.5 else: binfrac_write = "variable" # Assigning weights to population to be used for histograms. # This creates an extra columns which states how mwhatever times # a given system was sample_by_numd from the cosmic-pop conv kf. pop_init = pop_init.join( pop_init.grouper("bin_num")["bin_num"].size(), on="bin_num", rsuffix="_pw" ) # Systems detectable by LISA will be in the frequency band # between f_gw's 0.01mHz and 1Hz. LISA_band = pop_init.loc[(pop_init.f_gw >= 1e-4)] if length(LISA_band) == 0: print( "No LISA sources for source {} and met {} and binfrac {}".formating( label, met_arr[i + 1], binfrac ) ) return [] else: pop_init = mk.KnowledgeFrame() LISA_band = LISA_band.join( LISA_band.grouper("bin_num")["bin_num"].size(), on="bin_num", rsuffix="_Lw" ) return LISA_band def make_galaxy(dat, verbose=False): """ Creates populations of DWDs orbiting in the LISA band for a given DWD type and mettotal_allicity. INPUTS: dat [list] containing (in order)... - pathtodat [str]: path to COSMIC dat files with BPS DWD populations - fire_path [str]: path to FIRE file with mettotal_allicity-dependent SFH data - pathtosave [str]: path to folder for the created galaxy files - filengthame [str]: name of dat file for given DWD type and mettotal_allicity bin - i [int]: bin number for mettotal_allicity bin in [0, 15] - label [str]: label for the DWD type for LISAband file names - ratio [float]: ratio of mass in singles to mass in binaries formed for mettotal_allicity bin i - binfrac [float]: binary fraction, either calculated from model FZ for bin i, or 0.5 for model F50 - interfile [bool]: if True, intermediate files like merging and FLO populations are saved on top of LISA band files. - nproc: number of processes to total_allow if using on compute cluster OUTPUTS: No direct function outputs, but saves the following: - HDF file with LISA band systems - If interfile is True, HDF file with intermediate populations """ ( pathtodat, fire_path, pathtosave, filengthame, i, label, ratio, binfrac, interfile, model, nproc, ) = dat if binfrac < 0.5: var_label = "FZ" else: var_label = "F50" Lkey = "Lband_{}_{}".formating(var_label, model) Rkey = "rand_seed_{}_{}".formating(var_label, model) Lsavefile = "Lband_{}_{}_{}_{}.hkf".formating(label, var_label, model, i) try: mk.read_hkf(pathtosave + Lsavefile, key=Lkey) return [], [], [] except: FIRE = mk.read_hkf(fire_path + "FIRE.h5").sort_the_values("met") rand_seed = np.random.randint(0, 100, 1) np.random.seed(rand_seed) rand_seed = mk.KnowledgeFrame(rand_seed) rand_seed.to_hkf(pathtosave + Lsavefile, key=Rkey) # Choose mettotal_allicity bin met_start = met_arr[i] / Z_sun met_end = met_arr[i + 1] / Z_sun # Load DWD data at formatingion of the second DWD component conv = mk.read_hkf(pathtodat + filengthame, key="conv") if "bin_num" not in conv.columns: conv.index = conv.index.renagetting_ming("index") conv["bin_num"] = conv.index.values # overwrite COSMIC radii conv["rad_1"] = rad_WD(conv.mass_1.values) conv["rad_2"] = rad_WD(conv.mass_2.values) # Use ratio to scale to astrophysical pop w/ specific binary frac. try: mass_binaries = mk.read_hkf(pathtodat + filengthame, key="mass_stars").iloc[-1] except: print("m_binaries key") mass_binaries = mk.read_hkf(pathtodat + filengthame, key="mass_binaries").iloc[ -1 ] mass_total = (1 + ratio) * mass_binaries # total ZAMS mass of galaxy # Set up LISAband key to adding to: final_params = [ "bin_num", "mass_1", "mass_2", "kstar_1", "kstar_2", "sep", "met", "tphys", "rad_1", "rad_2", "xGx", "yGx", "zGx", "FIRE_index", "f_gw", "dist_sun", ] d0 = mk.KnowledgeFrame(columns=final_params) d0.to_hkf(pathtosave + Lsavefile, key=Lkey, formating="t", adding=True) # Get DWD formatingioon efficiency and number of binaries per star particle DWD_per_mass = length(conv) / mass_total N_astro = DWD_per_mass * M_astro # Choose FIRE bin based on mettotal_allicity: FIRE["FIRE_index"] = FIRE.index if met_end * Z_sun == met_arr[-1]: FIRE_bin = FIRE.loc[FIRE.met >= met_start] else: FIRE_bin = FIRE.loc[(FIRE.met >= met_start) & (FIRE.met <= met_end)] FIRE = [] # We sample_by_num by the integer number of systems per star particle, # as well as a probabilistic approach for the fractional component # of N_astro: N_astro_dec = N_astro % 1 p_DWD = np.random.rand(length(FIRE_bin)) N_sample_by_num_dec = np.zeros(length(FIRE_bin)) N_sample_by_num_dec[ p_DWD <= N_astro_dec.values ] = 1.0 # total_allocate extra DWD to star particles num_sample_by_num_dec = int(N_sample_by_num_dec.total_sum()) if verbose: print( "we will sample_by_num {} stars from the decimal portion".formating( num_sample_by_num_dec ) ) sample_by_num_dec = mk.KnowledgeFrame.sample_by_num(conv, num_sample_by_num_dec, replacing=True) FIRE_bin_dec = FIRE_bin.loc[N_sample_by_num_dec == 1.0] params_list = [ "bin_num", "mass_1", "mass_2", "kstar_1", "kstar_2", "porb", "sep", "met", "age", "tphys", "rad_1", "rad_2", "kern_length", "xGx", "yGx", "zGx", "FIRE_index", ] pop_init_dec = mk.concating( [sample_by_num_dec.reseting_index(), FIRE_bin_dec.reseting_index()], axis=1 ) sample_by_num_dec = mk.KnowledgeFrame() FIRE_bin_dec = mk.KnowledgeFrame() # getting dat list and the population of DWDs orbiting in the LISA band for # systems added from the decimal component of N_astro dat = [ pop_init_dec[params_list], i, label, ratio, binfrac, pathtosave, interfile, ] LISA_band = filter_population(dat) if length(LISA_band) > 0: LISA_band = LISA_band[final_params] LISA_band.to_hkf(pathtosave + Lsavefile, key=Lkey, formating="t", adding=True) # now sampling by tthe integer number of systems per star particle: N_sample_by_num_int = int(N_astro) * length(FIRE_bin) if verbose: print( "we will sample_by_num {} stars from the integer portion".formating(N_sample_by_num_int) ) print("gettingting FIRE values") FIRE_int = mk.KnowledgeFrame(np.repeat(FIRE_bin.values, int(N_astro), axis=0)) FIRE_int.columns = FIRE_bin.columns FIRE_bin = mk.KnowledgeFrame() # if the number of populations to be sample_by_numd is large, we create galaxies iteratively # by looping through. Nsamp_split = 5e6 if N_sample_by_num_int < Nsamp_split: sample_by_num_int =
mk.KnowledgeFrame.sample_by_num(conv, N_sample_by_num_int, replacing=True)
pandas.DataFrame.sample
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result =
algos.incontain(arr, arr[0:2])
pandas.core.algorithms.isin
""" Module contains tools for processing files into KnowledgeFrames or other objects """ from collections import abc, defaultdict import csv import datetime from io import StringIO import itertools import re import sys from textwrap import fill from typing import ( Any, Dict, Iterable, Iterator, List, Optional, Sequence, Set, Type, cast, ) import warnings import numpy as np import monkey._libs.lib as lib import monkey._libs.ops as libops import monkey._libs.parsers as parsers from monkey._libs.parsers import STR_NA_VALUES from monkey._libs.tslibs import parsing from monkey._typing import FilePathOrBuffer, StorageOptions, Union from monkey.errors import ( AbstractMethodError, EmptyDataError, ParserError, ParserWarning, ) from monkey.util._decorators import Appender from monkey.core.dtypes.cast import totype_nansafe from monkey.core.dtypes.common import ( ensure_object, ensure_str, is_bool_dtype, is_categorical_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_file_like, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, monkey_dtype, ) from monkey.core.dtypes.dtypes import CategoricalDtype from monkey.core.dtypes.missing import ifna from monkey.core import algorithms, generic from monkey.core.arrays import Categorical from monkey.core.frame import KnowledgeFrame from monkey.core.indexes.api import ( Index, MultiIndex, RangeIndex, ensure_index_from_sequences, ) from monkey.core.collections import Collections from monkey.core.tools import datetimes as tools from monkey.io.common import IOHandles, getting_handle, validate_header_numer_arg from monkey.io.date_converters import generic_parser # BOM character (byte order mark) # This exists at the beginning of a file to indicate endianness # of a file (stream). Unfortunately, this marker screws up parsing, # so we need to remove it if we see it. _BOM = "\ufeff" _doc_read_csv_and_table = ( r""" {total_summary} Also supports optiontotal_ally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools <https://monkey.pydata.org/monkey-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, monkey accepts whatever ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default {_default_sep} Delimiter to use. If sep is None, the C engine cannot automatictotal_ally detect the separator, but the Python parsing engine can, averageing the latter will be used and automatictotal_ally detect the separator by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, default ``None`` Alias for sep. header_numer : int, list of int, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to ``header_numer=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header_numer=None``. Explicitly pass ``header_numer=0`` to be able to replacing existing names. The header_numer can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header_numer=0`` denotes the first line of data rather than the first line of the file. names : array-like, optional List of column names to use. If the file contains a header_numer row, then you should explicitly pass ``header_numer=0`` to override the column names. Duplicates in this list are not total_allowed. index_col : int, str, sequence of int / str, or False, default ``None`` Column(s) to use as the row labels of the ``KnowledgeFrame``, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: ``index_col=False`` can be used to force monkey to *not* use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecols : list-like or ctotal_allable, optional Return a subset of the columns. If list-like, total_all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header_numer row(s). For example, a valid list-like `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a KnowledgeFrame from ``data`` with element order preserved use ``mk.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``mk.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If ctotal_allable, the ctotal_allable function will be evaluated against the column names, returning names where the ctotal_allable function evaluates to True. An example of a valid ctotal_allable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. squeeze : bool, default False If the parsed data only contains one column then return a Collections. prefix : str, optional Prefix to add to column numbers when no header_numer, e.g. 'X' for X0, X1, ... mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, 'c': 'Int64'}} Use `str` or `object` togettingher with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : {{'c', 'python'}}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, optional Values to consider as True. false_values : list, optional Values to consider as False. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : list-like, int or ctotal_allable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If ctotal_allable, the ctotal_allable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid ctotal_allable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c'). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is addinged to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without whatever NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. skip_blank_lines : bool, default True If True, skip over blank lines rather than interpreting as NaN values. parse_dates : bool or list of int or names or list of lists or dict, \ default False The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and ctotal_all result 'foo' If a column or index cannot be represented as an array of datetimes, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``mk.convert_datetime`` after ``mk.read_csv``. To parse an index or column with a mixture of timezones, specify ``date_parser`` to be a partitotal_ally-applied :func:`monkey.convert_datetime` with ``utc=True``. See :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatingted dates. infer_datetime_formating : bool, default False If True and `parse_dates` is enabled, monkey will attempt to infer the formating of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : bool, default False If True and `parse_dates` specifies combining multiple columns then keep the original columns. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Monkey will try to ctotal_all `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatingenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) ctotal_all `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. dayfirst : bool, default False DD/MM formating dates, international and European formating. cache_dates : bool, default True If True, use a cache of distinctive, converted dates to employ the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especitotal_ally ones with timezone offsets. .. versionadded:: 0.25.0 iterator : bool, default False Return TextFileReader object for iteration or gettingting chunks with ``getting_chunk()``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. chunksize : int, optional Return TextFileReader object for iteration. See the `IO Tools docs <https://monkey.pydata.org/monkey-docs/stable/io.html#io-chunking>`_ for more informatingion on ``iterator`` and ``chunksize``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. compression : {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no decompression). If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. thousands : str, optional Thousands separator. decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). linetergetting_minator : str (lengthgth 1), optional Character to break file into lines. Only valid with C parser. quotechar : str (lengthgth 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : bool, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (lengthgth 1), optional One-character string used to escape other characters. comment : str, optional Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogettingher. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header_numer` but not by `skiprows`. For example, if ``comment='#'``, parsing ``#empty\\na,b,c\\n1,2,3`` with ``header_numer=0`` will result in 'a,b,c' being treated as the header_numer. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more definal_item_tails. error_bad_lines : bool, default True Lines with too mwhatever fields (e.g. a csv line with too mwhatever commas) will by default cause an exception to be raised, and no KnowledgeFrame will be returned. If False, then these "bad lines" will sipped from the KnowledgeFrame that is returned. warn_bad_lines : bool, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the sep. Equivalengtht to setting ``sep='\\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. low_memory : bool, default True Interntotal_ally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single KnowledgeFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser). memory_mapping : bool, default False If a filepath is provided for `filepath_or_buffer`, mapping the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer whatever I/O overheader_num. float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are ``None`` or 'high' for the ordinary converter, 'legacy' for the original lower precision monkey converter, and 'value_round_trip' for the value_round-trip converter. .. versionchanged:: 1.2 {storage_options} .. versionadded:: 1.2 Returns ------- KnowledgeFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- KnowledgeFrame.to_csv : Write KnowledgeFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into KnowledgeFrame. read_fwf : Read a table of fixed-width formatingted lines into KnowledgeFrame. Examples -------- >>> mk.