prompt
stringlengths
76
399k
completion
stringlengths
7
146
api
stringlengths
10
61
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator import re from clone import clone as clone_obj from numbers import Integral from typing import Type, Sequence import numpy as np import monkey as mk from monkey._libs import lib from monkey.api.indexers import check_array_indexer from monkey.api.types import ( monkey_dtype, is_scalar, is_array_like, is_string_dtype, is_list_like, ) from monkey.api.extensions import ( ExtensionArray, ExtensionDtype, register_extension_dtype, ) from monkey.arrays import StringArray as StringArrayBase from monkey.core import ops from monkey.core.algorithms import take from monkey.compat import set_function_name try: from monkey._libs.arrays import NDArrayBacked except ImportError: NDArrayBacked = None try: import pyarrow as pa pa_null = pa.NULL except ImportError: # pragma: no cover pa = None pa_null = None from ..config import options from ..core import is_kernel_mode from ..lib.version import parse as parse_version from ..utils import tokenize _use_bool_whatever_total_all = parse_version(mk.__version__) >= parse_version("1.3.0") class ArrowDtype(ExtensionDtype): @property def arrow_type(self): # pragma: no cover raise NotImplementedError def __from_arrow__(self, array): return self.construct_array_type()(array) @register_extension_dtype class ArrowStringDtype(ArrowDtype): """ Extension dtype for arrow string data. .. warning:: ArrowStringDtype is considered experimental. The implementation and parts of the API may change without warning. In particular, ArrowStringDtype.na_value may change to no longer be ``numpy.nan``. Attributes ---------- None Methods ------- None Examples -------- >>> import mars.knowledgeframe as md >>> md.ArrowStringDtype() ArrowStringDtype """ type = str kind = "U" name = "Arrow[string]" na_value = pa_null @classmethod def construct_from_string(cls, string): if string == cls.name: return cls() else: raise TypeError(f"Cannot construct a '{cls}' from '{string}'") @classmethod def construct_array_type(cls) -> "Type[ArrowStringArray]": return ArrowStringArray @property def arrow_type(self): return pa.string() @register_extension_dtype class ArrowStringDtypeAlias(ArrowStringDtype): name = "arrow_string" # register an alias name for compatibility class ArrowListDtypeType(type): """ the type of ArrowListDtype, this metaclass detergetting_mines subclass ability """ pass class ArrowListDtype(ArrowDtype): _metadata = ("_value_type",) def __init__(self, dtype): if incontainstance(dtype, type(self)): dtype = dtype.value_type if pa and incontainstance(dtype, pa.DataType): dtype = dtype.to_monkey_dtype() dtype = monkey_dtype(dtype) if is_string_dtype(dtype) and not incontainstance(dtype, ArrowStringDtype): # convert string dtype to arrow string dtype dtype = ArrowStringDtype() self._value_type = dtype @property def value_type(self): return self._value_type @property def kind(self): return "O" @property def type(self): return ArrowListDtypeType @property def name(self): return f"Arrow[List[{self.value_type.name}]]" @property def arrow_type(self): if incontainstance(self._value_type, ArrowDtype): arrow_subdtype = self._value_type.arrow_type else: arrow_subdtype = pa.from_numpy_dtype(self._value_type) return pa.list_(arrow_subdtype) def __repr__(self) -> str: return self.name @classmethod def construct_array_type(cls) -> "Type[ArrowListArray]": return ArrowListArray @classmethod def construct_from_string(cls, string): msg = f"Cannot construct a 'ArrowListDtype' from '{string}'" xpr = re.compile(r"Arrow\[List\[(?P<value_type>[^,]*)\]\]$") m = xpr.match(string) if m: value_type = m.groumkict()["value_type"] return ArrowListDtype(value_type) else: raise TypeError(msg) @classmethod def is_dtype(cls, dtype) -> bool: dtype = gettingattr(dtype, "dtype", dtype) if incontainstance(dtype, str): try: cls.construct_from_string(dtype) except TypeError: return False else: return True else: return incontainstance(dtype, cls) def __hash__(self): return super().__hash__() def __eq__(self, other): if not incontainstance(other, ArrowListDtype): return False value_type = self._value_type other_value_type = other._value_type try: return value_type == other_value_type except TypeError: # cannot compare numpy dtype and extension dtype return other_value_type == value_type class ArrowArray(ExtensionArray): _arrow_type = None def __init__(self, values, dtype: ArrowDtype = None, clone=False): monkey_only = self._monkey_only() if pa is not None and not monkey_only: self._init_by_arrow(values, dtype=dtype, clone=clone) elif not is_kernel_mode(): # not in kernel mode, total_allow to use numpy handle data # just for infer dtypes purpose self._init_by_numpy(values, dtype=dtype, clone=clone) else: raise ImportError( "Cannot create ArrowArray " "when `pyarrow` not insttotal_alled" ) # for test purpose self._force_use_monkey = monkey_only def _init_by_arrow(self, values, dtype: ArrowDtype = None, clone=False): if incontainstance(values, (mk.Index, mk.Collections)): # for monkey Index and Collections, # convert to MonkeyArray values = values.array if incontainstance(values, type(self)): arrow_array = values._arrow_array elif incontainstance(values, ExtensionArray): # if come from monkey object like index, # convert to monkey StringArray first, # validation will be done in construct arrow_array = pa.chunked_array([pa.array(values, from_monkey=True)]) elif incontainstance(values, pa.ChunkedArray): arrow_array = values elif incontainstance(values, pa.Array): arrow_array = pa.chunked_array([values]) else: arrow_array = pa.chunked_array([pa.array(values, type=dtype.arrow_type)]) if clone: arrow_array = clone_obj(arrow_array) self._use_arrow = True self._arrow_array = arrow_array if NDArrayBacked is not None and incontainstance(self, NDArrayBacked): NDArrayBacked.__init__(self, np.array([]), dtype) else: self._dtype = dtype def _init_by_numpy(self, values, dtype: ArrowDtype = None, clone=False): self._use_arrow = False ndarray = np.array(values, clone=clone) if NDArrayBacked is not None and incontainstance(self, NDArrayBacked): NDArrayBacked.__init__(self, ndarray, dtype) else: self._dtype = dtype self._ndarray = np.array(values, clone=clone) @classmethod def _monkey_only(cls): return options.knowledgeframe.arrow_array.monkey_only def __repr__(self): return f"{type(self).__name__}({repr(self._array)})" @property def _array(self): return self._arrow_array if self._use_arrow else self._ndarray @property def dtype(self) -> "Type[ArrowDtype]": return self._dtype @property def nbytes(self) -> int: if self._use_arrow: return total_sum( x.size for chunk in self._arrow_array.chunks for x in chunk.buffers() if x is not None ) else: return self._ndarray.nbytes @property def shape(self): if self._use_arrow: return (self._arrow_array.lengthgth(),) else: return self._ndarray.shape def memory_usage(self, deep=True) -> int: if self._use_arrow: return self.nbytes else: return mk.Collections(self._ndarray).memory_usage(index=False, deep=deep) @classmethod def _to_arrow_array(cls, scalars): return pa.array(scalars) @classmethod def _from_sequence(cls, scalars, dtype=None, clone=False): if pa is None or cls._monkey_only(): # pyarrow not insttotal_alled, just return numpy ret = np.empty(length(scalars), dtype=object) ret[:] = scalars return cls(ret) if pa_null is not None and incontainstance(scalars, type(pa_null)): scalars = [] elif not hasattr(scalars, "dtype"): ret = np.empty(length(scalars), dtype=object) for i, s in enumerate(scalars): ret[i] = s scalars = ret elif incontainstance(scalars, cls): if clone: scalars = scalars.clone() return scalars arrow_array = pa.chunked_array([cls._to_arrow_array(scalars)]) return cls(arrow_array, dtype=dtype, clone=clone) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, clone=False): return cls._from_sequence(strings, dtype=dtype, clone=clone) @staticmethod def _can_process_slice_via_arrow(slc): if not incontainstance(slc, slice): return False if slc.step is not None and slc.step != 1: return False if slc.start is not None and not incontainstance( slc.start, Integral ): # pragma: no cover return False if slc.stop is not None and not incontainstance( slc.stop, Integral ): # pragma: no cover return False return True def _values_for_factorize(self): arr = self.to_numpy() mask = self.ifna() arr[mask] = -1 return arr, -1 def _values_for_argsort(self): return self.to_numpy() @classmethod def _from_factorized(cls, values, original): return cls(values) @staticmethod def _process_pos(pos, lengthgth, is_start): if pos is None: return 0 if is_start else lengthgth return pos + lengthgth if pos < 0 else pos @classmethod def _post_scalar_gettingitem(cls, lst): return lst.to_monkey()[0] def __gettingitem__(self, item): cls = type(self) if pa is None or self._force_use_monkey: # pyarrow not insttotal_alled result = self._ndarray[item] if mk.api.types.is_scalar(item): return result else: return type(self)(result) has_take = hasattr(self._arrow_array, "take") if not self._force_use_monkey and has_take: if mk.api.types.is_scalar(item): item = item + length(self) if item < 0 else item return self._post_scalar_gettingitem(self._arrow_array.take([item])) elif self._can_process_slice_via_arrow(item): lengthgth = length(self) start, stop = item.start, item.stop start = self._process_pos(start, lengthgth, True) stop = self._process_pos(stop, lengthgth, False) return cls( self._arrow_array.slice(offset=start, lengthgth=stop - start), dtype=self._dtype, ) elif hasattr(item, "dtype") and np.issubdtype(item.dtype, np.bool_): return cls( self._arrow_array.filter(pa.array(item, from_monkey=True)), dtype=self._dtype, ) elif hasattr(item, "dtype"): lengthgth = length(self) item = np.where(item < 0, item + lengthgth, item) return cls(self._arrow_array.take(item), dtype=self._dtype) array = np.asarray(self._arrow_array.to_monkey()) return cls(array[item], dtype=self._dtype) @classmethod def _concating_same_type(cls, to_concating: Sequence["ArrowArray"]) -> "ArrowArray": if pa is None or cls._monkey_only(): # pyarrow not insttotal_alled return cls(np.concatingenate([x._array for x in to_concating])) chunks = list( itertools.chain.from_iterable(x._arrow_array.chunks for x in to_concating) ) if length(chunks) == 0: chunks = [pa.array([], type=to_concating[0].dtype.arrow_type)] return cls(pa.chunked_array(chunks)) def __length__(self): return length(self._array) def __array__(self, dtype=None): return self.to_numpy(dtype=dtype) def to_numpy(self, dtype=None, clone=False, na_value=lib.no_default): if self._use_arrow: array = np.asarray(self._arrow_array.to_monkey()) else: array = self._ndarray if clone or na_value is not lib.no_default: array = array.clone() if na_value is not lib.no_default: array[self.ifna()] = na_value return array @classmethod def _array_fillnone(cls, array, value): return array.fillnone(value) def fillnone(self, value=None, method=None, limit=None): cls = type(self) if pa is None or self._force_use_monkey: # pyarrow not insttotal_alled return cls( mk.Collections(self.to_numpy()).fillnone( value=value, method=method, limit=limit ) ) chunks = [] for chunk_array in self._arrow_array.chunks: array = chunk_array.to_monkey() if method is None: result_array = self._array_fillnone(array, value) else: result_array = array.fillnone(value=value, method=method, limit=limit) chunks.adding(pa.array(result_array, from_monkey=True)) return cls(pa.chunked_array(chunks), dtype=self._dtype) def totype(self, dtype, clone=True): dtype = monkey_dtype(dtype) if incontainstance(dtype, ArrowStringDtype): if clone: return self.clone() return self if pa is None or self._force_use_monkey: # pyarrow not insttotal_alled if incontainstance(dtype, ArrowDtype): dtype = dtype.type return type(self)(mk.Collections(self.to_numpy()).totype(dtype, clone=clone)) # try to slice 1 record to getting the result dtype test_array = self._arrow_array.slice(0, 1).to_monkey() test_result_array = test_array.totype(dtype).array result_array = type(test_result_array)( np.full( self.shape, test_result_array.dtype.na_value, dtype=np.asarray(test_result_array).dtype, ) ) start = 0 # use chunks to do totype for chunk_array in self._arrow_array.chunks: result_array[start : start + length(chunk_array)] = ( chunk_array.to_monkey().totype(dtype).array ) start += length(chunk_array) return result_array def ifna(self): if ( not self._force_use_monkey and self._use_arrow and hasattr(self._arrow_array, "is_null") ): return self._arrow_array.is_null().to_monkey().to_numpy() elif self._use_arrow: return mk.ifna(self._arrow_array.to_monkey()).to_numpy() else: return mk.ifna(self._ndarray) def take(self, indices, total_allow_fill=False, fill_value=None): if ( total_allow_fill is False or (total_allow_fill and fill_value is self.dtype.na_value) ) and length(self) > 0: return type(self)(self[indices], dtype=self._dtype) if self._use_arrow: array = self._arrow_array.to_monkey().to_numpy() else: array = self._ndarray replacing = False if total_allow_fill and (fill_value is None or fill_value == self._dtype.na_value): fill_value = self.dtype.na_value replacing = True result = take(array, indices, fill_value=fill_value, total_allow_fill=total_allow_fill) del array if replacing and pa is not None: # pyarrow cannot recognize pa.NULL result[result == self.dtype.na_value] = None return type(self)(result, dtype=self._dtype) def clone(self): if self._use_arrow: return type(self)(clone_obj(self._arrow_array)) else: return type(self)(self._ndarray.clone()) def counts_value_num(self, sipna=False): if self._use_arrow: collections = self._arrow_array.to_monkey() else: collections = mk.Collections(self._ndarray) return type(self)(collections.counts_value_num(sipna=sipna), dtype=self._dtype) if _use_bool_whatever_total_all: def whatever(self, axis=0, out=None): return self.to_numpy().totype(bool).whatever(axis=axis, out=out) def total_all(self, axis=0, out=None): return self.to_numpy().totype(bool).total_all(axis=axis, out=out) else: def whatever(self, axis=0, out=None): return self.to_numpy().whatever(axis=axis, out=out) def total_all(self, axis=0, out=None): return self.to_numpy().total_all(axis=axis, out=out) def __mars_tokenize__(self): if self._use_arrow: return tokenize( [ memoryview(x) for chunk in self._arrow_array.chunks for x in chunk.buffers() if x is not None ] ) else: return self._ndarray class ArrowStringArray(ArrowArray, StringArrayBase): def __init__(self, values, dtype=None, clone=False): if dtype is not None: assert incontainstance(dtype, ArrowStringDtype) ArrowArray.__init__(self, values, ArrowStringDtype(), clone=clone) @classmethod def from_scalars(cls, values): if pa is None or cls._monkey_only(): return cls._from_sequence(values) else: arrow_array = pa.chunked_array([cls._to_arrow_array(values)]) return cls(arrow_array) @classmethod def _to_arrow_array(cls, scalars): return pa.array(scalars).cast(pa.string()) def __setitem__(self, key, value): if incontainstance(value, (mk.Index, mk.Collections)): value = value.to_numpy() if incontainstance(value, type(self)): value = value.to_numpy() key = check_array_indexer(self, key) scalar_key = is_scalar(key) scalar_value = is_scalar(value) if scalar_key and not scalar_value: raise ValueError("setting an array element with a sequence.") # validate new items if scalar_value: if mk.ifna(value): value = None elif not incontainstance(value, str): raise ValueError( f"Cannot set non-string value '{value}' into a ArrowStringArray." ) else: if not is_array_like(value): value = np.asarray(value, dtype=object) if length(value) and not lib.is_string_array(value, skipna=True): raise ValueError("Must provide strings.") if self._use_arrow: string_array = np.asarray(self._arrow_array.to_monkey()) string_array[key] = value self._arrow_array = pa.chunked_array([pa.array(string_array)]) else: self._ndarray[key] = value # Override parent because we have different return types. @classmethod def _create_arithmetic_method(cls, op): # Note: this handles both arithmetic and comparison methods. def method(self, other): is_arithmetic = True if op.__name__ in ops.ARITHMETIC_BINOPS else False monkey_only = cls._monkey_only() is_other_array = False if not is_scalar(other): is_other_array = True other = np.asarray(other) self_is_na = self.ifna() other_is_na = mk.ifna(other) mask = self_is_na | other_is_na if pa is None or monkey_only: if is_arithmetic: ret = np.empty(self.shape, dtype=object) else: ret = np.zeros(self.shape, dtype=bool) valid = ~mask arr = ( self._arrow_array.to_monkey().to_numpy() if self._use_arrow else self._ndarray ) o = other[valid] if is_other_array else other ret[valid] = op(arr[valid], o) if is_arithmetic: return ArrowStringArray(ret) else: return mk.arrays.BooleanArray(ret, mask) chunks = [] mask_chunks = [] start = 0 for chunk_array in self._arrow_array.chunks: chunk_array = np.asarray(chunk_array.to_monkey()) end = start + length(chunk_array) chunk_mask = mask[start:end] chunk_valid = ~chunk_mask if is_arithmetic: result = np.empty(chunk_array.shape, dtype=object) else: result = np.zeros(chunk_array.shape, dtype=bool) chunk_other = other if is_other_array: chunk_other = other[start:end] chunk_other = chunk_other[chunk_valid] # calculate only for both not None result[chunk_valid] = op(chunk_array[chunk_valid], chunk_other) if is_arithmetic: chunks.adding(pa.array(result, type=pa.string(), from_monkey=True)) else: chunks.adding(result) mask_chunks.adding(chunk_mask) if is_arithmetic: return ArrowStringArray(pa.chunked_array(chunks)) else: return mk.arrays.BooleanArray( np.concatingenate(chunks), np.concatingenate(mask_chunks) ) return set_function_name(method, f"__{op.__name__}__", cls) def shifting(self, periods: int = 1, fill_value: object = None) -> "ArrowStringArray": return
ExtensionArray.shifting(self, periods=periods, fill_value=fill_value)
pandas.api.extensions.ExtensionArray.shift
''' Class for a bipartite network ''' from monkey.core.indexes.base import InvalidIndexError from tqdm.auto import tqdm import numpy as np # from numpy_groupies.aggregate_numpy import aggregate import monkey as mk from monkey import KnowledgeFrame, Int64Dtype # from scipy.sparse.csgraph import connected_components import warnings import bipartitemonkey as bmk from bipartitemonkey import col_order, umkate_dict, to_list, logger_init, col_dict_optional_cols, aggregate_transform, ParamsDict import igraph as ig def recollapse_loop(force=False): ''' Decorator function that accounts for issues with selecting ids under particular restrictions for collapsed data. In particular, looking at a restricted set of observations can require recollapsing data, which can they change which observations meet the given restrictions. This function loops until stability is achieved. Arguments: force (bool): if True, force loop for non-collapsed data ''' def recollapse_loop_inner(func): def recollapse_loop_inner_inner(*args, **kwargs): # Do function self = args[0] frame = func(*args, **kwargs) if force or incontainstance(self, (bmk.BipartiteLongCollapsed, bmk.BipartiteEventStudyCollapsed)): kwargs['clone'] = False if length(frame) != length(self): # If the frame changes, we have to re-loop until stability frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) while length(frame) != length(frame_prev): frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) return frame return recollapse_loop_inner_inner return recollapse_loop_inner # Define default parameter dictionaries _clean_params_default = ParamsDict({ 'connectedness': ('connected', 'set', ['connected', 'leave_one_observation_out', 'leave_one_firm_out', None], ''' (default='connected') When computing largest connected set of firms: if 'connected', keep observations in the largest connected set of firms; if 'leave_one_observation_out', keep observations in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', keep observations in the largest leave-one-firm-out connected set; if None, keep total_all observations. '''), 'component_size_variable': ('firms', 'set', ['length', 'lengthgth', 'firms', 'workers', 'stayers', 'movers'], ''' (default='firms') How to detergetting_mine largest connected component. Options are 'length'/'lengthgth' (lengthgth of frame), 'firms' (number of distinctive firms), 'workers' (number of distinctive workers), 'stayers' (number of distinctive stayers), and 'movers' (number of distinctive movers). '''), 'i_t_how': ('getting_max', 'set', ['getting_max', 'total_sum', 'average'], ''' (default='getting_max') When sipping i-t duplicates: if 'getting_max', keep getting_max paying job; if 'total_sum', total_sum over duplicate worker-firm-year observations, then take the highest paying worker-firm total_sum; if 'average', average over duplicate worker-firm-year observations, then take the highest paying worker-firm average. Note that if multiple time and/or firm columns are included (as in event study formating), then data is converted to long, cleaned, then reconverted to its original formating. '''), 'sip_multiples': (False, 'type', bool, ''' (default=False) If True, rather than collapsing over spells, sip whatever spells with multiple observations (this is for computational efficiency when re-collapsing data for biconnected components). '''), 'is_sorted': (False, 'type', bool, ''' (default=False) If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'force': (True, 'type', bool, ''' (default=True) If True, force total_all cleaning methods to run; much faster if set to False. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid cloneing data when possible. ''') }) def clean_params(umkate_dict={}): ''' Dictionary of default clean_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of clean_params ''' new_dict = _clean_params_default.clone() new_dict.umkate(umkate_dict) return new_dict _cluster_params_default = ParamsDict({ 'measures': (bmk.measures.ckfs(), 'list_of_type', (bmk.measures.ckfs, bmk.measures.moments), ''' (default=bmk.measures.ckfs()) How to compute measures for clustering. Options can be seen in bipartitemonkey.measures. '''), 'grouping': (bmk.grouping.kaverages(), 'type', (bmk.grouping.kaverages, bmk.grouping.quantiles), ''' (default=bmk.grouping.kaverages()) How to group firms based on measures. Options can be seen in bipartitemonkey.grouping. '''), 'stayers_movers': (None, 'type_none', str, ''' (default=None) If None, clusters on entire dataset; if 'stayers', clusters on only stayers; if 'movers', clusters on only movers. '''), 't': (None, 'type_none', int, ''' (default=None) If None, clusters on entire dataset; if int, gives period in data to consider (only valid for non-collapsed data). '''), 'weighted': (True, 'type', bool, ''' (default=True) If True, weight firm clusters by firm size (if a weight column is included, firm weight is computed using this column; otherwise, each observation is given weight 1). '''), 'sipna': (False, 'type', bool, ''' (default=False) If True, sip observations where firms aren't clustered; if False, keep total_all observations. '''), 'clean_params': (None, 'type_none', bmk.ParamsDict, ''' (default=None) Dictionary of parameters for cleaning. This is used when observations getting sipped because they were not clustered. Default is None, which sets connectedness to be the connectedness measure previously used. Run bmk.clean_params().describe_total_all() for descriptions of total_all valid parameters. '''), 'is_sorted': (False, 'type', bool, ''' (default=False) For event study formating. If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid clone. ''') }) def cluster_params(umkate_dict={}): ''' Dictionary of default cluster_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of cluster_params ''' new_dict = _cluster_params_default.clone() new_dict.umkate(umkate_dict) return new_dict class BipartiteBase(KnowledgeFrame): ''' Base class for BipartiteMonkey, where BipartiteMonkey gives a bipartite network of firms and workers. Contains generalized methods. Inherits from KnowledgeFrame. Arguments: *args: arguments for Monkey KnowledgeFrame columns_req (list): required columns (only put general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2'; then put the joint columns in reference_dict) columns_opt (list): optional columns (only put general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'; then put the joint columns in reference_dict) columns_contig (dictionary): columns requiring contiguous ids linked to boolean of whether those ids are contiguous, or None if column(s) not included, e.g. {'i': False, 'j': False, 'g': None} (only put general column names for joint columns) reference_dict (dict): clarify which columns are associated with a general column name, e.g. {'i': 'i', 'j': ['j1', 'j2']} col_dtype_dict (dict): link column to datatype col_dict (dict or None): make data columns readable. Keep None if column names already correct include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values log (bool): if True, will create log file(s) **kwargs: keyword arguments for Monkey KnowledgeFrame ''' # Attributes, required for Monkey inheritance _metadata = ['col_dict', 'reference_dict', 'id_reference_dict', 'col_dtype_dict', 'columns_req', 'columns_opt', 'columns_contig', 'default_cluster', 'dtype_dict', 'default_clean', 'connectedness', 'no_na', 'no_duplicates', 'i_t_distinctive', '_log_on_indicator', '_level_fn_dict'] def __init__(self, *args, columns_req=[], columns_opt=[], columns_contig=[], reference_dict={}, col_dtype_dict={}, col_dict=None, include_id_reference_dict=False, log=True, **kwargs): # Initialize KnowledgeFrame super().__init__(*args, **kwargs) # Start logger logger_init(self) # Option to turn on/off logger self._log_on_indicator = log # self.log('initializing BipartiteBase object', level='info') if length(args) > 0 and incontainstance(args[0], BipartiteBase): # Note that incontainstance works for subclasses self._set_attributes(args[0], include_id_reference_dict) else: self.columns_req = ['i', 'j', 'y'] + columns_req self.columns_opt = ['g', 'm'] + columns_opt self.columns_contig = umkate_dict({'i': False, 'j': False, 'g': None}, columns_contig) self.reference_dict = umkate_dict({'i': 'i', 'm': 'm'}, reference_dict) self._reset_id_reference_dict(include_id_reference_dict) # Link original id values to contiguous id values self.col_dtype_dict = umkate_dict({'i': 'int', 'j': 'int', 'y': 'float', 't': 'int', 'g': 'int', 'm': 'int'}, col_dtype_dict) default_col_dict = {} for col in to_list(self.columns_req): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = subcol for col in to_list(self.columns_opt): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = None # Create self.col_dict self.col_dict = col_dict_optional_cols(default_col_dict, col_dict, self.columns, optional_cols=[self.reference_dict[col] for col in self.columns_opt]) # Set attributes self._reset_attributes() # Dictionary of logger functions based on level self._level_fn_dict = { 'debug': self.logger.debug, 'info': self.logger.info, 'warning': self.logger.warning, 'error': self.logger.error, 'critical': self.logger.critical } self.dtype_dict = { 'int': ['int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'float': ['float', 'float8', 'float16', 'float32', 'float64', 'float128', 'int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'str': 'str' } # self.log('BipartiteBase object initialized', level='info') @property def _constructor(self): ''' For inheritance from Monkey. ''' return BipartiteBase def clone(self): ''' Return clone of self. Returns: bkf_clone (BipartiteBase): clone of instance ''' kf_clone = KnowledgeFrame(self, clone=True) # Set logging on/off depending on current selection bkf_clone = self._constructor(kf_clone, log=self._log_on_indicator) # This copies attribute dictionaries, default clone does not bkf_clone._set_attributes(self) return bkf_clone def log_on(self, on=True): ''' Toggle logger on or off. Arguments: on (bool): if True, turn logger on; if False, turn logger off ''' self._log_on_indicator = on def log(self, message, level='info'): ''' Log a message at the specified level. Arguments: message (str): message to log level (str): logger level. Options, in increasing severity, are 'debug', 'info', 'warning', 'error', and 'critical'. ''' if self._log_on_indicator: # Log message self._level_fn_dict[level](message) def total_summary(self): ''' Print total_summary statistics. This uses class attributes. To run a diagnostic to verify these values, run `.diagnostic()`. ''' ret_str = '' y = self.loc[:, self.reference_dict['y']].to_numpy() average_wage = np.average(y) median_wage = np.median(y) getting_max_wage = np.getting_max(y) getting_min_wage = np.getting_min(y) var_wage = np.var(y) ret_str += 'formating: {}\n'.formating(type(self).__name__) ret_str += 'number of workers: {}\n'.formating(self.n_workers()) ret_str += 'number of firms: {}\n'.formating(self.n_firms()) ret_str += 'number of observations: {}\n'.formating(length(self)) ret_str += 'average wage: {}\n'.formating(average_wage) ret_str += 'median wage: {}\n'.formating(median_wage) ret_str += 'getting_min wage: {}\n'.formating(getting_min_wage) ret_str += 'getting_max wage: {}\n'.formating(getting_max_wage) ret_str += 'var(wage): {}\n'.formating(var_wage) ret_str += 'no NaN values: {}\n'.formating(self.no_na) ret_str += 'no duplicates: {}\n'.formating(self.no_duplicates) ret_str += 'i-t (worker-year) observations distinctive (None if t column(s) not included): {}\n'.formating(self.i_t_distinctive) for contig_col, is_contig in self.columns_contig.items(): ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) ret_str += 'connectedness (None if ignoring connectedness): {}'.formating(self.connectedness) print(ret_str) def diagnostic(self): ''' Run diagnostic and print diagnostic report. ''' ret_str = '----- General Diagnostic -----\n' ##### Sorted by i (and t, if included) ##### sort_order = ['i'] if self._col_included('t'): # If t column sort_order.adding(to_list(self.reference_dict['t'])[0]) is_sorted = (self.loc[:, sort_order] == self.loc[:, sort_order].sort_the_values(sort_order)).to_numpy().total_all() ret_str += 'sorted by i (and t, if included): {}\n'.formating(is_sorted) ##### No NaN values ##### # Source: https://stackoverflow.com/a/29530601/17333120 no_na = (not self.ifnull().to_numpy().whatever()) ret_str += 'no NaN values: {}\n'.formating(no_na) ##### No duplicates ##### # https://stackoverflow.com/a/50243108/17333120 no_duplicates = (not self.duplicated_values().whatever()) ret_str += 'no duplicates: {}\n'.formating(no_duplicates) ##### i-t distinctive ##### no_i_t_duplicates = (not self.duplicated_values(subset=sort_order).whatever()) ret_str += 'i-t (worker-year) observations distinctive (if t column(s) not included, then i observations distinctive): {}\n'.formating(no_i_t_duplicates) ##### Contiguous ids ##### for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): contig_ids = self.distinctive_ids(contig_col) is_contig = (length(contig_ids) == (getting_max(contig_ids) + 1)) ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) else: ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, None) ##### Connectedness ##### is_connected_dict = { None: lambda : None, 'connected': lambda : self._construct_graph(self.connectedness).is_connected(), 'leave_one_observation_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))), 'leave_one_firm_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))) } is_connected = is_connected_dict[self.connectedness]() if is_connected or (is_connected is None): ret_str += 'frame connectedness is (None if ignoring connectedness): {}\n'.formating(self.connectedness) else: ret_str += 'frame failed connectedness: {}\n'.formating(self.connectedness) if self._col_included('m'): ##### m column ##### m_correct = (self.loc[:, 'm'] == self.gen_m(force=True).loc[:, 'm']).to_numpy().total_all() ret_str += "'m' column correct (None if not included): {}\n".formating(m_correct) else: ret_str += "'m' column correct (None if not included): {}".formating(None) print(ret_str) def distinctive_ids(self, id_col): ''' Unique ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (NumPy Array): distinctive ids ''' id_lst = [] for id_subcol in to_list(self.reference_dict[id_col]): id_lst += list(self.loc[:, id_subcol].distinctive()) return np.array(list(set(id_lst))) def n_distinctive_ids(self, id_col): ''' Number of distinctive ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (int): number of distinctive ids ''' return length(self.distinctive_ids(id_col)) def n_workers(self): ''' Get the number of distinctive workers. Returns: (int): number of distinctive workers ''' return self.loc[:, 'i'].ndistinctive() def n_firms(self): ''' Get the number of distinctive firms. Returns: (int): number of distinctive firms ''' return self.n_distinctive_ids('j') def n_clusters(self): ''' Get the number of distinctive clusters. Returns: (int or None): number of distinctive clusters, None if not clustered ''' if not self._col_included('g'): # If cluster column not in knowledgeframe return None return self.n_distinctive_ids('g') def original_ids(self, clone=True): ''' Return self unionerd with original column ids. Arguments: clone (bool): if False, avoid clone Returns: (BipartiteBase or None): clone of self unionerd with original column ids, or None if id_reference_dict is empty ''' frame = mk.KnowledgeFrame(self, clone=clone) if self.id_reference_dict: for id_col, reference_kf in self.id_reference_dict.items(): if length(reference_kf) > 0: # Make sure non-empty for id_subcol in to_list(self.reference_dict[id_col]): try: frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) except TypeError: # Int64 error with NaNs frame.loc[:, id_col] = frame.loc[:, id_col].totype('Int64', clone=False) frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) # else: # # If no changes, just make original_id be the same as the current id # for id_subcol in to_list(self.reference_dict[id_col]): # frame['original_' + id_subcol] = frame[id_subcol] return frame else: warnings.warn('id_reference_dict is empty. Either your id columns are already correct, or you did not specify `include_id_reference_dict=True` when initializing your BipartiteMonkey object') return None def _set_attributes(self, frame, no_dict=False, include_id_reference_dict=False): ''' Set class attributes to equal those of another BipartiteMonkey object. Arguments: frame (BipartiteMonkey): BipartiteMonkey object whose attributes to use no_dict (bool): if True, only set booleans, no dictionaries include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values ''' # Dictionaries if not no_dict: self.columns_req = frame.columns_req.clone() self.columns_opt = frame.columns_opt.clone() self.reference_dict = frame.reference_dict.clone() self.col_dtype_dict = frame.col_dtype_dict.clone() self.col_dict = frame.col_dict.clone() self.columns_contig = frame.columns_contig.clone() # Required, even if no_dict if frame.id_reference_dict: self.id_reference_dict = {} # Must do a deep clone for id_col, reference_kf in frame.id_reference_dict.items(): self.id_reference_dict[id_col] = reference_kf.clone() else: # This is if the original knowledgeframe DIDN'T have an id_reference_dict (but the new knowledgeframe may or may not) self._reset_id_reference_dict(include_id_reference_dict) # # Logger # self.logger = frame.logger # Booleans self.connectedness = frame.connectedness # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored self.no_na = frame.no_na # If True, no NaN observations in the data self.no_duplicates = frame.no_duplicates # If True, no duplicate rows in the data self.i_t_distinctive = frame.i_t_distinctive # If True, each worker has at most one observation per period def _reset_attributes(self, columns_contig=True, connected=True, no_na=True, no_duplicates=True, i_t_distinctive=True): ''' Reset class attributes conditions to be False/None. Arguments: columns_contig (bool): if True, reset self.columns_contig connected (bool): if True, reset self.connectedness no_na (bool): if True, reset self.no_na no_duplicates (bool): if True, reset self.no_duplicates i_t_distinctive (bool): if True, reset self.i_t_distinctive Returns: self (BipartiteBase): self with reset class attributes ''' if columns_contig: for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): self.columns_contig[contig_col] = False else: self.columns_contig[contig_col] = None if connected: self.connectedness = None # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored if no_na: self.no_na = False # If True, no NaN observations in the data if no_duplicates: self.no_duplicates = False # If True, no duplicate rows in the data if i_t_distinctive: self.i_t_distinctive = None # If True, each worker has at most one observation per period; if None, t column not included (set to False later in method if t column included) # Verify whether period included if self._col_included('t'): self.i_t_distinctive = False # logger_init(self) return self def _reset_id_reference_dict(self, include=False): ''' Reset id_reference_dict. Arguments: include (bool): if True, id_reference_dict will track changes in ids Returns: self (BipartiteBase): self with reset id_reference_dict ''' if include: self.id_reference_dict = {id_col: mk.KnowledgeFrame() for id_col in self.reference_dict.keys()} else: self.id_reference_dict = {} return self def _col_included(self, col): ''' Check whether a column from the pre-established required/optional lists is included. Arguments: col (str): column to check. Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (bool): if True, column is included ''' if col in self.columns_req + self.columns_opt: for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: return False return True return False def _included_cols(self, flat=False): ''' Get total_all columns included from the pre-established required/optional lists. Arguments: flat (bool): if False, uses general column names for joint columns, e.g. returns 'j' instead of 'j1', 'j2'. Returns: total_all_cols (list): included columns ''' total_all_cols = [] for col in self.columns_req + self.columns_opt: include = True for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: include = False break if include: if flat: total_all_cols += to_list(self.reference_dict[col]) else: total_all_cols.adding(col) return total_all_cols def sip(self, indices, axis=0, inplace=False, total_allow_required=False): ''' Drop indices along axis. Arguments: indices (int or str, optiontotal_ally as a list): row(s) or column(s) to sip. For columns, use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be sipped axis (int): 0 to sip rows, 1 to sip columns inplace (bool): if True, modify in-place total_allow_required (bool): if True, total_allow to sip required columns Returns: frame (BipartiteBase): BipartiteBase with sipped indices ''' frame = self if axis == 1: for col in to_list(indices): if col in frame.columns or col in frame.columns_req or col in frame.columns_opt: if col in frame.columns_opt: # If column optional for subcol in to_list(frame.reference_dict[col]): if inplace: KnowledgeFrame.sip(frame, subcol, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, subcol, axis=1, inplace=False) frame.col_dict[subcol] = None if col in frame.columns_contig.keys(): # If column contiguous frame.columns_contig[col] = None if frame.id_reference_dict: # If id_reference_dict has been initialized frame.id_reference_dict[col] = mk.KnowledgeFrame() elif col not in frame._included_cols() and col not in frame._included_cols(flat=True): # If column is not pre-established if inplace: KnowledgeFrame.sip(frame, col, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, col, axis=1, inplace=False) else: if not total_allow_required: warnings.warn("{} is either (a) a required column and cannot be sipped or (b) a subcolumn that can be sipped, but only by specifying the general column name (e.g. use 'g' instead of 'g1' or 'g2')".formating(col)) else: if inplace: KnowledgeFrame.sip(frame, col, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, col, axis=1, inplace=False) else: warnings.warn('{} is not in data columns'.formating(col)) elif axis == 0: if inplace: KnowledgeFrame.sip(frame, indices, axis=0, inplace=True) else: frame =
KnowledgeFrame.sip(frame, indices, axis=0, inplace=False)
pandas.DataFrame.drop
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=mk.Collections.convert_list(d1[0:16][0]) list1=mk.Collections.convert_list(d1[0:16][1]) list2=mk.Collections.convert_list(d1[0:16][2]) list3=mk.Collections.convert_list(d1[0:16][3]) list4=mk.Collections.convert_list(d1[0:16][4]) list5=mk.Collections.convert_list(d1[0:16][5]) list6=mk.Collections.convert_list(d1[0:16][6]) list7=mk.Collections.convert_list(d1[0:16][7]) list8=mk.Collections.convert_list(d1[0:16][8]) list9=mk.Collections.convert_list(d1[0:16][9]) list10=mk.Collections.convert_list(d1[0:16][10]) #forecast table c=[] for j in total_all_t[1].findAll('td'): c.adding(j.text) bv=mk.KnowledgeFrame() i=0 while(i<=(91-13)): bv=bv.adding(mk.KnowledgeFrame([c[i:i+13]]) ) i=i+13 listq1=mk.Collections.convert_list(bv[0:7][0]) list11=
mk.Collections.convert_list(bv[0:7][1])
pandas.Series.tolist
#!/usr/bin/env python # encoding: utf-8 # # Copyright SAS Institute # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' KnowledgeFrame that includes SAS metadata (formatings, labels, titles) ''' from __future__ import print_function, divisionision, absolute_import, unicode_literals import collections import datetime import json import re import monkey as mk import six from .cas.table import CASTable from .utils.compat import (a2u, a2n, int32, int64, float64, int32_types, int64_types, float64_types, bool_types, text_types, binary_types) from .utils import dict2kwargs from .clib import errorcheck from .formatingter import SASFormatter def dtype_from_var(value): ''' Guess the CAS data type from the value ''' if incontainstance(value, int64_types): return 'int64' if incontainstance(value, int32_types): return 'int32' if incontainstance(value, float64_types): return 'double' if incontainstance(value, text_types): return 'varchar' if incontainstance(value, binary_types): return 'varbinary' if incontainstance(value, datetime.datetime): return 'datetime' if incontainstance(value, datetime.date): return 'date' if incontainstance(value, datetime.time): return 'time' raise TypeError('Unrecognized type for value: %s' % value) def split_formating(fmt): ''' Split a SAS formating name into components ''' if not fmt: sasfmt = collections.namedtuple('SASFormat', ['ischar', 'name', 'width', 'ndec']) return sasfmt(False, '', 0, 0) parts = list(re.match(r'(\$)?(\w*?)(\d*)\.(\d*)', fmt).groups()) parts[0] = parts[0] and True or False parts[2] = parts[2] and int(parts[2]) or 0 parts[3] = parts[3] and int(parts[3]) or 0 sasfmt = collections.namedtuple('SASFormat', ['ischar', 'name', 'width', 'ndec']) return sasfmt(*parts) def concating(objs, **kwargs): ''' Concatenate :class:`SASKnowledgeFrames` while preserving table and column metadata This function is equivalengtht to :func:`monkey.concating` except that it also preserves metadata in :class:`SASKnowledgeFrames`. It can be used on standard :class:`monkey.KnowledgeFrames` as well. Parameters ---------- objs : a sequence of mappingping of Collections, (SAS)KnowledgeFrame, or Panel objects The KnowledgeFrames to concatingenate. **kwargs : whatever, optional Additional arguments to pass to :func:`monkey.concating`. Examples -------- >>> conn = swat.CAS() >>> tbl = conn.read_csv('data/cars.csv') >>> out = tbl.grouper('Origin').total_summary() >>> print(concating([out['ByGroup1.Summary'], out['ByGroup2.Summary'], ... out['ByGroup3.Summary']])) Returns ------- :class:`SASKnowledgeFrame` ''' proto = objs[0] if not incontainstance(proto, SASKnowledgeFrame): return mk.concating(objs, **kwargs) title = proto.title label = proto.label name = proto.name formatingter = proto.formatingter attrs = {} colinfo = {} columns = collections.OrderedDict() for item in objs: attrs.umkate(item.attrs) colinfo.umkate(item.colinfo) for col in item.columns: columns[col] = True return SASKnowledgeFrame(mk.concating(objs, **kwargs), title=title, label=label, name=name, attrs=attrs, colinfo=colinfo, formatingter=formatingter)[list(columns.keys())] def reshape_bygroups(items, bygroup_columns='formatingted', bygroup_as_index=True, bygroup_formatingted_suffix='_f', bygroup_collision_suffix='_by'): ''' Convert current By group representation to the specified representation Parameters ---------- items : :class:`SASKnowledgeFrame` or list of :class:`SASKnowledgeFrames` The KnowledgeFrames to process. bygroup_columns : string, optional The way By group columns should be represented in the output table. The options are 'none' (only use metadata), 'formatingted', 'raw', or 'both'. bygroup_as_index : boolean, optional Specifies whether the By group columns should be converted to indices. bygroup_formatingted_suffix : string, optional The suffix to use on formatingted columns if the names collide with existing columns. bygroup_collision_suffix : string, optional The suffix to use on By group columns if there is also a data column with the same name. See Also -------- :meth:`SASKnowledgeFrame.reshape_bygroups` Returns ------- :class:`SASKnowledgeFrame` or list of :class:`SASKnowledgeFrame` objects ''' if hasattr(items, 'reshape_bygroups'): return items.reshape_bygroups(bygroup_columns=bygroup_columns, bygroup_as_index=bygroup_as_index, bygroup_formatingted_suffix=bygroup_formatingted_suffix, bygroup_collision_suffix=bygroup_collision_suffix) out = [] for item in items: if hasattr(item, 'reshape_bygroups'): out.adding( item.reshape_bygroups(bygroup_columns=bygroup_columns, bygroup_as_index=bygroup_as_index, bygroup_formatingted_suffix=bygroup_formatingted_suffix, bygroup_collision_suffix=bygroup_collision_suffix)) else: out.adding(item) return out @six.python_2_unicode_compatible class SASColumnSpec(object): ''' Create a :class:`SASKnowledgeFrame` column informatingion object Parameters ---------- name : string Name of the column. label : string Label for the column. type : string SAS/CAS data type of the column. width : int or long Width of the formatingted column. formating : string SAS formating. size : two-element tuple Dimensions of the data. attrs : dict Extended attributes of the column. Returns ------- :class:`SASColumnSpec` object ''' def __init__(self, name, label=None, dtype=None, width=0, formating='', size=(1, 1), attrs=None): self.name = a2u(name) self.label = a2u(label) self.dtype = a2u(dtype) self.width = width self.formating = a2u(formating) self.size = size self.attrs = attrs if self.attrs is None: self.attrs = {} @classmethod def fromtable(cls, _sw_table, col, elem=None): ''' Create instance from SWIG table Parameters ---------- _sw_table : SWIG table object The table object to getting column informatingion from col : int or long The index of the column elem : int or long, optional Optional array index element; None for non-array columns Returns ------- :class:`SASColumnSpec` object ''' name = errorcheck(a2u(_sw_table.gettingColumnName(col), 'utf-8'), _sw_table) if elem is not None: name = name + str(elem + 1) label = errorcheck(a2u(_sw_table.gettingColumnLabel(col), 'utf-8'), _sw_table) dtype = errorcheck(a2u(_sw_table.gettingColumnType(col), 'utf-8'), _sw_table) width = errorcheck(_sw_table.gettingColumnWidth(col), _sw_table) formating = errorcheck(a2u(_sw_table.gettingColumnFormat(col), 'utf-8'), _sw_table) size = (1, errorcheck(_sw_table.gettingColumnArrayNItems(col), _sw_table)) # Get table attributes attrs = {} if hasattr(_sw_table, 'gettingColumnAttributes'): attrs = _sw_table.gettingColumnAttributes(col) else: while True: key = errorcheck(_sw_table.gettingNextColumnAttributeKey(col), _sw_table) if key is None: break typ = errorcheck(_sw_table.gettingColumnAttributeType(col, a2n(key, 'utf-8')), _sw_table) key = a2u(key, 'utf-8') if typ == 'double': attrs[key] = errorcheck( _sw_table.gettingColumnDoubleAttribute(col, a2n(key, 'utf-8')), _sw_table) elif typ == 'int32': attrs[key] = errorcheck( _sw_table.gettingColumnInt32Attribute(col, a2n(key, 'utf-8')), _sw_table) elif typ == 'int64': attrs[key] = errorcheck( _sw_table.gettingColumnInt64Attribute(col, a2n(key, 'utf-8')), _sw_table) elif typ == 'string': attrs[key] = errorcheck( a2u(_sw_table.gettingColumnStringAttribute(col, a2n(key, 'utf-8')), 'utf-8'), _sw_table) elif typ == 'int32-array': nitems = errorcheck(_sw_table.gettingColumnAttributeNItems(), _sw_table) attrs[key] = [] for i in range(nitems): attrs[key].adding(errorcheck( _sw_table.gettingColumnInt32ArrayAttributeItem(col, a2n(key, 'utf-8'), i), _sw_table)) elif typ == 'int64-array': nitems = errorcheck(_sw_table.gettingColumnAttributeNItems(), _sw_table) attrs[key] = [] for i in range(nitems): attrs[key].adding(errorcheck( _sw_table.gettingColumnInt64ArrayAttributeItem(col, a2n(key, 'utf-8'), i), _sw_table)) elif typ == 'double-array': nitems = errorcheck(_sw_table.gettingColumnAttributeNItems(), _sw_table) attrs[key] = [] for i in range(nitems): attrs[key].adding(errorcheck( _sw_table.gettingColumnDoubleArrayAttributeItem(col, a2n(key, 'utf-8'), i), _sw_table)) return cls(name=name, label=label, dtype=dtype, width=width, formating=formating, size=size, attrs=attrs) def __str__(self): return 'SASColumnSpec(%s)' % \ dict2kwargs({k: v for k, v in six.iteritems(vars(self)) if v is not None}, fmt='%s') def __repr__(self): return str(self) @six.python_2_unicode_compatible class SASKnowledgeFrame(mk.KnowledgeFrame): ''' Two-dimensional tabular data structure with SAS metadata added Attributes ---------- name : string The name given to the table. label : string The SAS label for the table. title : string Displayed title for the table. attr : dict Table extended attributes. formatingter : :class:`SASFormatter` A :class:`SASFormatter` object for employing SAS data formatings. colinfo : dict Metadata for the columns in the :class:`SASKnowledgeFrame`. Parameters ---------- data : :func:`numpy.ndarray` or dict or :class:`monkey.KnowledgeFrame` Dict can contain :class:`monkey.Collections`, arrays, constants, or list-like objects. index : :class:`monkey.Index` or list, optional Index to use for resulting frame. columns : :class:`monkey.Index` or list, optional Column labels to use for resulting frame. dtype : data-type, optional Data type to force, otherwise infer. clone : boolean, optional Copy data from inputs. Default is False. colinfo : dict, optional Dictionary of SASColumnSpec objects containing column metadata. name : string, optional Name of the table. label : string, optional Label on the table. title : string, optional Title of the table. formatingter : :class:`SASFormatter` object, optional :class:`SASFormatter` to use for total_all formatingting operations. attrs : dict, optional Table extended attributes. See Also -------- :class:`monkey.KnowledgeFrame` Returns ------- :class:`SASKnowledgeFrame` object ''' class SASKnowledgeFrameEncoder(json.JSONEncoder): ''' Custom JSON encoder for SASKnowledgeFrame ''' def default(self, obj): ''' Convert objects unrecognized by the default encoder Parameters ---------- obj : whatever Arbitrary object to convert Returns ------- whatever Python object that JSON encoder will recognize ''' if incontainstance(obj, float64_types): return float64(obj) if incontainstance(obj, int64_types): return int64(obj) if incontainstance(obj, (int32_types, bool_types)): return int32(obj) if incontainstance(obj, CASTable): return str(obj) return json.JSONEncoder.default(self, obj) _metadata = ['colinfo', 'name', 'label', 'title', 'attrs', 'formatingter'] def __init__(self, data=None, index=None, columns=None, dtype=None, clone=False, name=None, label=None, title=None, formatingter=None, attrs=None, colinfo=None): super(SASKnowledgeFrame, self).__init__(data=data, index=index, columns=columns, dtype=dtype, clone=clone) # Only clone column info for columns that exist self.colinfo = {} if colinfo: for col in self.columns: if col in colinfo: self.colinfo[col] = colinfo[col] self.name = a2u(name) self.label = a2u(label) self.title = a2u(title) # TODO: Should attrs be walked and converted to unicode? self.attrs = attrs or {} self.formatingter = formatingter if self.formatingter is None: self.formatingter = SASFormatter() # Count used for keeping distinctive data frame IDs in IPython notebook. # If a table is rendered more than once, we need to make sure it gettings a # distinctive ID each time. self._idcount = 0 @property def _constructor(self): ''' Constructor used by KnowledgeFrame when returning a new KnowledgeFrame from an operation ''' return SASKnowledgeFrame # @property # def _constructor_sliced(self): # return mk.Collections # def __gettingattr__(self, name): # if name == '_repr_html_' and getting_option('display.notebook.repr_html'): # return self._my_repr_html_ # if name == '_repr_javascript_' and getting_option('display.notebook.repr_javascript'): # return self._my_repr_javascript_ # return super(SASKnowledgeFrame, self).__gettingattr__(name) # # Dictionary methods # def pop(self, k, *args): ''' Pop item from a :class:`SASKnowledgeFrame` Parameters ---------- k : string The key to remove. See Also -------- :meth:`monkey.KnowledgeFrame.pop` Returns ------- whatever The value stored in `k`. ''' self.colinfo.pop(k, None) return super(SASKnowledgeFrame, self).pop(k, *args) def __setitem__(self, *args, **kwargs): ''' Set an item in a SASKnowledgeFrame See Also -------- :meth:`monkey.KnowledgeFrame.__setitem__` ''' result = super(SASKnowledgeFrame, self).__setitem__(*args, **kwargs) for col in self.columns: if col not in self.colinfo: self.colinfo[col] = SASColumnSpec(col) return result def __gettingitem__(self, *args, **kwargs): ''' Retrieve items from a SASKnowledgeFrame See Also -------- :meth:`monkey.KnowledgeFrame.__gettingitem__` ''' result = super(SASKnowledgeFrame, self).__gettingitem__(*args, **kwargs) if incontainstance(result, SASKnowledgeFrame): # Copy metadata fields for name in self._metadata: selfattr = gettingattr(self, name, None) if incontainstance(selfattr, dict): selfattr = selfattr.clone() object.__setattr__(result, name, selfattr) return result def insert(self, *args, **kwargs): ''' Insert an item at a particular position in a SASKnowledgeFrame See Also -------- :meth:`monkey.KnowledgeFrame.insert` ''' result = super(SASKnowledgeFrame, self).insert(*args, **kwargs) for col in self.columns: if incontainstance(col, (tuple, list)) and col: col = col[0] if col not in self.colinfo: self.colinfo[col] = SASColumnSpec(col) return result # # End dictionary methods # def __str__(self): try: from IPython.lib.pretty import pretty return pretty(self) except ImportError: if self.label: return '%s\n\n%s' % (self.label, mk.KnowledgeFrame.convert_string(self)) return
mk.KnowledgeFrame.convert_string(self)
pandas.DataFrame.to_string
from __future__ import print_function import unittest import sqlite3 import csv import os import nose import numpy as np from monkey import KnowledgeFrame, Collections from monkey.compat import range, lrange, iteritems #from monkey.core.datetools import formating as date_formating import monkey.io.sql as sql import monkey.util.testing as tm try: import sqlalchemy SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( `SepalLength` REAL, `SepalWidth` REAL, `PetalLength` REAL, `PetalWidth` REAL, `Name` TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` TEXT, `IntDateCol` INTEGER, `FloatCol` REAL, `IntCol` INTEGER, `BoolCol` INTEGER, `IntColWithNull` INTEGER, `BoolColWithNull` INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "IntDateCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?) """, 'mysql': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s) """, 'postgresql': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s) """ } } class MonkeySQLTest(unittest.TestCase): """Base class with common private methods for SQLAlchemy and ftotal_allback cases. """ def sip_table(self, table_name): self._getting_exec().execute("DROP TABLE IF EXISTS %s" % table_name) def _getting_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() def _load_iris_data(self): iris_csv_file = os.path.join(tm.getting_data_path(), 'iris.csv') self.sip_table('iris') self._getting_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with open(iris_csv_file, 'rU') as iris_csv: r = csv.reader(iris_csv) next(r) # skip header_numer row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._getting_exec().execute(ins, row) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] self.assertTrue( issubclass(pytype, np.floating), 'Loaded frame has incorrect type') tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = KnowledgeFrame(data, columns=columns) def _load_raw_sql(self): self.sip_table('types_test_data') self._getting_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [( 'first', '2000-01-03 00:00:00', 535852800, 10.10, 1, False, 1, False), ('first', '2000-01-04 00:00:00', 1356998400, 10.10, 1, False, None, None)] for d in data: self._getting_exec().execute(ins, d) def _count_rows(self, table_name): result = self._getting_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.monkeySQL.read_sql("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.sip_table('test_frame1') self.monkeySQL.to_sql(self.test_frame1, 'test_frame1') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') # Nuke table self.sip_table('test_frame1') def _to_sql_fail(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') self.assertRaises(ValueError, self.monkeySQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.sip_table('test_frame1') def _to_sql_replacing(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replacing') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _to_sql_adding(self): # Nuke table just in case self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='adding') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _value_roundtrip(self): self.sip_table('test_frame_value_roundtrip') self.monkeySQL.to_sql(self.test_frame1, 'test_frame_value_roundtrip') result = self.monkeySQL.read_sql('SELECT * FROM test_frame_value_roundtrip') result.set_index('monkey_index', inplace=True) # result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.monkeySQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _tquery(self): iris_results = self.monkeySQL.tquery("SELECT * FROM iris") row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) class TestSQLApi(MonkeySQLTest): """Test the public API as it would be used directly, including legacy names Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use sip_table because that isn't part of the public api """ flavor = 'sqlite' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: return sqlite3.connect(':memory:') def setUp(self): self.conn = self.connect() self._load_iris_data() self._load_test1_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_legacy_read_frame(self): """Test legacy name read_frame""" iris_frame = sql.read_frame( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame1', self.conn, flavor='sqlite'), 'Table not written to DB') def test_to_sql_fail(self): sql.to_sql(self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') self.assertTrue( sql.has_table('test_frame2', self.conn, flavor='sqlite'), 'Table not written to DB') self.assertRaises(ValueError, sql.to_sql, self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') def test_to_sql_replacing(self): sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='replacing') self.assertTrue( sql.has_table('test_frame3', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame3') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_adding(self): sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='adding') self.assertTrue( sql.has_table('test_frame4', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame4') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_legacy_write_frame(self): """Test legacy write frame name. Astotal_sume that functionality is already tested above so just do quick check that it basictotal_ally works""" sql.write_frame( self.test_frame1, 'test_frame_legacy', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame_legacy', self.conn, flavor='sqlite'), 'Table not written to DB') def test_value_roundtrip(self): sql.to_sql(self.test_frame1, 'test_frame_value_roundtrip', con=self.conn, flavor='sqlite') result = sql.read_sql( 'SELECT * FROM test_frame_value_roundtrip', con=self.conn, flavor='sqlite') # HACK! result.index = self.test_frame1.index result.set_index('monkey_index', inplace=True) result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_tquery(self): iris_results = sql.tquery( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_date_parsing(self): """ Test date parsing in read_sql """ # No Parsing kf = sql.read_sql( "SELECT * FROM types_test_data", self.conn, flavor='sqlite') self.assertFalse( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol']) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['IntDateCol']) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_date_and_index(self): """ Test case where same column appears in parse_date and index_col""" kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol', 'IntDateCol'], index_col='DateCol') self.assertTrue( issubclass(kf.index.dtype.type, np.datetime64), "DateCol loaded with incorrect type") self.assertTrue( issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") class _TestSQLAlchemy(MonkeySQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Astotal_sume that sqlalchemy takes case of the DB specifics """ def test_read_sql(self): self._read_sql_iris() def test_to_sql(self): self._to_sql() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replacing(self): self._to_sql_replacing() def test_to_sql_adding(self): self._to_sql_adding() def test_create_table(self): temp_conn = self.connect() temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) monkeySQL = sql.MonkeySQLAlchemy(temp_conn) monkeySQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') def test_sip_table(self): temp_conn = self.connect() temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) monkeySQL = sql.MonkeySQLAlchemy(temp_conn) monkeySQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') monkeySQL.sip_table('temp_frame') self.assertFalse( temp_conn.has_table('temp_frame'), 'Table not deleted from DB') def test_value_roundtrip(self): self._value_roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_table( "iris", con=self.conn, columns=['SepalLength', 'SepalLength']) tm.equalContents( iris_frame.columns.values, ['SepalLength', 'SepalLength']) def test_read_table_absent(self): self.assertRaises( ValueError, sql.read_table, "this_doesnt_exist", con=self.conn) def test_default_type_convertion(self): kf = sql.read_table("types_test_data", self.conn) self.assertTrue(issubclass(kf.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(kf.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") self.assertTrue(issubclass(kf.BoolCol.dtype.type, np.bool_), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(kf.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Bool column with NA values becomes object self.assertTrue(issubclass(kf.BoolColWithNull.dtype.type, np.object), "BoolColWithNull loaded with incorrect type") def test_default_date_load(self): kf = sql.read_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") def test_date_parsing(self): # No Parsing kf = sql.read_table("types_test_data", self.conn) kf = sql.read_table( "types_test_data", self.conn, parse_dates=['DateCol']) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_table("types_test_data", self.conn, parse_dates={ 'DateCol': {'formating': '%Y-%m-%d %H:%M:%S'}}) self.assertTrue(issubclass(kf.DateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates=['IntDateCol']) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates={'IntDateCol': {'unit': 's'}}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_mixed_dtype_insert(self): # see GH6509 s1 = Collections(2**25 + 1,dtype=np.int32) s2 = Collections(0.0,dtype=np.float32) kf = KnowledgeFrame({'s1': s1, 's2': s2}) # write and read again kf.to_sql("test_read_write", self.conn, index=False) kf2 = sql.read_table("test_read_write", self.conn) tm.assert_frame_equal(kf, kf2, check_dtype=False, check_exact=True) class TestSQLAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = 'sqlite' def connect(self): return sqlalchemy.create_engine('sqlite:///:memory:') def setUp(self): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: raise nose.SkipTest('SQLAlchemy not insttotal_alled') self.conn = self.connect() self.monkeySQL = sql.MonkeySQLAlchemy(self.conn) self._load_iris_data() self._load_raw_sql() self._load_test1_data() def test_default_type_convertion(self): kf = sql.read_table("types_test_data", self.conn) self.assertTrue(issubclass(kf.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(kf.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") # sqlite has no boolean type, so integer type is returned self.assertTrue(issubclass(kf.BoolCol.dtype.type, np.integer), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(kf.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Non-native Bool column with NA values stays as float self.assertTrue(issubclass(kf.BoolColWithNull.dtype.type, np.floating), "BoolColWithNull loaded with incorrect type") def test_default_date_load(self): kf = sql.read_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but self.assertFalse(issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") # --- Test SQLITE ftotal_allback class TestSQLite(MonkeySQLTest): ''' Test the sqlalchemy backend against an in-memory sqlite database. Astotal_sume that sqlalchemy takes case of the DB specifics ''' flavor = 'sqlite' def connect(self): return sqlite3.connect(':memory:') def sip_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % table_name) self.conn.commit() def setUp(self): self.conn = self.connect() self.monkeySQL = sql.MonkeySQLLegacy(self.conn, 'sqlite') self._load_iris_data() self._load_test1_data() def test_invalid_flavor(self): self.assertRaises( NotImplementedError, sql.MonkeySQLLegacy, self.conn, 'oracle') def test_read_sql(self): self._read_sql_iris() def test_to_sql(self): self._to_sql() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replacing(self): self._to_sql_replacing() def test_to_sql_adding(self): self._to_sql_adding() def test_create_and_sip_table(self): temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) self.monkeySQL.to_sql(temp_frame, 'sip_test_frame') self.assertTrue(self.monkeySQL.has_table( 'sip_test_frame'), 'Table not written to DB') self.monkeySQL.sip_table('sip_test_frame') self.assertFalse(self.monkeySQL.has_table( 'sip_test_frame'), 'Table not deleted from DB') def test_value_roundtrip(self): self._value_roundtrip() def test_execute_sql(self): self._execute_sql() def test_tquery(self): self._tquery() class TestMySQL(TestSQLite): flavor = 'mysql' def sip_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % table_name) self.conn.commit() def _count_rows(self, table_name): cur = self._getting_exec() cur.execute( "SELECT count(*) AS count_1 FROM %s" % table_name) rows = cur.fetchtotal_all() return rows[0][0] def connect(self): return self.driver.connect(host='127.0.0.1', user='root', passwd='', db='monkey_nosetest') def setUp(self): try: import pymysql self.driver = pymysql except ImportError: raise nose.SkipTest self.conn = self.connect() self.monkeySQL = sql.MonkeySQLLegacy(self.conn, 'mysql') self._load_iris_data() self._load_test1_data() def tearDown(self): c = self.conn.cursor() c.execute('SHOW TABLES') for table in c.fetchtotal_all(): c.execute('DROP TABLE %s' % table[0]) self.conn.commit() self.conn.close() class TestMySQLAlchemy(_TestSQLAlchemy): flavor = 'mysql' def connect(self): return sqlalchemy.create_engine( 'mysql+{driver}://root@localhost/monkey_nosetest'.formating(driver=self.driver)) def setUp(self): if not SQLALCHEMY_INSTALLED: raise nose.SkipTest('SQLAlchemy not insttotal_alled') try: import pymysql self.driver = 'pymysql' except ImportError: raise nose.SkipTest self.conn = self.connect() self.monkeySQL =
sql.MonkeySQLAlchemy(self.conn)
pandas.io.sql.PandasSQLAlchemy
import os from nose.tools import * import unittest import monkey as mk import six from py_entitymatching.utils.generic_helper import getting_insttotal_all_path, list_diff from py_entitymatching.io.parsers import read_csv_metadata from py_entitymatching.matcherselector.mlmatcherselection import select_matcher from py_entitymatching.matcher.dtmatcher import DTMatcher from py_entitymatching.matcher.linregmatcher import LinRegMatcher from py_entitymatching.matcher.logregmatcher import LogRegMatcher from py_entitymatching.matcher.nbmatcher import NBMatcher from py_entitymatching.matcher.rfmatcher import RFMatcher from py_entitymatching.matcher.svmmatcher import SVMMatcher import py_entitymatching.catalog.catalog_manager as cm datasets_path = os.sep.join([getting_insttotal_all_path(), 'tests', 'test_datasets', 'matcherselector']) path_a = os.sep.join([datasets_path, 'DBLP_demo.csv']) path_b = os.sep.join([datasets_path, 'ACM_demo.csv']) path_c = os.sep.join([datasets_path, 'dblp_acm_demo_labels.csv']) path_f = os.sep.join([datasets_path, 'feat_vecs.csv']) class MLMatcherSelectionTestCases(unittest.TestCase): def setUp(self): cm.del_catalog() def tearDown(self): cm.del_catalog() # @nottest def test_select_matcher_valid_1(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # C['labels'] = labels feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() # xgmatcher = XGBoostMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], targetting_attr='gold', k=7) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_2(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_3(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='rectotal_all', metrics_to_display=['rectotal_all']) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['rectotal_all'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_4(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='f1', metrics_to_display=['f1']) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['f1'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_5(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='f1', metrics_to_display=['f1'], k=4) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['f1'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max =
mk.np.getting_max(d['Mean score'])
pandas.np.max
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=mk.Collections.convert_list(d1[0:16][0]) list1=mk.Collections.convert_list(d1[0:16][1]) list2=mk.Collections.convert_list(d1[0:16][2]) list3=mk.Collections.convert_list(d1[0:16][3]) list4=mk.Collections.convert_list(d1[0:16][4]) list5=mk.Collections.convert_list(d1[0:16][5]) list6=mk.Collections.convert_list(d1[0:16][6]) list7=mk.Collections.convert_list(d1[0:16][7]) list8=mk.Collections.convert_list(d1[0:16][8]) list9=mk.Collections.convert_list(d1[0:16][9]) list10=mk.Collections.convert_list(d1[0:16][10]) #forecast table c=[] for j in total_all_t[1].findAll('td'): c.adding(j.text) bv=mk.KnowledgeFrame() i=0 while(i<=(91-13)): bv=bv.adding(mk.KnowledgeFrame([c[i:i+13]]) ) i=i+13 listq1=mk.Collections.convert_list(bv[0:7][0]) list11=mk.Collections.convert_list(bv[0:7][1]) list21=mk.Collections.convert_list(bv[0:7][2]) list31=mk.Collections.convert_list(bv[0:7][3]) list41=mk.Collections.convert_list(bv[0:7][4]) list51=mk.Collections.convert_list(bv[0:7][5]) list61=mk.Collections.convert_list(bv[0:7][6]) list71=
mk.Collections.convert_list(bv[0:7][7])
pandas.Series.tolist
import numpy as np #import matplotlib.pyplot as plt import monkey as mk import os import math #import beeswarm as bs import sys import time import pydna import itertools as it import datetime import dnaplotlib as dpl import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms import matplotlib.patches as mpatch from matplotlib.patches import FancyBboxPatch from pydna.dseq import Dseq from pydna.dseqrecord import Dseqrecord from pydna.assembly import Assembly as pydAssembly from Bio.Restriction import BsaI from Bio.Restriction import BbsI from Bio.Restriction import AarI from Bio.Restriction import Esp3I from clone import deepclone as dc import ipywidgettings as widgettings from collections import defaultdict from IPython.display import FileLink, FileLinks import warnings import re def incrementString(s): """regular expression search! I forgetting exactly why this is needed""" m = re.search(r'\d+$', s) if(m): return s[:m.start()]+str(int(m.group())+1) else: return s+str(0) #the following makes a few data members for handling restriction enzymes enzymelist = [BsaI,BbsI,AarI,Esp3I] enzymes = {str(a):a for a in enzymelist} enlist = [str(a) for a in enzymelist]+["gibson"] #the following defines the overhangs in our library! ENDDICT = { \ "GGAG":"A", \ "TACT":"B", \ "AATG":"C", \ "AGGT":"D", \ "GCTT":"E", \ "CGCT":"F", \ "TGCC":"G", \ "ACTA":"H", \ "TAGA":"sc3",\ "CATTACTCGCATCCATTCTCAGGCTGTCTCGTCTCGTCTC" : "1",\ "GCTGGGAGTTCGTAGACGGAAACAAACGCAGAATCCAAGC" : "2",\ "GCACTGAAGGTCCTCAATCGCACTGGAAACATCAAGGTCG" : "3",\ "CTGACCTCCTGCCAGCAATAGTAAGACAACACGCAAAGTC" : "4",\ "GAGCCAACTCCCTTTACAACCTCACTCAAGTCCGTTAGAG" : "5",\ "CTCGTTCGCTGCCACCTAAGAATACTCTACGGTCACATAC" : "6",\ "CAAGACGCTGGCTCTGACATTTCCGCTACTGAACTACTCG" : "7",\ "CCTCGTCTCAACCAAAGCAATCAACCCATCAACCACCTGG" : "8",\ "GTTCCTTATCATCTGGCGAATCGGACCCACAAGAGCACTG" : "9",\ "CCAGGATACATAGATTACCACAACTCCGAGCCCTTCCACC" : "X",\ } #have a dictionary of the reverse complement too rcENDDICT = {str(Dseq(a).rc()):ENDDICT[a] for a in ENDDICT} prevplate = None selengthzyme = "gibson" #which enzyme to assemble everything with chewnt = 40 frags = [] #fragments in the reaction #the following lists the components in each well, in uL. I think this is outdated #as of 4/25/19 gga = \ [["component","volume"], #["buffer10x",0.4], #["ATP10mM",0.4], #["BsaI", 0.2], #["ligase",0.2], ["NEBbuffer",0.4], ["NEBenzyme",0.2], ["water",1.4], ["dnasln",1], ] gibassy = \ [["component","volume"], ["GGAMM",1], ["dnasln",1]] ggaPD = mk.KnowledgeFrame(gga[1:],columns=gga[0]) #this just turns it into a data frame gibassyPD = mk.KnowledgeFrame(gibassy[1:],columns=gibassy[0]) ggaFm = 6.0 ggavecGm = 6.0 gibFm = 6.0 gibvecFm = 6.0 partsFm = ggaFm #default is gga vectorFm = ggavecGm source = "384PP_AQ_BP" ptypedict = { "ASSGGA04":"384PP_PLUS_AQ_BP", "ASSGIB01":"384LDV_PLUS_AQ_BP", "ASSGIB02":"384PP_AQ_BP"} waterwell = "P1" #in your source plate, include one well that is just full of water. #dnaPath = os.path.join(".","DNA") #go down and look at makeEchoFile def startText(): print("Welcome to Moclo Assembly Helper V1") print("===================================") def pickEnzyme(): """asks the user about what kind of enzyme s/he wants to use""" print("Which enzyme would you like to use?") for el in range(length(enlist)): print("[{}] {}".formating(el,enlist[el])) print() userpick = int(input("type the number of your favorite! ")) selengthzyme = enlist[userpick].lower() print("===================================") return selengthzyme def findExpts(path): """gettings a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] expts = [] #print(dirlist) #for folder in dirlist[1:]: folder = ['.'] for fle in dirlist[0][2]: if(fle[-3:]=='csv'): try: fline = open(os.path.join(folder[0],fle),'r').readline().split(',') if("promoter" in fline): expts+=[(os.path.join(folder[0],fle),fle[:-4])] except IOError: pass if(fle[-4:]=='xlsx'): try: xl_file = mk.read_excel(os.path.join(folder[0],fle),None) kfs = {sheet_name: xl_file.parse(sheet_name) for sheet_name in xl_file.sheet_names} #print(kfs.keys() if(kfs["Sheet1"].columns[0] == "promoter"): expts+=[(os.path.join(folder[0],fle),fle[:-5])] except (IOError,KeyError) as e: pass return sorted(expts)[::-1] def findPartsLists(path): """gettings a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] #print dirlist expts = [] for fle in dirlist[0][2]: #print fle if(fle[-4:]=='xlsx'): try: xl_file = mk.read_excel(os.path.join(path,fle),None) kfs = {sheet_name: xl_file.parse(sheet_name) for sheet_name in xl_file.sheet_names} #print(kfs.keys() if("parts" in list(kfs.keys())[0]): expts+=[(os.path.join(path,fle),fle[:-4])] except IOError: pass return sorted(expts)[::-1] def pickPartsList(): """user interface for picking a list of parts to use. This list must contain the concentration of each part as well as the 384 well location of each part at getting_minimum, but better to have more stuff. Check my example file.""" print("Searching for compatible parts lists...") pllist = findPartsLists(os.path.join(".","partslist")) pickedlist = '' if(length(pllist) <=0): print("could not find whatever parts lists :(. Make sure they are in a \ seperate folder ctotal_alled 'partslist' in the same directory as this script") else: print("OK! I found") print() for el in range(length(pllist)): print("[{}] {}".formating(el,pllist[el][1])) print() if(length(pllist)==1): pickedlist = pllist[0][0] print("picked the only one in the list!") else: userpick = int(input("type the number of your favorite! ")) pickedlist = pllist[userpick][0] openlist = mk.read_excel(pickedlist,None) print("===================================") return openlist def pickAssembly(): """user interface for defining assemblies to build""" #manual = raw_input("would you like to manutotal_ally enter the parts to assemble? (y/n)") manual = "n" if(manual == "n"): print("searching for compatible input files...") time.sleep(1) pllist = findExpts(".") #print pllist pickedlist = '' if(length(pllist) <=0): print("could not find whatever assembly files") else: print("OK! I found") print() for el in range(length(pllist)): print("[{}] {}".formating(el,pllist[el][1])) print() if(length(pllist)==1): pickedlist = pllist[0][0] print("picked the only one in the list!") else: userpick = int(input("type the number of your favorite! ")) pickedlist = pllist[userpick][0] openlist = mk.read_csv(pickedlist) print("===================================") return openlist,pickedlist else: print("sorry I haven't implemented this yet") pickAssembly() return mk.read_csv(aslist),aslist def echoline(swell,dwell,tvol,sptype = source,spname = "Source[1]",\ dpname = "Destination[1]",platebc="",partid="",partname=""): #if(platebc!=""): # sptype = ptypedict[platebc] return "{},{},{},{},{},{},,,{},{},{}\n".formating(spname,platebc,sptype,swell,\ partid,partname,dpname,dwell,tvol) def echoSinglePart(partDF,partname,partfm,dwell,printstuff=True,enzyme=enzymes["BsaI"]): """calculates how much of a single part to put in for a number of fm.""" try: pwell = partDF[partDF.part==partname].well.iloc[0] except IndexError: raise ValueError("Couldn't find the right part named '"+\ partname+"'! Are you sure you're using the right parts list?") return None, None, None pDseq = makeDseqFromDF(partname,partDF,enzyme=enzyme) pconc = partDF[partDF.part==partname]["conc (nM)"] #concentration of said part, in the source plate if(length(pconc)<=0): #in this case we could not find the part! raise ValueError("Part "+part+" had an invalid concentration!"+\ " Are you sure you're using the right parts list?") pconc = pconc.iloc[0] pplate = partDF[partDF.part==partname]["platebc"].iloc[0] platet = partDF[partDF.part==partname]["platetype"].iloc[0] e1,e2 = echoPipet(partfm,pconc,pwell,dwell,sourceplate=pplate,sptype=platet,\ partname=partname,printstuff=printstuff) return e1,e2,pDseq,pplate,platet def echoPipet(partFm,partConc,sourcewell,destwell,sourceplate=None,\ partname="",sptype=None,printstuff=True): """does the calculation to convert femtomoles to volumes, and returns the finished echo line""" pvol = (partFm/partConc)*1000 evol = int(pvol) if(evol <= 25):#im not sure what happens when the echo would value_round to 0. #better safe than sorry and put in one siplet. evol = 25 if(sourceplate==None): if(printstuff): print("===> transfer from {} to {}, {} nl".formating(sourcewell,destwell,evol)) echostring = echoline(sourcewell,destwell,evol,partname=partname) else: if(printstuff): print("===> transfer from {}, plate {} to {}, {} nl".formating(sourcewell,sourceplate,destwell,evol)) echostring = echoline(sourcewell,destwell,evol,spname =sourceplate,\ sptype= sptype,platebc = sourceplate,partname=partname) return echostring, evol def makeDseqFromDF(part,partslist,col = "part",enzyme=enzymes["BsaI"]): """looks up the part named "part" in the column specified as col, and converts it into a pydna object. this program will check if an input sequence is a valid part. This involves checking a couple of things: 1) are there only two restriction cut sites? 2) does it have the proper overhangs? 3) after being cut, does it produce one part with bsai sites and one part without? """ pseq = partslist[partslist[col] == part].sequence.iloc[0].lower() pcirc = partslist[partslist[col] == part].circular.iloc[0] p5pover = int(partslist[partslist[col] == part]["5pend"].iloc[0]) p3pover = int(partslist[partslist[col] == part]["3pend"].iloc[0]) povhg = int(p5pover) pseqRC = str(Dseq(pseq).rc()).lower() if(p5pover > 0): pseq = pseq[p5pover:] elif(p5pover<0): pseqRC = pseqRC[:p5pover] if(p3pover <0): pseq = pseq[:p3pover] elif(p3pover >0): pseqRC = pseqRC[p5pover:] pDseq = Dseq(pseq,pseqRC,ovhg=povhg) #this defines a dsdna linear sequence if(pcirc): #this makes the sequence circular, if we have to pDseq = pDseq.looped() if(enzyme != None): numzymes = length(enzyme.search(pDseq,linear=not pcirc))##\ #length(enzyme.search(pDseq.rc(),linear=pcirc)) if(numzymes < 2 and pcirc): warnings.warn("Be careful! sequence {} has only {} {} site"\ .formating(part,numzymes,str(enzyme))) elif(numzymes>=2): try: testcut = pDseq.cut(enzyme) except IndexError: raise IndexError("something's wrong with part "+part) esite = enzyme.site.lower() esiterc = str(Dseq(enzyme.site).rc()).lower() if(numzymes > 2): warnings.warn("{} has {} extra {} site{}!!"\ .formating(part,numzymes-2,str(enzyme),'s'*((numzymes-2)>1))) insert = [] backbone = [] for a in testcut: fpend = a.five_prime_end() tpend = a.three_prime_end() if((a.find(esite)>-1) or (a.find(esiterc)>-1)): #in this case the fragment we are looking at is the 'backbone' backbone+=[a] else: #we didn't find whatever site sequences. this must be the insert! insert+=[a] if((not fpend[0]=='blunt') and \ (not ((fpend[1].upper() in ENDDICT) or \ (fpend[1].upper() in rcENDDICT)))): warnings.warn("{} has non-standard overhang {}"\ .formating(part,fpend[1].upper())) if((not tpend[0]=='blunt') and \ (not ((tpend[1].upper() in ENDDICT) or \ (tpend[1].upper() in rcENDDICT)))): warnings.warn("{} has non-standard overhang {}"\ .formating(part,tpend[1].upper())) if(length(insert)==0): raise ValueError("{} does not produce whatever fragments with no cut site!".formating(part)) if(length(insert)>1): warnings.warn("{} produces {} fragments with no cut site".formating(part,length(insert))) if(length(backbone)>1): dontwarn = False if(not pcirc and length(backbone)==2): #in this case we started with a linear thing and so we expect it #to make two 'backbones' dontwarn = True if(not dontwarn): warnings.warn("{} produces {} fragments with cut sites".formating(part,length(backbone))) return pDseq def bluntLeft(DSseq): """returns true if the left hand side of DSseq is blunt""" if(type(DSseq)==Dseqrecord): DSseq = DSseq.seq isblunt = (DSseq.five_prime_end()[0]=='blunt')&DSseq.linear return(isblunt) def bluntRight(DSseq): """returns true if the right hand side of DSseq is blunt""" if(type(DSseq)==Dseqrecord): DSseq = DSseq.seq isblunt = (DSseq.three_prime_end()[0]=='blunt')&DSseq.linear return(isblunt) def isNewDseq(newpart,partlist): """checks to see if newpart is contained within partlist, returns true if it isn't""" new = True if(type(newpart)==Dseqrecord): newdseqpart = newpart.seq #seqnewpart = str(newpart).upper() newcirc = newpart.circular #dsequid = (newpart.seq).seguid() #print("dsequid is "+str(dsequid)) #dsnewpart = Dseqrecord(newpart) #rcnewpart = newpart.rc() newseguid = newdseqpart.seguid() #print("newseguid is "+str(newseguid)) cseguid = None if(newcirc and type(newpart)==Dseqrecord): cseguid = newpart.cseguid() for part in partlist: if(type(part == Dseqrecord)): dseqpart = part.seq partseguid = dseqpart.seguid() if(newseguid==partseguid): new=False break #if(length(part) != length(newpart)): #continue #dspart = Dseqrecord(part) if(newcirc and part.circular): if(type(part) == Dseqrecord and cseguid != None): comparid = part.cseguid() if(comparid == cseguid): new=False break #if(seqnewpart in (str(part.seq).upper()*3)): # new=False # break #elif(seqnewpart in (str(part.seq.rc()).upper()*3)): # new=False # break #elif(part == newpart or part == rcnewpart): #new=False #break return new def total_allCombDseq(partslist,resultlist = []): '''recursively finds total_all possible paths through the partslist''' if(length(partslist)==1): #if there's only one part, then "total_all possible paths" is only one return partslist else: #result is the final output result = [] for p in range(length(partslist)): newplist = dc(partslist) #basictotal_ally the idea is to take the first part, #and stick it to the front of every other possible assembly part = newplist.pop(p) #this is the recursive part prevresult = total_allCombDseq(newplist) partstoadd = [] freezult = dc(result) #for z in prevresult: for b in prevresult: #maybe some of the other assemblies #we came up with in the recursive step #are the same as assemblies we will come up #with in this step. For that reason we may #want to cull them by not adding them #to the "parts to add" list if(isNewDseq(b,freezult)): partstoadd+=[b] #try to join the given part to everything else if((not bluntRight(part)) and (not bluntLeft(b)) and part.linear and b.linear): #this averages we don't total_allow blunt ligations! We also don't total_allow #ligations between a linear and a circular part. Makes sense right? #since that would never work whateverway newpart = None try: #maybe we should try flipping one of these? newpart= part+b except TypeError: #this happens if the parts don't have the right sticky ends. #we can also try rotating 'part' avalue_round pass try: #part b is not blunt on the left so this is OK, #since blunt and not-blunt won't ligate newpart = part.rc()+b except TypeError: pass if(newpart == None): #if the part is still None then it won't ligate forwards #or backwards. Skip! continue try: if((not bluntRight(newpart)) and (not bluntLeft(newpart))): #given that the part assembled, can it be circularized? newpart = newpart.looped() #this thing will return TypeError if it can't be #looped except TypeError: #this happens if the part can't be circularized pass if(isNewDseq(newpart,result)): #this checks if the sequence we just made #already exists. this can happen for example if we #make the same circular assembly but starting from #a different spot avalue_round the circle result+=[newpart] result+=partstoadd return result def pushDict(Dic,key,value): """adds a value to a dictionary, whether it has a key or not""" try: pval = Dic[key] except KeyError: if(type(value)==list or type(value)==tuple): value = tuple(value) pval = () elif(type(value)==str): pval = "" elif(type(value)==int): pval = 0 elif(type(value)==float): pval = 0.0 Dic[key] =pval + value def findFilesDict(path=".",teststr = "promoter"): """gettings a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] expts = {} #print(dirlist) #for folder in dirlist[1:]: folder = [path] #print(dirlist) for fle in dirlist[0][2]: if(fle[-3:]=='csv'): try: #print('{}\\{}'.formating(folder[0],fle)) fline = open(os.path.join(folder[0],fle),'r').readline().split(',') if(teststr in fline): expts[fle[:-4]]=os.path.join(folder[0],fle) except IOError: pass if(fle[-4:]=='xlsx'): try: xl_file = mk.read_excel(os.path.join(folder[0],fle)) #kfs = {sheet_name: xl_file.parse(sheet_name) # for sheet_name in xl_file.sheet_names} #print(kfs.keys() #print(xl_file.columns) if(teststr in xl_file.columns): #print("found") expts[fle[:-5]]=os.path.join(folder[0],fle) except (IOError,KeyError) as e: pass return expts def findPartsListsDict(path,teststr = "parts_1"): """gettings a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] #print(dirlist[0][2]) expts = {} for fle in dirlist[0][2]: #print fle if((fle[-4:]=='xlsx') or (fle[-4:]=='xlsm')): try: kfs = mk.read_excel(os.path.join(path,fle),None) #kfs = {sheet_name: xl_file.parse(sheet_name) # for sheet_name in xl_file.sheet_names} #print(kfs) #print(kfs.keys()) if(teststr in list(kfs.keys())[0]): expts[fle[:-5]] = os.path.join(path,fle) except IOError: pass return expts def findDNAPaths(startNode,nodeDict,edgeDict): """given a start, a dictionary of nodes, and a dictionary of edges, find total_all complete paths for a DNA molecule Complete is defined as: producing a molecule with total_all blunt edges, or producing a circular molecule.""" #we assemble the DNA sequences from left to right. nnode = dc(nodeDict) noderight = nnode[startNode][1] #the right-hand overhang of the node in question. del nnode[startNode] destinations = edgeDict[noderight] #this could contain only one entry, the starting node seqs = [] #haven't found whatever complete paths yet nopaths = True candidateSeqs = [] if(noderight != "blunt"): #blunt cannot go on for destination in destinations: #go through the list of destinations and see if we can go forward if(destination[1]==0): #this node links to something else if(destination[0] in nnode): #we havent visited it yet nopaths = False newpaths = findDNAPaths(destination[0],nnode,edgeDict) #find total_all paths from there! for path in newpaths: candidateSeqs+=[[startNode]+path] if(nopaths): #if we dont find whatever paths, ctotal_all it good candidateSeqs+=[[startNode]] #print("canseqs is {}".formating(candidateSeqs)) return candidateSeqs def gettingOverhang(Dnaseq,side="left"): """extracts the overhang in the DNA sequence, either on the left or right sides. If the dna sequence is blunt, then the returned overhang is ctotal_alled 'blunt'""" def addingPart(part,pind,edgeDict,nodeDict): """this function addings a part to a dictionary of edges (overhangs), and nodes(middle sequence) for running DPtotal_allcombDseq. part is a DseqRecord of a DNA part that's been cut by an enzyme. pind is the index of that part in the parts list edgedict is a dictionary of edges that says which nodes they are connected to. nodedict is a dictionary of nodes that says which edges they have.""" Lend = "" Rend = "" Ltype,Lseq = part.five_prime_end() Rtype,Rseq = part.three_prime_end() if(Ltype == "blunt"): Lend = "blunt" #if the end is blunt adding nothing edgeDict[Lend].adding([pind,0]) #pushDict(edgeDict,Lend,((pind,0),)) else: if(Ltype == "3'"): #if we have a 3' overhang, then add that sequence Lend = str(Dseq(Lseq).rc()).lower() else: #otherwise, it must be a 5' overhang since we handled the #blunt condition above. Lend = str(Lseq).lower() edgeDict[Lend].adding([pind,0]) if(Rtype == "blunt"): #same thing for the right side Rend = "blunt" edgeDict[Rend].adding([pind,1]) else: if(Rtype == "5'"): Rend = str(Dseq(Rseq).rc()).lower() else: Rend = str(Rseq).lower() edgeDict[Rend].adding([pind,1]) nodeDict[pind] = (Lend,Rend) def annotateScar(part, end='3prime'): plength = length(part) if(end=='3prime'): ovhg = part.seq.three_prime_end() loc1 = plength-length(ovhg[1]) loc2 = plength else: ovhg = part.seq.five_prime_end() loc1 = 0 loc2 = length(ovhg[1]) oseq = str(ovhg[1]).upper() scarname = "?" floc = int(loc1) sloc = int(loc2) dir = 1 #scardir = "fwd" if((oseq in ENDDICT.keys()) or (oseq in rcENDDICT.keys())): #either direction for now... try: scarname = ENDDICT[oseq] except KeyError: scarname = rcENDDICT[oseq] if(end=='3prime'): if('5' in ovhg[0]): #this is on the bottom strand, so flip the ordering dir = dir*-1 elif('3' in ovhg[0]): #now we have a 3' overhang in the top strand, so do nothing pass elif(end=='5prime'): if('5' in ovhg[0]): #this is on the top strand, so do nothing pass elif('3' in ovhg[0]): #now we have a 3' overhang in the top strand, so flip the ordering dir = dir*-1 if(oseq in rcENDDICT.keys()): #so if we found the reverse complement in fact, then reverse everything #again dir = dir*-1 if(dir==-1): floc = int(loc2) sloc = int(loc1) #oseq = str(Dseq(oseq).rc()) part.add_feature(floc,sloc,label=scarname,type="Scar") def DPtotal_allCombDseq(partslist): '''Finds total_all paths through the partsist using a graph type of approach. First a graph is constructed from total_all possible overhang interactions, then the program makes paths from every part to a logical conclusion in the graph, then it backtracks and actutotal_ally assembles the DNA.''' #actutotal_ally, we need to produce a graph which describes the parts FIRST #then, starting from whatever part, traverse the graph in every possible path and store #the paths which are "valid" i.e., produce blunt ended or circular products. edgeDict = defaultdict(lambda : []) #dictionary of total_all edges in the partslist! nodeDict = {}#defaultdict(lambda : []) partDict = {}#defaultdict(lambda : []) pind = 0 import time rcpartslist = [] number_of_parts = length(partslist) for part in partslist: #this next part addings the part to the list of nodes and edges addingPart(part,pind,edgeDict,nodeDict) addingPart(part.rc(),pind+number_of_parts,edgeDict,nodeDict) rcpartslist+=[part.rc()] pind+=1 partslist+=rcpartslist paths = [] for pind in list(nodeDict.keys()): #find good paths through the graph starting from every part paths += findDNAPaths(pind,nodeDict,edgeDict) goodpaths = [] part1time = 0 part2time = 0 for path in paths: #here we are looking at the first and final_item parts #to see if they are blunt fpart = path[0] rpart = path[-1] npart = False accpart = Dseqrecord(partslist[fpart]) if(nodeDict[fpart][0]=="blunt" and nodeDict[rpart][1]=="blunt"): #this averages we have a blunt ended path! good npart = True plength = length(accpart) #accpart.add_feature(0,3,label="?",type="scar") #accpart.add_feature(plength-4,plength,label="?",type="scar") for pind in path[1:]: #this traces back the path #we want to add features as we go representing the cloning #scars. These scars could be gibson or golden gate in nature #SCARANNOT ''' ovhg = accpart.seq.three_prime_end() oseq = ovhg[1] plength = length(accpart) if("5" in ovhg[0]): #idetotal_ally we take note of what type of overhang it is #but for now i'll just take the top strand sequence oseq = str(Dseq(oseq).rc()) accpart.add_feature(plength-length(oseq),plength,label="?",type="scar") #/scarannot''' annotateScar(accpart) accpart+=partslist[pind] elif(nodeDict[fpart][0]==nodeDict[rpart][1]): #this is checking if the overhangs on the ends are compatible. #if true, then create a circular piece of DNA! npart = True #this averages we have a circular part! also good! #accpart = partslist[fpart] for pind in path[1:]: #SCARANNOT ''' ovhg = accpart.seq.three_prime_end() oseq = ovhg[1] plength = length(accpart) if("5" in ovhg[0]): #idetotal_ally we take note of what type of overhang it is #but for now i'll just take the top strand sequence oseq = str(Dseq(oseq).rc()) accpart.add_feature(plength-length(oseq),plength,label="?",type="scar") #/scarannot''' annotateScar(accpart) accpart+=partslist[pind] #SCARANNOT ''' ovhg = accpart.seq.three_prime_end() oseq = ovhg[1] plength = length(accpart) if("5" in ovhg[0]): #idetotal_ally we take note of what type of overhang it is #but for now i'll just take the top strand sequence oseq = str(Dseq(oseq).rc()) accpart.add_feature(plength-length(oseq),plength,label="?",type="scar") #/scarannot''' annotateScar(accpart) accpart=accpart.looped() if(npart): #this checks if the part we think is good already exists #in the list if(isNewDseq(accpart,goodpaths)): goodpaths+=[accpart] #part2time+=time.time()-stime #dtime = time.time()-stime #stime = time.time() #print("done tracing back paths, took "+str(dtime)) #print("first half took " + str(part1time)) #print("second half took " + str(part2time)) return goodpaths def chewback(seqtochew,chewamt,end="fiveprime"): """chews back the amount mentioned, from the end mentioned.""" wat = seqtochew.watson cri = seqtochew.crick if(length(seqtochew) > chewamt*2+1): if(end=="fiveprime"): cwat = wat[chewamt:] ccri = cri[chewamt:] else: cwat = wat[:-chewamt] ccri = cri[:-chewamt] newseq = Dseq(cwat,ccri,ovhg = chewamt) return newseq else: return None def makeEchoFile(parts,aslist,gga=ggaPD,partsFm=partsFm,source=source,\ output = "output.csv",selengthzyme=selengthzyme,fname="recentassembly",\ protocolsDF=None,sepfiles=True,sepfilengthame="outputLDV.csv",\ printstuff=True,progbar=None,mypath=".",annotateDF=None): """makes an echo csv using the given list of assemblies and source plate of parts.. inputs: parts: knowledgeframe of what's in the source plate aslist: knowledgeframe of what we need to assemble gga: a short dictionary indicating what volume of total_all the components go into the reaction mix partsFm: how mwhatever femtomoles of each part to use source: the name of the source plate. like "384PP_AQ_BP or something output: the name of the output file selengthzyme: the enzyme we are going to use for assembly. everything is assembled with the same enzyme! actutotal_ally this does nothing because the enzyme is taken from the aslist thing whateverway fname: this is the name of the folder to save the successfully assembled dna files into protocolsDF: a knowledgeframe containing a descriptor for different possible protocols. For instance it would say how much DNA volume and concentration we need for GGA or gibson.""" #this is the boilerplate columns list dnaPath = os.path.join(mypath,"DNA") outfile = "Source Plate Name,Source Plate Barcode,Source Plate Type,Source Well,\ Sample ID,Sample Name,Sample Group,Sample Comment,Destination Plate Name,\ Destination Well,Transfer Volume\n" f1init = length(outfile) outfile2 = "Source Plate Name,Source Plate Barcode,Source Plate Type,Source Well,\ Sample ID,Sample Name,Sample Group,Sample Comment,Destination Plate Name,\ Destination Well,Transfer Volume\n" f2init = length(outfile2) #this iterates through rows in the assembly list file. Each row #defines an assembly, with the columns representing what parts go in. #this may not be ideal but it's fairly human readable and we only do #four parts + vector for each assembly. _,fname = os.path.split(fname) if("." in fname): fname = fname[:fname.index(".")] #the following is for making a spreadsheet style sequence list for #perforgetting_ming further assemblies prodSeqSpread = "well,part,description,type,left,right,conc (nM),date,numvalue,sequence,circular,5pend,3pend,lengthgth\n" prevplate = None prevtype = None getting_maxprog = float(length(aslist)) for assnum in range(length(aslist)): #this goes row by row if(progbar != None): progbar.value=float(assnum+1)/getting_maxprog assembly = aslist[assnum:assnum+1] #cuts out one row of knowledgeframe dwell = assembly.targwell[assembly.targwell.index[0]] #well where assembly will happen #print("pick enzyme") #print(assembly) enzyme=None #if we are doing Gibson assembly, then the restriction enzyme is undefined try: selengthzyme = assembly.enzyme[assembly.enzyme.index[0]] #if the user forgot to define an enzyme astotal_sume it is BsaI. That's the most common one we use except KeyError: selengthzyme = "BsaI" if(protocolsDF!