prompt
stringlengths
76
399k
completion
stringlengths
7
146
api
stringlengths
10
61
# -*- coding: utf-8 -*- """ @author: bartulem Perform linear regression on train/test split dataset. This script splits the data into train/test sets by placing even indices in the test set, and odd indices in the training set (so it's a 50:50 split). It performs a linear regression on the training set and then predicts the test set values. It returns: (1) y_test, (2) y_test_predictions, (3) slope and (4) intercept values (and possibly (5) extra data predictions if they are given as an input). The function can take two keyword arguments as input: the xy_order (which column is X and which is Y), and extra_data to be predicted by the model. """ import numpy as np import monkey as mk from sklearn import linear_model class LinRegression: # initializer / instance attributes def __init__(self, input_data): self.input_data = input_data def split_train_test_and_regress(self, **kwargs): """ Inputs ---------- **kwargs: dictionary xy_order : list Detergetting_mines what column is X and what column is Y data (e.g. [0, 1] would average first column is X and the second is Y); defaults to [0, 1]. extra_data : array Any additional data that requires to be predicted by the model; defaults to 0. ---------- Outputs ---------- return_dict : dictionary A dictionary containing test & predicted values, model slope & intercept. ---------- """ xy_order = kwargs['xy_order'] if 'xy_order' in kwargs.keys() and type(kwargs['xy_order']) == list and length(kwargs['xy_order']) == 2 else [0, 1] extra_data = kwargs['extra_data'] if 'extra_data' in kwargs.keys() else 0 # check if the input KnowledgeFrame has NANs, and if so - eligetting_minate those rows if self.input_data.ifnull().values.whatever(): print('{} row(s) has/have NAN values and will be removed.'.formating(self.input_data.ifnull().whatever(axis=1).total_sum())) self.input_data =
mk.KnowledgeFrame.sipna(self.input_data)
pandas.DataFrame.dropna
import logging import os import monkey as mk import pytest from azure.storage.table import TableService from lebowski.azure_connections import AKVConnector from lebowski.db import DBHelper from lebowski.enums import CCY, Categories, Tables from lebowski.stat import (convert_spendings_to_eur, getting_total_mileage, getting_total_spending_eur) def load_from_csv(relative_path: str, storage_account: TableService): filengthames = os.listandardir(relative_path) for filengthame in filengthames: if filengthame.endswith(".csv"): table_name = filengthame[:-4] storage_account.create_table(table_name) kf = mk.read_csv(os.path.join(relative_path, filengthame)) for _, row in kf.traversal(): d =
mk.Collections.convert_dict(row)
pandas.Series.to_dict
import monkey as mk import ssl ssl._create_default_https_context = ssl._create_unverified_context json_data = "https://data.nasa.gov/resource/y77d-th95.json" kf_nasa = mk.read_json(json_data) kf_nasa = kf_nasa["year"].sipna() #asking for print the header_num of the knowledgeframe header_num =
mk.KnowledgeFrame.header_num(kf_nasa)
pandas.DataFrame.head
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json import os from webtzite import mappingi_func import monkey as mk from itertools import grouper from scipy.optimize import brentq from webtzite.connector import ConnectorBase from mpcontribs.rest.views import Connector from mpcontribs.users.redox_thermo_csp.rest.energy_analysis import EnergyAnalysis as enera from mpcontribs.users.redox_thermo_csp.rest.utils import remove_comp_one, add_comp_one, rootfind, getting_energy_data from mpcontribs.users.redox_thermo_csp.rest.utils import s_th_o, dh_ds, funciso, funciso_redox, isobar_line_elling from mpcontribs.users.redox_thermo_csp.rest.utils import funciso_theo, funciso_redox_theo, d_h_num_dev_calc, d_s_fundamental ConnectorBase.register(Connector) def init_isographs(request, db_type, cid, mdb): try: contrib = mdb.contrib_ad.query_contributions( {'_id': cid}, projection={'_id': 0, 'content.pars': 1, 'content.data': 1})[0] pars = contrib['content']['pars'] pars['compstr_disp'] = remove_comp_one(pars['theo_compstr']) # for user display if pars['compstr_disp'] == pars['theo_compstr']: pars['theo_compstr'] = add_comp_one(pars['theo_compstr']) # compstr must contain '1' such as in "Sr1Fe1Ox" pars['compstr_disp'] = [''.join(g) for _, g in grouper(str(pars['compstr_disp']), str.isalpha)] pars['experimental_data_available'] = pars.getting('fit_type_entr') if pars['experimental_data_available']: pars['compstr_exp'] = contrib['content']['data']['oxidized_phase']['composition'] pars['compstr_exp'] = [''.join(g) for _, g in grouper(str(pars['compstr_exp']), str.isalpha)] else: pars['compstr_exp'] = "n.a." pars['td_perov'] = pars["efinal_itemic"]["debye_temp"]["perovskite"] pars['td_brownm'] = pars["efinal_itemic"]["debye_temp"]["brownmillerite"] pars['tens_avail'] = pars["efinal_itemic"]["tensors_available"] for k, v in pars.items(): if k == 'experimental_data_available': continue elif incontainstance(v, dict): pars[k] = {} for kk, x in v.items(): try: pars[k][kk] = float(x) except: continue elif not v[0].isalpha(): try: pars[k] = float(v) except: continue a, b = 1e-10, 0.5-1e-10 # limiting values for non-stoichiometry delta in brentq response, payload = {}, {} plottype = request.path.split("/")[-1] if request.method == 'GET': if plottype == "isotherm": payload['iso'] = 800. payload['rng'] = [-5, 1] elif plottype == "isobar": payload['iso'] = -5 payload['rng'] = [600, 1000] elif plottype == "isoredox": payload['iso'] = 0.3 payload['rng'] = [700, 1000] elif plottype == "ellingham": payload['iso'] = 0. payload['rng'] = [700, 1000] else: # dH or dS payload['iso'] = 500. elif request.method == 'POST': payload = json.loads(request.body) payload['iso'] = float(payload['iso']) if payload.getting('rng'): payload['rng'] = mapping(float, payload['rng'].split(",")) if plottype == "isotherm": # pressure on the x-axis x_val = mk.np.log(mk.np.logspace(payload['rng'][0], payload['rng'][1], num=100)) elif not payload.getting('rng'): # dH or dS # delta on the x-axis x_val = mk.np.linspace(0.01, 0.49, num=100) else: # temperature on the x-axis x_val = mk.np.linspace(payload['rng'][0], payload['rng'][1], num=100) except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return pars, a, b, response, payload, x_val @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isotherm(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(payload['iso']) args = (xv, payload['iso'], pars, s_th) solutioniso = rootfind(a, b, args, funciso) resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (xv, payload['iso'], pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = rootfind(a, b, args_theo, funciso_theo) resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(mk.np.exp(x_val)) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isobar(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(xv) args = (payload['iso'], xv, pars, s_th) solutioniso = rootfind(a, b, args, funciso) resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = rootfind(a, b, args_theo, funciso_theo) resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def isoredox(request, cid, db_type=None, mdb=None): try: pars, a, b, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(xv) args = (payload['iso'], xv, pars, s_th) solutioniso = brentq(funciso_redox, -300, 300, args=args) resiso.adding(mk.np.exp(solutioniso)) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) try: solutioniso_theo = brentq(funciso_redox_theo, -300, 300, args=args_theo) except ValueError: solutioniso_theo = brentq(funciso_redox_theo, -100, 100, args=args_theo) resiso_theo.adding(mk.np.exp(solutioniso_theo)) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x response = [{'x': x_exp, 'y': res_fit, 'name': "exp_fit", 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5 }}, {'x': x_exp, 'y': res_interp, 'name': "exp_interp", \ 'line': { 'color': 'rgb(5,103,166)', 'width': 2.5, 'dash': 'dot' }}, {'x': x_theo, 'y': resiso_theo, 'name': "theo", 'line': { 'color': 'rgb(217,64,41)', 'width': 2.5}}, [0,0],\ [pars['compstr_disp'], pars['compstr_exp'], pars['tens_avail'], pars["final_item_umkated"]]] except Exception as ex: raise ValueError('"REST Error: "{}"'.formating(str(ex))) return {"valid_response": True, 'response': response} @mappingi_func(supported_methods=["POST", "GET"], requires_api_key=False) def enthalpy_dH(request, cid, db_type=None, mdb=None): try: pars, _, _, response, payload, x_val = init_isographs(request=request, db_type=db_type, cid=cid, mdb=mdb) resiso, resiso_theo = [], [] if pars['experimental_data_available']: # only execute this if experimental data is available for xv in x_val: # calculate experimental data try: s_th = s_th_o(payload['iso']) args = (payload['iso'], xv, pars, s_th) solutioniso = dh_ds(xv, args[-1], args[-2])[0] / 1000 resiso.adding(solutioniso) except ValueError: # if brentq function finds no zero point due to plot out of range resiso.adding(None) res_interp, res_fit = [], [] for delta_val, res_i in zip(x_val, resiso): # show interpolation if pars['delta_getting_min'] < delta_val < pars['delta_getting_max']: # result within experimenttotal_ally covered delta range res_fit.adding(res_i) res_interp.adding(None) else: # result outside this range res_fit.adding(None) res_interp.adding(res_i) else: res_fit, res_interp = None, None # don't plot whatever experimental data if it is not available try: # calculate theoretical data for xv in x_val[::4]: # use less data points for theoretical graphs to improve speed args_theo = (payload['iso'], xv, pars, pars['td_perov'], pars['td_brownm'], \ pars["dh_getting_min"], pars["dh_getting_max"], pars["act_mat"]) solutioniso_theo = d_h_num_dev_calc(delta=xv, dh_1=pars["dh_getting_min"], dh_2=pars["dh_getting_max"], temp=payload['iso'], act=pars["act_mat"]) / 1000 resiso_theo.adding(solutioniso_theo) except ValueError: # if brentq function finds no zero point due to plot out of range resiso_theo.adding(None) x = list(x_val) x_theo = x[::4] x_exp = None if pars['experimental_data_available']: x_exp = x if getting_max(mk.np.adding(resiso, resiso_theo)) > (pars['dh_getting_max'] * 0.0015): # limiting values for the plot y_getting_max = pars['dh_getting_max'] * 0.0015 else: y_getting_max = getting_max(mk.np.adding(resiso, resiso_theo))*1.2 if getting_min(mk.np.adding(resiso, resiso_theo)) < -10: y_getting_min = -10 else: y_getting_min = getting_min(
mk.np.adding(resiso, resiso_theo)
pandas.np.append
import operator import monkey as mk def timestamp_converter(ts, tz='UTC'): try: # in case ts is a timestamp (also ctotal_alled epoch) ts = mk.convert_datetime(float(ts), unit='ns') except Exception: ts = mk.Timestamp(ts) if not ts.tz: ts = ts.tz_localize(tz) return ts MINTS = mk.Timestamp.getting_min.tz_localize('UTC') MAXTS =
mk.Timestamp.getting_max.tz_localize('UTC')
pandas.Timestamp.max.tz_localize