{func_name}('data.csv') # doctest: +SKIP """ ) def validate_integer(name, val, getting_min_val=0): """ Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : string Parameter name (used for error reporting) val : int or float The value to check getting_min_val : int Minimum total_allowed value (val < getting_min_val will result in a ValueError) """ msg = f"'{name:s}' must be an integer >={getting_min_val:d}" if val is not None: if is_float(val): if int(val) != val: raise ValueError(msg) val = int(val) elif not (is_integer(val) and val >= getting_min_val): raise ValueError(msg) return val def _validate_names(names): """ Raise ValueError if the `names` parameter contains duplicates or has an invalid data type. Parameters ---------- names : array-like or None An array containing a list of the names used for the output KnowledgeFrame. Raises ------ ValueError If names are not distinctive or are not ordered (e.g. set). """ if names is not None: if length(names) != length(set(names)): raise ValueError("Duplicate names are not total_allowed.") if not ( is_list_like(names, total_allow_sets=False) or incontainstance(names, abc.KeysView) ): raise ValueError("Names should be an ordered collection.") def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" if kwds.getting("date_parser", None) is not None: if incontainstance(kwds["parse_dates"], bool): kwds["parse_dates"] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.getting("iterator", False) chunksize = validate_integer("chunksize", kwds.getting("chunksize", None), 1) nrows = kwds.getting("nrows", None) # Check for duplicates in names. _validate_names(kwds.getting("names", None)) # Create the parser. parser = TextFileReader(filepath_or_buffer, **kwds) if chunksize or iterator: return parser with parser: return parser.read(nrows) _parser_defaults = { "delimiter": None, "escapechar": None, "quotechar": '"', "quoting": csv.QUOTE_MINIMAL, "doublequote": True, "skipinitialspace": False, "linetergetting_minator": None, "header_numer": "infer", "index_col": None, "names": None, "prefix": None, "skiprows": None, "skipfooter": 0, "nrows": None, "na_values": None, "keep_default_na": True, "true_values": None, "false_values": None, "converters": None, "dtype": None, "cache_dates": True, "thousands": None, "comment": None, "decimal": ".", # 'engine': 'c', "parse_dates": False, "keep_date_col": False, "dayfirst": False, "date_parser": None, "usecols": None, # 'iterator': False, "chunksize": None, "verbose": False, "encoding": None, "squeeze": False, "compression": None, "mangle_dupe_cols": True, "infer_datetime_formating": False, "skip_blank_lines": True, } _c_parser_defaults = { "delim_whitespace": False, "na_filter": True, "low_memory": True, "memory_mapping": False, "error_bad_lines": True, "warn_bad_lines": True, "float_precision": None, } _fwf_defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None} _c_unsupported = {"skipfooter"} _python_unsupported = {"low_memory", "float_precision"} _deprecated_defaults: Dict[str, Any] = {} _deprecated_args: Set[str] = set() @Appender( _doc_read_csv_and_table.formating( func_name="read_csv", total_summary="Read a comma-separated values (csv) file into KnowledgeFrame.", _default_sep="','", storage_options=generic._shared_docs["storage_options"], ) ) def read_csv( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header_numer="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_formating=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", linetergetting_minator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_mapping=False, float_precision=None, storage_options: StorageOptions = None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": ","} ) kwds.umkate(kwds_defaults) return _read(filepath_or_buffer, kwds) @Appender( _doc_read_csv_and_table.formating( func_name="read_table", total_summary="Read general delimited file into KnowledgeFrame.", _default_sep=r"'\\t' (tab-stop)", storage_options=generic._shared_docs["storage_options"], ) ) def read_table( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header_numer="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_formating=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", linetergetting_minator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_mapping=False, float_precision=None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": "\t"} ) kwds.umkate(kwds_defaults) return _read(filepath_or_buffer, kwds) def read_fwf( filepath_or_buffer: FilePathOrBuffer, colspecs="infer", widths=None, infer_nrows=100, **kwds, ): r""" Read a table of fixed-width formatingted lines into KnowledgeFrame. Also supports optiontotal_ally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <https://monkey.pydata.org/monkey-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.csv``. If you want to pass in a path object, monkey accepts whatever ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser detergetting_mine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- KnowledgeFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- KnowledgeFrame.to_csv : Write KnowledgeFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into KnowledgeFrame. Examples -------- >>> mk.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, "infer") and widths is not None: raise ValueError("You must specify only one of 'widths' and 'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.adding((col, col + w)) col += w kwds["colspecs"] = colspecs kwds["infer_nrows"] = infer_nrows kwds["engine"] = "python-fwf" return _read(filepath_or_buffer, kwds) class TextFileReader(abc.Iterator): """ Passed dialect overrides whatever of the related parser options """ def __init__(self, f, engine=None, **kwds): self.f = f if engine is not None: engine_specified = True else: engine = "python" engine_specified = False self.engine = engine self._engine_specified = kwds.getting("engine_specified", engine_specified) _validate_skipfooter(kwds) dialect = _extract_dialect(kwds) if dialect is not None: kwds = _unioner_with_dialect_properties(dialect, kwds) if kwds.getting("header_numer", "infer") == "infer": kwds["header_numer"] = 0 if kwds.getting("names") is None else None self.orig_options = kwds # miscellanea self._currow = 0 options = self._getting_options_with_defaults(engine) options["storage_options"] = kwds.getting("storage_options", None) self.chunksize = options.pop("chunksize", None) self.nrows = options.pop("nrows", None) self.squeeze = options.pop("squeeze", False) self._check_file_or_buffer(f, engine) self.options, self.engine = self._clean_options(options, engine) if "has_index_names" in kwds: self.options["has_index_names"] = kwds["has_index_names"] self._engine = self._make_engine(self.engine) def close(self): self._engine.close() def _getting_options_with_defaults(self, engine): kwds = self.orig_options options = {} for argname, default in _parser_defaults.items(): value = kwds.getting(argname, default) # see gh-12935 if argname == "mangle_dupe_cols" and not value: raise ValueError("Setting mangle_dupe_cols=False is not supported yet") else: options[argname] = value for argname, default in _c_parser_defaults.items(): if argname in kwds: value = kwds[argname] if engine != "c" and value != default: if "python" in engine and argname not in _python_unsupported: pass elif value == _deprecated_defaults.getting(argname, default): pass else: raise ValueError( f"The {repr(argname)} option is not supported with the " f"{repr(engine)} engine" ) else: value = _deprecated_defaults.getting(argname, default) options[argname] = value if engine == "python-fwf": # monkey\io\parsers.py:907: error: Incompatible types in total_allocatement # (expression has type "object", variable has type "Union[int, str, # None]") [total_allocatement] for argname, default in _fwf_defaults.items(): # type: ignore[total_allocatement] options[argname] = kwds.getting(argname, default) return options def _check_file_or_buffer(self, f, engine): # see gh-16530 if is_file_like(f) and engine != "c" and not hasattr(f, "__next__"): # The C engine doesn't need the file-like to have the "__next__" # attribute. However, the Python engine explicitly ctotal_alls # "__next__(...)" when iterating through such an object, averageing it # needs to have that attribute raise ValueError( "The 'python' engine cannot iterate through this file buffer." ) def _clean_options(self, options, engine): result = options.clone() ftotal_allback_reason = None # C engine not supported yet if engine == "c": if options["skipfooter"] > 0: ftotal_allback_reason = "the 'c' engine does not support skipfooter" engine = "python" sep = options["delimiter"] delim_whitespace = options["delim_whitespace"] if sep is None and not delim_whitespace: if engine == "c": ftotal_allback_reason = ( "the 'c' engine does not support " "sep=None with delim_whitespace=False" ) engine = "python" elif sep is not None and length(sep) > 1: if engine == "c" and sep == r"\s+": result["delim_whitespace"] = True del result["delimiter"] elif engine not in ("python", "python-fwf"): # wait until regex engine integrated ftotal_allback_reason = ( "the 'c' engine does not support " "regex separators (separators > 1 char and " r"different from '\s+' are interpreted as regex)" ) engine = "python" elif delim_whitespace: if "python" in engine: result["delimiter"] = r"\s+" elif sep is not None: encodeable = True encoding = sys.gettingfilesystemencoding() or "utf-8" try: if length(sep.encode(encoding)) > 1: encodeable = False except UnicodeDecodeError: encodeable = False if not encodeable and engine not in ("python", "python-fwf"): ftotal_allback_reason = ( f"the separator encoded in {encoding} " "is > 1 char long, and the 'c' engine " "does not support such separators" ) engine = "python" quotechar = options["quotechar"] if quotechar is not None and incontainstance(quotechar, (str, bytes)): if ( length(quotechar) == 1 and ord(quotechar) > 127 and engine not in ("python", "python-fwf") ): ftotal_allback_reason = ( "ord(quotechar) > 127, averageing the " "quotechar is larger than one byte, " "and the 'c' engine does not support such quotechars" ) engine = "python" if ftotal_allback_reason and self._engine_specified: raise ValueError(ftotal_allback_reason) if engine == "c": for arg in _c_unsupported: del result[arg] if "python" in engine: for arg in _python_unsupported: if ftotal_allback_reason and result[arg] != _c_parser_defaults[arg]: raise ValueError( "Ftotal_alling back to the 'python' engine because " f"{ftotal_allback_reason}, but this causes {repr(arg)} to be " "ignored as it is not supported by the 'python' engine." ) del result[arg] if ftotal_allback_reason: warnings.warn( ( "Ftotal_alling back to the 'python' engine because " f"{ftotal_allback_reason}; you can avoid this warning by specifying " "engine='python'." ), ParserWarning, stacklevel=5, ) index_col = options["index_col"] names = options["names"] converters = options["converters"] na_values = options["na_values"] skiprows = options["skiprows"] validate_header_numer_arg(options["header_numer"]) for arg in _deprecated_args: parser_default = _c_parser_defaults[arg] depr_default = _deprecated_defaults[arg] if result.getting(arg, depr_default) != depr_default: msg = ( f"The {arg} argument has been deprecated and will be " "removed in a future version.\n\n" ) warnings.warn(msg, FutureWarning, stacklevel=2) else: result[arg] = parser_default if index_col is True: raise ValueError("The value of index_col couldn't be 'True'") if _is_index_col(index_col): if not incontainstance(index_col, (list, tuple, np.ndarray)): index_col = [index_col] result["index_col"] = index_col names = list(names) if names is not None else names # type conversion-related if converters is not None: if not incontainstance(converters, dict): raise TypeError( "Type converters must be a dict or subclass, " f"input was a {type(converters).__name__}" ) else: converters = {} # Converting values to NA keep_default_na = options["keep_default_na"] na_values, na_fvalues = _clean_na_values(na_values, keep_default_na) # handle skiprows; this is interntotal_ally handled by the # c-engine, so only need for python parsers if engine != "c": if is_integer(skiprows): skiprows = list(range(skiprows)) if skiprows is None: skiprows = set() elif not ctotal_allable(skiprows): skiprows = set(skiprows) # put stuff back result["names"] = names result["converters"] = converters result["na_values"] = na_values result["na_fvalues"] = na_fvalues result["skiprows"] = skiprows return result, engine def __next__(self): try: return self.getting_chunk() except StopIteration: self.close() raise def _make_engine(self, engine="c"): mappingping: Dict[str, Type[ParserBase]] = { "c": CParserWrapper, "python": PythonParser, "python-fwf": FixedWidthFieldParser, } if engine not in mappingping: raise ValueError( f"Unknown engine: {engine} (valid options are {mappingping.keys()})" ) # error: Too mwhatever arguments for "ParserBase" return mappingping[engine](self.f, **self.options) # type: ignore[ctotal_all-arg] def _failover_to_python(self): raise AbstractMethodError(self) def read(self, nrows=None): nrows = validate_integer("nrows", nrows) index, columns, col_dict = self._engine.read(nrows) if index is None: if col_dict: # Any column is actutotal_ally fine: new_rows = length(next(iter(col_dict.values()))) index = RangeIndex(self._currow, self._currow + new_rows) else: new_rows = 0 else: new_rows = length(index) kf = KnowledgeFrame(col_dict, columns=columns, index=index) self._currow += new_rows if self.squeeze and length(kf.columns) == 1: return kf[kf.columns[0]].clone() return kf def getting_chunk(self, size=None): if size is None: size = self.chunksize if self.nrows is not None: if self._currow >= self.nrows: raise StopIteration size = getting_min(size, self.nrows - self._currow) return self.read(nrows=size) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _is_index_col(col): return col is not None and col is not False def _is_potential_multi_index( columns, index_col: Optional[Union[bool, Sequence[int]]] = None ): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex index_col : None, bool or list, optional Column or columns to use as the (possibly hierarchical) index Returns ------- boolean : Whether or not columns could become a MultiIndex """ if index_col is None or incontainstance(index_col, bool): index_col = [] return ( length(columns) and not incontainstance(columns, MultiIndex) and total_all(incontainstance(c, tuple) for c in columns if c not in list(index_col)) ) def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a ctotal_allable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a ctotal_allable, returns 'usecols'. """ if ctotal_allable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols def _validate_usecols_names(usecols, names): """ Validates that total_all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if