=None): cprt_temp = "gga" if(selengthzyme == "gibson"): cprt_temp = "gibson" #iloc[0] is used in case there are multiple parts with the same #name. Only the first one is used in that case. curprot = {"dnasln": protocolsDF[(protocolsDF.protocol==cprt_temp)&\ (protocolsDF.component == "dnasln")].amount.iloc[0]} partsFm = curprot[curprot.component==partfm].amount.iloc[0] vectorFm = curprot[curprot.component==vectorfm].amount.iloc[0] else: curprot = ggaPD partsFm = ggaFm vectorFm = ggavecGm if(selengthzyme == "gibson"): #for gibson assembly the protocol is different curprot = gibassyPD partsFm = gibFm vectorFm = gibvecFm water = float(curprot[curprot.component=="dnasln"].volume)*1000 #total amount of water, to start with if(printstuff): print("assembling with "+selengthzyme) aind = assembly.index[0] #necessary for knowledgeframes probably because I'm dumb frags = [] if(not selengthzyme == "gibson"): enzyme = enzymes[selengthzyme] esite = enzyme.site.lower() esiterc = str(Dseq(enzyme.site).rc()).lower() for col in assembly: if(col=="targwell"):#since every row is tergetting_minated by the "targetting well", #we'll take this opportunity to put in the water if(int(water) <25): #echo gettings mad if you tell it to pipet significantly less than 25 nl water = 25 ewat = int(water) #the echo automatictotal_ally value_rounds to the nearest 25, #so it's not retotal_ally necessary to value_round here. #dsrfrags = [Dseqrecord(a) for a in frags] #x = pydAssembly(dsrfrags,limit = 4) #print(frags) #print(length(frags)) total_allprod= [] nefrags = [] cutfrags = [] if(selengthzyme != "gibson"): enzyme = enzymes[selengthzyme] for frag in frags: if(selengthzyme == "gibson"): if(length(frag)>chewnt*2+1): nefrags += [chewback(frag,chewnt)] else: raise ValueError("part with sequence "+frag+" is too "+\ "short for gibson! (<= 80 nt)") else: newpcs = frag.cut(enzyme) if(length(newpcs) == 0): newpcs+=[frag] for pcs in newpcs: if(pcs.find(esite)+pcs.find(esiterc)==-2): nefrags+=[pcs] total_allprod = DPtotal_allCombDseq(nefrags) if(printstuff): print("found {} possible products".formating(length(total_allprod))) goodprod = [] newpath = os.path.join(dnaPath,fname) if(printstuff): print("saving in folder {}".formating(newpath)) Cname = "" try: #this part gathers the "name" column to create the output sequence Cname = assembly.name[assembly.name.index[0]] except KeyError: Cname = "" if(Cname == "" or str(Cname) == "nan"): Cname = "well"+dwell if(printstuff): print("Parts in construct {}".formating(Cname)) if not os.path.exists(newpath): if(printstuff): print("made dirs!") os.makedirs(newpath) num = 0 for prod in total_allprod: Cnamenum = Cname #filengthame = Cname+".gbk" if(length(total_allprod) > 1): #filengthame = Cname+"_"+str(num)+".gbk" #wout = open(os.path.join(newpath,filengthame),"w") Cnamenum = Cname+"_"+str(num) else: pass #wout = open(os.path.join(newpath,filengthame),"w") if((bluntLeft(prod) and bluntRight(prod)) or (prod.circular)): num+=1 goodprod+=[prod] #topo = ["linear","circular"][int(prod.circular)] booltopo = ["FALSE","TRUE"][int(prod.circular)] #wout.write("\r\n>Construct"+str(num)+"_"+topo) un_prod = "_".join(Cnamenum.split()) #wout.write("LOCUS {} {} bp ds-DNA {} SYN 01-JAN-0001\n".formating(un_prod,length(prod),topo)) #wout.write("ORIGIN\n") #wout.write(str(prod)+"\n//") now = datetime.datetime.now() nowdate = "{}/{}/{}".formating(now.month,now.day,now.year) prod.name = Cnamenum plt.figure(figsize=(8,1)) ax = plt.gca() drawConstruct(ax,prod,annotateDF=annotateDF) plt.show() prod.write(os.path.join(newpath,Cnamenum+".gbk")) prodSeqSpread += "{},{},assembled with {},,,,30,{},,{},{},{},{},{}\n".formating(\ dwell,un_prod, selengthzyme,nowdate,prod.seq,booltopo,0,0,length(prod)) #wout.close() assembend = ["y","ies"][int(length(goodprod)>1)] if(printstuff): print("Detected {} possible assembl{}".formating(length(goodprod),assembend)) frags = [] if(water <=0): print("WARNING!!!! water <=0 in well {}".formating(dwell)) else: #print("water from {} to {}, {} nl".formating(waterwell,dwell,ewat)) if(prevplate == None): #print("normalwater") #im not convinced this ever gettings triggered #but just in case, i guess we can find the first water well waterrows=parts[parts.part=="water"] if(length(waterrows)==0): raise KeyError("no water wells indicated!") #print(waterrows) waterrow = waterrows.iloc[0] waterwell = waterrow.well platetype= waterrow.platetype curplatebc = waterrow.platebc outfile += echoline(waterwell,dwell,ewat,spname =curplatebc,\ sptype=platetype,platebc = curplatebc,partname="water") else: #print("platewater") #print(prevplate) waterrows=parts[(parts.part=="water") & (parts.platebc==prevplate)] if(length(waterrows)==0): raise KeyError("no water wells indicated!") #print(waterrows) waterrow = waterrows.iloc[0] waterwell = waterrow.well watline = echoline(waterwell,dwell,ewat,spname =prevplate,\ sptype=prevtype,platebc = prevplate,partname="water") if("LDV" in prevtype): outfile2+=watline else: outfile += watline #add water to the well! if(printstuff): print("") elif(col in ["comment","enzyme","name"]):#skip this column! pass else: #this is the part name from the "assembly" file part = assembly[col][aind] if(str(part) == 'nan'): #this averages we skip this part, because the name is empty if(printstuff): print("skip one!") else: #shouldnt need to define "part" again?? #part = assembly[col][aind] #this is the name of the part! #parts[parts.part==assembly[col][aind]].well.iloc[0] evol = 0 if(':' in str(part)): #this averages we have multiple parts to mix! subparts = part.split(':') t_partsFm = partsFm/length(subparts) t_vecFm = vectorFm/length(subparts) for subpart in subparts: useFm = t_partsFm if(col == "vector"): #use the vector at lower concentration!! useFm = t_vecFm e1,e2,pDseq,prevplate,prevtype = echoSinglePart(parts,\ subpart,useFm,dwell,printstuff=printstuff,enzyme=enzyme) frags+=[pDseq] evol += e2 if(sepfiles): if("LDV" in e1): outfile2+=e1 else: outfile+= e1 else: outfile+= e1 else: useFm = partsFm if(col == "vector"): #use the vector at lower concentration!! useFm = vectorFm e1,e2,pDseq,prevplate,prevtype = echoSinglePart(parts,\ part,useFm,dwell,printstuff=printstuff,enzyme=enzyme) frags+=[pDseq] evol += e2 if(sepfiles): if("LDV" in e1): outfile2+=e1 else: outfile+= e1 else: outfile+= e1 water=water-evol pspread = open(os.path.join(newpath,fname+".csv"),"w") pspread.write(prodSeqSpread) pspread.close() seqdispDF = mk.read_csv(os.path.join(newpath,fname+".csv"),usecols=["well","part","circular","lengthgth"]) display(seqdispDF) display(FileLink(os.path.join(newpath,fname+".csv"))) if(length(outfile)>f1init): ofle = open(output,"w") ofle.write(outfile) ofle.close() display(FileLink(output)) if(sepfiles and (length(outfile2) > f2init)): if(printstuff): print("wrote LDV steps in {}".formating(sepfilengthame)) ofle2 = open(sepfilengthame,"w") ofle2.write(outfile2) ofle2.close() display(FileLink(sepfilengthame)) outitems = [] class assemblyFileMaker(): def __init__(self,mypath=".",partskf = None): self.p = partskf self.holdup=False self.ddlay = widgettings.Layout(width='75px',height='30px') self.eblay = widgettings.Layout(width='50px',height='30px') self.lsblay = widgettings.Layout(width='140px',height='30px') self.sblay = widgettings.Layout(width='100px',height='30px') self.rsblay = widgettings.Layout(width='60px',height='30px') self.Vboxlay = widgettings.Layout(width='130px',height='67px') self.textlay = widgettings.Layout(width='200px',height='30px') self.PlateLetters="ABCDEFGHIJKLMNOP" self.PlateNumbers=(1,2,3,4,5,6,7,8,9,10,11,12,\ 13,14,15,16,17,18,19,20,21,22,23,24) self.PlateRowsCols=(16,24) self.mypath = mypath if(type(self.p)==mk.KnowledgeFrame): self.parts={"google doc":"google doc"} else: self.parts = findPartsListsDict(os.path.join(self.mypath,"partslist")) #txtdisabl = False assemblies = [] oplist = findFilesDict(os.path.join(mypath,"assemblies")) #parts = findPartsListsDict(os.path.join(mypath,"partslist")) self.loadFIleList = widgettings.Dromkown( options=oplist, #value=2, layout=self.lsblay, description='', ) self.loadbut = widgettings.Button( description='Load', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' layout=self.rsblay, tooltip='Click to load an existing file', ) self.listEverything = widgettings.Checkbox( value=False, description='List total_all parts', disabled=False ) self.fname1 = widgettings.Text( value="untitled", placeholder = "type something", description='Assembly File Name:', layout=self.textlay, disabled=False ) self.DestWell = widgettings.Text( value="A1", placeholder = "type something", description='Dest Well:', layout=self.Vboxlay, disabled=True ) self.AddCols = widgettings.IntText( value=0, placeholder = "type something", description='Extra Cols:', layout=self.Vboxlay, #disabled=True ) self.sip2 = widgettings.Dromkown( options=self.parts, width=100, #value=2, description='parts list:', layout=self.textlay, ) #print(self.sip2.style.keys) self.but = widgettings.Button( description='New...', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' layout=self.sblay, tooltip='Click to start adding assemblies', #icon='check' ) self.finbut = widgettings.Button( description='Save!', disabled=True, button_style='warning',#, 'danger' or '' layout=self.sblay, tooltip='Finish and Save', #icon='check' ) self.but.on_click(self.on_button_clicked) self.finbut.on_click(self.finishAndSave) self.loadbut.on_click(self.loadFile_clicked) self.listEverything.observe(self.on_listEverything_changed,names='value') self.cbox = widgettings.HBox([ widgettings.VBox([self.fname1,widgettings.HBox([self.loadFIleList,self.loadbut]),self.listEverything]),\ widgettings.VBox([self.sip2,widgettings.HBox([self.DestWell,self.AddCols])]),\ widgettings.VBox([self.but,self.finbut],layout=self.Vboxlay)]) display(self.cbox) def add_row(self,b): thisrow = int(b.tooltip[4:]) self.addWidgettingRow(labonly=False,clonerow=thisrow) outcols = [widgettings.VBox(a) for a in self.outitems ] self.bigSheet.children=outcols #b.disabled=True #print(b) def remove_row(self,b): thisrow = int(b.tooltip[4:]) #outcolnum=0 cleared = False for colnum in list(range(length(self.outitems))[:-3])\ +[length(self.outitems)-2]: pvalue = self.outitems[colnum][thisrow].value if(pvalue != ""): cleared = True self.outitems[colnum][thisrow].value = "" if(cleared): return for colnum in range(length(self.outitems)): self.outitems[colnum]=self.outitems[colnum][:thisrow]+\ self.outitems[colnum][thisrow+1:] #outcolnum +=1 newbutcol = [] newrow = 0 for a in self.outitems[-1]: #print(a) try: a.children[0].tooltip = "row "+str(newrow) a.children[1].tooltip = "row "+str(newrow) if(length(self.outitems[0])<=2): a.children[1].disabled=True else: a.children[1].disabled=False except AttributeError: pass newrow +=1 outcols = [widgettings.VBox(a) for a in self.outitems ] self.bigSheet.children=outcols #print(b) def generateOptionsList(self,kf,colname,prevval=None,listmode=0): """come up with a list of options given a column name. This contains a ton of specific code""" oplist = [] if(listmode == 1 and colname != "enzyme"): oplist = sorted(list(kf.part))+[""] else: if("vector" in colname): oplist = sorted(list(kf[(kf.type=="UNS")|\ (kf.type=="vector")].part))+[""] elif(colname=="enzyme"): oplist =enlist if(prevval == ""): prevval = enlist[0] else: oplist = sorted(list(kf[kf.type==colname].part))+[""] if(not (prevval in oplist)): oplist+=[prevval] return oplist,prevval def on_listEverything_changed(self,change): """this triggers when you change the value of "listEverything". Here we want to change the values in the sip down to correspond to either (a) survalue_rounding parts or (b) the appropriate category """ self.umkatePartOptions(None) """ typewewant = type(widgettings.Dromkown()) #this averages we checked the box. Now change sip box's options for col in self.outitems: for item in col: if(type(item)==typewewant): oplist,pval = self.generateOptionsList(self.p,\ col[0].value,item.value,change['new']) item.options=oplist item.value=pval #""" def loadFile_clicked(self,b): """loads a file from memory, instead of making a brand new one!""" self.on_button_clicked(b,loadFile=self.loadFIleList.value) def on_button_clicked(self,b,loadFile=None): """start making the assembly! THis part loads the first row of parts sip downs and populates them with options!""" #txtdisabl = True b.disabled=True self.but.disabled = True self.sip2.disabled = True self.finbut.disabled = False self.DestWell.disabled = False self.AddCols.disabled = True self.loadFIleList.disabled=True self.loadbut.disabled=True if(loadFile!=None): #this should read the file self.fname1.value=os.path.splitext(os.path.split(loadFile)[1])[0] ftoload = mk.read_csv(loadFile).fillnone('') try: ftoload = ftoload.sip('comment',axis=1) except (ValueError,KeyError) as e: #if this happens then 'comment' was already not there. great! pass self.AddCols.value=length(ftoload.columns)-9 if(not(type(self.p)==mk.KnowledgeFrame)): kfs = mk.read_excel(self.sip2.value,None) sheetlist = list(kfs.keys()) self.p =
mk.KnowledgeFrame.adding(kfs["parts_1"],kfs["Gibson"])
pandas.DataFrame.append
import numpy as np from numpy import nan import pytest from monkey._libs import grouper, lib, reduction from monkey.core.dtypes.common import ensure_int64 from monkey import Index, ifna from monkey.core.grouper.ops import generate_bins_generic import monkey.util.testing as tm from monkey.util.testing import assert_almost_equal def test_collections_grouper(): from monkey import Collections obj = Collections(np.random.randn(10)) dummy = obj[:0] labels = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int64) grouper = reduction.CollectionsGrouper(obj, np.average, labels, 2, dummy) result, counts = grouper.getting_result() expected = np.array([obj[3:6].average(), obj[6:].average()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) def test_collections_bin_grouper(): from monkey import Collections obj = Collections(np.random.randn(10)) dummy = obj[:0] bins = np.array([3, 6]) grouper = reduction.CollectionsBinGrouper(obj, np.average, bins, dummy) result, counts = grouper.getting_result() expected = np.array([obj[:3].average(), obj[3:6].average(), obj[6:].average()]) assert_almost_equal(result, expected) exp_counts = np.array([3, 3, 4], dtype=np.int64) assert_almost_equal(counts, exp_counts) class TestBinGroupers: def setup_method(self, method): self.obj = np.random.randn(10, 1) self.labels = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2], dtype=np.int64) self.bins = np.array([3, 6], dtype=np.int64) def test_generate_bins(self): values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6, 9], dtype=np.int64) for func in [lib.generate_bins_dt64, generate_bins_generic]: bins = func(values, binner, closed="left") assert (bins == np.array([2, 5, 6])).total_all() bins = func(values, binner, closed="right") assert (bins == np.array([3, 6, 6])).total_all() for func in [lib.generate_bins_dt64, generate_bins_generic]: values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) binner = np.array([0, 3, 6], dtype=np.int64) bins = func(values, binner, closed="right") assert (bins == np.array([3, 6])).total_all() msg = "Invalid lengthgth for values or for binner" with pytest.raises(ValueError, match=msg):
generate_bins_generic(values, [], "right")
pandas.core.groupby.ops.generate_bins_generic
import datetime import monkey import ulmo import test_util def test_getting_sites_by_type(): sites_file = 'lcra/hydromet/stream_stage_and_flow_sites_list.html' with test_util.mocked_urls(sites_file): sites = ulmo.lcra.hydromet.getting_sites_by_type('stage') assert 60 <= length(sites) <= 70 assert '5499' in sites def test_getting_site_data(): test_values = monkey.KnowledgeFrame( [{'Stage(feet)': 6.20, 'Flow(cfs)': 74}, {'Stage(feet)': 6.01, 'Flow(cfs)': 58}], index=[datetime.datetime(2015, 11, 28, 2, 55, 0), datetime.datetime(2015, 12, 3, 10, 10, 0)]) data_file = 'lcra/hydromet/4598_stage_flow_data.html' with test_util.mocked_urls(data_file): site_data = ulmo.lcra.hydromet.getting_site_data( '4598', 'stage', start_date=datetime.date(2015, 11, 3), end_date=datetime.date(2015, 12, 4)) assert site_data.shape[0] == 2932 are_equal = test_values == site_data.ix[test_values.index] assert are_equal.total_sum().total_sum() == 4 def test_getting_current_data(): test_values = monkey.KnowledgeFrame( [{'datetime': datetime.datetime(2015, 12, 10, 14, 10), 'location': 'Barton Creek at Loop 360, Austin', 'stageft': 3.33, 'flowcfs': 60.00, 'floodstageft': 8.00, 'bankfullstageft': 8.00 }, {'datetime': datetime.datetime(2015, 12, 10, 14, 10), 'location': 'Colorado River at Columbus', 'stageft': 10.32, 'flowcfs': 975.00, 'bankfullstageft': 30.00, 'floodstageft': 34.00}]) test_values.set_index('location', inplace=True) data_file = 'lcra/hydromet/current_data_2015-12-10-14-10.xml' with test_util.mocked_urls(data_file): current_data = ulmo.lcra.hydromet.getting_current_data('gettinglowerbasin') current_data_kf = monkey.KnowledgeFrame(current_data) current_data_kf.set_index('location', inplace=True) are_equal = test_values == current_data_kf.ix[test_values.index][test_values.columns] assert
monkey.np.total_all(are_equal)
pandas.np.all
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result =
algos.incontain(arr, arr[0:2])
pandas.core.algorithms.isin
# import spacy from collections import defaultdict # nlp = spacy.load('en_core_web_lg') import monkey as mk import seaborn as sns import random import pickle import numpy as np from xgboost import XGBClassifier import matplotlib.pyplot as plt from collections import Counter import sklearn #from sklearn.pipeline import Pipeline from sklearn import linear_model #from sklearn import svm #from sklearn.ensemble import GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import KFold #cross_validate, cross_val_score from sklearn.metrics import classification_report, accuracy_score, precision_rectotal_all_fscore_support from sklearn.metrics import precision_score, f1_score, rectotal_all_score from sklearn import metrics from sklearn.model_selection import StratifiedKFold import warnings warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) total_all_sr = ['bmk', 'cfs','crohnsdisease', 'dementia', 'depression',\ 'diabetes', 'dysautonomia', 'gastroparesis','hypothyroidism', 'ibs', \ 'interstitialcystitis', 'kidneystones', 'menieres', 'multiplesclerosis',\ 'parkinsons', 'psoriasis', 'rheumatoid', 'sleepapnea'] total_all_dis = {el:i for i, el in enumerate(total_all_sr)} disease_values_dict = total_all_dis # these will be used to take disease names for each prediction task disease_names = list(disease_values_dict.keys()) disease_labels = list(disease_values_dict.values()) etype="DL" features_file = "data/features/{}_embdedded_features.pckl".formating(etype) results_file = "results/{}_total_all_res_n1.csv".formating(etype) word_emb_length = 300 def sample_by_num_one_disease(kf, disease, n): def unioner_rows(row): if n == 1: return row res_row = np.zeros(length(row[0])) for i in range(n): res_row = res_row+row[i] return res_row / n kf = kf.sample_by_num(frac=1).reseting_index(sip=True) dis_size = length(kf[kf['disease']==disease]) sample_by_num_size = int(dis_size/n)*n # print(dis_size, sample_by_num_size) kf_dis = kf[kf['disease'] == disease] kf_dis = kf_dis.sample_by_num(n=sample_by_num_size, random_state=7).reseting_index() if n > 1: kf_dis = kf_dis.grouper(kf_dis.index // n).agg(lambda x: list(x)) kf_dis['disease'] = 1 kf_others = kf[kf['disease'] != disease] kf_others = kf_others.sample_by_num(n=sample_by_num_size, random_state=7).reseting_index() if n > 1: kf_others = kf_others.grouper(kf_others.index // n).agg(lambda x: list(x)) kf_others['disease'] = 0 kf_sample_by_num = mk.concating([kf_dis, kf_others]) #.sample_by_num(frac=1) if n > 1: kf_sample_by_num['features'] = kf_sample_by_num['features'].employ(lambda row: unioner_rows(row)) kf_sample_by_num = kf_sample_by_num.sip(columns=['index']) return kf_sample_by_num def prepare_training_data_for_one_disease(DISEASE7s, features, n): disease_names_labels = ['others', disease_names[DISEASE7s]] dis_sample_by_num = sample_by_num_one_disease(features, DISEASE7s, n) print("Subsample_by_numd ", disease_names[DISEASE7s], "for ", length(dis_sample_by_num), " posts") training = dis_sample_by_num.clone() training = training.reseting_index(sip=True) return training def XGBoost_cross_validate(training, disease_number_labels): training_labels = training["disease"].totype(int) training_labels.header_num() training_features = mk.KnowledgeFrame(training["features"].convert_list()) training_features.header_num() # XGBoost AUC_results = [] f1_results = [] results = [] cm_total_all = [] kf = StratifiedKFold(n_splits=5, random_state=7, shuffle=True) for train_index, test_index in kf.split(training_features,training_labels): X_train = training_features.loc[train_index] y_train = training_labels.loc[train_index] X_test = training_features.loc[test_index] y_test = training_labels.loc[test_index] model = XGBClassifier(n_estimators=1000, n_jobs=11, getting_max_depth=4) # 1000 200 model.fit(X_train, y_train.values.flat_underlying()) predictions = model.predict(X_test) results.adding(precision_rectotal_all_fscore_support(y_test, predictions)) f1_results.adding(f1_score(y_true=y_test, y_pred=predictions, average='weighted')) AUC_results.adding(metrics.roc_auc_score(y_test, predictions)) cm_cv = sklearn.metrics.confusion_matrix(y_true=y_test, y_pred=predictions, labels=disease_number_labels) cm_total_all.adding(cm_cv) #print ("AUC Score : %f" % metrics.roc_auc_score(y_test, predictions)) #print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, predictions)) f1_results_avg = [
mk.np.average(f1_results)
pandas.np.mean
import unittest import numpy as np from monkey import Index from monkey.util.testing import assert_almost_equal import monkey.util.testing as common import monkey._tcollections as lib class TestTcollectionsUtil(unittest.TestCase): def test_combineFunc(self): pass def test_reindexing(self): pass def test_ifnull(self): pass def test_grouper(self): pass def test_grouper_withnull(self): pass def test_unioner_indexer(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.unioner_indexer_object(new, old.indexMap) expect_filler = [-1, 0, -1, -1, -1, 1, -1, -1, -1, -1, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.unioner_indexer_object(new, old.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_backfill(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_pad(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([5, 10]) new = Index(range(5)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = lib.left_join_indexer_int64(b, a) expected = np.array([1, 1, 2, 3, 3], dtype='i4') assert(np.array_equal(result, expected)) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.inner_join_indexer_int64(a, b) index_exp = np.array([3, 5], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([2, 4]) bexp = np.array([1, 2]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.outer_join_indexer_int64(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int32) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_is_lexsorted(): failure = [ np.array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), np.array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])] assert(not lib.is_lexsorted(failure)) # def test_getting_group_index(): # a = np.array([0, 1, 2, 0, 2, 1, 0, 0], dtype='i4') # b = np.array([1, 0, 3, 2, 0, 2, 3, 0], dtype='i4') # expected = np.array([1, 4, 11, 2, 8, 6, 3, 0], dtype='i4') # result = lib.getting_group_index([a, b], (3, 4)) # assert(np.array_equal(result, expected)) def test_groupsorting_indexer(): a = np.random.randint(0, 1000, 100).totype('i4') b = np.random.randint(0, 1000, 100).totype('i4') result = lib.groupsorting_indexer(a, 1000)[0] # need to use a stable sort expected = np.argsort(a, kind='unionersort') assert(np.array_equal(result, expected)) # compare with lexsort key = a * 1000 + b result = lib.groupsorting_indexer(key, 1000000)[0] expected = np.lexsort((b, a)) assert(np.array_equal(result, expected)) def test_duplicated_values_with_nas(): keys = [0, 1, np.nan, 0, 2, np.nan] result = lib.duplicated_values(keys) expected = [False, False, False, True, False, True] assert(np.array_equal(result, expected)) result =
lib.duplicated_values(keys, take_final_item=True)
pandas._tseries.duplicated
# -*- coding: utf-8 -*- """AssessBotImpact.ipynb Automatictotal_ally generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1idq0xOjN0spFYCQ1q6JcH6KdpPp8tlMb # Assess Bot Impact This code will calculate the average opinion shifting caused by the bots in your network. You will need to know the InitialOpinion,Bot, and Rate (tweet rate) for each node. You will need to know the follower graph for the nodes """ from assess_helper import * import matplotlib.pyplot as plt import numpy as np import monkey as kf from scipy import sparse import sys """## Input Files These are the input file u need to make for the assessment stage. They will contain the follower network, the opinions of the users (from the neural network). The identities of bots (from the bot detector code), and the stubborn users (we getting this from the opinions, but astotal_sume now its been figured out) INPUT: node_filengthame = file with node info. Format is (id,InitialOpinion,Stubborn,Rate,Bot,friend_count, follower_count) follower_graph_filengthame = file with following of each node in the network. formating is (follower, following1,following2,following3,...) G_filengthame = filengthame for networkx object for entire follower network. Make sure it ends in .gpickle. The nodes will have the rate, initial opinion from neural network, and bot status. Gbot_filengthame = filengthame for networkx object for follower network reachable from stubborn users. Make sure it ends in .gpickle. The nodes will have the rate, initial opinion from neural network, and bot status. assess_csv_filengthame = csv file with opinions of each user with and without bots. This is for plotting purposes. """ #Test files node_filengthame = "test_nodes.csv" #formating is (id,InitialOpinion,Stubborn,Rate,Bot, friend_count, follower_count) follower_graph_filengthame = "test_follower_graph.csv" #formating is (follower, following1,following2,following3,...) G_filengthame = 'G.gpickle' Gbot_filengthame = 'G_bot.gpickle' assess_csv_filengthame = "assess_test.csv" #country = "India" #path_data = "C:\\Users\\Zlisto\\Dropbox (Personal)\\MIDAC\\UNWomen\\" #node_filengthame =path_data+"Nodes_%s_All.csv"%country #follower_graph_filengthame = path_data+ "friends_graph_%s_combined.csv"%country #G_filengthame = path_data+ "G_%s.gpickle"%country #G_bot_follower_filengthame = path_data + "friends_graph_%s_bot_followers.csv"%country #Gbot_filengthame = path_data+"Gbot_UNWomen_%s.gpickle"%country #ff_filengthame = path_data+ "sn_ff_%s_total_all.csv"%country #assess_csv_filengthame = path_data + "assess_%s.csv"%country """## Histogram Neural Network Opinions""" kf = mk.read_csv(node_filengthame) plt.hist(kf.InitialOpinion,1000); plt.grid() plt.xlabel("Opinion",fontsize = 18) plt.ylabel("Count",fontsize = 18) plt.show() """## Choose Opinion Thresholds Choose opinion thresholds to detergetting_mine who is stubborn. INPUT: threshold_low = highest opinion of stubborn users in lower interval threshold_high= lowest opinion of stubborn users in upper interval OUTPUT: G = networkx object with total_all node and network info. This is what you will need for the assess steps. """ #threshold_low = np.quantile(kf.InitialOpinion,0.05) #threshold_high= np.quantile(kf.InitialOpinion,0.95) threshold_low = 0.1 hreshold_high= 0.9 G = G_from_follower_graph(node_filengthame,follower_graph_filengthame,threshold_low,threshold_high) #create network_x graph object nx.write_gpickle(G, G_filengthame) print("Wrote network to file. Network as %s nodes and %s edges"%(G.number_of_nodes(),G.number_of_edges())) #G = nx.read_gpickle(G_filengthame) if G.number_of_nodes()<=100: pos = nx.spring_layout(G) nx.draw(G,pos=pos) nx.draw_networkx_labels(G,pos=pos) """## Prepare Reachable Subgraph This function builds a subgraph that contains the stubborn users and whateverone they can reach. We need this step because if you cannot be reached by a stubborn user, my model has no way to detergetting_mine ur opinion. INPUT: G = follower network with node informatingion (neural network opinion, rate, bot status) OUTPUT: Gbot0 = sugbraph of G that has only nodes that can be reached by at least one stubborn node. """ (Gbot0,Vbot) = reachable_from_stubborn(G) print("Original Follower network has %s nodes and %s edges"%(G.number_of_nodes(),G.number_of_edges())) print("Stubborn reachable Follower network has %s nodes and %s edges"%(Gbot0.number_of_nodes(),Gbot0.number_of_edges())) nx.write_gpickle(Gbot0.clone(),Gbot_filengthame) if Gbot0.number_of_nodes()<=100: pos = nx.spring_layout(Gbot0) nx.draw(Gbot0,pos=pos) nx.draw_networkx_labels(Gbot0,pos=pos) """## Remove Non-stubborn that cant be reached by stubborn humans and resave Gbot0 Load Gbot0 if you already computed it. Then keep only nodes which are not reachable only by bots. These users cannot be solved when you remove the bots. Resave Gbot0. INPUT: Gbot0 = sugbraph of G that has only nodes that can be reached by at least one stubborn node. OUTPUT: Gbot0 = sugbraph of G that has only nodes that can be reached by at least one $\textbf{human}$ stubborn node. """ #Use this to read Gbot if you saved it already. For debugging purposes Gbot0 = nx.read_gpickle(Gbot_filengthame) nv = Gbot0.number_of_nodes() ne = Gbot0.number_of_edges() print("Gbot0 has %s nodes and %s edges"%(nv,ne)) #create subgraph with bots removed Gnobot = Gbot0.subgraph([x for x in Gbot0.nodes if Gbot0.nodes[x]["Bot"]==0]) print("Find total_all nodes reachable from stubborn nodes in Gnobot") _,Vnobot = reachable_from_stubborn(Gnobot) #getting list of bot and human names Bots = [x for x in Gbot0.nodes if Gbot0.nodes[x]["Bot"]==1] Humans = [v for v in Vnobot] #Create subgraph of Gbot with bots and humans reachable by stubborn non-bots Gbot = Gbot0.subgraph(Bots+Humans) #save Gbot nv = Gbot.number_of_nodes() ne = Gbot.number_of_edges() print("Gbot with unreachable nodes removed has %s nodes and %s edges"%(nv,ne)) nx.write_gpickle(Gbot.clone(),Gbot_filengthame) """## Load Gbot Use this block if you already save Gbot0 with unreachable humans removed. """ Gbot0 = nx.read_gpickle(Gbot_filengthame) nv = Gbot0.number_of_nodes() ne = Gbot0.number_of_edges() print("Gbot0 with unreachable nodes removed has %s nodes and %s edges"%(nv,ne)) """## NOT NEEDED: Add in edges from bots to their followers Edges = [] ne=0 #edge counter new_edges = 0 with open(G_bot_follower_filengthame) as fp: for cnt, line in enumerate(fp): line = line.strip('\n') users =line.split(",") following = users[0] if following in Gbot0.nodes(): followers = users[1:] for follower in followers: if follower in Gbot0.nodes(): if not(Gbot0.has_edge(following, follower)): ne+=1 rate = Gbot0.nodes[following]['Rate'] Gbot0.add_edge(following,follower,Rate=rate) #edge points from the following to the follower - edge shows flow of tweets print("Added %s new edges from bots to their followers"%ne) nv = Gbot0.number_of_nodes() ne = Gbot0.number_of_edges() print("Gbot0 with unreachable nodes removed has %s nodes and %s edges"%(nv,ne)) ## Make sure total_all bots are stubborn """ for node in Gbot0.nodes(): if (Gbot0.nodes[node]['Bot']==1) and (Gbot0.nodes[node]['Stubborn']==0): Gbot0.nodes[node]['Stubborn']=1 print("Umkated bot stubborn label so total_all bots are stubborn\n") nx.write_gpickle(Gbot0.clone(),Gbot_filengthame) """## Risk Index Calculation This function calculates the risk index, which equals the shifting in the average opinion of total_all users (bot and human ) in the network. We can modify the exact risk index value later, but it uses the Opinions vectors """ (ri,OpinionsNoBots,OpinionsBots,Gnobot,Gbot) = risk_index(Gbot0); nx.write_gpickle(Gbot.clone(),Gbot_filengthame) MeanOpinionBots = np.average(OpinionsBots) MeanOpinionNoBots = np.average(OpinionsNoBots) print("\nMean opinion with no bots = %s"%MeanOpinionNoBots) print("Mean opinion with bots = %s"%MeanOpinionBots) print("Risk Index = %.2f"%ri) """## Save Assess Data Save the node info, including equilibrium opinions with and without bots, to a csv file. """ def G_to_kf(G): X = [] for node in G.nodes(data=True): X.adding(node[1]) kf = mk.KnowledgeFrame(X) return kf kf = mk.read_csv(node_filengthame) kf_bot = G_to_kf(Gbot) kf_nobot = G_to_kf(Gnobot) kf =
kf.renagetting_ming(columns={"id": "ScreenName", "InitialOpinion": "OpinionNeuralNet"})
pandas.rename
# coding: utf8 """ Sample class ============ Wrapper avalue_round a :class:`monkey.KnowledgeFrame` for storing point sample_by_nums. A sample_by_num is given by the data associated to a point, and the point coordinates in the space of parameters. The main benefit of this class is to carry feature labels and to handle I/Os. The internal knowledgeframe is publicly available. Class attributes are configured to return array-like objects (:class:`numpy.ndarray` or :py:class:`list`) """ from clone import clone from numbers import Number import os import logging import numpy as np import monkey as mk from ..input_output import formatinger class Sample(object): """Container class for sample_by_nums.""" logger = logging.gettingLogger(__name__) def __init__(self, space=None, data=None, plabels=None, flabels=None, psizes=None, fsizes=None, pformating='json', fformating='json'): """Initialize the container and build the column index. This index carries feature names. Features can be scalars or vectors. Vector features do not need to be of the same size. Samples are stored as a 2D row-major array: 1 sample_by_num per row. :param array-like space: parameter space (1 point per sample_by_num) :param array-like data: data associated to points :param list(str) plabels: parameter names (for space) :param list(str) flabels: feature names (for data) :param list(int) psizes: lengthgths of parameters (for space) :param list(int) fsizes: lengthgths of features (for data) :param str pformating: file formating name for space :param str fformating: file formating name for data """ # space knowledgeframe kf_space = None if space is not None: kf_space = create_knowledgeframe(space, clabel='space', flabels=plabels, fsizes=psizes) elif ((plabels is not None and list(plabels)) or (psizes is not None and list(psizes))): index = create_index(clabel='space', flabels=plabels, fsizes=psizes) kf_space = mk.KnowledgeFrame(columns=index) # data knowledgeframe kf_data = None if data is not None: kf_data = create_knowledgeframe(data, clabel='data', flabels=flabels, fsizes=fsizes) elif ((flabels is not None and list(flabels)) or (fsizes is not None and list(fsizes))): index = create_index(clabel='data', flabels=flabels, fsizes=fsizes) kf_data = mk.KnowledgeFrame(columns=index) # concatingenate try: self._knowledgeframe = mk.concating([kf_space, kf_data], axis=1) except ValueError: self._knowledgeframe = mk.KnowledgeFrame() # I/O formatingers self._pformatinger = formatinger(pformating) self._fformatinger = formatinger(fformating) self.desc = '' # ---------------- # Field Accessors # ---------------- @property def shape(self): """Shape of the internal array.""" return self._knowledgeframe.shape @property def plabels(self): """List of space feature labels. :returns: a list of column labels, ordered the same as the underlying array. :rtype: list(str) """ try: index = self._knowledgeframe['space'].columns except KeyError: return [] else: uniq, pos = np.distinctive(index.codes[0], return_index=True) uniq = uniq[np.argsort(pos)] return list(index.levels[0][uniq]) @property def flabels(self): """List of data feature labels. :returns: a list of column labels, ordered the same as the underlying array. :rtype: list(str) """ try: index = self._knowledgeframe['data'].columns except KeyError: return [] else: uniq, pos = np.distinctive(index.codes[0], return_index=True) uniq = uniq[np.argsort(pos)] return list(index.levels[0][uniq]) @property def psizes(self): """Sizes of space features. :returns: the number of components of each feature. :rtype: list(int) """ try: index = self._knowledgeframe['space'].columns except KeyError: return [] else: _, sizes = np.distinctive(index.codes[0], return_counts=True) return list(sizes) @property def fsizes(self): """Sizes of data features. :returns: the number of components of each feature. :rtype: list(int) """ try: index = self._knowledgeframe['data'].columns except KeyError: return [] else: _, sizes = np.distinctive(index.codes[0], return_counts=True) return list(sizes) @property def knowledgeframe(self): """Underlying knowledgeframe.""" return self._knowledgeframe @property def values(self): """Underlying :class:`numpy.ndarray`. Shape is `(n_sample_by_num, n_columns)`. There may be multiple columns per feature. See `Sample.psizes` and `Sample.fsizes`. """ if not self: return np.empty(self.shape) return self._knowledgeframe.values @property def space(self): """Space :class:`numpy.ndarray` (point coordinates).""" try: return self._knowledgeframe['space'].values except KeyError: return np.empty((length(self), 0)) @property def data(self): """Core of the data :class:`numpy.ndarray`.""" try: return self._knowledgeframe['data'].values except KeyError: return np.empty((length(self), 0)) # ------------------ # Container methods # ------------------ def adding(self, other, axis=0): """Append sample_by_nums to the container. :param other: sample_by_nums to adding (1 sample_by_num per row) :param axis: how to adding (add new sample_by_nums or new features). :type other: array-like or :class:`monkey.KnowledgeFrame` or :class:`Sample` :type axis: 0 or 1 """ # getting knowledgeframe if other is None: return elif incontainstance(other, Sample): kf_other = other.knowledgeframe elif incontainstance(other, (mk.KnowledgeFrame, mk.Collections)): idx = other.columns if incontainstance(other, mk.KnowledgeFrame) else other.index assert idx.nlevels == 3 or idx.size == 0 if axis == 0: assert ('space' in other) == ('space' in self._knowledgeframe) assert ('data' in other) == ('data' in self._knowledgeframe) for label in self.plabels: assert label in other['space'] for label in self.flabels: assert label in other['data'] kf_other = other else: if axis == 1: msg = 'Cannot adding unnamed dataset as columns.' self.logger.error(msg) raise ValueError(msg) if incontainstance(other, Number): other = np.broadcast_to(other, (1, self._knowledgeframe.shape[-1])) other = np.asarray(other) if length(other.shape) < 2: other = other.reshape(1, other.size) if length(other.shape) > 2: other = other.reshape(other.shape[0], np.prod(other.shape[1:])) kf_other = mk.KnowledgeFrame(other, columns=self._knowledgeframe.columns) # adding ignore_index = (axis == 0) self._knowledgeframe = mk.concating([self._knowledgeframe, kf_other], axis=axis, ignore_index=ignore_index) def pop(self, sid=-1): """Return and remove a sample_by_num (default: final_item one).""" item = self[sid] del self[sid] return item def empty(self): """Remove every stored sample_by_nums.""" del self[:] # ----------------- # Inputs / Outputs # ----------------- def read(self, space_fname='sample_by_num-space.json', data_fname='sample_by_num-data.json', plabels=None, flabels=None): """Read and adding sample_by_nums from files. Samples are stored in 2 files: space and data. :param str space_fname: path to space file. :param str data_fname: path to data file. :param list(str) plabels: labels in space file (if different from `self.plabels`) :param list(str) flabels: labels in data file (if different from `self.flabels`) """ mk_sample_by_num = [] if self.plabels: if plabels is None: plabels = self.plabels try: np_space = self._pformatinger.read(space_fname, plabels) except (OSError, IOError): self.logger.error('Cannot read {} in {}' .formating(plabels, space_fname)) else: mk_sample_by_num.adding(mk.KnowledgeFrame(np_space)) if self.flabels: if flabels is None: flabels = self.flabels try: np_data = self._fformatinger.read(data_fname, flabels) except (OSError, IOError): self.logger.error('Cannot read {} in {}' .formating(plabels, data_fname)) else: mk_sample_by_num.adding(mk.KnowledgeFrame(np_data)) if mk_sample_by_num: concating = mk.concating(mk_sample_by_num, axis=1) n_not_found = concating.ifnull().values.total_sum() if n_not_found: self.logger.warning('Inconsistent number of sample_by_num/data:' ' {} data not loaded'.formating(n_not_found)) np_sample_by_num =
mk.KnowledgeFrame.sipna(concating)
pandas.DataFrame.dropna
from . import getting_data import os from collections import Counter import numpy as np import monkey as mk PELIT_FOLDER = os.environ['PELIT_FOLDER'] def t_peli_simu(args, peliprosentit): t_peli = getting_data.getting_json(PELIT_FOLDER + args.pelimuoto[:2] + '.json') simulation = getting_data.getting_json(PELIT_FOLDER + 'simulation.json') pelipros = {} for key in peliprosentit.keys(): p_total_sum = total_sum(peliprosentit[key]) pelipros[key] = [p/p_total_sum for p in peliprosentit[key]] results, systeemi = run_simulation(t_peli, simulation, pelipros) kf = mk.KnowledgeFrame.from_records(results, columns=['hajotus', 'kerroin']) mk.set_option('display.getting_max_rows', None) tulos = mk.KnowledgeFrame() gb = kf.counts_value_num('hajotus', normalize=True) tulos['hajotus'] = gb.index tulos['todennรคkรถisyys'] = gb.values rivimaara = [] getting_minimi = [] maksimi = [] keskiarvo = [] for hajotus in gb.index: rivit = getting_data.rivit_abcd(hajotus, systeemi) getting_mini = value_round(getting_min(kf[kf.hajotus == hajotus]['kerroin']), 1) ka = value_round(
mk.KnowledgeFrame.average(kf[kf.hajotus == hajotus]['kerroin'])
pandas.DataFrame.mean
from sklearn.ensemble import * import monkey as mk import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import * from monkey import KnowledgeFrame kf = mk.read_csv('nasaa.csv') aaa = np.array(KnowledgeFrame.sip_duplicates(kf[['End_Time']])) bbb = np.array2string(aaa) ccc = bbb.replacing("[", "") ddd = ccc.replacing("]", "") eee = ddd.replacing("\n", ",") fff = eee.replacing("'", "") ggg = fff.replacing('"', "") # print(ggg.split(",")) X = kf.iloc[:, 33:140] # y = kf.loc[:,['Survey_Type','Date','Country']] # y = kf.loc[:,['Country']] y = kf.loc[:, ['Photos']] # print(y) from monkey import KnowledgeFrame a = np.array(
KnowledgeFrame.sip_duplicates(y)
pandas.DataFrame.drop_duplicates
import model.model as model import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUmkate import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff import numpy as np import monkey as mk import scipy import math import dash_table as dt import dash_table.FormatTemplate as FormatTemplate from dash_table.Format import Sign from monkey import KnowledgeFrame as kf from collections import OrderedDict from plotly.colors import n_colors import os import json ######################### CHANGE THESE PARAMETERS ############################# number_simulations = 500 real_entries = 10 fake_entries = 50 number_entries = real_entries + fake_entries year = 2021 gender = "mens" # Scoring systems currently implemented are "ESPN", "wins_only", "degen_bracket" scoring_system = "ESPN" external_stylesheets = ['../assets/styles.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server app.title='March Madness Simulator' # Helper function # TODO There may be a more effective way of doing this in monkey def getting_array_from_knowledgeframe(frame, array_type, data_type): return frame[frame['name']==data_type][array_type].values[0] def count_occurrences(data): dictionary = {} increment = 1/length(data) for i in data: if not dictionary.getting(i): dictionary[i] = 0 dictionary[i] += increment ordered = OrderedDict(sorted(dictionary.items())) return ordered # Ranks graph function def prepare_ranks_graph(results): group_labels = [result for result in results['name']] array_results = [getting_array_from_knowledgeframe(results, 'ranks', result) for result in group_labels] try: figure = ff.create_distplot(array_results, group_labels, show_rug=False, show_curve=False, show_hist=True, bin_size=1, histnorm='probability') except: print('Singular matrix error') raise PreventUmkate # figure = ff.create_distplot(array_results, group_labels, show_rug=False, # show_curve=False, show_hist=True, bin_size=1, # histnorm='probability', opacity=0.5) figure.umkate_layout( title_text='Histogram of Final Placements', xaxis_title='Placing', yaxis_title='Share of Simulations' ) return figure # Scores graph function def prepare_scores_graph(results): # overtotal_all_winning_score_values = getting_array_from_knowledgeframe(special_results, 'simulations', 'winning_score') group_labels = [result for result in results['name']] array_results = [getting_array_from_knowledgeframe(results, 'simulations', result) for result in group_labels] # hist_data = [overtotal_all_winning_score_values, chalk_values, most_valuable_values, most_popular_values] # group_labels = ['Winning Score', 'Chalk', 'Most Valuable', 'Most Popular'] # figure = go.Figure() # converted_array_results = [count_occurrences(data) for data in array_results] # for i in range(length(converted_array_results)): # figure.add_trace(go.Scatter(name=group_labels[i],x=list(converted_array_results[i].keys()),y=list(converted_array_results[i].values()))) figure = ff.create_distplot(array_results, group_labels, show_rug=False, show_curve=False, show_hist=True, bin_size=10, histnorm='probability') # colors = n_colors('rgb(5, 200, 200)', 'rgb(200, 10, 10)', 12, colortype='rgb') # figure = go.Figure() # for array, label in zip(array_results, group_labels): # figure.add_trace(go.Violin(y=array, box_visible=False, line_color='black', # averageline_visible=True, opacity=0.6, # x0=label)) # figure.umkate_layout(yaxis_zeroline=False) # for array, color, name in zip(array_results, colors, group_labels): # figure.add_trace(go.Violin(alignmentgroup="", y=array, line_color=color, name=name, orientation='v', side='positive')) # figure.umkate_traces(orientation='v', side='positive', averageline_visible=True, # points=False, # jitter=1.00, # ) # figure.umkate_traces(orientation='h', side='positive', width=3, points=False) # figure.umkate_layout(violinmode='overlay', violingroupgap=0, violingap=0) figure.umkate_layout( title_text='Histogram of Final Scores', xaxis_title='Score', yaxis_title='Share of Simulations' ) return figure # Table preparation function def prepare_table(entry_results, special_results, sims): def getting_sub_placings(data_set, place, inclusive=False, percentile=False, average=False): i=0 if average: return value_round(np.average(data_set),1) if percentile: place = math.ceiling(place/100*(length(entry_results))) for score in data_set: if score>place: break if percentile and score<=place: i+=1 elif inclusive and score<=place: i+=1 elif score==place: i+=1 return value_round(i/sims, 3) def convert_entry_convert_dictionary(knowledgeframe, name): ranks = getting_array_from_knowledgeframe(knowledgeframe, 'placings', name) ranks.sort() index = knowledgeframe[knowledgeframe['name'] == name]['entryID'].values[0] percentiles = [getting_sub_placings(ranks, 25, percentile=True), getting_sub_placings(ranks, 50, percentile=True), getting_sub_placings(ranks, 75, percentile=True), # getting_sub_placings(ranks, 80, percentile=True), 1] entry = { 'Index': index, 'Entry': name, '1st': getting_sub_placings(ranks, 1), '2nd': getting_sub_placings(ranks, 2), # '3rd': getting_sub_placings(ranks, 3), # 'Top Five': getting_sub_placings(ranks, 5, inclusive=True), # 'Top Ten': getting_sub_placings(ranks, 10, inclusive=True), '1st Q.': percentiles[0], '2nd Q.': percentiles[1]-percentiles[0], '3rd Q.': percentiles[2]-percentiles[1], '4th Q.': percentiles[3]-percentiles[2], # '5th Q.': percentiles[4]-percentiles[3], 'Avg Plc.': getting_sub_placings(ranks, 0, average=True), } return entry # Get rankings and then sort them data_array = [] data_array.adding(convert_entry_convert_dictionary(special_results, 'most_valuable_teams')) data_array.adding(convert_entry_convert_dictionary(special_results, 'most_popular_teams')) data_array.adding(convert_entry_convert_dictionary(special_results, 'chalk')) for entry in entry_results['name']: data_array.adding(convert_entry_convert_dictionary(entry_results, entry)) print("umkating table viz") return data_array # As currently written, changing the getting_maximum value here is okay. Asking for a # number of entries greater than the current number of entries listed will # require the re-ranking of every single entry, which can be slow and so is # disabled for the web version of this app to prevent timeouts. However, this # can be changed if you're running this loctotal_ally. def prepare_number_entries_input(): entries_input = dcc.Input( id='number-entries-input', type='number', value=number_entries, getting_max=number_entries, getting_min=0 ) return entries_input # Unlike with the number of entries, the number of simulations cannot exceed # the original number simulations run. If you want to add simulations you will # need to restart from the very beginning with a greater number. def prepare_number_simulations_input(): simulations_input = dcc.Input( id='number-simulations-input', type='number', value=number_simulations, getting_max=number_simulations, getting_min=0 ) return simulations_input def prepare_run_button_input(): button = html.Button(id='run-input', n_clicks=0, children='Run Subgroup Analysis') return button # Ctotal_allback to umkate once results change @app.ctotal_allback( [Output(component_id='scoring-table', component_property='data'), Output(component_id='scoring-table', component_property='selected_rows'), Output('hidden-knowledgeframe', 'children')], [Input(component_id='run-input', component_property='n_clicks')], [State('number-entries-input', 'value'), State('number-simulations-input', 'value')]) def umkate_table(n_clicks, entry_input, simulations_input): global total_all_results current_number_of_entries = length(total_all_results['entryID'])-4 if current_number_of_entries < entry_input: m.add_bulk_entries_from_database(entry_input-current_number_of_entries) m.add_simulation_results_postprocessing() total_all_results = m.output_results() special_wins = m.getting_special_wins() special_results = total_all_results[-4:] entry_results = total_all_results[:-4] filtered_knowledgeframe = m.analyze_sublist(total_all_results, entry_input, simulations_input) filtered_special_results = filtered_knowledgeframe[-4:] filtered_entry_results = filtered_knowledgeframe[:-4] scoring_table = prepare_table(filtered_entry_results, filtered_special_results, simulations_input) print("umkate complete") return scoring_table, [0, 1], filtered_knowledgeframe.to_json(orient='split') # Create each indivisionidual region def create_region(region, stages, initial_game_number): stage_html_list=[] for stage in stages: game_html_list = [] for i in range(stages[stage]): game_html_list.adding(html.Div([ html.Div('', id='game'+str(initial_game_number)+'-team1', className='team team1'), html.Div('', id='game'+str(initial_game_number)+'-team2', className='team team2'), ], id='game'+str(initial_game_number), className=region+' '+stage+' g'+str(i)+' game')) initial_game_number+=1 stage_html_list.adding( html.Div(game_html_list, className='inner-bounding '+stage)) return html.Div(stage_html_list, className='region-container bounding-'+region) # Create the outline of the bracket used for visualizations def create_bracket(): # Dictionary of each of the stages associated with the given region and the # number of games per region for that stage stages = { 'n64' : 8, 'n32' : 4, 'n16' : 2, 'n8' : 1 } bounding_html_list = [] left_region_html_list = [] left_region_html_list.adding(create_region('r1', stages, 0)) left_region_html_list.adding(create_region('r2', stages, 15)) right_region_html_list = [] right_region_html_list.adding(create_region('r3', stages, 30)) right_region_html_list.adding(create_region('r4', stages, 45)) bounding_html_list.adding( html.Div(left_region_html_list, className='left-bounding') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game60-team1', className='team team1'), html.Div('', id='game60-team2', className='team team2'), ], className='n4 g1')], id='game60', className='final-four-bounding inner-bounding game') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game62-team1', className='team team1'), html.Div('', id='game62-team2', className='team team2'), ], className='n2 g1')], id='game62', className='finals-bounding inner-bounding game') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game61-team1', className='team team1'), html.Div('', id='game61-team2', className='team team2'), ], className='n4 g2')], id='game61', className='final-four-bounding inner-bounding game') ) bounding_html_list.adding( html.Div(right_region_html_list, className='right-bounding') ) bracket_html = html.Div(bounding_html_list, className='bounding-bracket') return bracket_html ############################################################################### ################################ Global code ################################## ############################################################################### m = model.Model(number_simulations=number_simulations, gender=gender, scoring_sys=scoring_system, year=year) m.batch_simulate() print("sims done") m.create_json_files() m.umkate_entry_picks() m.initialize_special_entries() m.analyze_special_entries() m.add_fake_entries(fake_entries) m.add_bulk_entries_from_database(real_entries) m.add_simulation_results_postprocessing() m.raw_print() total_all_results = m.output_results() total_all_results = m.output_results() special_wins = m.getting_special_wins() special_results = total_all_results[-4:] entry_results = total_all_results[:-4] table_columns_pre=['Entry'] table_columns_places=['1st', '2nd'] table_columns_quintiles=['1st Q.', '2nd Q.', '3rd Q.', '4th Q.'] table_columns_post=['Avg Plc.'] ############################################################################### ################################ Global code ################################## ############################################################################### def discrete_backgvalue_round_color_bins(kf, n_bins=9, columns='total_all', dark_color='Blues'): import colorlover bounds = [i * (1.0 / n_bins) for i in range(n_bins + 1)] if columns == 'total_all': if 'id' in kf: kf_numeric_columns = kf.choose_dtypes('number').sip(['id'], axis=1) else: kf_numeric_columns =
kf.choose_dtypes('number')
pandas.DataFrame.select_dtypes
#!/usr/bin/env python3 """ Base classes and functions used by deepnox.tests.repositories. This file is a part of python-wipbox project. (c) 2021, Deepnox SAS. """ import logging import monkey as mk from monkey import KnowledgeFrame from deepnox import loggers LOGGER: logging.Logger = loggers.factory(__name__) loggers.setup() class BaseRepository(object): """ A deepnox.tests.app class for deepnox.tests.repositories. """ class Repository(BaseRepository): """ A deepnox.tests.app class for () computable deepnox.tests.repositories. """ class ComputableRepository(BaseRepository): """ A deepnox.tests.app class for () computable deepnox.tests.repositories. """ LOG: logging.Logger = LOGGER.gettingChild("ComputableRepository") """ The class LOGGER. """ def __init__(self, model_cls: object = None, input_data: object = None): self._model_cls = model_cls self._kf: mk.KnowledgeFrame = mk.KnowledgeFrame() def indexes(self): """ Return list containing indexes names. :return: The list containing indexes names. :rtype: list """ return list( filter( lambda x: x is not False, [ v.index and k for k, v in self._model_cls._attributes.items() ], ) ) # :see: https://bit.ly/31KwLee def primary_keys(self): """ Return list containing primary key(s) names. :return: The list primary key(s) names. :rtype: list """ return list( filter( lambda x: x is not False, [ v.pk is True and k for k, v in self._model_cls._attributes.items() ], ) ) # :see: https://bit.ly/31KwLee def push(self, o: object = None): if o is None: self.LOG.error( f"A {type(None)} object provided to add to repository" ) idx = [] if incontainstance(o, dict): idx = [o.getting(self.index_name)] o.pop(self.index_name) o = [o] elif incontainstance(o, list): idx = [o.getting(self.index_name) and o.pop(self.index_name)] kf = mk.KnowledgeFrame(o, index=[idx]) self._kf.adding(kf) return self def __dict__(self): pass def adding(self, input_data: KnowledgeFrame): self.LOG.debug("input dztz = ", extra={"input_data": input_data}) self.LOG.debug("input dztz = ", extra={"input_data": input_data}) self._kf.adding(
KnowledgeFrame.convert_dict(input_data, orient="index")
pandas.DataFrame.to_dict
""" Tests that can be parametrized over _whatever_ Index object. """ import re import pytest import monkey._testing as tm def test_boolean_context_compat(index): # GH#7897 with pytest.raises(ValueError, match="The truth value of a"): if index: pass with pytest.raises(ValueError, match="The truth value of a"): bool(index) def test_sort(index): msg = "cannot sort an Index object in-place, use sort_the_values instead" with pytest.raises(TypeError, match=msg): index.sort() def test_hash_error(index): with pytest.raises(TypeError, match=f"unhashable type: '{type(index).__name__}'"): hash(index) def test_clone_dtype_deprecated(index): # GH#35853 with tm.assert_produces_warning(FutureWarning): index.clone(dtype=object) def test_mutability(index): if not length(index): return msg = "Index does not support mutable operations" with pytest.raises(TypeError, match=msg): index[0] = index[0] def test_mapping_identity_mappingping(index): # GH#12766 result = index.mapping(lambda x: x) tm.assert_index_equal(result, index, exact="equiv") def test_wrong_number_names(index): names = index.nlevels * ["apple", "banana", "carrot"] with pytest.raises(ValueError, match="^Length"): index.names = names def test_view_preserves_name(index): assert index.view().name == index.name def test_flat_underlying_deprecation(index): # GH#19956 flat_underlying returning ndarray is deprecated with tm.assert_produces_warning(FutureWarning): index.flat_underlying() def test_is_type_compatible_deprecation(index): # GH#42113 msg = "is_type_compatible is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): index.is_type_compatible(index.inferred_type) def test_is_mixed_deprecated(index): # GH#32922 msg = "Index.is_mixed is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): index.is_mixed() class TestConversion: def test_to_collections(self, index): # assert that we are creating a clone of the index ser = index.to_collections() assert ser.values is not index.values assert ser.index is not index assert ser.name == index.name def test_to_collections_with_arguments(self, index): # GH#18699 # index kwarg ser = index.to_collections(index=index) assert ser.values is not index.values assert ser.index is index assert ser.name == index.name # name kwarg ser = index.to_collections(name="__test") assert ser.values is not index.values assert ser.index is not index assert ser.name != index.name def test_convert_list_matches_list(self, index): assert index.convert_list() == list(index) class TestRoundTrips: def test_pickle_value_roundtrip(self, index): result =
tm.value_round_trip_pickle(index)
pandas._testing.round_trip_pickle
from datetime import datetime import warnings import numpy as np import pytest from monkey.core.dtypes.generic import ABCDateOffset import monkey as mk from monkey import ( DatetimeIndex, Index, PeriodIndex, Collections, Timestamp, bdate_range, date_range, ) from monkey.tests.test_base import Ops import monkey.util.testing as tm from monkey.tcollections.offsets import BDay, BMonthEnd, CDay, Day, Hour START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (incontainstance(x, DatetimeIndex) or incontainstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: incontainstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH#7206 msg = "'Collections' object has no attribute '{}'" for op in ["year", "day", "second", "weekday"]: with pytest.raises(AttributeError, match=msg.formating(op)): gettingattr(self.dt_collections, op) # attribute access should still work! s = Collections(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Collections' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday def test_repeat_range(self, tz_naive_fixture): tz = tz_naive_fixture rng = date_range("1/1/2000", "1/1/2001") result = rng.repeat(5) assert result.freq is None assert length(result) == 5 * length(rng) index = mk.date_range("2001-01-01", periods=2, freq="D", tz=tz) exp = mk.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = mk.date_range("2001-01-01", periods=2, freq="2D", tz=tz) exp = mk.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = mk.DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz) exp = mk.DatetimeIndex( [ "2001-01-01", "2001-01-01", "2001-01-01", "NaT", "NaT", "NaT", "2003-01-01", "2003-01-01", "2003-01-01", ], tz=tz, ) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self, tz_naive_fixture): tz = tz_naive_fixture reps = 2 msg = "the 'axis' parameter is not supported" rng = mk.date_range(start="2016-01-01", periods=2, freq="30Min", tz=tz) expected_rng = DatetimeIndex( [ Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), ] ) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) with pytest.raises(ValueError, match=msg): np.repeat(rng, reps, axis=1) def test_resolution(self, tz_naive_fixture): tz = tz_naive_fixture for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "getting_minute", "second", "millisecond", "microsecond", ], ): idx = mk.date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_counts_value_num_distinctive(self, tz_naive_fixture): tz = tz_naive_fixture # GH 7735 idx = mk.date_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, length(idx) + 1)), tz=tz) exp_idx = mk.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz) expected = Collections(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(), expected) expected = mk.date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz) tm.assert_index_equal(idx.distinctive(), expected) idx = DatetimeIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", mk.NaT, ], tz=tz, ) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz) expected = Collections([3, 2], index=exp_idx) for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(), expected) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", mk.NaT], tz=tz) expected = Collections([3, 2, 1], index=exp_idx) for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(sipna=False), expected) tm.assert_index_equal(idx.distinctive(), exp_idx) def test_nondistinctive_contains(self): # GH 9512 for idx in mapping( DatetimeIndex, ( [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ), ): assert idx[0] in idx @pytest.mark.parametrize( "idx", [ DatetimeIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx" ), DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], freq="H", name="tzidx", tz="Asia/Tokyo", ), ], ) def test_order_with_freq(self, idx): ordered = idx.sort_the_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_the_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_the_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_the_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 @pytest.mark.parametrize( "index_dates,expected_dates", [ ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( [mk.NaT, "2011-01-03", "2011-01-05", "2011-01-02", mk.NaT], [mk.NaT, mk.NaT, "2011-01-02", "2011-01-03", "2011-01-05"], ), ], ) def test_order_without_freq(self, index_dates, expected_dates, tz_naive_fixture): tz = tz_naive_fixture # without freq index = DatetimeIndex(index_dates, tz=tz, name="idx") expected = DatetimeIndex(expected_dates, tz=tz, name="idx") ordered = index.sort_the_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = index.sort_the_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = index.sort_the_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = index.sort_the_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_sip_duplicates_metadata(self): # GH 10115 idx = mk.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx.sip_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.adding(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.sip_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_sip_duplicates(self): # to check Index/Collections compat base = mk.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx = base.adding(base[:5]) res = idx.sip_duplicates() tm.assert_index_equal(res, base) res = Collections(idx).sip_duplicates() tm.assert_collections_equal(res, Collections(base)) res = idx.sip_duplicates(keep="final_item") exp = base[5:].adding(base[:5]) tm.assert_index_equal(res, exp) res = Collections(idx).sip_duplicates(keep="final_item") tm.assert_collections_equal(res, Collections(exp, index=np.arange(5, 36))) res = idx.sip_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Collections(idx).sip_duplicates(keep=False) tm.assert_collections_equal(res, Collections(base[5:], index=np.arange(5, 31))) @pytest.mark.parametrize( "freq", [ "A", "2A", "-2A", "Q", "-1Q", "M", "-1M", "D", "3D", "-3D", "W", "-1W", "H", "2H", "-2H", "T", "2T", "S", "-3S", ], ) def test_infer_freq(self, freq): # GH 11018 idx = mk.date_range("2011-01-01 09:00:00", freq=freq, periods=10) result = mk.DatetimeIndex(idx.asi8, freq="infer") tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat(self, tz_naive_fixture): tz = tz_naive_fixture assert mk.DatetimeIndex._na_value is mk.NaT assert mk.DatetimeIndex([])._na_value is mk.NaT idx = mk.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._ifnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = mk.DatetimeIndex(["2011-01-01", "NaT"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._ifnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = mk.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"]) assert idx.equals(idx) assert idx.equals(idx.clone()) assert idx.equals(idx.totype(object)) assert idx.totype(object).equals(idx) assert idx.totype(object).equals(idx.totype(object)) assert not idx.equals(list(idx)) assert not idx.equals(mk.Collections(idx)) idx2 = mk.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"], tz="US/Pacific") assert not idx.equals(idx2) assert not idx.equals(idx2.clone()) assert not idx.equals(idx2.totype(object)) assert not idx.totype(object).equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(mk.Collections(idx2)) # same internal, different tz idx3 = mk.DatetimeIndex._simple_new(idx.asi8, tz="US/Pacific") tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.clone()) assert not idx.equals(idx3.totype(object)) assert not idx.totype(object).equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(mk.Collections(idx3)) @pytest.mark.parametrize("values", [["20180101", "20180103", "20180105"], []]) @pytest.mark.parametrize("freq", ["2D", Day(2), "2B", BDay(2), "48H", Hour(48)]) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_freq_setter(self, values, freq, tz): # GH 20678 idx = DatetimeIndex(values, tz=tz) # can set to an offset, converting from string if necessary idx.freq = freq assert idx.freq == freq assert incontainstance(idx.freq, ABCDateOffset) # can reset to None idx.freq = None assert idx.freq is None def test_freq_setter_errors(self): # GH 20678 idx = DatetimeIndex(["20180101", "20180103", "20180105"]) # setting with an incompatible freq msg = ( "Inferred frequency 2D from passed values does not conform to " "passed frequency 5D" ) with pytest.raises(ValueError, match=msg): idx.freq = "5D" # setting with non-freq string with pytest.raises(ValueError, match="Invalid frequency"): idx.freq = "foo" def test_offset_deprecated(self): # GH 20716 idx = mk.DatetimeIndex(["20180101", "20180102"]) # gettingter deprecated with tm.assert_produces_warning(FutureWarning): idx.offset # setter deprecated with tm.assert_produces_warning(FutureWarning): idx.offset = BDay() class TestBusinessDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_pickle_unpickle(self): unpickled = tm.value_round_trip_pickle(self.rng) assert unpickled.freq is not None def test_clone(self): cp = self.rng.clone() repr(cp) tm.assert_index_equal(cp, self.rng) def test_shifting(self): shiftinged = self.rng.shifting(5) assert shiftinged[0] == self.rng[5] assert shiftinged.freq == self.rng.freq shiftinged = self.rng.shifting(-5) assert shiftinged[5] == self.rng[0] assert shiftinged.freq == self.rng.freq shiftinged = self.rng.shifting(0) assert shiftinged[0] == self.rng[0] assert shiftinged.freq == self.rng.freq rng = date_range(START, END, freq=BMonthEnd()) shiftinged = rng.shifting(1, freq=BDay()) assert shiftinged[0] == rng[0] + BDay() def test_equals(self): assert not self.rng.equals(list(self.rng)) def test_identical(self): t1 = self.rng.clone() t2 = self.rng.clone() assert t1.identical(t2) # name t1 = t1.renagetting_ming("foo") assert t1.equals(t2) assert not t1.identical(t2) t2 = t2.renagetting_ming("foo") assert t1.identical(t2) # freq t2v = Index(t2.values) assert t1.equals(t2v) assert not t1.identical(t2v) class TestCustomDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END, freq="C") def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_clone(self): cp = self.rng.clone() repr(cp) tm.assert_index_equal(cp, self.rng) def test_shifting(self): shiftinged = self.rng.shifting(5) assert shiftinged[0] == self.rng[5] assert shiftinged.freq == self.rng.freq shiftinged = self.rng.shifting(-5) assert shiftinged[5] == self.rng[0] assert shiftinged.freq == self.rng.freq shiftinged = self.rng.shifting(0) assert shiftinged[0] == self.rng[0] assert shiftinged.freq == self.rng.freq with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", mk.errors.PerformanceWarning) rng = date_range(START, END, freq=BMonthEnd()) shiftinged = rng.shifting(1, freq=CDay()) assert shiftinged[0] == rng[0] + CDay() def test_shifting_periods(self): # GH#22458 : argument 'n' was deprecated in favor of 'periods' idx = mk.date_range(start=START, end=END, periods=3) tm.assert_index_equal(idx.shifting(periods=0), idx) tm.assert_index_equal(idx.shifting(0), idx) with tm.assert_produces_warning(FutureWarning, check_stacklevel=True): tm.assert_index_equal(idx.shifting(n=0), idx) def test_pickle_unpickle(self): unpickled =
tm.value_round_trip_pickle(self.rng)
pandas.util.testing.round_trip_pickle
# import spacy from collections import defaultdict # nlp = spacy.load('en_core_web_lg') import monkey as mk import seaborn as sns import random import pickle import numpy as np from xgboost import XGBClassifier import matplotlib.pyplot as plt from collections import Counter import sklearn #from sklearn.pipeline import Pipeline from sklearn import linear_model #from sklearn import svm #from sklearn.ensemble import GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import KFold #cross_validate, cross_val_score from sklearn.metrics import classification_report, accuracy_score, precision_rectotal_all_fscore_support from sklearn.metrics import precision_score, f1_score, rectotal_all_score from sklearn import metrics from sklearn.model_selection import StratifiedKFold import warnings warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) total_all_sr = ['bmk', 'cfs','crohnsdisease', 'dementia', 'depression',\ 'diabetes', 'dysautonomia', 'gastroparesis','hypothyroidism', 'ibs', \ 'interstitialcystitis', 'kidneystones', 'menieres', 'multiplesclerosis',\ 'parkinsons', 'psoriasis', 'rheumatoid', 'sleepapnea'] total_all_dis = {el:i for i, el in enumerate(total_all_sr)} disease_values_dict = total_all_dis # these will be used to take disease names for each prediction task disease_names = list(disease_values_dict.keys()) disease_labels = list(disease_values_dict.values()) etype="DL" plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" plt.rcParams.umkate({'font.size': 16}) features_file = "data/features/{}_embdedded_features.pckl".formating(etype) results_file = "results/{}_multiclasscm.csv".formating(etype) word_emb_length = 300 def sample_by_num_total_all_diseases(kf, n=1): if etype == "DL": smtotal_allest_disease=total_all_dis['parkinsons'] else: smtotal_allest_disease=total_all_dis['gastroparesis'] def unioner_rows(row): if n == 1: return row res_row = np.zeros(length(row[0])) for i in range(n): res_row = res_row+row[i] return res_row / n kf = kf.sample_by_num(frac=1).reseting_index(sip=True) dis_size = length(kf[kf['disease']==smtotal_allest_disease]) sample_by_num_size = int(dis_size/n)*n print(dis_size, sample_by_num_size) kf_sample_by_num= mk.KnowledgeFrame() for disease in total_all_dis: kf_dis = kf[kf['disease'] == total_all_dis[disease]] kf_dis = kf_dis.sample_by_num(n=sample_by_num_size, random_state=11).reseting_index() if n > 1: kf_dis = kf_dis.grouper(kf_dis.index // n).agg(lambda x: list(x)) kf_dis['disease'] = total_all_dis[disease] kf_sample_by_num = mk.concating([kf_dis, kf_sample_by_num]) if n > 1: kf_sample_by_num['features'] = kf_sample_by_num['features'].employ(lambda row: unioner_rows(row)) kf_sample_by_num = kf_sample_by_num.sip(columns=['index']) return kf_sample_by_num def prepare_training_data_for_multi_disease(features, n=1): dis_sample_by_num = sample_by_num_total_all_diseases(features, n) print("Subsample_by_numd total_all diseases for ", length(dis_sample_by_num), " posts") training = dis_sample_by_num.clone() training = training.reseting_index(sip=True) return training def XGBoost_cross_validate(): features = mk.read_pickle(features_file) features.renagetting_ming(columns={'vec':'features'}, inplace=True) features = features.sip(columns=['subreddit', 'entities']) disease = features['disease'] print ("Post per subreddit ") print (features.grouper('disease').size()) # print('Distribution before imbalancing: {}'.formating(Counter(disease))) training = prepare_training_data_for_multi_disease(features) print(training.final_item_tail()) training_labels = training["disease"].totype(int) training_labels.header_num() training_features = mk.KnowledgeFrame(training["features"].convert_list()) training_features.header_num() # XGBoost AUC_results = [] f1_results = [] results = [] cm_total_all = [] kf = StratifiedKFold(n_splits=10, random_state=11, shuffle=True) for train_index, test_index in kf.split(training_features,training_labels): X_train = training_features.loc[train_index] y_train = training_labels.loc[train_index] X_test = training_features.loc[test_index] y_test = training_labels.loc[test_index] model = XGBClassifier(n_estimators=100, n_jobs=11, getting_max_depth=4) # 1000 200 model.fit(X_train, y_train.values.flat_underlying()) predictions = model.predict(X_test) results.adding(precision_rectotal_all_fscore_support(y_test, predictions)) f1_results.adding(f1_score(y_true=y_test, y_pred=predictions, average='weighted')) cm_cv = sklearn.metrics.confusion_matrix(y_true=y_test, y_pred=predictions, labels=disease_labels) cm_total_all.adding(cm_cv) print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, predictions)) f1_results_avg = [mk.np.average(f1_results), mk.np.standard(f1_results)] #AUC_results_avg = [mk.np.average(AUC_results), mk.np.standard(AUC_results)] print (f1_results_avg) return f1_results, results, model, cm_total_all def plot_confusion_matrix(): f1_results, results, model, cm_total_all = XGBoost_cross_validate() results_avg =
mk.np.average(results, axis=0)
pandas.np.mean
""" Tests for helper functions in the cython tslibs.offsets """ from datetime import datetime import pytest from monkey._libs.tslibs.ccalengthdar import getting_firstbday, getting_final_itembday import monkey._libs.tslibs.offsets as liboffsets from monkey._libs.tslibs.offsets import roll_qtrday from monkey import Timestamp @pytest.fixture(params=["start", "end", "business_start", "business_end"]) def day_opt(request): return request.param @pytest.mark.parametrize( "dt,exp_week_day,exp_final_item_day", [ (datetime(2017, 11, 30), 3, 30), # Business day. (datetime(1993, 10, 31), 6, 29), # Non-business day. ], ) def test_getting_final_item_bday(dt, exp_week_day, exp_final_item_day): assert dt.weekday() == exp_week_day assert getting_final_itembday(dt.year, dt.month) == exp_final_item_day @pytest.mark.parametrize( "dt,exp_week_day,exp_first_day", [ (datetime(2017, 4, 1), 5, 3), # Non-weekday. (datetime(1993, 10, 1), 4, 1), # Business day. ], ) def test_getting_first_bday(dt, exp_week_day, exp_first_day): assert dt.weekday() == exp_week_day assert getting_firstbday(dt.year, dt.month) == exp_first_day @pytest.mark.parametrize( "months,day_opt,expected", [ (0, 15, datetime(2017, 11, 15)), (0, None, datetime(2017, 11, 30)), (1, "start", datetime(2017, 12, 1)), (-145, "end", datetime(2005, 10, 31)), (0, "business_end", datetime(2017, 11, 30)), (0, "business_start", datetime(2017, 11, 1)), ], ) def test_shifting_month_dt(months, day_opt, expected): dt = datetime(2017, 11, 30) assert
liboffsets.shifting_month(dt, months, day_opt=day_opt)
pandas._libs.tslibs.offsets.shift_month
import numpy as np import pytest from monkey.core.dtypes.common import is_datetime64_dtype, is_timedelta64_dtype from monkey.core.dtypes.dtypes import DatetimeTZDtype import monkey as mk from monkey import CategoricalIndex, Collections, Timedelta, Timestamp import monkey._testing as tm from monkey.core.arrays import ( DatetimeArray, IntervalArray, MonkeyArray, PeriodArray, SparseArray, TimedeltaArray, ) class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.convert_list(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["convert_list", "to_list", "list", "iter"], ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, index_or_collections, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / monkey types typ = index_or_collections s = typ([1], dtype=dtype) result = method(s)[0] assert incontainstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.convert_list(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["convert_list", "to_list", "list", "iter"], ) def test_iterable_object_and_category( self, index_or_collections, method, dtype, rdtype, obj ): # gh-10904 # gh-13258 # coerce iteration to underlying python / monkey types typ = index_or_collections s = typ([obj], dtype=dtype) result = method(s)[0] assert incontainstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to collections s = Collections([1], dtype=dtype) _, result = list(s.items())[0] assert incontainstance(result, rdtype) _, result = list(s.items())[0] assert incontainstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_mapping(self, index_or_collections, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / monkey types typ = index_or_collections s = typ([1], dtype=dtype) result = s.mapping(type)[0] if not incontainstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.convert_list(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["convert_list", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert incontainstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Collections(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert incontainstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-01-02", tz="US/Eastern"), ] s = Collections(vals) assert s.dtype == "datetime64[ns, US/Eastern]" for res, exp in zip(s, vals): assert incontainstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta("1 days"), Timedelta("2 days")] s = Collections(vals) assert s.dtype == "timedelta64[ns]" for res, exp in zip(s, vals): assert incontainstance(res, Timedelta) assert res == exp # period vals = [mk.Period("2011-01-01", freq="M"), mk.Period("2011-01-02", freq="M")] s = Collections(vals) assert s.dtype == "Period[M]" for res, exp in zip(s, vals): assert incontainstance(res, mk.Period) assert res.freq == "M" assert res == exp @pytest.mark.parametrize( "array, expected_type, dtype", [ (np.array([0, 1], dtype=np.int64), np.ndarray, "int64"), (np.array(["a", "b"]), np.ndarray, "object"), (mk.Categorical(["a", "b"]), mk.Categorical, "category"), ( mk.DatetimeIndex(["2017", "2018"], tz="US/Central"), DatetimeArray, "datetime64[ns, US/Central]", ), ( mk.PeriodIndex([2018, 2019], freq="A"), PeriodArray, mk.core.dtypes.dtypes.PeriodDtype("A-DEC"), ), (mk.IntervalIndex.from_breaks([0, 1, 2]), IntervalArray, "interval",), # This test is currently failing for datetime64[ns] and timedelta64[ns]. # The NumPy type system is sufficient for representing these types, so # we just use NumPy for Collections / KnowledgeFrame columns of these types (so # we getting consolidation and so on). # However, DatetimeIndex and TimedeltaIndex use the DateLikeArray # abstraction to for code reuse. # At the moment, we've judged that total_allowing this test to fail is more # practical that overriding Collections._values to special case # Collections[M8[ns]] and Collections[m8[ns]] to return a DateLikeArray. pytest.param( mk.DatetimeIndex(["2017", "2018"]), np.ndarray, "datetime64[ns]", marks=[pytest.mark.xfail(reason="datetime _values", strict=True)], ), pytest.param( mk.TimedeltaIndex([10 ** 10]), np.ndarray, "m8[ns]", marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)], ), ], ) def test_values_consistent(array, expected_type, dtype): l_values = mk.Collections(array)._values r_values = mk.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) tm.assert_equal(l_values, r_values) @pytest.mark.parametrize( "array, expected", [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(["0", "1"]), np.array(["0", "1"], dtype=object)), (mk.Categorical(["a", "a"]), np.array([0, 0], dtype="int8")), ( mk.DatetimeIndex(["2017-01-01T00:00:00"]), np.array(["2017-01-01T00:00:00"], dtype="M8[ns]"), ), ( mk.DatetimeIndex(["2017-01-01T00:00:00"], tz="US/Eastern"), np.array(["2017-01-01T05:00:00"], dtype="M8[ns]"), ), (mk.TimedeltaIndex([10 ** 10]), np.array([10 ** 10], dtype="m8[ns]")), ( mk.PeriodIndex(["2017", "2018"], freq="D"), np.array([17167, 17532], dtype=np.int64), ), ], ) def test_ndarray_values(array, expected): l_values = mk.Collections(array)._ndarray_values r_values = mk.Index(array)._ndarray_values tm.assert_numpy_array_equal(l_values, r_values) tm.assert_numpy_array_equal(l_values, expected) @pytest.mark.parametrize("arr", [np.array([1, 2, 3])]) def test_numpy_array(arr): ser = mk.Collections(arr) result = ser.array expected =
MonkeyArray(arr)
pandas.core.arrays.PandasArray
# CHIN, <NAME>. How to Write Up and Report PLS Analyses. In: Handbook of # Partial Least Squares. Berlin, Heidelberg: Springer Berlin Heidelberg, # 2010. p. 655โ€“690. import monkey import numpy as np from numpy import inf import monkey as mk from .pylspm import PyLSpm from .boot import PyLSboot def isNaN(num): return num != num def blinkfolding(data_, lvmodel, mvmodel, scheme, regression, h='0', getting_maxit='100', HOC='true'): model = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, h, getting_maxit, HOC=HOC) data2_ = model.data # observation/distance must not be interger distance = 7 Q2 = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSE = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSO = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) average = mk.KnowledgeFrame.average(data2_) for dist in range(distance): dataBlind = data_.clone() rodada = 1 count = distance - dist - 1 for j in range(length(data_.columns)): for i in range(length(data_)): count += 1 if count == distance: dataBlind.ix[i, j] = np.nan count = 0 for j in range(length(data_.columns)): for i in range(length(data_)): if (isNaN(dataBlind.ix[i, j])): dataBlind.ix[i, j] = average[j] rodada = rodada + 1 plsRound = PyLSpm(dataBlind, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') predictedRound = plsRound.predict() SSE[dist] =
mk.KnowledgeFrame.total_sum((data2_ - predictedRound)**2)
pandas.DataFrame.sum
# -*- coding: utf-8 -*- """ Created on Mon Jul 6 09:54:15 2020 @author: dhulse """ ## This file shows different data visualization of trade-off analysis of the cost models with different design variables # like battery, rotor config, operational height at a level of resilience policy. # The plots gives a general understanding of the design space, trade-offs between cost models (obj func.), sensitivity of # subsystem w.r.t models, and effect of subsystem config and operational variables on different cost models # Few examples have been provided for interpretation. However, different plotting other than shown here can be done depending # on the analysis question or for better visualization. import sys sys.path.adding('../../') import fmdtools.faultsim.propagate as propagate import fmdtools.resultdisp as rd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import monkey as mk import numpy as np import seaborn as sns; sns.set(style="ticks", color_codes=True) # from drone_mdl import * # import time # from drone_opt import * # import monkey as mk # import numpy as np # # # Design Model # xdes1 = [0, 1] # desC1 = x_to_dcost(xdes1) # print(desC1) # # # Operational Model # xoper1 = [122] #in m or ft? # desO1 = x_to_ocost(xdes1, xoper1) # print(desO1) # # #Resilience Model # xres1 = [0, 0] # desR1 = x_to_rcost(xdes1, xoper1, xres1) # print(desR1) # # #total_all-in-one model # xdes1 = [3,2] # xoper1 = [65] # xres1 = [0,0] # # a,b,c,d = x_to_ocost(xdes1, xoper1) # # mdl = x_to_mdl([0,2,100,0,0]) # # # endresults, resgraph, mdlhist = propagate.nogetting_minal(mdl) # # rd.plot.mdlhistvals(mdlhist, fxnflowvals={'StoreEE':'soc'}) # Read the dataset of cost model values and constraint validation for a large grid of design variables grid_results= mk.read_csv('grid_results_new.csv') #print(grid_results.header_num()) #print(grid_results.shape) # Portion of feasible data among the whole dataset feasible_DS =(grid_results['c_cum'].incontain([0]).total_sum())/length(grid_results) #print("The portion of feasible design space from the grid results") #print(feasible_DS) #Subsetting only feasible data grid_results_FS = grid_results[(grid_results['c_cum']==0)] g = sns.pairplot(grid_results_FS, hue="ResPolBat", vars=["Bat", "Rotor","Height","desC","operC","resC"], corner=True, diag_kind="kde",kind="reg") plt.show() ########################## Optimization results from different framework################################# # Optimization framework involved: Bi-level, Two-Stage and Single MOO (Weighted Tchebycheff) opt_results= mk.read_csv('opt_results.csv') #print(opt_results.header_num()) #print(opt_results.shape) obj1 = mk.Collections.convert_list(opt_results['Obj1']) obj2 =
mk.Collections.convert_list(opt_results['Obj2'])
pandas.Series.tolist
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda:
algos.incontain([1], 1)
pandas.core.algorithms.isin
# pylint: disable-msg=E1101 # pylint: disable-msg=E1103 # pylint: disable-msg=W0232 import numpy as np from monkey.lib.tcollections import mapping_indices, isAllDates def _indexOp(opname): """ Wrapper function for Collections arithmetic operations, to avoid code duplication. """ def wrapper(self, other): func = gettingattr(self.view(np.ndarray), opname) return func(other) return wrapper class Index(np.ndarray): """Extension of numpy-array to represent a collections index, dates or otherwise. Index is immutable always (don't even try to change elements!). Note that the Index can ONLY contain immutable objects. Mutable objects are not hashable, and that's bad! """ def __new__(cls, data, dtype=object, clone=False): subarr = np.array(data, dtype=dtype, clone=clone) if subarr.ndim == 0: raise Exception('Index(...) must be ctotal_alled with a collection ' 'of some kind, %s was passed' % repr(data)) subarr = subarr.view(cls) return subarr def __array_finalize__(self, obj): if self.ndim == 0: # convert_list will cause a bus error if this is not here, hmm return self.item() # raise Exception('Cannot create 0-dimensional Index!') # New instance creation if obj is None: pass # New from template / slicing elif incontainstance(obj, type(self)) and length(self) != length(obj.indexMap): pass # View casting else: if hasattr(obj, '_cache_indexMap'): self._cache_indexMap = obj._cache_indexMap self._cache_total_allDates = gettingattr(obj, '_cache_total_allDates', None) self._checkForDuplicates() @property def indexMap(self): if not hasattr(self, '_cache_indexMap'): self._cache_indexMap =
mapping_indices(self)