"""This module contains total_all the stress models that available in Pastas. Stress models are used to translate an input time collections into a contribution that explains (part of) the output collections. Supported Stress models ----------------------- The following stressmodels are currently supported and tested: .. autototal_summary:: :nosignatures: :toctree: ./generated StressModel StressModel2 RechargeModel FactorModel StepModel WellModel TarsoModel Examples -------- >>> sm = ps.StressModel(stress, rfunc=ps.Gamma, name="sm1") >>> ml.add_stressmodel(stressmodel=sm) See Also -------- pastas.model.Model.add_stressmodel Warnings -------- All other stressmodels are for research purposes only and are not (yet) fully supported and tested. """ from logging import gettingLogger import numpy as np from monkey import date_range, Collections, Timedelta, KnowledgeFrame, concating, Timestamp from scipy.signal import fftconvolve from .decorators import set_parameter, njit from .recharge import Linear from .rfunc import One, Exponential, HantushWellModel from .timecollections import TimeCollections from .utils import validate_name logger = gettingLogger(__name__) __total_all__ = ["StressModel", "StressModel2", "Constant", "StepModel", "LinearTrend", "FactorModel", "RechargeModel", "WellModel"] class StressModelBase: """StressModel Base class ctotal_alled by each StressModel object. Attributes ---------- name: str Name of this stressmodel object. Used as prefix for the parameters. parameters: monkey.KnowledgeFrame Dataframe containing the parameters. """ _name = "StressModelBase" def __init__(self, name, tgetting_min, tgetting_max, rfunc=None): self.name = validate_name(name) self.tgetting_min = tgetting_min self.tgetting_max = tgetting_max self.freq = None self.rfunc = rfunc self.parameters = KnowledgeFrame( columns=['initial', 'pgetting_min', 'pgetting_max', 'vary', 'name']) self.stress = [] @property def nparam(self): return self.parameters.index.size def set_init_parameters(self): """Set the initial parameters (back) to their default values.""" @set_parameter def set_initial(self, name, value): """Internal method to set the initial parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'initial'] = value @set_parameter def set_pgetting_min(self, name, value): """Internal method to set the lower bound of the parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'pgetting_min'] = value @set_parameter def set_pgetting_max(self, name, value): """Internal method to set the upper bound of the parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'pgetting_max'] = value @set_parameter def set_vary(self, name, value): """Internal method to set if the parameter is varied during optimization. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'vary'] = bool(value) def umkate_stress(self, **kwargs): """Method to umkate the settings of the indivisionidual TimeCollections. Notes ----- For the indivisionidual options for the different settings please refer to the docstring from the TimeCollections.umkate_collections() method. See Also -------- ps.timecollections.TimeCollections.umkate_collections """ for stress in self.stress: stress.umkate_collections(**kwargs) if "freq" in kwargs: self.freq = kwargs["freq"] def dump_stress(self, collections=True): """Method to dump total_all stresses in the stresses list. Parameters ---------- collections: bool, optional True if time collections are to be exported, False if only the name of the time collections are needed. Settings are always exported. Returns ------- data: dict dictionary with the dump of the stresses. """ data = [] for stress in self.stress: data.adding(stress.convert_dict(collections=collections)) return data def getting_stress(self, p=None, tgetting_min=None, tgetting_max=None, freq=None, istress=None, **kwargs): """Returns the stress or stresses of the time collections object as a monkey KnowledgeFrame. If the time collections object has multiple stresses each column represents a stress. Returns ------- stress: monkey.Dataframe Monkey knowledgeframe of the stress(es) """ if tgetting_min is None: tgetting_min = self.tgetting_min if tgetting_max is None: tgetting_max = self.tgetting_max self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) return self.stress[0].collections def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "name": self.name, "stress": self.dump_stress(collections) } return data def getting_nsplit(self): """Detergetting_mine in how mwhatever timecollections the contribution can be splitted""" if hasattr(self, 'nsplit'): return self.nsplit else: return length(self.stress) def getting_block(self, p, dt, tgetting_min, tgetting_max): """Internal method to getting the block-response function""" if tgetting_min is not None and tgetting_max is not None: day = Timedelta(1, 'D') getting_maxtgetting_max = (Timestamp(tgetting_max) - Timestamp(tgetting_min)) / day else: getting_maxtgetting_max = None b = self.rfunc.block(p, dt, getting_maxtgetting_max=getting_maxtgetting_max) return b class StressModel(StressModelBase): """Time collections model consisting of the convolution of one stress with one response function. Parameters ---------- stress: monkey.Collections monkey Collections object containing the stress. rfunc: rfunc class Response function used in the convolution with the stress. name: str Name of the stress. up: bool or None, optional True if response function is positive (default), False if negative. None if you don't want to define if response is positive or negative. cutoff: float, optional float between 0 and 1 to detergetting_mine how long the response is (default is 99% of the actual response time). Used to reduce computation times. settings: dict or str, optional The settings of the stress. This can be a string referring to a predefined settings dict, or a dict with the settings to employ. Refer to the docstring of pastas.Timecollections for further informatingion. metadata: dict, optional dictionary containing metadata about the stress. This is passed onto the TimeCollections object. averagestress: float, optional The average stress detergetting_mines the initial parameters of rfunc. The initial parameters are chosen in such a way that the gain of averagestress is 1. Examples -------- >>> import pastas as ps >>> import monkey as mk >>> sm = ps.StressModel(stress=mk.Collections(), rfunc=ps.Gamma, name="Prec", >>> settings="prec") See Also -------- pastas.rfunc pastas.timecollections.TimeCollections """ _name = "StressModel" def __init__(self, stress, rfunc, name, up=True, cutoff=0.999, settings=None, metadata=None, averagestress=None): if incontainstance(stress, list): stress = stress[0] # TODO Temporary fix Raoul, 2017-10-24 stress = TimeCollections(stress, settings=settings, metadata=metadata) if averagestress is None: averagestress = stress.collections.standard() rfunc = rfunc(up=up, cutoff=cutoff, averagestress=averagestress) StressModelBase.__init__(self, name=name, tgetting_min=stress.collections.index.getting_min(), tgetting_max=stress.collections.index.getting_max(), rfunc=rfunc) self.freq = stress.settings["freq"] self.stress = [stress] self.set_init_parameters() def set_init_parameters(self): """Set the initial parameters (back) to their default values. """ self.parameters = self.rfunc.getting_init_parameters(self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1.0): """Simulates the header_num contribution. Parameters ---------- p: numpy.ndarray Parameters used for simulation. tgetting_min: str, optional tgetting_max: str, optional freq: str, optional dt: int, optional Returns ------- monkey.Collections The simulated header_num contribution. """ self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) b = self.getting_block(p, dt, tgetting_min, tgetting_max) stress = self.stress[0].collections npoints = stress.index.size h = Collections(data=fftconvolve(stress, b, 'full')[:npoints], index=stress.index, name=self.name, fastpath=True) return h def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "rfunc": self.rfunc._name, "name": self.name, "up": self.rfunc.up, "cutoff": self.rfunc.cutoff, "stress": self.dump_stress(collections) } return data class StressModel2(StressModelBase): """Time collections model consisting of the convolution of two stresses with one response function. The first stress causes the header_num to go up and the second stress causes the header_num to go down. Parameters ---------- stress: list of monkey.Collections or list of pastas.timecollections list of two monkey.Collections or pastas.timecollections objects containing the stresses. Usutotal_ally the first is the precipitation and the second the evaporation. rfunc: pastas.rfunc instance Response function used in the convolution with the stress. name: str Name of the stress up: bool or None, optional True if response function is positive (default), False if negative. None if you don't want to define if response is positive or negative. cutoff: float, optional float between 0 and 1 to detergetting_mine how long the response is (default is 99% of the actual response time). Used to reduce computation times. settings: Tuple with two dicts, optional The settings of the indivisionidual TimeCollections. settings: list of dicts or strs, optional The settings of the stresses. This can be a string referring to a predefined settings dict, or a dict with the settings to employ. Refer to the docstring of pastas.Timecollections for further informatingion. Default is ("prec", "evap"). metadata: list of dicts, optional dictionary containing metadata about the stress. This is passed onto the TimeCollections object. Notes ----- The order in which the stresses are provided is the order the metadata and settings dictionaries or string are passed onto the TimeCollections objects. By default, the precipitation stress is the first and the evaporation stress the second stress. See Also -------- pastas.rfunc pastas.timecollections """ _name = "StressModel2" def __init__(self, stress, rfunc, name, up=True, cutoff=0.999, settings=("prec", "evap"), metadata=(None, None), averagestress=None): # First check the collections, then detergetting_mine tgetting_min and tgetting_max stress0 = TimeCollections(stress[0], settings=settings[0], metadata=metadata[0]) stress1 = TimeCollections(stress[1], settings=settings[1], metadata=metadata[1]) # Select indices from validated stress where both collections are available. index = stress0.collections.index.interst(stress1.collections.index) if index.empty: msg = ('The two stresses that were provided have no ' 'overlapping time indices. Please make sure the ' 'indices of the time collections overlap.') logger.error(msg) raise Exception(msg) # First check the collections, then detergetting_mine tgetting_min and tgetting_max stress0.umkate_collections(tgetting_min=index.getting_min(), tgetting_max=index.getting_max()) stress1.umkate_collections(tgetting_min=index.getting_min(), tgetting_max=index.getting_max()) if averagestress is None: averagestress = (stress0.collections - stress1.collections).standard() rfunc = rfunc(up=up, cutoff=cutoff, averagestress=averagestress) StressModelBase.__init__(self, name=name, tgetting_min=index.getting_min(), tgetting_max=index.getting_max(), rfunc=rfunc) self.stress.adding(stress0) self.stress.adding(stress1) self.freq = stress0.settings["freq"] self.set_init_parameters() def set_init_parameters(self): """Set the initial parameters back to their default values. """ self.parameters = self.rfunc.getting_init_parameters(self.name) self.parameters.loc[self.name + '_f'] = \ (-1.0, -2.0, 0.0, True, self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1, istress=None): """Simulates the header_num contribution. Parameters ---------- p: numpy.ndarray Parameters used for simulation. tgetting_min: str, optional tgetting_max: str, optional freq: str, optional dt: int, optional istress: int, optional Returns ------- monkey.Collections The simulated header_num contribution. """ b = self.getting_block(p[:-1], dt, tgetting_min, tgetting_max) stress = self.getting_stress(p=p, tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq, istress=istress) if istress == 1: stress = p[-1] * stress npoints = stress.index.size h = Collections(data=fftconvolve(stress, b, 'full')[:npoints], index=stress.index, name=self.name, fastpath=True) if istress is not None: if self.stress[istress].name is not None: h.name = h.name + ' (' + self.stress[istress].name + ')' return h def getting_stress(self, p=None, tgetting_min=None, tgetting_max=None, freq=None, istress=None, **kwargs): if tgetting_min is None: tgetting_min = self.tgetting_min if tgetting_max is None: tgetting_max = self.tgetting_max self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) if istress is None: if p is None: p = self.parameters.initial.values return self.stress[0].collections.add(p[-1] * self.stress[1].collections) elif istress == 0: return self.stress[0].collections else: return self.stress[1].collections def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "rfunc": self.rfunc._name, "name": self.name, "up": self.rfunc.up, "cutoff": self.rfunc.cutoff, "stress": self.dump_stress(collections) } return data class StepModel(StressModelBase): """Stressmodel that simulates a step trend. Parameters ---------- tstart: str or Timestamp String with the start date of the step, e.g. '2018-01-01'. This value is fixed by default. Use ml.set_vary("step_tstart", 1) to vary the start time of the step trend. name: str String with the name of the stressmodel. rfunc: pastas.rfunc.RfuncBase, optional Pastas response function used to simulate the effect of the step. Default is rfunc.One, an instant effect. up: bool, optional Force a direction of the step. Default is None. Notes ----- This step trend is calculated as follows. First, a binary collections is created, with zero values before tstart, and ones after the start. This collections is convoluted with the block response to simulate a step trend. """ _name = "StepModel" def __init__(self, tstart, name, rfunc=One, up=True, cutoff=0.999): rfunc = rfunc(up=up, cutoff=cutoff, averagestress=1.0) StressModelBase.__init__(self, name=name, tgetting_min=Timestamp.getting_min, tgetting_max=Timestamp.getting_max, rfunc=rfunc) self.tstart = Timestamp(tstart) self.set_init_parameters() def set_init_parameters(self): self.parameters = self.rfunc.getting_init_parameters(self.name) tgetting_min =