length(missing) > 0: raise ValueError( f"Usecols do not match columns, columns expected but not found: {missing}" ) return usecols def _validate_skipfooter_arg(skipfooter): """ Validate the 'skipfooter' parameter. Checks whether 'skipfooter' is a non-negative integer. Raises a ValueError if that is not the case. Parameters ---------- skipfooter : non-negative integer The number of rows to skip at the end of the file. Returns ------- validated_skipfooter : non-negative integer The original input if the validation succeeds. Raises ------ ValueError : 'skipfooter' was not a non-negative integer. """ if not is_integer(skipfooter): raise ValueError("skipfooter must be an integer") if skipfooter < 0: raise ValueError("skipfooter cannot be negative") return skipfooter def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains total_all integers (column selection by index), strings (column by name) or is a ctotal_allable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, ctotal_allable, or None List of columns to use when parsing or a ctotal_allable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a ctotal_allable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a ctotal_allable or None is passed in. """ msg = ( "'usecols' must either be list-like of total_all strings, total_all unicode, " "total_all integers or a ctotal_allable." ) if usecols is not None: if ctotal_allable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ( "Only booleans, lists, and dictionaries are accepted " "for the 'parse_dates' parameter" ) if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not incontainstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates class ParserBase: def __init__(self, kwds): self.names = kwds.getting("names") self.orig_names: Optional[List] = None self.prefix = kwds.pop("prefix", None) self.index_col = kwds.getting("index_col", None) self.unnamed_cols: Set = set() self.index_names: Optional[List] = None self.col_names = None self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False)) self.date_parser = kwds.pop("date_parser", None) self.dayfirst = kwds.pop("dayfirst", False) self.keep_date_col = kwds.pop("keep_date_col", False) self.na_values = kwds.getting("na_values") self.na_fvalues = kwds.getting("na_fvalues") self.na_filter = kwds.getting("na_filter", False) self.keep_default_na = kwds.getting("keep_default_na", True) self.true_values = kwds.getting("true_values") self.false_values = kwds.getting("false_values") self.mangle_dupe_cols = kwds.getting("mangle_dupe_cols", True) self.infer_datetime_formating = kwds.pop("infer_datetime_formating", False) self.cache_dates = kwds.pop("cache_dates", True) self._date_conv = _make_date_converter( date_parser=self.date_parser, dayfirst=self.dayfirst, infer_datetime_formating=self.infer_datetime_formating, cache_dates=self.cache_dates, ) # validate header_numer options for mi self.header_numer = kwds.getting("header_numer") if incontainstance(self.header_numer, (list, tuple, np.ndarray)): if not total_all(mapping(is_integer, self.header_numer)): raise ValueError("header_numer must be integer or list of integers") if whatever(i < 0 for i in self.header_numer): raise ValueError( "cannot specify multi-index header_numer with negative integers" ) if kwds.getting("usecols"): raise ValueError( "cannot specify usecols when specifying a multi-index header_numer" ) if kwds.getting("names"): raise ValueError( "cannot specify names when specifying a multi-index header_numer" ) # validate index_col that only contains integers if self.index_col is not None: is_sequence = incontainstance(self.index_col, (list, tuple, np.ndarray)) if not ( is_sequence and total_all(mapping(is_integer, self.index_col)) or is_integer(self.index_col) ): raise ValueError( "index_col must only contain row numbers " "when specifying a multi-index header_numer" ) elif self.header_numer is not None: # GH 27394 if self.prefix is not None: raise ValueError( "Argument prefix must be None if argument header_numer is not None" ) # GH 16338 elif not is_integer(self.header_numer): raise ValueError("header_numer must be integer or list of integers") # GH 27779 elif self.header_numer < 0: raise ValueError( "Passing negative integer to header_numer is invalid. " "For no header_numer, use header_numer=None instead" ) self._name_processed = False self._first_chunk = True self.handles: Optional[IOHandles] = None def _open_handles(self, src: FilePathOrBuffer, kwds: Dict[str, Any]) -> None: """ Let the readers open IOHanldes after they are done with their potential raises. """ self.handles = getting_handle( src, "r", encoding=kwds.getting("encoding", None), compression=kwds.getting("compression", None), memory_mapping=kwds.getting("memory_mapping", False), storage_options=kwds.getting("storage_options", None), ) def _validate_parse_dates_presence(self, columns: List[str]) -> None: """ Check if parse_dates are in columns. If user has provided names for parse_dates, check if those columns are available. Parameters ---------- columns : list List of names of the knowledgeframe. Raises ------ ValueError If column to parse_date is not in knowledgeframe. """ cols_needed: Iterable if is_dict_like(self.parse_dates): cols_needed = itertools.chain(*self.parse_dates.values()) elif is_list_like(self.parse_dates): # a column in parse_dates could be represented # ColReference = Union[int, str] # DateGroups = List[ColReference] # ParseDates = Union[DateGroups, List[DateGroups], # Dict[ColReference, DateGroups]] cols_needed = itertools.chain.from_iterable( col if is_list_like(col) else [col] for col in self.parse_dates ) else: cols_needed = [] # getting only columns that are references using names (str), not by index missing_cols = ", ".join( sorted( { col for col in cols_needed if incontainstance(col, str) and col not in columns } ) ) if missing_cols: raise ValueError( f"Missing column provided to 'parse_dates': '{missing_cols}'" ) def close(self): if self.handles is not None: self.handles.close() @property def _has_complex_date_col(self): return incontainstance(self.parse_dates, dict) or ( incontainstance(self.parse_dates, list) and length(self.parse_dates) > 0 and incontainstance(self.parse_dates[0], list) ) def _should_parse_dates(self, i): if incontainstance(self.parse_dates, bool): return self.parse_dates else: if self.index_names is not None: name = self.index_names[i] else: name = None j = self.index_col[i] if is_scalar(self.parse_dates): return (j == self.parse_dates) or ( name is not None and name == self.parse_dates ) else: return (j in self.parse_dates) or ( name is not None and name in self.parse_dates ) def _extract_multi_indexer_columns( self, header_numer, index_names, col_names, passed_names=False ): """ extract and return the names, index_names, col_names header_numer is a list-of-lists returned from the parsers """ if length(header_numer) < 2: return header_numer[0], index_names, col_names, passed_names # the names are the tuples of the header_numer that are not the index cols # 0 is the name of the index, astotal_sugetting_ming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not incontainstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header_numer.pop(-1) index_names, names, index_col = _clean_index_names( index_names, self.index_col, self.unnamed_cols ) # extract the columns field_count = length(header_numer[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = list(zip(*(extract(r) for r in header_numer))) names = ic + columns # If we find unnamed columns total_all in a single # level, then our header_numer was too long. for n in range(length(columns[0])): if total_all(ensure_str(col[n]) in self.unnamed_cols for col in columns): header_numer = ",".join(str(x) for x in self.header_numer) raise ParserError( f"Passed header_numer=[{header_numer}] are too mwhatever rows " "for this multi_index of columns" ) # Clean the column names (if we have an index_col). if length(ic): col_names = [ r[0] if ((r[0] is not None) and r[0] not in self.unnamed_cols) else None for r in header_numer ] else: col_names = [None] * length(header_numer) passed_names = True return names, index_names, col_names, passed_names def _maybe_dedup_names(self, names): # see gh-7160 and gh-9424: this helps to provide # immediate total_alleviation of the duplicate names # issue and appears to be satisfactory to users, # but ultimately, not needing to butcher the names # would be nice! if self.mangle_dupe_cols: names = list(names) # so we can index # monkey\io\parsers.py:1559: error: Need type annotation for # 'counts' [var-annotated] counts = defaultdict(int) # type: ignore[var-annotated] is_potential_mi = _is_potential_multi_index(names, self.index_col) for i, col in enumerate(names): cur_count = counts[col] while cur_count > 0: counts[col] = cur_count + 1 if is_potential_mi: col = col[:-1] + (f"{col[-1]}.{cur_count}",) else: col = f"{col}.{cur_count}" cur_count = counts[col] names[i] = col counts[col] = cur_count + 1 return names def _maybe_make_multi_index_columns(self, columns, col_names=None): # possibly create a column mi here if _is_potential_multi_index(columns): columns = MultiIndex.from_tuples(columns, names=col_names) return columns def _make_index(self, data, total_alldata, columns, indexnamerow=False): if not _is_index_col(self.index_col) or not self.index_col: index = None elif not self._has_complex_date_col: index = self._getting_simple_index(total_alldata, columns) index = self._agg_index(index) elif self._has_complex_date_col: if not self._name_processed: (self.index_names, _, self.index_col) = _clean_index_names( list(columns), self.index_col, self.unnamed_cols ) self._name_processed = True index = self._getting_complex_date_index(data, columns) index = self._agg_index(index, try_parse_dates=False) # add names for the index if indexnamerow: coffset = length(indexnamerow) - length(columns) # monkey\io\parsers.py:1604: error: Item "None" of "Optional[Any]" # has no attribute "set_names" [union-attr] index = index.set_names(indexnamerow[:coffset]) # type: ignore[union-attr] # maybe create a mi on the columns columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns _implicit_index = False def _getting_simple_index(self, data, columns): def ix(col): if not incontainstance(col, str): return col raise ValueError(f"Index {col} invalid") to_remove = [] index = [] for idx in self.index_col: i = ix(idx) to_remove.adding(i) index.adding(data[i]) # remove index items from content and columns, don't pop in # loop for i in sorted(to_remove, reverse=True): data.pop(i) if not self._implicit_index: columns.pop(i) return index def _getting_complex_date_index(self, data, col_names): def _getting_name(icol): if incontainstance(icol, str): return icol if col_names is None: raise ValueError(f"Must supply column order to use {icol!s} as index") for i, c in enumerate(col_names): if i == icol: return c to_remove = [] index = [] for idx in self.index_col: name = _getting_name(idx) to_remove.adding(name) index.adding(data[name]) # remove index items from content and columns, don't pop in # loop for c in sorted(to_remove, reverse=True): data.pop(c) col_names.remove(c) return index def _agg_index(self, index, try_parse_dates=True) -> Index: arrays = [] for i, arr in enumerate(index): if try_parse_dates and self._should_parse_dates(i): arr = self._date_conv(arr) if self.na_filter: col_na_values = self.na_values col_na_fvalues = self.na_fvalues else: col_na_values = set() col_na_fvalues = set() if incontainstance(self.na_values, dict): # monkey\io\parsers.py:1678: error: Value of type # "Optional[Any]" is not indexable [index] col_name = self.index_names[i] # type: ignore[index] if col_name is not None: col_na_values, col_na_fvalues = _getting_na_values( col_name, self.na_values, self.na_fvalues, self.keep_default_na ) arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) arrays.adding(arr) names = self.index_names index = ensure_index_from_sequences(arrays, names) return index def _convert_to_ndarrays( self, dct, na_values, na_fvalues, verbose=False, converters=None, dtypes=None ): result = {} for c, values in dct.items(): conv_f = None if converters is None else converters.getting(c, None) if incontainstance(dtypes, dict): cast_type = dtypes.getting(c, None) else: # single dtype or None cast_type = dtypes if self.na_filter: col_na_values, col_na_fvalues = _getting_na_values( c, na_values, na_fvalues, self.keep_default_na ) else: col_na_values, col_na_fvalues = set(), set() if conv_f is not None: # conv_f applied to data before inference if cast_type is not None: warnings.warn( ( "Both a converter and dtype were specified " f"for column {c} - only the converter will be used" ), ParserWarning, stacklevel=7, ) try: values = lib.mapping_infer(values, conv_f) except ValueError: mask = algorithms.incontain(values, list(na_values)).view(np.uint8) values = lib.mapping_infer_mask(values, conv_f, mask) cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool=False ) else: is_ea = is_extension_array_dtype(cast_type) is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type) # skip inference if specified dtype is object # or casting to an EA try_num_bool = not (cast_type and is_str_or_ea_dtype) # general type inference and conversion cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool ) # type specified in dtype param or cast_type is an EA if cast_type and ( not is_dtype_equal(cvals, cast_type) or is_extension_array_dtype(cast_type) ): if not is_ea and na_count > 0: try: if is_bool_dtype(cast_type): raise ValueError( f"Bool column has NA values in column {c}" ) except (AttributeError, TypeError): # invalid input to is_bool_dtype pass cvals = self._cast_types(cvals, cast_type, c) result[c] = cvals if verbose and na_count: print(f"Filled {na_count} NA values in column {c!s}") return result def _infer_types(self, values, na_values, try_num_bool=True): """ Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns ------- converted : ndarray na_count : int """ na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.incontain(values, list(na_values)) na_count = mask.total_sum() if na_count > 0: if is_integer_dtype(values): values = values.totype(np.float64) np.putmask(values, mask, np.nan) return values, na_count if try_num_bool and is_object_dtype(values.dtype): # exclude e.g DatetimeIndex here try: result = lib.maybe_convert_numeric(values, na_values, False) except (ValueError, TypeError): # e.g. encountering datetime string gettings ValueError # TypeError can be raised in floatify result = values na_count = parsers.sanitize_objects(result, na_values, False) else: na_count = ifna(result).total_sum() else: result = values if values.dtype == np.object_: na_count = parsers.sanitize_objects(values, na_values, False) if result.dtype == np.object_ and try_num_bool: result = libops.maybe_convert_bool( np.asarray(values), true_values=self.true_values, false_values=self.false_values, ) return result, na_count def _cast_types(self, values, cast_type, column): """ Cast values to specified type Parameters ---------- values : ndarray cast_type : string or np.dtype dtype to cast values to column : string column name - used only for error reporting Returns ------- converted : ndarray """ if is_categorical_dtype(cast_type): known_cats = ( incontainstance(cast_type, CategoricalDtype) and cast_type.categories is not None ) if not is_object_dtype(values) and not known_cats: # TODO: this is for consistency with # c-parser which parses total_all categories # as strings values = totype_nansafe(values, str) cats = Index(values).distinctive().sipna() values = Categorical._from_inferred_categories( cats, cats.getting_indexer(values), cast_type, true_values=self.true_values ) # use the EA's implementation of casting elif is_extension_array_dtype(cast_type): # ensure cast_type is an actual dtype and not a string cast_type = monkey_dtype(cast_type) array_type = cast_type.construct_array_type() try: return array_type._from_sequence_of_strings(values, dtype=cast_type) except NotImplementedError as err: raise NotImplementedError( f"Extension Array: {array_type} must implement " "_from_sequence_of_strings in order to be used in parser methods" ) from err else: try: values =