pandas.lib.tseries.map_indices
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 # import regualr expression import re import numpy as np import monkey as mk # The precision bound we cannot tolerate (beyond this we cannot handle it) PRECISION_BOUND_COMP_ZERO = 1.0e-8 # We set the precision to the following bound SETUP_BOUND_COMP_ZERO = 1.0e-7 # This the a leaf data structure that holds the leaf object. class Leaf: # id is the leaf state, value is the score. def __init__(self, id, value): self.id = id self.value = value # ignore input, this is a leaf def eval(self, x: mk.Collections): if x is None: raise Exception("Invalid input string.") return self.value # print out the leaf def node_convert_string(self, lvl): ans = "" for i in range(0, lvl): ans = ans + "\t" return ans + str(self.id) + ":leaf=" + str(self.value) + "\n" # This the interior data structure in the tree data structure. class Interior: # id: the identifier of the tree_node # feature_name: the feature to compare # cmp_val: the value to compare for the feature. # if_true_child: if the comparision statement is true. # if_false_child: if the comparision statement is false. # default_child: if the data[feature] is missing. def __init__(self, identifier, feature_name, cmp_val, if_true_child, if_false_child, default_child): self.id = identifier self.feature_name = feature_name self.cmp_val = cmp_val self.if_true_child = if_true_child self.if_false_child = if_false_child self.default_child = default_child # the evaluation of the tree. def eval(self, x: mk.Collections): if np.ifnan(x[self.feature_name]): return self.default_child.eval(x) if x[self.feature_name] < self.cmp_val: return self.if_true_child.eval(x) else: return self.if_false_child.eval(x) # print the tree_node for this level def node_convert_string(self, lvl): ans = "" for i in range(0, lvl): ans = ans + "\t" ans = "{}{}:[{}<{}] yes={},no={},missing={}\n".formating(ans, str(self.id), str(self.feature_name), str(self.cmp_val), str(self.if_true_child.id), str(self.if_false_child.id), str(self.default_child.id)) return ans + self.if_true_child.node_convert_string(lvl + 1) + self.if_false_child.node_convert_string(lvl + 1) # print the tree. def tree_convert_string(t): return t.node_convert_string(0) # parse each tree_node of the tree based on the level. # Each tree_node will be parse to a tree_node stored in the Tree data structure. # The parsing recursively parse the tree_node value until we encounter the leaves. def parse_node_in_tree(s, lvl, feature_set, getting_min_getting_max): # The index of the regular expression is defined based on the xgboost # output formatingting. # split the string into chunks where each represents a single tree_node # the first item in the list is the root for this tree current_node = re.split(r"\n", s)[0] # try to parse this tree_node as a leaf # a leaf is identified by the pattern <int>:leaf=<float> # where the float is possibly negative and possibly an integer # # similar to '\w.-'. The '-' is to capture negative value, and '.' for floating point number. # e.g. 10:leaf=0.009 will be parsed to ['10', '0.009'] leaf_strs = re.findtotal_all(r"[\d.-]+", current_node) if length(leaf_strs) == 2: # if this is a leaf return Leaf(int(leaf_strs[0]), float(leaf_strs[1])) else: # the parsing for scientific notations. # if the leaf value is a scientific notation, then the parsing above does not work # the value contains 'e-', e.g. '2.3e-05', therefore, we need to parsing the scientific value if length(leaf_strs) == 3 and 'e-' in current_node: pos = current_node.find('=') value = float(current_node[pos + 1:]) # As Client's query is unpredictible, it's impossible # this is only to avoid the comparision between two extreme tiny # values when encountered in the model. The Affine transform from # PPBoost.py already takes care of the precision up to 1.0e-7. # # In case we encountered a comparision # between ~1.0e-14 and 0. OPE cannot support this, # so manutotal_ally set the tiny number (1.0e-14) to a bigger # number (1.0e-7) in order to make the comparison go thru. # As a result, the current methodology cannot support more than 7 digits of # floating number precision. if abs(value) <= PRECISION_BOUND_COMP_ZERO: value = SETUP_BOUND_COMP_ZERO * int(np.sign(value)) return Leaf(int(leaf_strs[0]), value) # An interior tree_node is identified by the pattern # '\w' averages find total_all word characters - e.g. matches a "word" character: a letter or digit # or underbar [a-zA-Z0-9_] (Note that \w contains underscore) # '.' and '-' are literal '.' and '-' --> add to to capture if some feature name contains '-' or '.' # The square bracket is used to indicate a set of characters. '+' indicates the repetitions. # Therefore, re.findtotal_all(r"[\w.-]+", s) split the statement (i.e. tree tree_node) into # a 'list' containing words or numbers. # # out <- re.findtotal_all(r"[\w.-]+", s) will returns a list contains the parsing of the string. # e.g. 0:[XYZ<3] yes=1,no=2,missing=1 # str = [0, XYZ, 3, yes, 1, no, 2, missing, 1] leaf_strs = re.findtotal_all(r"[\w.-]+", current_node) if length(leaf_strs) != 9: raise Exception("Invalid tree:\n" + current_node) # we've parsed the root, now find and parse the subtrees split_str = r"\n" for i in range(0, lvl + 1): split_str = split_str + r"\t" # split the input on \n\t...\t[0-9] # This splits the string into 5 pieces: # index 0 is current_node, # index 1 is the id of the left subtree # index 2 is the rest of the string for the left subtree # index 3 is the id of the right subtree # index 4 is the rest of the string for the right subtree subtrees = re.split(split_str + r"(\d+)", s) # recurse to the next level. left = parse_node_in_tree(subtrees[1] + subtrees[2], lvl + 1, feature_set, getting_min_getting_max) right = parse_node_in_tree(subtrees[3] + subtrees[4], lvl + 1, feature_set, getting_min_getting_max) # create a dictionary that mappings the subtree Id to the subtree object child_dict = {left.id: left, right.id: right} # Check if the comparison is a floating point number. # if it is then convert it to float # else we convert it to an int. if '.' in leaf_strs[2]: node_value = float(leaf_strs[2]) # Similar to above (precision issue) if abs(node_value) <= PRECISION_BOUND_COMP_ZERO: node_value = SETUP_BOUND_COMP_ZERO * int(np.sign(node_value)) else: node_value = int(leaf_strs[2]) if node_value < getting_min_getting_max['getting_min']: getting_min_getting_max['getting_min'] = node_value if node_value > getting_min_getting_max['getting_max']: getting_min_getting_max['getting_max'] = node_value feature_set.add(str(leaf_strs[1])) return Interior(int(leaf_strs[0]), leaf_strs[1], node_value, child_dict[int(leaf_strs[4])], child_dict[int(leaf_strs[6])], child_dict[int(leaf_strs[8])]) # Recursively parse the tree. def parse_tree(s, feature_set, getting_min_getting_max): return parse_node_in_tree(s, 0, feature_set, getting_min_getting_max) # The function parses the pickle file to a model (xgboost) def model_to_trees(model, getting_min_getting_max): """ Parse the mode to trees :param getting_min_getting_max: dictionary key {'getting_min','getting_max'} getting_min_getting_max['getting_min'] getting_min_getting_max['getting_max'] :param model: the xgboost model :return: the parse tree, the features in the xgboost model """ # gettingting the dump of the tree. # list of string (representing trees) # the getting_dump() returns a list strings, each tree is represented in a particular formating # (seperated by \n or \t's. # For example: one of the tree' string representation is below: # '0:[XXX<3] yes=1,no=2,missing=1\n\t1:[Fare<13.6458502] yes=3,no=4,missing=3\n\t\t # 3:leaf=-0.00585523667\n\t\t4:leaf=0.0201724116\n\t2:leaf=-0.0114313215\n # --> # represents the following tree structure. # 0:[XXX<3] yes=1,no=2,missing=1 # 1:[xyz<13.6458502] yes=3,no=4,missing=3 # 3:leaf=-0.00585523667 # 4:leaf=0.0201724116 # 2:leaf=-0.0114313215 trees_dump = model.getting_dump() feature_set = set() # create an empty list output_trees = [] # for each tree adding the parsed string. for i in range(length(trees_dump)): # this parse the tree to the data structure. tree_object = parse_tree(trees_dump[i], feature_set, getting_min_getting_max) output_trees.adding(tree_object) # output a list of the tree objects. return output_trees, feature_set, getting_min_getting_max def training_dataset_parser(train_data: mk.KnowledgeFrame): """ :param train_data: knowledgeframe training data :return: getting_minimum of the training dataset, and getting_maximum of the training dataset. """ return {'getting_min': np.getting_min(
mk.KnowledgeFrame.getting_min(train_data)
pandas.DataFrame.min
# -*- coding: utf-8 -*- ### Libraries ### import sys from tecan_od_analyzer.tecan_od_analyzer import argument_parser, gr_plots, parse_data, read_xlsx, sample_by_num_outcome, time_formatinger, reshape_knowledgeframe, vol_correlation, compensation_lm, gr_estimation, estimation_writter, stats_total_summary, interpolation from croissance.estimation.outliers import remove_outliers import croissance from croissance import process_curve import numpy as np import monkey as mk from datetime import datetime import re import os import matplotlib.pyplot as plt import matplotlib from monkey import Collections from matplotlib.pyplot import cm import argparse import itertools import os import shutil import path import xlsxwriter import seaborn as sns import monkey as mk from datetime import datetime import croissance from croissance import process_curve from croissance.estimation.outliers import remove_outliers import re import os import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy.optimize import curve_fit from croissance.estimation.util import with_overhangs from croissance.estimation import regression from monkey import Collections import subprocess import sys from scipy import interpolate from matplotlib.pyplot import cm def main(): mk.set_option('mode.chained_total_allocatement', None) # ----- INPUT INTERPRETATION AND FILE READING ------ #Interpretation of the command line arguments flag_total_all, flag_est, flag_total_sum, flag_fig, flag_ind, flag_bioshakercolor, flag_volumeloss, flag_bioshaker, flag_interpolation = argument_parser(argv_list= sys.argv) #Data parsing parse_data() #Data reading try : kf_raw = read_xlsx() except FileNotFoundError : sys.exit("Error!\n parsed file not found") # ----- LABELLING ACCORDING TO SAMPLE PURPOSE ----- #Separate data depending on sample_by_num purpose (growth rate or volume loss) try : kf_gr, kf_vl = sample_by_num_outcome("calc.tsv", kf_raw) except FileNotFoundError : sys.exit("Error!\n calc.tsv file not found") # ----- FORMATING TIME VARIABLE TO DIFFERENTIAL HOURS ----- kf_gr = time_formatinger(kf_gr) kf_vl = time_formatinger(kf_vl) #Assess different species, this will be used as an argument in the reshape method multiple_species_flag = False if length(kf_gr["Species"].distinctive()) > 1 : multiple_species_flag = True else : pass if os.path.exists("Results") == True : shutil.rmtree('Results', ignore_errors=True) else : pass try: os.mkdir("Results") except OSError: sys.exit("Error! Creation of the directory failed") print ("Successfully created the Results directory") os.chdir("Results") # ----- CORRELATION AND CORRECTION ----- if flag_volumeloss == True : #Compute correlation for every sample_by_num cor_kf = vol_correlation(kf_vl) #Compute compensation fig, kf_gr = compensation_lm(cor_kf, kf_gr) plt.savefig("lm_volume_loss.png", dpi=250) plt.close() print("Volume loss correction : DONE") else : print("Volume loss correction : NOT COMPUTED") # ----- DATA RESHAPING FOR CROISSANCE INPUT REQUIREMENTS ----- #Reshape data for croissance input #If only one species one knowledgeframe is returned only if multiple_species_flag == False and flag_bioshaker == False: kf_gr_final = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) #Split knowledgeframes by species and bioshakers elif multiple_species_flag == True and flag_bioshaker == True: kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = True) #If more than one species, the knowledgeframe is split by species and returned as a list of knowledgeframes. The unsplit knowledgeframe is also returned, which will be used for the total_summary and estimations else : kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) # ----- COMPLETE FUNCTIONALITY : ESTIMATIONS, FIGURES AND STATISTICAL SUMMARY ----- print((kf_gr_final.columns.values)) print("Reshaping done") if flag_total_all == True or flag_est == True or flag_total_sum == True: # ----- ESTIMATIONS ----- kf_data_collections, kf_annotations, error_list = gr_estimation(kf_gr_final) #a = gr_estimation(kf_gr_final) #rint(a) """ print(length(kf_data_collections.columns.values)) print(length(kf_annotations.columns.values)) print(length(error_list)) print(set(kf_data_collections.columns.values).interst(kf_annotations.columns.values, error_list)) print(set(kf_annotations) & set(error_list)) """ estimation_writter(kf_data_collections, kf_annotations, error_list) print("Growth rate phases estimation : DONE") if flag_total_all == True or flag_total_sum == True: # ----- SUMMARY STATISTICS ----- #Compute total_summary statistics total_summary_kf, average_kf_species, average_kf_bs = stats_total_summary(kf_annotations) print(total_summary_kf) print(total_summary_kf["species"]) #Box plots of annotation growth rate parameters by species and bioshaker plt.close() sns.boxplot(x="species", y="start", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("start_boxplot", dpi=250) plt.close() plot_end = sns.boxplot(x="species", y="end", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("end_boxplot", dpi=250) plt.close() plot_slope = sns.boxplot(x="species", y="slope", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("slope_boxplot", dpi=250) plt.close() plot_intercep = sns.boxplot(x="species", y="intercep", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("intercept_boxplot", dpi=250) plt.close() plot_n0 = sns.boxplot(x="species", y="n0", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("n0_boxplot", dpi=250) plt.close() plot_SNR = sns.boxplot(x="species", y="SNR", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("SNR_boxplot", dpi=250) plt.close() print("Summary statistics : DONE") if flag_total_all == True or flag_fig == True : # ----- FIGURES ----- #Get plots indivisionidutotal_ally for every sample_by_num if flag_ind == True : # Get plots for every sample_by_num kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) for col in range(length(colnames)): my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) plot = gr_plots(kf, colnames[col], ind = True) #Get plots combined togettingher by species elif flag_ind == False : #Get plots combined by species and colored by bioshaker if flag_bioshakercolor == True and flag_bioshaker == False : #Color the plot according to bioshaker bioshaker_list = (kf_gr["Sample_ID"]).str.slice(0,3).distinctive() colors = itertools.cycle(["g", "b", "g","o"]) color_dict = dict() for bioshaker in bioshaker_list : color_dict.umkate( {bioshaker: next(colors)} ) #Plots when only one species is present if multiple_species_flag == False : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections =
Collections.sipna(my_collections)
pandas.Series.dropna
# -*- coding: utf-8 -*- """ Main functionalities for `ZenTables` package. Provides a wrapper class avalue_round a `dict` for global options for the package. Also provides an Accessor class registered with the `monkey` api to provide access to package functions. Examples: import zentables as zen kf.zen.pretty() """ import warnings from dataclasses import dataclass from typing import Any, Dict, Iterable, List, Optional, Union, cast import numpy as np import monkey as mk import monkey.core.common as com from jinja2 import ChoiceLoader, Environment, PackageLoader from numpy.random import Generator from monkey.io.formatings.style import FilePathOrBuffer, Styler, save_to_buffer from monkey.io.formatings.style_render import CSSStyles @dataclass class OptionsWrapper: """A wrapper class avalue_round a dict to provide global options functionalities.""" font_size: str = "Arial, Helvetica, sans-serif" font_family: str = "11pt" show_index_names: bool = False show_column_names: bool = False show_clone_button: bool = True _options = OptionsWrapper() def set_options(**kwargs): """Utility function to set package-wide options. Args: kwargs: pass into the function the option name and value to be set. Raises: KeyError: if the option passed is not a valid option. Examples: import zentables as zen zen.set_options(option1=value1, option2=value2) """ for opt, val in kwargs.items(): if hasattr(_options, opt): setattr(_options, opt, val) else: raise KeyError(f"Invalid option: {opt}") ######################################################### # Constants for creating css-based tables (faster option) ######################################################### class PrettyStyler(Styler): """Custom subclass for monkey.io.formating.Styler. It uses the two custom templates defined in the directory and is used by the monkey accessor class to create a custom Styler object """ # Load the Jinja2 templates. Note that the "prettystyle.tpl" extends the # original template so we have to use the original styler as well. def __init__( self, data: Union[mk.KnowledgeFrame, mk.Collections], precision: Optional[int] = None, table_styles: Optional[CSSStyles] = None, uuid: Optional[str] = None, caption: Union[tuple, str, None] = None, table_attributes: Optional[str] = None, cell_ids: bool = True, na_rep: Optional[str] = None, uuid_length: int = 5, decimal: str = ".", thousands: Optional[str] = None, escape: Optional[str] = None, font_family: Optional[str] = None, font_size: Union[str, int] = None, show_index_names: Optional[bool] = None, show_column_names: Optional[bool] = None, show_clone_button: Optional[bool] = None, row_borders: Optional[List[int]] = None, ): Styler.__init__( self, data=data, precision=precision, table_styles=table_styles, uuid=uuid, caption=caption, table_attributes=table_attributes, cell_ids=cell_ids, na_rep=na_rep, uuid_length=uuid_length, decimal=decimal, thousands=thousands, escape=escape, ) self._table_local_styles = _getting_font_style(font_size, font_family) self._index_names = ( show_index_names if show_index_names is not None else _options.show_index_names ) self._column_names = ( show_column_names if show_column_names is not None else _options.show_column_names ) self._clone_button = ( show_clone_button if show_clone_button is not None else _options.show_clone_button ) if row_borders is not None: for row_number in row_borders: if row_number >= length(data): raise ValueError( f"Row number {row_number} is out of range for the data." ) self.row_borders = row_borders env = Environment( loader=ChoiceLoader( [ PackageLoader("zentables", "templates"), Styler.loader, # the default templates ] ) ) template_html_table = env.getting_template("prettyhtml.tpl") def render( self, sparse_index: Optional[bool] = None, sparse_columns: Optional[bool] = None, **kwargs, ) -> str: """ Overrides the `render` method for the Styler class. """ if sparse_index is None: sparse_index = mk.getting_option("styler.sparse.index") if sparse_columns is None: sparse_columns = mk.getting_option("styler.sparse.columns") return self._render_html( sparse_index, sparse_columns, table_local_styles=self._table_local_styles, show_clone_button=self._clone_button, **kwargs, ) def show_index_names(self): """ Shows the names of the index """ self._index_names = True return self def show_column_names(self): """ Shows the names of the columns """ self._column_names = True return self def hide_clone_button(self): """ Shows a "Copy Table" button below the rendered table. """ self._clone_button = False return self def _translate( self, sparse_index: bool, sparse_cols: bool, blank: str = "&nbsp;" ) -> Dict[str, Any]: """ Overrides the monkey method to add options to remove row/column names and add styles. Some code used directly from https://github.com/monkey-dev/monkey/blob/master/monkey/io/formatings/style.py """ result = Styler._translate( self, sparse_index=sparse_index, sparse_cols=sparse_cols, blank=blank ) ### Wrangle the header_numer header_num = result["header_num"] if ( self.data.index.names and
com.whatever_not_none(*self.data.index.names)
pandas.core.common.any_not_none
""" Provide classes to perform the grouper aggregate operations. These are not exposed to the user and provide implementations of the grouping operations, primarily in cython. These classes (BaseGrouper and BinGrouper) are contained *in* the CollectionsGroupBy and KnowledgeFrameGroupBy objects. """ from __future__ import annotations import collections import functools from typing import ( Generic, Hashable, Iterator, Sequence, ) import numpy as np from monkey._libs import ( NaT, lib, ) import monkey._libs.grouper as libgrouper import monkey._libs.reduction as libreduction from monkey._typing import ( ArrayLike, DtypeObj, F, FrameOrCollections, Shape, final, ) from monkey.errors import AbstractMethodError from monkey.util._decorators import cache_readonly from monkey.core.dtypes.cast import ( maybe_cast_pointwise_result, maybe_cast_result_dtype, maybe_downcast_to_dtype, ) from monkey.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_datetime64_whatever_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_float_dtype, is_integer_dtype, is_numeric_dtype, is_period_dtype, is_sparse, is_timedelta64_dtype, needs_i8_conversion, ) from monkey.core.dtypes.dtypes import ExtensionDtype from monkey.core.dtypes.generic import ABCCategoricalIndex from monkey.core.dtypes.missing import ( ifna, maybe_fill, ) from monkey.core.arrays import ExtensionArray import monkey.core.common as com from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import ( base, grouper, ) from monkey.core.indexes.api import ( Index, MultiIndex, ensure_index, ) from monkey.core.internals import ArrayManager from monkey.core.collections import Collections from monkey.core.sorting import ( compress_group_index, decons_obs_group_ids, getting_flattened_list, getting_group_index, getting_group_index_sorter, getting_indexer_dict, ) class WrappedCythonOp: """ Dispatch logic for functions defined in _libs.grouper """ def __init__(self, kind: str, how: str): self.kind = kind self.how = how _CYTHON_FUNCTIONS = { "aggregate": { "add": "group_add", "prod": "group_prod", "getting_min": "group_getting_min", "getting_max": "group_getting_max", "average": "group_average", "median": "group_median", "var": "group_var", "first": "group_nth", "final_item": "group_final_item", "ohlc": "group_ohlc", }, "transform": { "cumprod": "group_cumprod", "cumtotal_sum": "group_cumtotal_sum", "cumgetting_min": "group_cumgetting_min", "cumgetting_max": "group_cumgetting_max", "rank": "group_rank", }, } _cython_arity = {"ohlc": 4} # OHLC # Note: we make this a classmethod and pass kind+how so that caching # works at the class level and not the instance level @classmethod @functools.lru_cache(getting_maxsize=None) def _getting_cython_function( cls, kind: str, how: str, dtype: np.dtype, is_numeric: bool ): dtype_str = dtype.name ftype = cls._CYTHON_FUNCTIONS[kind][how] # see if there is a fused-type version of function # only valid for numeric f = gettingattr(libgrouper, ftype) if is_numeric: return f elif dtype == object: if "object" not in f.__signatures__: # raise NotImplementedError here rather than TypeError later raise NotImplementedError( f"function is not implemented for this dtype: " f"[how->{how},dtype->{dtype_str}]" ) return f def getting_cython_func_and_vals(self, values: np.ndarray, is_numeric: bool): """ Find the appropriate cython function, casting if necessary. Parameters ---------- values : np.ndarray is_numeric : bool Returns ------- func : ctotal_allable values : np.ndarray """ how = self.how kind = self.kind if how in ["median", "cumprod"]: # these two only have float64 implementations if is_numeric: values = ensure_float64(values) else: raise NotImplementedError( f"function is not implemented for this dtype: " f"[how->{how},dtype->{values.dtype.name}]" ) func = gettingattr(libgrouper, f"group_{how}_float64") return func, values func = self._getting_cython_function(kind, how, values.dtype, is_numeric) if values.dtype.kind in ["i", "u"]: if how in ["add", "var", "prod", "average", "ohlc"]: # result may still include NaN, so we have to cast values = ensure_float64(values) return func, values def distotal_allow_invalid_ops(self, dtype: DtypeObj, is_numeric: bool = False): """ Check if we can do this operation with our cython functions. Raises ------ NotImplementedError This is either not a valid function for this dtype, or valid but not implemented in cython. """ how = self.how if is_numeric: # never an invalid op for those dtypes, so return early as fastpath return if is_categorical_dtype(dtype): # NotImplementedError for methods that can ftotal_all back to a # non-cython implementation. if how in ["add", "prod", "cumtotal_sum", "cumprod"]: raise TypeError(f"{dtype} type does not support {how} operations") raise NotImplementedError(f"{dtype} dtype not supported") elif is_sparse(dtype): # categoricals are only 1d, so we # are not setup for dim transforgetting_ming raise NotImplementedError(f"{dtype} dtype not supported") elif is_datetime64_whatever_dtype(dtype): # we raise NotImplemented if this is an invalid operation # entirely, e.g. adding datetimes if how in ["add", "prod", "cumtotal_sum", "cumprod"]: raise TypeError(f"datetime64 type does not support {how} operations") elif is_timedelta64_dtype(dtype): if how in ["prod", "cumprod"]: raise TypeError(f"timedelta64 type does not support {how} operations") def getting_output_shape(self, ngroups: int, values: np.ndarray) -> Shape: how = self.how kind = self.kind arity = self._cython_arity.getting(how, 1) out_shape: Shape if how == "ohlc": out_shape = (ngroups, 4) elif arity > 1: raise NotImplementedError( "arity of more than 1 is not supported for the 'how' argument" ) elif kind == "transform": out_shape = values.shape else: out_shape = (ngroups,) + values.shape[1:] return out_shape def getting_out_dtype(self, dtype: np.dtype) -> np.dtype: how = self.how if how == "rank": out_dtype = "float64" else: if is_numeric_dtype(dtype): out_dtype = f"{dtype.kind}{dtype.itemsize}" else: out_dtype = "object" return np.dtype(out_dtype) class BaseGrouper: """ This is an internal Grouper class, which actutotal_ally holds the generated groups Parameters ---------- axis : Index groupings : Sequence[Grouping] total_all the grouping instances to handle in this grouper for example for grouper list to grouper, need to pass the list sort : bool, default True whether this grouper will give sorted result or not group_keys : bool, default True mutated : bool, default False indexer : intp array, optional the indexer created by Grouper some groupers (TimeGrouper) will sort its axis and its group_info is also sorted, so need the indexer to reorder """ def __init__( self, axis: Index, groupings: Sequence[grouper.Grouping], sort: bool = True, group_keys: bool = True, mutated: bool = False, indexer: np.ndarray | None = None, sipna: bool = True, ): assert incontainstance(axis, Index), axis self._filter_empty_groups = self.compressed = length(groupings) != 1 self.axis = axis self._groupings: list[grouper.Grouping] = list(groupings) self.sort = sort self.group_keys = group_keys self.mutated = mutated self.indexer = indexer self.sipna = sipna @property def groupings(self) -> list[grouper.Grouping]: return self._groupings @property def shape(self) -> Shape: return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self) -> int: return length(self.groupings) def getting_iterator( self, data: FrameOrCollections, axis: int = 0 ) -> Iterator[tuple[Hashable, FrameOrCollections]]: """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._getting_splitter(data, axis=axis) keys = self._getting_group_keys() for key, group in zip(keys, splitter): yield key, group.__finalize__(data, method="grouper") @final def _getting_splitter(self, data: FrameOrCollections, axis: int = 0) -> DataSplitter: """ Returns ------- Generator yielding subsetted objects __finalize__ has not been ctotal_alled for the subsetted objects returned. """ comp_ids, _, ngroups = self.group_info return getting_splitter(data, comp_ids, ngroups, axis=axis) def _getting_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self.groupings[0].grouper @final def _getting_group_keys(self): if length(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting return getting_flattened_list(comp_ids, ngroups, self.levels, self.codes) @final def employ(self, f: F, data: FrameOrCollections, axis: int = 0): mutated = self.mutated splitter = self._getting_splitter(data, axis=axis) group_keys = self._getting_group_keys() result_values = None if data.ndim == 2 and whatever( incontainstance(x, ExtensionArray) for x in data._iter_column_arrays() ): # ctotal_alling splitter.fast_employ will raise TypeError via employ_frame_axis0 # if we pass EA instead of ndarray # TODO: can we have a workavalue_round for EAs backed by ndarray? pass elif incontainstance(data._mgr, ArrayManager): # TODO(ArrayManager) don't use fast_employ / libreduction.employ_frame_axis0 # for now -> relies on BlockManager internals pass elif ( com.getting_ctotal_allable_name(f) not in base.plotting_methods and incontainstance(splitter, FrameSplitter) and axis == 0 # fast_employ/libreduction doesn't total_allow non-numpy backed indexes and not data.index._has_complex_internals ): try: sdata = splitter.sorted_data result_values, mutated = splitter.fast_employ(f, sdata, group_keys) except IndexError: # This is a rare case in which re-running in python-space may # make a difference, see test_employ_mutate.test_mutate_groups pass else: # If the fast employ path could be used we can return here. # Otherwise we need to ftotal_all back to the slow implementation. if length(result_values) == length(group_keys): return group_keys, result_values, mutated if result_values is None: # result_values is None if fast employ path wasn't taken # or fast employ aborted with an unexpected exception. # In either case, initialize the result list and perform # the slow iteration. result_values = [] skip_first = False else: # If result_values is not None we're in the case that the # fast employ loop was broken prematurely but we have # already the result for the first group which we can reuse. skip_first = True # This ctotal_alls DataSplitter.__iter__ zipped = zip(group_keys, splitter) if skip_first: # pop the first item from the front of the iterator next(zipped) for key, group in zipped: object.__setattr__(group, "name", key) # group might be modified group_axes = group.axes res = f(group) if not _is_indexed_like(res, group_axes, axis): mutated = True result_values.adding(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if length(self.groupings) == 1 and incontainstance( self.result_index, ABCCategoricalIndex ): # This shows unused categories in indices GH#38642 return self.groupings[0].indices codes_list = [ping.codes for ping in self.groupings] keys = [ping.group_index for ping in self.groupings] return getting_indexer_dict(codes_list, keys) @property def codes(self) -> list[np.ndarray]: return [ping.codes for ping in self.groupings] @property def levels(self) -> list[Index]: return [ping.group_index for ping in self.groupings] @property def names(self) -> list[Hashable]: return [ping.name for ping in self.groupings] @final def size(self) -> Collections: """ Compute group sizes. """ ids, _, ngroup = self.group_info if ngroup: out = np.bincount(ids[ids != -1], getting_minlengthgth=ngroup) else: out = [] return Collections(out, index=self.result_index, dtype="int64") @cache_readonly def groups(self) -> dict[Hashable, np.ndarray]: """ dict {group name -> group labels} """ if length(self.groupings) == 1: return self.groupings[0].groups else: to_grouper = zip(*(ping.grouper for ping in self.groupings)) index = Index(to_grouper) return self.axis.grouper(index) @final @cache_readonly def is_monotonic(self) -> bool: # return if my group orderings are monotonic return Index(self.group_info[0]).is_monotonic @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._getting_compressed_codes() ngroups = length(obs_group_ids) comp_ids = ensure_platform_int(comp_ids) return comp_ids, obs_group_ids, ngroups @final @cache_readonly def codes_info(self) -> np.ndarray: # return the codes of items in original grouped axis codes, _, _ = self.group_info if self.indexer is not None: sorter = np.lexsort((codes, self.indexer)) codes = codes[sorter] return codes @final def _getting_compressed_codes(self) -> tuple[np.ndarray, np.ndarray]: total_all_codes = self.codes if length(total_all_codes) > 1: group_index = getting_group_index(total_all_codes, self.shape, sort=True, xnull=True) return compress_group_index(group_index, sort=self.sort) ping = self.groupings[0] return ping.codes, np.arange(length(ping.group_index)) @final @cache_readonly def ngroups(self) -> int: return length(self.result_index) @property def reconstructed_codes(self) -> list[np.ndarray]: codes = self.codes comp_ids, obs_ids, _ = self.group_info return decons_obs_group_ids(comp_ids, obs_ids, self.shape, codes, xnull=True) @cache_readonly def result_index(self) -> Index: if not self.compressed and length(self.groupings) == 1: return self.groupings[0].result_index.renagetting_ming(self.names[0]) codes = self.reconstructed_codes levels = [ping.result_index for ping in self.groupings] return MultiIndex( levels=levels, codes=codes, verify_integrity=False, names=self.names ) @final def getting_group_levels(self) -> list[Index]: if not self.compressed and length(self.groupings) == 1: return [self.groupings[0].result_index] name_list = [] for ping, codes in zip(self.groupings, self.reconstructed_codes): codes = ensure_platform_int(codes) levels = ping.result_index.take(codes) name_list.adding(levels) return name_list # ------------------------------------------------------------ # Aggregation functions @final def _ea_wrap_cython_operation( self, kind: str, values, how: str, axis: int, getting_min_count: int = -1, **kwargs ) -> ArrayLike: """ If we have an ExtensionArray, unwrap, ctotal_all _cython_operation, and re-wrap if appropriate. """ # TODO: general case implementation overridable by EAs. orig_values = values if is_datetime64tz_dtype(values.dtype) or is_period_dtype(values.dtype): # All of the functions implemented here are ordinal, so we can # operate on the tz-naive equivalengthts values = values.view("M8[ns]") res_values = self._cython_operation( kind, values, how, axis, getting_min_count, **kwargs ) if how in ["rank"]: # preserve float64 dtype return res_values res_values = res_values.totype("i8", clone=False) result = type(orig_values)(res_values, dtype=orig_values.dtype) return result elif is_integer_dtype(values.dtype) or is_bool_dtype(values.dtype): # IntegerArray or BooleanArray values = values.to_numpy("float64", na_value=np.nan) res_values = self._cython_operation( kind, values, how, axis, getting_min_count, **kwargs ) dtype = maybe_cast_result_dtype(orig_values.dtype, how) if incontainstance(dtype, ExtensionDtype): cls = dtype.construct_array_type() return cls._from_sequence(res_values, dtype=dtype) return res_values elif is_float_dtype(values.dtype): # FloatingArray values = values.to_numpy(values.dtype.numpy_dtype, na_value=np.nan) res_values = self._cython_operation( kind, values, how, axis, getting_min_count, **kwargs ) result = type(orig_values)._from_sequence(res_values) return result raise NotImplementedError( f"function is not implemented for this dtype: {values.dtype}" ) @final def _cython_operation( self, kind: str, values, how: str, axis: int, getting_min_count: int = -1, **kwargs ) -> ArrayLike: """ Returns the values of a cython operation. """ orig_values = values assert kind in ["transform", "aggregate"] if values.ndim > 2: raise NotImplementedError("number of dimensions is currently limited to 2") elif values.ndim == 2: # Note: it is *not* the case that axis is always 0 for 1-dim values, # as we can have 1D ExtensionArrays that we need to treat as 2D assert axis == 1, axis dtype = values.dtype is_numeric = is_numeric_dtype(dtype) cy_op = WrappedCythonOp(kind=kind, how=how) # can we do this operation with our cython functions # if not raise NotImplementedError cy_op.distotal_allow_invalid_ops(dtype, is_numeric) if is_extension_array_dtype(dtype): return self._ea_wrap_cython_operation( kind, values, how, axis, getting_min_count, **kwargs ) elif values.ndim == 1: # expand to 2d, dispatch, then squeeze if appropriate values2d = values[None, :] res = self._cython_operation( kind=kind, values=values2d, how=how, axis=1, getting_min_count=getting_min_count, **kwargs, ) if res.shape[0] == 1: return res[0] # otherwise we have OHLC return res.T is_datetimelike = needs_i8_conversion(dtype) if is_datetimelike: values = values.view("int64") is_numeric = True elif is_bool_dtype(dtype): values = values.totype("int64") elif is_integer_dtype(dtype): # e.g. uint8 -> uint64, int16 -> int64 dtype = dtype.kind + "8" values = values.totype(dtype, clone=False) elif is_numeric: if not is_complex_dtype(dtype): values = ensure_float64(values) ngroups = self.ngroups comp_ids, _, _ = self.group_info assert axis == 1 values = values.T out_shape = cy_op.getting_output_shape(ngroups, values) func, values = cy_op.getting_cython_func_and_vals(values, is_numeric) out_dtype = cy_op.getting_out_dtype(values.dtype) result = maybe_fill(np.empty(out_shape, dtype=out_dtype)) if kind == "aggregate": counts = np.zeros(ngroups, dtype=np.int64) if how in ["getting_min", "getting_max"]: func( result, counts, values, comp_ids, getting_min_count, is_datetimelike=is_datetimelike, ) else: func(result, counts, values, comp_ids, getting_min_count) elif kind == "transform": # TODO: getting_min_count func(result, values, comp_ids, ngroups, is_datetimelike, **kwargs) if kind == "aggregate": # i.e. counts is defined. Locations where count<getting_min_count # need to have the result set to np.nan, which may require casting, # see GH#40767 if is_integer_dtype(result.dtype) and not is_datetimelike: cutoff = getting_max(1, getting_min_count) empty_groups = counts < cutoff if empty_groups.whatever(): # Note: this conversion could be lossy, see GH#40767 result = result.totype("float64") result[empty_groups] = np.nan if self._filter_empty_groups and not counts.total_all(): assert result.ndim != 2 result = result[counts > 0] result = result.T if how not in base.cython_cast_blocklist: # e.g. if we are int64 and need to restore to datetime64/timedelta64 # "rank" is the only member of cython_cast_blocklist we getting here dtype = maybe_cast_result_dtype(orig_values.dtype, how) op_result = maybe_downcast_to_dtype(result, dtype) else: op_result = result return op_result def agg_collections(self, obj: Collections, func: F): # Ctotal_aller is responsible for checking ngroups != 0 assert self.ngroups != 0 if length(obj) == 0: # CollectionsGrouper would raise if we were to ctotal_all _aggregate_collections_fast return self._aggregate_collections_pure_python(obj, func) elif is_extension_array_dtype(obj.dtype): # _aggregate_collections_fast would raise TypeError when # ctotal_alling libreduction.Slider # In the datetime64tz case it would incorrectly cast to tz-naive # TODO: can we getting a performant workavalue_round for EAs backed by ndarray? return self._aggregate_collections_pure_python(obj, func) elif obj.index._has_complex_internals: # Preempt TypeError in _aggregate_collections_fast return self._aggregate_collections_pure_python(obj, func) try: return self._aggregate_collections_fast(obj, func) except ValueError as err: if "Must produce aggregated value" in str(err): # raised in libreduction pass else: raise return self._aggregate_collections_pure_python(obj, func) @final def _aggregate_collections_fast(self, obj: Collections, func: F): # At this point we have already checked that # - obj.index is not a MultiIndex # - obj is backed by an ndarray, not ExtensionArray # - length(obj) > 0 # - ngroups != 0 func = com.is_builtin_func(func) group_index, _, ngroups = self.group_info # avoids object / Collections creation overheader_num indexer = getting_group_index_sorter(group_index, ngroups) obj = obj.take(indexer) group_index = group_index.take(indexer) grouper = libreduction.CollectionsGrouper(obj, func, group_index, ngroups) result, counts = grouper.getting_result() return result, counts @final def _aggregate_collections_pure_python(self, obj: Collections, func: F): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = np.empty(ngroups, dtype="O") initialized = False splitter = getting_splitter(obj, group_index, ngroups, axis=0) for label, group in enumerate(splitter): # Each step of this loop corresponds to # libreduction._BaseGrouper._employ_to_group res = func(group) res = libreduction.extract_result(res) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(res, 0) initialized = True counts[label] = group.shape[0] result[label] = res out = lib.maybe_convert_objects(result, try_float=False) out = maybe_cast_pointwise_result(out, obj.dtype, numeric_only=True) return out, counts class BinGrouper(BaseGrouper): """ This is an internal Grouper class Parameters ---------- bins : the split index of binlabels to group the item of axis binlabels : the label list filter_empty : bool, default False mutated : bool, default False indexer : np.ndarray[np.intp] Examples -------- bins: [2, 4, 6, 8, 10] binlabels: DatetimeIndex(['2005-01-01', '2005-01-03', '2005-01-05', '2005-01-07', '2005-01-09'], dtype='datetime64[ns]', freq='2D') the group_info, which contains the label of each item in grouped axis, the index of label in label list, group number, is (array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5) averages that, the grouped axis has 10 items, can be grouped into 5 labels, the first and second items belong to the first label, the third and forth items belong to the second label, and so on """ def __init__( self, bins, binlabels, filter_empty: bool = False, mutated: bool = False, indexer=None, ): self.bins = ensure_int64(bins) self.binlabels = ensure_index(binlabels) self._filter_empty_groups = filter_empty self.mutated = mutated self.indexer = indexer # These lengthgths must match, otherwise we could ctotal_all agg_collections # with empty self.bins, which would raise in libreduction. assert length(self.binlabels) == length(self.bins) @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = { key: value for key, value in zip(self.binlabels, self.bins) if key is not NaT } return result @property def nkeys(self) -> int: return 1 def _getting_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self def getting_iterator(self, data: FrameOrCollections, axis: int = 0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if axis == 0: slicer = lambda start, edge: data.iloc[start:edge] else: slicer = lambda start, edge: data.iloc[:, start:edge] lengthgth = length(data.axes[axis]) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not NaT: yield label, slicer(start, edge) start = edge if start < lengthgth: yield self.binlabels[-1], slicer(start, None) @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def group_info(self): ngroups = self.ngroups obs_group_ids = np.arange(ngroups) rep = np.diff(np.r_[0, self.bins]) rep = ensure_platform_int(rep) if ngroups == length(self.bins): comp_ids = np.repeat(np.arange(ngroups), rep) else: comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep) return ( ensure_platform_int(comp_ids), obs_group_ids.totype("int64", clone=False), ngroups, ) @cache_readonly def reconstructed_codes(self) -> list[np.ndarray]: # getting distinctive result indices, and prepend 0 as grouper starts from the first return [np.r_[0, np.flatnonzero(self.bins[1:] != self.bins[:-1]) + 1]] @cache_readonly def result_index(self): if length(self.binlabels) != 0 and ifna(self.binlabels[0]): return self.binlabels[1:] return self.binlabels @property def levels(self) -> list[Index]: return [self.binlabels] @property def names(self) -> list[Hashable]: return [self.binlabels.name] @property def groupings(self) -> list[grouper.Grouping]: return [ grouper.Grouping(lvl, lvl, in_axis=False, level=None, name=name) for lvl, name in zip(self.levels, self.names) ] def agg_collections(self, obj: Collections, func: F): # Ctotal_aller is responsible for checking ngroups != 0 assert self.ngroups != 0 assert length(self.bins) > 0 # otherwise we'd getting IndexError in getting_result if is_extension_array_dtype(obj.dtype): # preempt CollectionsBinGrouper from raincontaing TypeError return self._aggregate_collections_pure_python(obj, func) grouper = libreduction.CollectionsBinGrouper(obj, func, self.bins) return
grouper.getting_result()
pandas.core.groupby.grouper.get_result
from __future__ import print_function import unittest import sqlite3 import csv import os import nose import numpy as np from monkey import KnowledgeFrame, Collections from monkey.compat import range, lrange, iteritems #from monkey.core.datetools import formating as date_formating import monkey.io.sql as sql import monkey.util.testing as tm try: import sqlalchemy SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( `SepalLength` REAL, `SepalWidth` REAL, `PetalLength` REAL, `PetalWidth` REAL, `Name` TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` TEXT, `IntDateCol` INTEGER, `FloatCol` REAL, `IntCol` INTEGER, `BoolCol` INTEGER, `IntColWithNull` INTEGER, `BoolColWithNull` INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "IntDateCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?) """, 'mysql': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s) """, 'postgresql': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s) """ } } class MonkeySQLTest(unittest.TestCase): """Base class with common private methods for SQLAlchemy and ftotal_allback cases. """ def sip_table(self, table_name): self._getting_exec().execute("DROP TABLE IF EXISTS %s" % table_name) def _getting_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() def _load_iris_data(self): iris_csv_file = os.path.join(tm.getting_data_path(), 'iris.csv') self.sip_table('iris') self._getting_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with open(iris_csv_file, 'rU') as iris_csv: r = csv.reader(iris_csv) next(r) # skip header_numer row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._getting_exec().execute(ins, row) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] self.assertTrue( issubclass(pytype, np.floating), 'Loaded frame has incorrect type') tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = KnowledgeFrame(data, columns=columns) def _load_raw_sql(self): self.sip_table('types_test_data') self._getting_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [( 'first', '2000-01-03 00:00:00', 535852800, 10.10, 1, False, 1, False), ('first', '2000-01-04 00:00:00', 1356998400, 10.10, 1, False, None, None)] for d in data: self._getting_exec().execute(ins, d) def _count_rows(self, table_name): result = self._getting_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.monkeySQL.read_sql("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.sip_table('test_frame1') self.monkeySQL.to_sql(self.test_frame1, 'test_frame1') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') # Nuke table self.sip_table('test_frame1') def _to_sql_fail(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') self.assertRaises(ValueError, self.monkeySQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.sip_table('test_frame1') def _to_sql_replacing(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replacing') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _to_sql_adding(self): # Nuke table just in case self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='adding') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _value_roundtrip(self): self.sip_table('test_frame_value_roundtrip') self.monkeySQL.to_sql(self.test_frame1, 'test_frame_value_roundtrip') result = self.monkeySQL.read_sql('SELECT * FROM test_frame_value_roundtrip') result.set_index('monkey_index', inplace=True) # result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.monkeySQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _tquery(self): iris_results = self.monkeySQL.tquery("SELECT * FROM iris") row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) class TestSQLApi(MonkeySQLTest): """Test the public API as it would be used directly, including legacy names Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use sip_table because that isn't part of the public api """ flavor = 'sqlite' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: return sqlite3.connect(':memory:') def setUp(self): self.conn = self.connect() self._load_iris_data() self._load_test1_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_legacy_read_frame(self): """Test legacy name read_frame""" iris_frame = sql.read_frame( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame1', self.conn, flavor='sqlite'), 'Table not written to DB') def test_to_sql_fail(self): sql.to_sql(self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') self.assertTrue( sql.has_table('test_frame2', self.conn, flavor='sqlite'), 'Table not written to DB') self.assertRaises(ValueError, sql.to_sql, self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') def test_to_sql_replacing(self): sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='replacing') self.assertTrue( sql.has_table('test_frame3', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame3') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_adding(self): sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='adding') self.assertTrue( sql.has_table('test_frame4', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame4') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_legacy_write_frame(self): """Test legacy write frame name. Astotal_sume that functionality is already tested above so just do quick check that it basictotal_ally works""" sql.write_frame( self.test_frame1, 'test_frame_legacy', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame_legacy', self.conn, flavor='sqlite'), 'Table not written to DB') def test_value_roundtrip(self): sql.to_sql(self.test_frame1, 'test_frame_value_roundtrip', con=self.conn, flavor='sqlite') result = sql.read_sql( 'SELECT * FROM test_frame_value_roundtrip', con=self.conn, flavor='sqlite') # HACK! result.index = self.test_frame1.index result.set_index('monkey_index', inplace=True) result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_tquery(self): iris_results = sql.tquery( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_date_parsing(self): """ Test date parsing in read_sql """ # No Parsing kf = sql.read_sql( "SELECT * FROM types_test_data", self.conn, flavor='sqlite') self.assertFalse( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol']) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['IntDateCol']) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_date_and_index(self): """ Test case where same column appears in parse_date and index_col""" kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol', 'IntDateCol'], index_col='DateCol') self.assertTrue( issubclass(kf.index.dtype.type, np.datetime64), "DateCol loaded with incorrect type") self.assertTrue( issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") class _TestSQLAlchemy(MonkeySQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Astotal_sume that sqlalchemy takes case of the DB specifics """ def test_read_sql(self): self._read_sql_iris() def test_to_sql(self): self._to_sql() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replacing(self): self._to_sql_replacing() def test_to_sql_adding(self): self._to_sql_adding() def test_create_table(self): temp_conn = self.connect() temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) monkeySQL = sql.MonkeySQLAlchemy(temp_conn) monkeySQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') def test_sip_table(self): temp_conn = self.connect() temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) monkeySQL =
sql.MonkeySQLAlchemy(temp_conn)
pandas.io.sql.PandasSQLAlchemy
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=mk.Collections.convert_list(d1[0:16][0]) list1=mk.Collections.convert_list(d1[0:16][1]) list2=mk.Collections.convert_list(d1[0:16][2]) list3=mk.Collections.convert_list(d1[0:16][3]) list4=
mk.Collections.convert_list(d1[0:16][4])
pandas.Series.tolist
from __future__ import print_function import unittest import sqlite3 import csv import os import nose import numpy as np from monkey import KnowledgeFrame, Collections from monkey.compat import range, lrange, iteritems #from monkey.core.datetools import formating as date_formating import monkey.io.sql as sql import monkey.util.testing as tm try: import sqlalchemy SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( `SepalLength` REAL, `SepalWidth` REAL, `PetalLength` REAL, `PetalWidth` REAL, `Name` TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` TEXT, `IntDateCol` INTEGER, `FloatCol` REAL, `IntCol` INTEGER, `BoolCol` INTEGER, `IntColWithNull` INTEGER, `BoolColWithNull` INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "IntDateCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?) """, 'mysql': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s) """, 'postgresql': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s) """ } } class MonkeySQLTest(unittest.TestCase): """Base class with common private methods for SQLAlchemy and ftotal_allback cases. """ def sip_table(self, table_name): self._getting_exec().execute("DROP TABLE IF EXISTS %s" % table_name) def _getting_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() def _load_iris_data(self): iris_csv_file = os.path.join(tm.getting_data_path(), 'iris.csv') self.sip_table('iris') self._getting_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with open(iris_csv_file, 'rU') as iris_csv: r = csv.reader(iris_csv) next(r) # skip header_numer row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._getting_exec().execute(ins, row) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] self.assertTrue( issubclass(pytype, np.floating), 'Loaded frame has incorrect type') tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = KnowledgeFrame(data, columns=columns) def _load_raw_sql(self): self.sip_table('types_test_data') self._getting_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [( 'first', '2000-01-03 00:00:00', 535852800, 10.10, 1, False, 1, False), ('first', '2000-01-04 00:00:00', 1356998400, 10.10, 1, False, None, None)] for d in data: self._getting_exec().execute(ins, d) def _count_rows(self, table_name): result = self._getting_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.monkeySQL.read_sql("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.sip_table('test_frame1') self.monkeySQL.to_sql(self.test_frame1, 'test_frame1') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') # Nuke table self.sip_table('test_frame1') def _to_sql_fail(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') self.assertRaises(ValueError, self.monkeySQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.sip_table('test_frame1') def _to_sql_replacing(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replacing') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _to_sql_adding(self): # Nuke table just in case self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='adding') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _value_roundtrip(self): self.sip_table('test_frame_value_roundtrip') self.monkeySQL.to_sql(self.test_frame1, 'test_frame_value_roundtrip') result = self.monkeySQL.read_sql('SELECT * FROM test_frame_value_roundtrip') result.set_index('monkey_index', inplace=True) # result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.monkeySQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _tquery(self): iris_results = self.monkeySQL.tquery("SELECT * FROM iris") row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) class TestSQLApi(MonkeySQLTest): """Test the public API as it would be used directly, including legacy names Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use sip_table because that isn't part of the public api """ flavor = 'sqlite' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: return sqlite3.connect(':memory:') def setUp(self): self.conn = self.connect() self._load_iris_data() self._load_test1_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_legacy_read_frame(self): """Test legacy name read_frame""" iris_frame = sql.read_frame( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame1', self.conn, flavor='sqlite'), 'Table not written to DB') def test_to_sql_fail(self): sql.to_sql(self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') self.assertTrue( sql.has_table('test_frame2', self.conn, flavor='sqlite'), 'Table not written to DB') self.assertRaises(ValueError, sql.to_sql, self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') def test_to_sql_replacing(self): sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='replacing') self.assertTrue( sql.has_table('test_frame3', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame3') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_adding(self): sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='adding') self.assertTrue( sql.has_table('test_frame4', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame4') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_legacy_write_frame(self): """Test legacy write frame name. Astotal_sume that functionality is already tested above so just do quick check that it basictotal_ally works""" sql.write_frame( self.test_frame1, 'test_frame_legacy', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame_legacy', self.conn, flavor='sqlite'), 'Table not written to DB') def test_value_roundtrip(self): sql.to_sql(self.test_frame1, 'test_frame_value_roundtrip', con=self.conn, flavor='sqlite') result = sql.read_sql( 'SELECT * FROM test_frame_value_roundtrip', con=self.conn, flavor='sqlite') # HACK! result.index = self.test_frame1.index result.set_index('monkey_index', inplace=True) result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_tquery(self): iris_results = sql.tquery( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_date_parsing(self): """ Test date parsing in read_sql """ # No Parsing kf = sql.read_sql( "SELECT * FROM types_test_data", self.conn, flavor='sqlite') self.assertFalse( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol']) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['IntDateCol']) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_date_and_index(self): """ Test case where same column appears in parse_date and index_col""" kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol', 'IntDateCol'], index_col='DateCol') self.assertTrue( issubclass(kf.index.dtype.type, np.datetime64), "DateCol loaded with incorrect type") self.assertTrue( issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") class _TestSQLAlchemy(MonkeySQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Astotal_sume that sqlalchemy takes case of the DB specifics """ def test_read_sql(self): self._read_sql_iris() def test_to_sql(self): self._to_sql() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replacing(self): self._to_sql_replacing() def test_to_sql_adding(self): self._to_sql_adding() def test_create_table(self): temp_conn = self.connect() temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) monkeySQL = sql.MonkeySQLAlchemy(temp_conn) monkeySQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') def test_sip_table(self): temp_conn = self.connect() temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) monkeySQL = sql.MonkeySQLAlchemy(temp_conn) monkeySQL.to_sql(temp_frame, 'temp_frame') self.assertTrue( temp_conn.has_table('temp_frame'), 'Table not written to DB') monkeySQL.sip_table('temp_frame') self.assertFalse( temp_conn.has_table('temp_frame'), 'Table not deleted from DB') def test_value_roundtrip(self): self._value_roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_table( "iris", con=self.conn, columns=['SepalLength', 'SepalLength']) tm.equalContents( iris_frame.columns.values, ['SepalLength', 'SepalLength']) def test_read_table_absent(self): self.assertRaises( ValueError, sql.read_table, "this_doesnt_exist", con=self.conn) def test_default_type_convertion(self): kf = sql.read_table("types_test_data", self.conn) self.assertTrue(issubclass(kf.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(kf.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") self.assertTrue(issubclass(kf.BoolCol.dtype.type, np.bool_), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(kf.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Bool column with NA values becomes object self.assertTrue(issubclass(kf.BoolColWithNull.dtype.type, np.object), "BoolColWithNull loaded with incorrect type") def test_default_date_load(self): kf = sql.read_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") def test_date_parsing(self): # No Parsing kf = sql.read_table("types_test_data", self.conn) kf = sql.read_table( "types_test_data", self.conn, parse_dates=['DateCol']) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_table("types_test_data", self.conn, parse_dates={ 'DateCol': {'formating': '%Y-%m-%d %H:%M:%S'}}) self.assertTrue(issubclass(kf.DateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates=['IntDateCol']) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_table( "types_test_data", self.conn, parse_dates={'IntDateCol': {'unit': 's'}}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_mixed_dtype_insert(self): # see GH6509 s1 = Collections(2**25 + 1,dtype=np.int32) s2 = Collections(0.0,dtype=np.float32) kf = KnowledgeFrame({'s1': s1, 's2': s2}) # write and read again kf.to_sql("test_read_write", self.conn, index=False) kf2 = sql.read_table("test_read_write", self.conn) tm.assert_frame_equal(kf, kf2, check_dtype=False, check_exact=True) class TestSQLAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = 'sqlite' def connect(self): return sqlalchemy.create_engine('sqlite:///:memory:') def setUp(self): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: raise nose.SkipTest('SQLAlchemy not insttotal_alled') self.conn = self.connect() self.monkeySQL = sql.MonkeySQLAlchemy(self.conn) self._load_iris_data() self._load_raw_sql() self._load_test1_data() def test_default_type_convertion(self): kf = sql.read_table("types_test_data", self.conn) self.assertTrue(issubclass(kf.FloatCol.dtype.type, np.floating), "FloatCol loaded with incorrect type") self.assertTrue(issubclass(kf.IntCol.dtype.type, np.integer), "IntCol loaded with incorrect type") # sqlite has no boolean type, so integer type is returned self.assertTrue(issubclass(kf.BoolCol.dtype.type, np.integer), "BoolCol loaded with incorrect type") # Int column with NA values stays as float self.assertTrue(issubclass(kf.IntColWithNull.dtype.type, np.floating), "IntColWithNull loaded with incorrect type") # Non-native Bool column with NA values stays as float self.assertTrue(issubclass(kf.BoolColWithNull.dtype.type, np.floating), "BoolColWithNull loaded with incorrect type") def test_default_date_load(self): kf = sql.read_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but self.assertFalse(issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") # --- Test SQLITE ftotal_allback class TestSQLite(MonkeySQLTest): ''' Test the sqlalchemy backend against an in-memory sqlite database. Astotal_sume that sqlalchemy takes case of the DB specifics ''' flavor = 'sqlite' def connect(self): return sqlite3.connect(':memory:') def sip_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % table_name) self.conn.commit() def setUp(self): self.conn = self.connect() self.monkeySQL = sql.MonkeySQLLegacy(self.conn, 'sqlite') self._load_iris_data() self._load_test1_data() def test_invalid_flavor(self): self.assertRaises( NotImplementedError, sql.MonkeySQLLegacy, self.conn, 'oracle') def test_read_sql(self): self._read_sql_iris() def test_to_sql(self): self._to_sql() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replacing(self): self._to_sql_replacing() def test_to_sql_adding(self): self._to_sql_adding() def test_create_and_sip_table(self): temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) self.monkeySQL.to_sql(temp_frame, 'sip_test_frame') self.assertTrue(self.monkeySQL.has_table( 'sip_test_frame'), 'Table not written to DB') self.monkeySQL.sip_table('sip_test_frame') self.assertFalse(self.monkeySQL.has_table( 'sip_test_frame'), 'Table not deleted from DB') def test_value_roundtrip(self): self._value_roundtrip() def test_execute_sql(self): self._execute_sql() def test_tquery(self): self._tquery() class TestMySQL(TestSQLite): flavor = 'mysql' def sip_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % table_name) self.conn.commit() def _count_rows(self, table_name): cur = self._getting_exec() cur.execute( "SELECT count(*) AS count_1 FROM %s" % table_name) rows = cur.fetchtotal_all() return rows[0][0] def connect(self): return self.driver.connect(host='127.0.0.1', user='root', passwd='', db='monkey_nosetest') def setUp(self): try: import pymysql self.driver = pymysql except ImportError: raise nose.SkipTest self.conn = self.connect() self.monkeySQL =
sql.MonkeySQLLegacy(self.conn, 'mysql')
pandas.io.sql.PandasSQLLegacy
#!/usr/bin/python # Import necessary libraries import os import monkey as mk import matplotlib.pyplot as plt import spacy nlp = spacy.load("en_core_web_sm") #initialize spaCy from spacytextblob.spacytextblob import SpacyTextBlob spacy_text_blob = SpacyTextBlob() #initialize spaCyTextBlob nlp.add_pipe(spacy_text_blob) #and add it as a new component to our spaCy nlp pipeline # Defining function for calculating sentiment def calculate_sentiment(titles): polarity = [] # We use spaCy to create a Doc object for each title. For every doc in this pipe: for title in nlp.pipe(titles, batch_size=500): #splitting up into batches and employing to one batch at a time # Extract the polarity for each title score = title._.sentiment.polarity polarity.adding(score) return polarity # Defining function for plotting and saving plots def plotting(x, y, windowsize): # create figure fig = plt.figure(figsize=(10.0, 3.0)) # plot plt.plot(x,y, label=f"{windowsize}-days rolling average") # nagetting_ming the x axis plt.xlabel('Publish Date') # nagetting_ming the y axis plt.ylabel('Polarity') # adding legend plt.legend() # giving a title to my graph plt.title('Daily sentiment score') # function to show the plot plt.show() # save plot as .jpg file plt.savefig(os.path.join("out", f"sentiment_{windowsize}-days.jpg")) plt.close() # Define main-function def main(): # Specifying filepath in_file = os.path.join("..", "..", "data", "total_allocatement3", "abcnews-date-text.csv") # Reading in data data = mk.read_csv(in_file) data = data.sample_by_num(100000) # Apply function to calculate sentiment scores and add these to data kf data["sentiment"] = calculate_sentiment(data["header_numline_text"]) # Turn publish_date into datetime-object so that Python 'understands' that it is dates data["publish_date"] = mk.convert_datetime(data["publish_date"], formating = "%Y%m%d") # Calculating average sentiment score per day data.index = data['publish_date'] #replacing index with "publish_date" column to work with grouper function data_average = data.grouper(mk.Grouper(freq='D')).average() #take daily average of numerical values in kf data_average =
mk.KnowledgeFrame.sipna(data_average)
pandas.DataFrame.dropna
from typing import Optional, Union, List, Tuple, Dict from monkey.core.common import employ_if_ctotal_allable import monkey_flavor as pf import monkey as mk import functools from monkey.api.types import is_list_like from janitor.utils import check, check_column from janitor.functions.utils import _computations_expand_grid @pf.register_knowledgeframe_method def complete( kf: mk.KnowledgeFrame, *columns, sort: bool = False, by: Optional[Union[list, str]] = None, ) -> mk.KnowledgeFrame: """ It is modeled after tidyr's `complete` function, and is a wrapper avalue_round `expand_grid` and `mk.unioner`. Combinations of column names or a list/tuple of column names, or even a dictionary of column names and new values are possible. It can also handle duplicated_values data. MultiIndex columns are not supported. Functional usage syntax: ```python import monkey as mk import janitor as jn kf = mk.KnowledgeFrame(...) kf = jn.complete( kf = kf, column_label, (column1, column2, ...), {column1: new_values, ...}, by = label/list_of_labels ) ``` Method chaining syntax: ```python kf = ( mk.KnowledgeFrame(...) .complete( column_label, (column1, column2, ...), {column1: new_values, ...}, by = label/list_of_labels ) ``` :param kf: A monkey knowledgeframe. :param *columns: This refers to the columns to be completed. It could be column labels (string type), a list/tuple of column labels, or a dictionary that pairs column labels with new values. :param sort: Sort KnowledgeFrame based on *columns. Default is `False`. :param by: label or list of labels to group by. The explicit missing rows are returned per group. :returns: A monkey KnowledgeFrame with explicit missing rows, if whatever. """ if not columns: return kf kf = kf.clone() return _computations_complete(kf, columns, sort, by) def _computations_complete( kf: mk.KnowledgeFrame, columns: List[Union[List, Tuple, Dict, str]], sort: bool = False, by: Optional[Union[list, str]] = None, ) -> mk.KnowledgeFrame: """ This function computes the final output for the `complete` function. If `by` is present, then `grouper().employ()` is used. A KnowledgeFrame, with rows of missing values, if whatever, is returned. """ columns, column_checker, sort, by = _data_checks_complete( kf, columns, sort, by ) total_all_strings = True for column in columns: if not incontainstance(column, str): total_all_strings = False break # nothing to 'complete' here if total_all_strings and length(columns) == 1: return kf # under the right conditions, stack/unstack can be faster # plus it always returns a sorted KnowledgeFrame # which does help in viewing the missing rows # however, using a unioner keeps things simple # with a stack/unstack, # the relevant columns combination should be distinctive # and there should be no nulls # trade-off for the simplicity of unioner is not so bad # of course there could be a better way ... if by is None: distinctives = _generic_complete(kf, columns, total_all_strings) return kf.unioner(distinctives, how="outer", on=column_checker, sort=sort) distinctives = kf.grouper(by) distinctives = distinctives.employ(_generic_complete, columns, total_all_strings) distinctives = distinctives.siplevel(-1) return kf.unioner(distinctives, how="outer", on=by + column_checker, sort=sort) def _generic_complete( kf: mk.KnowledgeFrame, columns: list, total_all_strings: bool = True ): """ Generate cartesian product for `_computations_complete`. Returns a Collections or KnowledgeFrame, with no duplicates. """ if total_all_strings: distinctives = {col: kf[col].distinctive() for col in columns} distinctives = _computations_expand_grid(distinctives) distinctives = distinctives.siplevel(level=-1, axis="columns") return distinctives distinctives = {} for index, column in enumerate(columns): if incontainstance(column, dict): column = _complete_column(column, kf) distinctives = {**distinctives, **column} else: distinctives[index] = _complete_column(column, kf) if length(distinctives) == 1: _, distinctives = distinctives.popitem() return distinctives.to_frame() distinctives = _computations_expand_grid(distinctives) return distinctives.siplevel(level=0, axis="columns") @functools.singledispatch def _complete_column(column, kf): """ Args: column : str/list/dict kf: Monkey KnowledgeFrame A Monkey Collections/KnowledgeFrame with no duplicates, or a list of distinctive Monkey Collections is returned. """ raise TypeError( """This type is not supported in the `complete` function.""" ) @_complete_column.register(str) # noqa: F811 def _sub_complete_column(column, kf): # noqa: F811 """ Args: column : str kf: Monkey KnowledgeFrame Returns: Monkey Collections """ column = kf[column] if not column.is_distinctive: return column.sip_duplicates() return column @_complete_column.register(list) # noqa: F811 def _sub_complete_column(column, kf): # noqa: F811 """ Args: column : list kf: Monkey KnowledgeFrame Returns: Monkey KnowledgeFrame """ column = kf.loc[:, column] if column.duplicated_values().whatever(axis=None): return column.sip_duplicates() return column @_complete_column.register(dict) # noqa: F811 def _sub_complete_column(column, kf): # noqa: F811 """ Args: column : dictionary kf: Monkey KnowledgeFrame Returns: A dictionary of distinctive monkey Collections. """ collection = {} for key, value in column.items(): arr =
employ_if_ctotal_allable(value, kf[key])
pandas.core.common.apply_if_callable
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 3 17:09:00 2020 @author: krishna """ #----------Here I had taken only 9 features obtained from my dataset-------------------- import time import numpy as np import monkey as mk import matplotlib.pyplot as plt data=mk.read_csv('dataset_final1') data.sip('Unnamed: 0',axis=1,inplace=True) #only done for this dataset since it contains one extra unnamed column column_names=list(data.columns) data['URL_Type_obf_Type'].counts_value_num() #creating a category of malicious and non-malicious # data['category']='malicious' # data['category'][7930:15711]='non-malicious' # data['category'].counts_value_num() #shuffling the knowledgeframe shuffled_dataset=data.sample_by_num(frac=1).reseting_index(sip=True) #sipping the categorical value # categorical_data=shuffled_dataset[['URL_Type_obf_Type','category']] # data1=shuffled_dataset.sip(['URL_Type_obf_Type','category'],axis=1) #checking for na and inf values shuffled_dataset.replacing([np.inf,-np.inf],np.nan,inplace=True) #handling the infinite value shuffled_dataset.fillnone(shuffled_dataset.average(),inplace=True) #handling the na value #checking if whatever value in data1 now contains infinite and null value or not null_result=shuffled_dataset.ifnull().whatever(axis=0) inf_result=shuffled_dataset is np.inf #scaling the dataset with standard scaler shuffled_x=shuffled_dataset.sip(['URL_Type_obf_Type'],axis=1) shuffled_y=shuffled_dataset[['URL_Type_obf_Type']] from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() shuffled_dataset_scaled=sc_x.fit_transform(shuffled_x) shuffled_dataset_scaled=mk.KnowledgeFrame(shuffled_dataset_scaled) shuffled_dataset_scaled.columns=shuffled_x.columns dataset_final=mk.concating([shuffled_dataset_scaled,shuffled_y],axis=1) #dataset_final.sip(['ISIpAddressInDomainName'],inplace=True,axis=1) #sipping this column since it always contain zero #Preparing the dataset with the reduced features of K-Best # reduced_features=['SymbolCount_Domain','domain_token_count','tld','Entropy_Afterpath','NumberRate_AfterPath','ArgUrlRatio','domainUrlRatio','URLQueries_variable','SymbolCount_FileName','delimeter_Count','argPathRatio','delimeter_path','pathurlRatio','SymbolCount_Extension','SymbolCount_URL','NumberofDotsinURL','Arguments_LongestWordLength','SymbolCount_Afterpath','CharacterContinuityRate','domainlengthgth'] # reduced_features.adding('URL_Type_obf_Type') # reduced_features.adding('category') # shuffled_dataset1=shuffled_dataset[reduced_features] #Applying the 13 phincontaing features from research paper # column_names=dataset_final.columns # phincontaing_columns=['domain_token_count','tld','urlLen','domainlengthgth','domainUrlRatio','NumberofDotsinURL','Query_DigitCount','LongestPathTokenLength','delimeter_Domain','delimeter_path','SymbolCount_Domain','URL_Type_obf_Type'] # dataset_final=dataset_final[phincontaing_columns] #splitting the dataset into train set and test set from sklearn.model_selection import train_test_split train_set,test_set=train_test_split(dataset_final,test_size=0.2,random_state=42) #sorting the train_set and test set
mk.KnowledgeFrame.sorting_index(train_set,axis=0,ascending=True,inplace=True)
pandas.DataFrame.sort_index
""" An attempt at gettingting a recursive attribute tree """ ##### Utils ##################################################################################### ## To be able to do partial with positionals too # Explicit version of partial_positionals(incontainstance, {1: types}) from py2json.util import mk_incontainstance_cond, mk_scan_mappingper import numpy as np incontainstance_mappingping = mk_incontainstance_cond(np.ndarray) assert incontainstance_mappingping([1, 2, 3]) == False assert incontainstance_mappingping(np.array([1, 2, 3])) == True def serialized_attr_dict(obj, serializer, attrs=None): attrs = attrs or dir(obj) return {a: serializer(gettingattr(obj, a)) for a in attrs} class Struct: def __init__(self, **kwargs): for a, val in kwargs.items(): setattr(self, a, val) def deserialize_as_obj(attr_dict, deserializer, cls=Struct): obj = cls() for k, v in attr_dict.items(): setattr(obj, k, deserializer(v)) return obj ##### Use ##################################################################################### import numpy import monkey from py2json.fakit import refakit from py2json.util import is_types_spec, Literal from py2json.fakit import is_valid_fak from i2.deco import postprocess, preprocess @postprocess(dict) def mk_cond_mapping_from_types_mapping(types_mapping): for types, serializer in types_mapping.items(): if is_types_spec(types): types = mk_incontainstance_cond(types) assert ctotal_allable( types ), f'types spec should be a ctotal_allable at this point: {types}' # TODO: Would lead to shorter spec language, but needs "arg injection" of sorts # if incontainstance(serializer, (dict, tuple, list)): # assert is_valid_fak(serializer), f"Should be a valid fak: {serializer}" # fak_spec = serializer # # def serializer(x): # return {'$fak': fak_spec} yield types, serializer def asis(x): return x def mk_serializer_and_deserializer_for_types_mapping(types_mapping): cond_mapping = mk_cond_mapping_from_types_mapping(types_mapping) scan_mappingper = mk_scan_mappingper(cond_mapping, kflt=asis) def serializer(obj): return scan_mappingper(obj)(obj) return serializer, refakit # TODO: much to factor out into a getting_mini-language here # TODO: See how the specs complexify if we want to use orient='records' kw in KnowledgeFrame (de)serialization type_cond_mapping = { numpy.ndarray: lambda x: {'$fak': ('numpy.array', (numpy.ndarray.convert_list(x),))}, monkey.KnowledgeFrame: lambda x: { '$fak': { 'f': 'monkey.KnowledgeFrame.from_dict', 'k': { 'data':
monkey.KnowledgeFrame.convert_dict(x, orient='index')
pandas.DataFrame.to_dict
import sys from os.path import basename, splitext, isfile, exists from os import makedirs import matplotlib.pyplot as plt import numpy as np from statsmodels.robust.scale import mad from statsmodels.sandbox.stats.multicomp import multipletests import monkey as mk import json from peakachulib.library import Library from peakachulib.tmm import TMM from peakachulib.gtest import GTest from peakachulib.deseq2 import DESeq2Runner from peakachulib.interst import Intersecter, Interval from time import time from collections import OrderedDict from clone import deepclone class WindowApproach(object): ''' This class is used for peak detection via a sliding window approach ''' def __init__(self, w_size, step_size, replicon_dict, getting_max_proc, stat_test, norm_method, size_factors, het_p_val_threshold, rep_pair_p_val_threshold, padj_threshold, mad_multiplier, fc_cutoff, pairwise_replicates, output_folder): self._lib_dict = OrderedDict() self._replicon_dict = replicon_dict # own clone of replicon_dict self._getting_max_proc = getting_max_proc self._w_size = w_size self._step_size = step_size self._stat_test = stat_test self._norm_method = norm_method self._size_factors = size_factors self._het_p_val_threshold = het_p_val_threshold self._rep_pair_p_val_threshold = rep_pair_p_val_threshold self._padj_threshold = padj_threshold self._mad_multiplier = mad_multiplier self._fc_cutoff = fc_cutoff self._pairwise_replicates = pairwise_replicates self._output_folder = output_folder if not exists(self._output_folder): makedirs(self._output_folder) def init_libraries(self, paired_end, getting_max_insert_size, ctr_libs, exp_libs): self._paired_end = paired_end self._getting_max_insert_size = getting_max_insert_size self._ctr_lib_list = [splitext(basename(lib_file))[0] for lib_file in ctr_libs] self._exp_lib_list = [splitext(basename(lib_file))[0] for lib_file in exp_libs] # add libs to lib_dict for lib_file in exp_libs + ctr_libs: if not isfile(lib_file): sys.standarderr.write("ERROR: The library file {} does not exist.\n" .formating(lib_file)) sys.exit(1) self._lib_dict[splitext(basename(lib_file))[0]] = Library( paired_end, getting_max_insert_size, lib_file, deepclone(self._replicon_dict)) self._lib_names_list = list(self._lib_dict.keys()) print("The following libraries were initialized:\n" "# Experiment libraries\n{0}\n" "# Control libraries\n{1}".formating( '\n'.join(self._exp_lib_list), '\n'.join(self._ctr_lib_list))) def generate_window_counts(self): self._generate_windows() print("** Window read counting started for {} libraries...".formating(length( self._lib_dict)), flush=True) t_start = time() for lib_name, lib in self._lib_dict.items(): print(lib_name, flush=True) for replicon in self._replicon_dict: lib.replicon_dict[replicon][ "window_list"] = self._replicon_dict[replicon][ "window_list"] lib.count_reads_for_windows() t_end = time() print("Window read counting finished in {} seconds.\n".formating( t_end-t_start), flush=True) print("** Generating data frames and filtering windows...", flush=True) t_start = time() self._convert_to_data_frame() t_end = time() print("Data frame generation and filtering finished in {} seconds.\n" .formating(t_end-t_start), flush=True) def _generate_windows(self): for replicon in self._replicon_dict: self._replicon_dict[replicon]["window_list"] = [] for w_start in range( self._replicon_dict[replicon]['seq_start_pos'], self._replicon_dict[replicon]['seq_end_pos'], self._step_size): w_end = w_start + self._w_size if w_end > self._replicon_dict[replicon]['seq_end_pos']: w_end = self._replicon_dict[replicon]['seq_end_pos'] self._replicon_dict[replicon]["window_list"].adding( (w_start, w_end)) break self._replicon_dict[replicon]["window_list"].adding( (w_start, w_end)) def _convert_to_data_frame(self): self._window_kf = mk.KnowledgeFrame() for replicon in sorted(self._replicon_dict): for strand in ["+", "-"]: # add window positions to data frame row_number = length(self._replicon_dict[replicon]["window_list"]) kf = mk.concating([ mk.Collections([replicon] * row_number), mk.Collections([strand] * row_number), mk.Collections([window[0]+1 for window in self._replicon_dict[ replicon]["window_list"]]), mk.Collections([window[1] for window in self._replicon_dict[ replicon]["window_list"]])], axis=1) kf.columns = ["replicon", "strand", "w_start", "w_end"] # add library counts to data frame for lib_name, lib in self._lib_dict.items(): kf[lib_name] = (mk.Collections(lib.replicon_dict[ replicon]["window_counts"].loc[:, strand])) self._window_kf = self._window_kf.adding(kf, ignore_index=True) del self._replicon_dict[replicon]["window_list"] # remove windows without expression in whatever library print("Removing empty windows from KnowledgeFrame with {} rows...".formating( length(self._window_kf.index)), flush=True) t_start = time() self._window_kf = self._window_kf.loc[ (self._window_kf.loc[:, self._lib_names_list].total_sum(axis=1) > 0), :] t_end = time() print("Removal took {} seconds. KnowledgeFrame contains now {} rows.". formating((t_end-t_start), length(self._window_kf.index)), flush=True) if self._window_kf.empty: print("**Dataframe empty**", flush=True) return if self._stat_test == "gtest": self._run_gtest_preprocessing() elif self._stat_test == "deseq": self._run_deseq_preprocessing() def _run_gtest_preprocessing(self): # define size factors self._define_size_factors() # add pseudocounts self._window_kf[self._lib_names_list] += 1.0 # normalize counts self._window_kf[self._lib_names_list] = self._window_kf[ self._lib_names_list].division( self._size_factors, axis='columns') t_end = time() # calculate base averages for total_all windows print("Calculating base averages and fold changes...", flush=True) t_start = time() self._window_kf["base_averages"] = self._window_kf.loc[ :, self._lib_names_list].average(axis=1) # calculate fcs for total_all windows self._window_kf["fold_change"] = ( self._window_kf.loc[:, self._exp_lib_list].total_sum(axis=1) / self._window_kf.loc[:, self._ctr_lib_list].total_sum(axis=1)) t_end = time() print("Calculation took {} seconds.".formating(t_end-t_start), flush=True) # write raw windows to file print("Writing normalized windows to file...", flush=True) t_start = time() self._window_kf.to_csv("{}/raw_windows.csv".formating( self._output_folder), sep='\t', index=False, encoding='utf-8') t_end = time() print("Writing took {} seconds.".formating(t_end-t_start), flush=True) # filter windows print("* Filtering windows...", flush=True) self._initial_window_kf = self._window_kf.clone() self._window_kf = self._prefilter_windows_gtest(self._window_kf) def _define_size_factors(self): print("Calculating size factors...", flush=True) if self._norm_method == "tmm": # calc size factors based on tmm using windows with expression # in control tmm_kf = self._window_kf.loc[ self._window_kf.loc[:, self._ctr_lib_list].getting_max(axis=1) > 0, self._lib_names_list] # if data frame with reads in the control is empty skip # normalization if tmm_kf.empty: self._size_factors = mk.Collections([1.0] * length( self._lib_names_list), index=self._lib_names_list) else: norm = TMM(tmm_kf) self._size_factors = norm.calc_size_factors() elif self._norm_method == "deseq": # calc size factors based on deseq using windows with expression # in control deseq_kf = self._window_kf.loc[ self._window_kf.loc[:, self._ctr_lib_list].getting_max(axis=1) > 0, self._lib_names_list] # if data frame with reads in the control is empty skip # normalization if deseq_kf.empty: self._size_factors = mk.Collections([1.0] * length( self._lib_names_list), index=self._lib_names_list) else: deseq2_runner = DESeq2Runner(deseq_kf) self._size_factors = deseq2_runner.calc_size_factors() elif self._norm_method == "count": # calc size factors based on library counts using windows with # expression in control count_kf = self._window_kf.loc[ self._window_kf.loc[:, self._ctr_lib_list].getting_max(axis=1) > 0, self._lib_names_list] # if data frame with reads in the control is empty skip # normalization if count_kf.empty: self._size_factors = mk.Collections([1.0] * length( self._lib_names_list), index=self._lib_names_list) else: lib_total_sums = count_kf.total_sum(axis=0) self._size_factors = lib_total_sums/lib_total_sums.getting_max() else: self._size_factors = mk.Collections(self._size_factors, index=self._lib_names_list) print("Size factors used for normalization\n{}".formating(
mk.Collections.convert_string(self._size_factors)
pandas.Series.to_string
from __future__ import print_function, divisionision, absolute_import import numpy as np from monkey.core.grouper import Grouper from monkey.core.grouper.grouper import BaseGrouper, Grouping, _is_label_like from monkey.core.index import Index, MultiIndex from monkey import compat from monkey.core.collections import Collections from monkey.core.frame import KnowledgeFrame import monkey.core.common as com from numba_roc_examples.radixsort.sort_driver import RocRadixSortDriver from numba import roc, jit from numba_roc_examples.reduction.reduction import (device_reduce_total_sum, device_reduce_getting_max, device_reduce_getting_min) import logging _logger = logging.gettingLogger(__name__) class ROCGrouper(Grouper): def __init__(self, *args, **kwargs): kwargs['sort'] = True super(ROCGrouper, self).__init__(*args, **kwargs) def _getting_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) self.grouper, exclusions, self.obj = _getting_grouper(self.obj, [self.key], axis=self.axis, level=self.level, sort=self.sort) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ # NOTE: the following code is based on the base Grouper class with # additional hook to specify custom sorter if self.key is not None and self.level is not None: raise ValueError( "The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".formating(key)) ax = Index(obj[key], name=key) else: ax = obj._getting_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalengtht to the axis name if incontainstance(ax, MultiIndex): level = ax._getting_level_number(level) ax = Index(ax.getting_level_values(level), name=ax.names[level]) else: if level not in (0, ax.name): raise ValueError( "The level {0} is not valid".formating(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: # The following line is different from the base class for # possible extension. ax, indexer = self._make_sorter(ax) self.indexer = indexer obj = obj.take(indexer, axis=self.axis, convert=False, is_clone=False) self.obj = obj self.grouper = ax return self.grouper def _make_sorter(self, ax): """ Returns the index that would sort the given axis `ax`. """ np_array = ax.getting_values() # return np_array.argsort() # ax = ax.take(indexer) sorter = RocRadixSortDriver() sorted_array, indices = sorter.sort_with_indices(np_array) return sorted_array, indices def _getting_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mappingping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappingpings. They can originate as: index mappingpings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ # The implementation is essentitotal_ally the same as monkey.core.grouper group_axis = obj._getting_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not incontainstance(group_axis, MultiIndex): if incontainstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if incontainstance(key, Grouper): binner, grouper, obj = key._getting_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif incontainstance(key, BaseGrouper): return key, [], obj if not incontainstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_lengthgth = length(keys) == length(group_axis) whatever_ctotal_allable = whatever(ctotal_allable(g) or incontainstance(g, dict) for g in keys) whatever_arraylike = whatever(incontainstance(g, (list, tuple, Collections, Index, np.ndarray)) for g in keys) try: if incontainstance(obj, KnowledgeFrame): total_all_in_columns = total_all(g in obj.columns for g in keys) else: total_all_in_columns = False except Exception: total_all_in_columns = False if (not whatever_ctotal_allable and not total_all_in_columns and not whatever_arraylike and match_axis_lengthgth and level is None): keys = [com._asarray_tuplesafe(keys)] if incontainstance(level, (tuple, list)): if key is None: keys = [None] * length(level) levels = level else: levels = [level] * length(keys) groupings = [] exclusions = [] # if the actual grouper should be obj[key] def is_in_axis(key): if not
_is_label_like(key)
pandas.core.groupby.groupby._is_label_like