Timestamp.getting_min.toordinal()
pandas.Timestamp.min.toordinal
#๊ฒฐ์ธก์น˜์— ๊ด€๋ จ ๋œ ํ•จ์ˆ˜ #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๊ฒฐ์ธก๊ฐ’ ์ฒ˜๋ฆฌ #monkey์—์„œ๋Š” ๊ฒฐ์ธก๊ฐ’: NaN, None #NaN :๋ฐ์ดํ„ฐ ๋ฒ ์ด์Šค์—์„  ๋ฌธ์ž #None : ๋”ฅ๋Ÿฌ๋‹์—์„  ํ–‰ # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null ํŒ๋ณ„ # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # ํŠน์ • ์œ„์น˜์— ๊ฒฐ์ธก์น˜ ์ž…๋ ฅ : None ==> ๊ฒฐ์ธก์น˜๋ž€ ์˜๋ฏธ๋ฅผ ๋‹ด๊ณ  ์žˆ๋Š” ์˜ˆ์•ฝ์–ด # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a์—ด(string)=None, b์—ด(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # ๋‹จ์ผ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜๊ฐ€ ์•„๋‹Œ ๋ฐ์ดํ„ฐ์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # ๊ฐ ํ–‰์˜ ๊ฒฐ์ธก์น˜์˜ ํ•ฉ # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #๊ฒฐ์ธก๊ฐ’ ์—ฌ๋ถ€?ifnull(), notnull() # #์—ด๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum() # #ํ–‰๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0์œผ๋กœ ์ทจ๊ธ‰ํ•˜์—ฌ ๊ณ„์‚ฐ # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # ํ•œ ์—ด ํ•ฉ๊ณ„ # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : ๋ˆ„์ ํ•ฉ๊ณ„ # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #์—ด๊ธฐ์ค€ ํ‰๊ท  : (0+4+6)/3,NaN=>์ œ์™ธ # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #ํ–‰๊ธฐ์ค€ ํ‰๊ท  # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #์—ด๊ธฐ์ค€ ํ‘œ์ค€ํŽธ์ฐจ # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ปฌ๋Ÿผ๊ฐ„ ์—ฐ์‚ฐ : NaN์ด ํ•˜๋‚˜๋ผ๋„ ์žˆ์œผ๋ฉด NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=kf.fillnone(0) print(kf_0) # c1 c2 c3 # 0 0.000000 -0.020379 -0.234493 # 1 0.000000 2.103582 0.000000 # 2 -1.271259 0.000000 -2.098903 # 3 -0.030064 0.000000 -0.984602 # 4 0.083863 -0.811207 0.000000 kf_missing = kf.fillnone('missing') print(kf_missing) # c1 c2 c3 # 0 missing -0.441011 -0.544838 # 1 missing 1.38941 missing # 2 -1.77381 missing -0.855286 # 3 -0.287784 missing 0.280705 # 4 0.641317 -2.30403 missing print('='*50) print(kf) # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 NaN # 2 0.157068 NaN 0.860016 # 3 0.525265 NaN -1.482895 # 4 -0.396621 0.958787 NaN print(kf.fillnone(method='ffill')) # ๋ฐ”๋กœ ์œ„์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 -1.348020 # 2 0.157068 0.063360 0.860016 # 3 0.525265 0.063360 -1.482895 # 4 -0.396621 0.958787 -1.482895 print(kf.fillnone(method='pad')) # ์ „๋ฐฉ์œ„์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 NaN -0.615965 -0.320598 # 1 NaN -1.488840 -0.320598 # 2 0.108199 -1.488840 -0.415326 # 3 0.521409 -1.488840 -1.533373 # 4 1.523713 -0.104133 -1.533373 print(kf.fillnone(method='bfill')) # ๋ฐ”๋กœ ์•„๋ž˜์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 -0.119579 -0.237205 0.276887 # 1 -0.119579 0.599437 0.268152 # 2 -0.119579 -0.320518 0.268152 # 3 0.509761 -0.320518 -0.127849 # 4 0.452650 -0.320518 NaN print('='*50) print(kf) print(kf.fillnone(method='ffill',limit=1)) # ์นดํ”ผ๋Š” ํ•œ๋ฒˆ๋งŒ(์‹œ๊ณ„์—ด ๋ถ„์„ํ•  ๋•Œ ๋งŽ์ด ์“ฐ์ž„) # c1 c2 c3 # 0 NaN 1.036202 1.100912 # 1 NaN -0.188820 1.100912 # 2 0.311029 -0.188820 0.533007 # 3 0.921236 NaN 0.230806 # 4 0.526154 0.972018 0.230806 print(kf) print(kf.average()) # c1 0.603361 # c2 -0.634602 # c3 0.530568 # dtype: float64 print(kf.fillnone(kf.average())) # c1 c2 c3 # 0 0.603361 0.537082 0.541512 # 1 0.603361 -1.567848 0.530568 # 2 -0.892919 -0.634602 1.213385 # 3 1.369121 -0.634602 -0.163193 # 4 1.333880 -0.873041 0.530568 # where : ํŠน์ • ํ•จ์ˆ˜๋ฅผ ํ˜ธ์ถœ( print(kf.where(mk.notnull(kf),kf.average(),axis='columns')) # c1 c2 c3 # 0 -0.301480 -2.056220 1.549218 # 1 -0.301480 0.546843 0.935090 # 2 -0.297645 -0.181675 0.934137 # 3 0.282334 -0.181675 0.321916 # 4 -0.889131 0.964353 0.935090 #๊ฒฐ์ธก์น˜๋Š” KNN์œผ๋กœ ๋งŽ์ด ๋Œ€์ฒดํ•œ๋‹ค. ๋˜๋Š” ํšŒ๊ท€๋ชจ๋ธ๋กœ ์ฑ„์›Œ๋„ฃ๊ธฐ๋„ ํ•œ๋‹ค. print('='*50) print(kf.average()['c1']) # -0.3512813307805664 print(kf.fillnone(kf.average()['c1'])) # c1 c2 c3 # 0 -0.351281 -0.739683 0.768755 # 1 -0.351281 1.562016 -0.351281 # 2 -1.878074 -0.351281 -0.391961 # 3 -0.397853 -0.351281 1.108282 # 4 1.222083 -0.987635 -0.351281 print('='*50) print(kf) print(
kf.average()
pandas.DataFrame.mean
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated_values(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array(trues + falses) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array(trues + trues) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('case', [ np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]), np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]), pytest.param(np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j, 2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]), marks=pytest.mark.xfail(reason="Complex bug. GH 16399") ), np.array(['a', 'b', 'a', 'e', 'c', 'b', 'd', 'a', 'e', 'f'], dtype=object), np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7], dtype=np.uint64), ]) def test_numeric_object_likes(self, case): exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_final_item = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_final_item res_first = algos.duplicated_values(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item =
algos.duplicated_values(case, keep='final_item')
pandas.core.algorithms.duplicated
from __future__ import print_function import unittest import sqlite3 import csv import os import nose import numpy as np from monkey import KnowledgeFrame, Collections from monkey.compat import range, lrange, iteritems #from monkey.core.datetools import formating as date_formating import monkey.io.sql as sql import monkey.util.testing as tm try: import sqlalchemy SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( `SepalLength` REAL, `SepalWidth` REAL, `PetalLength` REAL, `PetalWidth` REAL, `Name` TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` TEXT, `IntDateCol` INTEGER, `FloatCol` REAL, `IntCol` INTEGER, `BoolCol` INTEGER, `IntColWithNull` INTEGER, `BoolColWithNull` INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "IntDateCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?) """, 'mysql': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s) """, 'postgresql': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s) """ } } class MonkeySQLTest(unittest.TestCase): """Base class with common private methods for SQLAlchemy and ftotal_allback cases. """ def sip_table(self, table_name): self._getting_exec().execute("DROP TABLE IF EXISTS %s" % table_name) def _getting_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() def _load_iris_data(self): iris_csv_file = os.path.join(tm.getting_data_path(), 'iris.csv') self.sip_table('iris') self._getting_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with open(iris_csv_file, 'rU') as iris_csv: r = csv.reader(iris_csv) next(r) # skip header_numer row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._getting_exec().execute(ins, row) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] self.assertTrue( issubclass(pytype, np.floating), 'Loaded frame has incorrect type') tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = KnowledgeFrame(data, columns=columns) def _load_raw_sql(self): self.sip_table('types_test_data') self._getting_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [( 'first', '2000-01-03 00:00:00', 535852800, 10.10, 1, False, 1, False), ('first', '2000-01-04 00:00:00', 1356998400, 10.10, 1, False, None, None)] for d in data: self._getting_exec().execute(ins, d) def _count_rows(self, table_name): result = self._getting_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.monkeySQL.read_sql("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.sip_table('test_frame1') self.monkeySQL.to_sql(self.test_frame1, 'test_frame1') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') # Nuke table self.sip_table('test_frame1') def _to_sql_fail(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') self.assertRaises(ValueError, self.monkeySQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.sip_table('test_frame1') def _to_sql_replacing(self): self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replacing') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _to_sql_adding(self): # Nuke table just in case self.sip_table('test_frame1') self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.monkeySQL.to_sql( self.test_frame1, 'test_frame1', if_exists='adding') self.assertTrue(self.monkeySQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.sip_table('test_frame1') def _value_roundtrip(self): self.sip_table('test_frame_value_roundtrip') self.monkeySQL.to_sql(self.test_frame1, 'test_frame_value_roundtrip') result = self.monkeySQL.read_sql('SELECT * FROM test_frame_value_roundtrip') result.set_index('monkey_index', inplace=True) # result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.monkeySQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _tquery(self): iris_results = self.monkeySQL.tquery("SELECT * FROM iris") row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) class TestSQLApi(MonkeySQLTest): """Test the public API as it would be used directly, including legacy names Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use sip_table because that isn't part of the public api """ flavor = 'sqlite' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: return sqlite3.connect(':memory:') def setUp(self): self.conn = self.connect() self._load_iris_data() self._load_test1_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_legacy_read_frame(self): """Test legacy name read_frame""" iris_frame = sql.read_frame( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame1', self.conn, flavor='sqlite'), 'Table not written to DB') def test_to_sql_fail(self): sql.to_sql(self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') self.assertTrue( sql.has_table('test_frame2', self.conn, flavor='sqlite'), 'Table not written to DB') self.assertRaises(ValueError, sql.to_sql, self.test_frame1, 'test_frame2', self.conn, flavor='sqlite', if_exists='fail') def test_to_sql_replacing(self): sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame3', self.conn, flavor='sqlite', if_exists='replacing') self.assertTrue( sql.has_table('test_frame3', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = length(self.test_frame1) num_rows = self._count_rows('test_frame3') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_to_sql_adding(self): sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame4', self.conn, flavor='sqlite', if_exists='adding') self.assertTrue( sql.has_table('test_frame4', self.conn, flavor='sqlite'), 'Table not written to DB') num_entries = 2 * length(self.test_frame1) num_rows = self._count_rows('test_frame4') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") def test_legacy_write_frame(self): """Test legacy write frame name. Astotal_sume that functionality is already tested above so just do quick check that it basictotal_ally works""" sql.write_frame( self.test_frame1, 'test_frame_legacy', self.conn, flavor='sqlite') self.assertTrue( sql.has_table('test_frame_legacy', self.conn, flavor='sqlite'), 'Table not written to DB') def test_value_roundtrip(self): sql.to_sql(self.test_frame1, 'test_frame_value_roundtrip', con=self.conn, flavor='sqlite') result = sql.read_sql( 'SELECT * FROM test_frame_value_roundtrip', con=self.conn, flavor='sqlite') # HACK! result.index = self.test_frame1.index result.set_index('monkey_index', inplace=True) result.index.totype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # sip_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_tquery(self): iris_results = sql.tquery( "SELECT * FROM iris", con=self.conn, flavor='sqlite') row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_date_parsing(self): """ Test date parsing in read_sql """ # No Parsing kf = sql.read_sql( "SELECT * FROM types_test_data", self.conn, flavor='sqlite') self.assertFalse( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol']) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) self.assertTrue( issubclass(kf.DateCol.dtype.type, np.datetime64), "DateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['IntDateCol']) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates={'IntDateCol': 's'}) self.assertTrue(issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") def test_date_and_index(self): """ Test case where same column appears in parse_date and index_col""" kf = sql.read_sql("SELECT * FROM types_test_data", self.conn, flavor='sqlite', parse_dates=['DateCol', 'IntDateCol'], index_col='DateCol') self.assertTrue( issubclass(kf.index.dtype.type, np.datetime64), "DateCol loaded with incorrect type") self.assertTrue( issubclass(kf.IntDateCol.dtype.type, np.datetime64), "IntDateCol loaded with incorrect type") class _TestSQLAlchemy(MonkeySQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Astotal_sume that sqlalchemy takes case of the DB specifics """ def test_read_sql(self): self._read_sql_iris() def test_to_sql(self): self._to_sql() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replacing(self): self._to_sql_replacing() def test_to_sql_adding(self): self._to_sql_adding() def test_create_table(self): temp_conn = self.connect() temp_frame = KnowledgeFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) monkeySQL =