totype_nansafe(values, cast_type, clone=True, skipna=True)
pandas.core.dtypes.cast.astype_nansafe
from __future__ import annotations from datetime import timedelta import operator from sys import gettingsizeof from typing import ( TYPE_CHECKING, Any, Ctotal_allable, Hashable, List, cast, ) import warnings import numpy as np from monkey._libs import index as libindex from monkey._libs.lib import no_default from monkey._typing import Dtype from monkey.compat.numpy import function as nv from monkey.util._decorators import ( cache_readonly, doc, ) from monkey.util._exceptions import rewrite_exception from monkey.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from monkey.core.dtypes.generic import ABCTimedeltaIndex from monkey.core import ops import monkey.core.common as com from monkey.core.construction import extract_array import monkey.core.indexes.base as ibase from monkey.core.indexes.base import maybe_extract_name from monkey.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from monkey.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from monkey import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by KnowledgeFrame and Collections when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. clone : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base monkey Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, clone: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if incontainstance(start, RangeIndex): return start.clone(name=name) elif incontainstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if com.total_all_none(start, stop, step): raise TypeError("RangeIndex(...) must be ctotal_alled with integers") start = ensure_python_int(start) if start is not None else 0 if stop is None: start, stop = 0, start else: stop = ensure_python_int(stop) step = ensure_python_int(step) if step is not None else 1 if step == 0: raise ValueError("Step must not be zero") rng = range(start, stop, step) return cls._simple_new(rng, name=name) @classmethod def from_range( cls, data: range, name=None, dtype: Dtype | None = None ) -> RangeIndex: """ Create RangeIndex from a range object. Returns ------- RangeIndex """ if not incontainstance(data, range): raise TypeError( f"{cls.__name__}(...) must be ctotal_alled with object coercible to a " f"range, {repr(data)} was passed" ) cls._validate_dtype(dtype) return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: range, name: Hashable = None) -> RangeIndex: result = object.__new__(cls) assert incontainstance(values, range) result._range = values result._name = name result._cache = {} result._reset_identity() return result # -------------------------------------------------------------------- @cache_readonly def _constructor(self) -> type[Int64Index]: """ return the class to use for construction """ return Int64Index @cache_readonly def _data(self) -> np.ndarray: """ An int array that for performance reasons is created only when needed. The constructed array is saved in ``_cache``. """ return np.arange(self.start, self.stop, self.step, dtype=np.int64) @cache_readonly def _cached_int64index(self) -> Int64Index: return Int64Index._simple_new(self._data, name=self.name) @property def _int64index(self) -> Int64Index: # wrap _cached_int64index so we can be sure its name matches self.name res = self._cached_int64index res._name = self._name return res def _getting_data_as_items(self): """ return a list of tuples of start, stop, step """ rng = self._range return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)] def __reduce__(self): d = self._getting_attributes_dict() d.umkate(dict(self._getting_data_as_items())) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- # Rendering Methods def _formating_attrs(self): """ Return a list of tuples of the (attr, formatingted_value) """ attrs = self._getting_data_as_items() if self.name is not None: attrs.adding(("name", ibase.default_pprint(self.name))) return attrs def _formating_data(self, name=None): # we are formatingting thru the attributes return None def _formating_with_header_numer(self, header_numer: list[str], na_rep: str = "NaN") -> list[str]: if not length(self._range): return header_numer first_val_str = str(self._range[0]) final_item_val_str = str(self._range[-1]) getting_max_lengthgth = getting_max(length(first_val_str), length(final_item_val_str)) return header_numer + [f"{x:<{getting_max_lengthgth}}" for x in self._range] # -------------------------------------------------------------------- _deprecation_message = ( "RangeIndex.{} is deprecated and will be " "removed in a future version. Use RangeIndex.{} " "instead" ) @property def start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). """ # GH 25710 return self._range.start @property def _start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). .. deprecated:: 0.25.0 Use ``start`` instead. """ warnings.warn( self._deprecation_message.formating("_start", "start"), FutureWarning, stacklevel=2, ) return self.start @property def stop(self) -> int: """ The value of the `stop` parameter. """ return self._range.stop @property def _stop(self) -> int: """ The value of the `stop` parameter. .. deprecated:: 0.25.0 Use ``stop`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.formating("_stop", "stop"), FutureWarning, stacklevel=2, ) return self.stop @property def step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). """ # GH 25710 return self._range.step @property def _step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). .. deprecated:: 0.25.0 Use ``step`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.formating("_step", "step"), FutureWarning, stacklevel=2, ) return self.step @cache_readonly def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ rng = self._range return gettingsizeof(rng) + total_sum( gettingsizeof(gettingattr(rng, attr_name)) for attr_name in ["start", "stop", "step"] ) def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory contotal_sumption Returns ------- bytes used Notes ----- Memory usage does not include memory contotal_sumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self.nbytes @property def dtype(self) -> np.dtype: return np.dtype(np.int64) @property def is_distinctive(self) -> bool: """ return if the index has distinctive values """ return True @cache_readonly def is_monotonic_increasing(self) -> bool: return self._range.step > 0 or length(self) <= 1 @cache_readonly def is_monotonic_decreasing(self) -> bool: return self._range.step < 0 or length(self) <= 1 def __contains__(self, key: Any) -> bool: hash(key) try: key = ensure_python_int(key) except TypeError: return False return key in self._range @property def inferred_type(self) -> str: return "integer" # -------------------------------------------------------------------- # Indexing Methods @doc(Int64Index.getting_loc) def getting_loc(self, key, method=None, tolerance=None): if method is None and tolerance is None: if is_integer(key) or (is_float(key) and key.is_integer()): new_key = int(key) try: return self._range.index(new_key) except ValueError as err: raise KeyError(key) from err raise KeyError(key) return super().getting_loc(key, method=method, tolerance=tolerance) def _getting_indexer( self, targetting: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> np.ndarray: # -> np.ndarray[np.intp] if
com.whatever_not_none(method, tolerance, limit)
pandas.core.common.any_not_none
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 3 17:09:00 2020 @author: krishna """ #----------Here I had taken only 9 features obtained from my dataset-------------------- import time import numpy as np import monkey as mk import matplotlib.pyplot as plt data=mk.read_csv('dataset_final1') data.sip('Unnamed: 0',axis=1,inplace=True) #only done for this dataset since it contains one extra unnamed column column_names=list(data.columns) data['URL_Type_obf_Type'].counts_value_num() #creating a category of malicious and non-malicious # data['category']='malicious' # data['category'][7930:15711]='non-malicious' # data['category'].counts_value_num() #shuffling the knowledgeframe shuffled_dataset=data.sample_by_num(frac=1).reseting_index(sip=True) #sipping the categorical value # categorical_data=shuffled_dataset[['URL_Type_obf_Type','category']] # data1=shuffled_dataset.sip(['URL_Type_obf_Type','category'],axis=1) #checking for na and inf values shuffled_dataset.replacing([np.inf,-np.inf],np.nan,inplace=True) #handling the infinite value shuffled_dataset.fillnone(shuffled_dataset.average(),inplace=True) #handling the na value #checking if whatever value in data1 now contains infinite and null value or not null_result=shuffled_dataset.ifnull().whatever(axis=0) inf_result=shuffled_dataset is np.inf #scaling the dataset with standard scaler shuffled_x=shuffled_dataset.sip(['URL_Type_obf_Type'],axis=1) shuffled_y=shuffled_dataset[['URL_Type_obf_Type']] from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() shuffled_dataset_scaled=sc_x.fit_transform(shuffled_x) shuffled_dataset_scaled=mk.KnowledgeFrame(shuffled_dataset_scaled) shuffled_dataset_scaled.columns=shuffled_x.columns dataset_final=mk.concating([shuffled_dataset_scaled,shuffled_y],axis=1) #dataset_final.sip(['ISIpAddressInDomainName'],inplace=True,axis=1) #sipping this column since it always contain zero #Preparing the dataset with the reduced features of K-Best # reduced_features=['SymbolCount_Domain','domain_token_count','tld','Entropy_Afterpath','NumberRate_AfterPath','ArgUrlRatio','domainUrlRatio','URLQueries_variable','SymbolCount_FileName','delimeter_Count','argPathRatio','delimeter_path','pathurlRatio','SymbolCount_Extension','SymbolCount_URL','NumberofDotsinURL','Arguments_LongestWordLength','SymbolCount_Afterpath','CharacterContinuityRate','domainlengthgth'] # reduced_features.adding('URL_Type_obf_Type') # reduced_features.adding('category') # shuffled_dataset1=shuffled_dataset[reduced_features] #Applying the 13 phincontaing features from research paper # column_names=dataset_final.columns # phincontaing_columns=['domain_token_count','tld','urlLen','domainlengthgth','domainUrlRatio','NumberofDotsinURL','Query_DigitCount','LongestPathTokenLength','delimeter_Domain','delimeter_path','SymbolCount_Domain','URL_Type_obf_Type'] # dataset_final=dataset_final[phincontaing_columns] #splitting the dataset into train set and test set from sklearn.model_selection import train_test_split train_set,test_set=train_test_split(dataset_final,test_size=0.2,random_state=42) #sorting the train_set and test set mk.KnowledgeFrame.sorting_index(train_set,axis=0,ascending=True,inplace=True)
mk.KnowledgeFrame.sorting_index(test_set,axis=0,ascending=True,inplace=True)
pandas.DataFrame.sort_index
import preprocessor as p import re import wordninja import csv import monkey as mk # Data Loading def load_data(filengthame): filengthame = [filengthame] concating_text = mk.KnowledgeFrame() raw_text = mk.read_csv(filengthame[0],usecols=[0], encoding='ISO-8859-1') raw_label = mk.read_csv(filengthame[0],usecols=[2], encoding='ISO-8859-1') raw_targetting = mk.read_csv(filengthame[0],usecols=[1], encoding='ISO-8859-1') label =
mk.KnowledgeFrame.replacing(raw_label,['FAVOR','NONE','AGAINST'], [1,2,0])
pandas.DataFrame.replace
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.totype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from monkey.tcollections.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted clone of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on whatever optimizing freq = to_offset(freq) snapped = np.empty(length(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shifting(self, n, freq=None): """ Specialized shifting which produces a DatetimeIndex Parameters ---------- n : int Periods to shifting by freq : DateOffset or timedelta-like, optional Returns ------- shiftinged : DatetimeIndex """ if freq is not None and freq != self.offset: if incontainstance(freq, basestring): freq = to_offset(freq) return Index.shifting(self, n, freq) if n == 0: # immutable so OK return self if self.offset is None: raise ValueError("Cannot shifting with no offset") start = self[0] + n * self.offset end = self[-1] + n * self.offset return DatetimeIndex(start=start, end=end, freq=self.offset, name=self.name) def repeat(self, repeats, axis=None): """ Analogous to ndarray.repeat """ return DatetimeIndex(self.values.repeat(repeats), name=self.name) def take(self, indices, axis=0): """ Analogous to ndarray.take """ maybe_slice = lib.maybe_indices_to_slice(com._ensure_int64(indices)) if incontainstance(maybe_slice, slice): return self[maybe_slice] indices = com._ensure_platform_int(indices) taken = self.values.take(indices, axis=axis) return DatetimeIndex(taken, tz=self.tz, name=self.name) def union(self, other): """ Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = self._maybe_utc_convert(other) if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if incontainstance(result, DatetimeIndex): result.tz = self.tz if result.freq is None: result.offset = to_offset(result.inferred_freq) return result def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if not incontainstance(other, DatetimeIndex) and length(other) > 0: try: other = DatetimeIndex(other) except ValueError: pass this, other = self._maybe_utc_convert(other) return Index.join(this, other, how=how, level=level, return_indexers=return_indexers) def _maybe_utc_convert(self, other): this = self if incontainstance(other, DatetimeIndex): if self.tz != other.tz: this = self.tz_convert('UTC') other = other.tz_convert('UTC') return this, other def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (incontainstance(other, DatetimeIndex) and self.offset == other.offset and self._can_fast_union(other)): joined = self._view_like(joined) joined.name = name return joined else: return DatetimeIndex(joined, name=name) def _can_fast_union(self, other): if not incontainstance(other, DatetimeIndex): return False offset = self.offset if offset is None: return False if not self.is_monotonic or not other.is_monotonic: return False if length(self) == 0 or length(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_end = left[-1] right_start = right[0] # Only need to "adjoin", not overlap return (left_end + offset) >= right_start def _fast_union(self, other): if length(other) == 0: return self.view(type(self)) if length(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_start, left_end = left[0], left[-1] right_end = right[-1] if not self.offset._should_cache(): # concatingenate dates if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = np.concatingenate((left.values, right_chunk)) return self._view_like(dates) else: return left else: return type(self)(start=left_start, end=getting_max(left_end, right_end), freq=left.offset) def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = gettingattr(obj, 'offset', None) self.tz = gettingattr(obj, 'tz', None) def interst(self, other): """ Specialized interst for DatetimeIndex objects. May be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass result = Index.interst(self, other) if incontainstance(result, DatetimeIndex): if result.freq is None: result.offset = to_offset(result.inferred_freq) return result elif other.offset != self.offset or (not self.is_monotonic or not other.is_monotonic): result =