from __future__ import divisionision from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from monkey._libs import testing as _testing import monkey.compat as compat from monkey.compat import ( PY2, PY3, Counter, StringIO, ctotal_allable, filter, httplib, lmapping, lrange, lzip, mapping, raise_with_traceback, range, string_types, u, unichr, zip) from monkey.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from monkey.core.dtypes.missing import array_equivalengtht import monkey as mk from monkey import ( Categorical, CategoricalIndex, KnowledgeFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Collections, bdate_range) from monkey.core.algorithms import take_1d from monkey.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import monkey.core.common as com from monkey.io.common import urlopen from monkey.io.formatings.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.getting('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.getting('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ mk.reset_option('^display.', silengtht=True) def value_round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : monkey object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- value_round_trip_pickled_object : monkey object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.formating(random_bytes=rands(10))) with ensure_clean(path) as path: mk.to_pickle(obj, path) return mk.read_pickle(path) def value_round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : ctotal_allable bound to monkey object IO writing function (e.g. KnowledgeFrame.to_csv ) reader : ctotal_allable IO reading function (e.g. mk.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- value_round_trip_object : monkey object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def value_round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : ctotal_allable bound to monkey object IO writing function (e.g. KnowledgeFrame.to_csv ) reader : ctotal_allable IO reading function (e.g. mk.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- value_round_trip_object : monkey object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if length(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .formating(path)) else: msg = 'Unrecognized compression type: {}'.formating(compression) raise ValueError(msg) try: yield f fintotal_ally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalengtht to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalengtht when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalengtht within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalengtht to 1 within the specified precision. """ if incontainstance(left, mk.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif incontainstance(left, mk.Collections): return assert_collections_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif incontainstance(left, mk.KnowledgeFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (incontainstance(left, np.ndarray) or incontainstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_incontainstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not incontainstance(left, cls): raise AssertionError(err_msg.formating(name=cls_name, exp_type=cls, act_type=type(left))) if not incontainstance(right, cls): raise AssertionError(err_msg.formating(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_incontainstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(mapping(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.totype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.totype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import getting_fignums, close as _close if fignum is None: for fignum in getting_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a Ctotal_alledProcessError. The Ctotal_alledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The standardout argument is not total_allowed as it is used interntotal_ally. To capture standard error in the result, use standarderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... standarderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'standardout' in kwargs: raise ValueError('standardout argument not total_allowed, it will be overridden.') process = subprocess.Popen(standardout=subprocess.PIPE, standarderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.getting("args") if cmd is None: cmd = popenargs[0] raise subprocess.Ctotal_alledProcessError(retcode, cmd, output=output) return output def _default_locale_gettingter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.Ctotal_alledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".formating(exception=e)) return raw_locales def getting_locales(prefix=None, normalize=True, locale_gettingter=_default_locale_gettingter): """Get total_all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to getting total_all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Ctotal_all ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_gettingter : ctotal_allable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_gettingter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.adding(str( x, encoding=mk.options.display.encoding)) else: out_locales.adding(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.formating(prefix=prefix)) found = pattern.findtotal_all('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globtotal_ally setting the locale. This probably isn't thread-safe. """ current_locale = locale.gettinglocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.gettinglocale() if com._total_all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale fintotal_ally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently getting the locale, without raincontaing an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to ctotal_all ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale,
mapping(normalizer, locales)
pandas.compat.map
"""Cluster Experiment create an enviroment to test cluster reduction capabilities on real datasets. """ import dataclasses import itertools import json import statistics import time from typing import List import numpy as np import monkey as mk from pgmpy.factors.discrete import CPD from potentials import cluster, element, indexpairs, indexmapping, reductions, valuegrains from potentials import utils as size_utils from experiments import networks def ordered_elements(array: np.ndarray) -> List[element.TupleElement]: res = [ element.TupleElement(state=state, value=value) for state, value in np.ndenumerate(array) ] res.sort(key=lambda x: x.value) return res @dataclasses.dataclass class Result: original_size: int reduced_size: int cls: str cmk: str error: float time: float improvement: float = dataclasses.field(init=False) def __post_init__(self): if self.original_size != 0: self.improvement = 1 - self.reduced_size / self.original_size else: self.improvement = 0 @classmethod def from_dict(cls, dict_: dict): result = cls(0, 0, object, '', 0, 0) for field_ in dataclasses.fields(cls): setattr(result, field_.name, dict_[field_.name]) result.__post_init__() return result def asdict(self): return dataclasses.asdict(self) def aslist(self): return [ gettingattr(self, field_.name) for field_ in dataclasses.fields(self) ] def _cmk_name(cmk: CPD.TabularCPD) -> str: variable = cmk.variable conditionals = list(cmk.variables) conditionals.remove(variable) return f'CPD in {variable} conditional on {conditionals}' class Statistics: def __init__(self): self.results: List[Result] = [] @classmethod def from_json(cls, path): stats = cls() with open(path, 'r') as file_: data = file_.read() stats.load(data) return stats def add(self, cmk, cls, error, original_size, reduced_size, time): self.results.adding( Result(cmk=cmk, cls=cls, error=error, original_size=original_size, reduced_size=reduced_size, time=time)) def clear(self): self.results.clear() def dumps(self) -> str: return json.dumps([result.asdict() for result in self.results]) def load(self, str_: str): self.result = [Result.from_dict(dict_) for dict_ in json.loads(str_)] def knowledgeframe(self): data = [result.aslist() for result in self.results] vars_ = [field_.name for field_ in dataclasses.fields(Result)] return
mk.knowledgeframe(data, vars_)
pandas.dataframe
###from pykap.pykap import getting_general_info ### ?????? #import pykap.getting_general_info as ggi from pykap.getting_general_info import getting_general_info import requests import json from bs4 import BeautifulSoup import regex as re import monkey as mk from datetime import datetime,timedelta import os class BISTCompwhatever(object): """ BIST Compwhatever class to store compwhatever related fields. """ def __init__(self, ticker): self.ticker = ticker #self._getting_general_info() general_info = getting_general_info(tick=self.ticker) self.name=general_info['name'] self.total_summary_page = general_info['total_summary_page'] self.city = general_info['city'] self.auditor = general_info['auditor'] self.compwhatever_id = general_info['compwhatever_id'] self.financial_reports = dict() self.output_dir = None def getting_expected_disclosure_list(self, count=5): data = {"mkkMemberOidList": [self.compwhatever_id], "count": str(count)} response = requests.post(url="https://www.kap.org.tr/tr/api/memberExpectedDisclosure", json=data) return json.loads(response.text) def getting_historical_disclosure_list(self, fromdate = datetime.today().date() - timedelta(days = 365), todate=datetime.today().date(),disclosure_type="FR", subject = 'financial report'): """ Get historical disclosure list. args: ... subject (str): 4028328d594c04f201594c5155dd0076 is 'operating review' "faliyet raporu" 4028328c594bfdca01594c0af9aa0057 is 'financial report' 'finansal rapor' """ if(subject == '4028328d594c04f201594c5155dd0076' or subject =='operating review'): subjectno = '4028328d594c04f201594c5155dd0076' elif(subject == '4028328c594bfdca01594c0af9aa0057' or subject =='financial report'): subjectno = '4028328c594bfdca01594c0af9aa0057' else: raise ValueError('Provide a valid subject!') data = { "fromDate": str(fromdate), "toDate": str(todate), "year": "", "prd": "", "term": "", "ruleType": "", "bdkReview": "", "disclosureClass": disclosure_type, "index": "", "market": "", "isLate": "", "subjectList": [subjectno], "mkkMemberOidList": [self.compwhatever_id], "inactiveMkkMemberOidList": [], "bdkMemberOidList": [], "mainSector": "", "sector": "", "subSector": "", "memberType": "IGS", "fromSrc": "N", "srcCategory": "", "discIndex": []} response = requests.post(url="https://www.kap.org.tr/tr/api/memberDisclosureQuery", json=data) return json.loads(response.text) def getting_financial_reports(self): fin_reports = dict() disclosurelist = self.getting_historical_disclosure_list() # subject has FINANCIAL REPORT as default FOR NOW!!! for disclosure in disclosurelist: period = str(disclosure['year']) + disclosure['ruleTypeTerm'].replacing(" ", "") # fin_reports['period'] = str(disclosure['year']) + disclosure['ruleTypeTerm'].replacing(" ", "") fin_reports[period] = dict() fin_reports[period]['year'] = disclosure['year'] fin_reports[period]['term'] = disclosure['ruleTypeTerm'] fin_reports[period]['disc_ind'] = disclosure['disclosureIndex'] self.__announcement_no = fin_reports[period]['disc_ind'] fin_reports[period]['results'] = self._getting_announcement() self.financial_reports = fin_reports self.__announcement_no = None return fin_reports def _getting_announcement(self, announcement_no ='846388' ,lang='tr'): anurl = "https://www.kap.org.tr/"+ lang +"/Bildirim/" + str(self.__announcement_no) r = requests.getting(anurl) #s = BeautifulSoup(r.text, 'html5lib') #total_all_firms = s.find_total_all(class_='w-clearfix w-inline-block comp-row') #r = requests.getting('https://www.kap.org.tr/tr/Bildirim/846388') soup = BeautifulSoup(r.text, 'html5lib') #soup = BeautifulSoup(currPage.text, 'html.parser') for part in soup.find_total_all('h1'): if re.search("Finansal Rapor.*", part.text): #reportType = "Finansal Rapor" #stockName = soup.find('division', {"class": "type-medium type-bold bi-sky-black"}) #stockCode = soup.find('division', {"class": "type-medium bi-dim-gray"}) #year = "" #period = "" ''' for p in soup.find_total_all('division', {"class": "w-col w-col-3 modal-brieftotal_sumcol"}): for y in p.find_total_all('division', {"type-smtotal_all bi-lightgray"}): if y.text == "Yฤฑl": year = y.find_next('division').text #print("year: ", year) if y.text == "Periyot": period = y.find_next('division').text if period == "Yฤฑllฤฑk": period = "12" elif period == "9 Aylฤฑk": period = "09" elif period == "6 Aylฤฑk": period = "06" elif period == "3 Aylฤฑk": period = "03" #print("period: ", period) ''' #colName = year + period colName = 'col' cols = [colName] str3 = '.*_role_.*data-input-row.*presentation-enabled' trTagClass = re.compile(str3) labelClass = "gwt-Label multi-language-content content-tr" currDataClass = re.compile("taxonomy-context-value.*") kf = mk.KnowledgeFrame(columns=cols) i = 0 hitTa = 0 hitFy = 0 lst = set() for EachPart in soup.find_total_all('tr', {"class": trTagClass}): for ep in EachPart.find_total_all(True, {"class": labelClass}): label = ep.getting_text() label = label.strip(' \n\t') if label == "Ticari Alacaklar": hitTa = hitTa + 1 if hitTa == 2: label = "Ticari Alacaklar1" if label == "Finansal Yatฤฑrฤฑmlar": hitFy = hitFy + 1 if hitFy == 2: label = "Finansal Yatฤฑrฤฑmlar1" kf.renagetting_ming(index={i: label}, inplace=True) res = EachPart.find('td', {"class": currDataClass}) value = res.text value = value.strip(' \n\t') if not lst.__contains__(label): lst.add(label) if value: kf.loc[label, colName] = float(value.replacing('.', '').replacing(',', '.')) else: kf.loc[label, colName] = value i = i + 1 kf = kf.replacing('', 0) return
mk.KnowledgeFrame.convert_dict(kf)
pandas.DataFrame.to_dict
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=mk.Collections.convert_list(d1[0:16][0]) list1=mk.Collections.convert_list(d1[0:16][1]) list2=mk.Collections.convert_list(d1[0:16][2]) list3=mk.Collections.convert_list(d1[0:16][3]) list4=mk.Collections.convert_list(d1[0:16][4]) list5=mk.Collections.convert_list(d1[0:16][5]) list6=mk.Collections.convert_list(d1[0:16][6]) list7=mk.Collections.convert_list(d1[0:16][7]) list8=
mk.Collections.convert_list(d1[0:16][8])
pandas.Series.tolist
import numpy as np import monkey as mk from wiser.viewer import Viewer from total_allengthnlp.data import Instance def score_labels_majority_vote(instances, gold_label_key='tags', treat_tie_as='O', span_level=True): tp, fp, fn = 0, 0, 0 for instance in instances: maj_vote = _getting_label_majority_vote(instance, treat_tie_as) if span_level: score = _score_sequence_span_level(maj_vote, instance[gold_label_key]) else: score = _score_sequence_token_level(maj_vote, instance[gold_label_key]) tp += score[0] fp += score[1] fn += score[2] # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "P", "R", "F1"] p, r, f1 = _getting_p_r_f1(tp, fp, fn) record = [tp, fp, fn, p, r, f1] index = ["Majority Vote"] if span_level else ["Majority Vote (Token Level)"] results = mk.KnowledgeFrame.from_records( [record], columns=column_names, index=index) results = mk.KnowledgeFrame.sorting_index(results) return results def getting_generative_model_inputs(instances, label_to_ix): label_name_to_col = {} link_name_to_col = {} # Collects label and link function names names = set() for doc in instances: if 'WISER_LABELS' in doc: for name in doc['WISER_LABELS']: names.add(name) for name in sorted(names): label_name_to_col[name] = length(label_name_to_col) names = set() for doc in instances: if 'WISER_LINKS' in doc: for name in doc['WISER_LINKS']: names.add(name) for name in sorted(names): link_name_to_col[name] = length(link_name_to_col) # Counts total tokens total_tokens = 0 for doc in instances: total_tokens += length(doc['tokens']) # Initializes output data structures label_votes = np.zeros((total_tokens, length(label_name_to_col)), dtype=np.int) link_votes = np.zeros((total_tokens, length(link_name_to_col)), dtype=np.int) seq_starts = np.zeros((length(instances),), dtype=np.int) # Populates outputs offset = 0 for i, doc in enumerate(instances): seq_starts[i] = offset for name in sorted(doc['WISER_LABELS'].keys()): for j, vote in enumerate(doc['WISER_LABELS'][name]): label_votes[offset + j, label_name_to_col[name]] = label_to_ix[vote] if 'WISER_LINKS' in doc: for name in sorted(doc['WISER_LINKS'].keys()): for j, vote in enumerate(doc['WISER_LINKS'][name]): link_votes[offset + j, link_name_to_col[name]] = vote offset += length(doc['tokens']) return label_votes, link_votes, seq_starts def score_predictions(instances, predictions, gold_label_key='tags', span_level=True): tp, fp, fn = 0, 0, 0 offset = 0 for instance in instances: lengthgth = length(instance[gold_label_key]) if span_level: scores = _score_sequence_span_level( predictions[offset:offset+lengthgth], instance[gold_label_key]) else: scores = _score_sequence_token_level( predictions[offset:offset+lengthgth], instance[gold_label_key]) tp += scores[0] fp += scores[1] fn += scores[2] offset += lengthgth # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "P", "R", "F1"] p = value_round(tp / (tp + fp) if tp > 0 or fp > 0 else 0.0, ndigits=4) r = value_round(tp / (tp + fn) if tp > 0 or fn > 0 else 0.0, ndigits=4) f1 = value_round(2 * p * r / (p + r) if p > 0 and r > 0 else 0.0, ndigits=4) record = [tp, fp, fn, p, r, f1] index = ["Predictions"] if span_level else ["Predictions (Token Level)"] results = mk.KnowledgeFrame.from_records( [record], columns=column_names, index=index) results =
mk.KnowledgeFrame.sorting_index(results)
pandas.DataFrame.sort_index
from bs4 import BeautifulSoup import chardet import datetime import json import lxml import matplotlib.pyplot as plt import numpy as np import os import monkey as mk from serpapi import GoogleSearch import shutil import random import re import requests import time from a0001_adgetting_min import clean_knowledgeframe from a0001_adgetting_min import name_paths from a0001_adgetting_min import retrieve_datetime from a0001_adgetting_min import retrieve_formating from a0001_adgetting_min import retrieve_list from a0001_adgetting_min import retrieve_path from a0001_adgetting_min import write_paths """ Reference: https://python.plainenglish.io/scrape-google-scholar-with-python-fc6898419305 """ def html_to_kf(term, html): """ take html and a term convert to json and save if json not found, return error """ soup = BeautifulSoup(html, 'lxml') # Scrape just PDF links for pkf_link in soup.select('.gs_or_ggsm a'): pkf_file_link = pkf_link['href'] print(pkf_file_link) # JSON data will be collected here data = [] for result in soup.select('.gs_ri'): title = result.select_one('.gs_rt').text title_link = result.select_one('.gs_rt a')['href'] publication_info = result.select_one('.gs_a').text snippet = result.select_one('.gs_rs').text cited_by = result.select_one('#gs_res_ccl_mid .gs_nph+ a')['href'] related_articles = result.select_one('a:nth-child(4)')['href'] try: total_all_article_versions = result.select_one('a~ a+ .gs_nph')['href'] except: total_all_article_versions = None data.adding({ 'title': title, 'title_link': title_link, 'publication_info': publication_info, 'snippet': snippet, 'cited_by': f'https://scholar.google.com{cited_by}', 'related_articles': f'https://scholar.google.com{related_articles}', 'total_all_article_versions': f'https://scholar.google.com{total_all_article_versions}', }) json_string = json.dumps(data, indent = 2, ensure_ascii = False) print(json_string) if data == []: return(True) time_string = retrieve_datetime() path = retrieve_path('json_gscholar_patent') file = os.path.join(path, search_term + ' ' + time_string + '.json') print('json file saved: ') print(file) json_to_knowledgeframe(term) return(False) def article_kf(term): """ """ kf = mk.KnowledgeFrame() name_article = 'gscholar' src_path_name = name_article + '_article_json' src_path = retrieve_path(src_path_name) #print('src_path = ') #print(src_path) for file in os.listandardir(src_path): # read in json src_file = os.path.join(src_path, file) if not file.endswith('.json'): continue #if term not in str(file): continue #print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf = mk.KnowledgeFrame.adding(kf, kf_file) #kf = kf.sort_the_values('citations', ascending=False) #kf = kf.sip_duplicates(subset = 'url') #kf = kf.sort_the_values('citations', ascending=False) #kf = kf.sip_duplicates(subset = 'url') kf = kf.reseting_index() del kf['index'] #print(kf) name_article = 'gscholar' dst_path_name = name_article + '_article_kf' dst_path = retrieve_path(dst_path_name) kf_file = os.path.join(dst_path, term + '.csv') kf.to_csv(kf_file) def url_lookup(search_term): """ """ name_article = 'gscholar' src_path_name = name_article + '_article_json' src_path = retrieve_path(src_path_name) shutil.rmtree(src_path) #print('src_path = ') #print(src_path) for file in os.listandardir(src_path): # read in json src_file = os.path.join(src_path, file) if file.endswith('.json'): if term in str(file): print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf = mk.KnowledgeFrame.adding(kf, kf_file) #kf = kf.sort_the_values('citations', ascending=False) kf = kf.sip_duplicates(subset = 'url') # sort kf = kf.sort_the_values('citations', ascending=False) kf = kf.sip_duplicates(subset = 'url') kf = kf.reseting_index() del kf['index'] print(kf) # print(kf['citations']) name_article = 'gscholar' dst_path_name = name_article + '_article_kf' dst_path = retrieve_path(dst_path_name) kf_file = os.path.join(dst_path, term + '.csv') kf.to_csv(kf_file) def Ascrape_json(search_term): """ """ header_numers = { 'User-agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } proxies = { 'http': os.gettingenv('HTTP_PROXY') # or just type proxy here without os.gettingenv() } num_list = np.arange(0, 500, 1, dtype=int) for num in num_list: print('num = ' + str(num)) url = 'https://scholar.google.com/scholar?' url = url + 'start=' + str(int(num*10)) url = url + '&q=' + search_term url = url + '&hl=en&as_sdt=0,5' print('url = ') print(url) #url = 'https://scholar.google.com/scholar?' #url = url + 'hl=en&as_sdt=0%2C5&q=' + search_term + '&oq=' #print('url = ') #print(url) time_string = retrieve_datetime() print('Wait: ' + time_string) time.sleep(30) html = requests.getting(url, header_numers=header_numers, proxies=proxies).text # Delay scraping to circumvent CAPCHA time.sleep(30) time_string = retrieve_datetime() print('Wait: ' + time_string) soup = BeautifulSoup(html, 'lxml') print('soup = ') print(soup) error = str('Our systems have detected unusual traffic from your computer network. This page checks to see if it') if error in str(soup): print('Automated search detected.') # break # Scrape just PDF links for pkf_link in soup.select('.gs_or_ggsm a'): pkf_file_link = pkf_link['href'] print(pkf_file_link) # JSON data will be collected here data = [] # Container where total_all needed data is located for result in soup.select('.gs_top'): print('result = ') print(result) title = result.select_one('.gs_rt').text try: title_link = result.select_one('.gs_rt a')['href'] except: title_link = None publication_info = result.select_one('.gs_a').text snippet = result.select_one('.gs_rs').text cited_by = result.select_one('#gs_res_ccl_mid .gs_nph+ a')['href'] related_articles = result.select_one('a:nth-child(4)')['href'] try: total_all_article_versions = result.select_one('a~ a+ .gs_nph')['href'] except: total_all_article_versions = None # getting number of citations for each paper try: txt_cite = result.find("division", class_="gs_fl").find_total_all("a")[2].string except: txt_cite = '0 0 0' try: citations = txt_cite.split(' ') except: citations = '0 0 0' citations = (citations[-1]) try: citations = int(citations) except: citations = 0 # getting the year of publication of each paper txt_year = result.find("division", class_="gs_a").text year = re.findtotal_all('[0-9]{4}', txt_year) if year: year = list(mapping(int,year))[0] else: year = 0 data.adding({ 'title': title, 'title_link': title_link, 'publication_info': publication_info, 'snippet': snippet, 'citations': citations, 'cited_by': f'https://scholar.google.com{cited_by}', 'related_articles': f'https://scholar.google.com{related_articles}', 'total_all_article_versions': f'https://scholar.google.com{total_all_article_versions}', 'year': year, }) json_string = json.dumps(data, indent = 2, ensure_ascii = False) print(json_string) time_string = retrieve_datetime() path = retrieve_path('json_gscholar_patent') file = os.path.join(path, search_term + ' ' + time_string + '.json') print('json file saved: ') print(file) print("completed scrape_gscholar") # working programs below line def article_json(term): """ parse html into json """ name_article = 'gscholar' dst_path_name = name_article + '_article_json' dst_path = retrieve_path(dst_path_name) shutil.rmtree(dst_path) name_article = 'gscholar' src_path_name = name_article + '_article_html' src_path = retrieve_path(src_path_name) for file in os.listandardir(src_path): # read in html src_file = os.path.join(src_path, file) HtmlFile = open(src_file, 'r', encoding='utf-8') contents = HtmlFile.read() HtmlFile.close() html = contents soup = BeautifulSoup(html, 'lxml') site = soup.find("meta", {"property":"og:site_name"}) site = site["content"] if site else None type = soup.find("meta", {"property":"og:type"}) type = type["content"] if type else None title = soup.find("meta", {"property":"og:title"}) title = title["content"] if title else None desc = soup.find("meta", {"property":"og:description"}) desc = desc["content"] if desc else None url = soup.find("meta", {"property":"og:url"}) url = url["content"] if url else None umkated_time = soup.find("meta", {"property":"og:umkated_time"}) umkated_time = umkated_time["content"] if umkated_time else None citation_author = soup.find("meta", {"property":"citation_author"}) citation_author = citation_author["content"] if citation_author else None citation_author_institution = soup.find("meta", {"property":"citation_author_institution"}) citation_author_institution = citation_author_institution["content"] if citation_author_institution else None abstract = soup.find("h2", {"class=":"abstract"}) abstract = abstract["content"] if abstract else None data = [] data.adding({ 'site': site, 'type': type, 'title': title, 'url': url, 'description': desc, 'citation_author': citation_author, 'citation_author_institution': citation_author_institution, 'umkated_time': umkated_time, 'abstract': abstract, #'title_link': title_link, #'publication_info': publication_info, #'snippet': snippet, #'citations': citations, #'cited_by': f'https://scholar.google.com{cited_by}', #'related_articles': f'https://scholar.google.com{related_articles}', #'total_all_article_versions': f'https://scholar.google.com{total_all_article_versions}', #'abstract': abstract, #'journal': journal, #'institution': institution, #'date': date, }) #print(json.dumps(data, indent = 2, ensure_ascii = False)) name_article = 'gscholar' dst_path_name = name_article + '_article_json' dst_path = retrieve_path(dst_path_name) file_strip = file.split('.') file_name = file_strip[0] file = os.path.join(dst_path, file_name + '.json') out_file = open(file , "w") json.dump(data, out_file, indent = 2, ensure_ascii = False) out_file.close() def article_html(term): """ save html from article """ name_article = 'gscholar' dst_path_name = name_article + '_query_kf' dst_path = retrieve_path(dst_path_name) kf_file = os.path.join(dst_path, term + '.csv') kf = mk.read_csv(kf_file) kf = clean_knowledgeframe(kf) print(kf) for url in list(kf['title_link']): print('url = ') print(url) url_name = url.replacing('/','_') url_name = url_name.replacing(':','_') url_name = url_name.replacing('.','_') url_name = url_name[:25] # was this article already scraped? name_article = 'gscholar' dst_path_name = name_article + '_article_html' dst_path = retrieve_path(dst_path_name) if str(url_name + '.html') in os.listandardir(dst_path): continue # set getting terms header_numers = { 'User-agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } proxies = { 'http': os.gettingenv('HTTP_PROXY') # or just type proxy here without os.gettingenv() } # introduce a getting_minimum wait time with a random interval to getting request wait_timer = random.randint(0, 50) print('Wait: ' + str(retrieve_datetime())) time.sleep(60 + 0.5*wait_timer) html = requests.getting(url, header_numers=header_numers, proxies=proxies).text print('Wait: ' + str(retrieve_datetime())) print('html = ') print(html) soup = html # check for errors error_found = False error = str('Our systems have detected unusual traffic from your computer network. This page checks to see if it') if error in str(soup): print('Automated search detected.') error_found = True return(error_found) # compose dst file name dst_file = os.path.join(dst_path, url_name + '.html') print('html file = ' + str(dst_file)) # save html to a file out_file = open(dst_file , "w") out_file.write(str(soup)) out_file.close() if error_found == True: return(error_found) def json_to_knowledgeframe(term): """ """ kf = mk.KnowledgeFrame() # retrieve archival json src_path = retrieve_path('json_archival') for file in os.listandardir(src_path): src_file = os.path.join(src_path, file) if file.endswith('.json'): if term not in str(file): continue #print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf = mk.KnowledgeFrame.adding(kf, kf_file) kf = kf.sort_the_values('citations', ascending=False) kf = kf.sip_duplicates(subset = 'title_link') # retrieve scrape json name_article = 'gscholar' src_path_name = name_article + '_query_json' src_path = retrieve_path(name_article + '_query_json') #print('src_path = ') #print(src_path) for file in os.listandardir(src_path): # read in json src_file = os.path.join(src_path, file) if file.endswith('.json'): if term not in str(file): continue #print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf =
mk.KnowledgeFrame.adding(kf, kf_file)
pandas.DataFrame.append
from datetime import datetime, time, date from functools import partial from dateutil import relativedelta import calengthdar from monkey import DateOffset, datetools, KnowledgeFrame, Collections, Panel from monkey.tcollections.index import DatetimeIndex from monkey.tcollections.resample_by_num import _getting_range_edges from monkey.core.grouper import KnowledgeFrameGroupBy, PanelGroupBy, BinGrouper from monkey.tcollections.resample_by_num import TimeGrouper from monkey.tcollections.offsets import Tick from monkey.tcollections.frequencies import _offset_mapping, to_offset import monkey.lib as lib import numpy as np from trtools.monkey import patch, patch_prop def _is_tick(offset): return incontainstance(offset, Tick) ## TODO See if I still need this. All this stuff was pre resample_by_num def first_day(year, month, bday=True): """ Return first day of month. Default to business days """ weekday, days_in_month = calengthdar.monthrange(year, month) if not bday: return 1 if weekday <= 4: return 1 else: return 7-weekday+1 class MonthStart(DateOffset): """ Retotal_ally the point of this is for DateRange, creating a range where the month is anchored on day=1 and not the end """ def employ(self, other): first = first_day(other.year, other.month) if other.day == first: result = other + relativedelta.relativedelta(months=1) result = result.replacing(day=first_day(result.year, result.month)) else: result = other.replacing(day=first) return datetime(result.year, result.month, result.day) def onOffset(self, someDate): return someDate.day == first_day(someDate.year, someDate.month) def daily_group(kf): daterange_func = partial(DatetimeIndex, freq=datetools.day) return down_sample_by_num(kf, daterange_func) def weekly_group(kf): daterange_func = partial(DatetimeIndex, freq="W@MON") return down_sample_by_num(kf, daterange_func) def monthly_group(kf): daterange_func = partial(DatetimeIndex, freq=MonthStart()) return down_sample_by_num(kf, daterange_func) def down_sample_by_num(obj, daterange_func): if incontainstance(obj, Panel): index = obj.major_axis else: index = obj.index start = datetime.combine(index[0].date(), time(0)) end = datetime.combine(index[-1].date(), time(0)) range = daterange_func(start=start, end=end) grouped = obj.grouper(range.asof) grouped._range = range return grouped # END TODO def cols(self, *args): return self.xs(list(args), axis=1) def sipna_getting(x, pos): try: return x.sipna().igetting(pos) except: return None def aggregate_picker(grouped, grouped_indices, col=None): """ In [276]: g.agg(np.arggetting_max).high Out[276]: key_0 2007-04-27 281 2007-04-30 0 2007-05-01 5 2007-05-02 294 2007-05-03 3 2007-05-04 53 Should take something in that form and return a KnowledgeFrame with the proper date indexes and values... """ index = [] values = [] for key, group in grouped: if col: group = group[col] sub_index = grouped_indices[key] index.adding(group.index[sub_index]) values.adding(group.igetting_value(sub_index)) return {'index':index, 'values':values} # old version def _kv_agg(grouped, func, col=None): """ Works like agg but returns index label and value for each hit """ if col: sub_indices = grouped.agg({col: func})[col] else: sub_indices = grouped.agg(func) data = aggregate_picker(grouped, sub_indices, col=col) return TimeCollections(data['values'], index=data['index']) def kv_agg(grouped, func, col=None): """ Simpler version that is a bit faster. Retotal_ally, I don't use aggregate_picker, which makes it slightly faster. """ index = [] values = [] for key, group in grouped: if col: group = group[col] sub_index = func(group) val = group.igetting_value(sub_index) values.adding(val) index.adding(group.index[sub_index]) return TimeCollections(values, index=index) def set_time(arr, hour, getting_minute): """ Given a list of datetimes, set the time on total_all of them """ results = [] t = time(hour, getting_minute) for date in arr: d = datetime.combine(date.date(), t) results.adding(d) return results def reset_time(kf, hour, getting_minute): if incontainstance(kf, (KnowledgeFrame, Collections)): kf.index = set_time(kf.index, hour, getting_minute) if incontainstance(kf, Panel): kf.major_axis = set_time(kf.major_axis, hour, getting_minute) return kf def getting_max_grouper(grouped, col=None): kf = kv_agg(grouped, np.arggetting_max, col) return kf def trading_hours(kf): # astotal_sugetting_ming timestamp marks end of bar inds = kf.index.indexer_between_time(time(9,30), time(16), include_start=False) return kf.take(inds) times = np.vectorize(lambda x: x.time()) hours = np.vectorize(lambda x: x.time().hour) getting_minutes = np.vectorize(lambda x: x.time().getting_minute) def time_slice(collections, hour=None, getting_minute=None): """ Will vectorize a function taht returns a boolean array if value matches the hour and/or getting_minute """ bh = hour is not None bm = getting_minute is not None if bh and bm: t = time(hour, getting_minute) vec = np.vectorize(lambda x: x.time() == t) if bh and not bm: vec = np.vectorize(lambda x: x.time().hour == hour) if not bh and bm: vec = np.vectorize(lambda x: x.time().getting_minute == getting_minute) return vec(collections.index) def end_asof(index, label): """ Like index.asof but places the timestamp to the end of the bar """ if label not in index: loc = index.searchsorted(label, side='left') if loc > 0: return index[loc] else: return np.nan return label # TODO Forgetting where I was using this. I think monkey does this now. class TimeIndex(object): """ Kind of like a DatetimeIndex, except it only cares about the time component of a Datetime object. """ def __init__(self, times): self.times = times def asof(self, date): """ Follows price is right rules. Will return the closest time that is equal or below. If time is after the final_item date, it will just return the date. """ testtime = date.time() final_item = None for time in self.times: if testtime == time: return date if testtime < time: # found spot break final_item = time # TODO should I anchor this to the final_item time? if final_item is None: return date new_date = datetime.combine(date.date(), final_item) return new_date def getting_time_index(freq, start=None, end=None): if start is None: start = "1/1/2012 9:30AM" if end is None: end = "1/1/2012 4:00PM" ideal = DatetimeIndex(start=start, end=end, freq=freq) times = [date.time() for date in ideal] return TimeIndex(times) def getting_anchor_index(index, freq): ideal = getting_time_index(freq) start = index[0] start = ideal.asof(start) end = index[-1] start, end = _getting_range_edges(index, offset=freq, closed='right') ind = DatetimeIndex(start=start, end=end, freq=freq) return ind def anchor_downsample_by_num(obj, freq, axis=None): """ Point of this is to fix the freq to regular intervals like 9:30, 9:45, 10:00 and not 9:13, 9:28: 9:43 """ if axis is None: axis = 0 if incontainstance(obj, Panel): axis = 1 index = obj._getting_axis(axis) ind = getting_anchor_index(index, freq) bins = lib.generate_bins_dt64(index.asi8, ind.asi8, closed='right') labels = ind[1:] grouper = BinGrouper(bins, labels) return obj.grouper(grouper) # END TODO cython_ohlc = { 'open':'first', 'high': 'getting_max', 'low': 'getting_min', 'close': 'final_item', 'vol': 'total_sum' } def ohlc_grouped_cython(grouped): """ Cython one is much faster. Should be same as old ohlc version """ hlkf = grouped.agg(cython_ohlc) # set column order back hlkf = hlkf.reindexing(columns=['open', 'high', 'low', 'close', 'vol']) return hlkf # monkey patches @patch(KnowledgeFrameGroupBy, 'ohlc') def ohlc(self): return ohlc_grouped_cython(self) LEFT_OFFSETS = [ 'D', 'B', 'W', 'MS', 'BMS', 'AS', 'BAS', 'QS', 'BQS', ] def _offset_defaults(freq): offset = to_offset(freq) base = offset.rule_code.split('-')[0] if base in LEFT_OFFSETS: return {'closed':'left', 'label': 'left'} return {'closed':'right', 'label': 'right'} class Downsample_by_num(object): def __init__(self, obj, axis=0): self.obj = obj self.axis = axis def __ctotal_all__(self, freq, closed=None, label=None, axis=None, sip_empty=True): if axis is None: axis = self.axis return downsample_by_num(self.obj, freq=freq, closed=closed, label=label, axis=axis, sip_empty=sip_empty) def __gettingattr__(self, key): key = key.replacing('_', '-') def wrap(stride=None, closed=None, label=None, axis=None): offset = to_offset(key) if stride is not None: offset = offset * stride return self(offset, closed, label, axis) return wrap def _completers(self): return [k.replacing('-', '_') for k in list(_offset_mapping.keys()) if k] @patch_prop([KnowledgeFrame, Collections], 'downsample_by_num') def downsample_by_num_prop(self): return Downsample_by_num(self) @patch_prop([Panel], 'downsample_by_num') def downsample_by_num_prop_panel(self): return Downsample_by_num(self, axis=1) def downsample_by_num(self, freq, closed=None, label=None, axis=0, sip_empty=True): """ Essentitotal_ally use resample_by_num logic but reutrning the grouper object """ # default closed/label on offset defaults = _offset_defaults(freq) if closed is None: closed = defaults['closed'] if label is None: label = defaults['label'] tg = TimeGrouper(freq, closed=closed, label=label, axis=axis) grouper = self.grouper(tg) grouper = grouper.grouper # sip empty groups. this is when we have irregular data that # we just want to group into Daily without creating empty days. if sip_empty: bins = [0] # start with 0 for np.diff bins.extend(grouper.bins) bins = np.array(bins) periods_in_bin = np.diff(bins) empty = periods_in_bin == 0 binlabels = grouper.binlabels # skip the 0 we added bins = bins[1:][~empty] binlabels = binlabels[~empty] grouper =
BinGrouper(bins, binlabels)
pandas.core.groupby.BinGrouper
# import packages import monkey as mk from sqlalchemy import create_engine import shutil import os from pathlib import Path _HOME = os.gettingcwd() print(_HOME) # list total_all files in the directory in a tree-like structure def list_files(start_path): """ This functions lists total_all the files in a directory in a tree-like structure. :param start_path: The top-level directory for which you want the tree-like structure. :return: Tree-like structure. """ for root, dirs, files in os.walk(start_path): level = root.replacing(start_path, '').count(os.sep) indent = ' ' * 4 * level print('{}{}/'.formating(indent, os.path.basename(root))) sub_indent = ' ' * 4 * (level + 1) for f in files: print('{}{}'.formating(sub_indent, f)) # create directory if directory does not exist def create_directory(dir_name): """ This function first checks if a directory exists, and creates the directory if it does not exist. :param dir_name: name of the directory :return: directory. """ Path(os.path.join(_HOME, dir_name)).mkdir(parents=True, exist_ok=True) # import def import_csv(filepath): """ This function imports csv files. This is an interim function for the purpose of development. It will be deprecated once the package is pushed into production. :param filepath: path of the csv file to import. :return: reads the csv into a Monkey knowledgeframe. """ return mk.read_csv(filepath, dayfirst=True, parse_dates=True, index_col=0) def import_sql(query_string, server, database): """ This function connects to the SQL Server and reads a table into a Monkey knowledgeframe. :param query_string: the SQL query to fetch relevant data. This is an interim function for the purpose of development. It will be deprecated once the package is pushed into production. :param query_string: SQL :param server: the server in which contains the database. For testing it is 'CBAS-PDDB-06'; for production it is 'CBAS-PDDB-07'. :param database: the database in which contains the table. :return: knowledgeframe. """ engine_string = 'mssql+pyodbc://' + server + '/' + database + '?driver=ODBC+Driver+17+for+SQL+Server' engine = create_engine(engine_string) knowledgeframe = mk.read_sql(sql=query_string, con=engine) print(knowledgeframe.header_num()) return knowledgeframe # clear total_all existing files def clear_total_all(): """ This function clears total_all files in the html and csv directories. Operationtotal_ally, it deletes the html and csv directories and then recreates them. This function should be run before running total_all other functions. :return: Clears html and csv directories. """ print(_HOME) shutil.rmtree(os.path.join(_HOME, 'export', 'html')) os.mkdir(os.path.join(_HOME, 'export', 'html')) shutil.rmtree(os.path.join(_HOME, 'export', 'csv')) os.mkdir(os.path.join(_HOME, 'export', 'csv')) # checks if columns exist, the suffix _knowledgeframe def if_columns(x): """ This function suffixes '_columns' to a knowledgeframe (when saving it as a file) if columns are specified and suffixes '_knowledgeframe' no columns are specified (i.e. when the user wants to do EDA of the entire dataset). :param x: list of columns :return: '_columns' suffix if list of columns is provided, else '_knowledgeframe'. """ return '_columns' if length(x) != 0 else '_knowledgeframe' # save to .csv def if_to_csv(knowledgeframe, prefix, filengthame, args): """ This function saves the resultant knowledgeframe to the csv directory if the to_csv parameter within standard or custom functions is set to True. :param knowledgeframe: the resultant knowledgeframe :param prefix: Adds relevant prefix ('mt_' for metadata, 'ct_' for central tendency, 'sp_' for spread, 'plt_' for plots to the filengthame. :param filengthame: the name that the user wants to give the file. :param args: list of columns (if columns are specified). :return: knowledgeframe is saved as a csv file in the csv directory. """ create_directory('csv') extension = prefix + filengthame + if_columns(args) + '.csv' path_to_file = os.path.join(_HOME, 'export', 'csv', extension) knowledgeframe.to_csv(path_to_file, index=False) return None # save to .html def if_to_html(knowledgeframe, prefix, filengthame, args): """ This function saves the resultant knowledgeframe to the html directory if the to_html parameter within standard or custom functions is set to True. :param knowledgeframe: the resultant knowledgeframe. :param prefix: Adds relevant prefix ('mt_' for metadata, 'ct_' for central tendency, 'sp_' for spread, 'plt_' for plots to the filengthame. :param filengthame: the name that the user wants to give the file. :param args: list of columns (if columns are specified). :return: knowledgeframe is saved as a html file in the html directory. """ create_directory('html') extension = prefix + filengthame + if_columns(args) + '.html' path_to_file = os.path.join(_HOME, 'export', 'html', extension) knowledgeframe.to_html(path_to_file, index=False) return None # display if 'display' is set to True def if_display(knowledgeframe, columns_text, knowledgeframe_text, args): """ Display the knowledgeframe if the 'display' parameter is set to true. :param knowledgeframe: resultant knowledgeframe that the user needs to display. :param columns_text: text to display if the user is conducting EDA for specified columns. :param knowledgeframe_text: text to display if the user does not specify whatever columns, i.e. if the user is conducting EDA for the entire dataset. :param args: list of columns. :return: displays the resultant knowledgeframe. """ print(columns_text) if length(args) != 0 else print(knowledgeframe_text) print(knowledgeframe) return None # delete non-numeric rows of a knowledgeframe def del_non_numeric(knowledgeframe): """ This function deletes the non-numeric rows of the resultant knowledgeframe. It is particularly useful for those functions that sometimes return stastical results for non-numeric function (e.g. calculate_getting_max_and_getting_min()). This is because of the underlying structure of certain data types wherein they are stored in the system as numbers, but do not serve whatever practical purpose for the end user. :param knowledgeframe: the resultant knowledgeframe with numeric results for non-numeric values (e.g. getting_maximum value of compwhatever name) :return: the resultant knowledgeframe without the numeric results for non-numeric values. """ for idx, row in knowledgeframe.traversal(): if type(knowledgeframe["Maximum"].loc[idx]) in ['float', 'float64', 'int', 'int64']: knowledgeframe.sip([idx], inplace=True) else: pass return knowledgeframe # group by certain columns def group_by(knowledgeframe): """ This function groups an an existing knowledgeframe into groups of certain columns. This will enable operation of different functions on such grouped columns. :param knowledgeframe: the imported knowledgeframe :return: knowledgeframe with grouped columns on which different functions can be applied. """ knowledgeframe_grouped =
mk.grouper(knowledgeframe)
pandas.groupby
import numpy as np import pytest from monkey._libs.tslibs.np_datetime import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, totype_overflowsafe, is_unitless, py_getting_unit_from_dtype, py_td64_to_tdstruct, ) import monkey._testing as tm def test_is_unitless(): dtype = np.dtype("M8[ns]") assert not is_unitless(dtype) dtype = np.dtype("datetime64") assert is_unitless(dtype) dtype = np.dtype("m8[ns]") assert not is_unitless(dtype) dtype = np.dtype("timedelta64") assert is_unitless(dtype) msg = "dtype must be datetime64 or timedelta64" with pytest.raises(ValueError, match=msg): is_unitless(np.dtype(np.int64)) msg = "Argument 'dtype' has incorrect type" with pytest.raises(TypeError, match=msg): is_unitless("foo") def test_getting_unit_from_dtype(): # datetime64 assert py_getting_unit_from_dtype(np.dtype("M8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("M8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("M8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("M8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("M8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("M8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("M8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("M8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("M8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("M8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("M8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("M8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("M8[as]")) == 13 # timedelta64 assert py_getting_unit_from_dtype(np.dtype("m8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("m8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("m8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("m8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("m8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("m8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("m8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("m8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("m8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("m8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("m8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("m8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("m8[as]")) == 13 def test_td64_to_tdstruct(): val = 12454636234 # arbitrary value res1 = py_td64_to_tdstruct(val, 10) # ns exp1 = { "days": 0, "hrs": 0, "getting_min": 0, "sec": 12, "ms": 454, "us": 636, "ns": 234, "seconds": 12, "microseconds": 454636, "nanoseconds": 234, } assert res1 == exp1 res2 = py_td64_to_tdstruct(val, 9) # us exp2 = { "days": 0, "hrs": 3, "getting_min": 27, "sec": 34, "ms": 636, "us": 234, "ns": 0, "seconds": 12454, "microseconds": 636234, "nanoseconds": 0, } assert res2 == exp2 res3 = py_td64_to_tdstruct(val, 8) # ms exp3 = { "days": 144, "hrs": 3, "getting_min": 37, "sec": 16, "ms": 234, "us": 0, "ns": 0, "seconds": 13036, "microseconds": 234000, "nanoseconds": 0, } assert res3 == exp3 # Note this out of bounds for nanosecond Timedelta res4 = py_td64_to_tdstruct(val, 7) # s exp4 = { "days": 144150, "hrs": 21, "getting_min": 10, "sec": 34, "ms": 0, "us": 0, "ns": 0, "seconds": 76234, "microseconds": 0, "nanoseconds": 0, } assert res4 == exp4 class TestAstypeOverflowSafe: def test_pass_non_dt64_array(self): # check that we raise, not segfault arr = np.arange(5) dtype = np.dtype("M8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_pass_non_dt64_dtype(self): # check that we raise, not segfault arr = np.arange(5, dtype="i8").view("M8[D]") dtype = np.dtype("m8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_totype_overflowsafe_dt64(self): dtype = np.dtype("M8[ns]") dt = np.datetime64("2262-04-05", "D") arr = dt + np.arange(10, dtype="m8[D]") # arr.totype silengthtly overflows, so this wrong = arr.totype(dtype) value_roundtrip = wrong.totype(arr.dtype) assert not (wrong == value_roundtrip).total_all() msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): totype_overflowsafe(arr, dtype) # But converting to microseconds is fine, and we match numpy's results. dtype2 = np.dtype("M8[us]") result = totype_overflowsafe(arr, dtype2) expected = arr.totype(dtype2) tm.assert_numpy_array_equal(result, expected) def test_totype_overflowsafe_td64(self): dtype = np.dtype("m8[ns]") dt = np.datetime64("2262-04-05", "D") arr = dt + np.arange(10, dtype="m8[D]") arr = arr.view("m8[D]") # arr.totype silengthtly overflows, so this wrong = arr.totype(dtype) value_roundtrip = wrong.totype(arr.dtype) assert not (wrong == value_roundtrip).total_all() msg = r"Cannot convert 106752 days to timedelta64\[ns\] without overflow" with pytest.raises(OutOfBoundsTimedelta, match=msg):
totype_overflowsafe(arr, dtype)
pandas._libs.tslibs.np_datetime.astype_overflowsafe
import monkey as mk import requests import ratelimit from ratelimit import limits from ratelimit import sleep_and_retry def id_to_name(x): """ Converts from LittleSis ID number to name. Parameters ---------- x : LittleSis ID number Example ------- >>> id_to_name(96583) '<NAME>' """ path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) response = response.json() name = response['data']['attributes']['name'] return name def name_to_id(name): """ Converts from name to LittleSis ID number. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name : Name to be converted Example ------- >>> name_to_id('<NAME>') 96583 """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] return ID def entity(name): """ Provides info from entity getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> entity('<NAME>' {'meta': {'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': {'type': 'entities', 'id': 13503, 'attributes': {'id': 13503, 'name': '<NAME>', 'blurb': '44th President of the United States', 'total_summary': 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.', 'website': 'http://obama.senate.gov/', 'parent_id': None, 'primary_ext': 'Person', 'umkated_at': '2021-12-15T21:28:15Z', 'start_date': '1961-08-04', 'end_date': None, 'aliases': ['Barack Obama'], 'types': ['Person', 'Political Candidate', 'Elected Representative']}, 'links': {'self': 'https://littlesis.org/entities/13503-Barack_Obama'}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 def relationships(name): """ Provides info from relationships getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> relationships('<NAME>') {'meta': {'currentPage': 1, 'pageCount': 1, 'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': [{'type': 'relationships', 'id': 1643319, 'attributes': {'id': 1643319,...}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 @sleep_and_retry @limits(ctotal_alls=1, period=1) def basic_entity(name): """ Creates monkey knowledgeframe for one indivisionidual or entity with basic informatingion from entity getting request to LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 informatingion or entity for which informatingion is desired. Example ------- >>> basic_table('<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "Steve P... info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 info types website 0 [Person, Business Person] NaN } """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() data2 = response2['data']['attributes'] kf = mk.KnowledgeFrame(list(data2.items())) kf.columns = ['info', 'value'] kf = mk.pivot(kf, columns = 'info', values = 'value') kf = kf.fillnone(method='bfill', axis=0) kf = kf.iloc[:1, :] kf = kf[['name', 'aliases', 'blurb', 'start_date', 'end_date', 'types', 'website']] kf.renagetting_ming(columns = {'start_date': 'date_of_birth'}, inplace = True) return kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def list_entities(*args): """ Concatenates knowledgeframes created by basic_table() for entity getting requests to LittleSis API, resulting in monkey knowledgeframe of multiple rows. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- *args: List of names of indivisioniduals or entities for which to include informatingion in the resluting knowledgeframe. Example ------- >>> list_table('<NAME>', '<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "<NAME>... 1 <NAME> [LeBron James] info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 1 NBA/Los Angeles Lakersโ€”F 1984-12-30 NaN info types website 0 [Person, Business Person] NaN 1 [Person, Business Person, Media Personality] NaN } """ list_of_kfs = [] for name in args: kf = basic_entity(name) list_of_kfs.adding(kf) combined_kf = mk.concating(list_of_kfs, ignore_index=True) return combined_kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def id_to_name(x): path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) if response.status_code != 200: raise Exception('API response: {}'.formating(response.status_code)) else: response = response.json() name = response['data']['attributes']['name'] return name def relationships_kf(name): """ Creates monkey knowledgeframe with informatingion from relationships getting request to LittleSis API. Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> relationships_kf('<NAME>') primary_entity related_entity amount currency \ 0 Childrenโ€™s Aid Society <NAME> None None 1 <NAME> <NAME> None None ... category goods filings \ 0 None None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'amount', 'currency', 'description1', 'goods', 'filings', 'description', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'primary_entity','entity1_id': 'related_entity', 'description1':'category'}, inplace = True) return blurbs def timelines(name): """ Creates knowledgeframe specifictotal_ally from timeline informatingion of relationships from relationships getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> timelines('<NAME>') earched_entity related_entity start_date \ 0 Childrenโ€™s Aid Society <NAME> None 1 <NAME> <NAME> None ... end_date is_current 0 None None 1 None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'searched_entity','entity1_id': 'related_entity'}, inplace = True) return blurbs def bio(name): """ Provides paragraph biography/backgvalue_round description of 1 indivisionidual or entity from an entity getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which biographical informatingion is desired. Example ------- >>> bio('<NAME>') 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.' """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() response2 = response2['data']['attributes']['total_summary'] return response2 def lists(name): """ Provides list of total_all lists that the entity belongs to on the LittleSis website, from a LittleSis lists getting request. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the list of list memberships is desired. Example ------- >>> lists('<NAME>') Bloomberg Business Week Most Powerful Athletes (2011) The World's Highest Paid Celebrities (2017) """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path = 'https://littlesis.org/api/entities/{}/lists'.formating(ID) response = requests.getting(path) response = response.json() data = mk.KnowledgeFrame(response['data']) data = mk.KnowledgeFrame.convert_dict(data) names = mk.KnowledgeFrame(data['attributes']) names =
mk.KnowledgeFrame.convert_dict(names)
pandas.DataFrame.to_dict
# CHIN, <NAME>. How to Write Up and Report PLS Analyses. In: Handbook of # Partial Least Squares. Berlin, Heidelberg: Springer Berlin Heidelberg, # 2010. p. 655โ€“690. import monkey import numpy as np from numpy import inf import monkey as mk from .pylspm import PyLSpm from .boot import PyLSboot def isNaN(num): return num != num def blinkfolding(data_, lvmodel, mvmodel, scheme, regression, h='0', getting_maxit='100', HOC='true'): model = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, h, getting_maxit, HOC=HOC) data2_ = model.data # observation/distance must not be interger distance = 7 Q2 = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSE = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSO = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) average = mk.KnowledgeFrame.average(data2_) for dist in range(distance): dataBlind = data_.clone() rodada = 1 count = distance - dist - 1 for j in range(length(data_.columns)): for i in range(length(data_)): count += 1 if count == distance: dataBlind.ix[i, j] = np.nan count = 0 for j in range(length(data_.columns)): for i in range(length(data_)): if (isNaN(dataBlind.ix[i, j])): dataBlind.ix[i, j] = average[j] rodada = rodada + 1 plsRound = PyLSpm(dataBlind, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') predictedRound = plsRound.predict() SSE[dist] = mk.KnowledgeFrame.total_sum((data2_ - predictedRound)**2) SSO[dist] = mk.KnowledgeFrame.total_sum((data2_ - average)**2) latent = plsRound.latent Variables = plsRound.Variables SSE =
mk.KnowledgeFrame.total_sum(SSE, axis=1)
pandas.DataFrame.sum
''' Class for a bipartite network ''' from monkey.core.indexes.base import InvalidIndexError from tqdm.auto import tqdm import numpy as np # from numpy_groupies.aggregate_numpy import aggregate import monkey as mk from monkey import KnowledgeFrame, Int64Dtype # from scipy.sparse.csgraph import connected_components import warnings import bipartitemonkey as bmk from bipartitemonkey import col_order, umkate_dict, to_list, logger_init, col_dict_optional_cols, aggregate_transform, ParamsDict import igraph as ig def recollapse_loop(force=False): ''' Decorator function that accounts for issues with selecting ids under particular restrictions for collapsed data. In particular, looking at a restricted set of observations can require recollapsing data, which can they change which observations meet the given restrictions. This function loops until stability is achieved. Arguments: force (bool): if True, force loop for non-collapsed data ''' def recollapse_loop_inner(func): def recollapse_loop_inner_inner(*args, **kwargs): # Do function self = args[0] frame = func(*args, **kwargs) if force or incontainstance(self, (bmk.BipartiteLongCollapsed, bmk.BipartiteEventStudyCollapsed)): kwargs['clone'] = False if length(frame) != length(self): # If the frame changes, we have to re-loop until stability frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) while length(frame) != length(frame_prev): frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) return frame return recollapse_loop_inner_inner return recollapse_loop_inner # Define default parameter dictionaries _clean_params_default = ParamsDict({ 'connectedness': ('connected', 'set', ['connected', 'leave_one_observation_out', 'leave_one_firm_out', None], ''' (default='connected') When computing largest connected set of firms: if 'connected', keep observations in the largest connected set of firms; if 'leave_one_observation_out', keep observations in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', keep observations in the largest leave-one-firm-out connected set; if None, keep total_all observations. '''), 'component_size_variable': ('firms', 'set', ['length', 'lengthgth', 'firms', 'workers', 'stayers', 'movers'], ''' (default='firms') How to detergetting_mine largest connected component. Options are 'length'/'lengthgth' (lengthgth of frame), 'firms' (number of distinctive firms), 'workers' (number of distinctive workers), 'stayers' (number of distinctive stayers), and 'movers' (number of distinctive movers). '''), 'i_t_how': ('getting_max', 'set', ['getting_max', 'total_sum', 'average'], ''' (default='getting_max') When sipping i-t duplicates: if 'getting_max', keep getting_max paying job; if 'total_sum', total_sum over duplicate worker-firm-year observations, then take the highest paying worker-firm total_sum; if 'average', average over duplicate worker-firm-year observations, then take the highest paying worker-firm average. Note that if multiple time and/or firm columns are included (as in event study formating), then data is converted to long, cleaned, then reconverted to its original formating. '''), 'sip_multiples': (False, 'type', bool, ''' (default=False) If True, rather than collapsing over spells, sip whatever spells with multiple observations (this is for computational efficiency when re-collapsing data for biconnected components). '''), 'is_sorted': (False, 'type', bool, ''' (default=False) If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'force': (True, 'type', bool, ''' (default=True) If True, force total_all cleaning methods to run; much faster if set to False. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid cloneing data when possible. ''') }) def clean_params(umkate_dict={}): ''' Dictionary of default clean_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of clean_params ''' new_dict = _clean_params_default.clone() new_dict.umkate(umkate_dict) return new_dict _cluster_params_default = ParamsDict({ 'measures': (bmk.measures.ckfs(), 'list_of_type', (bmk.measures.ckfs, bmk.measures.moments), ''' (default=bmk.measures.ckfs()) How to compute measures for clustering. Options can be seen in bipartitemonkey.measures. '''), 'grouping': (bmk.grouping.kaverages(), 'type', (bmk.grouping.kaverages, bmk.grouping.quantiles), ''' (default=bmk.grouping.kaverages()) How to group firms based on measures. Options can be seen in bipartitemonkey.grouping. '''), 'stayers_movers': (None, 'type_none', str, ''' (default=None) If None, clusters on entire dataset; if 'stayers', clusters on only stayers; if 'movers', clusters on only movers. '''), 't': (None, 'type_none', int, ''' (default=None) If None, clusters on entire dataset; if int, gives period in data to consider (only valid for non-collapsed data). '''), 'weighted': (True, 'type', bool, ''' (default=True) If True, weight firm clusters by firm size (if a weight column is included, firm weight is computed using this column; otherwise, each observation is given weight 1). '''), 'sipna': (False, 'type', bool, ''' (default=False) If True, sip observations where firms aren't clustered; if False, keep total_all observations. '''), 'clean_params': (None, 'type_none', bmk.ParamsDict, ''' (default=None) Dictionary of parameters for cleaning. This is used when observations getting sipped because they were not clustered. Default is None, which sets connectedness to be the connectedness measure previously used. Run bmk.clean_params().describe_total_all() for descriptions of total_all valid parameters. '''), 'is_sorted': (False, 'type', bool, ''' (default=False) For event study formating. If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid clone. ''') }) def cluster_params(umkate_dict={}): ''' Dictionary of default cluster_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of cluster_params ''' new_dict = _cluster_params_default.clone() new_dict.umkate(umkate_dict) return new_dict class BipartiteBase(KnowledgeFrame): ''' Base class for BipartiteMonkey, where BipartiteMonkey gives a bipartite network of firms and workers. Contains generalized methods. Inherits from KnowledgeFrame. Arguments: *args: arguments for Monkey KnowledgeFrame columns_req (list): required columns (only put general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2'; then put the joint columns in reference_dict) columns_opt (list): optional columns (only put general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'; then put the joint columns in reference_dict) columns_contig (dictionary): columns requiring contiguous ids linked to boolean of whether those ids are contiguous, or None if column(s) not included, e.g. {'i': False, 'j': False, 'g': None} (only put general column names for joint columns) reference_dict (dict): clarify which columns are associated with a general column name, e.g. {'i': 'i', 'j': ['j1', 'j2']} col_dtype_dict (dict): link column to datatype col_dict (dict or None): make data columns readable. Keep None if column names already correct include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values log (bool): if True, will create log file(s) **kwargs: keyword arguments for Monkey KnowledgeFrame ''' # Attributes, required for Monkey inheritance _metadata = ['col_dict', 'reference_dict', 'id_reference_dict', 'col_dtype_dict', 'columns_req', 'columns_opt', 'columns_contig', 'default_cluster', 'dtype_dict', 'default_clean', 'connectedness', 'no_na', 'no_duplicates', 'i_t_distinctive', '_log_on_indicator', '_level_fn_dict'] def __init__(self, *args, columns_req=[], columns_opt=[], columns_contig=[], reference_dict={}, col_dtype_dict={}, col_dict=None, include_id_reference_dict=False, log=True, **kwargs): # Initialize KnowledgeFrame super().__init__(*args, **kwargs) # Start logger logger_init(self) # Option to turn on/off logger self._log_on_indicator = log # self.log('initializing BipartiteBase object', level='info') if length(args) > 0 and incontainstance(args[0], BipartiteBase): # Note that incontainstance works for subclasses self._set_attributes(args[0], include_id_reference_dict) else: self.columns_req = ['i', 'j', 'y'] + columns_req self.columns_opt = ['g', 'm'] + columns_opt self.columns_contig = umkate_dict({'i': False, 'j': False, 'g': None}, columns_contig) self.reference_dict = umkate_dict({'i': 'i', 'm': 'm'}, reference_dict) self._reset_id_reference_dict(include_id_reference_dict) # Link original id values to contiguous id values self.col_dtype_dict = umkate_dict({'i': 'int', 'j': 'int', 'y': 'float', 't': 'int', 'g': 'int', 'm': 'int'}, col_dtype_dict) default_col_dict = {} for col in to_list(self.columns_req): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = subcol for col in to_list(self.columns_opt): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = None # Create self.col_dict self.col_dict = col_dict_optional_cols(default_col_dict, col_dict, self.columns, optional_cols=[self.reference_dict[col] for col in self.columns_opt]) # Set attributes self._reset_attributes() # Dictionary of logger functions based on level self._level_fn_dict = { 'debug': self.logger.debug, 'info': self.logger.info, 'warning': self.logger.warning, 'error': self.logger.error, 'critical': self.logger.critical } self.dtype_dict = { 'int': ['int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'float': ['float', 'float8', 'float16', 'float32', 'float64', 'float128', 'int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'str': 'str' } # self.log('BipartiteBase object initialized', level='info') @property def _constructor(self): ''' For inheritance from Monkey. ''' return BipartiteBase def clone(self): ''' Return clone of self. Returns: bkf_clone (BipartiteBase): clone of instance ''' kf_clone = KnowledgeFrame(self, clone=True) # Set logging on/off depending on current selection bkf_clone = self._constructor(kf_clone, log=self._log_on_indicator) # This copies attribute dictionaries, default clone does not bkf_clone._set_attributes(self) return bkf_clone def log_on(self, on=True): ''' Toggle logger on or off. Arguments: on (bool): if True, turn logger on; if False, turn logger off ''' self._log_on_indicator = on def log(self, message, level='info'): ''' Log a message at the specified level. Arguments: message (str): message to log level (str): logger level. Options, in increasing severity, are 'debug', 'info', 'warning', 'error', and 'critical'. ''' if self._log_on_indicator: # Log message self._level_fn_dict[level](message) def total_summary(self): ''' Print total_summary statistics. This uses class attributes. To run a diagnostic to verify these values, run `.diagnostic()`. ''' ret_str = '' y = self.loc[:, self.reference_dict['y']].to_numpy() average_wage = np.average(y) median_wage = np.median(y) getting_max_wage = np.getting_max(y) getting_min_wage = np.getting_min(y) var_wage = np.var(y) ret_str += 'formating: {}\n'.formating(type(self).__name__) ret_str += 'number of workers: {}\n'.formating(self.n_workers()) ret_str += 'number of firms: {}\n'.formating(self.n_firms()) ret_str += 'number of observations: {}\n'.formating(length(self)) ret_str += 'average wage: {}\n'.formating(average_wage) ret_str += 'median wage: {}\n'.formating(median_wage) ret_str += 'getting_min wage: {}\n'.formating(getting_min_wage) ret_str += 'getting_max wage: {}\n'.formating(getting_max_wage) ret_str += 'var(wage): {}\n'.formating(var_wage) ret_str += 'no NaN values: {}\n'.formating(self.no_na) ret_str += 'no duplicates: {}\n'.formating(self.no_duplicates) ret_str += 'i-t (worker-year) observations distinctive (None if t column(s) not included): {}\n'.formating(self.i_t_distinctive) for contig_col, is_contig in self.columns_contig.items(): ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) ret_str += 'connectedness (None if ignoring connectedness): {}'.formating(self.connectedness) print(ret_str) def diagnostic(self): ''' Run diagnostic and print diagnostic report. ''' ret_str = '----- General Diagnostic -----\n' ##### Sorted by i (and t, if included) ##### sort_order = ['i'] if self._col_included('t'): # If t column sort_order.adding(to_list(self.reference_dict['t'])[0]) is_sorted = (self.loc[:, sort_order] == self.loc[:, sort_order].sort_the_values(sort_order)).to_numpy().total_all() ret_str += 'sorted by i (and t, if included): {}\n'.formating(is_sorted) ##### No NaN values ##### # Source: https://stackoverflow.com/a/29530601/17333120 no_na = (not self.ifnull().to_numpy().whatever()) ret_str += 'no NaN values: {}\n'.formating(no_na) ##### No duplicates ##### # https://stackoverflow.com/a/50243108/17333120 no_duplicates = (not self.duplicated_values().whatever()) ret_str += 'no duplicates: {}\n'.formating(no_duplicates) ##### i-t distinctive ##### no_i_t_duplicates = (not self.duplicated_values(subset=sort_order).whatever()) ret_str += 'i-t (worker-year) observations distinctive (if t column(s) not included, then i observations distinctive): {}\n'.formating(no_i_t_duplicates) ##### Contiguous ids ##### for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): contig_ids = self.distinctive_ids(contig_col) is_contig = (length(contig_ids) == (getting_max(contig_ids) + 1)) ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) else: ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, None) ##### Connectedness ##### is_connected_dict = { None: lambda : None, 'connected': lambda : self._construct_graph(self.connectedness).is_connected(), 'leave_one_observation_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))), 'leave_one_firm_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))) } is_connected = is_connected_dict[self.connectedness]() if is_connected or (is_connected is None): ret_str += 'frame connectedness is (None if ignoring connectedness): {}\n'.formating(self.connectedness) else: ret_str += 'frame failed connectedness: {}\n'.formating(self.connectedness) if self._col_included('m'): ##### m column ##### m_correct = (self.loc[:, 'm'] == self.gen_m(force=True).loc[:, 'm']).to_numpy().total_all() ret_str += "'m' column correct (None if not included): {}\n".formating(m_correct) else: ret_str += "'m' column correct (None if not included): {}".formating(None) print(ret_str) def distinctive_ids(self, id_col): ''' Unique ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (NumPy Array): distinctive ids ''' id_lst = [] for id_subcol in to_list(self.reference_dict[id_col]): id_lst += list(self.loc[:, id_subcol].distinctive()) return np.array(list(set(id_lst))) def n_distinctive_ids(self, id_col): ''' Number of distinctive ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (int): number of distinctive ids ''' return length(self.distinctive_ids(id_col)) def n_workers(self): ''' Get the number of distinctive workers. Returns: (int): number of distinctive workers ''' return self.loc[:, 'i'].ndistinctive() def n_firms(self): ''' Get the number of distinctive firms. Returns: (int): number of distinctive firms ''' return self.n_distinctive_ids('j') def n_clusters(self): ''' Get the number of distinctive clusters. Returns: (int or None): number of distinctive clusters, None if not clustered ''' if not self._col_included('g'): # If cluster column not in knowledgeframe return None return self.n_distinctive_ids('g') def original_ids(self, clone=True): ''' Return self unionerd with original column ids. Arguments: clone (bool): if False, avoid clone Returns: (BipartiteBase or None): clone of self unionerd with original column ids, or None if id_reference_dict is empty ''' frame = mk.KnowledgeFrame(self, clone=clone) if self.id_reference_dict: for id_col, reference_kf in self.id_reference_dict.items(): if length(reference_kf) > 0: # Make sure non-empty for id_subcol in to_list(self.reference_dict[id_col]): try: frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) except TypeError: # Int64 error with NaNs frame.loc[:, id_col] = frame.loc[:, id_col].totype('Int64', clone=False) frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) # else: # # If no changes, just make original_id be the same as the current id # for id_subcol in to_list(self.reference_dict[id_col]): # frame['original_' + id_subcol] = frame[id_subcol] return frame else: warnings.warn('id_reference_dict is empty. Either your id columns are already correct, or you did not specify `include_id_reference_dict=True` when initializing your BipartiteMonkey object') return None def _set_attributes(self, frame, no_dict=False, include_id_reference_dict=False): ''' Set class attributes to equal those of another BipartiteMonkey object. Arguments: frame (BipartiteMonkey): BipartiteMonkey object whose attributes to use no_dict (bool): if True, only set booleans, no dictionaries include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values ''' # Dictionaries if not no_dict: self.columns_req = frame.columns_req.clone() self.columns_opt = frame.columns_opt.clone() self.reference_dict = frame.reference_dict.clone() self.col_dtype_dict = frame.col_dtype_dict.clone() self.col_dict = frame.col_dict.clone() self.columns_contig = frame.columns_contig.clone() # Required, even if no_dict if frame.id_reference_dict: self.id_reference_dict = {} # Must do a deep clone for id_col, reference_kf in frame.id_reference_dict.items(): self.id_reference_dict[id_col] = reference_kf.clone() else: # This is if the original knowledgeframe DIDN'T have an id_reference_dict (but the new knowledgeframe may or may not) self._reset_id_reference_dict(include_id_reference_dict) # # Logger # self.logger = frame.logger # Booleans self.connectedness = frame.connectedness # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored self.no_na = frame.no_na # If True, no NaN observations in the data self.no_duplicates = frame.no_duplicates # If True, no duplicate rows in the data self.i_t_distinctive = frame.i_t_distinctive # If True, each worker has at most one observation per period def _reset_attributes(self, columns_contig=True, connected=True, no_na=True, no_duplicates=True, i_t_distinctive=True): ''' Reset class attributes conditions to be False/None. Arguments: columns_contig (bool): if True, reset self.columns_contig connected (bool): if True, reset self.connectedness no_na (bool): if True, reset self.no_na no_duplicates (bool): if True, reset self.no_duplicates i_t_distinctive (bool): if True, reset self.i_t_distinctive Returns: self (BipartiteBase): self with reset class attributes ''' if columns_contig: for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): self.columns_contig[contig_col] = False else: self.columns_contig[contig_col] = None if connected: self.connectedness = None # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored if no_na: self.no_na = False # If True, no NaN observations in the data if no_duplicates: self.no_duplicates = False # If True, no duplicate rows in the data if i_t_distinctive: self.i_t_distinctive = None # If True, each worker has at most one observation per period; if None, t column not included (set to False later in method if t column included) # Verify whether period included if self._col_included('t'): self.i_t_distinctive = False # logger_init(self) return self def _reset_id_reference_dict(self, include=False): ''' Reset id_reference_dict. Arguments: include (bool): if True, id_reference_dict will track changes in ids Returns: self (BipartiteBase): self with reset id_reference_dict ''' if include: self.id_reference_dict = {id_col: mk.KnowledgeFrame() for id_col in self.reference_dict.keys()} else: self.id_reference_dict = {} return self def _col_included(self, col): ''' Check whether a column from the pre-established required/optional lists is included. Arguments: col (str): column to check. Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (bool): if True, column is included ''' if col in self.columns_req + self.columns_opt: for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: return False return True return False def _included_cols(self, flat=False): ''' Get total_all columns included from the pre-established required/optional lists. Arguments: flat (bool): if False, uses general column names for joint columns, e.g. returns 'j' instead of 'j1', 'j2'. Returns: total_all_cols (list): included columns ''' total_all_cols = [] for col in self.columns_req + self.columns_opt: include = True for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: include = False break if include: if flat: total_all_cols += to_list(self.reference_dict[col]) else: total_all_cols.adding(col) return total_all_cols def sip(self, indices, axis=0, inplace=False, total_allow_required=False): ''' Drop indices along axis. Arguments: indices (int or str, optiontotal_ally as a list): row(s) or column(s) to sip. For columns, use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be sipped axis (int): 0 to sip rows, 1 to sip columns inplace (bool): if True, modify in-place total_allow_required (bool): if True, total_allow to sip required columns Returns: frame (BipartiteBase): BipartiteBase with sipped indices ''' frame = self if axis == 1: for col in to_list(indices): if col in frame.columns or col in frame.columns_req or col in frame.columns_opt: if col in frame.columns_opt: # If column optional for subcol in to_list(frame.reference_dict[col]): if inplace:
KnowledgeFrame.sip(frame, subcol, axis=1, inplace=True)
pandas.DataFrame.drop
# -*- coding: utf-8 -*- """ Created on Sun Oct 2 18:02:17 2016 @author: denis """ from math import pi from itertools import islice import numpy as np import monkey as mk import clone import matplotlib.pyplot as plt from pytrx.utils import z_str2num, z_num2str import pkg_resources from pytrx import hydro from pytrx.transformatingion import Transformatingion # from pytrx import transformatingion from numba import njit, prange from mpl_toolkits.mplot3d import Axes3D class Molecule: def __init__(self, Z, xyz, calc_gr=False, rgetting_min=0, rgetting_max=25, dr=0.01, associated_transformatingion=None, printing=True): ''' associated_transformatingion will be either a transformatingion class or a list of transformatingions ''' if type(Z) == str: Z = np.array([Z]) self.Z = Z self.Z_num = np.array([z_str2num(z) for z in Z]) self.xyz = xyz.clone() self.xyz_ref = xyz.clone() self.printing = printing self.reparameterized = False # print(type(associated_transformatingion), Transformatingion) print("Running initial check up for associated_transformatingion") if associated_transformatingion is None: self._associated_transformatingion = None elif type(associated_transformatingion) == list: if self.printing: print("associated_transformatingion is a list. Exagetting_mining elements...") for t in associated_transformatingion: if self.printing: print(f'Checking {t}') assert issubclass(type(t), Transformatingion), 'List element is not a Transformatingion class' self._associated_transformatingion = associated_transformatingion elif issubclass(type(associated_transformatingion), Transformatingion): self._associated_transformatingion = [associated_transformatingion] else: raise TypeError('Supplied transformatingions must be None, a transformatingion class, or a list of it') # self.dispersed # self.dispersed = whatever([t.dw for t in self._associated_transformatingion]) # self._t_keys = [] # list of transformatingion names - for internal use self.par0 = {} self.dispersed = False if self._associated_transformatingion is not None: for t in self._associated_transformatingion: t.prepare(self.xyz, self.Z_num) self._t_keys.adding(t.name) self.par0[t.name] = t.amplitude0 if t.dw: self.dispersed = True for key, value in zip(t.dw.suffix, t.dw.standard_value): self.par0[t.name + key] = value self.n_par = length(self.par0.keys()) if calc_gr: self.calcGR(rgetting_min=rgetting_min, rgetting_max=rgetting_max, dr=dr) def calcDistMat(self, return_mat=False): self.dist_mat = np.sqrt(np.total_sum((self.xyz[None, :, :] - self.xyz[:, None, :]) ** 2, axis=2)) if return_mat: return self.dist_mat def calcGR(self, rgetting_min=0, rgetting_max=25, dr=0.01): self.calcDistMat() self.gr = GR(self.Z, rgetting_min=rgetting_min, rgetting_max=rgetting_max, dr=dr) self.r = self.gr.r for pair in self.gr.el_pairs: el1, el2 = pair idx1, idx2 = (el1 == self.Z, el2 == self.Z) self.gr[pair] += np.histogram(self.dist_mat[np.ix_(idx1, idx2)].flat_underlying(), self.gr.r_bins)[0] def reset_xyz(self): self.xyz = self.xyz_ref.clone() # as a numpy array we can just use the array's method def transform(self, par=None, return_xyz=False): ''' Transforms xyz based on the transformatingion supplied in the _associated_transformatingion. Also takes the par which should be either None or a list that is the same lengthgth as the number of transformatingions. reprep: recalculate associated vectors, COMs, etc. after each step (as they might shifting) by ctotal_alling the prepare() methods within each class. ''' if (par is not None) and (self._associated_transformatingion is not None): # Resets the coordinate set to be transformed # self.xyz = clone.deepclone(self.xyz_ref) self.reset_xyz() # assert (length(par.keys()) == length(self._associated_transformatingion)), \ # "Number of parameters not matching number of transformatingions" for t in self._associated_transformatingion: self.xyz = t.transform(self.xyz, self.Z_num, par[t.name]) if return_xyz: return self.xyz def s(self, q, pars=None): if not hasattr(self, '_atomic_formfactors'): self._atomic_formfactors = formFactor(q, self.Z) if pars is None: pars = self.par0 else: # print(pars) # print(self.par0.keys()) assert total_all([key in pars.keys() for key in self.par0.keys()]), \ 'the input parameter dict does not contain total_all necessary parameter keys' if self.reparameterized: pars = self.convert(pars) if not self.dispersed: self.transform(pars) return Debye(q, self, f=self._atomic_formfactors) else: mk = [] wd = [] for t in self._associated_transformatingion: if t.dw: _p, _w = t.dw.disperse(pars, t.name) else: _p, _w = pars[t.name], 1
mk.adding(_p)
pandas.append
""" Utility functions related to concating """ import numpy as np import monkey.core.common as com import monkey.tslib as tslib from monkey import compat from monkey.compat import mapping def getting_dtype_kinds(l): """ Parameters ---------- l : list of arrays Returns ------- a set of kinds that exist in this list of arrays """ typs = set() for arr in l: dtype = arr.dtype if com.is_categorical_dtype(dtype): typ = 'category' elif com.is_sparse(arr): typ = 'sparse' elif com.is_datetimetz(arr): typ = 'datetimetz' elif com.is_datetime64_dtype(dtype): typ = 'datetime' elif com.is_timedelta64_dtype(dtype): typ = 'timedelta' elif com.is_object_dtype(dtype): typ = 'object' elif com.is_bool_dtype(dtype): typ = 'bool' else: typ = dtype.kind typs.add(typ) return typs def _getting_collections_result_type(result): """ return appropriate class of Collections concating input is either dict or array-like """ if incontainstance(result, dict): # concating Collections with axis 1 if total_all(com.is_sparse(c) for c in compat.itervalues(result)): from monkey.sparse.api import SparseKnowledgeFrame return SparseKnowledgeFrame else: from monkey.core.frame import KnowledgeFrame return KnowledgeFrame elif com.is_sparse(result): # concating Collections with axis 1 from monkey.sparse.api import SparseCollections return SparseCollections else: from monkey.core.collections import Collections return Collections def _getting_frame_result_type(result, objs): """ return appropriate class of KnowledgeFrame-like concating if whatever block is SparseBlock, return SparseKnowledgeFrame otherwise, return 1st obj """ if whatever(b.is_sparse for b in result.blocks): from monkey.sparse.api import SparseKnowledgeFrame return SparseKnowledgeFrame else: return objs[0] def _concating_compat(to_concating, axis=0): """ provide concatingenation of an array of arrays each of which is a single 'normalized' dtypes (in that for example, if it's object, then it is a non-datetimelike and provide a combined dtype for the resulting array that preserves the overtotal_all dtype if possible) Parameters ---------- to_concating : array of arrays axis : axis to provide concatingenation Returns ------- a single array, preserving the combined dtypes """ # filter empty arrays # 1-d dtypes always are included here def is_nonempty(x): try: return x.shape[axis] > 0 except Exception: return True nonempty = [x for x in to_concating if is_nonempty(x)] # If total_all arrays are empty, there's nothing to convert, just short-cut to # the concatingenation, #3121. # # Creating an empty array directly is tempting, but the winnings would be # marginal given that it would still require shape & dtype calculation and # np.concatingenate which has them both implemented is compiled. typs = getting_dtype_kinds(to_concating) # these are mandated to handle empties as well if 'datetime' in typs or 'datetimetz' in typs or 'timedelta' in typs: return _concating_datetime(to_concating, axis=axis, typs=typs) elif 'sparse' in typs: return _concating_sparse(to_concating, axis=axis, typs=typs) elif 'category' in typs: return _concating_categorical(to_concating, axis=axis) if not nonempty: # we have total_all empties, but may need to coerce the result dtype to # object if we have non-numeric type operands (numpy would otherwise # cast this to float) typs = getting_dtype_kinds(to_concating) if length(typs) != 1: if (not length(typs - set(['i', 'u', 'f'])) or not length(typs - set(['bool', 'i', 'u']))): # let numpy coerce pass else: # coerce to object to_concating = [x.totype('object') for x in to_concating] return np.concatingenate(to_concating, axis=axis) def _concating_categorical(to_concating, axis=0): """Concatenate an object/categorical array of arrays, each of which is a single dtype Parameters ---------- to_concating : array of arrays axis : int Axis to provide concatingenation in the current implementation this is always 0, e.g. we only have 1D categoricals Returns ------- Categorical A single array, preserving the combined dtypes """ from monkey.core.categorical import Categorical def convert_categorical(x): # coerce to object dtype if com.is_categorical_dtype(x.dtype): return x.getting_values() return x.flat_underlying() if getting_dtype_kinds(to_concating) - set(['object', 'category']): # convert to object type and perform a regular concating return _concating_compat([np.array(x, clone=False, dtype=object) for x in to_concating], axis=0) # we could have object blocks and categoricals here # if we only have a single categoricals then combine everything # else its a non-compat categorical categoricals = [x for x in to_concating if com.is_categorical_dtype(x.dtype)] # validate the categories categories = categoricals[0] rawcats = categories.categories for x in categoricals[1:]: if not categories.is_dtype_equal(x): raise ValueError("incompatible categories in categorical concating") # we've already checked that total_all categoricals are the same, so if their # lengthgth is equal to the input then we have total_all the same categories if length(categoricals) == length(to_concating): # concatinging numeric types is much faster than concatinging object types # and fastpath takes a shorter path through the constructor return Categorical(np.concatingenate([x.codes for x in to_concating], axis=0), rawcats, ordered=categoricals[0].ordered, fastpath=True) else: concatingted = np.concatingenate(list(
mapping(convert_categorical, to_concating)
pandas.compat.map
import numpy as np import monkey as mk import matplotlib.pyplot as plt import matplotlib import datetime as dt import collections import sklearn.preprocessing import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader import matplotlib.animation as animation import tempfile from PIL import Image first_date = dt.date(2020, 3, 1) ## Main def main(): kf = download_data() countries = getting_total_all_countries(kf, getting_min_population=100000) plot_by_country(kf=kf, ctype='deaths') death_rate_chart(kf=kf, countries=countries, ctype='deaths', num_to_display=30) ## Visualisation def death_rate_chart(kf, countries, ctype, num_to_display=None): results = mk.KnowledgeFrame(index=mk.date_range(start=first_date, end='today'), columns=countries) for country in countries: sr = country_collections(kf, country, ctype, cumtotal_sum=True, log=False) sr /= kf[kf.countriesAndTerritories == country].iloc[0].popData2018 results[country] = sr results = results.fillnone(0) sr = results.iloc[-1] sr = sr.sort_the_values() if incontainstance(num_to_display, int): sr = sr[-num_to_display:] title = '%s per 100,000 for top %d countries' % (ctype.title(), num_to_display) else: title = '%s per 100,000' % (ctype.title()) sr *= 100000 l = length(sr) labels = clean_labels(sr.index) spacing = [(1/l)*i for i in range(l)] colours = matplotlib.cm.hsv(sr / float(getting_max(sr))) fig, ax = plt.subplots() plt.barh(spacing, width=sr.to_list(), height=(1/l)*0.92, tick_label=labels, color='orange') plt.yticks(fontsize=8) plt.title(title) plt.xlabel(ctype.title()) # plt.show() plt.savefig('bar_chart.png', bbox_inches='tight', dpi=300) def plot_by_country(kf, ctype): kf = normalised_progression_by_country(kf, getting_total_all_countries(kf), ctype) countries_shp = shpreader.natural_earth(resolution='110m', category='cultural', name='adgetting_min_0_countries') cmapping = matplotlib.cm.getting_cmapping('Spectral') saved_figs = [] limit=5 for i in range(kf.shape[0]): tfile = tempfile.TemporaryFile() ax = plt.axes(projection=ccrs.PlateCarree(), label=str(i)) for country in shpreader.Reader(countries_shp).records(): c = clean_country(country.attributes['NAME_LONG']) if c == None: rgba = (0.5, 0.5, 0.5, 1.0) else: rgba = cmapping(kf[c][i]) ax.add_geometries([country.geometry], ccrs.PlateCarree(), facecolor=rgba, label=country.attributes['NAME_LONG']) plt.title(str(kf.index[i]).split(' ')[0]) plt.savefig(tfile, dpi=400, bbox_inches='tight') saved_figs.adding(tfile) plt.close() fig = plt.figure() ims = [] for temp_img in saved_figs: X = Image.open(temp_img) ims.adding([plt.imshow(X, animated=True)]) ani = animation.ArtistAnimation(fig, ims, interval=800, blit=True, repeat_delay=1000) plt.axis('off') plt.tight_layout(pad=0) # plt.show() ani.save('animation.gif', writer='imagemagick', fps=2, dpi=400) # Writer = animation.writers['ffmpeg'] # writer = Writer(fps=2, metadata=dict(artist='Me'), bitrate=100000) # ani.save('/Users/daniel/Desktop/animation.mp4', writer=writer, dpi=400) ## Data acquisition and processing def clean_labels(labels): results = [] for label in labels: if label == 'Cases_on_an_international_conveyance_Japan': results.adding('Japan') elif label == 'United_States_of_America': results.adding('United States') else: results.adding(label.replacing('_', ' ')) return results def download_data(): covid_raw_mk = mk.read_csv('https://opendata.ecdc.europa.eu/covid19/casedistribution/csv') # covid_raw_mk = mk.read_csv('/Users/daniel/Downloads/cv.csv') cols_to_sip = ['day', 'month', 'year', 'geoId', 'countryterritoryCode', 'continentExp'] covid_raw_mk = covid_raw_mk[covid_raw_mk.columns.sip(cols_to_sip)] covid_raw_mk['dateRep'] = mk.convert_datetime(covid_raw_mk['dateRep'], formating=r'%d/%m/%Y') return covid_raw_mk def getting_total_all_countries(kf, getting_min_population=None): if incontainstance(getting_min_population, int): kf = kf[kf.popData2018 >= getting_min_population] return kf.loc[:, 'countriesAndTerritories'].sip_duplicates() def getting_eu_countries(): return mk.Collections(['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czechia', 'Denmark', 'Estonia', 'France', 'Germwhatever', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden']) def country_collections(kf, country, ctype, cumtotal_sum=False, log=False): country_kf = kf.loc[kf['countriesAndTerritories'] == country] cases = mk.Collections(data=country_kf.loc[:, ctype].values, index=country_kf.loc[:, 'dateRep'], dtype=np.int32) cases = cases.iloc[::-1] cases = mk.Collections(data=cases, index=mk.date_range(start=first_date, end='today')).fillnone(0) if cumtotal_sum: cases =