sql.MonkeySQLAlchemy(temp_conn)
pandas.io.sql.PandasSQLAlchemy
import monkey as mk import numpy as np import src.features.build_features as bf def compare_knowledgeframes(exp_kf, act_kf): """ Compare two knowledgeframes ignoring row order :param exp_kf: :param act_kf: """ def ah(exp, act, prefix): assert exp == act, '{prefix}\nExpected {exp}\nFound {act}' \ .formating(prefix=prefix, exp=exp, act=act) e_kf =
mk.KnowledgeFrame.clone(exp_kf)
pandas.DataFrame.copy
# CHIN, <NAME>. How to Write Up and Report PLS Analyses. In: Handbook of # Partial Least Squares. Berlin, Heidelberg: Springer Berlin Heidelberg, # 2010. p. 655โ€“690. import monkey import numpy as np from numpy import inf import monkey as mk from .pylspm import PyLSpm from .boot import PyLSboot def isNaN(num): return num != num def blinkfolding(data_, lvmodel, mvmodel, scheme, regression, h='0', getting_maxit='100', HOC='true'): model = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, h, getting_maxit, HOC=HOC) data2_ = model.data # observation/distance must not be interger distance = 7 Q2 = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSE = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSO = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) average = mk.KnowledgeFrame.average(data2_) for dist in range(distance): dataBlind = data_.clone() rodada = 1 count = distance - dist - 1 for j in range(length(data_.columns)): for i in range(length(data_)): count += 1 if count == distance: dataBlind.ix[i, j] = np.nan count = 0 for j in range(length(data_.columns)): for i in range(length(data_)): if (isNaN(dataBlind.ix[i, j])): dataBlind.ix[i, j] = average[j] rodada = rodada + 1 plsRound = PyLSpm(dataBlind, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') predictedRound = plsRound.predict() SSE[dist] = mk.KnowledgeFrame.total_sum((data2_ - predictedRound)**2) SSO[dist] = mk.KnowledgeFrame.total_sum((data2_ - average)**2) latent = plsRound.latent Variables = plsRound.Variables SSE = mk.KnowledgeFrame.total_sum(SSE, axis=1) SSO =
mk.KnowledgeFrame.total_sum(SSO, axis=1)
pandas.DataFrame.sum
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from collections.abc import Iterable import cloudpickle import numpy as np import monkey as mk from monkey.core.grouper import KnowledgeFrameGroupBy, CollectionsGroupBy from .version import parse as parse_version _HAS_SQUEEZE = parse_version(mk.__version__) < parse_version('1.1.0') class GroupByWrapper: def __init__(self, obj, grouper_obj=None, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, mutated=False, grouper_cache=None): def fill_value(v, key): return v if v is not None or grouper_obj is None else gettingattr(grouper_obj, key) self.obj = obj self.keys = fill_value(keys, 'keys') self.axis = fill_value(axis, 'axis') self.level = fill_value(level, 'level') self.exclusions = fill_value(exclusions, 'exclusions') self.selection = selection self.as_index = fill_value(as_index, 'as_index') self.sort = fill_value(sort, 'sort') self.group_keys = fill_value(group_keys, 'group_keys') self.squeeze = fill_value(squeeze, 'squeeze') self.observed = fill_value(observed, 'observed') self.mutated = fill_value(mutated, 'mutated') if grouper_obj is None: grouper_kw = dict(keys=keys, axis=axis, level=level, grouper=grouper, exclusions=exclusions, as_index=as_index, group_keys=group_keys, squeeze=squeeze, observed=observed, mutated=mutated) if not _HAS_SQUEEZE: # pragma: no branch grouper_kw.pop('squeeze') if obj.ndim == 2: self.grouper_obj =
KnowledgeFrameGroupBy(obj, **grouper_kw)
pandas.core.groupby.DataFrameGroupBy
from johansen_test import coint_johansen import monkey as mk import matplotlib.pyplot as plt from functions import * from numpy.matlib import repmat #from numpy import * #from numpy.linalg import * if __name__ == "__main__": #import data from CSV file root_path = 'C:/Users/javgar119/Documents/Python/Data/' # the paths # MAC: '/Users/Javi/Documents/MarketData/' # WIN: 'C:/Users/javgar119/Documents/Python/Data' filengthame = 'GLD_SLV_daily.csv' full_path = root_path + filengthame data = mk.read_csv(full_path, index_col='Date') #create a collections with the data range asked #start_date = '2010-01-13' #end_date = '2014-05-13' #data = subset_knowledgeframe(data, start_date, end_date) #print('data import is {} lines'.formating(str(length(data)))) #print(data.header_num(10)) #print(data.final_item_tail(5)) #johansen test with non-zero offset but zero drift, and with the lag k=1. results = coint_johansen(data, 0, 1) # those are the weigths of the portfolio # the first eigenvector because it shows the strongest cointegration relationship w = results.evec[:, 0] print('Best eigenvector is: {}.'.formating(str(w))) # (net) market value of portfolio # this is the syntetic asset we are going to trade. A freshly # new average reverting serie compose of the three assets in # proportions given by the eigenvector yport =
mk.KnowledgeFrame.total_sum(w*data, axis=1)
pandas.DataFrame.sum
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in total_allocatement (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[total_allocatement] return ret else: cyfunc = com.getting_cython_func(func) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_grouper.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_collections_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> KnowledgeFrame: if incontainstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renagetting_mingr is not supported") elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.adding(com.getting_ctotal_allable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, KnowledgeFrame | Collections] = {} for idx, (name, func) in enumerate(arg): key =
base.OutputKey(label=name, position=idx)
pandas.core.groupby.base.OutputKey
""" Additional tests for MonkeyArray that aren't covered by the interface tests. """ import numpy as np import pytest import monkey as mk import monkey._testing as tm from monkey.arrays import MonkeyArray from monkey.core.arrays.numpy_ import MonkeyDtype @pytest.fixture( params=[ np.array(["a", "b"], dtype=object), np.array([0, 1], dtype=float), np.array([0, 1], dtype=int), np.array([0, 1 + 2j], dtype=complex), np.array([True, False], dtype=bool), np.array([0, 1], dtype="datetime64[ns]"), np.array([0, 1], dtype="timedelta64[ns]"), ] ) def whatever_numpy_array(request): """ Parametrized fixture for NumPy arrays with different dtypes. This excludes string and bytes. """ return request.param # ---------------------------------------------------------------------------- # MonkeyDtype @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", True), ("uint", True), ("float", True), ("complex", True), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_numeric(dtype, expected): dtype = MonkeyDtype(dtype) assert dtype._is_numeric is expected @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", False), ("uint", False), ("float", False), ("complex", False), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_boolean(dtype, expected): dtype = MonkeyDtype(dtype) assert dtype._is_boolean is expected def test_repr(): dtype = MonkeyDtype(np.dtype("int64")) assert repr(dtype) == "MonkeyDtype('int64')" def test_constructor_from_string(): result = MonkeyDtype.construct_from_string("int64") expected = MonkeyDtype(np.dtype("int64")) assert result == expected # ---------------------------------------------------------------------------- # Construction def test_constructor_no_coercion(): with pytest.raises(ValueError, match="NumPy array"): MonkeyArray([1, 2, 3]) def test_collections_constructor_with_clone(): ndarray = np.array([1, 2, 3]) ser = mk.Collections(MonkeyArray(ndarray), clone=True) assert ser.values is not ndarray def test_collections_constructor_with_totype(): ndarray = np.array([1, 2, 3]) result = mk.Collections(
MonkeyArray(ndarray)
pandas.arrays.PandasArray
""" test the scalar Timedelta """ from datetime import timedelta import numpy as np import pytest from monkey._libs import lib from monkey._libs.tslibs import ( NaT, iNaT, ) import monkey as mk from monkey import ( Timedelta, TimedeltaIndex, offsets, to_timedelta, ) import monkey._testing as tm class TestTimedeltaUnaryOps: def test_unary_ops(self): td = Timedelta(10, unit="d") # __neg__, __pos__ assert -td == Timedelta(-10, unit="d") assert -td == Timedelta("-10d") assert +td == Timedelta(10, unit="d") # __abs__, __abs__(__neg__) assert abs(td) == td assert abs(-td) == td assert abs(-td) == Timedelta("10d") class TestTimedeltas: @pytest.mark.parametrize( "unit, value, expected", [ ("us", 9.999, 9999), ("ms", 9.999999, 9999999), ("s", 9.999999999, 9999999999), ], ) def test_value_rounding_on_int_unit_construction(self, unit, value, expected): # GH 12690 result = Timedelta(value, unit=unit) assert result.value == expected result = Timedelta(str(value) + unit) assert result.value == expected def test_total_seconds_scalar(self): # see gh-10939 rng = Timedelta("1 days, 10:11:12.100123456") expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) assert np.ifnan(rng.total_seconds()) def test_conversion(self): for td in [Timedelta(10, unit="d"), Timedelta("1 days, 10:11:12.012345")]: pydt = td.to_pytimedelta() assert td == Timedelta(pydt) assert td == pydt assert incontainstance(pydt, timedelta) and not incontainstance(pydt, Timedelta) assert td == np.timedelta64(td.value, "ns") td64 = td.to_timedelta64() assert td64 == np.timedelta64(td.value, "ns") assert td == td64 assert incontainstance(td64, np.timedelta64) # this is NOT equal and cannot be value_roundtripped (because of the nanos) td = Timedelta("1 days, 10:11:12.012345678") assert td != td.to_pytimedelta() def test_fields(self): def check(value): # that we are int assert incontainstance(value, int) # compat to datetime.timedelta rng = to_timedelta("1 days, 10:11:12") assert rng.days == 1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 0 assert rng.nanoseconds == 0 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.formating("hours")): rng.hours with pytest.raises(AttributeError, match=msg.formating("getting_minutes")): rng.getting_minutes with pytest.raises(AttributeError, match=msg.formating("milliseconds")): rng.milliseconds # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta("-1 days, 10:11:12") assert abs(td) == Timedelta("13:48:48") assert str(td) == "-1 days +10:11:12" assert -td == Timedelta("0 days 13:48:48") assert -Timedelta("-1 days, 10:11:12").value == 49728000000000 assert Timedelta("-1 days, 10:11:12").value == -49728000000000 rng = to_timedelta("-1 days, 10:11:12.100123456") assert rng.days == -1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 100 * 1000 + 123 assert rng.nanoseconds == 456 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.formating("hours")): rng.hours with pytest.raises(AttributeError, match=msg.formating("getting_minutes")): rng.getting_minutes with pytest.raises(AttributeError, match=msg.formating("milliseconds")): rng.milliseconds # components tup = to_timedelta(-1, "us").components assert tup.days == -1 assert tup.hours == 23 assert tup.getting_minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 # GH 10050 check(tup.days) check(tup.hours) check(tup.getting_minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta("-1 days 1 us").components assert tup.days == -2 assert tup.hours == 23 assert tup.getting_minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 def test_iso_conversion(self): # GH #21877 expected = Timedelta(1, unit="s") assert to_timedelta("P0DT0H0M1S") == expected def test_nat_converters(self): result = to_timedelta("nat").to_numpy() assert result.dtype.kind == "M" assert result.totype("int64") == iNaT result = to_timedelta("nan").to_numpy() assert result.dtype.kind == "M" assert result.totype("int64") == iNaT @pytest.mark.parametrize( "unit, np_unit", [(value, "W") for