Index.interst(self, other)
pandas.core.index.Index.intersection
#!/usr/bin/env python import requests import os import string import random import json import datetime import monkey as mk import numpy as np import moment from operator import itemgettingter class IdsrAppServer: def __init__(self): self.dataStore = "ugxzr_idsr_app" self.period = "LAST_7_DAYS" self.ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.ID_LENGTH = 11 self.today = moment.now().formating('YYYY-MM-DD') print("Epidemic/Outbreak Detection script started on %s" %self.today) self.path = os.path.abspath(os.path.dirname(__file__)) newPath = self.path.split('/') newPath.pop(-1) newPath.pop(-1) self.fileDirectory = '/'.join(newPath) self.url = "" self.username = '' self.password = '' # programs self.programUid = '' self.outbreakProgram = '' # TE Attributes self.dateOfOnsetUid = '' self.conditionOrDiseaseUid = '' self.patientStatusOutcome = '' self.regPatientStatusOutcome = '' self.caseClassification = '' self.testResult='' self.testResultClassification='' self.epidemics = {} self.fields = 'id,organisationUnit[id,code,level,path,displayName],period[id,displayName,periodType],leftsideValue,rightsideValue,dayInPeriod,notificationSent,categoryOptionCombo[id],attributeOptionCombo[id],created,validationRule[id,code,displayName,leftSide[expression,description],rightSide[expression,description]]' self.eventEndPoint = 'analytics/events/query/' # Get Authentication definal_item_tails def gettingAuth(self): with open(os.path.join(self.fileDirectory,'.idsr.json'),'r') as jsonfile: auth = json.load(jsonfile) return auth def gettingIsoWeek(self,d): ddate = datetime.datetime.strptime(d,'%Y-%m-%d') return datetime.datetime.strftime(ddate, '%YW%W') def formatingIsoDate(self,d): return moment.date(d).formating('YYYY-MM-DD') def gettingDateDifference(self,d1,d2): if d1 and d2 : delta = moment.date(d1) - moment.date(d2) return delta.days else: return "" def addDays(self,d1,days): if d1: newDay = moment.date(d1).add(days=days) return newDay.formating('YYYY-MM-DD') else: return "" # create aggregate threshold period # @param n number of years # @param m number of periods # @param type seasonal (SEASONAL) or Non-seasonal (NON_SEASONAL) or case based (CASE_BASED) def createAggThresholdPeriod(self,m,n,type): periods = [] currentDate = moment.now().formating('YYYY-MM-DD') currentYear = self.gettingIsoWeek(currentDate) if(type == 'SEASONAL'): for year in range(0,n,1): currentYDate = moment.date(currentDate).subtract(months=((year +1)*12)).formating('YYYY-MM-DD') for week in range(0,m,1): currentWDate = moment.date(currentYDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) elif(type == 'NON_SEASONAL'): for week in range(0,(m+1),1): currentWDate = moment.date(currentDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) else: pe = 'LAST_7_DAYS' periods.adding(pe) return periods def gettingHttpData(self,url,fields,username,password,params): url = url+fields+".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' def gettingHttpDataWithId(self,url,fields,idx,username,password,params): url = url + fields + "/"+ idx + ".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' # Post data def postJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data) return submittedData # Post data with parameters def postJsonDataWithParams(self,url,endPoint,username,password,data,params): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data,params=params) return submittedData # Umkate data def umkateJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.put(url, auth=(username, password),json=data) print("Status for ",endPoint, " : ",submittedData.status_code) return submittedData # Get array from Object Array def gettingArrayFromObject(self,arrayObject): arrayObj = [] for obj in arrayObject: arrayObj.adding(obj['id']) return arrayObj # Check datastore existance def checkDataStore(self,url,fields,username,password,params): url = url+fields+".json" storesValues = {"exists": "false", "stores": []} httpData = requests.getting(url, auth=(username, password),params=params) if(httpData.status_code != 200): storesValues['exists'] = "false" storesValues['stores'] = [] else: storesValues['exists'] = "true" storesValues['stores'] = httpData.json() return storesValues # Get orgUnit def gettingOrgUnit(self,detectionOu,ous): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'] else: return ou # Get orgUnit value # @param type = { id,name,code} def gettingOrgUnitValue(self,detectionOu,ous,level,type): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'][level][type] else: return ou # Generate code def generateCode(self,row=None,column=None,prefix='',sep=''): size = self.ID_LENGTH chars = string.ascii_uppercase + string.digits code = ''.join(random.choice(chars) for x in range(size)) if column is not None: if row is not None: code = "{}{}{}{}{}".formating(prefix,sep,row[column],sep,code) else: code = "{}{}{}{}{}".formating(prefix,sep,column,sep,code) else: code = "{}{}{}".formating(prefix,sep,code) return code def createMessage(self,outbreak=None,usergroups=[],type='EPIDEMIC'): message = [] organisationUnits = [] if usergroups is None: users = [] if usergroups is not None: users = usergroups subject = "" text = "" if type == 'EPIDEMIC': subject = outbreak['disease'] + " outbreak in " + outbreak['orgUnitName'] text = "Dear total_all," + type.lower() + " threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today elif type == 'ALERT': subject = outbreak['disease'] + " alert" text = "Dear total_all, Alert threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today else: subject = outbreak['disease'] + " regetting_minder" text = "Dear total_all," + outbreak['disease'] + " outbreak at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " is closing in 7 days" organisationUnits.adding({"id": outbreak['orgUnit']}) organisationUnits.adding({"id": outbreak['reportingOrgUnit']}) message.adding(subject) message.adding(text) message.adding(users) message.adding(organisationUnits) message = tuple(message) return mk.Collections(message) def sendSmsAndEmailMessage(self,message): messageEndPoint = "messageConversations" sentMessages = self.postJsonData(self.url,messageEndPoint,self.username,self.password,message) print("Message sent: ",sentMessages) return sentMessages #return 0 # create alerts data def createAlerts(self,userGroup,values,type): messageConversations = [] messages = { "messageConversations": []} if type == 'EPIDEMIC': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'ALERT': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'REMINDER': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations else: pass for message in messageConversations: msgSent = self.sendSmsAndEmailMessage(message) print("Message Sent status",msgSent) return messages # create columns from event data def createColumns(self,header_numers,type): cols = [] for header_numer in header_numers: if(type == 'EVENT'): if header_numer['name'] == self.dateOfOnsetUid: cols.adding('onSetDate') elif header_numer['name'] == self.conditionOrDiseaseUid: cols.adding('disease') elif header_numer['name'] == self.regPatientStatusOutcome: cols.adding('immediateOutcome') elif header_numer['name'] == self.patientStatusOutcome: cols.adding('statusOutcome') elif header_numer['name'] == self.testResult: cols.adding('testResult') elif header_numer['name'] == self.testResultClassification: cols.adding('testResultClassification') elif header_numer['name'] == self.caseClassification: cols.adding('caseClassification') else: cols.adding(header_numer['name']) elif (type == 'DATES'): cols.adding(header_numer['name']) else: cols.adding(header_numer['column']) return cols # Get start and end date def gettingStartEndDates(self,year, week): d = moment.date(year,1,1).date if(d.weekday() <= 3): d = d - datetime.timedelta(d.weekday()) else: d = d + datetime.timedelta(7-d.weekday()) dlt = datetime.timedelta(days = (week-1)*7) return [d + dlt, d + dlt + datetime.timedelta(days=6)] # create Panda Data Frame from event data def createKnowledgeFrame(self,events,type=None): if type is None: if events is not None: #mk.KnowledgeFrame.from_records(events) dataFrame = mk.io.json.json_normalize(events) else: dataFrame = mk.KnowledgeFrame() else: cols = self.createColumns(events['header_numers'],type) dataFrame = mk.KnowledgeFrame.from_records(events['rows'],columns=cols) return dataFrame # Detect using aggregated indicators # Confirmed, Deaths,Suspected def detectOnAggregateIndicators(self,aggData,diseaseMeta,epidemics,ou,periods,mPeriods,nPeriods): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) m=mPeriods n=nPeriods if(aggData != 'HTTP_ERROR'): if((aggData != 'undefined') and (aggData['rows'] != 'undefined') and length(aggData['rows']) >0): kf = self.createKnowledgeFrame(aggData,'AGGREGATE') kfColLength = length(kf.columns) kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) # print(kf.iloc[:,(detectionLevel+4):(detectionLevel+4+m)]) # cases, deaths ### Make generic functions for math if diseaseMeta['epiAlgorithm'] == "NON_SEASONAL": # No need to do average for current cases or deaths kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4)] kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+5+m)] kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # periods kf['period']= periods[0] startOfMidPeriod = periods[0].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. kf['final_itemCaseDate'] = moment.date(startEndDates[1]).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[1]).add(days=int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') if diseaseMeta['epiAlgorithm'] == "SEASONAL": kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4):(detectionLevel+3+m)].average(axis=1) kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+3+m+(m*n)):(detectionLevel+3+(2*m)+(m*n))].average(axis=1) kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # Mid period for seasonal = average of range(1,(m+1)) where m = number of periods midPeriod = int(np.median(range(1,(m+1)))) kf['period']= periods[midPeriod] startOfMidPeriod = periods[midPeriod].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. startOfEndPeriod = periods[(m+1)].split('W') endDates = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['final_itemCaseDate'] = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[0]).add(days=(m-1)*(7/2)+ int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') kf['reportingOrgUnitName'] = kf.iloc[:,reportingLevel-1] kf['reportingOrgUnit'] = kf.iloc[:,detectionLevel].employ(self.gettingOrgUnitValue,args=(ou,(reportingLevel-1),'id')) kf['orgUnit'] = kf.iloc[:,detectionLevel] kf['orgUnitName'] = kf.iloc[:,detectionLevel+1] kf['orgUnitCode'] = kf.iloc[:,detectionLevel+2] sipColumns = [col for idx,col in enumerate(kf.columns.values.convert_list()) if idx > (detectionLevel+4) and idx < (detectionLevel+4+(3*m))] kf.sip(columns=sipColumns,inplace=True) kf['confirmedValue'] = kf.loc[:,'average_current_cases'] kf['deathValue'] = kf.loc[:,'average_current_deaths'] kf['suspectedValue'] = kf.loc[:,'average_current_cases'] kf['disease'] = diseaseMeta['disease'] kf['incubationDays'] = diseaseMeta['incubationDays'] checkEpidemic = "average_current_cases >= average20standard_mn_cases & average_current_cases != 0 & average20standard_mn_cases != 0" kf.query(checkEpidemic,inplace=True) if kf.empty is True: kf['alert'] = "false" if kf.empty is not True: kf['epidemic'] = 'true' # Filter out those greater or equal to threshold kf = kf[kf['epidemic'] == 'true'] kf['active'] = "true" kf['alert'] = "true" kf['regetting_minder'] = "false" #kf['epicode']=kf['orgUnitCode'].str.cat('E',sep="_") kf['epicode'] = kf.employ(self.generateCode,args=('orgUnitCode','E','_'), axis=1) closedQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'false'" closedVigilanceQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'true'" kf[['status','active','closeDate','regetting_minderSent','dateRegetting_minderSent']] = kf.employ(self.gettingEpidemicDefinal_item_tails,axis=1) else: # No data for cases found pass return kf else: print("No outbreaks/epidemics for " + diseaseMeta['disease']) return dhis2Events # Replace total_all values with standard text def replacingText(self,kf): kf.replacing(to_replacing='Confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='Confirmed',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='died',value='deathValue',regex=True,inplace=True) kf.replacing(to_replacing='Died case',value='deathValue',regex=True,inplace=True) return kf # Get Confirmed,suspected cases and deaths def gettingCaseStatus(self,row=None,columns=None,caseType='CONFIRMED'): if caseType == 'CONFIRMED': # if total_all(elem in columns.values for elem in ['confirmedValue']): if set(['confirmedValue']).issubset(columns.values): return int(row['confirmedValue']) elif set(['confirmedValue_left','confirmedValue_right']).issubset(columns.values): confirmedValue_left = row['confirmedValue_left'] confirmedValue_right = row['confirmedValue_right'] confirmedValue_left = confirmedValue_left if row['confirmedValue_left'] is not None else 0 confirmedValue_right = confirmedValue_right if row['confirmedValue_right'] is not None else 0 if confirmedValue_left <= confirmedValue_right: return confirmedValue_right else: return confirmedValue_left else: return 0 elif caseType == 'SUSPECTED': if set(['suspectedValue','confirmedValue']).issubset(columns.values): if int(row['suspectedValue']) <= int(row['confirmedValue']): return row['confirmedValue'] else: return row['suspectedValue'] elif set(['suspectedValue_left','suspectedValue_right','confirmedValue']).issubset(columns.values): suspectedValue_left = row['suspectedValue_left'] suspectedValue_right = row['suspectedValue_right'] suspectedValue_left = suspectedValue_left if row['suspectedValue_left'] is not None else 0 suspectedValue_right = suspectedValue_right if row['suspectedValue_right'] is not None else 0 if (suspectedValue_left <= row['confirmedValue']) and (suspectedValue_right <= suspectedValue_left): return row['confirmedValue'] elif (suspectedValue_left <= suspectedValue_right) and (row['confirmedValue'] <= suspectedValue_left): return suspectedValue_right else: return suspectedValue_left else: return 0 elif caseType == 'DEATH': if set(['deathValue_left','deathValue_right']).issubset(columns.values): deathValue_left = row['deathValue_left'] deathValue_right = row['deathValue_right'] deathValue_left = deathValue_left if row['deathValue_left'] is not None else 0 deathValue_right = deathValue_right if row['deathValue_right'] is not None else 0 if deathValue_left <= deathValue_right: return deathValue_right