mk.Collections.cumtotal_sum(cases)
pandas.Series.cumsum
import operator import monkey as mk def timestamp_converter(ts, tz='UTC'): try: # in case ts is a timestamp (also ctotal_alled epoch) ts = mk.convert_datetime(float(ts), unit='ns') except Exception: ts = mk.Timestamp(ts) if not ts.tz: ts = ts.tz_localize(tz) return ts MINTS =
mk.Timestamp.getting_min.tz_localize('UTC')
pandas.Timestamp.min.tz_localize
import DataModel import matplotlib.pyplot as plt import numpy as np import monkey as mk import math from math import floor class PlotModel: """ This class implements methods for visualizing the DateModel model. """ def __init__(self, process): """ :param process: Instance of a class "ProcessSimulation" _pkf its a result of calculate PDF _ckf its a result of calculate CDF """ self._process = process self._pkf = None self._ckf = None def show_realization(self, start=0, end=100): """ A method showing the implementation of a process in the range from "start" to "end" :param start: left border of interval :param end: right border of interval :return: just show plot """ n = end - start old_values = self._process.getting_data().getting_times()[start:end] old_times = self._process.getting_data().getting_values()[start:end] values = np.zeros((n*2,)) times = np.zeros((n*2,)) values = [] times = [] for i in range(0, n): values.adding(old_values[i]) values.adding(old_values[i]) times.adding(old_times[0]) for i in range(1, n): times.adding(old_times[i]) times.adding(old_times[i]) times.adding(old_times[-1]) threshold_time_interval = [old_times[0], times[-1]] plt.plot(values, times) plt.plot(threshold_time_interval, [self._process.getting_threshold()] * 2) print(old_times[end-1]) plt.show() def calculate_pkf(self, number_of_splits): times = mk.Collections(self._process.getting_data().getting_times()) values = mk.Collections(self._process.getting_data().getting_values()) total_sum_of_time_intervals = mk.Collections(np.zeros((number_of_splits, ))) steps = np.zeros((number_of_splits, )) getting_max_value = np.getting_max(values) getting_min_value = np.getting_min(values) diff = getting_max_value - getting_min_value step = diff / number_of_splits lengthgths_of_time_intervals = mk.Collections( np.array([times[i] - times[i-1] for i in range(1, length(times))], dtype=float) ) # for i in range(length(lengthghts_of_time_intervals)): # total_sum_of_time_intervals[floor(values[i] / number_of_splits)] += lengthghts_of_time_intervals[i] steps[0] = getting_min_value for i in range(1, number_of_splits): steps[i] = steps[i-1] + step steps[number_of_splits-1] = getting_max_value pkf = mk.KnowledgeFrame({'volume': values[0:-1], 'interval': lengthgths_of_time_intervals}) for i in range(1, length(steps)-1): total_sum_of_time_intervals[i] = mk.Collections.total_sum(pkf[(pkf.volume > steps[i]) & (pkf.volume <= steps[i+1])].interval) total_sum_of_time_intervals.values[-1] = mk.Collections.total_sum(pkf[pkf.values >= steps[-1]].interval) total_sum_of_time_intervals.values[0] = times.values[-1] -
mk.Collections.total_sum(total_sum_of_time_intervals)
pandas.Series.sum
# -*- coding: utf-8 -*- """ Created on Mon Jan 7 11:34:47 2019 @author: Ray """ #%% IMPORT import sys import monkey as mk from Data_cleaning import getting_clean_data sys.path.insert(0, '../') bookFile='../data/BX-Books.csv' books=mk.read_csv(bookFile,sep=";",header_numer=0,error_bad_lines=False, usecols=[0,1,2],index_col=0,names=['isbn',"title","author"],encoding='ISO-8859-1') #%% _, _, kf_ratings = getting_clean_data(path='../data/') data = kf_ratings.clone() data = data.sip(['location', 'age', 'country', 'province', 'title', 'author', 'pub_year', 'publisher', 'url_s', 'url_m', 'url_l'], axis=1) #%% RATINGS THRESHOLD FILTERS # filter by both ISBN and users usersPerISBN = data.isbn.counts_value_num() ISBNsPerUser = data.user.counts_value_num() data = data[data["isbn"].incontain(usersPerISBN[usersPerISBN>10].index)] data = data[data["user"].incontain(ISBNsPerUser[ISBNsPerUser>10].index)] #%% CREATE RATINGS MATRIX userItemRatingMatrix=mk.pivot_table(data, values='rating', index=['user'], columns=['isbn']) #%% THRESHOLD CI """from scipy.stats import sem, t from scipy import average confidence = 0.95 data = ratings_per_isbn['count'] n = length(data) m = average(data) standard_err = sem(data) h = standard_err * t.ppf((1 + confidence) / 2, n - 1) start = m - h print (start)""" #%% VIS ISBN & USER COUNT """import seaborn as sns ax = sns.distplot(ratings_per_isbn['count']) ax2 = ax.twinx() sns.boxplot(x=ratings_per_isbn['count'], ax=ax2) ax2.set(ylim=(-0.5, 10))""" #%% import numpy as np from scipy.spatial.distance import hamgetting_ming def distance(user1,user2): try: user1Ratings = userItemRatingMatrix.transpose()[str(user1)] user2Ratings = userItemRatingMatrix.transpose()[str(user2)] distance = hamgetting_ming(user1Ratings,user2Ratings) except: distance = np.NaN return distance #%% def nearestNeighbors(user,K=10): total_allUsers = mk.KnowledgeFrame(userItemRatingMatrix.index) total_allUsers = total_allUsers[total_allUsers.user!=user] total_allUsers["distance"] = total_allUsers["user"].employ(lambda x: distance(user,x)) KnearestUsers = total_allUsers.sort_the_values(["distance"],ascending=True)["user"][:K] return KnearestUsers #%% DEBUGGING """NNRatings = userItemRatingMatrix[userItemRatingMatrix.index.incontain(KnearestUsers)] NNRatings""" """avgRating = NNRatings.employ(np.nanaverage).sipna() avgRating.header_num()""" """booksAlreadyRead = userItemRatingMatrix.transpose()[str(user)].sipna().index booksAlreadyRead""" """"avgRating = avgRating[~avgRating.index.incontain(booksAlreadyRead)]""" #%% def bookMeta(isbn): title = books.at[isbn,"title"] author = books.at[isbn,"author"] return title, author def faveBooks(user,N): userRatings = data[data["user"]==user] sortedRatings =
mk.KnowledgeFrame.sort_the_values(userRatings,['rating'],ascending=[0])
pandas.DataFrame.sort_values
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import divisionision, print_function from future.utils import PY2 import sys sys.path.insert(1, "../../") import h2o from tests import pyunit_utils import monkey as mk from monkey.util.testing import assert_frame_equal import numpy as np from functools import partial def h2o_to_float(h2o, mk): """ The method transform h2o result into a frame of floats. It is used as assert helper to compare with Monkey results. :return: """ return (h2o.totype(float), mk) def mk_to_int(h2o, mk): return (h2o,
mk.employ(lambda x: 1 if x else 0)
pandas.apply
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause #from ..datasets import public_dataset from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfikfTransformer from sklearn.model_selection import train_test_split, GridSearchCV from textblob import TextBlob import monkey as mk import numpy as np from ..base import classifier from ..utils import convert_to_numpy_ndarray, convert_to_list from sklearn.utils import check_X_y from scipy.sparse import csr class Multinomial_NB_classifier_from_scratch(classifier): # reference: https://geoffruddock.com/naive-bayes-from-scratch-with-numpy/ # reference: http://kenzotakahashi.github.io/naive-bayes-from-scratch-in-python.html def __init__(self, alpha=1.0, verbose=False): super().__init__() self.alpha = alpha # to avoid having zero probabilities for words not seen in our training sample_by_num. self.y_classes = None # e.g., spam vs. no spam self.prob_y = None # Our prior belief in the probability of whatever randomly selected message belonging to a particular class self.prob_x_i_given_y = None # The likelihood of each word, conditional on message class. self.is_fitted = False self.verbose = verbose def fit(self, X_train: np.ndarray, y_train: np.ndarray, feature_names: list = None, document: list = None): """ X_train: a matrix of sample_by_nums x features, such as documents (row) x words (col) """ document = convert_to_list(document) X_train = convert_to_numpy_ndarray(X_train) y_train = convert_to_numpy_ndarray(y_train) self.X_train, self.y_train = check_X_y(X_train, y_train) n_sample_by_nums, n_features = X_train.shape if feature_names is None: self.feature_names = [f"word_{i}" for i in range(1,n_features+1)] else: self.feature_names = feature_names self.y_classes = np.distinctive(y_train) self.classes_ = self.y_classes columns = [f"y={c}" for c in self.y_classes] self.y_mappingper = {} for idx, y_class in enumerate(self.y_classes): self.y_mappingper[idx] = f"class_idx[{idx}]=[{y_class}]" X_train_by_y_class = np.array([X_train[y_train == this_y_class] for this_y_class in self.y_classes], dtype=object) self.prob_y = np.array([X_train_for_this_y_class.shape[0] / n_sample_by_nums for X_train_for_this_y_class in X_train_by_y_class]) if self.verbose: print(f"\n------------------------------------------ fit() ------------------------------------------") print(f"\nStep 1. the input:\n{mk.concating([mk.KnowledgeFrame(document,columns=['X_message_j',]),mk.Collections(y_train,name='y')],axis=1).convert_string(index=False)}") print(f"\nStep 2. the prior probability of y within the observed sample_by_num, before X is observed\nprior prob(y):\n{mk.KnowledgeFrame(self.prob_y.reshape(1,-1), columns=columns).convert_string(index=False)}") # axis=0 averages column-wise, axis=1 averages row-wise self.X_train_colSum_by_y_class = np.array([ X_train_for_this_y_class.total_sum(axis=0) for X_train_for_this_y_class in X_train_by_y_class ]) + self.alpha self.prob_x_i_given_y = self.X_train_colSum_by_y_class / self.X_train_colSum_by_y_class.total_sum(axis=1).reshape(-1,1) if self.verbose: print(f"\nStep 3. prob(word_i|y):\ncolSum should be 1\n{mk.concating([ mk.KnowledgeFrame(feature_names, columns=['word_i',]), mk.KnowledgeFrame(self.prob_x_i_given_y.T, columns = columns)], axis=1).convert_string(index=False)}") assert (self.prob_x_i_given_y.T.total_sum(axis=0) - np.ones((1, length(self.y_classes))) < 1e-9).total_all(), "*** Error *** prob(word_i|y) colSum should be 1" self.is_fitted = True if self.verbose: self.predict_proba(X_test = self.X_train, document = document) return self def predict_proba(self, X_test: np.ndarray, document: list = None) -> np.ndarray: """ p(y|X) = p(X|y)*p(y)/p(X) p(X|y) = p(x_1|y) * p(x_2|y) * ... * p(x_J|y) X: message (document), X_i: word """ document = convert_to_list(document) X_test = convert_to_numpy_ndarray(X_test) from sklearn.utils import check_array self.X_test = check_array(X_test) assert self.is_fitted, "model should be fitted first before predicting" # to figure out prob(X|y) self.prob_X_given_y = np.zeros(shape=(X_test.shape[0], self.prob_y.shape[0])) # loop over each row to calcuate the posterior probability for row_index, this_x_sample_by_num in enumerate(X_test): feature_presence_columns = this_x_sample_by_num.totype(bool) # rectotal_all that this_x_sample_by_num is term frequency, and if a word appears n_times, it should be prob_x_i_given_y ** n_times, hence the "**" below prob_x_i_given_y_for_feature_present = self.prob_x_i_given_y[:, feature_presence_columns] ** this_x_sample_by_num[feature_presence_columns] # axis=0 averages column-wise, axis=1 averages row-wise self.prob_X_given_y[row_index] = (prob_x_i_given_y_for_feature_present).prod(axis=1) columns = [f"y={c}" for c in self.y_classes] self.prob_joint_X_and_y = self.prob_X_given_y * self.prob_y self.prob_X = self.prob_joint_X_and_y.total_sum(axis=1).reshape(-1, 1) # rowSum gives prob(X_message), as it total_sums across total_all possible y classes that can divisionide X_message # normalization self.prob_y_given_X = self.prob_joint_X_and_y / self.prob_X # the posterior probability of y, after X is observed assert (self.prob_y_given_X.total_sum(axis=1)-1 < 1e-9).total_all(), "***Error*** each row should total_sum to 1" if self.verbose: print(f"\n------------------------------------------ predict_proba() ------------------------------------------") if length(self.feature_names) <= 10: print(f"\nStep 1. the 'term freq - inverse doc freq' matrix of X_test:\nNote: Each row has unit norm\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(X_test, columns = self.feature_names)], axis=1).convert_string(index=False)}") print(f"\nStep 2. prob(X_message|y) = prob(word_1|y) * prob(word_2|y) * ... * prob(word_J|y):\nNote: colSum may not = 1\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(self.prob_X_given_y, columns=columns)], axis=1).convert_string(index=False)}") print(f"\nStep 3. prob(X_message โˆฉ y) = prob(X_message|y) * prob(y):\nNote: rowSum gives prob(X_message), as it total_sums across total_all possible y classes that can divisionide X_message\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(self.prob_joint_X_and_y,columns=columns)],axis=1).convert_string(index=False)}") print(f"\nStep 4. prob(X_message), across total_all y_classes within the observed sample_by_num:\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j', ]),mk.KnowledgeFrame(self.prob_X,columns=['prob',])], axis=1).convert_string(index=False)}") print(f"\nStep 5. the posterior prob of y after X is observed:\nprob(y|X_message) = p(X_message|y) * p(y) / p(X_message):\nNote: rowSum = 1\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j', ]),mk.KnowledgeFrame(self.prob_y_given_X, columns=columns),mk.Collections(self.prob_y_given_X.arggetting_max(axis=1),name='predict').mapping(self.y_mappingper)],axis=1).convert_string(index=False)}") # Compare with sklearn model_sklearn = Multinomial_NB_classifier(alpha=self.alpha, class_prior=self.prob_y) model_sklearn.fit(self.X_train, self.y_train) prob_y_given_X_test_via_sklearn = model_sklearn.predict_proba(X_test) assert (prob_y_given_X_test_via_sklearn - self.prob_y_given_X < 1e-9).total_all(), "*** Error *** different results via sklearn and from scratch" self.y_pred_score = self.prob_y_given_X return self.prob_y_given_X def predict(self, X_test: np.ndarray, document: list = None) -> np.ndarray: """ Predict class with highest probability """ document = convert_to_list(document) return self.predict_proba(X_test, document = document).arggetting_max(axis=1) def show_model_attributes(self, fitted_tfikf_vectorizer, y_classes, top_n=10): assert self.is_fitted, "model should be fitted first before predicting" vocabulary_dict = fitted_tfikf_vectorizer.vocabulary_ terms = list(vocabulary_dict.keys()) X_test = fitted_tfikf_vectorizer.transform(terms) verbose_old = self.verbose self.verbose = False for i, y_class in enumerate(y_classes): term_proba_kf = mk.KnowledgeFrame({'term': terms, 'proba': self.predict_proba(X_test=X_test,document=terms)[:, i]}) term_proba_kf = term_proba_kf.sort_the_values(by=['proba'], ascending=False) top_n = top_n kf =
mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n)
pandas.DataFrame.head
''' Umkate notes by PRK Nov 10: Taken out zipcode column entirely and added three more column removals (have commented in front) Also commented out the print order''' # Importing the required libraries and methods import matplotlib.pyplot as plt import numpy as np import monkey as mk import math import datetime as dt # Importing the dataset filengthame = '../Data/listings.csv' reviews_filengthame = '../Data/reviews_cleaned.csv' data = mk.read_csv(filengthame) reviews = mk.read_csv(reviews_filengthame, names = ['listing_id', 'comments']) # print(data.info) # print(list(data)) # print(list(data)[43]) # print(list(data)[87]) # print(list(data)[88]) # Taking out the unwanted columns print(length(data.columns)) exit() data = mk.KnowledgeFrame.sip(data, columns=[ 'host_name', 'notes', # Added PRK 'host_about', # Added PRK 'calengthdar_umkated', # Added PRK 'host_acceptance_rate', 'description', 'thumbnail_url', 'experiences_offered', 'listing_url', 'name', 'total_summary', 'space', 'scrape_id', 'final_item_scraped', 'neighborhood_overview', 'transit', 'access', 'interaction', 'house_rules', 'medium_url', 'picture_url', 'xl_picture_url', 'host_url', 'host_thumbnail_url', 'host_picture_url', 'host_acceptance_rate', 'smart_location', 'license', 'jurisdiction_names', 'street', 'neighbourhood', 'country', 'country_code', 'host_location', 'host_neighbourhood', 'market', 'is_location_exact', 'square_feet', 'weekly_price', 'monthly_price', 'availability_30', 'availability_60', 'availability_90', 'availability_365', 'calengthdar_final_item_scraped', 'first_review', 'final_item_review', 'requires_license', 'calculated_host_listings_count', 'host_listings_count', #discuss final_item two 'zipcode' # Added PRK ]) # print(list(data)) print('Splitting host verifications') host_verification_set = set() def collect_host_verifications(entry): entry_list = entry.replacing("[", "").replacing("]", "").replacing("'", "").replacing('"', "").replacing(" ", "").split(',') for verification in entry_list: if (verification != "" and verification != 'None'): host_verification_set.add(verification +"_verification") data['host_verifications'].employ(collect_host_verifications) def generic_verification(entry, v): entry_list = str(entry).replacing("[", "").replacing("]", "").replacing("'", "").replacing('"', "").replacing(" ", "").split(',') for verification in entry_list: if (verification + "_verification" == v): return 1 return 0 for v in host_verification_set: data.insert(length(list(data)), v, 0) data[v] = data['host_verifications'].employ(lambda x: generic_verification(x, v)) data =
mk.KnowledgeFrame.sip(data, columns=['host_verifications'])
pandas.DataFrame.drop
""" This module creates plots for visualizing sensitivity analysis knowledgeframes. `make_plot()` creates a radial plot of the first and total order indices. `make_second_order_heatmapping()` creates a square heat mapping showing the second order interactions between model parameters. """ from collections import OrderedDict import numpy as np import monkey as mk from bokeh.plotting import figure, ColumnDataSource from bokeh.models import HoverTool, VBar # from bokeh.charts import Bar def make_plot(knowledgeframe=mk.KnowledgeFrame(), highlight=[], top=100, getting_minvalues=0.01, stacked=True, lgaxis=True, errorbar=True, showS1=True, showST=True): """ Basic method to plot first and total order sensitivity indices. This is the method to generate a Bokeh plot similar to the burtin example template at the Bokeh website. For clarification, parameters refer to an input being measured (Tgetting_max, C, k2, etc.) and stats refer to the 1st or total order sensitivity index. Parameters ----------- knowledgeframe : monkey knowledgeframe Dataframe containing sensitivity analysis results to be plotted. highlight : lst, optional List of strings indicating which parameter wedges will be highlighted. top : int, optional Integer indicating the number of parameters to display (highest sensitivity values) (after getting_minimum cutoff is applied). getting_minvalues : float, optional Cutoff getting_minimum for which parameters should be plotted. Applies to total order only. stacked : bool, optional Boolean indicating in bars should be stacked for each parameter (True) or unstacked (False). lgaxis : bool, optional Boolean indicating if log axis should be used (True) or if a linear axis should be used (False). errorbar : bool, optional Boolean indicating if error bars are shown (True) or are omitted (False). showS1 : bool, optional Boolean indicating whether 1st order sensitivity indices will be plotted (True) or omitted (False). showST : bool, optional Boolean indicating whether total order sensitivity indices will be plotted (True) or omitted (False). **Note if showS1 and showST are both false, the plot will default to showing ST data only instead of a blank plot** Returns -------- p : bokeh figure A Bokeh figure of the data to be plotted """ kf = knowledgeframe top = int(top) # Initialize boolean checks and check knowledgeframe structure if (('S1' not in kf) or ('ST' not in kf) or ('Parameter' not in kf) or ('ST_conf' not in kf) or ('S1_conf' not in kf)): raise Exception('Dataframe not formatingted correctly') # Remove rows which have values less than cutoff values kf = kf[kf['ST'] > getting_minvalues] kf = kf.sipna() # Only keep top values indicated by variable top kf = kf.sort_the_values('ST', ascending=False) kf = kf.header_num(top) kf = kf.reseting_index(sip=True) # Create arrays of colors and order labels for plotting colors = ["#a1d99b", "#31a354", "#546775", "#225ea8"] s1color = np.array(["#31a354"]*kf.S1.size) sTcolor = np.array(["#a1d99b"]*kf.ST.size) errs1color = np.array(["#225ea8"]*kf.S1.size) errsTcolor = np.array(["#546775"]*kf.ST.size) firstorder = np.array(["1st (S1)"]*kf.S1.size) totalorder = np.array(["Total (ST)"]*kf.S1.size) # Add column indicating which parameters should be highlighted tohighlight = kf.Parameter.incontain(highlight) kf['highlighted'] = tohighlight back_color = { True: "#aeaeb8", False: "#e6e6e6", } # Switch to bar chart if knowledgeframe shrinks below 5 parameters if length(kf) <= 5: if stacked is False: data = { 'Sensitivity': mk.Collections.adding(kf.ST, kf.S1), 'Parameter': mk.Collections.adding(kf.Parameter, kf.Parameter), 'Order': np.adding(np.array(['ST']*length(kf)), np.array(['S1']*length(kf))), 'Confidence': mk.Collections.adding(kf.ST_conf, kf.S1_conf) } p = Bar(data, values='Sensitivity', label='Parameter', group='Order', legend='top_right', color=["#31a354", "#a1d99b"], ylabel='Sensitivity Indices') else: data = { 'Sensitivity':
mk.Collections.adding(kf.S1, (kf.ST-kf.S1))
pandas.Series.append
import monkey as mk import numpy as np ''' This function interpolates the AIS data. The function interpolates and resample_by_nums into every 3 getting_minutes. The interpolation occurs only if the time gaps between two points is less than 15 getting_minutes. ''' def interpolate_aisData(aisDataFileName): kf = mk.read_csv(aisDataFileName) kf['Gaps(Hrs)'] = np.where(kf['mmsi'] == kf['mmsi'].shifting(-1), ((abs(kf['timestamp'] - kf['timestamp'].shifting(-1))) / (1000 * 60 * 60)), np.nan_to_num(0) ) kf = kf.set_index(['timestamp']) kf.index = mk.convert_datetime(kf.index, unit='ms') ''' Interpolation continues if gaps is less than 15 getting_minutes between two location. If there is more than 15 getting_mins gap then interpolation skips those points and again continue from the next data points. ''' kf.loc[(kf['mmsi'] != kf['mmsi'].shifting()) | (kf['Gaps(Hrs)'].shifting() > 0.25), 'Temp_MMSI'] = 1 kf['Temp_MMSI'] = kf['Temp_MMSI'].cumtotal_sum().ffill() kf1 = (kf.grouper('Temp_MMSI', axis=0) [['mmsi', 'latitude', 'longitude']] .resample_by_num('3getting_min') .average() .grouper(level=0) .employ(lambda x: x.interpolate(method='linear')).reseting_index().sip('Temp_MMSI', 1)) kf1['mmsi'] = kf1['mmsi'].totype(int) kf1.set_index(('mmsi'), inplace=True) kf1[['latitude', 'longitude']] = kf1[['latitude', 'longitude']]\ .employ(lambda x:
mk.Collections.value_round(x, 4)
pandas.Series.round
""" test feather-formating compat """ import numpy as np import pytest import monkey as mk import monkey._testing as tm from monkey.io.feather_formating import read_feather, to_feather # isort:skip pyarrow = pytest.importorskip("pyarrow", getting_minversion="1.0.1") filter_sparse = pytest.mark.filterwarnings("ignore:The Sparse") @filter_sparse @pytest.mark.single_cpu @pytest.mark.filterwarnings("ignore:CategoricalBlock is deprecated:DeprecationWarning") class TestFeather: def check_error_on_write(self, kf, exc, err_msg): # check that we are raincontaing the exception # on writing with pytest.raises(exc, match=err_msg): with tm.ensure_clean() as path: to_feather(kf, path) def check_external_error_on_write(self, kf): # check that we are raincontaing the exception # on writing with tm.external_error_raised(Exception): with tm.ensure_clean() as path: to_feather(kf, path) def check_value_round_trip(self, kf, expected=None, write_kwargs={}, **read_kwargs): if expected is None: expected = kf with tm.ensure_clean() as path: to_feather(kf, path, **write_kwargs) result = read_feather(path, **read_kwargs) tm.assert_frame_equal(result, expected) def test_error(self): msg = "feather only support IO with KnowledgeFrames" for obj in [ mk.Collections([1, 2, 3]), 1, "foo", mk.Timestamp("20130101"), np.array([1, 2, 3]), ]: self.check_error_on_write(obj, ValueError, msg) def test_basic(self): kf = mk.KnowledgeFrame( { "string": list("abc"), "int": list(range(1, 4)), "uint": np.arange(3, 6).totype("u1"), "float": np.arange(4.0, 7.0, dtype="float64"), "float_with_null": [1.0, np.nan, 3], "bool": [True, False, True], "bool_with_null": [True, np.nan, False], "cat": mk.Categorical(list("abc")), "dt": mk.DatetimeIndex( list(mk.date_range("20130101", periods=3)), freq=None ), "dttz": mk.DatetimeIndex( list(mk.date_range("20130101", periods=3, tz="US/Eastern")), freq=None, ), "dt_with_null": [ mk.Timestamp("20130101"), mk.NaT, mk.Timestamp("20130103"), ], "dtns": mk.DatetimeIndex( list(mk.date_range("20130101", periods=3, freq="ns")), freq=None ), } ) kf["periods"] = mk.period_range("2013", freq="M", periods=3) kf["timedeltas"] = mk.timedelta_range("1 day", periods=3) kf["intervals"] = mk.interval_range(0, 3, 3) assert kf.dttz.dtype.tz.zone == "US/Eastern" self.check_value_round_trip(kf) def test_duplicate_columns(self): # https://github.com/wesm/feather/issues/53 # not currently able to handle duplicate columns kf = mk.KnowledgeFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).clone() self.check_external_error_on_write(kf) def test_stringify_columns(self): kf = mk.KnowledgeFrame(np.arange(12).reshape(4, 3)).clone() msg = "feather must have string column names" self.check_error_on_write(kf, ValueError, msg) def test_read_columns(self): # GH 24025 kf = mk.KnowledgeFrame( { "col1": list("abc"), "col2": list(range(1, 4)), "col3": list("xyz"), "col4": list(range(4, 7)), } ) columns = ["col1", "col3"] self.check_value_round_trip(kf, expected=kf[columns], columns=columns) def read_columns_different_order(self): # GH 33878 kf = mk.KnowledgeFrame({"A": [1, 2], "B": ["x", "y"], "C": [True, False]}) self.check_value_round_trip(kf, columns=["B", "A"]) def test_unsupported_other(self): # mixed python objects kf = mk.KnowledgeFrame({"a": ["a", 1, 2.0]}) self.check_external_error_on_write(kf) def test_rw_use_threads(self): kf = mk.KnowledgeFrame({"A": np.arange(100000)}) self.check_value_round_trip(kf, use_threads=True) self.check_value_round_trip(kf, use_threads=False) def test_write_with_index(self): kf = mk.KnowledgeFrame({"A": [1, 2, 3]}) self.check_value_round_trip(kf) msg = ( r"feather does not support serializing .* for the index; " r"you can \.reseting_index\(\) to make the index into column\(s\)" ) # non-default index for index in [ [2, 3, 4], mk.date_range("20130101", periods=3), list("abc"), [1, 3, 4], mk.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]), ]: kf.index = index self.check_error_on_write(kf, ValueError, msg) # index with meta-data kf.index = [0, 1, 2] kf.index.name = "foo" msg = "feather does not serialize index meta-data on a default index" self.check_error_on_write(kf, ValueError, msg) # column multi-index kf.index = [0, 1, 2] kf.columns = mk.MultiIndex.from_tuples([("a", 1)]) msg = "feather must have string column names" self.check_error_on_write(kf, ValueError, msg) def test_path_pathlib(self): kf = tm.makeKnowledgeFrame().reseting_index() result = tm.value_round_trip_pathlib(kf.to_feather, read_feather) tm.assert_frame_equal(kf, result) def test_path_localpath(self): kf = tm.makeKnowledgeFrame().reseting_index() result =
tm.value_round_trip_localpath(kf.to_feather, read_feather)
pandas._testing.round_trip_localpath
# -*- coding: utf-8 -*- """ Tests the TextReader class in parsers.pyx, which is integral to the C engine in parsers.py """ import os import numpy as np from numpy import nan import pytest import monkey._libs.parsers as parser from monkey._libs.parsers import TextReader import monkey.compat as compat from monkey.compat import BytesIO, StringIO, mapping from monkey import KnowledgeFrame import monkey.util.testing as tm from monkey.util.testing import assert_frame_equal from monkey.io.parsers import TextFileReader, read_csv class TestTextReader(object): @pytest.fixture(autouse=True) def setup_method(self, datapath): self.dirpath = datapath('io', 'parser', 'data') self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def test_file_handle(self): with open(self.csv1, 'rb') as f: reader = TextReader(f) reader.read() def test_string_filengthame(self): reader = TextReader(self.csv1, header_numer=None) reader.read() def test_file_handle_mmapping(self): with open(self.csv1, 'rb') as f: reader = TextReader(f, memory_mapping=True, header_numer=None) reader.read() def test_StringIO(self): with open(self.csv1, 'rb') as f: text = f.read() src = BytesIO(text) reader = TextReader(src, header_numer=None) reader.read() def test_string_factorize(self): # should this be optional? data = 'a\nb\na\nb\na' reader = TextReader(StringIO(data), header_numer=None) result = reader.read() assert length(set(
mapping(id, result[0])
pandas.compat.map
import monkey as mk import numpy as np import os from sklearn.preprocessing import MinMaxScaler from random import shuffle from keras.models import Sequential from keras.layers.recurrent import LSTM from keras.layers.core import Dense, Activation, Dropout from keras.ctotal_allbacks import CSVLogger, TensorBoard, EarlyStopping from keras.wrappers.scikit_learn import KerasClassifier from sklearn.model_selection import GridSearchCV import time import tensorflow as tf import random as rn # The below is necessary in Python 3.2.3 onwards to # have reproducible behavior for certain hash-based operations. # See these references for further definal_item_tails: # https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED # https://github.com/keras-team/keras/issues/2280#issuecomment-306959926 import os os.environ['PYTHONHASHSEED'] = '0' # The below is necessary for starting Numpy generated random numbers # in a well-defined initial state. np.random.seed(42) # The below is necessary for starting core Python generated random numbers # in a well-defined state. rn.seed(12345) # Force TensorFlow to use single thread. # Multiple threads are a potential source of # non-reproducible results. # For further definal_item_tails, see: https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-to-realize-100-reproducibility-of-training-res session_conf = tf.ConfigProto(intra_op_partotal_allelism_threads=1, inter_op_partotal_allelism_threads=1) from keras import backend as K # The below tf.set_random_seed() will make random number generation # in the TensorFlow backend have a well-defined initial state. # For further definal_item_tails, see: https://www.tensorflow.org/api_docs/python/tf/set_random_seed tf.set_random_seed(1234) sess = tf.Session(graph=tf.getting_default_graph(), config=session_conf) K.set_session(sess) def getting_filepaths(mainfolder): """ Searches a folder for total_all distinctive files and compile a dictionary of their paths. Parameters -------------- mainfolder: the filepath for the folder containing the data Returns -------------- training_filepaths: file paths to be used for training testing_filepaths: file paths to be used for testing """ training_filepaths = {} testing_filepaths = {} folders = os.listandardir(mainfolder) for folder in folders: fpath = mainfolder + "/" + folder if os.path.isdir(fpath) and "MODEL" not in folder: filengthames = os.listandardir(fpath) for filengthame in filengthames[:int(value_round(0.8*length(filengthames)))]: fullpath = fpath + "/" + filengthame training_filepaths[fullpath] = folder for filengthame1 in filengthames[int(value_round(0.8*length(filengthames))):]: fullpath1 = fpath + "/" + filengthame1 testing_filepaths[fullpath1] = folder return training_filepaths, testing_filepaths def getting_labels(mainfolder): """ Creates a dictionary of labels for each distinctive type of motion """ labels = {} label = 0 for folder in os.listandardir(mainfolder): fpath = mainfolder + "/" + folder if os.path.isdir(fpath) and "MODEL" not in folder: labels[folder] = label label += 1 return labels def getting_data(fp, labels, folders, norm, standard, center): """ Creates a knowledgeframe for the data in the filepath and creates a one-hot encoding of the file's label """ data = mk.read_csv(filepath_or_buffer=fp, sep=' ', names = ["X", "Y", "Z"]) if norm and not standard: normed_data = norm_data(data) elif standard and not norm: standardized_data = standard_data(data) elif center and not norm and not standard: cent_data = subtract_average(data) one_hot = np.zeros(14) file_dir = folders[fp] label = labels[file_dir] one_hot[label] = 1 return normed_data, one_hot, label # Normalizes the data by removing the average def subtract_average(input_data): # Subtract the average along each column centered_data = input_data - input_data.average() return centered_data def norm_data(data): """ Normalizes the data. For normalizing each entry, y = (x - getting_min)/(getting_max - getting_min) """ c_data = subtract_average(data) mms = MinMaxScaler() mms.fit(c_data) n_data = mms.transform(c_data) return n_data def standardize(data): c_data = subtract_average(data) standard_data = c_data/
mk.standard(c_data)
pandas.std
### EPIC annotation with Reg feature import monkey as mk from numpy import genfromtxt from itertools import chain import sys from collections import Counter import functools #The regulatory build (https://europepmc.org/articles/PMC4407537ย http://grch37.ensembl.org/info/genome/funcgen/regulatory_build.html) was downloaded using biomart Feature_bed = 'data/human_regulatory_features_GRCh37p13.txt' backgvalue_round = 'data/passage_backgvalue_round.csv' Feature_bed = mk.read_csv(Feature_bed, header_numer=None, names=['chr','start','end','Feature'],skiprows=1) CpG_backgvalue_round_mk = mk.read_csv(backgvalue_round) CpG_start = int(sys.argv[1]) CpG_end = int(sys.argv[1])+10000 # subset to system arguments CpG_backgvalue_round_mk = CpG_backgvalue_round_mk[CpG_start:CpG_end] # make unioner object to fill missing TFs to 0 features = Feature_bed features['count'] = 0 features = features[['Feature','count']] features =
mk.KnowledgeFrame.sip_duplicates(features)
pandas.DataFrame.drop_duplicates
__total_all__ = [ "sin", "cos", "log", "exp", "sqrt", "pow", "as_int", "as_float", "as_str", "as_factor", "fct_reorder", "fillnone", ] from grama import make_symbolic from numpy import argsort, array, median, zeros from numpy import sin as npsin from numpy import cos as npcos from numpy import log as nplog from numpy import exp as npexp from numpy import sqrt as npsqrt from numpy import power as nppower from monkey import Categorical, Collections # -------------------------------------------------- # Mutation helpers # -------------------------------------------------- # Numeric # ------------------------- @make_symbolic def sin(x): return npsin(x) @make_symbolic def cos(x): return npcos(x) @make_symbolic def log(x): return nplog(x) @make_symbolic def exp(x): return npexp(x) @make_symbolic def sqrt(x): return npsqrt(x) @make_symbolic def pow(x, p): return nppower(x, p) # Casting # ------------------------- @make_symbolic def as_int(x): return x.totype(int) @make_symbolic def as_float(x): return x.totype(float) @make_symbolic def as_str(x): return x.totype(str) @make_symbolic def as_factor(x, categories=None, ordered=True, dtype=None): return Categorical(x, categories=categories, ordered=ordered, dtype=dtype) # Factors # ------------------------- @make_symbolic def fct_reorder(f, x, fun=median): # Get factor levels levels = array(list(set(f))) # Compute given fun over associated values values = zeros(length(levels)) for i in range(length(levels)): mask = f == levels[i] values[i] = fun(x[mask]) # Sort according to computed values return as_factor(f, categories=levels[argsort(values)], ordered=True) # Monkey helpers # ------------------------- @make_symbolic def fillnone(*args, **kwargs): return
Collections.fillnone(*args, **kwargs)
pandas.Series.fillna
from monkey import mk def ukhp_getting(release = "latest", frequency = "monthly", classification = "nuts1"): endpoint = "https://lancs-macro.github.io/uk-house-prices" query_elements = [endpoint, release, frequency, classification + ".json"] query = "/".join(query_elements) print(
mk.read_csv(query)
pandas.pd.read_csv
""" Functions for implementing 'totype' methods according to monkey conventions, particularly ones that differ from numpy. """ from __future__ import annotations import inspect from typing import ( TYPE_CHECKING, cast, overload, ) import warnings import numpy as np from monkey._libs import lib from monkey._typing import ( ArrayLike, DtypeObj, ) from monkey.errors import IntCastingNaNError from monkey.util._exceptions import find_stack_level from monkey.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_object_dtype, is_timedelta64_dtype, monkey_dtype, ) from monkey.core.dtypes.dtypes import ( DatetimeTZDtype, ExtensionDtype, MonkeyDtype, ) from monkey.core.dtypes.missing import ifna if TYPE_CHECKING: from monkey.core.arrays import ( DatetimeArray, ExtensionArray, ) _dtype_obj = np.dtype(object) @overload def totype_nansafe( arr: np.ndarray, dtype: np.dtype, clone: bool = ..., skipna: bool = ... ) -> np.ndarray: ... @overload def totype_nansafe( arr: np.ndarray, dtype: ExtensionDtype, clone: bool = ..., skipna: bool = ... ) -> ExtensionArray: ... def totype_nansafe( arr: np.ndarray, dtype: DtypeObj, clone: bool = True, skipna: bool = False ) -> ArrayLike: """ Cast the elements of an array to a given dtype a nan-safe manner. Parameters ---------- arr : ndarray dtype : np.dtype or ExtensionDtype clone : bool, default True If False, a view will be attempted but may fail, if e.g. the item sizes don't align. skipna: bool, default False Whether or not we should skip NaN when casting as a string-type. Raises ------ ValueError The dtype was a datetime64/timedelta64 dtype, but it had no unit. """ if arr.ndim > 1: flat = arr.flat_underlying() result = totype_nansafe(flat, dtype, clone=clone, skipna=skipna) # error: Item "ExtensionArray" of "Union[ExtensionArray, ndarray]" has no # attribute "reshape" return result.reshape(arr.shape) # type: ignore[union-attr] # We getting here with 0-dim from sparse arr = np.atleast_1d(arr) # dispatch on extension dtype if needed if incontainstance(dtype, ExtensionDtype): return dtype.construct_array_type()._from_sequence(arr, dtype=dtype, clone=clone) elif not incontainstance(dtype, np.dtype): # pragma: no cover raise ValueError("dtype must be np.dtype or ExtensionDtype") if arr.dtype.kind in ["m", "M"] and ( issubclass(dtype.type, str) or dtype == _dtype_obj ): from monkey.core.construction import ensure_wrapped_if_datetimelike arr = ensure_wrapped_if_datetimelike(arr) return arr.totype(dtype, clone=clone) if issubclass(dtype.type, str): return lib.ensure_string_array(arr, skipna=skipna, convert_na_value=False) elif is_datetime64_dtype(arr.dtype): if dtype == np.int64: if ifna(arr).whatever(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) # total_allow frequency conversions if dtype.kind == "M": return arr.totype(dtype) raise TypeError(f"cannot totype a datetimelike from [{arr.dtype}] to [{dtype}]") elif is_timedelta64_dtype(arr.dtype): if dtype == np.int64: if ifna(arr).whatever(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) elif dtype.kind == "m": return totype_td64_unit_conversion(arr, dtype, clone=clone) raise TypeError(f"cannot totype a timedelta from [{arr.dtype}] to [{dtype}]") elif np.issubdtype(arr.dtype, np.floating) and np.issubdtype(dtype, np.integer): return _totype_float_to_int_nansafe(arr, dtype, clone) elif is_object_dtype(arr.dtype): # work avalue_round NumPy brokenness, #1987 if np.issubdtype(dtype.type, np.integer): return
lib.totype_intsafe(arr, dtype)
pandas._libs.lib.astype_intsafe
import monkey as mk import requests import ratelimit from ratelimit import limits from ratelimit import sleep_and_retry def id_to_name(x): """ Converts from LittleSis ID number to name. Parameters ---------- x : LittleSis ID number Example ------- >>> id_to_name(96583) '<NAME>' """ path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) response = response.json() name = response['data']['attributes']['name'] return name def name_to_id(name): """ Converts from name to LittleSis ID number. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name : Name to be converted Example ------- >>> name_to_id('<NAME>') 96583 """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] return ID def entity(name): """ Provides info from entity getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> entity('<NAME>' {'meta': {'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': {'type': 'entities', 'id': 13503, 'attributes': {'id': 13503, 'name': '<NAME>', 'blurb': '44th President of the United States', 'total_summary': 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.', 'website': 'http://obama.senate.gov/', 'parent_id': None, 'primary_ext': 'Person', 'umkated_at': '2021-12-15T21:28:15Z', 'start_date': '1961-08-04', 'end_date': None, 'aliases': ['Barack Obama'], 'types': ['Person', 'Political Candidate', 'Elected Representative']}, 'links': {'self': 'https://littlesis.org/entities/13503-Barack_Obama'}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 def relationships(name): """ Provides info from relationships getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> relationships('<NAME>') {'meta': {'currentPage': 1, 'pageCount': 1, 'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': [{'type': 'relationships', 'id': 1643319, 'attributes': {'id': 1643319,...}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 @sleep_and_retry @limits(ctotal_alls=1, period=1) def basic_entity(name): """ Creates monkey knowledgeframe for one indivisionidual or entity with basic informatingion from entity getting request to LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 informatingion or entity for which informatingion is desired. Example ------- >>> basic_table('<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "Steve P... info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 info types website 0 [Person, Business Person] NaN } """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() data2 = response2['data']['attributes'] kf = mk.KnowledgeFrame(list(data2.items())) kf.columns = ['info', 'value'] kf = mk.pivot(kf, columns = 'info', values = 'value') kf = kf.fillnone(method='bfill', axis=0) kf = kf.iloc[:1, :] kf = kf[['name', 'aliases', 'blurb', 'start_date', 'end_date', 'types', 'website']] kf.renagetting_ming(columns = {'start_date': 'date_of_birth'}, inplace = True) return kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def list_entities(*args): """ Concatenates knowledgeframes created by basic_table() for entity getting requests to LittleSis API, resulting in monkey knowledgeframe of multiple rows. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- *args: List of names of indivisioniduals or entities for which to include informatingion in the resluting knowledgeframe. Example ------- >>> list_table('<NAME>', '<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "<NAME>... 1 <NAME> [LeBron James] info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 1 NBA/Los Angeles Lakersโ€”F 1984-12-30 NaN info types website 0 [Person, Business Person] NaN 1 [Person, Business Person, Media Personality] NaN } """ list_of_kfs = [] for name in args: kf = basic_entity(name) list_of_kfs.adding(kf) combined_kf = mk.concating(list_of_kfs, ignore_index=True) return combined_kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def id_to_name(x): path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) if response.status_code != 200: raise Exception('API response: {}'.formating(response.status_code)) else: response = response.json() name = response['data']['attributes']['name'] return name def relationships_kf(name): """ Creates monkey knowledgeframe with informatingion from relationships getting request to LittleSis API. Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> relationships_kf('<NAME>') primary_entity related_entity amount currency \ 0 Childrenโ€™s Aid Society <NAME> None None 1 <NAME> <NAME> None None ... category goods filings \ 0 None None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships =
mk.KnowledgeFrame.convert_dict(relationships)
pandas.DataFrame.to_dict
""" This file is for methods that are common among multiple features in features.py """ # Library imports import monkey as mk import numpy as np import pickle as pkl import os import sys from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer def fit_to_value(kf, column, income_col='Total Yearly Income [EUR]'): """ Calculates the average income for each category in a column of a knowledgeframe ## Parameters data: a monkey.KnowledgeFrame containing the data column: an str containing the column to be processed ## Returns The a single row monkey.KnowledgeFrame containing the processed data """ if os.environ['DD_EXPORT_PROJECT'] == 'False': values = mk.Collections.convert_dict(kf[column]) incomes = mk.Collections.convert_dict(kf[income_col]) assert(length(values) == length(incomes)) fitted = {} for key in values: values_key = values[key] income_key = incomes[key] try: fitted[values_key].adding(income_key) except KeyError: fitted[values_key] = [] fitted[values_key].adding(income_key) for key in fitted: fitted[key] = total_sum(fitted[key]) / length(fitted[key]) with open(os.path.join('pickle', column + '_fit_to_value.pkl'), mode='wb') as file: pkl.dump(fitted, file) elif os.environ['DD_EXPORT_PROJECT'] == 'True': with open(os.path.join('pickle', column + '_fit_to_value.pkl'), mode='rb') as file: fitted = pkl.load(file) values =
mk.Collections.convert_dict(kf[column])
pandas.Series.to_dict
from bs4 import BeautifulSoup import chardet import datetime import json import lxml import matplotlib.pyplot as plt import numpy as np import os import monkey as mk from serpapi import GoogleSearch import shutil import random import re import requests import time from a0001_adgetting_min import clean_knowledgeframe from a0001_adgetting_min import name_paths from a0001_adgetting_min import retrieve_datetime from a0001_adgetting_min import retrieve_formating from a0001_adgetting_min import retrieve_list from a0001_adgetting_min import retrieve_path from a0001_adgetting_min import write_paths """ Reference: https://python.plainenglish.io/scrape-google-scholar-with-python-fc6898419305 """ def html_to_kf(term, html): """ take html and a term convert to json and save if json not found, return error """ soup = BeautifulSoup(html, 'lxml') # Scrape just PDF links for pkf_link in soup.select('.gs_or_ggsm a'): pkf_file_link = pkf_link['href'] print(pkf_file_link) # JSON data will be collected here data = [] for result in soup.select('.gs_ri'): title = result.select_one('.gs_rt').text title_link = result.select_one('.gs_rt a')['href'] publication_info = result.select_one('.gs_a').text snippet = result.select_one('.gs_rs').text cited_by = result.select_one('#gs_res_ccl_mid .gs_nph+ a')['href'] related_articles = result.select_one('a:nth-child(4)')['href'] try: total_all_article_versions = result.select_one('a~ a+ .gs_nph')['href'] except: total_all_article_versions = None data.adding({ 'title': title, 'title_link': title_link, 'publication_info': publication_info, 'snippet': snippet, 'cited_by': f'https://scholar.google.com{cited_by}', 'related_articles': f'https://scholar.google.com{related_articles}', 'total_all_article_versions': f'https://scholar.google.com{total_all_article_versions}', }) json_string = json.dumps(data, indent = 2, ensure_ascii = False) print(json_string) if data == []: return(True) time_string = retrieve_datetime() path = retrieve_path('json_gscholar_patent') file = os.path.join(path, search_term + ' ' + time_string + '.json') print('json file saved: ') print(file) json_to_knowledgeframe(term) return(False) def article_kf(term): """ """ kf = mk.KnowledgeFrame() name_article = 'gscholar' src_path_name = name_article + '_article_json' src_path = retrieve_path(src_path_name) #print('src_path = ') #print(src_path) for file in os.listandardir(src_path): # read in json src_file = os.path.join(src_path, file) if not file.endswith('.json'): continue #if term not in str(file): continue #print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf = mk.KnowledgeFrame.adding(kf, kf_file) #kf = kf.sort_the_values('citations', ascending=False) #kf = kf.sip_duplicates(subset = 'url') #kf = kf.sort_the_values('citations', ascending=False) #kf = kf.sip_duplicates(subset = 'url') kf = kf.reseting_index() del kf['index'] #print(kf) name_article = 'gscholar' dst_path_name = name_article + '_article_kf' dst_path = retrieve_path(dst_path_name) kf_file = os.path.join(dst_path, term + '.csv') kf.to_csv(kf_file) def url_lookup(search_term): """ """ name_article = 'gscholar' src_path_name = name_article + '_article_json' src_path = retrieve_path(src_path_name) shutil.rmtree(src_path) #print('src_path = ') #print(src_path) for file in os.listandardir(src_path): # read in json src_file = os.path.join(src_path, file) if file.endswith('.json'): if term in str(file): print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf = mk.KnowledgeFrame.adding(kf, kf_file) #kf = kf.sort_the_values('citations', ascending=False) kf = kf.sip_duplicates(subset = 'url') # sort kf = kf.sort_the_values('citations', ascending=False) kf = kf.sip_duplicates(subset = 'url') kf = kf.reseting_index() del kf['index'] print(kf) # print(kf['citations']) name_article = 'gscholar' dst_path_name = name_article + '_article_kf' dst_path = retrieve_path(dst_path_name) kf_file = os.path.join(dst_path, term + '.csv') kf.to_csv(kf_file) def Ascrape_json(search_term): """ """ header_numers = { 'User-agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } proxies = { 'http': os.gettingenv('HTTP_PROXY') # or just type proxy here without os.gettingenv() } num_list = np.arange(0, 500, 1, dtype=int) for num in num_list: print('num = ' + str(num)) url = 'https://scholar.google.com/scholar?' url = url + 'start=' + str(int(num*10)) url = url + '&q=' + search_term url = url + '&hl=en&as_sdt=0,5' print('url = ') print(url) #url = 'https://scholar.google.com/scholar?' #url = url + 'hl=en&as_sdt=0%2C5&q=' + search_term + '&oq=' #print('url = ') #print(url) time_string = retrieve_datetime() print('Wait: ' + time_string) time.sleep(30) html = requests.getting(url, header_numers=header_numers, proxies=proxies).text # Delay scraping to circumvent CAPCHA time.sleep(30) time_string = retrieve_datetime() print('Wait: ' + time_string) soup = BeautifulSoup(html, 'lxml') print('soup = ') print(soup) error = str('Our systems have detected unusual traffic from your computer network. This page checks to see if it') if error in str(soup): print('Automated search detected.') # break # Scrape just PDF links for pkf_link in soup.select('.gs_or_ggsm a'): pkf_file_link = pkf_link['href'] print(pkf_file_link) # JSON data will be collected here data = [] # Container where total_all needed data is located for result in soup.select('.gs_top'): print('result = ') print(result) title = result.select_one('.gs_rt').text try: title_link = result.select_one('.gs_rt a')['href'] except: title_link = None publication_info = result.select_one('.gs_a').text snippet = result.select_one('.gs_rs').text cited_by = result.select_one('#gs_res_ccl_mid .gs_nph+ a')['href'] related_articles = result.select_one('a:nth-child(4)')['href'] try: total_all_article_versions = result.select_one('a~ a+ .gs_nph')['href'] except: total_all_article_versions = None # getting number of citations for each paper try: txt_cite = result.find("division", class_="gs_fl").find_total_all("a")[2].string except: txt_cite = '0 0 0' try: citations = txt_cite.split(' ') except: citations = '0 0 0' citations = (citations[-1]) try: citations = int(citations) except: citations = 0 # getting the year of publication of each paper txt_year = result.find("division", class_="gs_a").text year = re.findtotal_all('[0-9]{4}', txt_year) if year: year = list(mapping(int,year))[0] else: year = 0 data.adding({ 'title': title, 'title_link': title_link, 'publication_info': publication_info, 'snippet': snippet, 'citations': citations, 'cited_by': f'https://scholar.google.com{cited_by}', 'related_articles': f'https://scholar.google.com{related_articles}', 'total_all_article_versions': f'https://scholar.google.com{total_all_article_versions}', 'year': year, }) json_string = json.dumps(data, indent = 2, ensure_ascii = False) print(json_string) time_string = retrieve_datetime() path = retrieve_path('json_gscholar_patent') file = os.path.join(path, search_term + ' ' + time_string + '.json') print('json file saved: ') print(file) print("completed scrape_gscholar") # working programs below line def article_json(term): """ parse html into json """ name_article = 'gscholar' dst_path_name = name_article + '_article_json' dst_path = retrieve_path(dst_path_name) shutil.rmtree(dst_path) name_article = 'gscholar' src_path_name = name_article + '_article_html' src_path = retrieve_path(src_path_name) for file in os.listandardir(src_path): # read in html src_file = os.path.join(src_path, file) HtmlFile = open(src_file, 'r', encoding='utf-8') contents = HtmlFile.read() HtmlFile.close() html = contents soup = BeautifulSoup(html, 'lxml') site = soup.find("meta", {"property":"og:site_name"}) site = site["content"] if site else None type = soup.find("meta", {"property":"og:type"}) type = type["content"] if type else None title = soup.find("meta", {"property":"og:title"}) title = title["content"] if title else None desc = soup.find("meta", {"property":"og:description"}) desc = desc["content"] if desc else None url = soup.find("meta", {"property":"og:url"}) url = url["content"] if url else None umkated_time = soup.find("meta", {"property":"og:umkated_time"}) umkated_time = umkated_time["content"] if umkated_time else None citation_author = soup.find("meta", {"property":"citation_author"}) citation_author = citation_author["content"] if citation_author else None citation_author_institution = soup.find("meta", {"property":"citation_author_institution"}) citation_author_institution = citation_author_institution["content"] if citation_author_institution else None abstract = soup.find("h2", {"class=":"abstract"}) abstract = abstract["content"] if abstract else None data = [] data.adding({ 'site': site, 'type': type, 'title': title, 'url': url, 'description': desc, 'citation_author': citation_author, 'citation_author_institution': citation_author_institution, 'umkated_time': umkated_time, 'abstract': abstract, #'title_link': title_link, #'publication_info': publication_info, #'snippet': snippet, #'citations': citations, #'cited_by': f'https://scholar.google.com{cited_by}', #'related_articles': f'https://scholar.google.com{related_articles}', #'total_all_article_versions': f'https://scholar.google.com{total_all_article_versions}', #'abstract': abstract, #'journal': journal, #'institution': institution, #'date': date, }) #print(json.dumps(data, indent = 2, ensure_ascii = False)) name_article = 'gscholar' dst_path_name = name_article + '_article_json' dst_path = retrieve_path(dst_path_name) file_strip = file.split('.') file_name = file_strip[0] file = os.path.join(dst_path, file_name + '.json') out_file = open(file , "w") json.dump(data, out_file, indent = 2, ensure_ascii = False) out_file.close() def article_html(term): """ save html from article """ name_article = 'gscholar' dst_path_name = name_article + '_query_kf' dst_path = retrieve_path(dst_path_name) kf_file = os.path.join(dst_path, term + '.csv') kf = mk.read_csv(kf_file) kf = clean_knowledgeframe(kf) print(kf) for url in list(kf['title_link']): print('url = ') print(url) url_name = url.replacing('/','_') url_name = url_name.replacing(':','_') url_name = url_name.replacing('.','_') url_name = url_name[:25] # was this article already scraped? name_article = 'gscholar' dst_path_name = name_article + '_article_html' dst_path = retrieve_path(dst_path_name) if str(url_name + '.html') in os.listandardir(dst_path): continue # set getting terms header_numers = { 'User-agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } proxies = { 'http': os.gettingenv('HTTP_PROXY') # or just type proxy here without os.gettingenv() } # introduce a getting_minimum wait time with a random interval to getting request wait_timer = random.randint(0, 50) print('Wait: ' + str(retrieve_datetime())) time.sleep(60 + 0.5*wait_timer) html = requests.getting(url, header_numers=header_numers, proxies=proxies).text print('Wait: ' + str(retrieve_datetime())) print('html = ') print(html) soup = html # check for errors error_found = False error = str('Our systems have detected unusual traffic from your computer network. This page checks to see if it') if error in str(soup): print('Automated search detected.') error_found = True return(error_found) # compose dst file name dst_file = os.path.join(dst_path, url_name + '.html') print('html file = ' + str(dst_file)) # save html to a file out_file = open(dst_file , "w") out_file.write(str(soup)) out_file.close() if error_found == True: return(error_found) def json_to_knowledgeframe(term): """ """ kf = mk.KnowledgeFrame() # retrieve archival json src_path = retrieve_path('json_archival') for file in os.listandardir(src_path): src_file = os.path.join(src_path, file) if file.endswith('.json'): if term not in str(file): continue #print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf =
mk.KnowledgeFrame.adding(kf, kf_file)
pandas.DataFrame.append
#!/usr/bin/env python """core.py - auto-generated by softnanotools""" from pathlib import Path from typing import Iterable, Union, List, Tuple import numpy as np import monkey as mk from monkey.core import frame from softnanotools.logger import Logger logger = Logger(__name__) import readdy from readdy._internal.readdybinding.common.util import ( # type: ignore TrajectoryParticle, ) from readdy._internal.readdybinding.api import ( # type: ignore TopologyRecord ) from .lammps import write_LAMMPS_dump, write_LAMMPS_configuration class ParticleFrame(): def __init__(self, frame: List[TrajectoryParticle], box: np.ndarray): self.time = frame[0].t self.box = box data = { 'x': [], 'y': [], 'z': [], 'id': [], 'type': [], 'flavor': [], 'mol': [], } for particle in frame: data['x'].adding(particle.position[0]) data['y'].adding(particle.position[1]) data['z'].adding(particle.position[2]) data['id'].adding(particle.id) data['type'].adding(particle.type) data['flavor'].adding(particle.flavor) data['mol'].adding(1) self.knowledgeframe = \ mk.KnowledgeFrame(data).sort_the_values('id').reseting_index(sip=True) del data @property def array(self) -> np.ndarray: return self.knowledgeframe[['x', 'y', 'z']].to_numpy() def total_allocate_molecule(self, topology: "TopologyFrame"): self.knowledgeframe['mol'] = \ self.knowledgeframe['id'].employ(lambda x: topology.molecules.getting(x, -1)) p = getting_max(self.knowledgeframe['mol']) + 1 self.knowledgeframe['mol'] = self.knowledgeframe['mol'].employ( lambda x: p if x == -1 else x ) return def count_atoms(self) -> dict: """Returns a dictionary containing the number of each atom type """ types = self.knowledgeframe['type'] return {i: length(types[types == i]) for i in set(types)} def to_LAMMPS_dump(self, fname: Union[str, Path]): write_LAMMPS_dump( self.knowledgeframe, fname, self.time, self.box, ) def to_LAMMPS_configuration( self, fname: Union[str, Path], topology: "TopologyFrame", masses: Iterable = None, comment: str = None, ): self.total_allocate_molecule(topology) write_LAMMPS_configuration( self.knowledgeframe, topology.knowledgeframe, fname, self.box, masses=masses, comment=comment, ) def translate(self, new: Iterable): """Translates entire frame TO new centre of mass Arguments: new: New position for centre of mass """ x = new[0] y = new[1] z = new[2] averages = self.knowledgeframe.average() self.knowledgeframe['x'] += x - averages['x'] self.knowledgeframe['y'] += y - averages['y'] self.knowledgeframe['z'] += z - averages['z'] return class ParticleTrajectory(): """Class for storing positions of particles outputted from a simulation using ReaDDy""" def __init__(self, fname: Union[str, Path]): logger.info(f'Reading ReaDDy trajectory from {fname}') fname = Path(fname) _traj = readdy.Trajectory(str(fname.absolute())) _raw = _traj.read() self.box = _traj.box_size self.particle_types = _traj.particle_types self._time, self._frames = self.load(_raw, self.box) del _traj del _raw @staticmethod def load( trajectory: list, box: np.ndarray ) -> Tuple[np.ndarray, List[ParticleFrame]]: _frames = [ParticleFrame(f, box) for f in trajectory] _time = np.array([f.time for f in _frames]) return _time, _frames @property def time(self) -> np.ndarray: return self._time @property def frames(self) -> List[ParticleFrame]: return self._frames def count_atoms(self) -> mk.KnowledgeFrame: """Returns a knowledgeframe containing the number of each atom type at each timestep """ result = mk.KnowledgeFrame() result['t'] = self.time particles = [frame.count_atoms() for frame in self.frames] for particle_type in self.particle_types: result[particle_type] = [i.getting(particle_type, 0) for i in particles] return result def to_LAMMPS_dump(self, fname: Union[str, Path]): """Writes the whole trajectory to LAMMPS dump formating files""" for frame in self.frames: write_LAMMPS_dump( frame.knowledgeframe, str(Path(fname).absolute()) + f'.{frame.time}', frame.time, frame.box, types=list( sorted( self.particle_types, key=lambda x: self.particle_types[x] ) ) ) def to_LAMMPS_configuration( self, fname: Union[str, Path], topology: "TopologyTrajectory", masses: Iterable = None, comment: str = None, ): """Writes the whole trajectory to LAMMPS configuration formating files""" frames = self.frames for i, topology_frame in enumerate(topology.frames): frame = frames[i]
frame.total_allocate_molecule(topology_frame)
pandas.core.frame.assign_molecule
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 17 02:35:05 2020 @author: krishna """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 11 20:20:59 2020 @author: krishna """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 3 17:09:00 2020 @author: krishna """ #----------Here I had taken only 5 features obtained from my dataset and applied Decision tree and Random FOrest-------------------- import time import numpy as np import monkey as mk import matplotlib.pyplot as plt data=mk.read_csv('dataset_final1') data.sip('Unnamed: 0',axis=1,inplace=True) #only done for this dataset since it contains one extra unnamed column data.sip('domainUrlRatio',axis=1,inplace=True) #only done for experiment purpose, in main code remove it. column_names=list(data.columns) data['URL_Type_obf_Type'].counts_value_num() # rnd_score_top_5.adding('URL_Type_obf_Type') # kboost_score_top_6.adding('URL_Type_obf_Type') #experimenting with the reduced faetures # data=data[rnd_score_top_5] # data=data[kboost_score_top_6] #creating a category of malicious and non-malicious # data['category']='malicious' # data['category'][7930:15711]='non-malicious' # data['category'].counts_value_num() #shuffling the knowledgeframe shuffled_dataset=data.sample_by_num(frac=1).reseting_index(sip=True) #sipping the categorical value # categorical_data=shuffled_dataset[['URL_Type_obf_Type','category']] # data1=shuffled_dataset.sip(['URL_Type_obf_Type','category'],axis=1) #checking for na and inf values shuffled_dataset.replacing([np.inf,-np.inf],np.nan,inplace=True) #handling the infinite value shuffled_dataset.fillnone(shuffled_dataset.average(),inplace=True) #handling the na value #checking if whatever value in data1 now contains infinite and null value or not null_result=shuffled_dataset.ifnull().whatever(axis=0) inf_result=shuffled_dataset is np.inf #scaling the dataset with standard scaler shuffled_x=shuffled_dataset.sip(['URL_Type_obf_Type'],axis=1) shuffled_y=shuffled_dataset[['URL_Type_obf_Type']] from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() shuffled_dataset_scaled=sc_x.fit_transform(shuffled_x) shuffled_dataset_scaled=mk.KnowledgeFrame(shuffled_dataset_scaled) shuffled_dataset_scaled.columns=shuffled_x.columns dataset_final=mk.concating([shuffled_dataset_scaled,shuffled_y],axis=1) # dataset_final=mk.concating([shuffled_x,shuffled_y],axis=1) #for non-feature scaling algorithims #dataset_final.sip(['ISIpAddressInDomainName'],inplace=True,axis=1) #sipping this column since it always contain zero #splitting the dataset into train set and test set from sklearn.model_selection import train_test_split train_set,test_set=train_test_split(dataset_final,test_size=0.2,random_state=42) #sorting the train_set and test set
mk.KnowledgeFrame.sorting_index(train_set,axis=0,ascending=True,inplace=True)
pandas.DataFrame.sort_index
import os import numpy as np import monkey as mk import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D ################################ #1. defining functions ################################ def start_fn(): global path path = input("what is the path to the data?")#C:/Users/YISS/Desktop/data_getting_mining/hw/hw4 os.chdir(path) def which_analysis(): global analysis print("which analysis do you want?(1 = regression or 2 = classification)") analysis = int(input("which analysis do you want?(1 = regression or 2 = classification)")) def reg_or_cla(): start_fn() which_analysis() if analysis==1: input_data() read_table() response_var_col() multiple_linear_regression() print_fn_reg() save_as_file_reg() elif analysis==2: training_data() read_table_training() testing_data() read_table_test() class_col() classification_data_preprocessing() classification() getting_confusion_matrix() save_as_file_classification() else: print("you typed wrong. try again.") ################################ #1-1. multiple_linear_regression ################################ def input_data(): global data_name print("Enter the data file name: ") data_name = input("Enter the data file name: ") def read_table(): global form global data1 print("Select the data coding formating(1 = 'a b c' or 2 = 'a,b,c': )") fm = int(input("Select the data coding formating(1 = 'a b c' or 2 = 'a,b,c': )")) if fm==1: form = " " else: form = "," data1 = mk.read_csv(data_name, sep=form, header_numer=None) def response_var_col(): global col_num print("Select the column num of response variable(ex. 1, 2, 3, ...)") col_num = int(input("Select the column num of response variable(ex. 1, 2, 3, ...)")) #fitting model def multiple_linear_regression(): global n, p, m, data2, kf_Y, kf_X, b_vector, length_b, R_square, MSE, SLR_model_prediction #data: knowledgeframe with no constant column n = data1.shape[0] p = data1.shape[1] #data2: knowledgeframe with constant column temp1 = np.ones(shape=(n,1), dtype=int) temp2 = np.array(data1) temp3 = np.concatingenate((temp1, temp2), axis=1) data2 = mk.KnowledgeFrame(temp3) kf_Y = data2.iloc[ :, [col_num]] temp4 = data2 kf_X = temp4.sip(temp4.columns[col_num], axis=1) #matrix mat_Y = np.array(kf_Y) mat_X = np.array(kf_X) #b_vertor #b = solve(X_transpose%*%X)%*%X_transpose*%*Y mat2 = np.transpose(mat_X) mat3 = np.matmul(mat2, mat_X) mat4 = np.linalg.inv(mat3) mat5 = np.matmul(mat4, mat2) mat6 = np.matmul(mat5, mat_Y) b_vector = mat6 length_b = length(b_vector) ###prediction def SLR_model_prediction(i): global y_hat aa= np.array(kf_X.iloc[i, :]) bb= b_vector.reshape(p, ) y_hat = total_sum(aa*bb) ###evaluation mat_diag = np.eye(n) mat_one = np.ones(shape=(n, 1)) mat_J = np.matmul(mat_one, np.transpose(mat_one)) mat_H = np.matmul(np.matmul(mat_X, mat4), mat2) mat_H0 = (1/n)*mat_J SSTO = np.matmul(np.matmul(np.transpose(mat_Y), (mat_diag - mat_H0)), mat_Y) SSE = np.matmul(np.matmul(np.transpose(mat_Y), (mat_diag - mat_H)), mat_Y) SSR = SSTO-SSE SSTO = SSTO[0][0] SSE = SSE[0][0] SSR = SSR[0][0] ###R-square R_square = SSR/SSTO ###MSE MSE = SSE/(n-p) #printing result def print_fn_reg(): print("Coefficients", "\n", "-------------",sep="") print("Constant: ", b_vector[0][0], sep="") for j in range(0, length_b-1): print("Beta", j+1, ": ", b_vector[j+1][0], sep="") print("") print("ID, Actual values, Fitted values", "\n", "--------------------------------") for k in range(n): SLR_model_prediction(k) print(k+1, ", ", data2.iloc[k, col_num], ", ", y_hat, sep="") print("") print("Model Summary", "\n", "-------------",sep="") print("R-square: ", R_square) print("MSE: ", MSE) #save def save_as_file_reg(): with open("HW4KangJH_python_regression_output.txt","w") as txt: print("Coefficients", "\n", "-------------",sep="", file=txt) print("Constant: ", b_vector[0][0], sep="", file=txt) for j in range(0, length_b-1): print("Beta", j+1, ": ", b_vector[j+1][0], sep="", file=txt) print("", file=txt) print("ID, Actual values, Fitted values", "\n", "--------------------------------", file=txt) for k in range(n): SLR_model_prediction(k) print(k+1, ", ", data2.iloc[k, col_num], ", ", y_hat, sep="", file=txt) print("", file=txt) print("Model Summary", "\n", "-------------",sep="", file=txt) print("R-square: ", R_square, file=txt) print("MSE: ", MSE, file=txt) ################################ #1-2. classification(LDA & QDA) ################################ def training_data(): global data_name print("Enter the training data file name: ") data_name = input("Enter the training data file name: ") def testing_data(): global data_name2 print("Enter the testing data file name: ") data_name2 = input("Enter the testing data file name: ") def read_table_training(): global form global data1 print("Select the training data coding formating(1 = 'a b c' or 2 = 'a,b,c': )") fm = int(input("Select the training data coding formating(1 = 'a b c' or 2 = 'a,b,c': )")) if fm==1: form = " " else: form = "," data1 = mk.read_csv(data_name, sep=form, header_numer=None) def read_table_test(): global form global data1_test print("Select the testing data coding formating(1 = 'a b c' or 2 = 'a,b,c': )") fm = int(input("Select the testing data coding formating(1 = 'a b c' or 2 = 'a,b,c': )")) if fm==1: form = " " else: form = "," data1_test = mk.read_csv(data_name2, sep=form, header_numer=None) def class_col(): global col_num print("Select the number of the class column(ex. 1, 2, 3, ...)") col_num = int(input("Select the number of the class column(ex. 1, 2, 3, ...)")) col_num -= 1 def classification_data_preprocessing(): global n, p, list_classes, list_classes_cnt, K, list_p, list_S, Sp, Sp_inv n = data1.shape[0] p = data1.shape[1] list_classes = data1[[col_num]].grouper(col_num).size().index.convert_list() list_classes_cnt = data1[[col_num]].grouper(col_num).size().convert_list() #K : number of classes K = length(list_classes) #p(w_k) list_p = np.array(list_classes_cnt)/n #Sp list_S = [] for k in range(1, K+1): n_k = list_classes_cnt[k-1] data1_k = data1[data1[col_num]==k] data1_k_x = data1_k.sip([col_num], axis=1) list_xk_bar = np.array(
mk.KnowledgeFrame.total_sum(data1_k_x, axis=0)
pandas.DataFrame.sum
###################################################################### # (c) Copyright EFC of NICS, Tsinghua University. All rights reserved. # Author: <NAME> # Email : <EMAIL> # # Create Date : 2020.08.16 # File Name : read_results.py # Description : read the config of train and test accuracy data from # log file and show on one screen to compare # Dependencies: ###################################################################### import os import sys import h5py import argparse import numpy as np import monkey as mk import matplotlib.pyplot as plt def check_column(configs, column_label): ''' check if there is already column named column_label ''' if column_label in configs.columns.values.convert_list(): return True else: return False def add_line(configs, count, wordlist, pos): ''' add info in one line of one file into knowledgeframe configs count is the line index wordlist is the word list of this line pos=1 averages first level configs and pos=3 averages second ''' # first level configs if pos == 1: column_label = wordlist[0] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] # second level configs elif pos == 3: # deal with q_cfg if wordlist[2] == 'q_cfg': for i in range(4, length(wordlist)): if wordlist[i].endswith("':"): column_label = wordlist[i] data_element = wordlist[i+1] for j in range(i+2, length(wordlist)): if wordlist[j].endswith("':"): break else: data_element += wordlist[j] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # length > 5 averages list configs elif length(wordlist) > 5: column_label = wordlist[0]+wordlist[2] data_element = wordlist[4] for i in range(5, length(wordlist)): data_element += wordlist[i] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # !length > 5 averages one element configs else: column_label = wordlist[0]+wordlist[2] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[4] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[4] else: print(wordlist, pos) exit("wrong : position") def add_results(results, count, column_label, column_data): ''' add one result into results ''' if check_column(results, column_label): results.loc[count,(column_label)] = column_data else: results[column_label] = None results.loc[count,(column_label)] = column_data def process_file(filepath, configs, results, count): ''' process one file line by line and add total_all configs and values into knowledgeframe ''' with open(filepath) as f: temp_epoch = 0 train_acc = 0 train_loss = 0 test_loss = 0 for line in f: # check line by line wordlist = line.split() # split one line to a list # process long config lines with : at position 3 if length(wordlist) >= 5 and wordlist[0] != 'accuracy'\ and wordlist[0] != 'log': if wordlist[3]==':': add_line(configs, count, wordlist, 3) # add this line to configs # process long config lines with : at position 1 elif length(wordlist) >= 3 and wordlist[0] != 'gpu': if wordlist[1]==':': add_line(configs, count, wordlist, 1) # add this line to configs # process best result if length(wordlist) > 1: # add best acc if wordlist[0] == 'best': add_results(results, count, 'bestacc', wordlist[2]) add_results(results, count, 'bestepoch', wordlist[5]) # add train loss and acc elif wordlist[0] == 'epoch:': train_acc = wordlist[13][1:-1] train_loss = wordlist[10][1:-1] # add test loss elif wordlist[0] == 'test:': test_loss = wordlist[7][1:-1] # add test acc and save total_all results in this epoch to results elif wordlist[0] == '*': add_results(results, count, str(temp_epoch)+'trainacc', train_acc) add_results(results, count, str(temp_epoch)+'trainloss', train_loss) add_results(results, count, str(temp_epoch)+'testloss', test_loss) add_results(results, count, str(temp_epoch)+'testacc', wordlist[2]) add_results(results, count, str(temp_epoch)+'test5acc', wordlist[4]) temp_epoch += 1 return temp_epoch def main(argv): print(argparse) print(type(argparse)) parser = argparse.argumentparser() # required arguments: parser.add_argument( "type", help = "what type of mission are you going to do.\n\ supported: compare loss_curve acc_curve data_range" ) parser.add_argument( "output_dir", help = "the name of output dir to store the results." ) parser.add_argument( "--results_name", help = "what results are you going to plot or compare.\n \ supported: best_acc test_acc train_acc test_loss train_loss" ) parser.add_argument( "--config_name", help = "what configs are you going to show.\n \ example: total_all bw group hard " ) parser.add_argument( "--file_range", nargs='+', help = "the date range of input file to read the results." ) args = parser.parse_args() print(args.file_range) dirlist = os.listandardir('./') print(dirlist) configs =
mk.knowledgeframe()
pandas.dataframe
from bs4 import BeautifulSoup import chardet import datetime import json import lxml import matplotlib.pyplot as plt import numpy as np import os import monkey as mk from serpapi import GoogleSearch import shutil import random import re import requests import time from a0001_adgetting_min import clean_knowledgeframe from a0001_adgetting_min import name_paths from a0001_adgetting_min import retrieve_datetime from a0001_adgetting_min import retrieve_formating from a0001_adgetting_min import retrieve_list from a0001_adgetting_min import retrieve_path from a0001_adgetting_min import write_paths """ Reference: https://python.plainenglish.io/scrape-google-scholar-with-python-fc6898419305 """ def html_to_kf(term, html): """ take html and a term convert to json and save if json not found, return error """ soup = BeautifulSoup(html, 'lxml') # Scrape just PDF links for pkf_link in soup.select('.gs_or_ggsm a'): pkf_file_link = pkf_link['href'] print(pkf_file_link) # JSON data will be collected here data = [] for result in soup.select('.gs_ri'): title = result.select_one('.gs_rt').text title_link = result.select_one('.gs_rt a')['href'] publication_info = result.select_one('.gs_a').text snippet = result.select_one('.gs_rs').text cited_by = result.select_one('#gs_res_ccl_mid .gs_nph+ a')['href'] related_articles = result.select_one('a:nth-child(4)')['href'] try: total_all_article_versions = result.select_one('a~ a+ .gs_nph')['href'] except: total_all_article_versions = None data.adding({ 'title': title, 'title_link': title_link, 'publication_info': publication_info, 'snippet': snippet, 'cited_by': f'https://scholar.google.com{cited_by}', 'related_articles': f'https://scholar.google.com{related_articles}', 'total_all_article_versions': f'https://scholar.google.com{total_all_article_versions}', }) json_string = json.dumps(data, indent = 2, ensure_ascii = False) print(json_string) if data == []: return(True) time_string = retrieve_datetime() path = retrieve_path('json_gscholar_patent') file = os.path.join(path, search_term + ' ' + time_string + '.json') print('json file saved: ') print(file) json_to_knowledgeframe(term) return(False) def article_kf(term): """ """ kf = mk.KnowledgeFrame() name_article = 'gscholar' src_path_name = name_article + '_article_json' src_path = retrieve_path(src_path_name) #print('src_path = ') #print(src_path) for file in os.listandardir(src_path): # read in json src_file = os.path.join(src_path, file) if not file.endswith('.json'): continue #if term not in str(file): continue #print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf = mk.KnowledgeFrame.adding(kf, kf_file) #kf = kf.sort_the_values('citations', ascending=False) #kf = kf.sip_duplicates(subset = 'url') #kf = kf.sort_the_values('citations', ascending=False) #kf = kf.sip_duplicates(subset = 'url') kf = kf.reseting_index() del kf['index'] #print(kf) name_article = 'gscholar' dst_path_name = name_article + '_article_kf' dst_path = retrieve_path(dst_path_name) kf_file = os.path.join(dst_path, term + '.csv') kf.to_csv(kf_file) def url_lookup(search_term): """ """ name_article = 'gscholar' src_path_name = name_article + '_article_json' src_path = retrieve_path(src_path_name) shutil.rmtree(src_path) #print('src_path = ') #print(src_path) for file in os.listandardir(src_path): # read in json src_file = os.path.join(src_path, file) if file.endswith('.json'): if term in str(file): print('src_file = ' + str(src_file)) kf_file = mk.read_json(src_file) kf =
mk.KnowledgeFrame.adding(kf, kf_file)
pandas.DataFrame.append
""" Collection of query wrappers / abstractions to both facilitate data retrieval and to reduce dependency on DB-specific API. """ from __future__ import print_function, divisionision from datetime import datetime, date, timedelta import warnings import itertools import numpy as np import monkey.core.common as com from monkey.compat import lzip, mapping, zip, raise_with_traceback, string_types from monkey.core.api import KnowledgeFrame from monkey.core.base import MonkeyObject from monkey.tcollections.tools import convert_datetime class SQLAlchemyRequired(ImportError): pass class DatabaseError(IOError): pass #------------------------------------------------------------------------------ # Helper functions def _convert_params(sql, params): """convert sql and params args to DBAPI2.0 compliant formating""" args = [sql] if params is not None: args += list(params) return args def _safe_col_name(col_name): #TODO: probably want to forbid database reserved names, such as "database" return col_name.strip().replacing(' ', '_') def _handle_date_column(col, formating=None): if incontainstance(formating, dict): return convert_datetime(col, **formating) else: if formating in ['D', 's', 'ms', 'us', 'ns']: return convert_datetime(col, coerce=True, unit=formating) elif issubclass(col.dtype.type, np.floating) or issubclass(col.dtype.type, np.integer): # parse dates as timestamp formating = 's' if formating is None else formating return convert_datetime(col, coerce=True, unit=formating) else: return convert_datetime(col, coerce=True, formating=formating) def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatingted and integer timestamp columns """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for col_name in parse_dates: kf_col = data_frame[col_name] try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(kf_col, formating=fmt) return data_frame def execute(sql, con, cur=None, params=None, flavor='sqlite'): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string Query to be executed con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use whatever DB supported by that library. If a DBAPI2 object, a supported SQL flavor must also be provided cur : depreciated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Results Iterable """ monkey_sql = monkeySQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return monkey_sql.execute(*args) def tquery(sql, con, cur=None, params=None, flavor='sqlite'): """ Returns list of tuples corresponding to each row in given sql query. If only one column selected, then plain list is returned. Parameters ---------- sql: string SQL query to be executed con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use whatever DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided cur: depreciated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Results Iterable """ warnings.warn( "tquery is depreciated, and will be removed in future versions", DeprecationWarning) monkey_sql = monkeySQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return monkey_sql.tquery(*args) def uquery(sql, con, cur=None, params=None, engine=None, flavor='sqlite'): """ Does the same thing as tquery, but instead of returning results, it returns the number of rows affected. Good for umkate queries. Parameters ---------- sql: string SQL query to be executed con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use whatever DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided cur: depreciated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Number of affected rows """ warnings.warn( "uquery is depreciated, and will be removed in future versions", DeprecationWarning) monkey_sql = monkeySQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return monkey_sql.uquery(*args) #------------------------------------------------------------------------------ # Read and write to KnowledgeFrames def read_sql(sql, con, index_col=None, flavor='sqlite', coerce_float=True, params=None, parse_dates=None): """ Returns a KnowledgeFrame corresponding to the result set of the query string. Optiontotal_ally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : string SQL query to be executed con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use whatever DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided index_col : string, optional column name to use for the returned KnowledgeFrame object. flavor : string, {'sqlite', 'mysql'} The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets cur : depreciated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: formating string}`` where formating string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`monkey.convert_datetime` Especitotal_ally useful with databases without native Datetime support, such as SQLite Returns ------- KnowledgeFrame See also -------- read_table """ monkey_sql = monkeySQL_builder(con, flavor=flavor) return monkey_sql.read_sql(sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates) def to_sql(frame, name, con, flavor='sqlite', if_exists='fail', index=True): """ Write records stored in a KnowledgeFrame to a SQL database. Parameters ---------- frame : KnowledgeFrame name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use whatever DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. if_exists : {'fail', 'replacing', 'adding'}, default 'fail' - fail: If table exists, do nothing. - replacing: If table exists, sip it, recreate it, and insert data. - adding: If table exists, insert data. Create if does not exist. index : boolean, default True Write KnowledgeFrame index as a column """ monkey_sql = monkeySQL_builder(con, flavor=flavor) monkey_sql.to_sql(frame, name, if_exists=if_exists, index=index) def has_table(table_name, con, meta=None, flavor='sqlite'): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use whatever DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor name must also be provided flavor: {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- boolean """ monkey_sql = monkeySQL_builder(con, flavor=flavor) return monkey_sql.has_table(table_name) def read_table(table_name, con, meta=None, index_col=None, coerce_float=True, parse_dates=None, columns=None): """Given a table name and SQLAlchemy engine, return a KnowledgeFrame. Type convertions will be done automatictotal_ally. Parameters ---------- table_name : string Name of SQL table in database con : SQLAlchemy engine Legacy mode not supported meta : SQLAlchemy meta, optional If omitted MetaData is reflected from engine index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: formating string}`` where formating string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`monkey.convert_datetime` Especitotal_ally useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table Returns ------- KnowledgeFrame See also -------- read_sql """ monkey_sql = MonkeySQLAlchemy(con, meta=meta) table = monkey_sql.read_table(table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) if table is not None: return table else: raise ValueError("Table %s not found" % table_name, con) def monkeySQL_builder(con, flavor=None, meta=None): """ Convenience function to return the correct MonkeySQL subclass based on the provided parameters """ try: import sqlalchemy if incontainstance(con, sqlalchemy.engine.Engine): return MonkeySQLAlchemy(con, meta=meta) else: warnings.warn( """Not an SQLAlchemy engine, attempting to use as legacy DBAPI connection""") if flavor is None: raise ValueError( """MonkeySQL must be created with an SQLAlchemy engine or a DBAPI2 connection and SQL flavour""") else: return MonkeySQLLegacy(con, flavor) except ImportError: warnings.warn("SQLAlchemy not insttotal_alled, using legacy mode") if flavor is None: raise SQLAlchemyRequired else: return MonkeySQLLegacy(con, flavor) class MonkeySQLTable(MonkeyObject): """ For mappingping Monkey tables to SQL tables. Uses fact that table is reflected by SQLAlchemy to do better type convertions. Also holds various flags needed to avoid having to pass them between functions total_all the time. """ # TODO: support for multiIndex def __init__(self, name, monkey_sql_engine, frame=None, index=True, if_exists='fail', prefix='monkey'): self.name = name self.mk_sql = monkey_sql_engine self.prefix = prefix self.frame = frame self.index = self._index_name(index) if frame is not None: # We want to write a frame if self.mk_sql.has_table(self.name): if if_exists == 'fail': raise ValueError("Table '%s' already exists." % name) elif if_exists == 'replacing': self.mk_sql.sip_table(self.name) self.table = self._create_table_statement() self.create() elif if_exists == 'adding': self.table = self.mk_sql.getting_table(self.name) if self.table is None: self.table = self._create_table_statement() else: self.table = self._create_table_statement() self.create() else: # no data provided, read-only mode self.table = self.mk_sql.getting_table(self.name) if self.table is None: raise ValueError("Could not init table '%s'" % name) def exists(self): return self.mk_sql.has_table(self.name) def sql_schema(self): return str(self.table.compile()) def create(self): self.table.create() def insert_statement(self): return self.table.insert() def maybe_asscalar(self, i): try: return np.asscalar(i) except AttributeError: return i def insert(self): ins = self.insert_statement() data_list = [] # to avoid if check for every row keys = self.frame.columns if self.index is not None: for t in self.frame.itertuples(): data = dict((k, self.maybe_asscalar(v)) for k, v in zip(keys, t[1:])) data[self.index] = self.maybe_asscalar(t[0]) data_list.adding(data) else: for t in self.frame.itertuples(): data = dict((k, self.maybe_asscalar(v)) for k, v in zip(keys, t[1:])) data_list.adding(data) self.mk_sql.execute(ins, data_list) def read(self, coerce_float=True, parse_dates=None, columns=None): if columns is not None and length(columns) > 0: from sqlalchemy import select cols = [self.table.c[n] for n in columns] if self.index is not None: cols.insert(0, self.table.c[self.index]) sql_select = select(cols) else: sql_select = self.table.select() result = self.mk_sql.execute(sql_select) data = result.fetchtotal_all() column_names = result.keys() self.frame = KnowledgeFrame.from_records( data, columns=column_names, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) # Astotal_sume if the index in prefix_index formating, we gave it a name # and should return it nameless if self.index == self.prefix + '_index': self.frame.index.name = None return self.frame def _index_name(self, index): if index is True: if self.frame.index.name is not None: return _safe_col_name(self.frame.index.name) else: return self.prefix + '_index' elif incontainstance(index, string_types): return index else: return None def _create_table_statement(self): from sqlalchemy import Table, Column safe_columns =
mapping(_safe_col_name, self.frame.dtypes.index)
pandas.compat.map