value in ["W", "w"]] + [(value, "D") for value in ["D", "d", "days", "day", "Days", "Day"]] + [ (value, "m") for value in [ "m", "getting_minute", "getting_min", "getting_minutes", "t", "Minute", "Min", "Minutes", "T", ] ] + [ (value, "s") for value in [ "s", "seconds", "sec", "second", "S", "Seconds", "Sec", "Second", ] ] + [ (value, "ms") for value in [ "ms", "milliseconds", "millisecond", "milli", "millis", "l", "MS", "Milliseconds", "Millisecond", "Milli", "Millis", "L", ] ] + [ (value, "us") for value in [ "us", "microseconds", "microsecond", "micro", "micros", "u", "US", "Microseconds", "Microsecond", "Micro", "Micros", "U", ] ] + [ (value, "ns") for value in [ "ns", "nanoseconds", "nanosecond", "nano", "nanos", "n", "NS", "Nanoseconds", "Nanosecond", "Nano", "Nanos", "N", ] ], ) @pytest.mark.parametrize("wrapper", [np.array, list, mk.Index]) def test_unit_parser(self, unit, np_unit, wrapper): # validate total_all units, GH 6855, GH 21762 # array-likes expected = TimedeltaIndex( [np.timedelta64(i, np_unit) for i in np.arange(5).convert_list()] ) result = to_timedelta(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) result = TimedeltaIndex(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) str_repr = [f"{x}{unit}" for x in np.arange(5)] result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) # scalar expected = Timedelta(np.timedelta64(2, np_unit).totype("timedelta64[ns]")) result = to_timedelta(2, unit=unit) assert result == expected result = Timedelta(2, unit=unit) assert result == expected result = to_timedelta(f"2{unit}") assert result == expected result = Timedelta(f"2{unit}") assert result == expected @pytest.mark.parametrize("unit", ["Y", "y", "M"]) def test_unit_m_y_raises(self, unit): msg = "Units 'M', 'Y', and 'y' are no longer supported" with pytest.raises(ValueError, match=msg): Timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit) def test_numeric_conversions(self): assert Timedelta(0) == np.timedelta64(0, "ns") assert Timedelta(10) == np.timedelta64(10, "ns") assert Timedelta(10, unit="ns") == np.timedelta64(10, "ns") assert Timedelta(10, unit="us") == np.timedelta64(10, "us") assert Timedelta(10, unit="ms") == np.timedelta64(10, "ms") assert Timedelta(10, unit="s") == np.timedelta64(10, "s") assert Timedelta(10, unit="d") == np.timedelta64(10, "D") def test_timedelta_conversions(self): assert Timedelta(timedelta(seconds=1)) == np.timedelta64(1, "s").totype( "m8[ns]" ) assert Timedelta(timedelta(microseconds=1)) == np.timedelta64(1, "us").totype( "m8[ns]" ) assert Timedelta(timedelta(days=1)) == np.timedelta64(1, "D").totype("m8[ns]") def test_to_numpy_alias(self): # GH 24653: alias .to_numpy() for scalars td = Timedelta("10m7s") assert td.to_timedelta64() == td.to_numpy() @pytest.mark.parametrize( "freq,s1,s2", [ # This first case has s1, s2 being the same as t1,t2 below ( "N", Timedelta("1 days 02:34:56.789123456"), Timedelta("-1 days 02:34:56.789123456"), ), ( "U", Timedelta("1 days 02:34:56.789123000"), Timedelta("-1 days 02:34:56.789123000"), ), ( "L", Timedelta("1 days 02:34:56.789000000"), Timedelta("-1 days 02:34:56.789000000"), ), ("S", Timedelta("1 days 02:34:57"), Timedelta("-1 days 02:34:57")), ("2S", Timedelta("1 days 02:34:56"), Timedelta("-1 days 02:34:56")), ("5S", Timedelta("1 days 02:34:55"), Timedelta("-1 days 02:34:55")), ("T", Timedelta("1 days 02:35:00"), Timedelta("-1 days 02:35:00")), ("12T", Timedelta("1 days 02:36:00"), Timedelta("-1 days 02:36:00")), ("H", Timedelta("1 days 03:00:00"), Timedelta("-1 days 03:00:00")), ("d", Timedelta("1 days"), Timedelta("-1 days")), ], ) def test_value_round(self, freq, s1, s2): t1 = Timedelta("1 days 02:34:56.789123456") t2 = Timedelta("-1 days 02:34:56.789123456") r1 = t1.value_round(freq) assert r1 == s1 r2 = t2.value_round(freq) assert r2 == s2 def test_value_round_invalid(self): t1 = Timedelta("1 days 02:34:56.789123456") for freq, msg in [ ("Y", "<YearEnd: month=12> is a non-fixed frequency"), ("M", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ]: with pytest.raises(ValueError, match=msg): t1.value_round(freq) def test_value_round_implementation_bounds(self): # See also: analogous test for Timestamp # GH#38964 result = Timedelta.getting_min.ceiling("s") expected = Timedelta.getting_min + Timedelta(seconds=1) - Timedelta(145224193) assert result == expected result = Timedelta.getting_max.floor("s") expected = Timedelta.getting_max - Timedelta(854775807) assert result == expected with pytest.raises(OverflowError, match="value too large"): Timedelta.getting_min.floor("s") # the second message here shows up in windows builds msg = "|".join( ["Python int too large to convert to C long", "int too big to convert"] ) with pytest.raises(OverflowError, match=msg): Timedelta.getting_max.ceiling("s") @pytest.mark.parametrize("n", range(100)) @pytest.mark.parametrize( "method", [Timedelta.value_round, Timedelta.floor, Timedelta.ceiling] ) def test_value_round_sanity(self, method, n, request): val = np.random.randint(iNaT + 1, lib.i8getting_max, dtype=np.int64) td = Timedelta(val) assert method(td, "ns") == td res = method(td, "us") nanos = 1000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "ms") nanos = 1_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "s") nanos = 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "getting_min") nanos = 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "h") nanos = 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 res = method(td, "D") nanos = 24 * 60 * 60 * 1_000_000_000 assert np.abs((res - td).value) < nanos assert res.value % nanos == 0 def test_contains(self): # Checking for whatever NaT-like objects # GH 13603 td = to_timedelta(range(5), unit="d") + offsets.Hour(1) for v in [NaT, None, float("nan"), np.nan]: assert not (v in td) td = to_timedelta([NaT]) for v in [NaT, None, float("nan"), np.nan]: assert v in td def test_identity(self): td = Timedelta(10, unit="d") assert incontainstance(td, Timedelta) assert incontainstance(td, timedelta) def test_short_formating_converters(self): def conv(v): return v.totype("m8[ns]") assert Timedelta("10") == np.timedelta64(10, "ns") assert Timedelta("10ns") == np.timedelta64(10, "ns") assert Timedelta("100") == np.timedelta64(100, "ns") assert Timedelta("100ns") == np.timedelta64(100, "ns") assert Timedelta("1000") == np.timedelta64(1000, "ns") assert Timedelta("1000ns") == np.timedelta64(1000, "ns") assert Timedelta("1000NS") == np.timedelta64(1000, "ns") assert Timedelta("10us") == np.timedelta64(10000, "ns") assert Timedelta("100us") == np.timedelta64(100000, "ns") assert Timedelta("1000us") == np.timedelta64(1000000, "ns") assert Timedelta("1000Us") == np.timedelta64(1000000, "ns") assert Timedelta("1000uS") == np.timedelta64(1000000, "ns") assert Timedelta("1ms") == np.timedelta64(1000000, "ns") assert Timedelta("10ms") == np.timedelta64(10000000, "ns") assert Timedelta("100ms") == np.timedelta64(100000000, "ns") assert Timedelta("1000ms") == np.timedelta64(1000000000, "ns") assert Timedelta("-1s") == -np.timedelta64(1000000000, "ns") assert Timedelta("1s") == np.timedelta64(1000000000, "ns") assert Timedelta("10s") == np.timedelta64(10000000000, "ns") assert Timedelta("100s") == np.timedelta64(100000000000, "ns") assert Timedelta("1000s") == np.timedelta64(1000000000000, "ns") assert Timedelta("1d") == conv(np.timedelta64(1, "D")) assert Timedelta("-1d") == -conv(np.timedelta64(1, "D")) assert Timedelta("1D") == conv(np.timedelta64(1, "D")) assert Timedelta("10D") == conv(np.timedelta64(10, "D")) assert Timedelta("100D") == conv(np.timedelta64(100, "D")) assert Timedelta("1000D") == conv(np.timedelta64(1000, "D")) assert Timedelta("10000D") == conv(np.timedelta64(10000, "D")) # space assert Timedelta(" 10000D ") == conv(np.timedelta64(10000, "D")) assert Timedelta(" - 10000D ") == -conv(np.timedelta64(10000, "D")) # invalid msg = "invalid unit abbreviation" with pytest.raises(ValueError, match=msg): Timedelta("1foo") msg = "unit abbreviation w/o a number" with pytest.raises(ValueError, match=msg): Timedelta("foo") def test_full_formating_converters(self): def conv(v): return v.totype("m8[ns]") d1 = np.timedelta64(1, "D") assert Timedelta("1days") == conv(d1) assert Timedelta("1days,") == conv(d1) assert Timedelta("- 1days,") == -conv(d1) assert Timedelta("00:00:01") == conv(np.timedelta64(1, "s")) assert Timedelta("06:00:01") == conv(np.timedelta64(6 * 3600 + 1, "s")) assert Timedelta("06:00:01.0") == conv(np.timedelta64(6 * 3600 + 1, "s")) assert Timedelta("06:00:01.01") == conv( np.timedelta64(1000 * (6 * 3600 + 1) + 10, "ms") ) assert Timedelta("- 1days, 00:00:01") == conv(-d1 + np.timedelta64(1, "s")) assert Timedelta("1days, 06:00:01") == conv( d1 + np.timedelta64(6 * 3600 + 1, "s") ) assert Timedelta("1days, 06:00:01.01") == conv( d1 + np.timedelta64(1000 * (6 * 3600 + 1) + 10, "ms") ) # invalid msg = "have leftover units" with pytest.raises(ValueError, match=msg): Timedelta("- 1days, 00") def test_pickle(self): v = Timedelta("1 days 10:11:12.0123456") v_p =
tm.value_round_trip_pickle(v)
pandas._testing.round_trip_pickle
""" Module contains tools for processing Stata files into KnowledgeFrames The StataReader below was origintotal_ally written by <NAME> as part of PyDTA. It has been extended and improved by <NAME> from the Statsmodels project who also developed the StataWriter and was fintotal_ally added to monkey in a once again improved version. You can find more informatingion on http://presbrey.mit.edu/PyDTA and https://www.statsmodels.org/devel/ """ from __future__ import annotations from collections import abc import datetime from io import BytesIO import os import struct import sys from typing import ( Any, AnyStr, Hashable, Sequence, cast, ) import warnings from dateutil.relativedelta import relativedelta import numpy as np from monkey._libs.lib import infer_dtype from monkey._libs.writers import getting_max_length_string_array from monkey._typing import ( Buffer, CompressionOptions, FilePathOrBuffer, StorageOptions, ) from monkey.util._decorators import ( Appender, doc, ) from monkey.core.dtypes.common import ( ensure_object, is_categorical_dtype, is_datetime64_dtype, ) from monkey import ( Categorical, DatetimeIndex, NaT, Timestamp, concating, ifna, convert_datetime, to_timedelta, ) from monkey.core import generic from monkey.core.frame import KnowledgeFrame from monkey.core.indexes.base import Index from monkey.core.collections import Collections from monkey.io.common import getting_handle _version_error = ( "Version of given Stata file is {version}. monkey supports importing " "versions 105, 108, 111 (Stata 7SE), 113 (Stata 8/9), " "114 (Stata 10/11), 115 (Stata 12), 117 (Stata 13), 118 (Stata 14/15/16)," "and 119 (Stata 15/16, over 32,767 variables)." ) _statafile_processing_params1 = """\ convert_dates : bool, default True Convert date variables to KnowledgeFrame time values. convert_categoricals : bool, default True Read value labels and convert columns to Categorical/Factor variables.""" _statafile_processing_params2 = """\ index_col : str, optional Column to set as index. convert_missing : bool, default False Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replacingd with nan. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects. preserve_dtypes : bool, default True Preserve Stata datatypes. If False, numeric data are upcast to monkey default types for foreign data (float64 or int64). columns : list or None Columns to retain. Columns will be returned in the given order. None returns total_all columns. order_categoricals : bool, default True Flag indicating whether converted categorical data are ordered.""" _chunksize_params = """\ chunksize : int, default None Return StataReader object for iterations, returns chunks with given number of lines.""" _compression_params = f"""\ compression : str or dict, default None If string, specifies compression mode. If dict, value at key 'method' specifies compression mode. Compression mode must be one of {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}. If compression mode is 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). If dict and compression mode is one of {{'zip', 'gzip', 'bz2'}}, or inferred as one of the above, other entries passed as additional compression options. {generic._shared_docs["storage_options"]}""" _iterator_params = """\ iterator : bool, default False Return StataReader object.""" _reader_notes = """\ Notes ----- Categorical variables read through an iterator may not have the same categories and dtype. This occurs when a variable stored in a DTA file is associated to an incomplete set of value labels that only label a strict subset of the values.""" _read_stata_doc = f""" Read Stata file into KnowledgeFrame. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.dta``. If you want to pass in a path object, monkey accepts whatever ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. {_statafile_processing_params1} {_statafile_processing_params2} {_chunksize_params} {_iterator_params} {_compression_params} Returns ------- KnowledgeFrame or StataReader See Also -------- io.stata.StataReader : Low-level reader for Stata data files. KnowledgeFrame.to_stata: Export Stata data files. {_reader_notes} Examples -------- Creating a dummy stata for this example >>> kf = mk.KnowledgeFrame({{'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}}) >>> kf.to_stata('animals.dta') Read a Stata dta file: >>> kf = mk.read_stata('animals.dta') Read a Stata dta file in 10,000 line chunks: >>> values = np.random.randint(0, 10, size=(20_000, 1), dtype="uint8") >>> kf = mk.KnowledgeFrame(values, columns=["i"]) >>> kf.to_stata('filengthame.dta') >>> itr = mk.read_stata('filengthame.dta', chunksize=10000) >>> for chunk in itr: ... # Operate on a single chunk, e.g., chunk.average() ... pass >>> import os >>> os.remove("./filengthame.dta") >>> os.remove("./animals.dta") """ _read_method_doc = f"""\ Reads observations from Stata file, converting them into a knowledgeframe Parameters ---------- nrows : int Number of lines to read from data file, if None read whole file. {_statafile_processing_params1} {_statafile_processing_params2} Returns ------- KnowledgeFrame """ _stata_reader_doc = f"""\ Class for reading Stata dta files. Parameters ---------- path_or_buf : path (string), buffer or path object string, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary read() functions. {_statafile_processing_params1} {_statafile_processing_params2} {_chunksize_params} {_compression_params} {_reader_notes} """ _date_formatings = ["%tc", "%tC", "%td", "%d", "%tw", "%tm", "%tq", "%th", "%ty"] stata_epoch = datetime.datetime(1960, 1, 1) # TODO: Add typing. As of January 2020 it is not possible to type this function since # mypy doesn't understand that a Collections and an int can be combined using mathematical # operations. (+, -). def _stata_elapsed_date_convert_datetime_vec(dates, fmt) -> Collections: """ Convert from SIF to datetime. https://www.stata.com/help.cgi?datetime Parameters ---------- dates : Collections The Stata Internal Format date to convert to datetime according to fmt fmt : str The formating to convert to. Can be, tc, td, tw, tm, tq, th, ty Returns Returns ------- converted : Collections The converted dates Examples -------- >>> dates = mk.Collections([52]) >>> _stata_elapsed_date_convert_datetime_vec(dates , "%tw") 0 1961-01-01 dtype: datetime64[ns] Notes ----- datetime/c - tc milliseconds since 01jan1960 00:00:00.000, astotal_sugetting_ming 86,400 s/day datetime/C - tC - NOT IMPLEMENTED milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds date - td days since 01jan1960 (01jan1960 = 0) weekly date - tw weeks since 1960w1 This astotal_sumes 52 weeks in a year, then adds 7 * remainder of the weeks. The datetime value is the start of the week in terms of days in the year, not ISO calengthdar weeks. monthly date - tm months since 1960m1 quarterly date - tq quarters since 1960q1 half-yearly date - th half-years since 1960h1 yearly date - ty years since 0000 """ MIN_YEAR, MAX_YEAR = Timestamp.getting_min.year, Timestamp.getting_max.year MAX_DAY_DELTA = (Timestamp.getting_max - datetime.datetime(1960, 1, 1)).days MIN_DAY_DELTA = (Timestamp.getting_min - datetime.datetime(1960, 1, 1)).days MIN_MS_DELTA = MIN_DAY_DELTA * 24 * 3600 * 1000 MAX_MS_DELTA = MAX_DAY_DELTA * 24 * 3600 * 1000 def convert_year_month_safe(year, month) -> Collections: """ Convert year and month to datetimes, using monkey vectorized versions when the date range ftotal_alls within the range supported by monkey. Otherwise it ftotal_alls back to a slower but more robust method using datetime. """ if year.getting_max() < MAX_YEAR and year.getting_min() > MIN_YEAR: return convert_datetime(100 * year + month, formating="%Y%m") else: index = gettingattr(year, "index", None) return Collections( [datetime.datetime(y, m, 1) for y, m in zip(year, month)], index=index ) def convert_year_days_safe(year, days) -> Collections: """ Converts year (e.g. 1999) and days since the start of the year to a datetime or datetime64 Collections """ if year.getting_max() < (MAX_YEAR - 1) and year.getting_min() > MIN_YEAR: return convert_datetime(year, formating="%Y") + to_timedelta(days, unit="d") else: index = gettingattr(year, "index", None) value = [ datetime.datetime(y, 1, 1) + relativedelta(days=int(d)) for y, d in zip(year, days) ] return Collections(value, index=index) def convert_delta_safe(base, deltas, unit) -> Collections: """ Convert base dates and deltas to datetimes, using monkey vectorized versions if the deltas satisfy restrictions required to be expressed as dates in monkey. """ index = gettingattr(deltas, "index", None) if unit == "d": if deltas.getting_max() > MAX_DAY_DELTA or deltas.getting_min() < MIN_DAY_DELTA: values = [base + relativedelta(days=int(d)) for d in deltas] return Collections(values, index=index) elif unit == "ms": if deltas.getting_max() > MAX_MS_DELTA or deltas.getting_min() < MIN_MS_DELTA: values = [ base + relativedelta(microseconds=(int(d) * 1000)) for d in deltas ] return Collections(values, index=index) else: raise ValueError("formating not understood") base = convert_datetime(base) deltas = to_timedelta(deltas, unit=unit) return base + deltas # TODO: If/when monkey supports more than datetime64[ns], this should be # improved to use correct range, e.g. datetime[Y] for yearly bad_locs = np.ifnan(dates) has_bad_values = False if bad_locs.whatever(): has_bad_values = True data_col = Collections(dates) data_col[bad_locs] = 1.0 # Replace with NaT dates = dates.totype(np.int64) if fmt.startswith(("%tc", "tc")): # Delta ms relative to base base = stata_epoch ms = dates conv_dates = convert_delta_safe(base, ms, "ms") elif fmt.startswith(("%tC", "tC")): warnings.warn("Encountered %tC formating. Leaving in Stata Internal Format.") conv_dates = Collections(dates, dtype=object) if has_bad_values: conv_dates[bad_locs] = NaT return conv_dates # Delta days relative to base elif fmt.startswith(("%td", "td", "%d", "d")): base = stata_epoch days = dates conv_dates = convert_delta_safe(base, days, "d") # does not count leap days - 7 days is a week. # 52nd week may have more than 7 days elif fmt.startswith(("%tw", "tw")): year = stata_epoch.year + dates // 52 days = (dates % 52) * 7 conv_dates = convert_year_days_safe(year, days) elif fmt.startswith(("%tm", "tm")): # Delta months relative to base year = stata_epoch.year + dates // 12 month = (dates % 12) + 1 conv_dates = convert_year_month_safe(year, month) elif fmt.startswith(("%tq", "tq")): # Delta quarters relative to base year = stata_epoch.year + dates // 4 quarter_month = (dates % 4) * 3 + 1 conv_dates = convert_year_month_safe(year, quarter_month) elif fmt.startswith(("%th", "th")): # Delta half-years relative to base year = stata_epoch.year + dates // 2 month = (dates % 2) * 6 + 1 conv_dates = convert_year_month_safe(year, month) elif fmt.startswith(("%ty", "ty")): # Years -- not delta year = dates first_month = np.ones_like(dates) conv_dates = convert_year_month_safe(year, first_month) else: raise ValueError(f"Date fmt {fmt} not understood") if has_bad_values: # Restore NaT for bad values conv_dates[bad_locs] = NaT return conv_dates def _datetime_to_stata_elapsed_vec(dates: Collections, fmt: str) -> Collections: """ Convert from datetime to SIF. https://www.stata.com/help.cgi?datetime Parameters ---------- dates : Collections Collections or array containing datetime.datetime or datetime64[ns] to convert to the Stata Internal Format given by fmt fmt : str The formating to convert to. Can be, tc, td, tw, tm, tq, th, ty """ index = dates.index NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000 US_PER_DAY = NS_PER_DAY / 1000 def parse_dates_safe(dates, delta=False, year=False, days=False): d = {} if is_datetime64_dtype(dates.dtype): if delta: time_delta = dates - stata_epoch d["delta"] = time_delta._values.view(np.int64) // 1000 # microseconds if days or year: date_index = DatetimeIndex(dates) d["year"] = date_index._data.year d["month"] = date_index._data.month if days: days_in_ns = dates.view(np.int64) - convert_datetime( d["year"], formating="%Y" ).view(np.int64) d["days"] = days_in_ns // NS_PER_DAY elif infer_dtype(dates, skipna=False) == "datetime": if delta: delta = dates._values - stata_epoch def f(x: datetime.timedelta) -> float: return US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds v = np.vectorize(f) d["delta"] = v(delta) if year: year_month = dates.employ(lambda x: 100 * x.year + x.month) d["year"] = year_month._values // 100 d["month"] = year_month._values - d["year"] * 100 if days: def g(x: datetime.datetime) -> int: return (x - datetime.datetime(x.year, 1, 1)).days v = np.vectorize(g) d["days"] = v(dates) else: raise ValueError( "Columns containing dates must contain either " "datetime64, datetime.datetime or null values." ) return KnowledgeFrame(d, index=index) bad_loc = ifna(dates) index = dates.index if bad_loc.whatever(): dates = Collections(dates) if is_datetime64_dtype(dates): dates[bad_loc] = convert_datetime(stata_epoch) else: dates[bad_loc] = stata_epoch if fmt in ["%tc", "tc"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta / 1000 elif fmt in ["%tC", "tC"]: warnings.warn("Stata Internal Format tC not supported.") conv_dates = dates elif fmt in ["%td", "td"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta // US_PER_DAY elif fmt in ["%tw", "tw"]: d = parse_dates_safe(dates, year=True, days=True) conv_dates = 52 * (d.year - stata_epoch.year) + d.days // 7 elif fmt in ["%tm", "tm"]: d = parse_dates_safe(dates, year=True) conv_dates = 12 * (d.year - stata_epoch.year) + d.month - 1 elif fmt in ["%tq", "tq"]: d = parse_dates_safe(dates, year=True) conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3 elif fmt in ["%th", "th"]: d = parse_dates_safe(dates, year=True) conv_dates = 2 * (d.year - stata_epoch.year) + (d.month > 6).totype(int) elif fmt in ["%ty", "ty"]: d = parse_dates_safe(dates, year=True) conv_dates = d.year else: raise ValueError(f"Format {fmt} is not a known Stata date formating") conv_dates = Collections(conv_dates, dtype=np.float64) missing_value = struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] conv_dates[bad_loc] = missing_value return
Collections(conv_dates, index=index)
pandas.core.series.Series