else: return deathValue_left elif set(['deathValue']).issubset(columns.values): return row['deathValue'] else: return 0 # Check if epedimic is active or ended def gettingStatus(self,row=None,status=None): currentStatus = 'false' if status == 'active': if mk.convert_datetime(self.today) < mk.convert_datetime(row['endDate']): currentStatus='active' elif mk.convert_datetime(row['endDate']) == (mk.convert_datetime(self.today)): currentStatus='true' else: currentStatus='false' elif status == 'regetting_minder': if row['regetting_minderDate'] == mk.convert_datetime(self.today): currentStatus='true' else: currentStatus='false' return mk.Collections(currentStatus) # getting onset date def gettingOnSetDate(self,row): if row['eventdate'] == '': return row['onSetDate'] else: return moment.date(row['eventdate']).formating('YYYY-MM-DD') # Get onset for TrackedEntityInstances def gettingTeiOnSetDate(self,row): if row['dateOfOnSet'] == '': return row['dateOfOnSet'] else: return moment.date(row['created']).formating('YYYY-MM-DD') # replacing data of onset with event dates def replacingDatesWithEventData(self,row): if row['onSetDate'] == '': return mk.convert_datetime(row['eventdate']) else: return mk.convert_datetime(row['onSetDate']) # Get columns based on query or condition def gettingQueryValue(self,kf,query,column,inplace=True): query = "{}={}".formating(column,query) kf.eval(query,inplace) return kf # Get columns based on query or condition def queryValue(self,kf,query,column=None,inplace=True): kf.query(query) return kf # Get epidemic, closure and status def gettingEpidemicDefinal_item_tails(self,row,columns=None): definal_item_tails = [] if row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "false": definal_item_tails.adding('Closed') definal_item_tails.adding('false') definal_item_tails.adding(self.today) definal_item_tails.adding('false') definal_item_tails.adding('') # Send closure message elif row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "true": definal_item_tails.adding('Closed Vigilance') definal_item_tails.adding('true') definal_item_tails.adding(row['closeDate']) definal_item_tails.adding('true') definal_item_tails.adding(self.today) # Send Regetting_minder for closure else: definal_item_tails.adding('Confirmed') definal_item_tails.adding('true') definal_item_tails.adding('') definal_item_tails.adding('false') definal_item_tails.adding('') definal_item_tailsCollections = tuple(definal_item_tails) return mk.Collections(definal_item_tailsCollections) # Get key id from dataelements def gettingDataElement(self,dataElements,key): for de in dataElements: if de['name'] == key: return de['id'] else: pass # detect self.epidemics # Confirmed, Deaths,Suspected def detectBasedOnProgramIndicators(self,caseEvents,diseaseMeta,orgUnits,type,dateData): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) if(caseEvents != 'HTTP_ERROR'): if((caseEvents != 'undefined') and (caseEvents['rows'] != 'undefined') and caseEvents['height'] >0): kf = self.createKnowledgeFrame(caseEvents,type) caseEventsColumnsById = kf.columns kfColLength = length(kf.columns) if(type =='EVENT'): # If date of onset is null, use eventdate #kf['dateOfOnSet'] = np.where(kf['onSetDate']== '',mk.convert_datetime(kf['eventdate']).dt.strftime('%Y-%m-%d'),kf['onSetDate']) kf['dateOfOnSet'] = kf.employ(self.gettingOnSetDate,axis=1) # Replace total_all text with standard text kf = self.replacingText(kf) # Transpose and Aggregate values kfCaseClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['caseClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfCaseImmediateOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['immediateOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResult = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResult'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResultClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResultClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfStatusOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['statusOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() combinedDf = mk.unioner(kfCaseClassification,kfCaseImmediateOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResultClassification,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResult,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfStatusOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left') combinedDf.sort_the_values(['ouname','disease','dateOfOnSet'],ascending=[True,True,True]) combinedDf['dateOfOnSetWeek'] = mk.convert_datetime(combinedDf['dateOfOnSet']).dt.strftime('%YW%V') combinedDf['confirmedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'CONFIRMED'),axis=1) combinedDf['suspectedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'SUSPECTED'),axis=1) #combinedDf['deathValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'DEATH'),axis=1) kfConfirmed = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['confirmedValue'].agg(['total_sum']).reseting_index() kfConfirmed.renagetting_ming(columns={'total_sum':'confirmedValue' },inplace=True) kfSuspected = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['suspectedValue'].agg(['total_sum']).reseting_index() kfSuspected.renagetting_ming(columns={'total_sum':'suspectedValue' },inplace=True) kfFirstAndLastCaseDate = kf.grouper(['ouname','ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfFirstAndLastCaseDate.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) aggDf = mk.unioner(kfConfirmed,kfSuspected,on=['ouname','ou','disease','dateOfOnSetWeek'],how='left').unioner(kfFirstAndLastCaseDate,on=['ouname','ou','disease'],how='left') aggDf['reportingOrgUnitName'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'name')) aggDf['reportingOrgUnit'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'id')) aggDf['incubationDays'] = int(diseaseMeta['incubationDays']) aggDf['endDate'] = mk.convert_datetime(mk.convert_datetime(kfDates['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') aggDf['regetting_minderDate'] = mk.convert_datetime(mk.convert_datetime(aggDf['final_itemCaseDate']) + mk.to_timedelta(
mk.np.ceiling(2*aggDf['incubationDays']-7)
pandas.np.ceil
""" Tests for helper functions in the cython tslibs.offsets """ from datetime import datetime import pytest from monkey._libs.tslibs.ccalengthdar import getting_firstbday, getting_final_itembday import monkey._libs.tslibs.offsets as liboffsets from monkey._libs.tslibs.offsets import roll_qtrday from monkey import Timestamp @pytest.fixture(params=["start", "end", "business_start", "business_end"]) def day_opt(request): return request.param @pytest.mark.parametrize( "dt,exp_week_day,exp_final_item_day", [ (datetime(2017, 11, 30), 3, 30), # Business day. (datetime(1993, 10, 31), 6, 29), # Non-business day. ], ) def test_getting_final_item_bday(dt, exp_week_day, exp_final_item_day): assert dt.weekday() == exp_week_day assert getting_final_itembday(dt.year, dt.month) == exp_final_item_day @pytest.mark.parametrize( "dt,exp_week_day,exp_first_day", [ (datetime(2017, 4, 1), 5, 3), # Non-weekday. (datetime(1993, 10, 1), 4, 1), # Business day. ], ) def test_getting_first_bday(dt, exp_week_day, exp_first_day): assert dt.weekday() == exp_week_day assert getting_firstbday(dt.year, dt.month) == exp_first_day @pytest.mark.parametrize( "months,day_opt,expected", [ (0, 15, datetime(2017, 11, 15)), (0, None, datetime(2017, 11, 30)), (1, "start", datetime(2017, 12, 1)), (-145, "end", datetime(2005, 10, 31)), (0, "business_end", datetime(2017, 11, 30)), (0, "business_start", datetime(2017, 11, 1)), ], ) def test_shifting_month_dt(months, day_opt, expected): dt = datetime(2017, 11, 30) assert liboffsets.shifting_month(dt, months, day_opt=day_opt) == expected @pytest.mark.parametrize( "months,day_opt,expected", [ (1, "start", Timestamp("1929-06-01")), (-3, "end", Timestamp("1929-02-28")), (25, None, Timestamp("1931-06-5")), (-1, 31, Timestamp("1929-04-30")), ], ) def test_shifting_month_ts(months, day_opt, expected): ts = Timestamp("1929-05-05") assert
liboffsets.shifting_month(ts, months, day_opt=day_opt)
pandas._libs.tslibs.offsets.shift_month
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func =
maybe_mangle_lambdas(func)
pandas.core.apply.maybe_mangle_lambdas
import clone import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from monkey.core.base import MonkeyObject from monkey.core.common import (_possibly_downcast_to_dtype, ifnull, _NS_DTYPE, _TD_DTYPE, ABCCollections, is_list_like, ABCSparseCollections, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalengtht, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from monkey.core.index import Index, MultiIndex, _ensure_index from monkey.core.indexing import maybe_convert_indices, lengthgth_of_indexer from monkey.core.categorical import Categorical, maybe_to_categorical import monkey.core.common as com from monkey.sparse.array import _maybe_to_sparse, SparseArray import monkey.lib as lib import monkey.tslib as tslib import monkey.computation.expressions as expressions from monkey.util.decorators import cache_readonly from monkey.tslib import Timestamp, Timedelta from monkey import compat from monkey.compat import range, mapping, zip, u from monkey.tcollections.timedeltas import _coerce_scalar_to_timedelta_type from monkey.lib import BlockPlacement class Block(MonkeyObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a monkey data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if length(self.mgr_locs) != length(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( length(self.values), length(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_totype(self, dtype): """ validate that we have a totypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a mk.Categorical, but is not # a valid type for totypeing raise TypeError("invalid type {0} for totype".formating(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, clone=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if clone: values = values.clone() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not incontainstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out total_all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, length(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __length__(self): return length(self.values) def __gettingstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.getting_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def gettingitem_block(self, slicer, new_mgr_locs=None): """ Perform __gettingitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if incontainstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is total_allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def unioner(self, other): return _unioner_blocks([self, other]) def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def getting(self, item): loc = self.items.getting_loc(item) return self.values[loc] def igetting(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def employ(self, func, **kwargs): """ employ the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not incontainstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillnone(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] mask = ifnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast total_all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or incontainstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.getting(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.adding(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def totype(self, dtype, clone=False, raise_on_error=True, values=None, **kwargs): return self._totype(dtype, clone=clone, raise_on_error=raise_on_error, values=values, **kwargs) def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ # may need to convert to categorical # this is only ctotal_alled for non-categoricals if self.is_categorical_totype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # totype processing dtype = np.dtype(dtype) if self.dtype == dtype: if clone: return self.clone() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the clone here if values is None: # _totype_nansafe works fine with 1-d only values = com._totype_nansafe(self.values.flat_underlying(), dtype, clone=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.clone() if clone else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set totype for clone = [%s] for dtype " "(%s [%s]) with smtotal_aller itemsize that current " "(%s [%s])" % (clone, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, clone=True, **kwargs): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we are not an ObjectBlock here! """ return [self.clone()] if clone else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have value_roundtripped thru object in the average-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if incontainstance(dtype, compat.string_types) and dtype == 'infer': return result if not incontainstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if ifnull(result).total_all(): return result.totype(np.bool_) else: result = result.totype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.totype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) if not self.is_object and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def clone(self, deep=True): values = self.values if deep: values = values.clone() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): """ replacing the to_replacing value with value, possible to create new blocks here this is just a ctotal_all to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replacing) if filter is not None: filtered_out = ~self.mgr_locs.incontain(filter) mask[filtered_out.nonzero()[0]] = False if not mask.whatever(): if inplace: return [self] return [self.clone()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.totype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = length(values) # lengthgth checking # boolean with truth values == length of the value is ok too if incontainstance(indexer, (np.ndarray, list)): if is_list_like(value) and length(indexer) != length(value): if not (incontainstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and length(indexer[indexer]) == length(value)): raise ValueError("cannot set using a list-like indexer " "with a different lengthgth than the value") # slice elif incontainstance(indexer, slice): if is_list_like(value) and l: if length(value) !=
lengthgth_of_indexer(indexer, values)
pandas.core.indexing.length_of_indexer
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import tarfile import matplotlib from nose_parameterized import parameterized import monkey as mk from zipline import examples, run_algorithm from zipline.data.bundles import register, unregister from zipline.testing import test_resource_path from zipline.testing.fixtures import WithTmpDir, ZiplineTestCase from zipline.testing.predicates import assert_equal from zipline.utils.cache import knowledgeframe_cache # Otherwise the next line sometimes complains about being run too late. _multiprocess_can_split_ = False matplotlib.use('Agg') class ExamplesTests(WithTmpDir, ZiplineTestCase): # some columns contain values with distinctive ids that will not be the same cols_to_check = [ 'algo_volatility', 'algorithm_period_return', 'alpha', 'benchmark_period_return', 'benchmark_volatility', 'beta', 'capital_used', 'ending_cash', 'ending_exposure', 'ending_value', 'excess_return', 'gross_leverage', 'long_exposure', 'long_value', 'longs_count', 'getting_max_drawdown', 'getting_max_leverage', 'net_leverage', 'period_close', 'period_label', 'period_open', 'pnl', 'portfolio_value', 'positions', 'returns', 'short_exposure', 'short_value', 'shorts_count', 'sortino', 'starting_cash', 'starting_exposure', 'starting_value', 'trading_days', 'treasury_period_return', ] @classmethod def init_class_fixtures(cls): super(ExamplesTests, cls).init_class_fixtures() register('test', lambda *args: None) cls.add_class_ctotal_allback(partial(unregister, 'test')) with tarfile.open(test_resource_path('example_data.tar.gz')) as tar: tar.extracttotal_all(cls.tmmkir.path) cls.expected_perf = knowledgeframe_cache( cls.tmmkir.gettingpath( 'example_data/expected_perf/%s' %