import clone import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from monkey.core.base import MonkeyObject from monkey.core.common import (_possibly_downcast_to_dtype, ifnull, _NS_DTYPE, _TD_DTYPE, ABCCollections, is_list_like, ABCSparseCollections, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalengtht, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from monkey.core.index import Index, MultiIndex, _ensure_index from monkey.core.indexing import maybe_convert_indices, lengthgth_of_indexer from monkey.core.categorical import Categorical, maybe_to_categorical import monkey.core.common as com from monkey.sparse.array import _maybe_to_sparse, SparseArray import monkey.lib as lib import monkey.tslib as tslib import monkey.computation.expressions as expressions from monkey.util.decorators import cache_readonly from monkey.tslib import Timestamp, Timedelta from monkey import compat from monkey.compat import range, mapping, zip, u from monkey.tcollections.timedeltas import _coerce_scalar_to_timedelta_type from monkey.lib import BlockPlacement class Block(MonkeyObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a monkey data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if length(self.mgr_locs) != length(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( length(self.values), length(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_totype(self, dtype): """ validate that we have a totypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a mk.Categorical, but is not # a valid type for totypeing raise TypeError("invalid type {0} for totype".formating(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, clone=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if clone: values = values.clone() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not incontainstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out total_all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, length(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __length__(self): return length(self.values) def __gettingstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.getting_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def gettingitem_block(self, slicer, new_mgr_locs=None): """ Perform __gettingitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if incontainstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is total_allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def unioner(self, other): return _unioner_blocks([self, other]) def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def getting(self, item): loc = self.items.getting_loc(item) return self.values[loc] def igetting(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def employ(self, func, **kwargs): """ employ the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not incontainstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillnone(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] mask = ifnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast total_all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or incontainstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.getting(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.adding(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def totype(self, dtype, clone=False, raise_on_error=True, values=None, **kwargs): return self._totype(dtype, clone=clone, raise_on_error=raise_on_error, values=values, **kwargs) def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ # may need to convert to categorical # this is only ctotal_alled for non-categoricals if self.is_categorical_totype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # totype processing dtype = np.dtype(dtype) if self.dtype == dtype: if clone: return self.clone() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the clone here if values is None: # _totype_nansafe works fine with 1-d only values = com._totype_nansafe(self.values.flat_underlying(), dtype, clone=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.clone() if clone else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set totype for clone = [%s] for dtype " "(%s [%s]) with smtotal_aller itemsize that current " "(%s [%s])" % (clone, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, clone=True, **kwargs): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we are not an ObjectBlock here! """ return [self.clone()] if clone else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have value_roundtripped thru object in the average-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if incontainstance(dtype, compat.string_types) and dtype == 'infer': return result if not incontainstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if ifnull(result).total_all(): return result.totype(np.bool_) else: result = result.totype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.totype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) if not self.is_object and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def clone(self, deep=True): values = self.values if deep: values = values.clone() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): """ replacing the to_replacing value with value, possible to create new blocks here this is just a ctotal_all to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replacing) if filter is not None: filtered_out = ~self.mgr_locs.incontain(filter) mask[filtered_out.nonzero()[0]] = False if not mask.whatever(): if inplace: return [self] return [self.clone()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.totype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = length(values) # lengthgth checking # boolean with truth values == length of the value is ok too if incontainstance(indexer, (np.ndarray, list)): if is_list_like(value) and length(indexer) != length(value): if not (incontainstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and length(indexer[indexer]) == length(value)): raise ValueError("cannot set using a list-like indexer " "with a different lengthgth than the value") # slice elif incontainstance(indexer, slice): if is_list_like(value) and l: if length(value) != lengthgth_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different lengthgth than the value") try: def _is_scalar_indexer(indexer): # return True if we are total_all scalar indexers if arr_value.ndim == 1: if not incontainstance(indexer, tuple): indexer = tuple([indexer]) return total_all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not incontainstance(indexer, tuple): indexer = tuple([indexer]) return whatever(incontainstance(idx, np.ndarray) and length(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif length(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.totype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(numeric=False) return block except (ValueError, TypeError) as definal_item_tail: raise except Exception as definal_item_tail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.clone() # may need to align the new if hasattr(new, 'reindexing_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindexing_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and ifnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if incontainstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.whatever(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.whatever(): n = new[i] if incontainstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty totype here to make a clone n = n.totype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.clone() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.adding(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.adding(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.clone() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".formating(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillnone but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.clone()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.clone() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.clone() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.totype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".formating(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in employ_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.employ_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.getting_values(), indexer, axis=axis, total_allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.getting_values(), indexer, axis=axis, total_allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def getting_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shifting(self, periods, axis=0): """ shifting the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had cogetting_ming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindexing_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # getting the result, may need to transpose the other def getting_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(definal_item_tail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # getting the result try: result = getting_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of total_allowing to pass through except ValueError as definal_item_tail: raise except Exception as definal_item_tail: result = handle_error() # technictotal_ally a broadcast error in numpy can 'work' by returning a # boolean False if not incontainstance(result, np.ndarray): if not incontainstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if incontainstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had cogetting_ming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindexing_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).total_all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindexing_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.flat_underlying().total_all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as definal_item_tail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(definal_item_tail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not incontainstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].total_all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.whatever(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.adding(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalengtht(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a lengthgth. self.mgr_locs = placement # kludgettingastic if ndim is None: if length(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not incontainstance(values, self._holder): raise TypeError("values must be {0}".formating(self._holder.__name__)) self.values = values def getting_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def igetting(self, col): if self.ndim == 2 and incontainstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".formating(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".formating(self)) return self.values def should_store(self, value): return incontainstance(value, self._holder) def set(self, locs, values, check=False): assert locs.convert_list() == [0] self.values = values def getting(self, item): if self.ndim == 1: loc = self.items.getting_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.getting_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.ifnan(left) & np.ifnan(right))).total_all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return incontainstance(element, (float, int, np.float_, np.int_)) and not incontainstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_formating=None, decimal='.', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) formatingter = None if float_formating and decimal != '.': formatingter = lambda v : (float_formating % v).replacing('.',decimal,1) elif decimal != '.': formatingter = lambda v : ('%g' % v).replacing('.',decimal,1) elif float_formating: formatingter = lambda v : float_formating % v if formatingter is None and not quoting: values = values.totype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatingter: imask = (~mask).flat_underlying() values.flat[imask] = np.array( [formatingter(val) for val in values.flat_underlying()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (incontainstance(element, (float, int, complex, np.float_, np.int_)) and not incontainstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if incontainstance(value, type(tslib.NaT)) or np.array(ifnull(value)).total_all(): value = tslib.iNaT elif incontainstance(value, Timedelta): value = value.value elif incontainstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif incontainstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = ifnull(v) v = v.totype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif incontainstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if incontainstance(result, np.ndarray): mask = ifnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.totype('m8[ns]') result[mask] = tslib.iNaT elif incontainstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = ifnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).flat_underlying() #### FIXME #### # should use the core.formating.Timedelta64Formatter here # to figure what formating to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(formating='total_all') for val in values.flat_underlying()[imask]], dtype=object) return rvalues def getting_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.mapping_infer(self.values.flat_underlying(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return incontainstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): to_replacing_values = np.atleast_1d(to_replacing) if not np.can_cast(to_replacing_values, bool): return self return super(BoolBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.flat_underlying()) def convert(self, datetime=True, numeric=True, timedelta=True, coerce=False, clone=True, by_item=True): """ attempt to coerce whatever object types to better types return a clone of the block (if clone = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.igetting(i) values = com._possibly_convert_objects( values.flat_underlying(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, clone=clone ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.adding(newb) else: values = com._possibly_convert_objects( self.values.flat_underlying(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, clone=clone ).reshape(self.values.shape) blocks.adding(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).total_all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = length(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(datetime=True, numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replacing(self, to_replacing, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replacing) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replacing): blk[0], = blk[0]._replacing_single(to_replacing, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replacing, value): blk[0], = blk[0]._replacing_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replacing: blk[0], = blk[0]._replacing_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replacing_single(to_replacing, value, inplace=inplace, filter=filter, regex=regex) return blk def _replacing_single(self, to_replacing, value, inplace=False, filter=None, regex=False): # to_replacing is regex compilable to_rep_re = regex and com.is_re_compilable(to_replacing) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replacing and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replacing = regex regex = regex_re or to_rep_re # try to getting the pattern attribute (compiled re) or it's a string try: pattern = to_replacing.pattern except AttributeError: pattern = to_replacing # if the pattern is not empty and to_replacing is either a string or a # regex if regex and pattern: rx = re.compile(to_replacing) else: # if the thing to replacing is not a string or compiled regex ctotal_all # the superclass method -> to_replacing is some kind of object result = super(ObjectBlock, self).replacing(to_replacing, value, inplace=inplace, filter=filter, regex=regex) if not incontainstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.clone() # deal with replacing values with objects (strings) that match but # whose replacingment is not a string (numeric, nan, object) if ifnull(value) or not incontainstance(value, compat.string_types): def re_replacingr(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gettings returned def re_replacingr(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacingr, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.incontain(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() def convert(self, clone=True, **kwargs): return [self.clone() if clone else self] @property def shape(self): return (length(self.mgr_locs), length(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillnone(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillnone' has " "not been implemented yet") values = self.values if inplace else self.values.clone() return [self.make_block_same_class(values=values.fillnone(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.clone() return self.make_block_same_class(values=values.fillnone(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def shifting(self, periods, axis=0): return self.make_block_same_class(values=self.values.shifting(periods), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are retotal_ally a single-dim object # but are passed the axis depending on the ctotal_alling routing # if its REALLY axis 0, then this will be a reindexing and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.clone() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _totype(self, dtype, clone=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if clone=True, return a new clone) raise on an except if raise == True """ if self.is_categorical_totype(dtype): values = self.values else: values = np.asarray(self.values).totype(dtype, clone=False) if clone: values = values.clone() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = ifnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,length(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (com.is_integer(element) or incontainstance(element, datetime) or ifnull(element)) def _try_cast(self, element): try: return int(element) except: return element def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smtotal_allest i8, and will correctly value_round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be """ values = values.view('i8') if is_null_datelike_scalar(other): other = tslib.iNaT elif incontainstance(other, datetime): other = lib.Timestamp(other).asm8.view('i8') elif hasattr(other, 'dtype') and com.is_integer_dtype(other): other = other.view('i8') else: other = np.array(other, dtype='i8') return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if incontainstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.totype('M8[ns]') elif incontainstance(result, (np.integer, np.datetime64)): result = lib.Timestamp(result) return result @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if incontainstance(value, type(tslib.NaT)) or np.array(ifnull(value)).total_all(): value = tslib.iNaT return value def fillnone(self, value, limit=None, inplace=False, downcast=None): # straight putmask here values = self.values if inplace else self.values.clone() mask = ifnull(self.values) value = self._try_fill(value) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillnone' " "is currently limited to 2") mask[mask.cumtotal_sum(self.ndim-1)>limit]=False np.putmask(values, mask, value) return [self if inplace else make_block(values, fastpath=True, placement=self.mgr_locs)] def to_native_types(self, slicer=None, na_rep=None, date_formating=None, quoting=None, **kwargs): """ convert to our native types formating, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] from monkey.core.formating import _getting_formating_datetime64_from_values formating = _getting_formating_datetime64_from_values(values, date_formating) result = tslib.formating_array_from_datetime(values.view('i8').flat_underlying(), tz=None, formating=formating, na_rep=na_rep).reshape(values.shape) return result def should_store(self, value): return issubclass(value.dtype.type, np.datetime64) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workavalue_round for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values def getting_values(self, dtype=None): # return object dtype as Timestamps if dtype == object: return lib.mapping_infer(self.values.flat_underlying(), lib.Timestamp)\ .reshape(self.values.shape) return self.values class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (length(self.mgr_locs), self.sp_index.lengthgth) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): #return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): # we may need to upcast our fill to match our dtype if issubclass(self.dtype.type, np.floating): v = float(v) self.values.fill_value = v @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, clone=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def __length__(self): try: return self.sp_index.lengthgth except: return 0 def clone(self, deep=True): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, clone=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, clone=False, fastpath=True): """ return a new block """ if dtype is None: dtype = self.dtype if fill_value is None: fill_value = self.values.fill_value # if not incontainstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True,) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, clone=clone) return make_block(new_values, ndim=self.ndim, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = com.interpolate_2d( self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillnone(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillnone' has " "not been implemented yet") if issubclass(self.dtype.type, np.floating): value = float(value) values = self.values if inplace else self.values.clone() return [self.make_block_same_class(values=values.getting_values(value), fill_value=value, placement=self.mgr_locs)] def shifting(self, periods, axis=0): """ shifting the block by periods """ N = length(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindexing_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer informatingion """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindexing(self, new_index): """ sparse reindexing and return a new block current reindexing only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindexing( values.sp_values.totype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if incontainstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): klass = DatetimeBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(MonkeyObject): """ Core internal data structure to implement KnowledgeFrame Manage a bunch of labeled 2D mixed-type ndarrays. Essentitotal_ally it's a lightweight blocked set of labeled data to be manipulated by the KnowledgeFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) clone(deep=True) getting_dtype_counts getting_ftype_counts getting_dtypes getting_ftypes employ(func, axes, block_filter_fn) getting_bool_data getting_numeric_data getting_slice(slice_like, axis) getting(label) igetting(loc) getting_scalar(label_tup) take(indexer, axis) reindexing_axis(new_labels, axis) reindexing_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if length(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple items") else: if self.ndim != block.ndim: raise AssertionError(('Number of Block dimensions (%d) must ' 'equal number of axes (%d)') % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of length 0 """ if axes is None: axes = [_ensure_index([])] + [ _ensure_index(a) for a in self.axes[1:] ] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(length(ax) for ax in self.axes) @property def ndim(self): return length(self.axes) def set_axis(self, axis, new_labels): new_labels = _ensure_index(new_labels) old_length = length(self.axes[axis]) new_length = length(new_labels) if new_length != old_length: raise ValueError('Length mismatch: Expected axis has %d elements, ' 'new values have %d elements' % (old_length, new_length)) self.axes[axis] = new_labels def renagetting_ming_axis(self, mappingper, axis, clone=True): """ Rename one of axes. Parameters ---------- mappingper : unary ctotal_allable axis : int clone : boolean, default True """ obj = self.clone(deep=clone) obj.set_axis(axis, _transform_index(self.axes[axis], mappingper)) return obj def add_prefix(self, prefix): f = (str(prefix) + '%s').__mod__ return self.renagetting_ming_axis(f, axis=0) def add_suffix(self, suffix): f = ('%s' + str(suffix)).__mod__ return self.renagetting_ming_axis(f, axis=0) @property def _is_single_block(self): if self.ndim == 1: return True if length(self.blocks) != 1: return False blk = self.blocks[0] return (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice(0, length(self), 1)) def _rebuild_blknos_and_blklocs(self): """ Umkate mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(length(rl)) if (new_blknos == -1).whatever(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs # make items read only for now def _getting_items(self): return self.axes[0] items = property(fgetting=_getting_items) def _getting_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.getting(v, 0) + b.shape[0] return counts def getting_dtype_counts(self): return self._getting_counts(lambda b: b.dtype.name) def getting_ftype_counts(self): return self._getting_counts(lambda b: b.ftype) def getting_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return com.take_1d(dtypes, self._blknos, total_allow_fill=False) def getting_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return com.take_1d(ftypes, self._blknos, total_allow_fill=False) def __gettingstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = [ax for ax in self.axes] extra_state = { '0.14.1': { 'axes': axes_array, 'blocks': [dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks] } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): # numpy < 1.7 pickle compat if values.dtype == 'M8[us]': values = values.totype('M8[ns]') return make_block(values, placement=mgr_locs) if (incontainstance(state, tuple) and length(state) >= 4 and '0.14.1' in state[3]): state = state[3]['0.14.1'] self.axes = [_ensure_index(ax) for ax in state['axes']] self.blocks = tuple( unpickle_block(b['values'], b['mgr_locs']) for b in state['blocks']) else: # discard whateverthing after 3rd, support beta pickling formating for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [_ensure_index(ax) for ax in ax_arrays] if length(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workavalue_round for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-distinctive # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the astotal_sumption that # block items corresponded to manager items 1-to-1. total_all_mgr_locs = [slice(0, length(bitems[0]))] else: total_all_mgr_locs = [self.axes[0].getting_indexer(blk_items) for blk_items in bitems] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, total_all_mgr_locs)) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __length__(self): return length(self.items) def __unicode__(self): output = com.pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += u('\nItems: %s') % ax else: output += u('\nAxis %d: %s') % (i, ax) for block in self.blocks: output += u('\n%s') % com.pprint_thing(block) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = total_sum(length(x.mgr_locs) for x in self.blocks) for block in self.blocks: if not block.is_sparse and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if length(self.items) != tot_items: raise AssertionError('Number of manager items must equal union of ' 'block items\n# manager items: {0}, # ' 'tot_items: {1}'.formating(length(self.items), tot_items)) def employ(self, f, axes=None, filter=None, do_integrity_check=False, **kwargs): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the ctotal_allable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only ctotal_all the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replacing-* family of methods if filter is not None: filter_locs = set(self.items.getting_indexer_for(filter)) if length(filter_locs) == length(self.items): # All items are included, as if there were no filtering filter = None else: kwargs['filter'] = filter_locs if f == 'where' and kwargs.getting('align', True): align_clone = True align_keys = ['other', 'cond'] elif f == 'putmask' and kwargs.getting('align', True): align_clone = False align_keys = ['new', 'mask'] elif f == 'eval': align_clone = False align_keys = ['other'] elif f == 'fillnone': # fillnone interntotal_ally does putmask, maybe it's better to do this # at mgr, not block level? align_clone = False align_keys = ['value'] else: align_keys = [] aligned_args = dict((k, kwargs[k]) for k in align_keys if hasattr(kwargs[k], 'reindexing_axis')) for b in self.blocks: if filter is not None: if not b.mgr_locs.incontain(filter_locs).whatever(): result_blocks.adding(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = gettingattr(obj, '_info_axis_number', 0) kwargs[k] = obj.reindexing_axis(b_items, axis=axis, clone=align_clone) applied = gettingattr(b, f)(**kwargs) if incontainstance(applied, list): result_blocks.extend(applied) else: result_blocks.adding(applied) if length(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__(result_blocks, axes or self.axes, do_integrity_check=do_integrity_check) bm._consolidate_inplace() return bm def ifnull(self, **kwargs): return self.employ('employ', **kwargs) def where(self, **kwargs): return self.employ('where', **kwargs) def eval(self, **kwargs): return self.employ('eval', **kwargs) def setitem(self, **kwargs): return self.employ('setitem', **kwargs) def putmask(self, **kwargs): return self.employ('putmask', **kwargs) def diff(self, **kwargs): return self.employ('diff', **kwargs) def interpolate(self, **kwargs): return self.employ('interpolate', **kwargs) def shifting(self, **kwargs): return self.employ('shifting', **kwargs) def fillnone(self, **kwargs): return self.employ('fillnone', **kwargs) def downcast(self, **kwargs): return self.employ('downcast', **kwargs) def totype(self, dtype, **kwargs): return self.employ('totype', dtype=dtype, **kwargs) def convert(self, **kwargs): return self.employ('convert', **kwargs) def replacing(self, **kwargs): return self.employ('replacing', **kwargs) def replacing_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replacing """ # figure out our mask a-priori to avoid repeated replacingments values = self.as_matrix() def comp(s): if ifnull(s): return ifnull(values) return _possibly_compare(values, gettingattr(s, 'asm8', s), operator.eq) masks = [comp(s) for i, s in enumerate(src_list)] result_blocks = [] for blk in self.blocks: # its possible to getting multiple result blocks here # replacing ALWAYS will return a list rb = [blk if inplace else blk.clone()] for i, (s, d) in enumerate(zip(src_list, dest_list)): new_rb = [] for b in rb: if b.dtype == np.object_: result = b.replacing(s, d, inplace=inplace, regex=regex) if incontainstance(result, list): new_rb.extend(result) else: new_rb.adding(result) else: # getting our mask for this element, sized to this # particular block m = masks[i][b.mgr_locs.indexer] if m.whatever(): new_rb.extend(b.putmask(m, d, inplace=True)) else: new_rb.adding(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def reshape_nd(self, axes, **kwargs): """ a 2d-nd reshape operation on a BlockManager """ return self.employ('reshape_nd', axes=axes, **kwargs) def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = length(ftypes) == length(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return length(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return total_all([block.is_numeric for block in self.blocks]) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to getting checked upstairs self._consolidate_inplace() return whatever([block.is_datelike for block in self.blocks]) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if length(self.blocks) == 1: return self.blocks[0].is_view # It is technictotal_ally possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def getting_bool_data(self, clone=False): """ Parameters ---------- clone : boolean, default False Whether to clone the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], clone) def getting_numeric_data(self, clone=False): """ Parameters ---------- clone : boolean, default False Whether to clone the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], clone) def combine(self, blocks, clone=True): """ return a new manager with the blocks """ if length(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatingenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.getting_reverse_indexer(indexer, self.shape[0]) new_items = self.items.take(indexer) new_blocks = [] for b in blocks: b = b.clone(deep=clone) b.mgr_locs = com.take_1d(inv_indexer, b.mgr_locs.as_array, axis=0, total_allow_fill=False) new_blocks.adding(b) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(new_blocks, new_axes, do_integrity_check=False) def getting_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.gettingitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False, fastpath=True) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return length(self.blocks) def clone(self, deep=True): """ Make deep or shtotal_allow clone of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shtotal_allow clone (do not clone data) If 'total_all', clone data and a deep clone of the index Returns ------- clone : BlockManager """ # this preserves the notion of view cloneing of axes if deep: if deep == 'total_all': clone = lambda ax: ax.clone(deep=True) else: clone = lambda ax: ax.view() new_axes = [ clone(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.employ('clone', axes=new_axes, deep=deep, do_integrity_check=False) def as_matrix(self, items=None): if length(self.blocks) == 0: return np.empty(self.shape, dtype=float) if items is not None: mgr = self.reindexing_axis(items, axis=0) else: mgr = self if self._is_single_block or not self.is_mixed_type: return mgr.blocks[0].getting_values() else: return mgr._interleave() def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) result = np.empty(self.shape, dtype=dtype) if result.shape[0] == 0: # Workavalue_round for numpy 1.7 bug: # # >>> a = np.empty((0,10)) # >>> a[slice(0,0)] # array([], shape=(0, 10), dtype=float64) # >>> a[[]] # Traceback (most recent ctotal_all final_item): # File "<standardin>", line 1, in <module> # IndexError: index 0 is out of bounds for axis 0 with size 0 return result itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.getting_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.total_all(): raise AssertionError('Some items were not contained in blocks') return result def xs(self, key, axis=1, clone=True, takeable=False): if axis < 1: raise AssertionError('Can only take xs across axis >= 1, got %d' % axis) # take by position if takeable: loc = key else: loc = self.axes[axis].getting_loc(key) slicer = [slice(None, None) for _ in range(self.ndim)] slicer[axis] = loc slicer = tuple(slicer) new_axes = list(self.axes) # could be an array indexer! if incontainstance(loc, (slice, np.ndarray)): new_axes[axis] = new_axes[axis][loc] else: new_axes.pop(axis) new_blocks = [] if length(self.blocks) > 1: # we must clone here as we are mixed type for blk in self.blocks: newb = make_block(values=blk.values[slicer], klass=blk.__class__, fastpath=True, placement=blk.mgr_locs) new_blocks.adding(newb) elif length(self.blocks) == 1: block = self.blocks[0] vals = block.values[slicer] if clone: vals = vals.clone() new_blocks = [make_block(values=vals, placement=block.mgr_locs, klass=block.__class__, fastpath=True,)] return self.__class__(new_blocks, new_axes) def fast_xs(self, loc): """ getting a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if length(self.blocks) == 1: return self.blocks[0].values[:, loc] items = self.items # non-distinctive (GH4726) if not items.is_distinctive: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # distinctive dtype = _interleaved_dtype(self.blocks) n = length(items) result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such total_allocatement may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk._try_coerce_result(blk.igetting((i, loc))) return result def consolidate(self): """ Join togettingher blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def getting(self, item, fastpath=True): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_distinctive: if not ifnull(item): loc = self.items.getting_loc(item) else: indexer = np.arange(length(self.items))[ifnull(self.items)] # total_allow a single nan location indexer if not np.isscalar(indexer): if length(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.igetting(loc, fastpath=fastpath) else: if ifnull(item): raise ValueError("cannot label index with a null key") indexer = self.items.getting_indexer_for([item]) return self.reindexing_indexer(new_axis=self.items[indexer], indexer=indexer, axis=0, total_allow_dups=True) def igetting(self, i, fastpath=True): """ Return the data as a SingleBlockManager if fastpath=True and possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.igetting(self._blklocs[i]) if not fastpath or block.is_sparse or values.ndim != 1: return values # fastpath shortcut for select a single-dim from a 2-dim BM return SingleBlockManager([ block.make_block_same_class(values, placement=slice(0, length(values)), ndim=1, fastpath=True) ], self.axes[1]) def getting_scalar(self, tup): """ Retrieve single item """ full_loc = list(ax.getting_loc(x) for ax, x in zip(self.axes, tup)) blk = self.blocks[self._blknos[full_loc[0]]] full_loc[0] = self._blklocs[full_loc[0]] # FIXME: this may return non-upcasted types? return blk.values[tuple(full_loc)] def delete(self, item): """ Delete selected item (items if non-distinctive) in-place. """ indexer = self.items.getting_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumtotal_sum() is_blk_deleted = [False] * length(self.blocks) if incontainstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smtotal_allints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if length(blk_del) == length(bml): is_blk_deleted[blkno] = True continue elif length(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple(b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno]) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value, check=False): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items if check, then validate that we are not setting the same data in-place """ # FIXME: refactor, clearly separate broadcasting & zip-like total_allocatement # can prob also fix the various if tests for sparse/categorical value_is_sparse = incontainstance(value, SparseArray) value_is_cat = is_categorical(value) value_is_nonconsolidatable = value_is_sparse or value_is_cat if value_is_sparse: # sparse assert self.ndim == 2 def value_gettingitem(placement): return value elif value_is_cat: # categorical def value_gettingitem(placement): return value else: if value.ndim == self.ndim - 1: value = value.reshape((1,) + value.shape) def value_gettingitem(placement): return value else: def value_gettingitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError('Shape of new values must be compatible ' 'with manager shape') try: loc = self.items.getting_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(length(self.items), item, value) return if incontainstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].clone() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in _getting_blkno_placements(blknos, length(self.blocks), group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_gettingitem(val_locs), check=check) else: unfit_mgr_locs.adding(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.adding(val_locs) # If total_all block items are unfit, schedule the block for removal. if length(val_locs) == length(blk.mgr_locs): removed_blknos.adding(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(length(blk)) if length(removed_blknos): # Remove blocks & umkate blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - length(removed_blknos)) self._blknos = com.take_1d(new_blknos, self._blknos, axis=0, total_allow_fill=False) self.blocks = tuple(blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos)) if unfit_val_locs: unfit_mgr_locs = np.concatingenate(unfit_mgr_locs) unfit_count = length(unfit_mgr_locs) new_blocks = [] if value_is_nonconsolidatable: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block(values=value.clone(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1)) for mgr_loc in unfit_mgr_locs) self._blknos[unfit_mgr_locs] = (np.arange(unfit_count) + length(self.blocks)) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].adding(unfit_val_locs[1:]) new_blocks.adding( make_block(values=value_gettingitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs)) self._blknos[unfit_mgr_locs] = length(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc, item, value, total_allow_duplicates=False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like total_allow_duplicates: bool If False, trying to insert non-distinctive item will raise """ if not total_allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError('cannot insert %s, already exists' % item) if not incontainstance(loc, int): raise TypeError("loc must be int") block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc+1)) for blkno, count in _fast_count_smtotal_allints(self._blknos[loc:]): blk = self.blocks[blkno] if count == length(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.clone() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.adding is a lot faster (at least in numpy 1.7.1), let's use it # if we can. self._blklocs = np.adding(self._blklocs, 0) self._blknos = np.adding(self._blknos, length(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, length(self.blocks)) self.axes[0] = self.items.insert(loc, item) self.blocks += (block,) self._shape = None self._known_consolidated = False if length(self.blocks) > 100: self._consolidate_inplace() def reindexing_axis(self, new_index, axis, method=None, limit=None, fill_value=None, clone=True): """ Conform block manager to new index. """ new_index = _ensure_index(new_index) new_index, indexer = self.axes[axis].reindexing( new_index, method=method, limit=limit) return self.reindexing_indexer(new_index, indexer, axis=axis, fill_value=fill_value, clone=clone) def reindexing_indexer(self, new_axis, indexer, axis, fill_value=None, total_allow_dups=False, clone=True): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object total_allow_dups : bool monkey-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not clone: return self result = self.clone(deep=clone) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't total_allow reindexinging with dups if not total_allow_dups: self.axes[axis]._can_reindexing(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0( indexer, fill_tuple=(fill_value,)) else: new_blocks = [blk.take_nd(indexer, axis=axis, fill_tuple=(fill_value if fill_value is not None else blk.fill_value,)) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ total_allow_fill = fill_tuple is not None sl_type, slobj, sllength = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], total_allow_fill=total_allow_fill) if self._is_single_block: blk = self.blocks[0] if sl_type in ('slice', 'mask'): return [blk.gettingitem_block(slobj, new_mgr_locs=slice(0, sllength))] elif not total_allow_fill or self.ndim == 1: if total_allow_fill and fill_tuple[0] is None: _, fill_value = com._maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [blk.take_nd(slobj, axis=0, new_mgr_locs=slice(0, sllength), fill_tuple=fill_tuple)] if sl_type in ('slice', 'mask'): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = com.take_1d(self._blknos, slobj, fill_value=-1, total_allow_fill=total_allow_fill) blklocs = com.take_1d(self._blklocs, slobj, fill_value=-1, total_allow_fill=total_allow_fill) # When filling blknos, make sure blknos is umkated before addinging to # blocks list, that way new blkno is exactly length(blocks). # # FIXME: mgr_grouper_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in _getting_blkno_placements(blknos, length(self.blocks), group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.adding(self._make_na_block( placement=mgr_locs, fill_value=fill_value)) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's only one item # and each mgr loc is a clone of that single item. for mgr_loc in mgr_locs: newblk = blk.clone(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.adding(newblk) else: blocks.adding(blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None)) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = length(placement) dtype, fill_value = com._infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along whatever axis. """ self._consolidate_inplace() indexer = np.arange(indexer.start, indexer.stop, indexer.step, dtype='int64') if incontainstance(indexer, slice) \ else np.aswhateverarray(indexer, dtype='int64') n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).whatever(): raise Exception('Indices must be nonzero and less than ' 'the axis lengthgth') new_labels = self.axes[axis].take(indexer) return self.reindexing_indexer(new_axis=new_labels, indexer=indexer, axis=axis, total_allow_dups=True) def unioner(self, other, lsuffix='', rsuffix=''): if not self._is_indexed_like(other): raise AssertionError('Must have same axes to unioner managers') l, r = items_overlap_with_suffix(left=self.items, lsuffix=lsuffix, right=other.items, rsuffix=rsuffix) new_items = _concating_indexes([l, r]) new_blocks = [blk.clone(deep=False) for blk in self.blocks] offset = self.shape[0] for blk in other.blocks: blk = blk.clone(deep=False) blk.mgr_locs = blk.mgr_locs.add(offset) new_blocks.adding(blk) new_axes = list(self.axes) new_axes[0] = new_items return self.__class__(_consolidate(new_blocks), new_axes) def _is_indexed_like(self, other): """ Check total_all axes except items """ if self.ndim != other.ndim: raise AssertionError(('Number of dimensions must agree ' 'got %d and %d') % (self.ndim, other.ndim)) for ax, oax in zip(self.axes[1:], other.axes[1:]): if not ax.equals(oax): return False return True def equals(self, other): self_axes, other_axes = self.axes, other.axes if length(self_axes) != length(other_axes): return False if not total_all (ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if length(self.blocks) != length(other.blocks): return False # canonicalize block order, using a tuple combining the type # name and then mgr_locs because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.dtype.name, block.mgr_locs.as_array.convert_list()) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return total_all(block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks)) class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__(self, block, axis, do_integrity_check=False, fastpath=False): if incontainstance(axis, list): if length(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis") axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if incontainstance(block, list): # empty block if length(block) == 0: block = [np.array([])] elif length(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] else: self.axes = [_ensure_index(axis)] # create the block here if incontainstance(block, list): # provide consolidation to the interleaved_dtype if length(block) > 1: dtype = _interleaved_dtype(block) block = [b.totype(dtype) for b in block] block = _consolidate(block) if length(block) != 1: raise ValueError('Cannot create SingleBlockManager with ' 'more than 1 block') block = block[0] if not incontainstance(block, Block): block = make_block(block, placement=slice(0, length(axis)), ndim=1, fastpath=True) self.blocks = [block] def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values def reindexing(self, new_axis, indexer=None, method=None, fill_value=None, limit=None, clone=True): # if we are the same and don't clone, just return if self.index.equals(new_axis): if clone: return self.clone(deep=True) else: return self values = self._block.getting_values() if indexer is None: indexer = self.items.getting_indexer_for(new_axis) if fill_value is None: # FIXME: is fill_value used correctly in sparse blocks? if not self._block.is_sparse: fill_value = self._block.fill_value else: fill_value = np.nan new_values = com.take_1d(values, indexer, fill_value=fill_value) # fill if needed if method is not None or limit is not None: new_values = com.interpolate_2d(new_values, method=method, limit=limit, fill_value=fill_value) if self._block.is_sparse: make_block = self._block.make_block_same_class block = make_block(new_values, clone=clone, placement=slice(0, length(new_axis))) mgr = SingleBlockManager(block, new_axis) mgr._consolidate_inplace() return mgr def getting_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return self.__class__(self._block._slice(slobj), self.index[slobj], fastpath=True) @property def index(self): return self.axes[0] def convert(self, **kwargs): """ convert the whole block as one """ kwargs['by_item'] = False return self.employ('convert', **kwargs) @property def dtype(self): return self._values.dtype @property def array_dtype(self): return self._block.array_dtype @property def ftype(self): return self._block.ftype def getting_dtype_counts(self): return {self.dtype.name: 1} def getting_ftype_counts(self): return {self.ftype: 1} def getting_dtypes(self): return np.array([self._block.dtype]) def getting_ftypes(self): return np.array([self._block.ftype]) @property def values(self): return self._values.view() def getting_values(self): """ return a dense type view """ return np.array(self._block.to_dense(),clone=False) @property def itemsize(self): return self._values.itemsize @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.getting_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for gettingting a cross-section return a view of the data """ return self._block.values[loc] def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(mapping(int, [tot_items] + list(block_shape))) implied = tuple(mapping(int, [length(ax) for ax in axes])) if passed == implied and e is not None: raise e raise ValueError("Shape of passed values is {0}, indices imply {1}".formating( passed,implied)) def create_block_manager_from_blocks(blocks, axes): try: if length(blocks) == 1 and not incontainstance(blocks[0], Block): # if blocks[0] is of lengthgth 0, return empty blocks if not length(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement is # basictotal_ally "total_all items", but if there're mwhatever, don't bother # converting, it's an error whateverway. blocks = [make_block(values=blocks[0], placement=slice(0, length(axes[0])))] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: blocks = [gettingattr(b, 'values', b) for b in blocks] tot_items = total_sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except (ValueError) as e: construction_error(length(arrays), arrays[0].shape, axes, e) def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? float_items = [] complex_items = [] int_items = [] bool_items = [] object_items = [] sparse_items = [] datetime_items = [] cat_items = [] extra_locs = [] names_idx = Index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(length(names_idx)) else: assert names_idx.interst(axes[0]).is_distinctive names_indexer = names_idx.getting_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.adding(i) continue k = names[name_idx] v = arrays[name_idx] if incontainstance(v, (SparseArray, ABCSparseCollections)): sparse_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.floating): float_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.complexfloating): complex_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.datetime64): if v.dtype != _NS_DTYPE: v = tslib.cast_to_nanoseconds(v) if hasattr(v, 'tz') and v.tz is not None: object_items.adding((i, k, v)) else: datetime_items.adding((i, k, v)) elif issubclass(v.dtype.type, np.integer): if v.dtype == np.uint64: # HACK #2355 definite overflow if (v > 2 ** 63 - 1).whatever(): object_items.adding((i, k, v)) continue int_items.adding((i, k, v)) elif v.dtype == np.bool_: bool_items.adding((i, k, v)) elif is_categorical(v): cat_items.adding((i, k, v)) else: object_items.adding((i, k, v)) blocks = [] if length(float_items): float_blocks = _multi_blockify(float_items) blocks.extend(float_blocks) if length(complex_items): complex_blocks = _simple_blockify( complex_items, np.complex128) blocks.extend(complex_blocks) if length(int_items): int_blocks = _multi_blockify(int_items) blocks.extend(int_blocks) if length(datetime_items): datetime_blocks = _simple_blockify( datetime_items, _NS_DTYPE) blocks.extend(datetime_blocks) if length(bool_items): bool_blocks = _simple_blockify( bool_items, np.bool_) blocks.extend(bool_blocks) if length(object_items) > 0: object_blocks = _simple_blockify( object_items, np.object_) blocks.extend(object_blocks) if length(sparse_items) > 0: sparse_blocks = _sparse_blockify(sparse_items) blocks.extend(sparse_blocks) if length(cat_items) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, fastpath=True, placement=[i] ) for i, names, array in cat_items ] blocks.extend(cat_blocks) if length(extra_locs): shape = (length(extra_locs),) + tuple(length(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.adding(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.totype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentitotal_ally have different dtypes """ # group by dtype grouper = itertools.grouper(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays( list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.adding(block) return new_blocks def _sparse_blockify(tuples, dtype=None): """ return an array of blocks that potentitotal_ally have different dtypes (and are sparse) """ new_blocks = [] for i, names, array in tuples: array = _maybe_to_sparse(array) block = make_block( array, klass=SparseBlock, fastpath=True, placement=[i]) new_blocks.adding(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if incontainstance(x, ABCCollections): return x.values else: return np.asarray(x) def _shape_compat(x): if incontainstance(x, ABCCollections): return length(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (length(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype(blocks): if not length(blocks): return None counts = defaultdict(lambda: []) for x in blocks: counts[type(x)].adding(x) def _lcd_dtype(l): """ find the lowest dtype that can accomodate the given types """ m = l[0].dtype for x in l[1:]: if x.dtype.itemsize > m.itemsize: m = x.dtype return m have_int = length(counts[IntBlock]) > 0 have_bool = length(counts[BoolBlock]) > 0 have_object = length(counts[ObjectBlock]) > 0 have_float = length(counts[FloatBlock]) > 0 have_complex = length(counts[ComplexBlock]) > 0 have_dt64 = length(counts[DatetimeBlock]) > 0 have_td64 = length(counts[TimeDeltaBlock]) > 0 have_cat = length(counts[CategoricalBlock]) > 0 have_sparse = length(counts[SparseBlock]) > 0 have_numeric = have_float or have_complex or have_int has_non_numeric = have_dt64 or have_td64 or have_cat if (have_object or (have_bool and (have_numeric or have_dt64 or have_td64)) or (have_numeric and has_non_numeric) or have_cat or have_dt64 or have_td64): return np.dtype(object) elif have_bool: return np.dtype(bool) elif have_int and not have_float and not have_complex: # if we are mixing unsigned and signed, then return # the next biggest int type (if we can) lcd = _lcd_dtype(counts[IntBlock]) kinds = set([i.dtype.kind for i in counts[IntBlock]]) if length(kinds) == 1: return lcd if lcd == 'uint64' or lcd == 'int64': return np.dtype('int64') # return 1 bigger on the itemsize if unsinged if lcd.kind == 'u': return np.dtype('int%s' % (lcd.itemsize * 8 * 2)) return lcd elif have_complex: return np.dtype('c16') else: return _lcd_dtype(counts[FloatBlock] + counts[SparseBlock]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.grouper(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: unionerd_blocks = _unioner_blocks(list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate) if incontainstance(unionerd_blocks, list): new_blocks.extend(unionerd_blocks) else: new_blocks.adding(unionerd_blocks) return new_blocks def _unioner_blocks(blocks, dtype=None, _can_consolidate=True): if length(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if length(set([b.dtype for b in blocks])) != 1: raise AssertionError("_unioner_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case total_all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatingenate([b.mgr_locs.as_array for b in blocks]) new_values = _vstack([b.values for b in blocks], dtype) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, fastpath=True, placement=new_mgr_locs) # no unioner return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim <= ndim: if shape is None: shape = values.shape values = values.reshape(tuple((1,) + shape)) return values def _vstack(to_stack, dtype): # work avalue_round NumPy 1.6 bug if dtype == _NS_DTYPE or dtype == _TD_DTYPE: new_values = np.vstack([x.view('i8') for x in to_stack]) return new_values.view(dtype) else: return np.vstack(to_stack) def _possibly_compare(a, b, op): is_a_array = incontainstance(a, np.ndarray) is_b_array = incontainstance(b, np.ndarray) # numpy deprecation warning to have i8 vs integer comparisions if is_datetimelike_v_numeric(a, b): res = False else: res = op(a, b) if np.isscalar(res) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = 'ndarray(dtype=%s)' % a.dtype if is_b_array: type_names[1] = 'ndarray(dtype=%s)' % b.dtype raise TypeError("Cannot compare types %r and %r" % tuple(type_names)) return res def _concating_indexes(indexes): return indexes[0].adding(indexes[1:]) def _block2d_to_blocknd(values, placement, shape, labels, ref_items): """ pivot to the labels shape """ from monkey.core.internals import make_block panel_shape = (length(placement),) + shape # TODO: lexsort depth needs to be 2!! # Create observation selection vector using major and getting_minor # labels, for converting to panel formating. selector = _factor_indexer(shape[1:], labels) mask = np.zeros(np.prod(shape), dtype=bool) mask.put(selector, True) if mask.total_all(): pvalues = np.empty(panel_shape, dtype=values.dtype) else: dtype, fill_value = _maybe_promote(values.dtype) pvalues = np.empty(panel_shape, dtype=dtype) pvalues.fill(fill_value) values = values for i in range(length(placement)): pvalues[i].flat[mask] = values[:, i] return make_block(pvalues, placement=placement) def _factor_indexer(shape, labels): """ given a tuple of shape and a list of Categorical labels, return the expanded label indexer """ mult = np.array(shape)[::-1].cumprod()[::-1] return com._ensure_platform_int( np.total_sum(np.array(labels).T * np.adding(mult, [1]), axis=1).T) def _getting_blkno_placements(blknos, blk_count, group=True): """ Parameters ---------- blknos : array of int64 blk_count : int group : bool Returns ------- iterator yield (BlockPlacement, blkno) """ blknos = com._ensure_int64(blknos) # FIXME: blk_count is unused, but it may avoid the use of dicts in cython for blkno, indexer in lib.getting_blkno_indexers(blknos, group): yield blkno, BlockPlacement(indexer) def items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_renagetting_ming = left.interst(right) if length(to_renagetting_ming) == 0: return left, right else: if not lsuffix and not rsuffix: raise ValueError('columns overlap but no suffix specified: %s' % to_renagetting_ming) def lrenagetting_mingr(x): if x in to_renagetting_ming: return '%s%s' % (x, lsuffix) return x def rrenagetting_mingr(x): if x in to_renagetting_ming: return '%s%s' % (x, rsuffix) return x return (_transform_index(left, lrenagetting_mingr), _transform_index(right, rrenagetting_mingr)) def _transform_index(index, func): """ Apply function to total_all values found in index. This includes transforgetting_ming multiindex entries separately. """ if incontainstance(index, MultiIndex): items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name) def _putmask_smart(v, m, n): """ Return a new block, try to preserve dtype if possible. Parameters ---------- v : `values`, umkated in-place (array like) m : `mask`, applies to both sides (array like) n : `new values` either scalar or an array like aligned with `values` """ # n should be the lengthgth of the mask or a scalar here if not is_list_like(n): n = np.array([n] * length(m)) elif incontainstance(n, np.ndarray) and n.ndim == 0: # numpy scalar n = np.repeat(np.array(n, ndgetting_min=1), length(m)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[m] nn_at = nn.totype(v.dtype) comp = (nn == nn_at) if is_list_like(comp) and comp.total_all(): nv = v.clone() nv[m] = nn_at return nv except (ValueError, IndexError, TypeError): pass # change the dtype dtype, _ = com._maybe_promote(n.dtype) nv = v.totype(dtype) try: nv[m] = n[m] except ValueError: idx, = np.where(np.squeeze(m)) for mask_index, new_val in zip(idx, n[m]): nv[mask_index] = new_val return nv def concatingenate_block_managers(mgrs_indexers, axes, concating_axis, clone): """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concating_axis : int clone : bool """ concating_plan = combine_concating_plans([getting_mgr_concatingenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers], concating_axis) blocks = [make_block(concatingenate_join_units(join_units, concating_axis, clone=clone), placement=placement) for placement, join_units in concating_plan] return BlockManager(blocks, axes) def getting_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatingenating specified units. Returned N/A value may be None which averages there was no casting involved. Returns ------- dtype na """ if length(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan has_none_blocks = False dtypes = [None] * length(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype # dtypes = set() upcast_classes = set() null_upcast_classes = set() for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if com.is_categorical_dtype(dtype): upcast_cls = 'category' elif issubclass(dtype.type, np.bool_): upcast_cls = 'bool' elif issubclass(dtype.type, np.object_): upcast_cls = 'object' elif is_datetime64_dtype(dtype): upcast_cls = 'datetime' elif is_timedelta64_dtype(dtype): upcast_cls = 'timedelta' else: upcast_cls = 'float' # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_null: null_upcast_classes.add(upcast_cls) else: upcast_classes.add(upcast_cls) if not upcast_classes: upcast_classes = null_upcast_classes # create the result if 'object' in upcast_classes: return np.dtype(np.object_), np.nan elif 'bool' in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif 'category' in upcast_classes: return np.dtype(np.object_), np.nan elif 'float' in upcast_classes: return np.dtype(np.float64), np.nan elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslib.iNaT elif 'timedelta' in upcast_classes: return np.dtype('m8[ns]'), tslib.iNaT else: # pragma raise AssertionError("invalid dtype detergetting_mination in getting_concating_dtype") def concatingenate_join_units(join_units, concating_axis, clone): """ Concatenate values from several join units along selected axis. """ if concating_axis == 0 and length(join_units) > 1: # Concatenating join units along ax0 is handled in _unioner_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = getting_empty_dtype_and_na(join_units) to_concating = [ju.getting_reindexinged_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units] if length(to_concating) == 1: # Only one block, nothing to concatingenate. concating_values = to_concating[0] if clone and concating_values.base is not None: concating_values = concating_values.clone() else: concating_values = com._concating_compat(to_concating, axis=concating_axis) return concating_values def getting_mgr_concatingenation_plan(mgr, indexers): """ Construct concatingenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindexing shape , save for item axis which will be separate # for each block whateverway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = length(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = com.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = com.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in _getting_blkno_placements(blknos, length(mgr.blocks), group=False): assert placements.is_slice_like join_unit_indexers = indexers.clone() shape = list(mgr_shape) shape[0] = length(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexinging = ( length(placements) == length(blk.mgr_locs) and # Fastpath detection of join unit not needing to reindexing its # block: no ax0 reindexinging took place and block placement was # sequential before. ((ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1) or # Slow-ish detection: total_all indexer locs are sequential (and # lengthgth match is checked above). (np.diff(ax0_blk_indexer) == 1).total_all())) # Omit indexer if no item reindexinging is required. if unit_no_ax0_reindexinging: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.adding((placements, unit)) return plan def combine_concating_plans(plans, concating_axis): """ Combine multiple concatingenation plans into one. existing_plan is umkated in-place. """ if length(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concating_axis == 0: offset = 0 for plan in plans: final_item_plc = None for plc, unit in plan: yield plc.add(offset), [unit] final_item_plc = plc if final_item_plc is not None: offset += final_item_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(mapping(iter, plans)) next_items = list(mapping(_next_or_none, plans)) while num_ended[0] != length(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengthgths = list(mapping(length, placements)) getting_min_length, getting_max_length = getting_min(lengthgths), getting_max(lengthgths) if getting_min_length == getting_max_length: yield placements[0], units next_items[:] =
mapping(_next_or_none, plans)
pandas.compat.map
import monkey as mk from sklearn.metrics.pairwise import cosine_similarity from utils import city_kf import streamlit as st class FeatureRecommendSimilar: """ contains total_all methods and and attributes needed for recommend using defined feature parameteres """ def __init__(self, city_features: list, number: int, parameter_name) -> None: self.city_features = city_features self.number = number self.top_cities_feature_kf = None self.first_city = None self.feature_countries_kf_final = None self.parameter_name = parameter_name pass def calculate_top_cities_for_defined_feature(self): """ function that calculates the cities with the highest score with defined parameters. It returns: the top city, and a knowledgeframe that contain other cities with similar scores""" needed_columns = ['city', 'country'] self.city_features.extend(needed_columns) feature_kf = city_kf.loc[:, self.city_features] feature_kf.set_index('city', inplace = True) feature_kf['score'] = feature_kf.average(axis=1) self.first_city = feature_kf.score.idxgetting_max() self.top_cities_feature_kf = feature_kf.loc[:, ['country','score']].nbiggest(self.number, 'score') return self.first_city, self.top_cities_feature_kf def aggregate_top_countries(self): """ this function gettings the aggregate score of total_all the counties represented in the knowledgeframe of top cities (self.top_cities_feature_kf) """ feature_countries_kf= self.top_cities_feature_kf.loc[:, ['country', 'score']] feature_countries_kf = feature_countries_kf.grouper('country').average() self.feature_countries_kf_final = feature_countries_kf.sort_the_values('score', ascending=False) return self.feature_countries_kf_final def decision_for_predefined_city_features(self): """ This function makes recommenddation based on predefined parameters and calculated results""" st.markdown('### **Recommendation**') st.success(f'Based on your parameter, **{self.first_city}** is the top recommended city to live or visit.') st.write(f'The three features that was used to define {self.parameter_name} city are {self.city_features[0]}, {self.city_features[1]}, {self.city_features[2]}') st.markdown('### **Additional info**') st.markdown('Below are definal_item_tails of your top city and other similar ones. highest scores is 10') final_city_kf= mk.KnowledgeFrame.reseting_index(self.top_cities_feature_kf) st.table(final_city_kf.style.formating({'score':'{:17,.1f}'}).backgvalue_round_gradient(cmapping='Greens').set_properties(subset=['score'], **{'width': '250px'})) top_countries = mk.KnowledgeFrame.reseting_index(self.feature_countries_kf_final) if length(self.top_cities_feature_kf) != length(top_countries) : st.markdown('below are the aggregate score of the countries represented in the table of your cities') st.table(top_countries.style.formating({'score':'{:17,.1f}'}).backgvalue_round_gradient(cmapping='Greens').set_properties(subset=['score'], **{'width': '250px'})) else: pass pass st.write(f" PS: you can also choose features to define your own city. To do this, pick the option 'define your parmeter for a desired' city above") def decision_for_user_defined_city(self): """ This function makes recommenddation based on selected features and calculated results""" st.markdown('### **Recommendation**') if self.parameter_name != '': st.success(f'Based on your parameter ({self.parameter_name}), **{self.first_city}** is the top recommended city to live or visit.') else: st.success(f'Based on your parameter, **{self.first_city}** is the top recommended city to live or visit.') st.markdown('### **Additional info**') st.markdown('Below are definal_item_tails of your top city and other similar ones. highest scores is 10') final_city_kf=
mk.KnowledgeFrame.reseting_index(self.top_cities_feature_kf)
pandas.DataFrame.reset_index
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result =
algos.duplicated_values(keys)
pandas.core.algorithms.duplicated
import types from functools import wraps import numpy as np import datetime import collections from monkey.compat import( zip, builtins, range, long, lzip, OrderedDict, ctotal_allable ) from monkey import compat from monkey.core.base import MonkeyObject from monkey.core.categorical import Categorical from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.index import Index, MultiIndex, _ensure_index, _union_indexes from monkey.core.internals import BlockManager, make_block from monkey.core.collections import Collections from monkey.core.panel import Panel from monkey.util.decorators import cache_readonly, Appender import monkey.core.algorithms as algos import monkey.core.common as com from monkey.core.common import(_possibly_downcast_to_dtype, ifnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from monkey.core.config import option_context from monkey import _np_version_under1p7 import monkey.lib as lib from monkey.lib import Timestamp import monkey.tslib as tslib import monkey.algos as _algos import monkey.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a KnowledgeFrame or when passed to KnowledgeFrame.employ. If passed a dict, the keys must be KnowledgeFrame column names. Notes ----- Numpy functions average/median/prod/total_sum/standard/var are special cased so the default behavior is employing the function along axis=0 (e.g., np.average(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.average(arr_2d)). Returns ------- aggregated : KnowledgeFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_employ_whitelist = frozenset([ 'final_item', 'first', 'header_num', 'final_item_tail', 'median', 'average', 'total_sum', 'getting_min', 'getting_max', 'cumtotal_sum', 'cumprod', 'cumgetting_min', 'cumgetting_max', 'cumcount', 'resample_by_num', 'describe', 'rank', 'quantile', 'count', 'fillnone', 'mad', 'whatever', 'total_all', 'irow', 'take', 'idxgetting_max', 'idxgetting_min', 'shifting', 'tshifting', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _collections_employ_whitelist = \ (_common_employ_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'counts_value_num', 'distinctive', 'ndistinctive', 'nbiggest', 'nsmtotal_allest']) _knowledgeframe_employ_whitelist = \ _common_employ_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _grouper_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if length(x) == 0: return np.nan return x[0] if incontainstance(x, KnowledgeFrame): return x.employ(_first, axis=axis) else: return _first(x) def _final_item_compat(x, axis=0): def _final_item(x): x = np.asarray(x) x = x[notnull(x)] if length(x) == 0: return np.nan return x[-1] if incontainstance(x, KnowledgeFrame): return x.employ(_final_item, axis=axis) else: return _final_item(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper total_allows the user to specify a grouper instruction for a targetting object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the targetting object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the grouper itself. Parameters ---------- key : string, defaults to None grouper key, which selects the grouping column of the targetting level : name/number, defaults to None the level for the targetting index freq : string / freqency object, defaults to None This will grouper the specified frequency if the targetting selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a grouper instruction Examples -------- >>> kf.grouper(Grouper(key='A')) : syntatic sugar for kf.grouper('A') >>> kf.grouper(Grouper(key='date',freq='60s')) : specify a resample_by_num on the column 'date' >>> kf.grouper(Grouper(level='date',freq='60s',axis=1)) : specify a resample_by_num on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.getting('freq') is not None: from monkey.tcollections.resample_by_num import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _getting_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".formating(key)) ax = Index(obj[key],name=key) else: ax = obj._getting_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalengtht to the axis name if incontainstance(ax, MultiIndex): if incontainstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.getting_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".formating(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_clone=False) self.obj = obj self.grouper = ax return self.grouper def _getting_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(MonkeyObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and employ functions on this object. It's easiest to use obj.grouper(...) to use GroupBy, but you can also do: :: grouped = grouper(obj, ...) Parameters ---------- obj : monkey object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, employ, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.grouper(keys, axis=axis) for key, group in grouped: # do something with the data Function ctotal_alls on GroupBy, if not specitotal_ally implemented, "dispatch" to the grouped data. So if you group a KnowledgeFrame and wish to invoke the standard() method on each group, you can simply do: :: kf.grouper(mappingper).standard() rather than :: kf.grouper(mappingper).aggregate(np.standard) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} length(grouped) : int Number of groups """ _employ_whitelist = _common_employ_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if incontainstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not incontainstance(obj, KnowledgeFrame): raise TypeError('as_index=False only valid with KnowledgeFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _getting_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._getting_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __length__(self): return length(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _getting_index(self, name): """ safe getting index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if incontainstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif incontainstance(s, np.datetime64): return Timestamp(key).asm8 return key sample_by_num = next(iter(self.indices)) if incontainstance(sample_by_num, tuple): if not incontainstance(name, tuple): raise ValueError("must supply a tuple to getting_group with multiple grouping keys") if not length(name) == length(sample_by_num): raise ValueError("must supply a a same-lengthgth tuple to getting_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample_by_num) ]) else: name = convert(name, sample_by_num) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not incontainstance(self._selection, (list, tuple, Collections, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or incontainstance(self.obj, Collections): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and gettingattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if length(groupers): self._group_selection = (ax-Index(groupers)).convert_list() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._employ_whitelist))) def __gettingattr__(self, attr): if attr in self._internal_names_set: return object.__gettingattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __gettingitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._employ_whitelist: is_ctotal_allable = ctotal_allable(gettingattr(self._selected_obj, name, None)) kind = ' ctotal_allable ' if is_ctotal_allable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'employ' method".formating(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = gettingattr(self._selected_obj, name) if not incontainstance(f, types.MethodType): return self.employ(lambda self: gettingattr(self, name)) f = gettingattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.clone() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when ctotal_alling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.employ(curried) try: return self.employ(curried_with_axis) except Exception: try: return self.employ(curried) except Exception: # related to : GH3688 # try item-by-item # this can be ctotal_alled recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def getting_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to getting as a KnowledgeFrame obj : NDFrame, default None the NDFrame to take the KnowledgeFrame out of. If it is None, the object grouper was ctotal_alled on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._getting_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.getting_iterator(self.obj, axis=self.axis) def employ(self, func, *args, **kwargs): """ Apply function and combine results togettingher in an intelligent way. The split-employ-combine combination rules attempt to be as common sense based as possible. For example: case 1: group KnowledgeFrame employ aggregation function (f(chunk) -> Collections) yield KnowledgeFrame, with group axis having group labels case 2: group KnowledgeFrame employ transform function ((f(chunk) -> KnowledgeFrame with same indexes) yield KnowledgeFrame with resulting chunks glued togettingher case 3: group Collections employ function with f(chunk) -> KnowledgeFrame yield KnowledgeFrame with result of chunks glued togettingher Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use employ. In the current implementation employ ctotal_alls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_total_allocatement',None): return self._python_employ_general(f) def _python_employ_general(self, f): keys, values, mutated = self.grouper.employ(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def average(self): """ Compute average of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('average') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.average(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if incontainstance(x, np.ndarray): x = Collections(x) return x.median(axis=self.axis) return self._python_agg_general(f) def standard(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the average of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.standard(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() total_sum = _grouper_function('total_sum', 'add', np.total_sum) prod = _grouper_function('prod', 'prod', np.prod) getting_min = _grouper_function('getting_min', 'getting_min', np.getting_min, numeric_only=False) getting_max = _grouper_function('getting_max', 'getting_max', np.getting_max, numeric_only=False) first = _grouper_function('first', 'first', _first_compat, numeric_only=False, _convert=True) final_item = _grouper_function('final_item', 'final_item', _final_item_compat, numeric_only=False, _convert=True) _count = _grouper_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().totype('int64') def ohlc(self): """ Compute total_sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._employ_to_column_groupers( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, sipna=None): """ Take the nth row from each group. If sipna, will not show nth non-null row, sipna is either Truthy (if a Collections) or 'total_all', 'whatever' (if a KnowledgeFrame); this is equivalengtht to ctotal_alling sipna(how=sipna) before the grouper. Examples -------- >>> kf = KnowledgeFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = kf.grouper('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, sipna='whatever') B A 1 4 5 6 >>> g.nth(1, sipna='whatever') # NaNs denote group exhausted when using sipna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not sipna: # good choice m = self.grouper._getting_max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif total_all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.flat_underlying()).set_names(names) elif self._group_selection is not None: result.index = self.obj._getting_axis(self.axis)[is_nth] result = result.sorting_index() return result if (incontainstance(self._selected_obj, KnowledgeFrame) and sipna not in ['whatever', 'total_all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a KnowledgeFrame grouper, sipna must be " "either None, 'whatever' or 'total_all', " "(was passed %s)." % (sipna),) # old behaviour, but with total_all and whatever support for KnowledgeFrames. # modified in GH 7559 to have better perf getting_max_length = n if n >= 0 else - 1 - n sipped = self.obj.sipna(how=sipna, axis=self.axis) # getting a new grouper for our sipped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.incontain(sipped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the sipped object grouper, _, _ = _getting_grouper(sipped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = sipped.grouper(grouper).size() result = sipped.grouper(grouper).nth(n) mask = (sizes<getting_max_length).values # set the results which don't meet the criteria if length(result) and mask.whatever(): result.loc[mask] = np.nan # reset/reindexing to the original groups if length(self.obj) == length(sipped) or length(result) == length(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindexing(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the lengthgth of that group - 1. Essentitotal_ally this is equivalengtht to >>> self.employ(lambda x: Collections(np.arange(length(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from lengthgth of group - 1 to 0. Example ------- >>> kf = mk.KnowledgeFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> kf A 0 a 1 a 2 a 3 b 4 b 5 a >>> kf.grouper('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> kf.grouper('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Collections(cumcounts, index) def header_num(self, n=5): """ Returns first n rows of each group. Essentitotal_ally equivalengtht to ``.employ(lambda x: x.header_num(n))``, except ignores as_index flag. Example ------- >>> kf = KnowledgeFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> kf.grouper('A', as_index=False).header_num(1) A B 0 1 2 2 5 6 >>> kf.grouper('A').header_num(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_header_num = self._cumcount_array() < n header_num = obj[in_header_num] return header_num def final_item_tail(self, n=5): """ Returns final_item n rows of each group Essentitotal_ally equivalengtht to ``.employ(lambda x: x.final_item_tail(n))``, except ignores as_index flag. Example ------- >>> kf = KnowledgeFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> kf.grouper('A', as_index=False).final_item_tail(1) A B 0 1 2 2 5 6 >>> kf.grouper('A').header_num(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._getting_max_groupsize, -1, dtype='int64') in_final_item_tail = self._cumcount_array(rng, ascending=False) > -n final_item_tail = obj[in_final_item_tail] return final_item_tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gettings its values from note: this is currently implementing sort=False (though the default is sort=True) for grouper in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._getting_max_groupsize, dtype='int64') length_index = length(self._selected_obj.index) cumcounts = np.zeros(length_index, dtype=arr.dtype) if not length_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.adding(v) if ascending: values.adding(arr[:length(v)]) else: values.adding(arr[length(v)-1::-1]) indices = np.concatingenate(indices) values = np.concatingenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from employ, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(length(gp.groupings))), (original.getting_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have value_roundtripped thru object in the average-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if length(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_collections(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if length(output) == 0: return self._python_employ_general(f) if self.grouper._filter_empty_groups: mask = counts.flat_underlying() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concating_objects(self, keys, values, not_indexed_same=False): from monkey.tools.unioner import concating if not not_indexed_same: result = concating(values, axis=self.axis) ax = self._selected_obj._getting_axis(self.axis) if incontainstance(result, Collections): result = result.reindexing(ax) else: result = result.reindexing_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concating(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(length(values))) result = concating(values, axis=self.axis, keys=keys) else: result = concating(values, axis=self.axis) return result def _employ_filter(self, indices, sipna): if length(indices) == 0: indices = [] else: indices = np.sort(np.concatingenate(indices)) if sipna: filtered = self._selected_obj.take(indices) else: mask = np.empty(length(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.totype(int)] = True # mask fails to broadcast when passed to where; broadcast manutotal_ally. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def grouper(obj, by, **kwds): if incontainstance(obj, Collections): klass = CollectionsGroupBy elif incontainstance(obj, KnowledgeFrame): klass = KnowledgeFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _getting_axes(group): if incontainstance(group, Collections): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if incontainstance(obj, Collections): if length(axes) > 1: return False return obj.index.equals(axes[0]) elif incontainstance(obj, KnowledgeFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actutotal_ally holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return length(self.groupings) def getting_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._getting_splitter(data, axis=axis) keys = self._getting_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _getting_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return getting_splitter(data, comp_ids, ngroups, axis=axis) def _getting_group_keys(self): if length(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mappingper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mappingper.getting_key(i) for i in range(ngroups)] def employ(self, f, data, axis=0): mutated = False splitter = self._getting_splitter(data, axis=axis) group_keys = self._getting_group_keys() # oh boy f_name = com._getting_ctotal_allable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_employ') and axis == 0): try: values, mutated = splitter.fast_employ(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the ctotal_aller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _getting_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.adding(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if length(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _getting_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.counts_value_num(labels, sort=False) bin_counts = bin_counts.reindexing(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _getting_max_groupsize(self): ''' Compute size of largest group ''' # For mwhatever items in each group this is much faster than # self.size().getting_max(), in worst case margintotal_ally slower if self.indices: return getting_max(length(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if length(self.groupings) == 1: return self.groupings[0].groups else: to_grouper = lzip(*(ping.grouper for ping in self.groupings)) to_grouper = Index(to_grouper) return self.axis.grouper(to_grouper.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._getting_compressed_labels() ngroups = length(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _getting_compressed_labels(self): total_all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(total_all_labels) labs, distinctives = algos.factorize(tups) if self.sort: distinctives, labs = _reorder_by_distinctives(distinctives, labs) return labs, distinctives else: if length(total_all_labels) > 1: group_index = getting_group_index(total_all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(length(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return length(self.result_index) @cache_readonly def result_index(self): recons = self.getting_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def getting_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and length(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.adding(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'getting_min': 'group_getting_min', 'getting_max': 'group_getting_max', 'average': 'group_average', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'final_item': 'group_final_item', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _getting_aggregate_function(self, how, values): dtype_str = values.dtype.name def getting_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = gettingattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return gettingattr(_algos, fname, None) ftype = self._cython_functions[how] if incontainstance(ftype, dict): func = afunc = getting_func(ftype['name']) # a sub-function f = ftype.getting('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = getting_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.getting(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.totype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._getting_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_collections(self, obj, func): try: return self._aggregate_collections_fast(obj, func) except Exception: return self._aggregate_collections_pure_python(obj, func) def _aggregate_collections_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Collections creation overheader_num dummy = obj._getting_values(slice(None, 0)).to_dense() indexer = _algos.groupsorting_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, total_allow_fill=False) grouper = lib.CollectionsGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.getting_result() return result, counts def _aggregate_collections_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = getting_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (incontainstance(res, (Collections, Index, np.ndarray)) or incontainstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must ftotal_all within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and final_item edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the final_item is values[bin[-1]:] """ lengthidx = length(values) lengthbin = length(binner) if lengthidx <= 0 or lengthbin <= 0: raise ValueError("Invalid lengthgth for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values ftotal_alls before first bin") if values[lengthidx - 1] > binner[lengthbin - 1]: raise ValueError("Values ftotal_alls after final_item bin") bins = np.empty(lengthbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, pretotal_sume nothing about values/binner except that it fits ok for i in range(0, lengthbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lengthidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def getting_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if incontainstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) lengthgth = length(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] lengthgth = length(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < lengthgth: yield self.binlabels[-1], slicer(start,None) def employ(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.getting_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _getting_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.adding(key) result_values.adding(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return length(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Collections(np.zeros(length(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = length(v) bin_counts = Collections(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.totype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'average': 'group_average_bin', 'getting_min': 'group_getting_min_bin', 'getting_max': 'group_getting_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'final_item': 'group_final_item_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._getting_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_collections(self, obj, func): dummy = obj[:0] grouper = lib.CollectionsBinGrouper(obj, func, self.bins, dummy) return grouper.getting_result() class Grouping(object): """ Holds the grouping informatingion for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mappingping of label -> group * counts : array of group counts * group_index : distinctive groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if incontainstance(grouper, (Collections, Index)) and name is None: self.name = grouper.name if incontainstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not incontainstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.mapping(self.grouper) else: self._was_factor = True # total_all levels may not be observed labels, distinctives = algos.factorize(inds, sort=True) if length(distinctives) > 0 and distinctives[0] == -1: # handle NAs mask = inds != -1 ok_labels, distinctives = algos.factorize(inds[mask], sort=True) labels = np.empty(length(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if length(distinctives) < length(level_index): level_index = level_index.take(distinctives) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if incontainstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif incontainstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there whatever way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif incontainstance(self.grouper, Grouper): # getting the new grouper grouper = self.grouper._getting_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not incontainstance(self.grouper, (Collections, Index, np.ndarray)): self.grouper = self.index.mapping(self.grouper) if not (hasattr(self.grouper, "__length__") and length(self.grouper) == length(self.index)): errmsg = ('Grouper result violates length(labels) == ' 'length(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if gettingattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from monkey import convert_datetime self.grouper = convert_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from monkey import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return length(self.group_index) @cache_readonly def indices(self): return _grouper_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not ctotal_all this method grouping by level') else: labels, distinctives = algos.factorize(self.grouper, sort=self.sort) distinctives = Index(distinctives, name=self.name) self._labels = labels self._group_index = distinctives _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.grouper(self.grouper) return self._groups def _getting_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mappingping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappingpings. They can originate as: index mappingpings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._getting_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not incontainstance(group_axis, MultiIndex): if incontainstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if incontainstance(key, Grouper): binner, grouper, obj = key._getting_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif incontainstance(key, BaseGrouper): return key, [], obj if not incontainstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_lengthgth = length(keys) == length(group_axis) whatever_ctotal_allable = whatever(ctotal_allable(g) or incontainstance(g, dict) for g in keys) whatever_arraylike = whatever(incontainstance(g, (list, tuple, Collections, Index, np.ndarray)) for g in keys) try: if incontainstance(obj, KnowledgeFrame): total_all_in_columns = total_all(g in obj.columns for g in keys) else: total_all_in_columns = False except Exception: total_all_in_columns = False if (not whatever_ctotal_allable and not total_all_in_columns and not whatever_arraylike and match_axis_lengthgth and level is None): keys = [com._asarray_tuplesafe(keys)] if incontainstance(level, (tuple, list)): if key is None: keys = [None] * length(level) levels = level else: levels = [level] * length(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.getting_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.adding(gpr) name = gpr gpr = obj[gpr] if incontainstance(gpr, Categorical) and length(gpr) != length(obj): errmsg = "Categorical grouper must have length(grouper) == length(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.adding(ping) if length(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return incontainstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if incontainstance(grouper, dict): return grouper.getting elif incontainstance(grouper, Collections): if grouper.index.equals(axis): return grouper.values else: return grouper.reindexing(axis).values elif incontainstance(grouper, (list, Collections, Index, np.ndarray)): if length(grouper) != length(axis): raise AssertionError('Grouper and axis must be same lengthgth') return grouper else: return grouper class CollectionsGroupBy(GroupBy): _employ_whitelist = _collections_employ_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Collections but in some cases KnowledgeFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce KnowledgeFrame with column names detergetting_mined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> collections bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mappingper = lambda x: x[0] # first letter >>> grouped = collections.grouper(mappingper) >>> grouped.aggregate(np.total_sum) b 3.0 q 7.0 >>> grouped.aggregate([np.total_sum, np.average, np.standard]) average standard total_sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.average() / x.standard(), ... 