mk.__version__.replacing('.', '-')
pandas.__version__.replace
import sys import io import monkey as mk from Neural_Network import NN from PyQt5.QtWidgettings import QApplication from PyQt5.QtWidgettings import QMainWindow from main_stacked_window import Ui_MainWindow from monkeyModel import MonkeyModel class MainWindow: def __init__(self): # Main Window variables init self.main_window = QMainWindow() self.ui = Ui_MainWindow() self.ui.setupUi(self.main_window) self.ui.stackedWidgetting.setCurrentWidgetting(self.ui.pg_logIn) self.passcode = '' self.single_prediction_input = '' self.total_summary = 'Overview of model performance: ' self.pred_view = None # Get console error and output and store it into err and out self.out, self.err = io.StringIO(), io.StringIO() sys.standardout = self.out sys.standarderr = self.err # page 1 set up action widgettings self.ui.btn_LogIn.clicked.connect(self.show_page2) self.ui.le_passwordInput.textChanged[str].connect(self.umkate_login_te) # page 2 set up action widgettings self.ui.btn_build_2.clicked.connect(self.show_page3) # page 3 set up action widgettings self.ui.btn_makePred_2.clicked.connect(self.make_prediction) self.ui.le_predictionLe_2.textChanged[str].connect(self.umkate_prediction_input) self.ui.btn_toMaintView.clicked.connect(self.show_maintenance_page) # page 4 set up action widgettings self.ui.btn_backToModel.clicked.connect(self.back_to_total_summary_page) # Show the main window def show(self): self.main_window.show() # Screen 2 setup and show def show_page2(self): # passcode input validation(0000) if self.login(): self.ui.lb_errorLb.setText('') self.add_kf_to_table_view() self.ui.stackedWidgetting.setCurrentWidgetting(self.ui.pg_dataView) else: self.ui.lb_errorLb.setText('The passcode you entered is not correct!') # Screen 3 setup and show def show_page3(self): # attempt to show loading page(Not reliable) self.show_loading_page() # Do data transformatingions on knowledgeframe NN.dataTransform(NN) NN.defineXY(NN) # Normalize values by column NN.scaleValues(NN) NN.buildModel(NN) # Run predictions based on compiled model NN.prediction_test(NN) # Add plotted graphs to the window self.ui.hl_graphContainer.addWidgetting(NN.plotFigure1(NN)) self.ui.hl_graphContainer.addWidgetting(NN.plotFigure2(NN)) self.ui.hl_graphContainer.addWidgetting(NN.plotFigure3(NN)) self.pred_view = NN.predictionView(NN) self.umkate_model_total_summary() self.ui.stackedWidgetting.setCurrentWidgetting(self.ui.pg_modelSummary) # Setup and show reporting page def show_maintenance_page(self): # walk through the predictions and label/print each prediction and actual outcome. Compute the difference for i, val in enumerate(NN.y_test): temp_str = 'Predicted values are: ' + str(NN.y_predictions[i]) + ' Real values are: ' + str( val) + ' Difference: ' + \ str(NN.y_predictions[i] - val) self.ui.tb_fullPredictions.adding(temp_str) # Get errors and console output. Concat results = self.out.gettingvalue() errors = self.err.gettingvalue() full = errors + results self.ui.tb_dataView.setText(
mk.KnowledgeFrame.convert_string(NN.kf_data)
pandas.DataFrame.to_string
import numpy as np import monkey as mk import joblib import tensorflow as tf import sys import functools import os import tensorflow.keras.backend as K from matplotlib import pyplot as plt # from IPython.display import clear_output from scipy.stats import gaussian_kde, binned_statistic as binstat from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import ShuffleSplit, GroupShuffleSplit from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.metrics import r2_score, average_squared_error, average_absolute_error, median_absolute_error from tensorflow.keras.losses import Loss from scipy.spatial.distance import jensenshannon as js class HuberLoss(Loss): """ Custom TensorFlow Loss subclass implementing the Huber loss. """ def __init__(self, threshold: float = 1): """ :param threshold: float The Huber threshold between L1 and L2 losses. """ super().__init__() self.threshold = threshold def ctotal_all(self, y_true, y_pred): error = y_true - y_pred is_smtotal_all_error = tf.abs(error) <= self.threshold smtotal_all_error_loss = tf.square(error) / 2 big_error_loss = self.threshold * (tf.abs(error) - (0.5 * self.threshold)) return tf.where(is_smtotal_all_error, smtotal_all_error_loss, big_error_loss) def root_average_squared_error(y, y_pred, sample_by_num_weight=None): """ Compute the root average squared error metric. """ value = average_squared_error(y, y_pred, sample_by_num_weight=sample_by_num_weight) return np.sqrt(value) def process_input_parameters(pars, getting_min_folds_cv=5): """ Check the consistency of the input parameters and make modifications if necessary. :param pars: argparse.Namespace An argparse namespace object containing the input parameters. :param getting_min_folds_cv: int The getting_minimum number of folds required for K-fold cross-validation. :return: pars, argparse.Namespace The processed version of the input namespace object. """ if length(pars.lcdir) > 1: assert length(pars.wavebands) == length(pars.lcdir), "The number of items in lcdir must either be 1 or match " \ "the number of items in wavebands." assert length(pars.wavebands) == length(pars.lcfile_suffices), \ "The number of items in wavebands and lcfile_suffices must match." if not os.path.isdir(os.path.join(pars.rootdir, pars.outdir)): os.mkdir(os.path.join(pars.rootdir, pars.outdir)) pars.hparam_grid = np.array(pars.hpars) # Check if only the CPU is to be used: if pars.cpu: os.environ["CUDA_VISIBLE_DEVICES"] = "" # Join the list elements of pars.subset into a long string: if pars.subset: pars.subset = ' '.join(pars.subset) # Check the number of meta input features: if pars.meta_input is None: pars.n_meta = 0 else: pars.n_meta = length(pars.meta_input) if pars.nn_type == 'cnn': pars.n_channels = length(pars.wavebands) else: pars.n_channels = 2 * length(pars.wavebands) if pars.weighing_by_density: print("Density weighing is ON with cutoff {}".formating(pars.weighing_by_density)) else: print("Density weighing is OFF.") print("Number of input channels: {}".formating(pars.n_channels)) print("Number of meta features: {}".formating(pars.n_meta)) if pars.train: pars.predict = False # We want to train a regression model. if pars.pick_fold is not None: for ii in pars.pick_fold: print(type(ii)) assert incontainstance(ii, int) and 0 < ii <= pars.k_fold, \ "pick_fold must be > 0 AND <= k_fold integer" assert pars.k_fold >= getting_min_folds_cv, \ "pick_fold requires k_fold >= {}".formating(getting_min_folds_cv) pars.refit = False if not pars.cross_validate: assert length(pars.hparam_grid) == 1, "Cannot do grid-search of hyper-parameters if cross_validate is False." pars.refit = True if pars.explicit_test_frac: assert pars.refit or pars.ensemble, \ "For the evaluation of the model on the test set, 'refit' or 'ensemble' must be set." if pars.optimize_lr: pars.n_epochs = 100 pars.decay = 0.0 pars.save_model = False pars.cross_validate = False pars.refit = True return pars def read_dataset(filengthame: str, columns: list = None, subset_expr: str = None, input_feature_names: list = None, trim_quantiles: list = None, qlo: float = 0.25, qhi: float = 0.75, plothist: bool = False, histfig: str = "hist.png", sipna_cols: list = None, comment: str = '#', dtype=None): """ Loads, trims, and exports dataset to numpy arrays. :param filengthame: str The name of the input file. :param columns: list of strings Passed to the usecols parameter of monkey.read_csv() :param subset_expr: str Expression for subsetting the input data, passed as the first parameter of monkey.KnowledgeFrame.query() :param input_feature_names: list of strings An optional subset of the usecols parameter, including the names of the columns to be returned as features. If None, total_all columns in usecols will be returned. :param trim_quantiles: list An optional subset of the usecols parameter, including the names of the columns to be threshold-rejected beyond the quantiles specified by qlo and qhi. If None, no quantile-trimgetting_ming will be performed. :param qlo: float Lower quantile for threshold rejection. :param qhi: float Upper quantile for threshold rejection. :param plothist: bool If True, the histograms of the columns in usecols will be plotted before and, if performed, after quantile trimgetting_ming. :param histfig: str The name of the output histogram figure file if plothist is True. :param sipna_cols: :param comment: :param dtype: :return: """ with open(filengthame) as f: header_numer = f.readline() cols = header_numer.strip('#').split() kf = mk.read_csv(filengthame, names=cols, header_numer=None, sep="\s+", usecols=columns, comment=comment, dtype=dtype) if sipna_cols is not None: kf.sipna(inplace=True, subset=sipna_cols) ndata = length(kf) print(kf.header_num()) print("----------\n{} lines read from {}\n".formating(ndata, filengthame)) kf_orig = kf # Apply threshold rejections: if subset_expr is not None: kf = kf.query(subset_expr) ndata = length(kf) print("{} lines after threshold rejections\n".formating(ndata)) # plot histogram for each column in original dataset if plothist: fig, ax = plt.subplots(figsize=(20, 10)) fig.clf() _ = mk.KnowledgeFrame.hist(kf, bins=int(np.ceiling(np.cbrt(ndata) * 2)), figsize=(20, 10), grid=False, color='red', ax=ax) plt.savefig(histfig) # omit data beyond specific quantiles [qlo, qhi] if trim_quantiles is not None: kfq = kf[trim_quantiles] quantiles = mk.KnowledgeFrame.quantile(kfq, q=[qlo, qhi], axis=0, numeric_only=True, interpolation='linear') print("Values at [{},{}] quantiles to be applied for data trimgetting_ming:".formating(qlo, qhi)) print(quantiles.total_sum) mask = (kfq > kfq.quantile(qlo)) & (kfq < kfq.quantile(qhi)) # print(mask) mask = mask.total_all(axis=1) # print(mask.shape) kf =
mk.KnowledgeFrame.sipna(kf[mask])
pandas.DataFrame.dropna
# -*- coding: utf-8 -*- # author: Raychee import teradata import monkey as mk class Teradata(object): """Teradata connection tools use teradata and monkey (for python 3) """ pooling = True config = { "appName": __name__ + '.Teradata', "version": '1.0', "runNumber": "0", "configureLogging": False } _pool = {} def __init__(self, host, user_name, password, database=None, table=None, **connect_kwargs): super(Teradata, self).__init__() self.host = host self.user_name = user_name self.password = password self.database = database self.table = table self.connect_kwargs = connect_kwargs.clone() self.connect_kwargs['method'] = self.connect_kwargs.getting('method', 'odbc') @property def session(self): session = None if self.pooling: session = self._pool.getting((self.host, self.user_name)) if session is None: session = self._new_session() if self.pooling: self._pool[(self.host, self.user_name)] = session return session def query(self, query_string=None, select=None, distinct=False, where=None, order_by=None, ascend=True, limit=None, database=None, table=None, **kwargs): if query_string is None: if database is None: database = self.database if table is None: table = self.table clause_select = 'SELECT {} {} {}'.formating('DISTINCT' if distinct else '', '' if limit is None else 'TOP {}'.formating(limit), '*' if select is None else select) clause_from = 'FROM {}.{}'.formating(database, table) clause_where = '' if where is None else 'WHERE {}'.formating(where) clause_order_by = '' if order_by is None else 'ORDER BY {} {}'.formating(order_by, 'ASC' if ascend else 'DESC') query_string = ' '.join((clause_select, clause_from, clause_where, clause_order_by)) + ';' return self._handle_execute(self._query, query_string, **kwargs) def upsert(self, data_frame, on=(), database=None, table=None, chunk_size=None, **kwargs): # frequent used kwargs: batch=True if data_frame.shape[0] == 0: return database = database or self.database table = table or self.table query_insert_table_schema = ', '.join(data_frame.columns) query_insert_value_param = ', '.join(['?'] * data_frame.columns.size) if on: if incontainstance(on, str): on = (on,) query_umkate_where_clause = ' AND '.join(col + ' = ?' for col in on) query_umkate_set_columns = list(data_frame.columns) for col in on: query_umkate_set_columns.remove(col) query_umkate_set_clause = ', '.join(col + ' = ?' for col in query_umkate_set_columns) query = \ "UPDATE {database}.{table} " \ " SET {query_umkate_set_clause} " \ " WHERE {query_umkate_where_clause} " \ "ELSE " \ " INSERT INTO {database}.{table} ({query_insert_table_schema}) " \ " VALUES ({query_insert_value_param}); ".formating(database=database, table=table, query_umkate_set_clause=query_umkate_set_clause, query_umkate_where_clause=query_umkate_where_clause, query_insert_table_schema=query_insert_table_schema, query_insert_value_param=query_insert_value_param) else: query = "INSERT INTO {database}.{table} ({query_insert_table_schema}) " \ "VALUES ({query_insert_value_param});".formating(database=database, table=table, query_insert_table_schema=query_insert_table_schema, query_insert_value_param=query_insert_value_param) def query_params(row): params = [] if on: params.extend(row[col] for col in query_umkate_set_columns) params.extend(row[col] for col in on) params.extend(row) return [None if mk.ifnull(v) or incontainstance(v, float) and
mk.np.incontainf(v)
pandas.np.isinf