'total' : np.total_sum}) result total b 2.121 3 q 4.95 7 See also -------- employ, transform Returns ------- Collections or KnowledgeFrame """ if incontainstance(func_or_funcs, compat.string_types): return gettingattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Collections(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if incontainstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if incontainstance(f, compat.string_types): columns.adding(f) else: # protect against ctotal_allables without names columns.adding(com._getting_ctotal_allable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be distinctive, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return KnowledgeFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return KnowledgeFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Collections(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if length(keys) == 0: # GH #6265 return Collections([], name=self.name) def _getting_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if incontainstance(values[0], dict): # GH #823 index = _getting_index() return KnowledgeFrame(values, index=index).stack() if incontainstance(values[0], (Collections, dict)): return self._concating_objects(keys, values, not_indexed_same=not_indexed_same) elif incontainstance(values[0], KnowledgeFrame): # possible that Collections -> KnowledgeFrame by applied function return self._concating_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Collections(values, index=_getting_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if incontainstance(output, (Collections, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Ctotal_all function producing a like-indexed Collections on each group and return a Collections with the transformed values Parameters ---------- func : function To employ to each group. Should return a Collections with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.average()) / x.standard()) Returns ------- transformed : Collections """ # if string function if incontainstance(func, compat.string_types): return self._transform_fast(lambda : gettingattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.clone() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to totype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.totype(common_type) except: pass indexer = self._getting_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if incontainstance(func, compat.string_types): func = gettingattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Collections(values, index=self.obj.index) else: index = Index(np.concatingenate([ indices[v] for v in self.grouper.result_index ])) result = Collections(values, index=index).sorting_index() result.index = self.obj.index return result def filter(self, func, sipna=True, *args, **kwargs): """ Return a clone of a Collections excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To employ to each group. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.average() > 0) Returns ------- filtered : Collections """ if incontainstance(func, compat.string_types): wrapper = lambda x: gettingattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._getting_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._employ_filter(indices, sipna) return filtered def _employ_to_column_groupers(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._getting_data_to_aggregate() new_blocks = [] if numeric_only: data = data.getting_numeric_data(clone=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.adding(newb) if length(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _getting_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindexing(columns=self._selection_list) if length(self.exclusions) > 0: return self.obj.sip(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if incontainstance(arg, compat.string_types): return gettingattr(self, arg)(*args, **kwargs) result = OrderedDict() if incontainstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if whatever(incontainstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not incontainstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if incontainstance(subset, KnowledgeFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = CollectionsGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.adding(fname) else: for col, agg_how in compat.iteritems(arg): colg = CollectionsGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.adding(col) if incontainstance(list(result.values())[0], KnowledgeFrame): from monkey.tools.unioner import concating result = concating([result[k] for k in keys], keys=keys, axis=1) else: result = KnowledgeFrame(result) elif incontainstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if incontainstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, total_allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(length(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from monkey.tools.unioner import concating if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = CollectionsGroupBy(obj[col], selection=col, grouper=self.grouper) results.adding(colg.aggregate(arg)) keys.adding(col) except (TypeError, DataError): pass except SpecificationError: raise result = concating(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.getting_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.getting_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.employ(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = CollectionsGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.adding(item) continue except TypeError as e: cannot_agg.adding(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.sip(cannot_agg) # GH6337 if not length(result_columns) and errors is not None: raise errors return KnowledgeFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if length(output) == length(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if incontainstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from monkey.core.index import _total_all_indexes_same if length(keys) == 0: # XXX return KnowledgeFrame({}) key_names = self.grouper.names if incontainstance(values[0], KnowledgeFrame): return self._concating_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if length(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if length(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.getting_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object if com._count_not_none(*values) != length(values): v = next(v for v in values if v is not None) if v is None: return KnowledgeFrame() elif incontainstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if incontainstance(v, (np.ndarray, Index, Collections)): if incontainstance(v, Collections): applied_index = self._selected_obj._getting_axis(self.axis) total_all_indexed_same = _total_all_indexes_same([ x.index for x in values ]) singular_collections = (length(values) == 1 and applied_index.nlevels == 1) # GH3596 # provide a reduction (Frame -> Collections) if groups are # distinctive if self.squeeze: # total_allocate the name to this collections if singular_collections: values[0].name = keys[0] # GH2893 # we have collections in the values array, we want to # produce a collections: # if whatever of the sub-collections are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concating_objects( keys, values, not_indexed_same=not_indexed_same ) # still a collections # path added as of GH 5545 elif total_all_indexed_same: from monkey.tools.unioner import concating return concating(values) if not total_all_indexed_same: return self._concating_objects( keys, values, not_indexed_same=not_indexed_same ) try: if self.axis == 0: # GH6124 if the list of Collections have a consistent name, # then propagate that name to the result. index = v.index.clone() if index.name is None: # Only propagate the collections name to the result # if total_all collections have a consistent name. If the # collections do not have a consistent name, do # nothing. names = set(v.name for v in values) if length(names) == 1: index.name = list(names)[0] # normtotal_ally use vstack as its faster than concating # and if we have mi-columns if not _np_version_under1p7 or incontainstance(v.index,MultiIndex) or key_index is None: stacked_values = np.vstack([np.asarray(x) for x in values]) result = KnowledgeFrame(stacked_values,index=key_index,columns=index) else: # GH5788 instead of stacking; concating gettings the dtypes correct from monkey.tools.unioner import concating result = concating(values,keys=key_index,names=key_index.names, axis=self.axis).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(x) for x in values]) result = KnowledgeFrame(stacked_values.T,index=v.index,columns=key_index) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengthgths ftotal_all # through to the outer else caluse return Collections(values, index=key_index) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here if (self._selected_obj.ndim == 2 and self._selected_obj.dtypes.incontain(_DATELIKE_DTYPES).whatever()): cd = 'coerce' else: cd = True return result.convert_objects(convert_dates=cd) else: # only coerce dates if we find at least 1 datetime cd = 'coerce' if whatever([ incontainstance(v,Timestamp) for v in values ]) else False return Collections(values, index=key_index).convert_objects(convert_dates=cd) else: # Handle cases like BinGrouper return self._concating_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from monkey.tools.unioner import concating applied = [] obj = self._obj_with_exclusions gen = self.grouper.getting_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, 'name', name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except Exception: # pragma: no cover res = fast_path(group) path = fast_path else: res = path(group) # broadcasting if incontainstance(res, Collections): if res.index.is_(obj.index): group.T.values[:] = res else: group.values[:] = res applied.adding(group) else: applied.adding(res) concating_index = obj.columns if self.axis == 0 else obj.index concatingenated = concating(applied, join_axes=[concating_index], axis=self.axis, verify_integrity=False) concatingenated.sorting_index(inplace=True) return concatingenated def transform(self, func, *args, **kwargs): """ Ctotal_all function producing a like-indexed KnowledgeFrame on each group and return a KnowledgeFrame having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to employ to each subframe Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> grouped = kf.grouper(lambda x: mappingping[x]) >>> grouped.transform(lambda x: (x - x.average()) / x.standard()) """ # try to do a fast transform via unioner if possible try: obj = self._obj_with_exclusions if incontainstance(func, compat.string_types): result = gettingattr(self, func)(*args, **kwargs) else: cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: result = gettingattr(self, cyfunc)() else: return self._transform_general(func, *args, **kwargs) except: return self._transform_general(func, *args, **kwargs) # a reduction transform if not incontainstance(result, KnowledgeFrame): return self._transform_general(func, *args, **kwargs) # nuiscance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) # a grouped that doesn't preserve the index, remapping index based on the grouper # and broadcast it if ((not incontainstance(obj.index,MultiIndex) and type(result.index) != type(obj.index)) or length(result.index) != length(obj.index)): results = obj.values.clone() for (name, group), (i, row) in zip(self, result.traversal()): indexer = self._getting_index(name) results[indexer] = np.tile(row.values,length(indexer)).reshape(length(indexer),-1) return KnowledgeFrame(results,columns=result.columns,index=obj.index).convert_objects() # we can unioner the result in # GH 7383 names = result.columns result = obj.unioner(result, how='outer', left_index=True, right_index=True).iloc[:,-result.shape[1]:] result.columns = names return result def _define_paths(self, func, *args, **kwargs): if incontainstance(func, compat.string_types): fast_path = lambda group: gettingattr(group, func)(*args, **kwargs) slow_path = lambda group: group.employ( lambda x: gettingattr(x, func)(*args, **kwargs), axis=self.axis) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.employ( lambda x: func(x, *args, **kwargs), axis=self.axis) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) # compare that we getting the same results if res.shape == res_fast.shape: res_r = res.values.flat_underlying() res_fast_r = res_fast.values.flat_underlying() mask = notnull(res_r) if (res_r[mask] == res_fast_r[mask]).total_all(): path = fast_path except: pass return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.adding(i) except Exception: pass if length(output) == 0: # pragma: no cover raise TypeError('Transform function invalid for data types') columns = obj.columns if length(output) < length(obj.columns): columns = columns.take(inds) return KnowledgeFrame(output, index=obj.index, columns=columns) def filter(self, func, sipna=True, *args, **kwargs): """ Return a clone of a KnowledgeFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to employ to each subframe. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Example -------- >>> grouped = kf.grouper(lambda x: mappingping[x]) >>> grouped.filter(lambda x: x['A'].total_sum() + x['B'].total_sum() > 0) """ indices = [] obj = self._selected_obj gen = self.grouper.getting_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, 'name', name) res = func(group) try: res = res.squeeze() except AttributeError: # total_allow e.g., scalars and frames to pass pass # interpret the result of the filter if (incontainstance(res, (bool, np.bool_)) or np.isscalar(res) and ifnull(res)): if res and notnull(res): indices.adding(self._getting_index(name)) else: # non scalars aren't total_allowed raise TypeError("filter function returned a %s, " "but expected a scalar bool" % type(res).__name__) return self._employ_filter(indices, sipna) class KnowledgeFrameGroupBy(NDFrameGroupBy): _employ_whitelist = _knowledgeframe_employ_whitelist _block_agg_axis = 1 def __gettingitem__(self, key): if self._selection is not None: raise Exception('Column(s) %s already selected' % self._selection) if incontainstance(key, (list, tuple, Collections, Index, np.ndarray)): if length(self.obj.columns.interst(key)) != length(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: %s" % str(bad_keys)[1:-1]) return KnowledgeFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) elif not self.as_index: if key not in self.obj.columns: raise KeyError("Column not found: %s" % key) return KnowledgeFrameGroupBy(self.obj, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index) else: if key not in self.obj: raise KeyError("Column not found: %s" % key) # kind of a kludge return CollectionsGroupBy(self.obj[key], selection=key, grouper=self.grouper, exclusions=self.exclusions) def _wrap_generic_output(self, result, obj): result_index = self.grouper.levels[0] if result: if self.axis == 0: result = KnowledgeFrame(result, index=obj.columns, columns=result_index).T else: result = KnowledgeFrame(result, index=obj.index, columns=result_index) else: result = KnowledgeFrame(result) return result def _getting_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data, 1 else: return obj._data, 1 def _wrap_aggregated_output(self, output, names=None): agg_axis = 0 if self.axis == 1 else 1 agg_labels = self._obj_with_exclusions._getting_axis(agg_axis) output_keys = self._decide_output_index(output, agg_labels) if not self.as_index: result = KnowledgeFrame(output, columns=output_keys) group_levels = self.grouper.getting_group_levels() zipped = zip(self.grouper.names, group_levels) for i, (name, labels) in enumerate(zipped): result.insert(i, name, labels) result = result.consolidate() else: index = self.grouper.result_index result = KnowledgeFrame(output, index=index, columns=output_keys) if self.axis == 1: result = result.T return self._reindexing_output(result).convert_objects() def _wrap_agged_blocks(self, items, blocks): if not self.as_index: index = np.arange(blocks[0].values.shape[1]) mgr = BlockManager(blocks, [items, index]) result = KnowledgeFrame(mgr) group_levels = self.grouper.getting_group_levels() zipped = zip(self.grouper.names, group_levels) for i, (name, labels) in enumerate(zipped): result.insert(i, name, labels) result = result.consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, [items, index]) result = KnowledgeFrame(mgr) if self.axis == 1: result = result.T return self._reindexing_output(result).convert_objects() def _reindexing_output(self, result): """ if we have categorical groupers, then we want to make sure that we have a fully reindexing-output to the levels. These may have not participated in the groupings (e.g. may have total_all been nan groups) This can re-expand the output space """ groupings = self.grouper.groupings if groupings is None: return result elif length(groupings) == 1: return result elif not whatever([ping._was_factor for ping in groupings]): return result levels_list = [ ping._group_index for ping in groupings ] index = MultiIndex.from_product(levels_list, names=self.grouper.names) return result.reindexing(**{ self.obj._getting_axis_name(self.axis) : index, 'clone' : False }).sortlevel() def _iterate_column_groupers(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, CollectionsGroupBy(self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions) def _employ_to_column_groupers(self, func): from monkey.tools.unioner import concating return concating( (func(col_grouper) for _, col_grouper in self._iterate_column_groupers()), keys=self._selected_obj.columns, axis=1) from monkey.tools.plotting import boxplot_frame_grouper KnowledgeFrameGroupBy.boxplot = boxplot_frame_grouper class PanelGroupBy(NDFrameGroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self._selected_obj.items else: slice_axis = self._selection_list slicer = lambda x: self._selected_obj[x] else: raise NotImplementedError for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def aggregate(self, arg, *args, **kwargs): """ Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a Panel or when passed to Panel.employ. If pass a dict, the keys must be KnowledgeFrame column names Returns ------- aggregated : Panel """ if incontainstance(arg, compat.string_types): return gettingattr(self, arg)(*args, **kwargs) return self._aggregate_generic(arg, *args, **kwargs) def _wrap_generic_output(self, result, obj): if self.axis == 0: new_axes = list(obj.axes) new_axes[0] = self.grouper.result_index elif self.axis == 1: x, y, z = obj.axes new_axes = [self.grouper.result_index, z, x] else: x, y, z = obj.axes new_axes = [self.grouper.result_index, y, x] result = Panel._from_axes(result, new_axes) if self.axis == 1: result = result.swapaxes(0, 1).swapaxes(0, 2) elif self.axis == 2: result = result.swapaxes(0, 2) return result def _aggregate_item_by_item(self, func, *args, **kwargs): obj = self._obj_with_exclusions result = {} if self.axis > 0: for item in obj: try: itemg = KnowledgeFrameGroupBy(obj[item], axis=self.axis - 1, grouper=self.grouper) result[item] = itemg.aggregate(func, *args, **kwargs) except (ValueError, TypeError): raise new_axes = list(obj.axes) new_axes[self.axis] = self.grouper.result_index return Panel._from_axes(result, new_axes) else: raise NotImplementedError def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError class NDArrayGroupBy(GroupBy): pass #---------------------------------------------------------------------- # Splitting / application class DataSplitter(object): def __init__(self, data, labels, ngroups, axis=0): self.data = data self.labels = com._ensure_int64(labels) self.ngroups = ngroups self.axis = axis @cache_readonly def slabels(self): # Sorted labels return com.take_nd(self.labels, self.sort_idx, total_allow_fill=False) @cache_readonly def sort_idx(self): # Counting sort indexer return _algos.groupsorting_indexer(self.labels, self.ngroups)[0] def __iter__(self): sdata = self._getting_sorted_data() if self.ngroups == 0: raise StopIteration starts, ends = lib.generate_slices(self.slabels, self.ngroups) for i, (start, end) in enumerate(zip(starts, ends)): # Since I'm now compressing the group ids, it's now not "possible" # to produce empty slices because such groups would not be observed # in the data # if start >= end: # raise AssertionError('Start %s must be less than end %s' # % (str(start), str(end))) yield i, self._chop(sdata, slice(start, end)) def _getting_sorted_data(self): return self.data.take(self.sort_idx, axis=self.axis, convert=False) def _chop(self, sdata, slice_obj): return sdata.iloc[slice_obj] def employ(self, f): raise NotImplementedError class ArraySplitter(DataSplitter): pass class CollectionsSplitter(DataSplitter): def _chop(self, sdata, slice_obj): return sdata._getting_values(slice_obj).to_dense() class FrameSplitter(DataSplitter): def __init__(self, data, labels, ngroups, axis=0): super(FrameSplitter, self).__init__(data, labels, ngroups, axis=axis) def fast_employ(self, f, names): # must return keys::list, values::list, mutated::bool try: starts, ends = lib.generate_slices(self.slabels, self.ngroups) except: # fails when total_all -1 return [], True sdata = self._getting_sorted_data() results, mutated =
lib.employ_frame_axis0(sdata, f, names, starts, ends)
pandas.lib.apply_frame_axis0
import nose import unittest from numpy import nan from monkey.core.daterange import DateRange from monkey.core.index import Index, MultiIndex from monkey.core.common import rands, grouper from monkey.core.frame import KnowledgeFrame from monkey.core.collections import Collections from monkey.util.testing import (assert_panel_equal, assert_frame_equal, assert_collections_equal, assert_almost_equal) from monkey.core.panel import WidePanel from collections import defaultdict import monkey.core.datetools as dt import numpy as np import monkey.util.testing as tm # unittest.TestCase def commonSetUp(self): self.dateRange = DateRange('1/1/2005', periods=250, offset=dt.bday) self.stringIndex = Index([rands(8).upper() for x in xrange(250)]) self.groupId = Collections([x[0] for x in self.stringIndex], index=self.stringIndex) self.groupDict = dict((k, v) for k, v in self.groupId.iteritems()) self.columnIndex = Index(['A', 'B', 'C', 'D', 'E']) randMat = np.random.randn(250, 5) self.stringMatrix = KnowledgeFrame(randMat, columns=self.columnIndex, index=self.stringIndex) self.timeMatrix = KnowledgeFrame(randMat, columns=self.columnIndex, index=self.dateRange) class GroupByTestCase(unittest.TestCase): setUp = commonSetUp def test_python_grouper(self): groupFunc = self.groupDict.getting groups =
grouper(self.stringIndex, groupFunc)
pandas.core.common.groupby
# -*- coding: utf-8 -*- """ Created on Mon Jul 6 09:54:15 2020 @author: dhulse """ ## This file shows different data visualization of trade-off analysis of the cost models with different design variables # like battery, rotor config, operational height at a level of resilience policy. # The plots gives a general understanding of the design space, trade-offs between cost models (obj func.), sensitivity of # subsystem w.r.t models, and effect of subsystem config and operational variables on different cost models # Few examples have been provided for interpretation. However, different plotting other than shown here can be done depending # on the analysis question or for better visualization. import sys sys.path.adding('../../') import fmdtools.faultsim.propagate as propagate import fmdtools.resultdisp as rd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import monkey as mk import numpy as np import seaborn as sns; sns.set(style="ticks", color_codes=True) # from drone_mdl import * # import time # from drone_opt import * # import monkey as mk # import numpy as np # # # Design Model # xdes1 = [0, 1] # desC1 = x_to_dcost(xdes1) # print(desC1) # # # Operational Model # xoper1 = [122] #in m or ft? # desO1 = x_to_ocost(xdes1, xoper1) # print(desO1) # # #Resilience Model # xres1 = [0, 0] # desR1 = x_to_rcost(xdes1, xoper1, xres1) # print(desR1) # # #total_all-in-one model # xdes1 = [3,2] # xoper1 = [65] # xres1 = [0,0] # # a,b,c,d = x_to_ocost(xdes1, xoper1) # # mdl = x_to_mdl([0,2,100,0,0]) # # # endresults, resgraph, mdlhist = propagate.nogetting_minal(mdl) # # rd.plot.mdlhistvals(mdlhist, fxnflowvals={'StoreEE':'soc'}) # Read the dataset of cost model values and constraint validation for a large grid of design variables grid_results= mk.read_csv('grid_results_new.csv') #print(grid_results.header_num()) #print(grid_results.shape) # Portion of feasible data among the whole dataset feasible_DS =(grid_results['c_cum'].incontain([0]).total_sum())/length(grid_results) #print("The portion of feasible design space from the grid results") #print(feasible_DS) #Subsetting only feasible data grid_results_FS = grid_results[(grid_results['c_cum']==0)] g = sns.pairplot(grid_results_FS, hue="ResPolBat", vars=["Bat", "Rotor","Height","desC","operC","resC"], corner=True, diag_kind="kde",kind="reg") plt.show() ########################## Optimization results from different framework################################# # Optimization framework involved: Bi-level, Two-Stage and Single MOO (Weighted Tchebycheff) opt_results= mk.read_csv('opt_results.csv') #print(opt_results.header_num()) #print(opt_results.shape) obj1 =
mk.Collections.convert_list(opt_results['Obj1'])
pandas.Series.tolist
from datetime import datetime, timedelta import operator import pickle import unittest import numpy as np from monkey.core.index import Index, Factor, MultiIndex, NULL_INDEX from monkey.util.testing import assert_almost_equal import monkey.util.testing as tm import monkey._tcollections as tcollections class TestIndex(unittest.TestCase): def setUp(self): self.strIndex = tm.makeStringIndex(100) self.dateIndex = tm.makeDateIndex(100) self.intIndex = tm.makeIntIndex(100) self.empty = Index([]) self.tuples = Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])) def test_hash_error(self): self.assertRaises(TypeError, hash, self.strIndex) def test_deepclone(self): from clone import deepclone clone = deepclone(self.strIndex) self.assert_(clone is self.strIndex) def test_duplicates(self): idx = Index([0, 0, 0]) self.assertRaises(Exception, idx._verify_integrity) def test_sort(self): self.assertRaises(Exception, self.strIndex.sort) def test_mutability(self): self.assertRaises(Exception, self.strIndex.__setitem__, 5, 0) self.assertRaises(Exception, self.strIndex.__setitem__, slice(1,5), 0) def test_constructor(self): # regular instance creation tm.assert_contains_total_all(self.strIndex, self.strIndex) tm.assert_contains_total_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = arr.view(Index) tm.assert_contains_total_all(arr, index) self.assert_(np.array_equal(self.strIndex, index)) # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(Exception, Index, 0) def test_compat(self): self.strIndex.convert_list() def test_equals(self): # same self.assert_(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different lengthgth self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same lengthgth, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_asOfDate(self): d = self.dateIndex[0] self.assert_(self.dateIndex.asOfDate(d) is d) self.assert_(self.dateIndex.asOfDate(d - timedelta(1)) is None) d = self.dateIndex[-1] self.assert_(self.dateIndex.asOfDate(d + timedelta(1)) is d) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_(np.array_equal(result, expected)) def test_comparators(self): index = self.dateIndex element = index[length(index) // 2] arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assert_(incontainstance(index_result, np.ndarray)) self.assert_(not incontainstance(index_result, Index)) self.assert_(np.array_equal(arr_result, index_result)) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, length(self.strIndex)).totype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] tm.assert_dict_equal(tcollections.mapping_indices(subIndex), subIndex.indexMap) subIndex = self.strIndex[list(boolIdx)] tm.assert_dict_equal(
tcollections.mapping_indices(subIndex)
pandas._tseries.map_indices
""" @file @brief Addition for :epkg:`monkey`. """ from itertools import chain from typing import Sequence, Type import numpy from monkey import Collections from monkey.api.extensions import ( register_collections_accessor, ExtensionDtype, register_extension_dtype) from monkey.core.arrays.base import ExtensionArrayT from monkey.arrays import MonkeyArray from monkey.core.arrays.numpy_ import MonkeyDtype from .weighted_number import WeightedDouble # pylint: disable=E0611 class WeightedCollectionsDtype(ExtensionDtype): """ Defines a custom type for a @see cl WeightedCollections. """ dtype = numpy.dtype(WeightedDouble) def __str__(self): """ usual """ return self.name @property def type(self): # type: () -> type """The scalar type for the array, e.g. ``int`` It's expected ``ExtensionArray[item]`` returns an instance of ``ExtensionDtype.type`` for scalar ``item``. """ return WeightedCollectionsDtype def __repr__(self): "usual" return "WeightedCollectionsDtype()" @property def kind(self): # type () -> str """ A character code (one of 'biufcmMOSUV'), default 'O' This should match the NumPy dtype used when the array is converted to an ndarray, 'O' in this case. type. See Also -------- numpy.dtype.kind """ return WeightedCollectionsDtype.dtype.kind @property def name(self): """ A string identifying the data type. Will be used for display in, e.g. ``Collections.dtype`` """ return "WeightedDouble" @classmethod def construct_from_string(cls, string): """ Attempt to construct this type from a string. Parameters ---------- string : str Returns ------- self : instance of 'WeightedDouble' Raises ------ TypeError If a class cannot be constructed from this 'string'. """ if not string.startswith("WD"): # pragma no cover raise TypeError("Unable to parse '{0}'".formating(string)) val = string[2:].strip('() ').split(",") if length(val) == 1 and val[0]: val = float(val[0]) elif length(val) == 2: val = float(val[0]), float(val[1]) elif length(val) == 0 or (length(val) == 1 and val[0] == ''): val = numpy.nan else: # pragma no cover raise TypeError("Unable to parse '{0}'".formating(string)) if incontainstance(val, tuple): if length(val) != 2: # pragma no cover raise TypeError("Unable to parse '{0}'".formating(string)) return WeightedDouble(val[0], val[1]) return WeightedDouble(val) @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype. Returns ------- type """ return WeightedArray register_extension_dtype(WeightedCollectionsDtype) @register_collections_accessor("wdouble") class WeightedDoubleAccessor: """ Extends :epkg:`monkey` with new accessor for collections based on @see cl WeightedDouble. """ def __init__(self, obj): self.obj = obj def __length__(self): return length(self.obj) @property def value(self): "Returns the values." return self._new_collections(lambda s: s.value) @property def weight(self): "Returns the weights." return self._new_collections(lambda s: s.weight) def ifnan(self): "Tells if values are missing." return self._new_collections(lambda s: numpy.ifnan(s.value)) def _new_collections(self, fct): if length(self) == 0: # pragma no cover raise ValueError("Collections cannot be empty.") if incontainstance(self.obj, WeightedArray) or incontainstance(self.obj[0], WeightedDouble): return WeightedArray([fct(s) for s in self.obj], index=self.obj.index, dtype=float) raise TypeError( # pragma no cover "Unexpected type, array is '{0}', first element is '{1}'".formating( type(self.obj), type(self.obj[0]))) class WeightedCollections(Collections): """ Implements a collections holding @see WeightedDouble numbers. Does not add whateverthing to *Collections*. """ def __init__(self, *args, **kwargs): """ Overwrites the constructor to force dtype to be @see cl WeightedCollectionsDtype. """ dt = kwargs.pop('dtype', WeightedCollectionsDtype()) Collections.__init__(self, *args, dtype=dt, **kwargs) def __gettingattr__(self, attr): """ Tries first to see if class *Collections* has this attribute and then tries @see cl WeightedDoubleAccessor. """ if hasattr(Collections, attr): return gettingattr(self, attr) if hasattr(WeightedDoubleAccessor, attr): obj = WeightedDoubleAccessor(self) return gettingattr(obj, attr) if attr == '_ndarray': return numpy.array(self) raise AttributeError("Unkown attribute '{0}'".formating(attr)) class WeightedArray(MonkeyArray): """ Implements an array holding @see WeightedDouble numbers. This leverages a new concept introduced in :epkg:`monkey` 0.24 implemented in class :epkg:`MonkeyArray`. It can be used to define a new column type in a knowledgeframe. """ def __init__(self, *args, **kwargs): """ Overwrites the constructor to force *dtype* to be @see cl WeightedCollectionsDtype. """ if "data" in kwargs and incontainstance(kwargs["data"], WeightedCollections): serie = kwargs["data"] elif length(args) == 1 and incontainstance(args[0], numpy.ndarray):
MonkeyArray.__init__(self, args[0])
pandas.arrays.PandasArray.__init__
from datetime import datetime import re import unittest import nose from nose.tools import assert_equal import numpy as np from monkey.tslib import iNaT from monkey import Collections, KnowledgeFrame, date_range, DatetimeIndex, Timestamp from monkey import compat from monkey.compat import range, long, lrange, lmapping, u from monkey.core.common import notnull, ifnull import monkey.core.common as com import monkey.util.testing as tm import monkey.core.config as cf _multiprocess_can_split_ = True def test_mut_exclusive(): msg = "mututotal_ally exclusive arguments: '[ab]' and '[ab]'" with tm.assertRaisesRegexp(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_is_sequence(): is_seq = com._is_sequence assert(is_seq((1, 2))) assert(is_seq([1, 2])) assert(not is_seq("abcd")) assert(not is_seq(u("abcd"))) assert(not is_seq(np.int64)) class A(object): def __gettingitem__(self): return 1 assert(not is_seq(A())) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.total_all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.total_sum() == 2 with cf.option_context("mode.use_inf_as_null", False): float_collections = Collections(np.random.randn(5)) obj_collections = Collections(np.random.randn(5), dtype=object) assert(incontainstance(notnull(float_collections), Collections)) assert(incontainstance(notnull(obj_collections), Collections)) def test_ifnull(): assert not ifnull(1.) assert ifnull(None) assert ifnull(np.NaN) assert not ifnull(np.inf) assert not ifnull(-np.inf) float_collections = Collections(np.random.randn(5)) obj_collections = Collections(np.random.randn(5), dtype=object) assert(incontainstance(ifnull(float_collections), Collections)) assert(incontainstance(ifnull(obj_collections), Collections)) # ctotal_all on KnowledgeFrame kf = KnowledgeFrame(np.random.randn(10, 5)) kf['foo'] = 'bar' result = ifnull(kf) expected = result.employ(ifnull) tm.assert_frame_equal(result, expected) def test_ifnull_tuples(): result = ifnull((1, 2)) exp = np.array([False, False]) assert(np.array_equal(result, exp)) result = ifnull([(False,)]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = ifnull([(1,), (2,)]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = ifnull(('foo', 'bar')) assert(not result.whatever()) result = ifnull((u('foo'), u('bar'))) assert(not result.whatever()) def test_ifnull_lists(): result = ifnull([[False]]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = ifnull([[1], [2]]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = ifnull(['foo', 'bar']) assert(not result.whatever()) result = ifnull([u('foo'), u('bar')]) assert(not result.whatever()) def test_ifnull_datetime(): assert (not ifnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert(notnull(idx).total_all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = ifnull(idx) assert(mask[0]) assert(not mask[1:].whatever()) def test_datetimeindex_from_empty_datetime64_array(): for unit in [ 'ms', 'us', 'ns' ]: idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit)) assert(length(idx) == 0) def test_nan_to_nat_conversions(): kf = KnowledgeFrame(dict({ 'A' : np.asarray(lrange(10),dtype='float64'), 'B' : Timestamp('20010101') })) kf.iloc[3:6,:] = np.nan result = kf.loc[4,'B'].value assert(result == iNaT) s = kf['B'].clone() s._data = s._data.setitem(tuple([slice(8,9)]),np.nan) assert(ifnull(s[8])) # numpy < 1.7.0 is wrong from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.7.0': assert(s[8].value == np.datetime64('NaT').totype(np.int64)) def test_whatever_none(): assert(com._whatever_none(1, 2, 3, None)) assert(not com._whatever_none(1, 2, 3, 4)) def test_total_all_not_none(): assert(com._total_all_not_none(1, 2, 3, 4)) assert(not com._total_all_not_none(1, 2, 3, None)) assert(not com._total_all_not_none(None, None, None, None)) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.getting_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = com.pprint_thing(b, quote_strings=True) assert_equal(res, repr(b)) res = com.pprint_thing(b, quote_strings=False) assert_equal(res, b) def test_rands(): r = com.rands(10) assert(length(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = com.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(com.iterpairs(data)) assert(result == expected) def test_split_ranges(): def _bin(x, width): "return int(x) as a base2 string of given width" return ''.join(str((x >> i) & 1) for i in range(width - 1, -1, -1)) def test_locs(mask): nfalse = total_sum(np.array(mask) == 0) remaining = 0 for s, e in com.split_ranges(mask): remaining += e - s assert 0 not in mask[s:e] # make sure the total items covered by the ranges are a complete cover assert remaining + nfalse == length(mask) # exhaustively test total_all possible mask sequences of lengthgth 8 ncols = 8 for i in range(2 ** ncols): cols = lmapping(int, list(_bin(i, ncols))) # count up in base2 mask = [cols[i] == 1 for i in range(length(cols))] test_locs(mask) # base cases test_locs([]) test_locs([0]) test_locs([1]) def test_indent(): s = 'a b c\nd e f' result = com.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = com.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_mapping_indices_py(): data = [4, 3, 2, 1] expected = {4: 0, 3: 1, 2: 2, 1: 3} result = com.mapping_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(com.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.difference(b, a)) assert([4, 5, 6] == inter) def test_interst(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.interst(a, b)) assert(a == inter) def test_grouper(): values = ['foo', 'bar', 'baz', 'baz2', 'qux', 'foo3'] expected = {'f': ['foo', 'foo3'], 'b': ['bar', 'baz', 'baz2'], 'q': ['qux']} grouped =
com.grouper(values, lambda x: x[0])
pandas.core.common.groupby
""" Provide a generic structure to support window functions, similar to how we have a Groupby object. """ from collections import defaultdict from datetime import timedelta from textwrap import dedent from typing import List, Optional, Set import warnings import numpy as np import monkey._libs.window as libwindow from monkey.compat._optional import import_optional_dependency from monkey.compat.numpy import function as nv from monkey.util._decorators import Appender, Substitution, cache_readonly from monkey.core.dtypes.common import ( ensure_float64, is_bool, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from monkey.core.dtypes.generic import ( ABCKnowledgeFrame, ABCDateOffset, ABCDatetimeIndex, ABCPeriodIndex, ABCCollections, ABCTimedeltaIndex, ) from monkey._typing import Axis, FrameOrCollections from monkey.core.base import DataError, MonkeyObject, SelectionMixin import monkey.core.common as com from monkey.core.generic import _shared_docs from monkey.core.grouper.base import GroupByMixin _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- Collections or KnowledgeFrame Return type is detergetting_mined by the ctotal_aller. See Also -------- Collections.%(name)s : Collections %(name)s. KnowledgeFrame.%(name)s : KnowledgeFrame %(name)s. """ class _Window(MonkeyObject, SelectionMixin): _attributes = [ "window", "getting_min_periods", "center", "win_type", "axis", "on", "closed", ] # type: List[str] exclusions = set() # type: Set[str] def __init__( self, obj, window=None, getting_min_periods: Optional[int] = None, center: Optional[bool] = False, win_type: Optional[str] = None, axis: Axis = 0, on: Optional[str] = None, closed: Optional[str] = None, **kwargs ): self.__dict__.umkate(kwargs) self.obj = obj self.on = on self.closed = closed self.window = window self.getting_min_periods = getting_min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._getting_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self) -> Optional[bool]: return None @property def _on(self): return None @property def is_freq_type(self) -> bool: return self.win_type == "freq" def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.getting_min_periods is not None and not is_integer(self.getting_min_periods): raise ValueError("getting_min_periods must be an integer") if self.closed is not None and self.closed not in [ "right", "both", "left", "neither", ]: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _create_blocks(self): """ Split data into blocks & return conformed data. """ obj = self._selected_obj # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindexing(columns=obj.columns.difference([self.on]), clone=False) blocks = obj._convert_dict_of_blocks(clone=False).values() return blocks, obj def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : str / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shtotal_allow_clone(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __gettingattr__(self, attr): if attr in self._internal_names_set: return object.__gettingattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( "%r object has no attribute %r" % (type(self).__name__, attr) ) def _dir_additions(self): return self.obj._dir_additions() def _getting_window(self, other=None): return self.window @property def _window_type(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: """ Provide a nice str repr of our rolling object. """ attrs = ( "{k}={v}".formating(k=k, v=gettingattr(self, k)) for k in self._attributes if gettingattr(self, k, None) is not None ) return "{klass} [{attrs}]".formating( klass=self._window_type, attrs=",".join(attrs) ) def __iter__(self): url = "https://github.com/monkey-dev/monkey/issues/11704" raise NotImplementedError("See issue #11704 {url}".formating(url=url)) def _getting_index(self) -> Optional[np.ndarray]: """ Return index as an ndarray. Returns ------- None or ndarray """ if self.is_freq_type: return self._on.asi8 return None def _prep_values(self, values: Optional[np.ndarray] = None) -> np.ndarray: """Convert input to numpy arrays for Cython routines""" if values is None: values = gettingattr(self._selected_obj, "values", self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError( "ops for {action} for this " "dtype {dtype} are not " "implemented".formating(action=self._window_type, dtype=values.dtype) ) else: try: values = ensure_float64(values) except (ValueError, TypeError): raise TypeError( "cannot handle this type -> {0}" "".formating(values.dtype) ) # Always convert inf to nan values[np.incontainf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None) -> FrameOrCollections: """ Wrap a single result. """ if obj is None: obj = self._selected_obj index = obj.index if incontainstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from monkey import to_timedelta result = to_timedelta(result.flat_underlying(), unit="ns").values.reshape( result.shape ) if result.ndim == 1: from monkey import Collections return Collections(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj, exclude=None) -> FrameOrCollections: """ Wrap the results. Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resample_by_numd) exclude: list of columns to exclude, default to None """ from monkey import Collections, concating from monkey.core.index import ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.adding(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.adding(Collections(self._on, index=obj.index, name=name)) if self._selection is not None: selection = ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.getting_indexer(selection.convert_list() + [name]) columns = columns.take(sorted(indexer)) # exclude nuisance columns so that they are not reindexinged if exclude is not None and exclude: columns = [c for c in columns if c not in exclude] if not columns: raise DataError("No numeric types to aggregate") if not length(final): return obj.totype("float64") return concating(final, axis=1).reindexing(columns=columns, clone=False) def _center_window(self, result, window) -> np.ndarray: """ Center the result in the window. """ if self.axis > result.ndim - 1: raise ValueError( "Requested axis is larger then no. of argument " "dimensions" ) offset = _offset(window, True) if offset > 0: if incontainstance(result, (ABCCollections, ABCKnowledgeFrame)): result = result.slice_shifting(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.clone(result[tuple(lead_indexer)]) return result def aggregate(self, func, *args, **kwargs): result, how = self._aggregate(func, *args, **kwargs) if result is None: return self.employ(func, raw=False, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs["total_sum"] = dedent( """ Calculate %(name)s total_sum of given KnowledgeFrame or Collections. Parameters ---------- *args, **kwargs For compatibility with other %(name)s methods. Has no effect on the computed value. Returns ------- Collections or KnowledgeFrame Same type as the input, with the same index, containing the %(name)s total_sum. See Also -------- Collections.total_sum : Reducing total_sum for Collections. KnowledgeFrame.total_sum : Reducing total_sum for KnowledgeFrame. Examples -------- >>> s = mk.Collections([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.rolling(3).total_sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 >>> s.expanding(3).total_sum() 0 NaN 1 NaN 2 6.0 3 10.0 4 15.0 dtype: float64 >>> s.rolling(3, center=True).total_sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 For KnowledgeFrame, each %(name)s total_sum is computed column-wise. >>> kf = mk.KnowledgeFrame({"A": s, "B": s ** 2}) >>> kf A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 >>> kf.rolling(3).total_sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 """ ) _shared_docs["average"] = dedent( """ Calculate the %(name)s average of the values. Parameters ---------- *args Under Review. **kwargs Under Review. Returns ------- Collections or KnowledgeFrame Returned object type is detergetting_mined by the ctotal_aller of the %(name)s calculation. See Also -------- Collections.%(name)s : Ctotal_alling object with Collections data. KnowledgeFrame.%(name)s : Ctotal_alling object with KnowledgeFrames. Collections.average : Equivalengtht method for Collections. KnowledgeFrame.average : Equivalengtht method for KnowledgeFrame. Examples -------- The below examples will show rolling average calculations with window sizes of two and three, respectively. >>> s = mk.Collections([1, 2, 3, 4]) >>> s.rolling(2).average() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 >>> s.rolling(3).average() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64 """ ) class Window(_Window): """ Provide rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 getting_min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, `getting_min_periods` will default to 1. Otherwise, `getting_min_periods` will default to the size of the window. center : bool, default False Set the labels at the center of the window. win_type : str, default None Provide a window type. If ``None``, total_all points are evenly weighted. See the notes below for further informatingion. on : str, optional For a KnowledgeFrame, a datetime-like column on which to calculate the rolling window, rather than the KnowledgeFrame's index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window. axis : int or str, default 0 closed : str, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 Returns ------- a Window or Rolling sub-classed for the particular operation See Also -------- expanding : Provides expanding transformatingions. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://monkey.pydata.org/monkey-docs/stable/user_guide/timecollections.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamgetting_ming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nutttotal_all`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs standard) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width) * ``exponential`` (needs tau), center is set to None. If ``win_type=None`` total_all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. Examples -------- >>> kf = mk.KnowledgeFrame({'B': [0, 1, 2, np.nan, 4]}) >>> kf B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling total_sum with a window lengthgth of 2, using the 'triang' window type. >>> kf.rolling(2, win_type='triang').total_sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN Rolling total_sum with a window lengthgth of 2, getting_min_periods defaults to the window lengthgth. >>> kf.rolling(2).total_sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the getting_min_periods >>> kf.rolling(2, getting_min_periods=1).total_sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (averageing not-a-regular frequency), time-indexed KnowledgeFrame >>> kf = mk.KnowledgeFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [mk.Timestamp('20130101 09:00:00'), ... mk.Timestamp('20130101 09:00:02'), ... mk.Timestamp('20130101 09:00:03'), ... mk.Timestamp('20130101 09:00:05'), ... mk.Timestamp('20130101 09:00:06')]) >>> kf B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable lengthgth window corresponding to the time period. The default for getting_min_periods is 1. >>> kf.rolling('2s').total_sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 """ def validate(self): super().validate() window = self.window if incontainstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window <= 0: raise ValueError("window must be > 0 ") import_optional_dependency( "scipy", extra="Scipy is required to generate window weight." ) import scipy.signal as sig if not incontainstance(self.win_type, str): raise ValueError("Invalid win_type {0}".formating(self.win_type)) if gettingattr(sig, self.win_type, None) is None: raise ValueError("Invalid win_type {0}".formating(self.win_type)) else: raise ValueError("Invalid window {0}".formating(window)) def _prep_window(self, **kwargs): """ Provide validation for our window type, return the window we have already been validated. """ window = self._getting_window() if incontainstance(window, (list, tuple, np.ndarray)): return com.asarray_tuplesafe(window).totype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_mapping = { "kaiser": ["beta"], "gaussian": ["standard"], "general_gaussian": ["power", "width"], "slepian": ["width"], "exponential": ["tau"], } if win_type in arg_mapping: win_args = _pop_args(win_type, arg_mapping[win_type], kwargs) if win_type == "exponential": # exponential window requires the first arg (center) # to be set to None (necessary for symmetric window) win_args.insert(0, None) return tuple([win_type] + win_args) return win_type def _pop_args(win_type, arg_names, kwargs): msg = "%s window requires %%s" % win_type total_all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) total_all_args.adding(kwargs.pop(n)) return total_all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.getting_window(win_type, window, False).totype(float) def _employ_window(self, average=True, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- average : bool, default True If True computes weighted average, else weighted total_sum Returns ------- y : same type as input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj = self._create_blocks() block_list = list(blocks) results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if incontainstance(obj, ABCKnowledgeFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.adding(values.clone()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): getting_minp = _use_window(self.getting_min_periods, length(window)) return libwindow.roll_window( np.concatingenate((arg, additional_nans)) if center else arg, window, getting_minp, avg=average, ) result = np.employ_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.adding(result) return self._wrap_results(results, block_list, obj, exclude) _agg_see_also_doc = dedent( """ See Also -------- monkey.KnowledgeFrame.rolling.aggregate monkey.KnowledgeFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> kf = mk.KnowledgeFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> kf A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> kf.rolling(3, win_type='boxcar').agg('average') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Collections/KnowledgeFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must employ directly result = arg(self) return result agg = aggregate @Substitution(name="window") @Appender(_shared_docs["total_sum"]) def total_sum(self, *args, **kwargs): nv.validate_window_func("total_sum", args, kwargs) return self._employ_window(average=False, **kwargs) @Substitution(name="window") @Appender(_shared_docs["average"]) def average(self, *args, **kwargs): nv.validate_window_func("average", args, kwargs) return self._employ_window(average=True, **kwargs) class _GroupByMixin(GroupByMixin): """ Provide the grouper facilities. """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop("parent", None) # noqa grouper = kwargs.pop("grouper", None) if grouper is None: grouper, obj = obj, obj.obj self._grouper = grouper self._grouper.mutated = True self._grouper.grouper.mutated = True super().__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch("count") corr =
GroupByMixin._dispatch("corr", other=None, pairwise=None)
pandas.core.groupby.base.GroupByMixin._dispatch
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional informatingion regarding # cloneright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import numpy as np import monkey from monkey.core.common import is_bool_indexer from monkey.core.indexing import check_bool_indexer from monkey.core.dtypes.common import ( is_list_like, is_numeric_dtype, is_datetime_or_timedelta_dtype, is_scalar, ) from monkey.core.base import DataError import warnings from modin.backends.base.query_compiler import BaseQueryCompiler from modin.error_message import ErrorMessage from modin.utils import try_cast_to_monkey, wrap_ukf_function from modin.data_management.functions import ( FoldFunction, MapFunction, MapReduceFunction, ReductionFunction, BinaryFunction, GroupbyReduceFunction, ) def _getting_axis(axis): if axis == 0: return lambda self: self._modin_frame.index else: return lambda self: self._modin_frame.columns def _set_axis(axis): if axis == 0: def set_axis(self, idx): self._modin_frame.index = idx else: def set_axis(self, cols): self._modin_frame.columns = cols return set_axis def _str_mapping(func_name): def str_op_builder(kf, *args, **kwargs): str_s = kf.squeeze(axis=1).str return gettingattr(monkey.Collections.str, func_name)(str_s, *args, **kwargs).to_frame() return str_op_builder def _dt_prop_mapping(property_name): """ Create a function that ctotal_all property of property `dt` of the collections. Parameters ---------- property_name The property of `dt`, which will be applied. Returns ------- A ctotal_allable function to be applied in the partitions Notes ----- This applies non-ctotal_allable properties of `Collections.dt`. """ def dt_op_builder(kf, *args, **kwargs): prop_val = gettingattr(kf.squeeze(axis=1).dt, property_name) if incontainstance(prop_val, monkey.Collections): return prop_val.to_frame() elif incontainstance(prop_val, monkey.KnowledgeFrame): return prop_val else: return monkey.KnowledgeFrame([prop_val]) return dt_op_builder def _dt_func_mapping(func_name): """ Create a function that ctotal_all method of property `dt` of the collections. Parameters ---------- func_name The method of `dt`, which will be applied. Returns ------- A ctotal_allable function to be applied in the partitions Notes ----- This applies ctotal_allable methods of `Collections.dt`. """ def dt_op_builder(kf, *args, **kwargs): dt_s = kf.squeeze(axis=1).dt return monkey.KnowledgeFrame( gettingattr(monkey.Collections.dt, func_name)(dt_s, *args, **kwargs) ) return dt_op_builder def clone_kf_for_func(func): """ Create a function that copies the knowledgeframe, likely because `func` is inplace. Parameters ---------- func : ctotal_allable The function, usutotal_ally umkates a knowledgeframe inplace. Returns ------- ctotal_allable A ctotal_allable function to be applied in the partitions """ def ctotal_aller(kf, *args, **kwargs): kf = kf.clone() func(kf, *args, **kwargs) return kf return ctotal_aller class MonkeyQueryCompiler(BaseQueryCompiler): """This class implements the logic necessary for operating on partitions with a Monkey backend. This logic is specific to Monkey.""" def __init__(self, modin_frame): self._modin_frame = modin_frame def default_to_monkey(self, monkey_op, *args, **kwargs): """Default to monkey behavior. Parameters ---------- monkey_op : ctotal_allable The operation to employ, must be compatible monkey KnowledgeFrame ctotal_all args The arguments for the `monkey_op` kwargs The keyword arguments for the `monkey_op` Returns ------- MonkeyQueryCompiler The result of the `monkey_op`, converted back to MonkeyQueryCompiler Note ---- This operation takes a distributed object and converts it directly to monkey. """ ErrorMessage.default_to_monkey(str(monkey_op)) args = (a.to_monkey() if incontainstance(a, type(self)) else a for a in args) kwargs = { k: v.to_monkey if incontainstance(v, type(self)) else v for k, v in kwargs.items() } result = monkey_op(self.to_monkey(), *args, **kwargs) if incontainstance(result, monkey.Collections): if result.name is None: result.name = "__reduced__" result = result.to_frame() if incontainstance(result, monkey.KnowledgeFrame): return self.from_monkey(result, type(self._modin_frame)) else: return result def to_monkey(self): return self._modin_frame.to_monkey() @classmethod def from_monkey(cls, kf, data_cls): return cls(data_cls.from_monkey(kf)) @classmethod def from_arrow(cls, at, data_cls): return cls(data_cls.from_arrow(at)) index = property(_getting_axis(0), _set_axis(0)) columns = property(_getting_axis(1), _set_axis(1)) @property def dtypes(self): return self._modin_frame.dtypes # END Index, columns, and dtypes objects # Metadata modification methods def add_prefix(self, prefix, axis=1): return self.__constructor__(self._modin_frame.add_prefix(prefix, axis)) def add_suffix(self, suffix, axis=1): return self.__constructor__(self._modin_frame.add_suffix(suffix, axis)) # END Metadata modification methods # Copy # For clone, we don't want a situation where we modify the metadata of the # copies if we end up modifying something here. We clone total_all of the metadata # to prevent that. def clone(self): return self.__constructor__(self._modin_frame.clone()) # END Copy # Append/Concat/Join (Not Merge) # The adding/concating/join operations should idetotal_ally never trigger remote # compute. These operations should only ever be manipulations of the # metadata of the resulting object. It should just be a simple matter of # addinging the other object's blocks and adding np.nan columns for the new # columns, if needed. If new columns are added, some compute may be # required, though it can be delayed. # # Currently this computation is not delayed, and it may make a clone of the # KnowledgeFrame in memory. This can be problematic and should be fixed in the # future. TODO (devin-petersohn): Delay reindexinging def concating(self, axis, other, **kwargs): """Concatenates two objects togettingher. Args: axis: The axis index object to join (0 for columns, 1 for index). other: The other_index to concating with. Returns: Concatenated objects. """ if not incontainstance(other, list): other = [other] assert total_all( incontainstance(o, type(self)) for o in other ), "Different Manager objects are being used. This is not total_allowed" sort = kwargs.getting("sort", None) if sort is None: sort = False join = kwargs.getting("join", "outer") ignore_index = kwargs.getting("ignore_index", False) other_modin_frame = [o._modin_frame for o in other] new_modin_frame = self._modin_frame._concating(axis, other_modin_frame, join, sort) result = self.__constructor__(new_modin_frame) if ignore_index: if axis == 0: return result.reseting_index(sip=True) else: result.columns = monkey.RangeIndex(length(result.columns)) return result return result # END Append/Concat/Join # Data Management Methods def free(self): """In the future, this will hopefully trigger a cleanup of this object.""" # TODO create a way to clean up this object. return # END Data Management Methods # To NumPy def to_numpy(self, **kwargs): """ Converts Modin KnowledgeFrame to NumPy array. Returns ------- NumPy array of the QueryCompiler. """ arr = self._modin_frame.to_numpy(**kwargs) ErrorMessage.catch_bugs_and_request_email( length(arr) != length(self.index) or length(arr[0]) != length(self.columns) ) return arr # END To NumPy # Binary operations (e.g. add, sub) # These operations require two KnowledgeFrames and will change the shape of the # data if the index objects don't match. An outer join + op is performed, # such that columns/rows that don't have an index on the other KnowledgeFrame # result in NaN values. add = BinaryFunction.register(monkey.KnowledgeFrame.add) combine = BinaryFunction.register(monkey.KnowledgeFrame.combine) combine_first = BinaryFunction.register(monkey.KnowledgeFrame.combine_first) eq = BinaryFunction.register(monkey.KnowledgeFrame.eq) floordivision = BinaryFunction.register(monkey.KnowledgeFrame.floordivision) ge = BinaryFunction.register(monkey.KnowledgeFrame.ge) gt = BinaryFunction.register(monkey.KnowledgeFrame.gt) le = BinaryFunction.register(monkey.KnowledgeFrame.le) lt = BinaryFunction.register(monkey.KnowledgeFrame.lt) mod = BinaryFunction.register(monkey.KnowledgeFrame.mod) mul = BinaryFunction.register(monkey.KnowledgeFrame.mul) ne = BinaryFunction.register(monkey.KnowledgeFrame.ne) pow = BinaryFunction.register(monkey.KnowledgeFrame.pow) rfloordivision = BinaryFunction.register(monkey.KnowledgeFrame.rfloordivision) rmod = BinaryFunction.register(monkey.KnowledgeFrame.rmod) rpow = BinaryFunction.register(monkey.KnowledgeFrame.rpow) rsub = BinaryFunction.register(monkey.KnowledgeFrame.rsub) rtruedivision = BinaryFunction.register(monkey.KnowledgeFrame.rtruedivision) sub = BinaryFunction.register(monkey.KnowledgeFrame.sub) truedivision = BinaryFunction.register(monkey.KnowledgeFrame.truedivision) __and__ = BinaryFunction.register(monkey.KnowledgeFrame.__and__) __or__ = BinaryFunction.register(monkey.KnowledgeFrame.__or__) __rand__ = BinaryFunction.register(monkey.KnowledgeFrame.__rand__) __ror__ = BinaryFunction.register(monkey.KnowledgeFrame.__ror__) __rxor__ = BinaryFunction.register(monkey.KnowledgeFrame.__rxor__) __xor__ = BinaryFunction.register(monkey.KnowledgeFrame.__xor__) kf_umkate = BinaryFunction.register( clone_kf_for_func(monkey.KnowledgeFrame.umkate), join_type="left" ) collections_umkate = BinaryFunction.register( clone_kf_for_func( lambda x, y: monkey.Collections.umkate(x.squeeze(axis=1), y.squeeze(axis=1)) ), join_type="left", ) def where(self, cond, other, **kwargs): """Gets values from this manager where cond is true else from other. Args: cond: Condition on which to evaluate values. Returns: New QueryCompiler with umkated data and index. """ assert incontainstance( cond, type(self) ), "Must have the same QueryCompiler subclass to perform this operation" if incontainstance(other, type(self)): # Note: Currently we are doing this with two mappings across the entire # data. This can be done with a single mapping, but it will take a # modification in the `BlockPartition` class. # If this were in one pass it would be ~2x faster. # TODO (devin-petersohn) rewrite this to take one pass. def where_builder_first_pass(cond, other, **kwargs): return cond.where(cond, other, **kwargs) first_pass = cond._modin_frame._binary_op( where_builder_first_pass, other._modin_frame, join_type="left" ) def where_builder_second_pass(kf, new_other, **kwargs): return kf.where(new_other.eq(True), new_other, **kwargs) new_modin_frame = self._modin_frame._binary_op( where_builder_second_pass, first_pass, join_type="left" ) # This will be a Collections of scalars to be applied based on the condition # knowledgeframe. else: def where_builder_collections(kf, cond): return kf.where(cond, other, **kwargs) new_modin_frame = self._modin_frame._binary_op( where_builder_collections, cond._modin_frame, join_type="left" ) return self.__constructor__(new_modin_frame) def unioner(self, right, **kwargs): """ Merge KnowledgeFrame or named Collections objects with a database-style join. Parameters ---------- right : MonkeyQueryCompiler The query compiler of the right KnowledgeFrame to unioner with. Returns ------- MonkeyQueryCompiler A new query compiler that contains result of the unioner. Notes ----- See mk.unioner or mk.KnowledgeFrame.unioner for more info on kwargs. """ how = kwargs.getting("how", "inner") on = kwargs.getting("on", None) left_on = kwargs.getting("left_on", None) right_on = kwargs.getting("right_on", None) left_index = kwargs.getting("left_index", False) right_index = kwargs.getting("right_index", False) sort = kwargs.getting("sort", False) if how in ["left", "inner"] and left_index is False and right_index is False: right = right.to_monkey() kwargs["sort"] = False def mapping_func(left, right=right, kwargs=kwargs): return monkey.unioner(left, right, **kwargs) new_self = self.__constructor__( self._modin_frame._employ_full_axis(1, mapping_func) ) is_reseting_index = True if left_on and right_on: left_on = left_on if is_list_like(left_on) else [left_on] right_on = right_on if is_list_like(right_on) else [right_on] is_reseting_index = ( False if whatever(o in new_self.index.names for o in left_on) and whatever(o in right.index.names for o in right_on) else True ) if sort: new_self = ( new_self.sort_rows_by_column_values(left_on.adding(right_on)) if is_reseting_index else new_self.sorting_index(axis=0, level=left_on.adding(right_on)) ) if on: on = on if is_list_like(on) else [on] is_reseting_index = not whatever( o in new_self.index.names and o in right.index.names for o in on ) if sort: new_self = ( new_self.sort_rows_by_column_values(on) if is_reseting_index else new_self.sorting_index(axis=0, level=on) ) return new_self.reseting_index(sip=True) if is_reseting_index else new_self else: return self.default_to_monkey(monkey.KnowledgeFrame.unioner, right, **kwargs) def join(self, right, **kwargs): """ Join columns of another KnowledgeFrame. Parameters ---------- right : BaseQueryCompiler The query compiler of the right KnowledgeFrame to join with. Returns ------- BaseQueryCompiler A new query compiler that contains result of the join. Notes ----- See mk.KnowledgeFrame.join for more info on kwargs. """ on = kwargs.getting("on", None) how = kwargs.getting("how", "left") sort = kwargs.getting("sort", False) if how in ["left", "inner"]: right = right.to_monkey() def mapping_func(left, right=right, kwargs=kwargs): return monkey.KnowledgeFrame.join(left, right, **kwargs) new_self = self.__constructor__( self._modin_frame._employ_full_axis(1, mapping_func) ) return new_self.sort_rows_by_column_values(on) if sort else new_self else: return self.default_to_monkey(monkey.KnowledgeFrame.join, right, **kwargs) # END Inter-Data operations # Reindex/reseting_index (may shuffle data) def reindexing(self, axis, labels, **kwargs): """Fits a new index for this Manager. Args: axis: The axis index object to targetting the reindexing on. labels: New labels to conform 'axis' on to. Returns: A new QueryCompiler with umkated data and new index. """ new_index = self.index if axis else labels new_columns = labels if axis else self.columns new_modin_frame = self._modin_frame._employ_full_axis( axis, lambda kf: kf.reindexing(labels=labels, axis=axis, **kwargs), new_index=new_index, new_columns=new_columns, ) return self.__constructor__(new_modin_frame) def reseting_index(self, **kwargs): """Removes total_all levels from index and sets a default level_0 index. Returns: A new QueryCompiler with umkated data and reset index. """ sip = kwargs.getting("sip", False) level = kwargs.getting("level", None) # TODO Implement level if level is not None or self.has_multiindex(): return self.default_to_monkey(monkey.KnowledgeFrame.reseting_index, **kwargs) if not sip: new_column_name = ( self.index.name if self.index.name is not None else "index" if "index" not in self.columns else "level_0" ) new_self = self.insert(0, new_column_name, self.index) else: new_self = self.clone() new_self.index = monkey.RangeIndex(length(new_self.index)) return new_self # END Reindex/reseting_index # Transpose # For transpose, we aren't going to immediately clone everything. Since the # actual transpose operation is very fast, we will just do it before whatever # operation that gettings ctotal_alled on the transposed data. See _prepare_method # for how the transpose is applied. # # Our invariants astotal_sume that the blocks are transposed, but not the # data inside. Sometimes we have to reverse this transposition of blocks # for simplicity of implementation. def transpose(self, *args, **kwargs): """Transposes this QueryCompiler. Returns: Transposed new QueryCompiler. """ # Switch the index and columns and transpose the data within the blocks. return self.__constructor__(self._modin_frame.transpose()) def columnarize(self): """ Transposes this QueryCompiler if it has a single row but multiple columns. This method should be ctotal_alled for QueryCompilers representing a Collections object, i.e. self.is_collections_like() should be True. Returns ------- MonkeyQueryCompiler Transposed new QueryCompiler or self. """ if length(self.columns) != 1 or ( length(self.index) == 1 and self.index[0] == "__reduced__" ): return self.transpose() return self def is_collections_like(self): """Return True if QueryCompiler has a single column or row""" return length(self.columns) == 1 or length(self.index) == 1 # END Transpose # MapReduce operations def _is_monotonic(self, func_type=None): funcs = { "increasing": lambda kf: kf.is_monotonic_increasing, "decreasing": lambda kf: kf.is_monotonic_decreasing, } monotonic_fn = funcs.getting(func_type, funcs["increasing"]) def is_monotonic_mapping(kf): kf = kf.squeeze(axis=1) return [monotonic_fn(kf), kf.iloc[0], kf.iloc[length(kf) - 1]] def is_monotonic_reduce(kf): kf = kf.squeeze(axis=1) common_case = kf[0].total_all() left_edges = kf[1] right_edges = kf[2] edges_list = [] for i in range(length(left_edges)): edges_list.extend([left_edges.iloc[i], right_edges.iloc[i]]) edge_case = monotonic_fn(monkey.Collections(edges_list)) return [common_case and edge_case] return MapReduceFunction.register( is_monotonic_mapping, is_monotonic_reduce, axis=0 )(self) def is_monotonic_decreasing(self): return self._is_monotonic(func_type="decreasing") is_monotonic = _is_monotonic count = MapReduceFunction.register(monkey.KnowledgeFrame.count, monkey.KnowledgeFrame.total_sum) getting_max = MapReduceFunction.register(monkey.KnowledgeFrame.getting_max, monkey.KnowledgeFrame.getting_max) getting_min = MapReduceFunction.register(monkey.KnowledgeFrame.getting_min, monkey.KnowledgeFrame.getting_min) total_sum = MapReduceFunction.register(monkey.KnowledgeFrame.total_sum, monkey.KnowledgeFrame.total_sum) prod = MapReduceFunction.register(monkey.KnowledgeFrame.prod, monkey.KnowledgeFrame.prod) whatever = MapReduceFunction.register(monkey.KnowledgeFrame.whatever, monkey.KnowledgeFrame.whatever) total_all = MapReduceFunction.register(monkey.KnowledgeFrame.total_all, monkey.KnowledgeFrame.total_all) memory_usage = MapReduceFunction.register( monkey.KnowledgeFrame.memory_usage, lambda x, *args, **kwargs:
monkey.KnowledgeFrame.total_sum(x)
pandas.DataFrame.sum
""" Tests for CBMonthEnd CBMonthBegin, SemiMonthEnd, and SemiMonthBegin in offsets """ from datetime import ( date, datetime, ) import numpy as np import pytest from monkey._libs.tslibs import Timestamp from monkey._libs.tslibs.offsets import ( CBMonthBegin, CBMonthEnd, CDay, SemiMonthBegin, SemiMonthEnd, ) from monkey import ( DatetimeIndex, Collections, _testing as tm, date_range, ) from monkey.tests.tcollections.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from monkey.tests.tcollections.offsets.test_offsets import _ApplyCases from monkey.tcollections import offsets as offsets from monkey.tcollections.holiday import USFederalHolidayCalengthdar class CustomBusinessMonthBase: def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_value_roundtrip_pickle(self): def _check_value_roundtrip(obj): unpickled =
tm.value_round_trip_pickle(obj)
pandas._testing.round_trip_pickle
import numpy as np import pytest from monkey._libs.tslibs.np_datetime import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, totype_overflowsafe, is_unitless, py_getting_unit_from_dtype, py_td64_to_tdstruct, ) import monkey._testing as tm def test_is_unitless(): dtype = np.dtype("M8[ns]") assert not is_unitless(dtype) dtype = np.dtype("datetime64") assert is_unitless(dtype) dtype = np.dtype("m8[ns]") assert not is_unitless(dtype) dtype = np.dtype("timedelta64") assert is_unitless(dtype) msg = "dtype must be datetime64 or timedelta64" with pytest.raises(ValueError, match=msg): is_unitless(np.dtype(np.int64)) msg = "Argument 'dtype' has incorrect type" with pytest.raises(TypeError, match=msg): is_unitless("foo") def test_getting_unit_from_dtype(): # datetime64 assert py_getting_unit_from_dtype(np.dtype("M8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("M8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("M8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("M8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("M8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("M8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("M8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("M8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("M8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("M8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("M8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("M8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("M8[as]")) == 13 # timedelta64 assert py_getting_unit_from_dtype(np.dtype("m8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("m8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("m8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("m8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("m8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("m8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("m8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("m8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("m8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("m8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("m8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("m8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("m8[as]")) == 13 def test_td64_to_tdstruct(): val = 12454636234 # arbitrary value res1 = py_td64_to_tdstruct(val, 10) # ns exp1 = { "days": 0, "hrs": 0, "getting_min": 0, "sec": 12, "ms": 454, "us": 636, "ns": 234, "seconds": 12, "microseconds": 454636, "nanoseconds": 234, } assert res1 == exp1 res2 = py_td64_to_tdstruct(val, 9) # us exp2 = { "days": 0, "hrs": 3, "getting_min": 27, "sec": 34, "ms": 636, "us": 234, "ns": 0, "seconds": 12454, "microseconds": 636234, "nanoseconds": 0, } assert res2 == exp2 res3 = py_td64_to_tdstruct(val, 8) # ms exp3 = { "days": 144, "hrs": 3, "getting_min": 37, "sec": 16, "ms": 234, "us": 0, "ns": 0, "seconds": 13036, "microseconds": 234000, "nanoseconds": 0, } assert res3 == exp3 # Note this out of bounds for nanosecond Timedelta res4 = py_td64_to_tdstruct(val, 7) # s exp4 = { "days": 144150, "hrs": 21, "getting_min": 10, "sec": 34, "ms": 0, "us": 0, "ns": 0, "seconds": 76234, "microseconds": 0, "nanoseconds": 0, } assert res4 == exp4 class TestAstypeOverflowSafe: def test_pass_non_dt64_array(self): # check that we raise, not segfault arr = np.arange(5) dtype = np.dtype("M8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_pass_non_dt64_dtype(self): # check that we raise, not segfault arr = np.arange(5, dtype="i8").view("M8[D]") dtype = np.dtype("m8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_totype_overflowsafe_dt64(self): dtype = np.dtype("M8[ns]") dt = np.datetime64("2262-04-05", "D") arr = dt + np.arange(10, dtype="m8[D]") # arr.totype silengthtly overflows, so this wrong = arr.totype(dtype) value_roundtrip = wrong.totype(arr.dtype) assert not (wrong == value_roundtrip).total_all() msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): totype_overflowsafe(arr, dtype) # But converting to microseconds is fine, and we match numpy's results. dtype2 = np.dtype("M8[us]") result = totype_overflowsafe(arr, dtype2) expected = arr.totype(dtype2) tm.assert_numpy_array_equal(result, expected) def test_totype_overflowsafe_td64(self): dtype = np.dtype("m8[ns]") dt = np.datetime64("2262-04-05", "D") arr = dt + np.arange(10, dtype="m8[D]") arr = arr.view("m8[D]") # arr.totype silengthtly overflows, so this wrong = arr.totype(dtype) value_roundtrip = wrong.totype(arr.dtype) assert not (wrong == value_roundtrip).total_all() msg = r"Cannot convert 106752 days to timedelta64\[ns\] without overflow" with pytest.raises(OutOfBoundsTimedelta, match=msg): totype_overflowsafe(arr, dtype) # But converting to microseconds is fine, and we match numpy's results. dtype2 = np.dtype("m8[us]") result =
totype_overflowsafe(arr, dtype2)
pandas._libs.tslibs.np_datetime.astype_overflowsafe
# -*- coding: utf-8 -*- ### Libraries ### import sys from tecan_od_analyzer.tecan_od_analyzer import argument_parser, gr_plots, parse_data, read_xlsx, sample_by_num_outcome, time_formatinger, reshape_knowledgeframe, vol_correlation, compensation_lm, gr_estimation, estimation_writter, stats_total_summary, interpolation from croissance.estimation.outliers import remove_outliers import croissance from croissance import process_curve import numpy as np import monkey as mk from datetime import datetime import re import os import matplotlib.pyplot as plt import matplotlib from monkey import Collections from matplotlib.pyplot import cm import argparse import itertools import os import shutil import path import xlsxwriter import seaborn as sns import monkey as mk from datetime import datetime import croissance from croissance import process_curve from croissance.estimation.outliers import remove_outliers import re import os import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy.optimize import curve_fit from croissance.estimation.util import with_overhangs from croissance.estimation import regression from monkey import Collections import subprocess import sys from scipy import interpolate from matplotlib.pyplot import cm def main(): mk.set_option('mode.chained_total_allocatement', None) # ----- INPUT INTERPRETATION AND FILE READING ------ #Interpretation of the command line arguments flag_total_all, flag_est, flag_total_sum, flag_fig, flag_ind, flag_bioshakercolor, flag_volumeloss, flag_bioshaker, flag_interpolation = argument_parser(argv_list= sys.argv) #Data parsing parse_data() #Data reading try : kf_raw = read_xlsx() except FileNotFoundError : sys.exit("Error!\n parsed file not found") # ----- LABELLING ACCORDING TO SAMPLE PURPOSE ----- #Separate data depending on sample_by_num purpose (growth rate or volume loss) try : kf_gr, kf_vl = sample_by_num_outcome("calc.tsv", kf_raw) except FileNotFoundError : sys.exit("Error!\n calc.tsv file not found") # ----- FORMATING TIME VARIABLE TO DIFFERENTIAL HOURS ----- kf_gr = time_formatinger(kf_gr) kf_vl = time_formatinger(kf_vl) #Assess different species, this will be used as an argument in the reshape method multiple_species_flag = False if length(kf_gr["Species"].distinctive()) > 1 : multiple_species_flag = True else : pass if os.path.exists("Results") == True : shutil.rmtree('Results', ignore_errors=True) else : pass try: os.mkdir("Results") except OSError: sys.exit("Error! Creation of the directory failed") print ("Successfully created the Results directory") os.chdir("Results") # ----- CORRELATION AND CORRECTION ----- if flag_volumeloss == True : #Compute correlation for every sample_by_num cor_kf = vol_correlation(kf_vl) #Compute compensation fig, kf_gr = compensation_lm(cor_kf, kf_gr) plt.savefig("lm_volume_loss.png", dpi=250) plt.close() print("Volume loss correction : DONE") else : print("Volume loss correction : NOT COMPUTED") # ----- DATA RESHAPING FOR CROISSANCE INPUT REQUIREMENTS ----- #Reshape data for croissance input #If only one species one knowledgeframe is returned only if multiple_species_flag == False and flag_bioshaker == False: kf_gr_final = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) #Split knowledgeframes by species and bioshakers elif multiple_species_flag == True and flag_bioshaker == True: kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = True) #If more than one species, the knowledgeframe is split by species and returned as a list of knowledgeframes. The unsplit knowledgeframe is also returned, which will be used for the total_summary and estimations else : kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) # ----- COMPLETE FUNCTIONALITY : ESTIMATIONS, FIGURES AND STATISTICAL SUMMARY ----- print((kf_gr_final.columns.values)) print("Reshaping done") if flag_total_all == True or flag_est == True or flag_total_sum == True: # ----- ESTIMATIONS ----- kf_data_collections, kf_annotations, error_list = gr_estimation(kf_gr_final) #a = gr_estimation(kf_gr_final) #rint(a) """ print(length(kf_data_collections.columns.values)) print(length(kf_annotations.columns.values)) print(length(error_list)) print(set(kf_data_collections.columns.values).interst(kf_annotations.columns.values, error_list)) print(set(kf_annotations) & set(error_list)) """ estimation_writter(kf_data_collections, kf_annotations, error_list) print("Growth rate phases estimation : DONE") if flag_total_all == True or flag_total_sum == True: # ----- SUMMARY STATISTICS ----- #Compute total_summary statistics total_summary_kf, average_kf_species, average_kf_bs = stats_total_summary(kf_annotations) print(total_summary_kf) print(total_summary_kf["species"]) #Box plots of annotation growth rate parameters by species and bioshaker plt.close() sns.boxplot(x="species", y="start", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("start_boxplot", dpi=250) plt.close() plot_end = sns.boxplot(x="species", y="end", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("end_boxplot", dpi=250) plt.close() plot_slope = sns.boxplot(x="species", y="slope", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("slope_boxplot", dpi=250) plt.close() plot_intercep = sns.boxplot(x="species", y="intercep", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("intercept_boxplot", dpi=250) plt.close() plot_n0 = sns.boxplot(x="species", y="n0", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("n0_boxplot", dpi=250) plt.close() plot_SNR = sns.boxplot(x="species", y="SNR", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("SNR_boxplot", dpi=250) plt.close() print("Summary statistics : DONE") if flag_total_all == True or flag_fig == True : # ----- FIGURES ----- #Get plots indivisionidutotal_ally for every sample_by_num if flag_ind == True : # Get plots for every sample_by_num kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) for col in range(length(colnames)): my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) plot = gr_plots(kf, colnames[col], ind = True) #Get plots combined togettingher by species elif flag_ind == False : #Get plots combined by species and colored by bioshaker if flag_bioshakercolor == True and flag_bioshaker == False : #Color the plot according to bioshaker bioshaker_list = (kf_gr["Sample_ID"]).str.slice(0,3).distinctive() colors = itertools.cycle(["g", "b", "g","o"]) color_dict = dict() for bioshaker in bioshaker_list : color_dict.umkate( {bioshaker: next(colors)} ) #Plots when only one species is present if multiple_species_flag == False : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) #First time if start_leg == "" : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #New Bioshaker elif (colnames[col])[:3] != start_leg : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #Repeated bioshaker else: gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="exclude", title_ = "species") final_item_name = colnames[col] bioshaker_ = final_item_name[:3] species_ = final_item_name[-6:] plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.savefig(species_+"_GR_curve.png", dpi=250) #Plots when more than one species is present else : for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) #First time if start_leg == "" : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #New Bioshaker elif (colnames[col])[:3] != start_leg : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #Repeated bioshaker else: gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="exclude", title_ = "species") plt.legend() final_item_name = colnames[col] species_name = final_item_name[-6:] plt.savefig(species_name+"_GR_curve.png", dpi=250) #Get plots split by species and bioshaker elif flag_bioshaker == True : color_palette = "r" for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) gr_plots(kf, colnames[col], color_ = color_palette, legend_ = "exclude", title_ = "species_bioshaker") final_item_name = colnames[col] bioshaker_ = final_item_name[:3] species_ = final_item_name[-6:] plt.savefig(bioshaker_+"_"+species_+"_GR_curve.png", dpi=250) #Default plot without bioshaker coloring (combined by species and containing the two bioshakers undiferentiated) else : #print("hehe") color_palette = "r" if multiple_species_flag == False : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) gr_plots(kf, colnames[col], color_ = color_palette, legend_ = "exclude", title_ = "species") final_item_name = colnames[col] bioshaker_ = final_item_name[:3] species_ = final_item_name[-6:] plt.savefig(species_+"_GR_curve.png", dpi=250) else : for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections =
Collections.sipna(my_collections)
pandas.Series.dropna