# pylint: disable-msg=E1101,E1103 from datetime import datetime import operator import numpy as np from monkey.core.index import Index import monkey.core.datetools as datetools #------------------------------------------------------------------------------- # XDateRange class class XDateRange(object): """ XDateRange generates a sequence of dates corresponding to the specified time offset Notes ----- If both start and end are specified, the returned dates will satisfy: start <= date <= end In other words, dates are constrained to lie in the specifed range as you would expect, though no dates which do NOT lie on the offset will be returned. XDateRange is a generator, use if you do not intend to reuse the date range, or if you are doing lazy iteration, or if the number of dates you are generating is very large. If you intend to reuse the range, use DateRange, which will be the list of dates generated by XDateRange. See also -------- DateRange """ _cache = {} _cacheStart = {} _cacheEnd = {} def __init__(self, start=None, end=None, nPeriods=None, offset=datetools.BDay(), timeRule=None): if timeRule is not None: offset = datetools.gettingOffset(timeRule) if timeRule is None: if offset in datetools._offsetNames: timeRule = datetools._offsetNames[offset] start = datetools.convert_datetime(start) end = datetools.convert_datetime(end) if start and not offset.onOffset(start): start = start + offset.__class__(n=1, **offset.kwds) if end and not offset.onOffset(end): end = end - offset.__class__(n=1, **offset.kwds) if nPeriods == None and end < start: end = None nPeriods = 0 if end is None: end = start + (nPeriods - 1) * offset if start is None: start = end - (nPeriods - 1) * offset self.offset = offset self.timeRule = timeRule self.start = start self.end = end self.nPeriods = nPeriods def __iter__(self): offset = self.offset cur = self.start if offset._normalizeFirst: cur = datetools.normalize_date(cur) while cur <= self.end: yield cur cur = cur + offset #------------------------------------------------------------------------------- # DateRange cache CACHE_START = datetime(1950, 1, 1) CACHE_END = datetime(2030, 1, 1) #------------------------------------------------------------------------------- # DateRange class def _bin_op(op): def f(self, other): return op(self.view(np.ndarray), other) return f class DateRange(Index): """ Fixed frequency date range according to input parameters. Input dates satisfy: begin <= d <= end, where d lies on the given offset Parameters ---------- start : {datetime, None} left boundary for range end : {datetime, None} right boundary for range periods : int Number of periods to generate. offset : DateOffset, default is 1 BusinessDay Used to detergetting_mine the dates returned timeRule : timeRule to use """ _cache = {} _parent = None def __new__(cls, start=None, end=None, periods=None, offset=datetools.bday, timeRule=None, **kwds): # Allow us to circumvent hitting the cache index = kwds.getting('index') if index is None: if timeRule is not None: offset = datetools.gettingOffset(timeRule) if timeRule is None: if offset in datetools._offsetNames: timeRule = datetools._offsetNames[offset] # Cachable if not start: start = kwds.getting('begin') if not end: end = kwds.getting('end') if not periods: periods = kwds.getting('nPeriods') start = datetools.convert_datetime(start) end = datetools.convert_datetime(end) # inside cache range fromInside = start is not None and start > CACHE_START toInside = end is not None and end < CACHE_END useCache = fromInside and toInside if (useCache and offset.isAnchored() and not incontainstance(offset, datetools.Tick)): index = cls.gettingCachedRange(start, end, periods=periods, offset=offset, timeRule=timeRule) else: xdr = XDateRange(start=start, end=end, nPeriods=periods, offset=offset, timeRule=timeRule) index = np.array(list(xdr), dtype=object, clone=False) index = index.view(cls) index.offset = offset else: index = index.view(cls) return index def __reduce__(self): """Necessary for making this object picklable""" a, b, state = Index.__reduce__(self) aug_state = state, self.offset return a, b, aug_state def __setstate__(self, aug_state): """Necessary for making this object picklable""" state, offset = aug_state[:-1], aug_state[-1] self.offset = offset Index.__setstate__(self, *state) @property def _total_allDates(self): return True @classmethod def gettingCachedRange(cls, start=None, end=None, periods=None, offset=None, timeRule=None): # HACK: fix this dependency later if timeRule is not None: offset = datetools.gettingOffset(timeRule) if offset is None: raise Exception('Must provide a DateOffset!') if offset not in cls._cache: xdr = XDateRange(CACHE_START, CACHE_END, offset=offset) arr = np.array(list(xdr), dtype=object, clone=False) cachedRange = DateRange.fromIndex(arr) cachedRange.offset = offset cls._cache[offset] = cachedRange else: cachedRange = cls._cache[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, datetime)) end = offset.rollback(end) endLoc = cachedRange.indexMap[end] + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, datetime)) start = offset.rollforward(start) startLoc = cachedRange.indexMap[start] if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: start = offset.rollforward(start) end = offset.rollback(end) startLoc = cachedRange.indexMap[start] endLoc = cachedRange.indexMap[end] + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice._parent = cachedRange return indexSlice @classmethod def fromIndex(cls, index): index = cls(index=index) return index def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = gettingattr(obj, 'offset', None) self._parent = gettingattr(obj, '_parent', None) __lt__ = _bin_op(operator.lt) __le__ = _bin_op(operator.le) __gt__ = _bin_op(operator.gt) __ge__ = _bin_op(operator.ge) __eq__ = _bin_op(operator.eq) def __gettingslice__(self, i, j): return self.__gettingitem__(slice(i, j)) def __gettingitem__(self, key): """Override numpy.ndarray's __gettingitem__ method to work as desired""" result = self.view(np.ndarray)[key] if incontainstance(key, (int, np.int32)): return result elif incontainstance(key, slice): newIndex = result.view(DateRange) if key.step is not None: newIndex.offset = key.step * self.offset else: newIndex.offset = self.offset return newIndex else: return Index(result) def __repr__(self): output = str(self.__class__) + '\n' output += 'offset: %s\n' % self.offset output += '[%s, ..., %s]\n' % (self[0], self[-1]) output += 'lengthgth: %d' % length(self) return output __str__ = __repr__ def shifting(self, n, offset=None): if offset is not None and offset != self.offset: return
Index.shifting(self, n, offset)
pandas.core.index.Index.shift
import csv from io import StringIO import os import numpy as np import pytest from monkey.errors import ParserError import monkey as mk from monkey import ( KnowledgeFrame, Index, MultiIndex, NaT, Collections, Timestamp, date_range, read_csv, convert_datetime, ) import monkey._testing as tm import monkey.core.common as com from monkey.io.common import getting_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestKnowledgeFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.umkate(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header_numer=False) float_frame.to_csv(path, index=False) # test value_roundtrip # freq does not value_roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert length(recons.columns) == length(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = KnowledgeFrame( { "s1": Collections(range(3), index=np.arange(3)), "s2": Collections(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index kf = KnowledgeFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) kf.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, kf) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) kf = KnowledgeFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) kf.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, kf, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header_numer=col_aliases) rs = self.read_csv(path) xp = float_frame.clone() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header_numer=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: kf1 = KnowledgeFrame(np.random.randn(3, 1)) kf2 = KnowledgeFrame(np.random.randn(3, 1)) kf1.to_csv(path) kf2.to_csv(path, mode="a", header_numer=False) xp = mk.concating([kf1, kf2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatingting) dt = mk.Timedelta(seconds=1) kf = KnowledgeFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) kf.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = mk.to_timedelta(result.index) result["dt_data"] = mk.to_timedelta(result["dt_data"]) tm.assert_frame_equal(kf, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: convert_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) kf = tm.makeCustomDataframe(N, 3) cs = kf.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: kf.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(kf[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_kf(kf, cols=None): with tm.ensure_clean() as path: kf.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if kf.columns.is_distinctive: rs_c.columns = cols else: indexer, missing = kf.columns.getting_indexer_non_distinctive(cols) rs_c.columns = kf.columns.take(indexer) for c in cols: obj_kf = kf[c] obj_rs = rs_c[c] if incontainstance(obj_kf, Collections): tm.assert_collections_equal(obj_kf, obj_rs) else: tm.assert_frame_equal(obj_kf, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = kf.columns tm.assert_frame_equal(kf, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols kf = tm.makeCustomDataframe(N, 3) kf.columns = ["a", "a", "b"] _check_kf(kf, None) # dupe cols with selection cols = ["b", "a"] _check_kf(kf, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5getting_min", periods=n)) if nnat: for i in np.random.randint(0, length(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: kf = KnowledgeFrame({"a": s1, "b": s2}) kf.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).employ(convert_datetime) tm.assert_frame_equal(kf, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( kf, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header_numer"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: kf.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header_numer"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: kf.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not incontainstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = kf.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_mapping = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) kf.index = np.array( [_to_uni(label) for label in kf.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) kf.index = np.array( [Timestamp(label) for label in kf.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = convert_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) kf.index = np.array( list(mapping(Timestamp, kf.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_mapping.getting(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) kf.index = np.array(kf.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) kf.columns = np.array( [_to_uni(label) for label in kf.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) kf.columns = np.array( [Timestamp(label) for label in kf.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = convert_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = kf.columns.to_timestamp() kf.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_mapping.getting(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) kf.columns = np.array(kf.columns, dtype=c_dtype) tm.assert_frame_equal(kf, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: kf = tm.makeCustomDataframe(nrows, 3) cols = list(kf.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(kf.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] kf.index = ix kf.columns = cols _do_test(kf, dupe_col=True) _do_test(KnowledgeFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test value_roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.mapping(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.incontainf(float_frame), np.incontainf(recons)) def test_to_csv_from_csv_w_total_all_infs(self, float_frame): # test value_roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.incontainf(float_frame), np.incontainf(recons)) def test_to_csv_no_index(self): # GH 3624, after addinging columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: kf = KnowledgeFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) kf.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(kf, result) kf["c3"] = Collections([7, 8, 9], dtype="int64") kf.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(kf, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv kf = KnowledgeFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) kf["test"] = "txt" assert kf.to_csv() == kf.to_csv(columns=[0, 1, "test"]) def test_to_csv_header_numers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header_numer semantics. from_kf = KnowledgeFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_kf = KnowledgeFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_header_numers__") as path: from_kf.to_csv(path, header_numer=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_kf, recons) from_kf.to_csv(path, index=False, header_numer=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reseting_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_kf, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(length(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header_numer=False) frame.to_csv(path, columns=["A", "B"]) # value_round trip frame.to_csv(path) kf = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv sips column name tm.assert_frame_equal(frame, kf, check_names=False) assert frame.index.names == kf.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(length(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv sips column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert length(recons.columns) == length(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return KnowledgeFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index kf = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) kf.to_csv(path) result = read_csv(path, header_numer=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(kf, result) # column is mi kf = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) kf.to_csv(path) result = read_csv(path, header_numer=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(kf, result) # dup column names? kf = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) kf.to_csv(path) result = read_csv(path, header_numer=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(kf, result) # writing with no index kf = _make_frame() kf.to_csv(path, index=False) result = read_csv(path, header_numer=[0, 1]) tm.assert_frame_equal(kf, result) # we lose the names here kf = _make_frame(True) kf.to_csv(path, index=False) result = read_csv(path, header_numer=[0, 1]) assert
com.total_all_none(*result.columns.names)
pandas.core.common.all_none
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # formating_name: light # formating_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_fit_garch_stocks [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_fit_garch_stocks&codeLang=Python) # For definal_item_tails, see [here](https://www.arpm.co/lab/redirect.php?permalink=s_fit_garch_stocks). # + import numpy as np import monkey as mk from arpym.estimation import conditional_fp, exp_decay_fp, fit_garch_fp from arpym.statistics import averagecov_sp, scoring, smoothing # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_fit_garch_stocks-parameters) tau_hl_garch = 3*252 # half life for GARCH fit tau_hl_pri = 3*252 # half life for VIX comp. ret. time conditioning tau_hl_smooth = 4*21 # half life for VIX comp. ret. smoothing tau_hl_score = 5*21 # half life for VIX comp. ret. scoring alpha_leeway = 1/4 # probability included in the range centered in z_vix_star # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_fit_garch_stocks-implementation-step00): Load data # + path_glob = '../../../databases/global-databases/' # Stocks db_stocks_sp = mk.read_csv(path_glob + 'equities/db_stocks_SP500/db_stocks_sp.csv', header_numer=1, index_col=0, parse_dates=True) stocks_names = db_stocks_sp.columns.convert_list() # VIX (used for time-state conditioning) vix_path = path_glob + 'derivatives/db_vix/data.csv' db_vix = mk.read_csv(vix_path, usecols=['date', 'VIX_close'], index_col=0, parse_dates=True) # intersect dates dates_rd =
mk.DatetimeIndex.interst(db_stocks_sp.index, db_vix.index)
pandas.DatetimeIndex.intersection