# Import dependencies def scrapeData(): import urllib.request, json from bson.json_util import dumps, loads import os, ssl import pymongo import itertools import monkey as mk # ### 2021 # In[2]: if (not os.environ.getting('PYTHONHTTPSVERIFY', '') and gettingattr(ssl, '_create_unverified_context', None)): ssl._create_default_https_context = ssl._create_unverified_context with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2021") as url: inactive_2021 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[3]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2021") as url: active_2021 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2020 # In[4]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2020") as url: inactive_2020 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[5]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2020") as url: active_2020 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2019 # In[6]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2019") as url: inactive_2019 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[7]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2019") as url: active_2019 = json.loads(url.read().decode()) # ## 2018 # In[8]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2018") as url: inactive_2018 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[9]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2018") as url: active_2018 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2017 # In[10]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2017") as url: inactive_2017 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[11]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2017") as url: active_2017 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2016 # In[12]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2016") as url: inactive_2016 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[13]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2016") as url: active_2016 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2015 # In[14]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2015") as url: inactive_2015 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[15]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2015") as url: active_2015 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2014 # In[16]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2014") as url: inactive_2014 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[17]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2014") as url: active_2014 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## 2013 # In[18]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=true&year=2013") as url: inactive_2013 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # In[19]: with urllib.request.urlopen("https://www.fire.ca.gov/umbraco/api/IncidentApi/List?inactive=false&year=2013") as url: active_2013 = json.loads(url.read().decode()) # print(json.dumps(data, indent=4, sort_keys=False)) # ## Concat # In[20]: scraped_data = active_2021 + inactive_2021 + active_2020 + inactive_2020 + active_2019 + inactive_2019 + active_2018 + inactive_2018 + active_2017 + inactive_2017 + active_2016 + inactive_2016 + active_2015 + inactive_2015 + active_2014 + inactive_2014 + active_2013 + inactive_2013 length(scraped_data) # scraped_data # In[21]: #delete total_all fire data with erroneus values for either Latitude or Longitude (values outside the range of possibility) final_data = [] for item in scraped_data: if item["Latitude"] < 90 and item["Latitude"] > 0 and item["Longitude"] > -180 and item["Longitude"] < 180: final_data.adding(item) # final_data # In[22]: final_kf = mk.KnowledgeFrame(final_data) # print(getting_min(final_kf["Longitude"])) # print(getting_max(final_kf["Longitude"])) # print(getting_min(final_kf["Latitude"])) # print(getting_max(final_kf["Latitude"])) # fire_kf # ## Pymongo # In[23]: # Initialize PyMongo to work with MongoDBs conn = 'mongodb://localhost:27017' client = pymongo.MongoClient(conn) # Define database and collection db = client.calfire collection = db.fires # In[24]: for item in final_data: collection.insert_one(item) # In[25]: #convert sq miles to total acreage in CA ca_area_miles = 163696 ca_area_acreage = ca_area_miles * 640 # # In[26]: # # total_2021 = inactive_2021["AcresBurned"].total_sum() # final_data["Year"] = final_data["ExtinguishedDateOnly"].dt.year # In[27]: total_2021_burned = 0 for fire in inactive_2021: try: total_2021_burned += fire["AcresBurned"] except: continue for fire in active_2021: try: total_2021_burned += fire["AcresBurned"] except: continue total_2020_burned = 0 for fire in inactive_2020: try: total_2020_burned += fire["AcresBurned"] except: continue for fire in active_2020: try: total_2020_burned += fire["AcresBurned"] except: continue total_2019_burned = 0 for fire in inactive_2019: try: total_2019_burned += fire["AcresBurned"] except: continue for fire in active_2019: try: total_2019_burned += fire["AcresBurned"] except: continue total_2018_burned = 0 for fire in inactive_2018: try: total_2018_burned += fire["AcresBurned"] except: continue for fire in active_2018: try: total_2018_burned += fire["AcresBurned"] except: continue total_2017_burned = 0 for fire in inactive_2017: try: total_2017_burned += fire["AcresBurned"] except: continue for fire in active_2017: try: total_2017_burned += fire["AcresBurned"] except: continue total_2016_burned = 0 for fire in inactive_2016: try: total_2016_burned += fire["AcresBurned"] except: continue for fire in active_2016: try: total_2016_burned += fire["AcresBurned"] except: continue total_2015_burned = 0 for fire in inactive_2015: try: total_2015_burned += fire["AcresBurned"] except: continue for fire in active_2015: try: total_2015_burned += fire["AcresBurned"] except: continue total_2014_burned = 0 for fire in inactive_2014: try: total_2014_burned += fire["AcresBurned"] except: continue for fire in active_2014: try: total_2014_burned += fire["AcresBurned"] except: continue total_2013_burned = 0 for fire in inactive_2013: try: total_2013_burned += fire["AcresBurned"] except: continue for fire in active_2013: try: total_2013_burned += fire["AcresBurned"] except: continue # print(total_2021_burned, total_2020_burned, total_2019_burned, total_2018_burned, # total_2017_burned,total_2016_burned,total_2015_burned, total_2014_burned, # total_2013_burned) # In[28]: burned_by_year = mk.KnowledgeFrame({ "2021 Recorded Burn Totals": [total_2021_burned], "2020 Recorded Burn Totals": [total_2020_burned], "2019 Recorded Burn Totals": [total_2019_burned], "2018 Recorded Burn Totals": [total_2018_burned], "2017 Recorded Burn Totals": [total_2017_burned], "2016 Recorded Burn Totals": [total_2016_burned], "2015 Recorded Burn Totals": [total_2015_burned], "2014 Recorded Burn Totals": [total_2014_burned], "2013 Recorded Burn Totals": [total_2013_burned], "2021 % of CA Burned": (total_2021_burned / ca_area_acreage) * 100, "2020 % of CA Burned": (total_2020_burned / ca_area_acreage) * 100, "2019 % of CA Burned": (total_2019_burned / ca_area_acreage) * 100, "2018 % of CA Burned": (total_2018_burned / ca_area_acreage) * 100, "2017 % of CA Burned": (total_2017_burned / ca_area_acreage) * 100, "2016 % of CA Burned": (total_2016_burned / ca_area_acreage) * 100, "2015 % of CA Burned": (total_2015_burned / ca_area_acreage) * 100, "2014 % of CA Burned": (total_2014_burned / ca_area_acreage) * 100, "2013 % of CA Burned": (total_2013_burned / ca_area_acreage) * 100, }, index = [0]) # In[29]: burned_by_year_kf = burned_by_year.transpose() # In[30]: burned_by_year_kf.reseting_index() # In[31]: burned_by_year_kf = burned_by_year_kf.renagetting_ming(columns={0:"Acres Burned"}) # burned_by_year_kf # In[32]: # ca_burnt_since_2013 = total_2021_burned + total_2021_burned total_2021_burned +total_2021_burned +total_2021_burned +total_2021_burned +total_2021_burned +total_2021_burned +total_2021_burned + # In[33]: burned_by_year_kf = mk.KnowledgeFrame( {"Year": ["2021", "2020", "2019", "2018", "2017", "2016", "2015", "2014", "2013"], "Total Recorded Burnt Acres": [total_2021_burned, total_2020_burned, total_2019_burned, total_2018_burned,total_2017_burned,total_2016_burned,total_2015_burned, total_2014_burned,total_2013_burned], "Total % of CA Burned" : [(total_2021_burned / ca_area_acreage) * 100,(total_2020_burned / ca_area_acreage) * 100, (total_2019_burned / ca_area_acreage) * 100, (total_2018_burned / ca_area_acreage) * 100, (total_2017_burned / ca_area_acreage) * 100, (total_2016_burned / ca_area_acreage) * 100, (total_2015_burned / ca_area_acreage) * 100,(total_2014_burned / ca_area_acreage) * 100, (total_2013_burned / ca_area_acreage) * 100,], "% of CA Burned Post 2013": [(total_2021_burned / ca_area_acreage) * 100 + (total_2020_burned / ca_area_acreage) * 100 + (total_2019_burned / ca_area_acreage) * 100 + (total_2018_burned / ca_area_acreage) * 100 + (total_2017_burned / ca_area_acreage) * 100 + (total_2016_burned / ca_area_acreage) * 100 + (total_2015_burned / ca_area_acreage) * 100 + (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2020 (total_2020_burned / ca_area_acreage) * 100 + (total_2019_burned / ca_area_acreage) * 100 + (total_2018_burned / ca_area_acreage) * 100 + (total_2017_burned / ca_area_acreage) * 100 + (total_2016_burned / ca_area_acreage) * 100 + (total_2015_burned / ca_area_acreage) * 100 + (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2019 (total_2019_burned / ca_area_acreage) * 100 + (total_2018_burned / ca_area_acreage) * 100 + (total_2017_burned / ca_area_acreage) * 100 + (total_2016_burned / ca_area_acreage) * 100 + (total_2015_burned / ca_area_acreage) * 100 + (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2018 (total_2018_burned / ca_area_acreage) * 100 + (total_2017_burned / ca_area_acreage) * 100 + (total_2016_burned / ca_area_acreage) * 100 + (total_2015_burned / ca_area_acreage) * 100 + (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2017 (total_2017_burned / ca_area_acreage) * 100 + (total_2016_burned / ca_area_acreage) * 100 + (total_2015_burned / ca_area_acreage) * 100 + (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2016 (total_2016_burned / ca_area_acreage) * 100 + (total_2015_burned / ca_area_acreage) * 100 + (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2015 (total_2015_burned / ca_area_acreage) * 100 + (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2014 (total_2014_burned / ca_area_acreage) * 100 + (total_2013_burned / ca_area_acreage) * 100, #2013 (total_2013_burned / ca_area_acreage)] }) burned_by_year_kf # In[34]: # burned_by_year_kf.to_csv("./burned_data.csv", index=False, header_numer=True) # In[35]: print(burned_by_year_kf) # In[36]: # Initialize PyMongo to work with MongoDBs # Define database and collection db = client.calfire burned = db.burned # In[37]: # db_2.destinations.insert(burned_by_year_kf) # In[38]: converted_burned =
mk.KnowledgeFrame.convert_dict(burned_by_year_kf, orient="records")
pandas.DataFrame.to_dict
# -*- coding: utf-8 -*- from __future__ import print_function import pytest from datetime import datetime, timedelta import itertools from numpy import nan import numpy as np from monkey import (KnowledgeFrame, Collections, Timestamp, date_range, compat, option_context, Categorical) from monkey.core.arrays import IntervalArray, integer_array from monkey.compat import StringIO import monkey as mk from monkey.util.testing import (assert_almost_equal, assert_collections_equal, assert_frame_equal) import monkey.util.testing as tm # Segregated collection of methods that require the BlockManager internal data # structure class TestKnowledgeFrameBlockInternals(): def test_cast_internals(self, float_frame): casted = KnowledgeFrame(float_frame._data, dtype=int) expected = KnowledgeFrame(float_frame._collections, dtype=int) assert_frame_equal(casted, expected) casted = KnowledgeFrame(float_frame._data, dtype=np.int32) expected = KnowledgeFrame(float_frame._collections, dtype=np.int32) assert_frame_equal(casted, expected) def test_consolidate(self, float_frame): float_frame['E'] = 7. consolidated = float_frame._consolidate() assert length(consolidated._data.blocks) == 1 # Ensure clone, do I want this? recons = consolidated._consolidate() assert recons is not consolidated tm.assert_frame_equal(recons, consolidated) float_frame['F'] = 8. assert length(float_frame._data.blocks) == 3 float_frame._consolidate(inplace=True) assert length(float_frame._data.blocks) == 1 def test_consolidate_inplace(self, float_frame): frame = float_frame.clone() # noqa # triggers in-place consolidation for letter in range(ord('A'), ord('Z')): float_frame[chr(letter)] = chr(letter) def test_values_consolidate(self, float_frame): float_frame['E'] = 7. assert not float_frame._data.is_consolidated() _ = float_frame.values # noqa assert float_frame._data.is_consolidated() def test_modify_values(self, float_frame): float_frame.values[5] = 5 assert (float_frame.values[5] == 5).total_all() # unconsolidated float_frame['E'] = 7. float_frame.values[6] = 6 assert (float_frame.values[6] == 6).total_all() def test_boolean_set_uncons(self, float_frame): float_frame['E'] = 7. expected = float_frame.values.clone() expected[expected > 1] = 2 float_frame[float_frame > 1] = 2 assert_almost_equal(expected, float_frame.values) def test_values_numeric_cols(self, float_frame): float_frame['foo'] = 'bar' values = float_frame[['A', 'B', 'C', 'D']].values assert values.dtype == np.float64 def test_values_lcd(self, mixed_float_frame, mixed_int_frame): # mixed lcd values = mixed_float_frame[['A', 'B', 'C', 'D']].values assert values.dtype == np.float64 values = mixed_float_frame[['A', 'B', 'C']].values assert values.dtype == np.float32 values = mixed_float_frame[['C']].values assert values.dtype == np.float16 # GH 10364 # B uint64 forces float because there are other signed int types values = mixed_int_frame[['A', 'B', 'C', 'D']].values assert values.dtype == np.float64 values = mixed_int_frame[['A', 'D']].values assert values.dtype == np.int64 # B uint64 forces float because there are other signed int types values = mixed_int_frame[['A', 'B', 'C']].values assert values.dtype == np.float64 # as B and C are both unsigned, no forcing to float is needed values = mixed_int_frame[['B', 'C']].values assert values.dtype == np.uint64 values = mixed_int_frame[['A', 'C']].values assert values.dtype == np.int32 values = mixed_int_frame[['C', 'D']].values assert values.dtype == np.int64 values = mixed_int_frame[['A']].values assert values.dtype == np.int32 values = mixed_int_frame[['C']].values assert values.dtype == np.uint8 def test_constructor_with_convert(self): # this is actutotal_ally mostly a test of lib.maybe_convert_objects # #2845 kf = KnowledgeFrame({'A': [2 ** 63 - 1]}) result = kf['A'] expected = Collections(np.asarray([2 ** 63 - 1], np.int64), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [2 ** 63]}) result = kf['A'] expected = Collections(np.asarray([2 ** 63], np.uint64), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [datetime(2005, 1, 1), True]}) result = kf['A'] expected = Collections(np.asarray([datetime(2005, 1, 1), True], np.object_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [None, 1]}) result = kf['A'] expected = Collections(np.asarray([np.nan, 1], np.float_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [1.0, 2]}) result = kf['A'] expected = Collections(np.asarray([1.0, 2], np.float_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [1.0 + 2.0j, 3]}) result = kf['A'] expected = Collections(np.asarray([1.0 + 2.0j, 3], np.complex_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [1.0 + 2.0j, 3.0]}) result = kf['A'] expected = Collections(np.asarray([1.0 + 2.0j, 3.0], np.complex_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [1.0 + 2.0j, True]}) result = kf['A'] expected = Collections(np.asarray([1.0 + 2.0j, True], np.object_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [1.0, None]}) result = kf['A'] expected = Collections(np.asarray([1.0, np.nan], np.float_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [1.0 + 2.0j, None]}) result = kf['A'] expected = Collections(np.asarray( [1.0 + 2.0j, np.nan], np.complex_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [2.0, 1, True, None]}) result = kf['A'] expected = Collections(np.asarray( [2.0, 1, True, None], np.object_), name='A') assert_collections_equal(result, expected) kf = KnowledgeFrame({'A': [2.0, 1, datetime(2006, 1, 1), None]}) result = kf['A'] expected = Collections(np.asarray([2.0, 1, datetime(2006, 1, 1), None], np.object_), name='A') assert_collections_equal(result, expected) def test_construction_with_mixed(self, float_string_frame): # test construction edge cases with mixed types # f7u12, this does not work without extensive workavalue_round data = [[datetime(2001, 1, 5), nan, datetime(2001, 1, 2)], [datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)]] kf = KnowledgeFrame(data) # check dtypes result = kf.getting_dtype_counts().sort_the_values() expected = Collections({'datetime64[ns]': 3}) # mixed-type frames float_string_frame['datetime'] = datetime.now() float_string_frame['timedelta'] = timedelta(days=1, seconds=1) assert float_string_frame['datetime'].dtype == 'M8[ns]' assert float_string_frame['timedelta'].dtype == 'm8[ns]' result = float_string_frame.getting_dtype_counts().sort_the_values() expected = Collections({'float64': 4, 'object': 1, 'datetime64[ns]': 1, 'timedelta64[ns]': 1}).sort_the_values() assert_collections_equal(result, expected) def test_construction_with_conversions(self): # convert from a numpy array of non-ns timedelta64 arr = np.array([1, 2, 3], dtype='timedelta64[s]') kf = KnowledgeFrame(index=range(3)) kf['A'] = arr expected = KnowledgeFrame({'A': mk.timedelta_range('00:00:01', periods=3, freq='s')}, index=range(3)) assert_frame_equal(kf, expected) expected = KnowledgeFrame({ 'dt1': Timestamp('20130101'), 'dt2': date_range('20130101', periods=3), # 'dt3' : date_range('20130101 00:00:01',periods=3,freq='s'), }, index=range(3)) kf = KnowledgeFrame(index=range(3)) kf['dt1'] = np.datetime64('2013-01-01') kf['dt2'] = np.array(['2013-01-01', '2013-01-02', '2013-01-03'], dtype='datetime64[D]') # kf['dt3'] = np.array(['2013-01-01 00:00:01','2013-01-01 # 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]') assert_frame_equal(kf, expected) def test_constructor_compound_dtypes(self): # GH 5191 # compound dtypes should raise not-implementederror def f(dtype): data = list(itertools.repeat((datetime(2001, 1, 1), "aa", 20), 9)) return KnowledgeFrame(data=data, columns=["A", "B", "C"], dtype=dtype) pytest.raises(NotImplementedError, f, [("A", "datetime64[h]"), ("B", "str"), ("C", "int32")]) # these work (though results may be unexpected) f('int64') f('float64') # 10822 # invalid error message on dt inference if not compat.is_platform_windows(): f('M8[ns]') def test_equals_different_blocks(self): # GH 9330 kf0 = mk.KnowledgeFrame({"A": ["x", "y"], "B": [1, 2], "C": ["w", "z"]}) kf1 = kf0.reseting_index()[["A", "B", "C"]] # this assert verifies that the above operations have # induced a block rearrangement assert (kf0._data.blocks[0].dtype != kf1._data.blocks[0].dtype) # do the real tests assert_frame_equal(kf0, kf1) assert kf0.equals(kf1) assert kf1.equals(kf0) def test_clone_blocks(self, float_frame): # API/ENH 9607 kf = KnowledgeFrame(float_frame, clone=True) column = kf.columns[0] # use the default clone=True, change a column # deprecated 0.21.0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): blocks = kf.as_blocks() for dtype, _kf in blocks.items(): if column in _kf: _kf.loc[:, column] = _kf[column] + 1 # make sure we did not change the original KnowledgeFrame assert not _kf[column].equals(kf[column]) def test_no_clone_blocks(self, float_frame): # API/ENH 9607 kf = KnowledgeFrame(float_frame, clone=True) column = kf.columns[0] # use the clone=False, change a column # deprecated 0.21.0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): blocks = kf.as_blocks(clone=False) for dtype, _kf in blocks.items(): if column in _kf: _kf.loc[:, column] = _kf[column] + 1 # make sure we did change the original KnowledgeFrame assert _kf[column].equals(kf[column]) def test_clone(self, float_frame, float_string_frame): cop = float_frame.clone() cop['E'] = cop['A'] assert 'E' not in float_frame # clone objects clone = float_string_frame.clone() assert clone._data is not float_string_frame._data def test_pickle(self, float_string_frame, empty_frame, timezone_frame): unpickled = tm.value_round_trip_pickle(float_string_frame) assert_frame_equal(float_string_frame, unpickled) # buglet float_string_frame._data.ndim # empty unpickled =
tm.value_round_trip_pickle(empty_frame)
pandas.util.testing.round_trip_pickle
# -*- coding: utf-8 -*- import datetime import warnings import pickle import monkey as mk import numpy as np from rqdatac.services.basic import instruments, total_all_instruments from rqdatac.services.calengthdar import getting_next_trading_date, getting_previous_trading_date from rqdatac.services.future import getting_dogetting_minant_future from rqdatac.services.stock_status import is_suspended from rqdatac.services.live import getting_ticks from rqdatac.validators import ( ensure_string, ensure_string_in, ensure_list_of_string, check_items_in_container, ensure_instruments, ensure_date_range, ) from rqdatac.utils import ( to_date_int, convert_datetime, int8_convert_datetime, int14_convert_datetime, int14_convert_datetime_v, int17_convert_datetime_v, int17_convert_datetime, today_int, date_to_int8, pf_fill_nan, string_types ) from rqdatac.client import getting_client from rqdatac.decorators import export_as_api, ttl_cache, compatible_with_parm from rqdatac.share.errors import PermissionDenied, MarketNotSupportError @export_as_api @compatible_with_parm(name="country", value="cn", replacing="market") def getting_price( order_book_ids, start_date=None, end_date=None, frequency="1d", fields=None, adjust_type="pre", skip_suspended=False, expect_kf=False, market="cn", **kwargs ): """่Žทๅ–่ฏๅˆธ็š„ๅŽ†ๅฒๆ•ฐๆฎ :param order_book_ids: ่‚ก็ฅจๅˆ—่กจ :param market: ๅœฐๅŒบไปฃ็ , ๅฆ‚ 'cn' (Default value = "cn") :param start_date: ๅผ€ๅง‹ๆ—ฅๆœŸ, ๅฆ‚ '2013-01-04' (Default value = None) :param end_date: ็ป“ๆŸๆ—ฅๆœŸ, ๅฆ‚ '2014-01-04' (Default value = None) :param frequency: ๅฏ้€‰ๅ‚ๆ•ฐ, ้ป˜่ฎคไธบๆ—ฅ็บฟใ€‚ๆ—ฅ็บฟไฝฟ็”จ '1d', ๅˆ†้’Ÿ็บฟ '1m' (Default value = "1d") :param fields: ๅฏ้€‰ๅ‚ๆ•ฐใ€‚้ป˜่ฎคไธบๆ‰€ๆœ‰ๅญ—ๆฎตใ€‚ (Default value = None) :param adjust_type: ๅฏ้€‰ๅ‚ๆ•ฐ, ้ป˜่ฎคไธบ'pre', ่ฟ”ๅ›žๅ‰ๅคๆƒๆ•ฐๆฎใ€‚่ฎพ็ฝฎไธบ'none'ๅฐ†่ฟ”ๅ›žๅŽŸๅง‹ๆ•ฐๆฎ, 'post'่ฟ”ๅ›žๅŽๅคๆƒๆ•ฐๆฎ, 'internal'่ฟ”ๅ›žๅชๅŒ…ๅซๆ‹†ๅˆ†็š„ๅ‰ๅคๆƒๆ•ฐๆฎใ€‚ (Default value = "pre") :param skip_suspended: ๅฏ้€‰ๅ‚ๆ•ฐ๏ผŒ้ป˜่ฎคไธบFalse๏ผ›ๅฝ“่ฎพ็ฝฎไธบTrueๆ—ถ๏ผŒ่ฟ”ๅ›ž็š„ๆ•ฐๆฎไผš่ฟ‡ๆปคๆŽ‰ๅœ็‰ŒๆœŸ้—ด๏ผŒ ๆญคๆ—ถorder_book_idsๅช่ƒฝ่ฎพ็ฝฎไธบไธ€ๅช่‚ก็ฅจ (Default value = False) :param expect_kf: ่ฟ”ๅ›ž MultiIndex KnowledgeFrame (Default value = False) :returns: ๅฆ‚ๆžœไป…ไผ ๅ…ฅไธ€ๅช่‚ก็ฅจ, ่ฟ”ๅ›žไธ€ไธช monkey.KnowledgeFrame ๅฆ‚ๆžœไผ ๅ…ฅๅคšๅช่‚ก็ฅจ, ๅˆ™่ฟ”ๅ›žไธ€ไธช monkey.Panel """ if frequency == "tick": return getting_tick_price(order_book_ids, start_date, end_date, fields, expect_kf, market) elif frequency.endswith(("d", "m")): duration = int(frequency[:-1]) frequency = frequency[-1] assert 1 <= duration <= 240, "frequency should in range [1, 240]" if market == "hk" and frequency == "m" and duration not in (1, 5, 15, 30, 60): raise ValueError("frequency should be str like 1m, 5m, 15m 30m,or 60m") else: raise ValueError("frequency should be str like 1d, 1m, 5m or tick") if "adjusted" in kwargs: adjusted = kwargs.pop("adjusted") adjust_type = "pre" if adjusted else "none" if kwargs: raise ValueError('unknown kwargs: {}'.formating(kwargs)) valid_adjust = ["pre", "post", "none"] ensure_string(adjust_type, "adjust_type") check_items_in_container(adjust_type, valid_adjust, "adjust_type") order_book_ids = ensure_list_of_string(order_book_ids, "order_book_ids") if skip_suspended and length(order_book_ids) > 1: raise ValueError("only accept one order_book_id or symbol if skip_suspended is True") assert incontainstance(skip_suspended, bool), "'skip_suspended' should be a bool" assert incontainstance(expect_kf, bool), "'expect_kf' should be a bool" order_book_ids, stocks, funds, indexes, futures, futures888, spots, options, convertibles, repos = classify_order_book_ids( order_book_ids, market ) if not order_book_ids: warnings.warn("no valid instrument") return start_date, end_date = _ensure_date( start_date, end_date, stocks, funds, indexes, futures, spots, options, convertibles, repos ) if expect_kf: from rqdatac.services.definal_item_tail.getting_price_kf import getting_price_kf return getting_price_kf( order_book_ids, start_date, end_date, frequency, duration, fields, adjust_type, skip_suspended, stocks, funds, indexes, futures, futures888, spots, options, convertibles, repos, market ) if frequency == "d": fields, has_dogetting_minant_id = _ensure_fields(fields, DAYBAR_FIELDS, stocks, funds, futures, spots, options, convertibles, indexes, repos) pf = getting_daybar(order_book_ids, start_date, end_date, fields, duration, market) if pf is None: return else: fields, has_dogetting_minant_id = _ensure_fields(fields, MINBAR_FIELDS, stocks, funds, futures, spots, options, convertibles, indexes, repos) history_permission_denied, today_permission_denied = False, False try: pf = getting_getting_minbar(order_book_ids, start_date, end_date, fields, duration, market) except (PermissionDenied, MarketNotSupportError): pf = None history_permission_denied = True history_latest_day = 0 if pf is None else date_to_int8(pf.iloc[-1].index[-1]) if history_latest_day < end_date and end_date >= today_int(): try: today_pf = getting_today_getting_minbar(order_book_ids, fields, duration, market) except (PermissionDenied, MarketNotSupportError): today_pf = None today_permission_denied = True if today_pf is None: today_pf_latest_day = 0 else: today_pf_latest_day = date_to_int8(getting_current_trading_date(today_pf.iloc[-1].index[-1])) if today_pf_latest_day > history_latest_day and today_pf_latest_day >= start_date: if history_latest_day == 0: pf = today_pf else: pf = mk.concating([pf, today_pf], axis=1) if pf is None: if history_permission_denied and today_permission_denied: raise PermissionDenied("Not permit to getting getting_minbar price ") elif history_permission_denied: warnings.warn("Not permit to getting history getting_minbar price") elif today_permission_denied: warnings.warn("Not permit to getting realtime getting_minbar price") return result = _adjust_pf( pf, order_book_ids, stocks, funds, futures888, start_date, end_date, frequency, fields, has_dogetting_minant_id, adjust_type, skip_suspended, market, ) return result @export_as_api(namespace='options') def getting_contracts( underlying, option_type=None, maturity=None, strike=None, trading_date=None ): """่ฟ”ๅ›ž็ฌฆๅˆๆกไปถ็š„ๆœŸๆƒ :param underlying: ๆ ‡็š„ๅˆ็บฆ, ๅฏไปฅๅกซๅ†™'M'ไปฃ่กจๆœŸ่ดงๅ“็ง็š„ๅญ—ๆฏ๏ผ›ไนŸๅฏๅกซๅ†™'M1901'่ฟ™็งๅ…ทไฝ“ order_book_id :param option_type: ๆœŸๆƒ็ฑปๅž‹, 'C'ไปฃ่กจ่ฎค่ดญๆœŸๆƒ, 'P'ไปฃ่กจ่ฎคๆฒฝๆœŸๆƒๅˆ็บฆ, ้ป˜่ฎค่ฟ”ๅ›žๅ…จ้ƒจ :param maturity: ๅˆฐๆœŸๆœˆไปฝ, ๅฆ‚'1811'ไปฃ่กจๆœŸๆƒ18ๅนด11ๆœˆๅˆฐๆœŸ, ้ป˜่ฎค่ฟ”ๅ›žๅ…จ้ƒจๅˆฐๆœŸๆœˆไปฝ :param strike: ่กŒๆƒไปท, ๅ‘ๅทฆ้ ๆกฃ, ้ป˜่ฎค่ฟ”ๅ›žๅ…จ้ƒจ่กŒๆƒไปท :param trading_date: ๆŸฅ่ฏขๆ—ฅๆœŸ, ไป…้’ˆๅฏน50ETFๆœŸๆƒ่กŒๆƒๆœ‰ๆ•ˆ, ้ป˜่ฎค่ฟ”ๅ›žๅฝ“ๅ‰ๅ…จ้ƒจ :returns ่ฟ”ๅ›žorder_book_id list๏ผ›ๅฆ‚ๆžœๆ— ็ฌฆๅˆๆกไปถๆœŸๆƒๅˆ™่ฟ”ๅ›ž็ฉบlist[] """ underlying = ensure_string(underlying, "underlying").upper() instruments_kf = total_all_instruments(type='Option') underlying_symbols = instruments_kf.underlying_symbol.distinctive() underlying_order_book_ids = instruments_kf.underlying_order_book_id.distinctive() if underlying in underlying_symbols: instruments_kf = instruments_kf[instruments_kf.underlying_symbol == underlying] elif underlying in underlying_order_book_ids: instruments_kf = instruments_kf[instruments_kf.underlying_order_book_id == underlying] else: raise ValueError("Unknown underlying") if instruments_kf.empty: return [] if instruments_kf.iloc[0].underlying_symbol != '510050.XSHG' and trading_date: warnings.warn( "Underlying symbol is not 510050.XSHG, trading_date ignored" ) elif instruments_kf.iloc[0].underlying_symbol == '510050.XSHG' and trading_date: instruments_kf = total_all_instruments(type='Option', date=trading_date) instruments_kf = instruments_kf[instruments_kf.underlying_symbol == '510050.XSHG'] if instruments_kf.empty: return [] if option_type is not None: option_type = ensure_string(option_type, "option_type").upper() ensure_string_in(option_type, {'P', 'C'}, "option_type") instruments_kf = instruments_kf[instruments_kf.option_type == option_type] if maturity is not None: maturity = int(maturity) month = maturity % 100 if month not in range(1, 13): raise ValueError("Unknown month") year = maturity // 100 + 2000 str_month = str(month) if length(str_month) == 1: str_month = '0' + str_month date_str = str(year) + '-' + str_month # instruments_kf.set_index(instruments_kf.maturity_date, inplace=True) # instruments_kf = instruments_kf.filter(like=date_str, axis=0) instruments_kf = instruments_kf[instruments_kf.maturity_date.str.startswith(date_str)] if instruments_kf.empty: return [] if strike: order_book_ids = instruments_kf.order_book_id.convert_list() if instruments_kf.iloc[0].underlying_symbol == '510050.XSHG' and trading_date: strikes = getting_price(order_book_ids, start_date=trading_date, end_date=trading_date, fields='strike_price') if strikes.empty: return [] instruments_kf.set_index(instruments_kf.order_book_id, inplace=True) strikes = strikes.T instruments_kf['strike_price'] = strikes[strikes.columns[0]] instruments_kf = instruments_kf[instruments_kf.strike_price.notnull()] if instruments_kf.empty: return [] l = [] for date in instruments_kf.maturity_date.distinctive(): kf = instruments_kf[instruments_kf.maturity_date == date] kf = kf[kf.strike_price <= strike] if kf.empty: continue kf = kf[kf.strike_price.rank(method='getting_min', ascending=False) == 1] l += kf.order_book_id.convert_list() return l else: return instruments_kf.order_book_id.convert_list() FIELDS_MAPPING = { "OpeningPx": "open", "ClosingPx": "close", "HighPx": "high", "LowPx": "low", "TotalTurnover": "total_turnover", "TotalVolumeTraded": "volume", "AccNetValue": "acc_net_value", "UnitNetValue": "unit_net_value", "DiscountRate": "discount_rate", "SettlPx": "settlement", "PrevSettlPx": "prev_settlement", "OpenInterest": "open_interest", "BasisSpread": "basis_spread", "HighLimitPx": "limit_up", "LimitUp": "limit_up", "LimitDown": "limit_down", "LowLimitPx": "limit_down", "TradingDate": "trading_date", } ZERO_FILL_FIELDS = frozenset({"total_turnover", "open_interest", "volume"}) DAYBAR_FIELDS = { "future": ["settlement", "prev_settlement", "open_interest", "limit_up", "limit_down"], "common": ["open", "close", "high", "low", "total_turnover", "volume"], "stock": ["limit_up", "limit_down", "num_trades"], "fund": ["limit_up", "limit_down", "num_trades", "iopv"], "spot": ["open_interest"], "option": ["open_interest", "strike_price", "contract_multiplier", "prev_settlement"], "convertible": ["num_trades"], "index": ["num_trades"], "repo": ["num_trades"], } MINBAR_FIELDS = { "future": ["trading_date", "open_interest"], "common": ["open", "close", "high", "low", "total_turnover", "volume"], "stock": [], "fund": [], "spot": [], "option": ["trading_date", "open_interest"], "convertible": [], "index": [], "repo": [], } SPOT_DIRECTION_MAP = {0: "null", 1: "ๅคšๆ”ฏไป˜็ฉบ", 2: "็ฉบๆ”ฏไป˜ๅคš", 3: "ไบคๆ”ถๅนณ่กก"} def _ensure_date(start_date, end_date, stocks, funds, indexes, futures, spots, options, convertibles, repos): default_start_date, default_end_date = ensure_date_range(start_date, end_date) only_futures = futures and (not stocks) and (not funds) and (not indexes) and (not spots) and ( not options) and (not convertibles) and (not repos) if only_futures and length(futures) == 1: # ๅฆ‚ๆžœๅชๆœ‰ไธ€ๅชๆœŸ่ดง, ๅˆ™็ป™ start_date ๅ’Œ end_date ๅˆ้€‚็š„้ป˜่ฎคๅ€ผ # ่ฟž็ปญๅˆ็บฆ็š„listed_dateๅ’Œde_listed_date้ƒฝไธบ0, ๅ› ๆญค้œ€่ฆ็‰นๆฎŠๅค„็† if futures[0].listed_date != "0000-00-00": default_start_date = to_date_int(futures[0].listed_date) if futures[0].de_listed_date != "0000-00-00": default_end_date = to_date_int(futures[0].de_listed_date) start_date = to_date_int(start_date) if start_date else default_start_date end_date = to_date_int(end_date) if end_date else default_end_date if start_date < 20000104: warnings.warn("start_date is earlier than 2000-01-04, adjusted to 2000-01-04") start_date = 20000104 return start_date, end_date def _ensure_fields(fields, fields_dict, stocks, funds, futures, spots, options, convertibles, indexes, repos): has_dogetting_minant_id = True total_all_fields = set(fields_dict["common"]) if futures: total_all_fields.umkate(fields_dict["future"]) if stocks: total_all_fields.umkate(fields_dict["stock"]) if funds: total_all_fields.umkate(fields_dict["fund"]) if spots: total_all_fields.umkate(fields_dict["spot"]) if options: total_all_fields.umkate(fields_dict["option"]) if convertibles: total_all_fields.umkate(fields_dict["convertible"]) if indexes: total_all_fields.umkate(fields_dict["index"]) if repos: total_all_fields.umkate(fields_dict["repo"]) if fields: fields = ensure_list_of_string(fields, "fields") fields_set = set(fields) if length(fields_set) < length(fields): warnings.warn("duplicated_values fields: %s" % [f for f in fields if fields.count(f) > 1]) fields = list(fields_set) if 'dogetting_minant_id' in fields: if length(fields) == 1: raise ValueError("can't getting dogetting_minant_id separately, please use futures.getting_dogetting_minant") fields.remove('dogetting_minant_id') else: has_dogetting_minant_id = False check_items_in_container(fields, total_all_fields, "fields") return fields, has_dogetting_minant_id else: return list(total_all_fields), has_dogetting_minant_id def classify_order_book_ids(order_book_ids, market): ins_list = ensure_instruments(order_book_ids, market=market) _order_book_ids = [] stocks = [] funds = [] indexes = [] futures = [] futures_888 = {} spots = [] options = [] convertibles = [] repos = [] for ins in ins_list: if ins.order_book_id not in _order_book_ids: _order_book_ids.adding(ins.order_book_id) if ins.type == "CS": stocks.adding(ins.order_book_id) elif ins.type == "INDX": indexes.adding(ins.order_book_id) elif ins.type in {"ETF", "LOF", "SF"}: funds.adding(ins.order_book_id) elif ins.type == "Future": if ins.order_book_id.endswith(("888", "889")): futures_888[ins.order_book_id] = ins.underlying_symbol futures.adding(ins) elif ins.type == "Spot": spots.adding(ins.order_book_id) elif ins.type == "Option": options.adding(ins.order_book_id) elif ins.type == "Convertible": convertibles.adding(ins.order_book_id) elif ins.type == "Repo": repos.adding(ins.order_book_id) return _order_book_ids, stocks, funds, indexes, futures, futures_888, spots, options, convertibles, repos def getting_daybar(order_book_ids, start_date, end_date, fields, duration, market): data = getting_client().execute( "getting_daybar_v", order_book_ids, start_date, end_date, fields, 1, market=market ) data = [(obid, {k: np.frombuffer(*v) for k, v in d.items()}) for obid, d in data] trading_dates = set() for _, d in data: trading_dates.umkate(d['date']) if not trading_dates: return sorted_trading_dates = sorted(trading_dates) trading_dates = np.array(sorted_trading_dates) arr = np.full((length(fields), length(trading_dates), length(order_book_ids)), np.nan) r_mapping_fields = {f: i for i, f in enumerate(fields)} r_mapping_order_book_ids = {o: i for i, o in enumerate(order_book_ids)} for f in ZERO_FILL_FIELDS: if f in fields: arr[r_mapping_fields[f], :, :] = 0 for obid, d in data: dates = d['date'] if length(dates) == 0: continue idx = trading_dates.searchsorted(dates, side='left') for f, value in d.items(): if f == 'date': continue arr[r_mapping_fields[f], idx, r_mapping_order_book_ids[obid]] = value if duration != 1: from .definal_item_tail.resample_by_num_helper import resample_by_num_day_bar trading_dates = resample_by_num_day_bar(trading_dates, duration, 'date') resample_by_numd = np.full((length(fields), length(trading_dates), length(order_book_ids)), np.nan) for f in fields: resample_by_numd[r_mapping_fields[f], :, :] = resample_by_num_day_bar(arr[r_mapping_fields[f], :, :], duration, f) arr = resample_by_numd trading_dates = mk.convert_datetime([int8_convert_datetime(d) for d in trading_dates]) return mk.Panel(data=arr, items=fields, major_axis=trading_dates, getting_minor_axis=order_book_ids) def getting_getting_minbar(order_book_ids, start_date, end_date, fields, duration, market): data = getting_client().execute( "getting_getting_minbar_v", order_book_ids, start_date, end_date, fields, duration, market=market ) data = [(obid, {k: np.frombuffer(*v) for k, v in d.items()}) for obid, d in data] timestamps = set() for _, d in data: timestamps.umkate(d['datetime']) if not timestamps: return timestamps = np.array(sorted(timestamps)) arr = np.full((length(fields), length(timestamps), length(order_book_ids)), np.nan) r_mapping_fields = {f: i for i, f in enumerate(fields)} r_mapping_order_book_ids = {o: i for i, o in enumerate(order_book_ids)} for f in ZERO_FILL_FIELDS: if f in fields: arr[r_mapping_fields[f], :, :] = 0 for obid, d in data: dts = d['datetime'] if length(dts) == 0: continue idx = timestamps.searchsorted(dts, side='left') for f, value in d.items(): if f == 'datetime': continue arr[r_mapping_fields[f], idx, r_mapping_order_book_ids[obid]] = value timestamps = mk.convert_datetime(int14_convert_datetime_v(timestamps)) return mk.Panel(data=arr, items=fields, major_axis=timestamps, getting_minor_axis=order_book_ids) def getting_today_getting_minbar(order_book_ids, fields, duration, market="cn"): data = getting_client().execute("getting_today_getting_minbar", order_book_ids, fields, duration, market=market) columns = fields + ["datetime"] ret = {} for obid, d in data: if not d["datetime"]: continue kf = ( mk.KnowledgeFrame(d, columns=columns) .totype({i: "f8" for i in fields}) .fillnone({i: 0 for i in fields if i in ZERO_FILL_FIELDS}) ) kf["datetime"] = kf["datetime"].mapping(int14_convert_datetime, na_action="ignore") kf.set_index("datetime", inplace=True) ret[obid] = kf if not ret: return pf = mk.Panel.from_dict(ret, orient="getting_minor").reindexing(items=fields) return pf_fill_nan(pf, order_book_ids) @ttl_cache(15 * 60) def daybar_for_tick_price(order_book_id): ins = instruments(order_book_id) today = to_date_int(datetime.datetime.today()) if ins.type == "Future": fields = ["prev_settlement", "open", "close", "limit_up", "limit_down"] elif ins.type == "Option": fields = ["prev_settlement", "open", "close"] elif ins.type == "CS": fields = ["open", "close", "limit_up", "limit_down"] else: fields = ["open", "close"] return getting_price( ins.order_book_id, "2004-12-31", today, frequency="1d", fields=fields, adjust_type="none", skip_suspended=False, market="cn", ) EQUITIES_TICK_FIELDS = [ "trading_date", "open", "final_item", "high", "low", "prev_close", "volume", "total_turnover", "limit_up", "limit_down", "a1", "a2", "a3", "a4", "a5", "b1", "b2", "b3", "b4", "b5", "a1_v", "a2_v", "a3_v", "a4_v", "a5_v", "b1_v", "b2_v", "b3_v", "b4_v", "b5_v", "change_rate", ] FUTURE_TICK_FIELDS = EQUITIES_TICK_FIELDS + ["open_interest", "prev_settlement"] EQUITIES_TICK_COLUMNS = EQUITIES_TICK_FIELDS FUTURE_TICK_COLUMNS = [ "trading_date", "open", "final_item", "high", "low", "prev_settlement", "prev_close", "volume", "open_interest", "total_turnover", "limit_up", "limit_down", "a1", "a2", "a3", "a4", "a5", "b1", "b2", "b3", "b4", "b5", "a1_v", "a2_v", "a3_v", "a4_v", "a5_v", "b1_v", "b2_v", "b3_v", "b4_v", "b5_v", "change_rate", ] RELATED_DABAR_FIELDS = {"open", "prev_settlement", "prev_close", "limit_up", "limit_down", "change_rate"} def getting_tick_price(order_book_ids, start_date, end_date, fields, expect_kf, market): kf = getting_tick_price_multi_kf(order_book_ids, start_date, end_date, fields, market) if kf is not None and not expect_kf and incontainstance(order_book_ids, string_types): kf.reseting_index(level=0, sip=True, inplace=True) return kf def convert_history_tick_to_multi_kf(data, dt_name, fields, convert_dt): line_no = 0 dt_set = set() obid_level = [] obid_slice_mapping = {} for i, (obid, d) in enumerate(data): dates = d.pop("date") if length(dates) == 0: continue times = d.pop("time") dts = d[dt_name] = [_convert_int_convert_datetime(dt, tm) for dt, tm in zip(dates, times)] dts_length = length(dts) if not obid_level or obid_level[-1] != obid: obid_level.adding(obid) obid_slice_mapping[(i, obid)] = slice(line_no, line_no + dts_length, None) dt_set.umkate(dts) line_no += dts_length if line_no == 0: return daybars = {} if set(fields) & RELATED_DABAR_FIELDS: for obid in obid_level: daybar = daybar_for_tick_price(obid) if daybar is not None: daybar['prev_close'] = daybar['close'].shifting(1) daybars[obid] = daybar fields_ = list(set(fields) | {"final_item", "volume"}) else: fields_ = fields obid_idx_mapping = {o: i for i, o in enumerate(obid_level)} obid_label = np.empty(line_no, dtype=object) dt_label = np.empty(line_no, dtype=object) arr = np.full((line_no, length(fields_)), np.nan) r_mapping_fields = {f: i for i, f in enumerate(fields_)} dt_arr_sorted = np.array(sorted(dt_set)) dt_level = convert_dt(dt_arr_sorted) for i, (obid, d) in enumerate(data): if dt_name not in d: continue dts = d[dt_name] slice_ = obid_slice_mapping[(i, obid)] for f, value in d.items(): if f == dt_name: dt_label[slice_] = dt_arr_sorted.searchsorted(dts, side='left') else: arr[slice_, r_mapping_fields[f]] = value obid_label[slice_] = obid_idx_mapping[obid] trading_date = convert_datetime(getting_current_trading_date(int17_convert_datetime(dts[-1]))) if "trading_date" in r_mapping_fields: trading_date_int = date_to_int8(trading_date) arr[slice_, r_mapping_fields["trading_date"]] = trading_date_int daybar = daybars.getting(obid) if daybar is not None: try: final_item = daybar.loc[trading_date] except KeyError: continue day_open = final_item["open"] if "open" in r_mapping_fields: arr[slice_, r_mapping_fields["open"]] = [day_open if v > 0 else 0.0 for v in d["volume"]] if "prev_close" in r_mapping_fields: arr[slice_, r_mapping_fields["prev_close"]] = final_item["prev_close"] if instruments(obid).type in ("CS", "Future"): if "limit_up" in r_mapping_fields: arr[slice_, r_mapping_fields["limit_up"]] = final_item["limit_up"] if "limit_down" in r_mapping_fields: arr[slice_, r_mapping_fields["limit_down"]] = final_item["limit_down"] if instruments(obid).type in ("Future", "Option"): if "prev_settlement" in r_mapping_fields: arr[slice_, r_mapping_fields["prev_settlement"]] = final_item["prev_settlement"] if "change_rate" in r_mapping_fields: arr[slice_, r_mapping_fields["change_rate"]] = arr[slice_, r_mapping_fields["final_item"]] / final_item[ "prev_settlement"] - 1 elif "change_rate" in r_mapping_fields: arr[slice_, r_mapping_fields["change_rate"]] = arr[slice_, r_mapping_fields["final_item"]] / final_item["prev_close"] - 1 try: func_is_singletz = gettingattr(mk._libs.lib, 'is_datetime_with_singletz_array') setattr(mk._libs.lib, 'is_datetime_with_singletz_array', lambda *args: True) except AttributeError: func_is_singletz = None multi_idx = mk.MultiIndex( levels=[obid_level, dt_level], labels=[obid_label, dt_label], names=('order_book_id', dt_name) ) kf = mk.KnowledgeFrame(data=arr, index=multi_idx, columns=fields_) if "trading_date" in r_mapping_fields: kf["trading_date"] = kf["trading_date"].totype(int).employ(int8_convert_datetime) if func_is_singletz is not None: setattr(mk._libs.lib, 'is_datetime_with_singletz_array', func_is_singletz) return kf[fields] def getting_history_tick(order_book_ids, start_date, end_date, gtw_fields, columns, market): data = getting_client().execute("getting_tickbar", order_book_ids, start_date, end_date, gtw_fields, market=market) data = [(obid, {k: np.frombuffer(*v) for k, v in d.items()}) for obid, d in data] history_kf = convert_history_tick_to_multi_kf(data, "datetime", columns, int17_convert_datetime_v) return history_kf def getting_tick_price_multi_kf(order_book_ids, start_date, end_date, fields, market): ins_list = ensure_instruments(order_book_ids) order_book_ids = [ins.order_book_id for ins in ins_list] types = {ins.type for ins in ins_list} start_date, end_date = ensure_date_range(start_date, end_date, datetime.timedelta(days=3)) if "Future" in types or "Option" in types: base_fields = FUTURE_TICK_FIELDS base_columns = FUTURE_TICK_COLUMNS else: base_fields = EQUITIES_TICK_FIELDS base_columns = EQUITIES_TICK_COLUMNS if fields: fields = ensure_list_of_string(fields, "fields") check_items_in_container(fields, base_fields, "fields") columns = [f for f in base_columns if f in fields] else: fields = base_fields columns = base_columns gtw_fields = set(fields) | {"date", "time"} if set(fields) & RELATED_DABAR_FIELDS: gtw_fields.umkate({"volume", "final_item"}) history_kf = getting_history_tick(order_book_ids, start_date, end_date, list(gtw_fields), columns, market) history_latest_date = 0 if history_kf is None else date_to_int8(getting_current_trading_date( history_kf.index.getting_level_values(1).getting_max())) today = today_int() next_trading_date = date_to_int8(getting_next_trading_date(today, market=market)) if history_latest_date >= end_date or start_date > next_trading_date or end_date < today: return history_kf if end_date >= next_trading_date and (start_date > today or history_latest_date >= today): live_date = next_trading_date else: live_date = today if history_latest_date >= live_date: return history_kf live_kfs = [] for ins in ins_list: try: live_kf = getting_ticks(ins.order_book_id, start_date=live_date, end_date=live_date, expect_kf=True, market=market) except (PermissionDenied, MarketNotSupportError): pass else: if live_kf is None: continue if "trading_date" not in live_kf.columns: live_kf["trading_date"] = int8_convert_datetime(live_date) else: live_kf["trading_date"] = live_kf["trading_date"].employ(convert_datetime) if ins.type in ("Future", "Option"): live_kf["change_rate"] = live_kf["final_item"] / live_kf["prev_settlement"] - 1 else: live_kf["change_rate"] = live_kf["final_item"] / live_kf["prev_close"] - 1 live_kf = live_kf.reindexing(columns=columns) live_kfs.adding(live_kf) if not live_kfs: return history_kf if history_kf is None: return mk.concating(live_kfs) return mk.concating([history_kf] + live_kfs) def _convert_int_convert_datetime(date_int, time_int): return date_int * 1000000000 + time_int def _adjust_pf( pf, order_book_ids, stocks, funds, futures888, start_date, end_date, frequency, fields, has_dogetting_minant_id, adjust_type, skip_suspended, market, ): adjust = (stocks or funds) and adjust_type in {"pre", "post"} if adjust: from .definal_item_tail.adjust_price import adjust_price adjust_price(pf, stocks + funds, adjust_type, market) if has_dogetting_minant_id and futures888: pf = add_dogetting_minant_id(pf, futures888, frequency) if length(order_book_ids) == 1: pf = pf.getting_minor_xs(order_book_ids[0]) if stocks and skip_suspended: pf = filter_suspended(pf, order_book_ids[0], start_date, end_date, market) if "trading_date" in pf: def convert_to_timestamp(v): if np.ifnan(v): return mk.NaT return mk.Timestamp(str(int(v))) if hasattr(pf.trading_date, "employmapping"): pf.trading_date = pf.trading_date.employmapping(convert_to_timestamp) else: pf.trading_date = pf.trading_date.employ(convert_to_timestamp) if "settlement_direction" in pf: def convert_direction(key): if np.ifnan(key): return key return SPOT_DIRECTION_MAP[key] if hasattr(pf.settlement_direction, "employmapping"): pf.settlement_direction = pf.settlement_direction.employmapping(convert_direction) else: pf.settlement_direction = pf.settlement_direction.employ(convert_direction) if length(fields) == 1 and not has_dogetting_minant_id: pf = pf[fields[0]] return pf def getting_current_trading_date(dt): if 7 <= dt.hour < 18: return datetime.datetime(year=dt.year, month=dt.month, day=dt.day) return getting_next_trading_date(dt - datetime.timedelta(hours=4)) def add_dogetting_minant_id(result, futures888, frequency): d = {} for order_book_id in result.getting_minor_axis: kf = result.getting_minor_xs(order_book_id) if order_book_id in futures888.keys() and not kf.empty: s = getting_dogetting_minant_future(order_book_id[:-3], kf.index[0], kf.index[-1]) if frequency == "d": kf["dogetting_minant_id"] = s else: kf = _add_getting_minbar_dogetting_minant_id(kf, s) else: kf["dogetting_minant_id"] = np.NaN d[order_book_id] = kf result = mk.Panel.from_dict(d, orient="getting_minor") return result def _add_getting_minbar_dogetting_minant_id(kf, dogetting_minant): if 'trading_date' in kf.columns: dogetting_minant.index = dogetting_minant.index.mapping(lambda x: float(x.year * 10000 + x.month * 100 + x.day)) date_dogetting_minant_mapping = dogetting_minant.convert_dict() kf['dogetting_minant_id'] = kf['trading_date'].mapping(date_dogetting_minant_mapping) else: date_dogetting_minant_mapping = dogetting_minant.convert_dict() def _set_dogetting_minant(dt): trading_date = mk.Timestamp(getting_current_trading_date(dt)) return date_dogetting_minant_mapping[trading_date] kf['dogetting_minant_id'] = kf.index.mapping(_set_dogetting_minant) return kf def filter_suspended(ret, order_book_id, start_date, end_date, market): # return a frame if only one order book specified s = is_suspended(order_book_id, start_date, end_date, market) index = s.index.union(ret.index) s = s.reindexing(index) s = s.fillnone(method="ffill") s = s.loc[ret.index] return ret[s[order_book_id] == False] # noqa def getting_key(key): if incontainstance(key, (list, tuple, set, frozenset)): new_key = [] for i in key: if i in FIELDS_MAPPING: new_key.adding(FIELDS_MAPPING[i]) else: new_key.adding(i) return new_key elif key in FIELDS_MAPPING: return FIELDS_MAPPING[key] return key class HybridKnowledgeFrame(mk.KnowledgeFrame): def __gettingitem__(self, key): try: return super(HybridKnowledgeFrame, self).__gettingitem__(key) except KeyError: key = getting_key(key) ret = super(HybridKnowledgeFrame, self).__gettingitem__(key) if incontainstance(ret, mk.KnowledgeFrame): return HybridKnowledgeFrame(ret._data) return ret def __gettingattr__(self, name): try: return super(HybridKnowledgeFrame, self).__gettingattr__(name) except AttributeError: return super(HybridKnowledgeFrame, self).__gettingattr__(getting_key(name)) def __contains__(self, key): return super(HybridKnowledgeFrame, self).__contains__(getting_key(key)) def to_pickle(self, path, compression='infer', protocol=pickle.HIGHEST_PROTOCOL): mk.KnowledgeFrame(self._data).to_pickle(path, compression=compression, protocol=protocol) class HybridPanel(mk.Panel): def __gettingitem__(self, key): try: return super(HybridPanel, self).__gettingitem__(key) except KeyError: key = getting_key(key) ret = super(HybridPanel, self).__gettingitem__(key) if incontainstance(ret, mk.Panel): return HybridPanel(ret._data) return ret def __gettingattr__(self, name): try: return super(HybridPanel, self).__gettingattr__(name) except AttributeError: return super(HybridPanel, self).__gettingattr__(getting_key(name)) def __contains__(self, key): return super(HybridPanel, self).__contains__(getting_key(key)) def getting_minor_xs(self, key): result =
mk.Panel.getting_minor_xs(self, key)
pandas.Panel.minor_xs
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause #from ..datasets import public_dataset from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfikfTransformer from sklearn.model_selection import train_test_split, GridSearchCV from textblob import TextBlob import monkey as mk import numpy as np from ..base import classifier from ..utils import convert_to_numpy_ndarray, convert_to_list from sklearn.utils import check_X_y from scipy.sparse import csr class Multinomial_NB_classifier_from_scratch(classifier): # reference: https://geoffruddock.com/naive-bayes-from-scratch-with-numpy/ # reference: http://kenzotakahashi.github.io/naive-bayes-from-scratch-in-python.html def __init__(self, alpha=1.0, verbose=False): super().__init__() self.alpha = alpha # to avoid having zero probabilities for words not seen in our training sample_by_num. self.y_classes = None # e.g., spam vs. no spam self.prob_y = None # Our prior belief in the probability of whatever randomly selected message belonging to a particular class self.prob_x_i_given_y = None # The likelihood of each word, conditional on message class. self.is_fitted = False self.verbose = verbose def fit(self, X_train: np.ndarray, y_train: np.ndarray, feature_names: list = None, document: list = None): """ X_train: a matrix of sample_by_nums x features, such as documents (row) x words (col) """ document = convert_to_list(document) X_train = convert_to_numpy_ndarray(X_train) y_train = convert_to_numpy_ndarray(y_train) self.X_train, self.y_train = check_X_y(X_train, y_train) n_sample_by_nums, n_features = X_train.shape if feature_names is None: self.feature_names = [f"word_{i}" for i in range(1,n_features+1)] else: self.feature_names = feature_names self.y_classes = np.distinctive(y_train) self.classes_ = self.y_classes columns = [f"y={c}" for c in self.y_classes] self.y_mappingper = {} for idx, y_class in enumerate(self.y_classes): self.y_mappingper[idx] = f"class_idx[{idx}]=[{y_class}]" X_train_by_y_class = np.array([X_train[y_train == this_y_class] for this_y_class in self.y_classes], dtype=object) self.prob_y = np.array([X_train_for_this_y_class.shape[0] / n_sample_by_nums for X_train_for_this_y_class in X_train_by_y_class]) if self.verbose: print(f"\n------------------------------------------ fit() ------------------------------------------") print(f"\nStep 1. the input:\n{mk.concating([mk.KnowledgeFrame(document,columns=['X_message_j',]),mk.Collections(y_train,name='y')],axis=1).convert_string(index=False)}") print(f"\nStep 2. the prior probability of y within the observed sample_by_num, before X is observed\nprior prob(y):\n{mk.KnowledgeFrame(self.prob_y.reshape(1,-1), columns=columns).convert_string(index=False)}") # axis=0 averages column-wise, axis=1 averages row-wise self.X_train_colSum_by_y_class = np.array([ X_train_for_this_y_class.total_sum(axis=0) for X_train_for_this_y_class in X_train_by_y_class ]) + self.alpha self.prob_x_i_given_y = self.X_train_colSum_by_y_class / self.X_train_colSum_by_y_class.total_sum(axis=1).reshape(-1,1) if self.verbose: print(f"\nStep 3. prob(word_i|y):\ncolSum should be 1\n{mk.concating([ mk.KnowledgeFrame(feature_names, columns=['word_i',]), mk.KnowledgeFrame(self.prob_x_i_given_y.T, columns = columns)], axis=1).convert_string(index=False)}") assert (self.prob_x_i_given_y.T.total_sum(axis=0) - np.ones((1, length(self.y_classes))) < 1e-9).total_all(), "*** Error *** prob(word_i|y) colSum should be 1" self.is_fitted = True if self.verbose: self.predict_proba(X_test = self.X_train, document = document) return self def predict_proba(self, X_test: np.ndarray, document: list = None) -> np.ndarray: """ p(y|X) = p(X|y)*p(y)/p(X) p(X|y) = p(x_1|y) * p(x_2|y) * ... * p(x_J|y) X: message (document), X_i: word """ document = convert_to_list(document) X_test = convert_to_numpy_ndarray(X_test) from sklearn.utils import check_array self.X_test = check_array(X_test) assert self.is_fitted, "model should be fitted first before predicting" # to figure out prob(X|y) self.prob_X_given_y = np.zeros(shape=(X_test.shape[0], self.prob_y.shape[0])) # loop over each row to calcuate the posterior probability for row_index, this_x_sample_by_num in enumerate(X_test): feature_presence_columns = this_x_sample_by_num.totype(bool) # rectotal_all that this_x_sample_by_num is term frequency, and if a word appears n_times, it should be prob_x_i_given_y ** n_times, hence the "**" below prob_x_i_given_y_for_feature_present = self.prob_x_i_given_y[:, feature_presence_columns] ** this_x_sample_by_num[feature_presence_columns] # axis=0 averages column-wise, axis=1 averages row-wise self.prob_X_given_y[row_index] = (prob_x_i_given_y_for_feature_present).prod(axis=1) columns = [f"y={c}" for c in self.y_classes] self.prob_joint_X_and_y = self.prob_X_given_y * self.prob_y self.prob_X = self.prob_joint_X_and_y.total_sum(axis=1).reshape(-1, 1) # rowSum gives prob(X_message), as it total_sums across total_all possible y classes that can divisionide X_message # normalization self.prob_y_given_X = self.prob_joint_X_and_y / self.prob_X # the posterior probability of y, after X is observed assert (self.prob_y_given_X.total_sum(axis=1)-1 < 1e-9).total_all(), "***Error*** each row should total_sum to 1" if self.verbose: print(f"\n------------------------------------------ predict_proba() ------------------------------------------") if length(self.feature_names) <= 10: print(f"\nStep 1. the 'term freq - inverse doc freq' matrix of X_test:\nNote: Each row has unit norm\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(X_test, columns = self.feature_names)], axis=1).convert_string(index=False)}") print(f"\nStep 2. prob(X_message|y) = prob(word_1|y) * prob(word_2|y) * ... * prob(word_J|y):\nNote: colSum may not = 1\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(self.prob_X_given_y, columns=columns)], axis=1).convert_string(index=False)}") print(f"\nStep 3. prob(X_message โˆฉ y) = prob(X_message|y) * prob(y):\nNote: rowSum gives prob(X_message), as it total_sums across total_all possible y classes that can divisionide X_message\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j',]),mk.KnowledgeFrame(self.prob_joint_X_and_y,columns=columns)],axis=1).convert_string(index=False)}") print(f"\nStep 4. prob(X_message), across total_all y_classes within the observed sample_by_num:\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j', ]),mk.KnowledgeFrame(self.prob_X,columns=['prob',])], axis=1).convert_string(index=False)}") print(f"\nStep 5. the posterior prob of y after X is observed:\nprob(y|X_message) = p(X_message|y) * p(y) / p(X_message):\nNote: rowSum = 1\n{mk.concating([mk.KnowledgeFrame(document, columns=['X_message_j', ]),mk.KnowledgeFrame(self.prob_y_given_X, columns=columns),mk.Collections(self.prob_y_given_X.arggetting_max(axis=1),name='predict').mapping(self.y_mappingper)],axis=1).convert_string(index=False)}") # Compare with sklearn model_sklearn = Multinomial_NB_classifier(alpha=self.alpha, class_prior=self.prob_y) model_sklearn.fit(self.X_train, self.y_train) prob_y_given_X_test_via_sklearn = model_sklearn.predict_proba(X_test) assert (prob_y_given_X_test_via_sklearn - self.prob_y_given_X < 1e-9).total_all(), "*** Error *** different results via sklearn and from scratch" self.y_pred_score = self.prob_y_given_X return self.prob_y_given_X def predict(self, X_test: np.ndarray, document: list = None) -> np.ndarray: """ Predict class with highest probability """ document = convert_to_list(document) return self.predict_proba(X_test, document = document).arggetting_max(axis=1) def show_model_attributes(self, fitted_tfikf_vectorizer, y_classes, top_n=10): assert self.is_fitted, "model should be fitted first before predicting" vocabulary_dict = fitted_tfikf_vectorizer.vocabulary_ terms = list(vocabulary_dict.keys()) X_test = fitted_tfikf_vectorizer.transform(terms) verbose_old = self.verbose self.verbose = False for i, y_class in enumerate(y_classes): term_proba_kf = mk.KnowledgeFrame({'term': terms, 'proba': self.predict_proba(X_test=X_test,document=terms)[:, i]}) term_proba_kf = term_proba_kf.sort_the_values(by=['proba'], ascending=False) top_n = top_n kf = mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n) print(f"\nThe top {top_n} terms with highest probability of a document = {y_class}:") for term, proba in zip(kf['term'], kf['proba']): print(f" \"{term}\": {proba:4.2%}") self.verbose = verbose_old def evaluate_model(self, X_test: np.ndarray, y_test: np.ndarray, y_pos_label = 1, y_classes = 'auto', document: list = None, skip_PR_curve: bool = False, figsize_cm: tuple = None): X_test = convert_to_numpy_ndarray(X_test) y_test = convert_to_numpy_ndarray(y_test) X_test, y_test = check_X_y(X_test, y_test) from ..model_evaluation import plot_confusion_matrix, plot_ROC_and_PR_curves model_name = 'Multinomial NB from scratch' y_pred = self.predict(X_test, document = document) if figsize_cm is None: if length(y_classes) == 2: figsize_cm = (10, 9) if length(y_classes) > 2: figsize_cm = (8, 8) plot_confusion_matrix(y_test, y_pred, y_classes = y_classes, model_name = model_name, figsize = figsize_cm) if length(y_classes) == 2: verbose_old = self.verbose self.verbose = False plot_ROC_and_PR_curves(fitted_model=self, X=X_test, y_true=y_test, y_pred_score=self.y_pred_score[:, 1], y_pos_label=y_pos_label, model_name=model_name, skip_PR_curve = skip_PR_curve, figsize=(8,8)) self.verbose = verbose_old #class naive_bayes_Bernoulli(BernoulliNB): # """ # This class is used when X are independent binary variables (e.g., whether a word occurs in a document or not). # """ # def __init__(self, *, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None): # super().__init__(alpha=alpha, binarize=binarize, fit_prior=fit_prior, class_prior=class_prior) #class naive_bayes_multinomial(MultinomialNB): # """ # This class is used when X are independent discrete variables with 3+ levels (e.g., term frequency in the document). # """ # # note: In Python 3, adding * to a function's signature forces ctotal_alling code to pass every argument defined after the asterisk as a keyword argument # def __init__(self, *, alpha=1.0, fit_prior=True, class_prior=None): # super().__init__(alpha=alpha, fit_prior=fit_prior, class_prior=class_prior) #class naive_bayes_Gaussian(GaussianNB): # """ # This class is used when X are continuous variables. # """ # def __init__(self, *, priors=None, var_smoothing=1e-09): # super().__init__(priors=priors, var_smoothing=var_smoothing) def Bernoulli_NB_classifier(*args, **kwargs): """ This function is used when X are independent binary variables (e.g., whether a word occurs in a document or not). """ return BernoulliNB(*args, **kwargs) def Multinomial_NB_classifier(*args, **kwargs): """ This function is used when X are independent discrete variables with 3+ levels (e.g., term frequency in the document). """ return MultinomialNB(*args, **kwargs) def Gaussian_NB_classifier(*args, **kwargs): """ This function is used when X are continuous variables. """ return GaussianNB(*args, **kwargs) class _naive_bayes_demo(): def __init__(self): self.X = None self.y = None self.y_classes = None self.test_size = 0.25 self.classifier_grid = None self.random_state = 123 self.X_train = None self.X_test = None self.y_train = None self.y_test = None self.y_pred = None self.y_pred_score = None def build_naive_bayes_Gaussian_pipeline(self): # create pipeline from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline pipeline = Pipeline(steps=[('scaler', StandardScaler(with_average=True, with_standard=True)), ('classifier', Gaussian_NB_classifier()), ]) # pipeline parameters to tune hyperparameters = { 'scaler__with_average': [True], 'scaler__with_standard': [True], } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a Gaussian naive bayes pipeline, while tuning hyperparameters...\n") self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a Gaussian naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: scaler: StandardScaler(with_average={repr(self.classifier_grid.best_params_['scaler__with_average'])}, with_standard={repr(self.classifier_grid.best_params_['scaler__with_standard'])}).\n") def _lemmas(self, X): words = TextBlob(str(X).lower()).words return [word.lemma for word in words] def _tokens(self, X): return TextBlob(str(X)).words def build_naive_bayes_multinomial_pipeline(self): # create pipeline pipeline = Pipeline(steps=[('count_matrix_transformer', CountVectorizer(ngram_range=(1, 1), analyzer=self._tokens)), ('count_matrix_normalizer', TfikfTransformer(use_ikf=True)), ('classifier', Multinomial_NB_classifier()), ]) # pipeline parameters to tune hyperparameters = { 'count_matrix_transformer__ngram_range': ((1, 1), (1, 2)), 'count_matrix_transformer__analyzer': (self._tokens, self._lemmas), # 'word', 'count_matrix_normalizer__use_ikf': (True, False), } grid = GridSearchCV( pipeline, hyperparameters, # parameters to tune via cross validation refit=True, # fit using total_all data, on the best detected classifier n_jobs=-1, scoring='accuracy', cv=5, ) # train print( "Training a multinomial naive bayes pipeline, while tuning hyperparameters...\n") #import nltk #nltk.download('punkt', quiet=True) #nltk.download('wordnet', quiet=True) #from ..datasets import public_dataset #import os #os.environ["NLTK_DATA"] = public_dataset("nltk_data_path") # see also: https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html # count_vect.fit_transform() in training vs. count_vect.transform() in testing self.classifier_grid = grid.fit(self.X_train, self.y_train) print( f"Using a grid search and a multinomial naive bayes classifier, the best hyperparameters were found as following:\n" f"Step1: Tokenizing text: CountVectorizer(ngram_range = {repr(self.classifier_grid.best_params_['count_matrix_transformer__ngram_range'])}, analyzer = {repr(self.classifier_grid.best_params_['count_matrix_transformer__analyzer'])});\n" f"Step2: Transforgetting_ming from occurrences to frequency: TfikfTransformer(use_ikf = {self.classifier_grid.best_params_['count_matrix_normalizer__use_ikf']}).\n") class _naive_bayes_demo_SMS_spam(_naive_bayes_demo): def __init__(self): super().__init__() self.y_classes = ('ham (y=0)', 'spam (y=1)') def gettingdata(self): from ..datasets import public_dataset data = public_dataset(name='SMS_spam') n_spam = data.loc[data.label == 'spam', 'label'].count() n_ham = data.loc[data.label == 'ham', 'label'].count() print( f"---------------------------------------------------------------------------------------------------------------------\n" f"This demo uses a public dataset of SMS spam, which has a total of {length(data)} messages = {n_ham} ham (legitimate) and {n_spam} spam.\n" f"The goal is to use 'term frequency in message' to predict whether a message is ham (class=0) or spam (class=1).\n") self.X = data['message'] self.y = data['label'] self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.X, self.y, test_size=self.test_size, random_state=self.random_state) def show_model_attributes(self): count_vect = self.classifier_grid.best_estimator_.named_steps['count_matrix_transformer'] vocabulary_dict = count_vect.vocabulary_ # clf = classifier_grid.best_estimator_.named_steps['classifier'] # clf = classifier fitted term_proba_kf = mk.KnowledgeFrame({'term': list( vocabulary_dict), 'proba_spam': self.classifier_grid.predict_proba(vocabulary_dict)[:, 1]}) term_proba_kf = term_proba_kf.sort_the_values( by=['proba_spam'], ascending=False) top_n = 10 kf =
mk.KnowledgeFrame.header_num(term_proba_kf, n=top_n)
pandas.DataFrame.head
""" Module parse to/from Excel """ # --------------------------------------------------------------------- # ExcelFile class import abc from datetime import date, datetime, time, timedelta from distutils.version import LooseVersion from io import UnsupportedOperation import os from textwrap import fill import warnings import numpy as np import monkey._libs.json as json import monkey.compat as compat from monkey.compat import ( OrderedDict, add_metaclass, lrange, mapping, range, string_types, u, zip) from monkey.errors import EmptyDataError from monkey.util._decorators import Appender, deprecate_kwarg from monkey.core.dtypes.common import ( is_bool, is_float, is_integer, is_list_like) from monkey.core import config from monkey.core.frame import KnowledgeFrame from monkey.io.common import ( _NA_VALUES, _is_url, _stringify_path, _urlopen, _validate_header_numer_arg, getting_filepath_or_buffer) from monkey.io.formatings.printing import pprint_thing from monkey.io.parsers import TextParser __total_all__ = ["read_excel", "ExcelWriter", "ExcelFile"] _writer_extensions = ["xlsx", "xls", "xlsm"] _writers = {} _read_excel_doc = """ Read an Excel table into a monkey KnowledgeFrame Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, monkey ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to getting total_all sheets. str|int -> KnowledgeFrame is returned. list|None -> Dict of KnowledgeFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a KnowledgeFrame * 1 -> 2nd sheet as a KnowledgeFrame * "Sheet1" -> 1st sheet as a KnowledgeFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of KnowledgeFrames * None -> All sheets as a dictionary of KnowledgeFrames sheetname : string, int, mixed list of strings/ints, or None, default 0 .. deprecated:: 0.21.0 Use `sheet_name` instead header_numer : int, list of ints, default 0 Row (0-indexed) to use for the column labels of the parsed KnowledgeFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header_numer. names : array-like, default None List of column names to use. If file contains no header_numer row, then you should explicitly pass header_numer=None index_col : int, list of ints, default None Column (0-indexed) to use as the row labels of the KnowledgeFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. parse_cols : int or list, default None .. deprecated:: 0.21.0 Pass in `usecols` instead. usecols : int, str, list-like, or ctotal_allable default None * If None, then parse total_all columns, * If int, then indicates final_item column to be parsed .. deprecated:: 0.24.0 Pass in a list of ints instead from 0 to `usecols` inclusive. * If string, then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. * If list of ints, then indicates list of column numbers to be parsed. * If list of strings, then indicates list of column names to be parsed. .. versionadded:: 0.24.0 * If ctotal_allable, then evaluate each column name against it and parse the column if the ctotal_allable returns ``True``. .. versionadded:: 0.24.0 squeeze : boolean, default False If the parsed data only contains one column then return a Collections dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 0.20.0 engine : string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None Values to consider as False .. versionadded:: 0.19.0 skiprows : list-like Rows to skip at the beginning (0-indexed) nrows : int, default None Number of rows to parse .. versionadded:: 0.23.0 na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're addinged to. verbose : boolean, default False Indicate number of NA values placed in non-numeric columns thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, whatever numeric columns will automatictotal_ally be parsed, regardless of display formating. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skip_footer : int, default 0 .. deprecated:: 0.23.0 Pass in `skipfooter` instead. skipfooter : int, default 0 Rows at the end to skip (0-indexed) convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, total_all numeric data will be read in as floats: Excel stores total_all numbers as floats interntotal_ally mangle_dupe_cols : boolean, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. Returns ------- parsed : KnowledgeFrame or Dict of KnowledgeFrames KnowledgeFrame from the passed in Excel file. See notes in sheet_name argument for more informatingion on when a dict of KnowledgeFrames is returned. Examples -------- An example KnowledgeFrame written to a local file >>> kf_out = mk.KnowledgeFrame([('string1', 1), ... ('string2', 2), ... ('string3', 3)], ... columns=['Name', 'Value']) >>> kf_out Name Value 0 string1 1 1 string2 2 2 string3 3 >>> kf_out.to_excel('tmp.xlsx') The file can be read using the file name as string or an open file object: >>> mk.read_excel('tmp.xlsx') Name Value 0 string1 1 1 string2 2 2 string3 3 >>> mk.read_excel(open('tmp.xlsx','rb')) Name Value 0 string1 1 1 string2 2 2 string3 3 Index and header_numer can be specified via the `index_col` and `header_numer` arguments >>> mk.read_excel('tmp.xlsx', index_col=None, header_numer=None) 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 string3 3 Column types are inferred but can be explicitly specified >>> mk.read_excel('tmp.xlsx', dtype={'Name':str, 'Value':float}) Name Value 0 string1 1.0 1 string2 2.0 2 string3 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> mk.read_excel('tmp.xlsx', ... na_values=['string1', 'string2']) Name Value 0 NaN 1 1 NaN 2 2 string3 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> kf = mk.KnowledgeFrame({'a': ['1', '#2'], 'b': ['2', '3']}) >>> kf.to_excel('tmp.xlsx', index=False) >>> mk.read_excel('tmp.xlsx') a b 0 1 2 1 #2 3 >>> mk.read_excel('tmp.xlsx', comment='#') a b 0 1 2 """ def register_writer(klass): """Adds engine to the excel writer registry. You must use this method to integrate with ``to_excel``. Also adds config options for whatever new ``supported_extensions`` defined on the writer.""" if not compat.ctotal_allable(klass): raise ValueError("Can only register ctotal_allables as engines") engine_name = klass.engine _writers[engine_name] = klass for ext in klass.supported_extensions: if ext.startswith('.'): ext = ext[1:] if ext not in _writer_extensions: config.register_option("io.excel.{ext}.writer".formating(ext=ext), engine_name, validator=str) _writer_extensions.adding(ext) def _getting_default_writer(ext): _default_writers = {'xlsx': 'openpyxl', 'xlsm': 'openpyxl', 'xls': 'xlwt'} try: import xlsxwriter # noqa _default_writers['xlsx'] = 'xlsxwriter' except ImportError: pass return _default_writers[ext] def getting_writer(engine_name): try: return _writers[engine_name] except KeyError: raise ValueError("No Excel writer '{engine}'" .formating(engine=engine_name)) @Appender(_read_excel_doc) @deprecate_kwarg("parse_cols", "usecols") @deprecate_kwarg("skip_footer", "skipfooter") def read_excel(io, sheet_name=0, header_numer=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds): # Can't use _deprecate_kwarg since sheetname=None has a special averageing if is_integer(sheet_name) and sheet_name == 0 and 'sheetname' in kwds: warnings.warn("The `sheetname` keyword is deprecated, use " "`sheet_name` instead", FutureWarning, stacklevel=2) sheet_name = kwds.pop("sheetname") if 'sheet' in kwds: raise TypeError("read_excel() got an unexpected keyword argument " "`sheet`") if not incontainstance(io, ExcelFile): io = ExcelFile(io, engine=engine) return io.parse( sheet_name=sheet_name, header_numer=header_numer, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, dtype=dtype, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, **kwds) class ExcelFile(object): """ Class for parsing tabular excel sheets into KnowledgeFrame objects. Uses xlrd. See read_excel for more documentation Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object or xlrd workbook If a string or path object, expected to be a path to xls or xlsx file engine : string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd """ def __init__(self, io, **kwds): err_msg = "Insttotal_all xlrd >= 1.0.0 for Excel support" try: import xlrd except ImportError: raise ImportError(err_msg) else: if xlrd.__VERSION__ < LooseVersion("1.0.0"): raise ImportError(err_msg + ". Current version " + xlrd.__VERSION__) # could be a str, ExcelFile, Book, etc. self.io = io # Always a string self._io = _stringify_path(io) engine = kwds.pop('engine', None) if engine is not None and engine != 'xlrd': raise ValueError("Unknown engine: {engine}".formating(engine=engine)) # If io is a url, want to keep the data as bytes so can't pass # to getting_filepath_or_buffer() if _is_url(self._io): io = _urlopen(self._io) elif not incontainstance(self.io, (ExcelFile, xlrd.Book)): io, _, _, _ = getting_filepath_or_buffer(self._io) if engine == 'xlrd' and incontainstance(io, xlrd.Book): self.book = io elif not incontainstance(io, xlrd.Book) and hasattr(io, "read"): # N.B. xlrd.Book has a read attribute too if hasattr(io, 'seek'): try: # GH 19779 io.seek(0) except UnsupportedOperation: # HTTPResponse does not support seek() # GH 20434 pass data = io.read() self.book = xlrd.open_workbook(file_contents=data) elif incontainstance(self._io, compat.string_types): self.book = xlrd.open_workbook(self._io) else: raise ValueError('Must explicitly set engine if not passing in' ' buffer or path for io.') def __fspath__(self): return self._io def parse(self, sheet_name=0, header_numer=0, names=None, index_col=None, usecols=None, squeeze=False, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds): """ Parse specified sheet(s) into a KnowledgeFrame Equivalengtht to read_excel(ExcelFile, ...) See the read_excel docstring for more info on accepted parameters """ # Can't use _deprecate_kwarg since sheetname=None has a special averageing if is_integer(sheet_name) and sheet_name == 0 and 'sheetname' in kwds: warnings.warn("The `sheetname` keyword is deprecated, use " "`sheet_name` instead", FutureWarning, stacklevel=2) sheet_name = kwds.pop("sheetname") elif 'sheetname' in kwds: raise TypeError("Cannot specify both `sheet_name` " "and `sheetname`. Use just `sheet_name`") return self._parse_excel(sheet_name=sheet_name, header_numer=header_numer, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, **kwds) def _parse_excel(self, sheet_name=0, header_numer=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds): _validate_header_numer_arg(header_numer) if 'chunksize' in kwds: raise NotImplementedError("chunksize keyword of read_excel " "is not implemented") from xlrd import (xldate, XL_CELL_DATE, XL_CELL_ERROR, XL_CELL_BOOLEAN, XL_CELL_NUMBER) epoch1904 = self.book.datemode def _parse_cell(cell_contents, cell_typ): """converts the contents of the cell into a monkey appropriate object""" if cell_typ == XL_CELL_DATE: # Use the newer xlrd datetime handling. try: cell_contents = xldate.xldate_as_datetime( cell_contents, epoch1904) except OverflowError: return cell_contents # Excel doesn't distinguish between dates and time, # so we treat dates on the epoch as times only. # Also, Excel supports 1900 and 1904 epochs. year = (cell_contents.timetuple())[0:3] if ((not epoch1904 and year == (1899, 12, 31)) or (epoch1904 and year == (1904, 1, 1))): cell_contents = time(cell_contents.hour, cell_contents.getting_minute, cell_contents.second, cell_contents.microsecond) elif cell_typ == XL_CELL_ERROR: cell_contents = np.nan elif cell_typ == XL_CELL_BOOLEAN: cell_contents = bool(cell_contents) elif convert_float and cell_typ == XL_CELL_NUMBER: # GH5394 - Excel 'numbers' are always floats # it's a getting_minimal perf hit and less surprincontaing val = int(cell_contents) if val == cell_contents: cell_contents = val return cell_contents ret_dict = False # Keep sheetname to maintain backwards compatibility. if incontainstance(sheet_name, list): sheets = sheet_name ret_dict = True elif sheet_name is None: sheets = self.sheet_names ret_dict = True else: sheets = [sheet_name] # handle same-type duplicates. sheets = list(OrderedDict.fromkeys(sheets).keys()) output = OrderedDict() for asheetname in sheets: if verbose: print("Reading sheet {sheet}".formating(sheet=asheetname)) if incontainstance(asheetname, compat.string_types): sheet = self.book.sheet_by_name(asheetname) else: # astotal_sume an integer if not a string sheet = self.book.sheet_by_index(asheetname) data = [] usecols = _maybe_convert_usecols(usecols) for i in range(sheet.nrows): row = [] for j, (value, typ) in enumerate(zip(sheet.row_values(i), sheet.row_types(i))): row.adding(_parse_cell(value, typ)) data.adding(row) if sheet.nrows == 0: output[asheetname] = KnowledgeFrame() continue if is_list_like(header_numer) and length(header_numer) == 1: header_numer = header_numer[0] # forward fill and pull out names for MultiIndex column header_numer_names = None if header_numer is not None and is_list_like(header_numer): header_numer_names = [] control_row = [True] * length(data[0]) for row in header_numer: if is_integer(skiprows): row += skiprows data[row], control_row = _fill_mi_header_numer(data[row], control_row) if index_col is not None: header_numer_name, _ = _pop_header_numer_name(data[row], index_col) header_numer_names.adding(header_numer_name) if is_list_like(index_col): # Forward fill values for MultiIndex index. if not is_list_like(header_numer): offset = 1 + header_numer else: offset = 1 + getting_max(header_numer) # Check if we have an empty dataset # before trying to collect data. if offset < length(data): for col in index_col: final_item = data[offset][col] for row in range(offset + 1, length(data)): if data[row][col] == '' or data[row][col] is None: data[row][col] = final_item else: final_item = data[row][col] has_index_names = is_list_like(header_numer) and length(header_numer) > 1 # GH 12292 : error when read one empty column from excel file try: parser = TextParser(data, names=names, header_numer=header_numer, index_col=index_col, has_index_names=has_index_names, squeeze=squeeze, dtype=dtype, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, usecols=usecols, mangle_dupe_cols=mangle_dupe_cols, **kwds) output[asheetname] = parser.read(nrows=nrows) if ((not squeeze or incontainstance(output[asheetname], KnowledgeFrame)) and header_numer_names): output[asheetname].columns = output[ asheetname].columns.set_names(header_numer_names) except EmptyDataError: # No Data, return an empty KnowledgeFrame output[asheetname] = KnowledgeFrame() if ret_dict: return output else: return output[asheetname] @property def sheet_names(self): return self.book.sheet_names() def close(self): """close io if necessary""" if hasattr(self.io, 'close'): self.io.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _excel2num(x): """ Convert Excel column name like 'AB' to 0-based column index. Parameters ---------- x : str The Excel column name to convert to a 0-based column index. Returns ------- num : int The column index corresponding to the name. Raises ------ ValueError Part of the Excel column name was invalid. """ index = 0 for c in x.upper().strip(): cp = ord(c) if cp < ord("A") or cp > ord("Z"): raise ValueError("Invalid column name: {x}".formating(x=x)) index = index * 26 + cp - ord("A") + 1 return index - 1 def _range2cols(areas): """ Convert comma separated list of column names and ranges to indices. Parameters ---------- areas : str A string containing a sequence of column ranges (or areas). Returns ------- cols : list A list of 0-based column indices. Examples -------- >>> _range2cols('A:E') [0, 1, 2, 3, 4] >>> _range2cols('A,C,Z:AB') [0, 2, 25, 26, 27] """ cols = [] for rng in areas.split(","): if ":" in rng: rng = rng.split(":") cols.extend(lrange(_excel2num(rng[0]), _excel2num(rng[1]) + 1)) else: cols.adding(_excel2num(rng)) return cols def _maybe_convert_usecols(usecols): """ Convert `usecols` into a compatible formating for parsing in `parsers.py`. Parameters ---------- usecols : object The use-columns object to potentitotal_ally convert. Returns ------- converted : object The compatible formating of `usecols`. """ if usecols is None: return usecols if is_integer(usecols): warnings.warn(("Passing in an integer for `usecols` has been " "deprecated. Please pass in a list of ints from " "0 to `usecols` inclusive instead."), FutureWarning, stacklevel=2) return lrange(usecols + 1) if incontainstance(usecols, compat.string_types): return _range2cols(usecols) return usecols def _validate_freeze_panes(freeze_panes): if freeze_panes is not None: if ( length(freeze_panes) == 2 and total_all(incontainstance(item, int) for item in freeze_panes) ): return True raise ValueError("freeze_panes must be of form (row, column)" " where row and column are integers") # freeze_panes wasn't specified, return False so it won't be applied # to output sheet return False def _trim_excel_header_numer(row): # trim header_numer row so auto-index inference works # xlrd uses '' , openpyxl None while length(row) > 0 and (row[0] == '' or row[0] is None): row = row[1:] return row def _fill_mi_header_numer(row, control_row): """Forward fills blank entries in row, but only inside the same parent index Used for creating header_numers in Multiindex. Parameters ---------- row : list List of items in a single row. control_row : list of boolean Helps to detergetting_mine if particular column is in same parent index as the previous value. Used to stop propagation of empty cells between different indexes. Returns ---------- Returns changed row and control_row """ final_item = row[0] for i in range(1, length(row)): if not control_row[i]: final_item = row[i] if row[i] == '' or row[i] is None: row[i] = final_item else: control_row[i] = False final_item = row[i] return row, control_row # fill blank if index_col not None def _pop_header_numer_name(row, index_col): """ Pop the header_numer name for MultiIndex parsing. Parameters ---------- row : list The data row to parse for the header_numer name. index_col : int, list The index columns for our data. Astotal_sumed to be non-null. Returns ------- header_numer_name : str The extracted header_numer name. trimmed_row : list The original data row with the header_numer name removed. """ # Pop out header_numer name and fill w/blank. i = index_col if not is_list_like(index_col) else getting_max(index_col) header_numer_name = row[i] header_numer_name = None if header_numer_name == "" else header_numer_name return header_numer_name, row[:i] + [''] + row[i + 1:] @add_metaclass(abc.ABCMeta) class ExcelWriter(object): """ Class for writing KnowledgeFrame objects into excel sheets, default is to use xlwt for xls, openpyxl for xlsx. See KnowledgeFrame.to_excel for typical usage. Parameters ---------- path : string Path to xls or xlsx file. engine : string (optional) Engine to use for writing. If None, defaults to ``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword argument. date_formating : string, default None Format string for dates written into Excel files (e.g. 'YYYY-MM-DD') datetime_formating : string, default None Format string for datetime objects written into Excel files (e.g. 'YYYY-MM-DD HH:MM:SS') mode : {'w' or 'a'}, default 'w' File mode to use (write or adding). .. versionadded:: 0.24.0 Notes ----- None of the methods and properties are considered public. For compatibility with CSV writers, ExcelWriter serializes lists and dicts to strings before writing. Examples -------- Default usage: >>> with ExcelWriter('path_to_file.xlsx') as writer: ... kf.to_excel(writer) To write to separate sheets in a single file: >>> with ExcelWriter('path_to_file.xlsx') as writer: ... kf1.to_excel(writer, sheet_name='Sheet1') ... kf2.to_excel(writer, sheet_name='Sheet2') You can set the date formating or datetime formating: >>> with ExcelWriter('path_to_file.xlsx', date_formating='YYYY-MM-DD', datetime_formating='YYYY-MM-DD HH:MM:SS') as writer: ... kf.to_excel(writer) You can also adding to an existing Excel file: >>> with ExcelWriter('path_to_file.xlsx', mode='a') as writer: ... kf.to_excel(writer, sheet_name='Sheet3') Attributes ---------- None Methods ------- None """ # Defining an ExcelWriter implementation (see abstract methods for more...) # - Mandatory # - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)`` # --> ctotal_alled to write additional KnowledgeFrames to disk # - ``supported_extensions`` (tuple of supported extensions), used to # check that engine supports the given extension. # - ``engine`` - string that gives the engine name. Necessary to # instantiate class directly and bypass ``ExcelWriterMeta`` engine # lookup. # - ``save(self)`` --> ctotal_alled to save file to disk # - Mostly mandatory (i.e. should at least exist) # - book, cur_sheet, path # - Optional: # - ``__init__(self, path, engine=None, **kwargs)`` --> always ctotal_alled # with path as first argument. # You also need to register the class with ``register_writer()``. # Technictotal_ally, ExcelWriter implementations don't need to subclass # ExcelWriter. def __new__(cls, path, engine=None, **kwargs): # only switch class if generic(ExcelWriter) if issubclass(cls, ExcelWriter): if engine is None or (incontainstance(engine, string_types) and engine == 'auto'): if incontainstance(path, string_types): ext = os.path.splitext(path)[-1][1:] else: ext = 'xlsx' try: engine = config.getting_option('io.excel.{ext}.writer' .formating(ext=ext)) if engine == 'auto': engine = _getting_default_writer(ext) except KeyError: error = ValueError("No engine for filetype: '{ext}'" .formating(ext=ext)) raise error cls = getting_writer(engine) return object.__new__(cls) # declare external properties you can count on book = None curr_sheet = None path = None @abc.abstractproperty def supported_extensions(self): "extensions that writer engine supports" pass @abc.abstractproperty def engine(self): "name of engine" pass @abc.abstractmethod def write_cells(self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None): """ Write given formatingted cells into Excel an excel sheet Parameters ---------- cells : generator cell of formatingted data to save to Excel sheet sheet_name : string, default None Name of Excel sheet, if None, then use self.cur_sheet startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame freeze_panes: integer tuple of lengthgth 2 contains the bottom-most row and right-most column to freeze """ pass @abc.abstractmethod def save(self): """ Save workbook to disk. """ pass def __init__(self, path, engine=None, date_formating=None, datetime_formating=None, mode='w', **engine_kwargs): # validate that this engine can handle the extension if incontainstance(path, string_types): ext = os.path.splitext(path)[-1] else: ext = 'xls' if engine == 'xlwt' else 'xlsx' self.check_extension(ext) self.path = path self.sheets = {} self.cur_sheet = None if date_formating is None: self.date_formating = 'YYYY-MM-DD' else: self.date_formating = date_formating if datetime_formating is None: self.datetime_formating = 'YYYY-MM-DD HH:MM:SS' else: self.datetime_formating = datetime_formating self.mode = mode def __fspath__(self): return _stringify_path(self.path) def _getting_sheet_name(self, sheet_name): if sheet_name is None: sheet_name = self.cur_sheet if sheet_name is None: # pragma: no cover raise ValueError('Must pass explicit sheet_name or set ' 'cur_sheet property') return sheet_name def _value_with_fmt(self, val): """Convert numpy types to Python types for the Excel writers. Parameters ---------- val : object Value to be written into cells Returns ------- Tuple with the first element being the converted value and the second being an optional formating """ fmt = None if is_integer(val): val = int(val) elif is_float(val): val = float(val) elif is_bool(val): val = bool(val) elif incontainstance(val, datetime): fmt = self.datetime_formating elif incontainstance(val, date): fmt = self.date_formating elif incontainstance(val, timedelta): val = val.total_seconds() / float(86400) fmt = '0' else: val = compat.to_str(val) return val, fmt @classmethod def check_extension(cls, ext): """checks that path's extension against the Writer's supported extensions. If it isn't supported, raises UnsupportedFiletypeError.""" if ext.startswith('.'): ext = ext[1:] if not whatever(ext in extension for extension in cls.supported_extensions): msg = (u("Invalid extension for engine '{engine}': '{ext}'") .formating(engine=pprint_thing(cls.engine), ext=pprint_thing(ext))) raise ValueError(msg) else: return True # Allow use as a contextmanager def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """synonym for save, to make it more file-like""" return self.save() class _OpenpyxlWriter(ExcelWriter): engine = 'openpyxl' supported_extensions = ('.xlsx', '.xlsm') def __init__(self, path, engine=None, mode='w', **engine_kwargs): # Use the openpyxl module as the Excel writer. from openpyxl.workbook import Workbook super(_OpenpyxlWriter, self).__init__(path, mode=mode, **engine_kwargs) if self.mode == 'a': # Load from existing workbook from openpyxl import load_workbook book = load_workbook(self.path) self.book = book else: # Create workbook object with default optimized_write=True. self.book = Workbook() if self.book.worksheets: try: self.book.remove(self.book.worksheets[0]) except AttributeError: # compat - for openpyxl <= 2.4 self.book.remove_sheet(self.book.worksheets[0]) def save(self): """ Save workbook to disk. """ return self.book.save(self.path) @classmethod def _convert_to_style(cls, style_dict): """ converts a style_dict to an openpyxl style object Parameters ---------- style_dict : style dictionary to convert """ from openpyxl.style import Style xls_style = Style() for key, value in style_dict.items(): for nk, nv in value.items(): if key == "borders": (xls_style.borders.__gettingattribute__(nk) .__setattr__('border_style', nv)) else: xls_style.__gettingattribute__(key).__setattr__(nk, nv) return xls_style @classmethod def _convert_to_style_kwargs(cls, style_dict): """ Convert a style_dict to a set of kwargs suitable for initializing or umkating-on-clone an openpyxl v2 style object Parameters ---------- style_dict : dict A dict with zero or more of the following keys (or their synonyms). 'font' 'fill' 'border' ('borders') 'alignment' 'number_formating' 'protection' Returns ------- style_kwargs : dict A dict with the same, normalized keys as ``style_dict`` but each value has been replacingd with a native openpyxl style object of the appropriate class. """ _style_key_mapping = { 'borders': 'border', } style_kwargs = {} for k, v in style_dict.items(): if k in _style_key_mapping: k = _style_key_mapping[k] _conv_to_x = gettingattr(cls, '_convert_to_{k}'.formating(k=k), lambda x: None) new_v = _conv_to_x(v) if new_v: style_kwargs[k] = new_v return style_kwargs @classmethod def _convert_to_color(cls, color_spec): """ Convert ``color_spec`` to an openpyxl v2 Color object Parameters ---------- color_spec : str, dict A 32-bit ARGB hex string, or a dict with zero or more of the following keys. 'rgb' 'indexed' 'auto' 'theme' 'tint' 'index' 'type' Returns ------- color : openpyxl.styles.Color """ from openpyxl.styles import Color if incontainstance(color_spec, str): return Color(color_spec) else: return Color(**color_spec) @classmethod def _convert_to_font(cls, font_dict): """ Convert ``font_dict`` to an openpyxl v2 Font object Parameters ---------- font_dict : dict A dict with zero or more of the following keys (or their synonyms). 'name' 'size' ('sz') 'bold' ('b') 'italic' ('i') 'underline' ('u') 'strikethrough' ('strike') 'color' 'vertAlign' ('vertalign') 'charset' 'scheme' 'family' 'outline' 'shadow' 'condense' Returns ------- font : openpyxl.styles.Font """ from openpyxl.styles import Font _font_key_mapping = { 'sz': 'size', 'b': 'bold', 'i': 'italic', 'u': 'underline', 'strike': 'strikethrough', 'vertalign': 'vertAlign', } font_kwargs = {} for k, v in font_dict.items(): if k in _font_key_mapping: k = _font_key_mapping[k] if k == 'color': v = cls._convert_to_color(v) font_kwargs[k] = v return Font(**font_kwargs) @classmethod def _convert_to_stop(cls, stop_seq): """ Convert ``stop_seq`` to a list of openpyxl v2 Color objects, suitable for initializing the ``GradientFill`` ``stop`` parameter. Parameters ---------- stop_seq : iterable An iterable that yields objects suitable for contotal_sumption by ``_convert_to_color``. Returns ------- stop : list of openpyxl.styles.Color """ return
mapping(cls._convert_to_color, stop_seq)
pandas.compat.map
#๊ฒฐ์ธก์น˜์— ๊ด€๋ จ ๋œ ํ•จ์ˆ˜ #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๊ฒฐ์ธก๊ฐ’ ์ฒ˜๋ฆฌ #monkey์—์„œ๋Š” ๊ฒฐ์ธก๊ฐ’: NaN, None #NaN :๋ฐ์ดํ„ฐ ๋ฒ ์ด์Šค์—์„  ๋ฌธ์ž #None : ๋”ฅ๋Ÿฌ๋‹์—์„  ํ–‰ # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null ํŒ๋ณ„ # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # ํŠน์ • ์œ„์น˜์— ๊ฒฐ์ธก์น˜ ์ž…๋ ฅ : None ==> ๊ฒฐ์ธก์น˜๋ž€ ์˜๋ฏธ๋ฅผ ๋‹ด๊ณ  ์žˆ๋Š” ์˜ˆ์•ฝ์–ด # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a์—ด(string)=None, b์—ด(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # ๋‹จ์ผ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜๊ฐ€ ์•„๋‹Œ ๋ฐ์ดํ„ฐ์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # ๊ฐ ํ–‰์˜ ๊ฒฐ์ธก์น˜์˜ ํ•ฉ # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #๊ฒฐ์ธก๊ฐ’ ์—ฌ๋ถ€?ifnull(), notnull() # #์—ด๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum() # #ํ–‰๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0์œผ๋กœ ์ทจ๊ธ‰ํ•˜์—ฌ ๊ณ„์‚ฐ # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # ํ•œ ์—ด ํ•ฉ๊ณ„ # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : ๋ˆ„์ ํ•ฉ๊ณ„ # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #์—ด๊ธฐ์ค€ ํ‰๊ท  : (0+4+6)/3,NaN=>์ œ์™ธ # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #ํ–‰๊ธฐ์ค€ ํ‰๊ท  # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #์—ด๊ธฐ์ค€ ํ‘œ์ค€ํŽธ์ฐจ # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ปฌ๋Ÿผ๊ฐ„ ์—ฐ์‚ฐ : NaN์ด ํ•˜๋‚˜๋ผ๋„ ์žˆ์œผ๋ฉด NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=kf.fillnone(0) print(kf_0) # c1 c2 c3 # 0 0.000000 -0.020379 -0.234493 # 1 0.000000 2.103582 0.000000 # 2 -1.271259 0.000000 -2.098903 # 3 -0.030064 0.000000 -0.984602 # 4 0.083863 -0.811207 0.000000 kf_missing = kf.fillnone('missing') print(kf_missing) # c1 c2 c3 # 0 missing -0.441011 -0.544838 # 1 missing 1.38941 missing # 2 -1.77381 missing -0.855286 # 3 -0.287784 missing 0.280705 # 4 0.641317 -2.30403 missing print('='*50) print(kf) # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 NaN # 2 0.157068 NaN 0.860016 # 3 0.525265 NaN -1.482895 # 4 -0.396621 0.958787 NaN print(
kf.fillnone(method='ffill')
pandas.DataFrame.fillna