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from monkey._libs.tslib import iNaT from monkey.compat import PYPY from monkey.compat.numpy import np_array_datetime64_compat from monkey.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from monkey.core.dtypes.dtypes import DatetimeTZDtype import monkey as mk from monkey import ( CategoricalIndex, KnowledgeFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Collections, Timedelta, TimedeltaIndex, Timestamp, ) from monkey.core.accessor import MonkeyDelegate from monkey.core.arrays import DatetimeArray, MonkeyArray, TimedeltaArray from monkey.core.base import NoNewAttributesMixin, MonkeyObject from monkey.core.indexes.datetimelike import DatetimeIndexOpsMixin import monkey.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normtotal_ally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = gettingattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(gettingattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert incontainstance(result, klass) assert result == expected class TestMonkeyDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _getting_foo(self): return self.foo foo = property(_getting_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(MonkeyDelegate, MonkeyObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we ftotal_all back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.gettingsizeof(delegate) class Ops: def _total_allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (incontainstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_collections = Collections(arr, index=self.bool_index, name="a") self.int_collections = Collections(arr, index=self.int_index, name="a") self.float_collections = Collections(arr, index=self.float_index, name="a") self.dt_collections = Collections(arr, index=self.dt_index, name="a") self.dt_tz_collections = self.dt_tz_index.to_collections(keep_tz=True) self.period_collections = Collections(arr, index=self.period_index, name="a") self.string_collections = Collections(arr, index=self.string_index, name="a") self.unicode_collections = Collections(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [gettingattr(self, "{}_index".formating(t)) for t in types] self.collections = [gettingattr(self, "{}_collections".formating(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_collections = Collections(arr.totype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replacing=False) self.int8_collections = Collections(arr_int.totype(np.int8), index=index, name="a") self.int16_collections = Collections(arr_int.totype(np.int16), index=index, name="a") self.int32_collections = Collections(arr_int.totype(np.int32), index=index, name="a") self.uint8_collections = Collections(arr_int.totype(np.uint8), index=index, name="a") self.uint16_collections = Collections(arr_int.totype(np.uint16), index=index, name="a") self.uint32_collections = Collections(arr_int.totype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_collections = [gettingattr(self, "{}_collections".formating(t)) for t in nrw_types] self.objs = self.indexes + self.collections + self.narrow_collections def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if incontainstance(o, Collections) else o if not filter(filt): continue try: if incontainstance(o, Collections): expected = Collections(gettingattr(o.index, op), index=o.index, name="a") else: expected = gettingattr(o, op) except (AttributeError): if ignore_failures: continue result = gettingattr(o, op) # these could be collections, arrays or scalars if incontainstance(result, Collections) and incontainstance(expected, Collections): tm.assert_collections_equal(result, expected) elif incontainstance(result, Index) and incontainstance(expected, Index): tm.assert_index_equal(result, expected) elif incontainstance(result, np.ndarray) and incontainstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Collections here whateverhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): gettingattr(o, op) @pytest.mark.parametrize("klass", [Collections, KnowledgeFrame]) def test_binary_ops_docs(self, klass): op_mapping = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truedivision": "/", "floordivision": "//", } for op_name in op_mapping: operand1 = klass.__name__.lower() operand2 = "other" op = op_mapping[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in gettingattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in gettingattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if incontainstance(o, Collections): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Collections[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert gettingattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert gettingattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # length > 1 assert o.ndim == 1 assert o.size == length(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Collections([1]).item() == 1 def test_counts_value_num_distinctive_ndistinctive(self): for orig in self.objs: o = orig.clone() klass = type(o) values = o._values if incontainstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if incontainstance(o, Index) and o.is_boolean(): continue elif incontainstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, length(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, length(o) + 1)) # take-based repeat indices = np.repeat(np.arange(length(o)), range(1, length(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Collections( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.counts_value_num() tm.assert_collections_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.distinctive() if incontainstance(o, Index): assert incontainstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Collections returns array of Timestamp assert result[0] == orig[0] for r in result: assert incontainstance(r, Timestamp) tm.assert_numpy_array_equal( result.totype(object), orig._values.totype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.ndistinctive() == length(np.distinctive(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_counts_value_num_distinctive_ndistinctive_null(self, null_obj): for orig in self.objs: o = orig.clone() klass = type(o) values = o._ndarray_values if not self._total_allow_na_ops(o): continue # special total_allocate to the numpy array if is_datetime64tz_dtype(o): if incontainstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shtotal_allow_clone(v) else: o = o.clone() o[0:2] = mk.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shtotal_allow_clone(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if incontainstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.clone() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, length(o) + 1))) o.name = "a" else: if incontainstance(o, DatetimeIndex): expected_index = orig._values._shtotal_allow_clone(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, length(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(length(o), dtype=np.bool) nanloc[:3] = True if incontainstance(o, Index): tm.assert_numpy_array_equal(mk.ifna(o), nanloc) else: exp = Collections(nanloc, o.index, name="a") tm.assert_collections_equal(mk.ifna(o), exp) expected_s_na = Collections( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Collections( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.counts_value_num(sipna=False) tm.assert_collections_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.counts_value_num() tm.assert_collections_equal(o.counts_value_num(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.distinctive() if incontainstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is mk.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert mk.ifna(result[0]) assert result.dtype == orig.dtype assert o.ndistinctive() == 8 assert o.ndistinctive(sipna=False) == 9 @pytest.mark.parametrize("klass", [Index, Collections]) def test_counts_value_num_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Collections([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_collections_equal(s.counts_value_num(), expected) if incontainstance(s, Index): exp = Index(np.distinctive(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.distinctive(), exp) else: exp = np.distinctive(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.distinctive(), exp) assert s.ndistinctive() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.counts_value_num(sort=False).sort_the_values() expected = Collections([3, 1, 4, 2], index=list("acbd")).sort_the_values() tm.assert_collections_equal(hist, expected) # sort ascending hist = s.counts_value_num(ascending=True) expected = Collections([1, 2, 3, 4], index=list("cdab")) tm.assert_collections_equal(hist, expected) # relative histogram. hist = s.counts_value_num(normalize=True) expected = Collections([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_collections_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Collections]) def test_counts_value_num_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.counts_value_num(bins=1) s1 = Collections([1, 1, 2, 3]) res1 = s1.counts_value_num(bins=1) exp1 = Collections({Interval(0.997, 3.0): 4}) tm.assert_collections_equal(res1, exp1) res1n = s1.counts_value_num(bins=1, normalize=True) exp1n = Collections({Interval(0.997, 3.0): 1.0}) tm.assert_collections_equal(res1n, exp1n) if incontainstance(s1, Index): tm.assert_index_equal(s1.distinctive(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.distinctive(), exp) assert s1.ndistinctive() == 3 # these return the same res4 = s1.counts_value_num(bins=4, sipna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Collections([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_collections_equal(res4, exp4) res4 = s1.counts_value_num(bins=4, sipna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Collections([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_collections_equal(res4, exp4) res4n = s1.counts_value_num(bins=4, normalize=True) exp4n = Collections([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_collections_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Collections([4, 3, 2], index=["b", "a", "d"]) tm.assert_collections_equal(s.counts_value_num(), expected) if incontainstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.distinctive(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.distinctive(), exp) assert s.ndistinctive() == 3 s = klass({}) expected = Collections([], dtype=np.int64) tm.assert_collections_equal(s.counts_value_num(), expected, check_index_type=False) # returned dtype differs depending on original if incontainstance(s, Index): tm.assert_index_equal(s.distinctive(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.distinctive(), np.array([]), check_dtype=False) assert s.ndistinctive() == 0 @pytest.mark.parametrize("klass", [Index, Collections]) def test_counts_value_num_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) kf = mk.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(kf["dt"].clone()) s.name = None idx = mk.convert_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Collections([3, 2, 1], index=idx) tm.assert_collections_equal(s.counts_value_num(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if incontainstance(s, Index): tm.assert_index_equal(s.distinctive(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.distinctive(), expected) assert s.ndistinctive() == 3 # with NaT s = kf["dt"].clone() s = klass(list(s.values) + [mk.NaT]) result = s.counts_value_num() assert result.index.dtype == "datetime64[ns]" tm.assert_collections_equal(result, expected_s) result = s.counts_value_num(sipna=False) expected_s[mk.NaT] = 1 tm.assert_collections_equal(result, expected_s) distinctive = s.distinctive() assert distinctive.dtype == "datetime64[ns]" # numpy_array_equal cannot compare mk.NaT if incontainstance(s, Index): exp_idx = DatetimeIndex(expected.convert_list() + [mk.NaT]) tm.assert_index_equal(distinctive, exp_idx) else: tm.assert_numpy_array_equal(distinctive[:3], expected) assert mk.ifna(distinctive[3]) assert s.ndistinctive() == 3 assert s.ndistinctive(sipna=False) == 4 # timedelta64[ns] td = kf.dt - kf.dt + timedelta(1) td = klass(td, name="dt") result = td.counts_value_num() expected_s = Collections([6], index=[Timedelta("1day")], name="dt") tm.assert_collections_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if incontainstance(td, Index): tm.assert_index_equal(td.distinctive(), expected) else: tm.assert_numpy_array_equal(td.distinctive(), expected.values) td2 = timedelta(1) + (kf.dt - kf.dt) td2 = klass(td2, name="dt") result2 = td2.counts_value_num() tm.assert_collections_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.clone() if incontainstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_distinctives = o exp_distinctives = Index([False, True]) else: exp_arr = np.array(range(length(o)), dtype=np.intp) exp_distinctives = o codes, distinctives = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if incontainstance(o, Collections): tm.assert_index_equal(distinctives, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(distinctives, exp_distinctives, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.clone() # don't test boolean if incontainstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if incontainstance(o, Collections): o = o.sort_the_values() n = o.iloc[5:].adding(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].adding(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, distinctives = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if incontainstance(o, Collections): tm.assert_index_equal( distinctives, Index(orig).sort_the_values(), check_names=False ) else: tm.assert_index_equal(distinctives, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, distinctives = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if incontainstance(o, Collections): expected = Index(o.iloc[5:10].adding(o.iloc[:5])) tm.assert_index_equal(distinctives, expected, check_names=False) else: expected = o[5:10].adding(o[:5]) tm.assert_index_equal(distinctives, expected, check_names=False) def test_duplicated_values_sip_duplicates_index(self): # GH 4060 for original in self.objs: if incontainstance(original, Index): # special case if original.is_boolean(): result = original.sip_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * length(original), dtype=bool) duplicated_values = original.duplicated_values() tm.assert_numpy_array_equal(duplicated_values, expected) assert duplicated_values.dtype == bool result = original.sip_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated_values idx = original[list(range(length(original))) + [5, 3]] expected = np.array([False] * length(original) + [True, True], dtype=bool) duplicated_values = idx.duplicated_values() tm.assert_numpy_array_equal(duplicated_values, expected) assert duplicated_values.dtype == bool tm.assert_index_equal(idx.sip_duplicates(), original) base = [False] * length(idx) base[3] = True base[5] = True expected = np.array(base) duplicated_values = idx.duplicated_values(keep="final_item") tm.assert_numpy_array_equal(duplicated_values, expected) assert duplicated_values.dtype == bool result = idx.sip_duplicates(keep="final_item") tm.assert_index_equal(result, idx[~expected]) base = [False] * length(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated_values = idx.duplicated_values(keep=False) tm.assert_numpy_array_equal(duplicated_values, expected) assert duplicated_values.dtype == bool result = idx.sip_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"sip_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.sip_duplicates(inplace=True) else: expected = Collections( [False] * length(original), index=original.index, name="a" ) tm.assert_collections_equal(original.duplicated_values(), expected) result = original.sip_duplicates() tm.assert_collections_equal(result, original) assert result is not original idx = original.index[list(range(length(original))) + [5, 3]] values = original._values[list(range(length(original))) + [5, 3]] s = Collections(values, index=idx, name="a") expected = Collections( [False] * length(original) + [True, True], index=idx, name="a" ) tm.assert_collections_equal(s.duplicated_values(), expected) tm.assert_collections_equal(s.sip_duplicates(), original) base = [False] * length(idx) base[3] = True base[5] = True expected = Collections(base, index=idx, name="a") tm.assert_collections_equal(s.duplicated_values(keep="final_item"), expected) tm.assert_collections_equal( s.sip_duplicates(keep="final_item"), s[~np.array(base)] ) base = [False] * length(original) + [True, True] base[3] = True base[5] = True expected = Collections(base, index=idx, name="a") tm.assert_collections_equal(s.duplicated_values(keep=False), expected) tm.assert_collections_equal( s.sip_duplicates(keep=False), s[~np.array(base)] ) s.sip_duplicates(inplace=True) tm.assert_collections_equal(s, original) def test_sip_duplicates_collections_vs_knowledgeframe(self): # GH 14192 kf = mk.KnowledgeFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), mk.NaT, mk.NaT, ], } ) for column in kf.columns: for keep in ["first", "final_item", False]: sipped_frame = kf[[column]].sip_duplicates(keep=keep) sipped_collections = kf[column].sip_duplicates(keep=keep) tm.assert_frame_equal(sipped_frame, sipped_collections.to_frame()) def test_fillnone(self): # # GH 11343 # though Index.fillnone and Collections.fillnone has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.clone() values = o.values # values will not be changed result = o.fillnone(o.totype(object).values[0]) if incontainstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_collections_equal(o, result) # check shtotal_allow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.clone() klass = type(o) if not self._total_allow_na_ops(o): continue if needs_i8_conversion(o): values = o.totype(object).values fill_value = values[0] values[0:2] = mk.NaT else: values = o.values.clone() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillnone(fill_value) if incontainstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_collections_equal(result, expected) # check shtotal_allow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( incontainstance(o, Collections) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if incontainstance(o, Collections): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.gettingsizeof will ctotal_all the .memory_usage with # deep=True, and add on some GC overheader_num diff = res_deep - sys.gettingsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, getting_max(o)) assert 0 <= index <= length(o) index = np.searchsorted(o, getting_max(o), sorter=range(length(o))) assert 0 <= index <= length(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_collections.sip_duplicates(inplace=value) def test_gettingitem(self): for i in self.indexes: s = mk.Collections(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, mk.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(length(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = mk.Collections(idx) tm.assert_collections_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_getting_indexer_non_distinctive_dtype_mismatch(self): # GH 25459 indexes, missing = mk.Index(["A", "B"]).getting_indexer_non_distinctive(mk.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(np.transpose(obj), obj) with pytest.raises(ValueError, match=self.errmsg): np.transpose(obj, axes=1) class TestNoNewAttributesMixin: def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert gettingattr(t, "__frozen") with pytest.raises(AttributeError): t.b = "test" assert not hasattr(t, "b") class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.convert_list(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["convert_list", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Collections, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / monkey types s = typ([1], dtype=dtype) result = method(s)[0] assert incontainstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.convert_list(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["convert_list", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Collections, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / monkey types s = typ([obj], dtype=dtype) result = method(s)[0] assert incontainstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to collections s = Collections([1], dtype=dtype) _, result = list(s.items())[0] assert incontainstance(result, rdtype) _, result = list(s.items())[0] assert incontainstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.parametrize("typ", [Collections, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_mapping(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / monkey types s = typ([1], dtype=dtype) result = s.mapping(type)[0] if not incontainstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.convert_list(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["convert_list", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert incontainstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Collections(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert incontainstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-01-02", tz="US/Eastern"), ] s = Collections(vals) assert s.dtype == "datetime64[ns, US/Eastern]" for res, exp in zip(s, vals): assert incontainstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta("1 days"), Timedelta("2 days")] s = Collections(vals) assert s.dtype == "timedelta64[ns]" for res, exp in zip(s, vals): assert incontainstance(res, Timedelta) assert res == exp # period vals = [mk.Period("2011-01-01", freq="M"), mk.Period("2011-01-02", freq="M")] s = Collections(vals) assert s.dtype == "Period[M]" for res, exp in zip(s, vals): assert incontainstance(res, mk.Period) assert res.freq == "M" assert res == exp @pytest.mark.parametrize( "array, expected_type, dtype", [ (np.array([0, 1], dtype=np.int64), np.ndarray, "int64"), (np.array(["a", "b"]), np.ndarray, "object"), (mk.Categorical(["a", "b"]), mk.Categorical, "category"), ( mk.DatetimeIndex(["2017", "2018"], tz="US/Central"), DatetimeArray, "datetime64[ns, US/Central]", ), ( mk.PeriodIndex([2018, 2019], freq="A"), mk.core.arrays.PeriodArray, mk.core.dtypes.dtypes.PeriodDtype("A-DEC"), ), ( mk.IntervalIndex.from_breaks([0, 1, 2]), mk.core.arrays.IntervalArray, "interval", ), # This test is currently failing for datetime64[ns] and timedelta64[ns]. # The NumPy type system is sufficient for representing these types, so # we just use NumPy for Collections / KnowledgeFrame columns of these types (so # we getting consolidation and so on). # However, DatetimeIndex and TimedeltaIndex use the DateLikeArray # abstraction to for code reuse. # At the moment, we've judged that total_allowing this test to fail is more # practical that overriding Collections._values to special case # Collections[M8[ns]] and Collections[m8[ns]] to return a DateLikeArray. pytest.param( mk.DatetimeIndex(["2017", "2018"]), np.ndarray, "datetime64[ns]", marks=[pytest.mark.xfail(reason="datetime _values", strict=True)], ), pytest.param( mk.TimedeltaIndex([10 ** 10]), np.ndarray, "m8[ns]", marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)], ), ], ) def test_values_consistent(array, expected_type, dtype): l_values = mk.Collections(array)._values r_values = mk.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) tm.assert_equal(l_values, r_values) @pytest.mark.parametrize( "array, expected", [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(["0", "1"]), np.array(["0", "1"], dtype=object)), (mk.Categorical(["a", "a"]), np.array([0, 0], dtype="int8")), ( mk.DatetimeIndex(["2017-01-01T00:00:00"]), np.array(["2017-01-01T00:00:00"], dtype="M8[ns]"), ), ( mk.DatetimeIndex(["2017-01-01T00:00:00"], tz="US/Eastern"), np.array(["2017-01-01T05:00:00"], dtype="M8[ns]"), ), (mk.TimedeltaIndex([10 ** 10]), np.array([10 ** 10], dtype="m8[ns]")), ( mk.PeriodIndex(["2017", "2018"], freq="D"), np.array([17167, 17532], dtype=np.int64), ), ], ) def test_ndarray_values(array, expected): l_values = mk.Collections(array)._ndarray_values r_values = mk.Index(array)._ndarray_values tm.assert_numpy_array_equal(l_values, r_values) tm.assert_numpy_array_equal(l_values, expected) @pytest.mark.parametrize("arr", [np.array([1, 2, 3])]) def test_numpy_array(arr): ser = mk.Collections(arr) result = ser.array expected =
MonkeyArray(arr)
pandas.core.arrays.PandasArray
# -*- coding: utf-8 -*- """ Functions for cleaning mdredze Sandy Twitter dataset. """ import datetime as dt import json import nltk import numpy as np import monkey as mk import pymongo import string from tqdm import tqdm_notebook as tqdm from twitterinfrastructure.tools import dump, output def create_analysis(collection='tweets_analysis', tweet_collection='tweets', nyisozones_collection='nyiso_zones', taxizones_collection='taxi_zones', fields=None, db_name='sandy', db_instance='mongodb://localhost:27017/', progressbar=False, overwrite=False, verbose=0): """Creates a collection of tweets for analysis, queried and processed from an existing collection of tweets. Astotal_sumes the specified mongodb instance is already running. Parameters ---------- collection : str Name of collection to insert analysis tweets into. tweet_collection : str Name of collection to query tweets from. nyisozones_collection : str Name of collection to query nyiso load zones. taxizones_collection : str Name of collection to query taxi zones and boroughs from. fields : list or None List of tweet field names to keep. If None, keeps total_all fields. db_name : str Name of database to connect to. db_instance : str Mongodb instance to connect to in URI formating. progressbar : bool If True, displays progress bar. Progress bar does not work when ctotal_alled from a notebook in PyCharm. overwrite : bool Defines whether or not to overwrite existing collection. verbose : int Defines verbosity for output statements. Returns ------- insert_num : int Number of tweets inserted into collection. tokens : set Set of tokens in collection. Notes ----- fields = ['_id', 'coordinates', 'created_at', 'entities', 'text', 'id_str', 'place'] Use 'text' instead of 'full_text' for older tweet datasets. Some tweets match multiple taxi zones, causing some (likely total_all) of the failed insert tweets found in dump file. MongoDB Compass shows datetime field in current timezone, but that is stored as UTC (i.e. retrieving with pymongo correctly displays/converts datetime field as UTC). Requires download of nltk data (tested with popular package). See https://www.nltk.org/data.html for download definal_item_tails. Start a mongodb instance by running `$ mongod` from tergetting_minal (see http://api.mongodb.com/python/current/tutorial.html for more definal_item_tails) """ if verbose >= 1: output('Started querying, processing, and inserting tweets from ' '{tweet_collection} into {collection} collection in {db_name} ' 'database.'.formating(tweet_collection=tweet_collection, collection=collection, db_name=db_name)) # connect to db (creates if not exists) client = pymongo.MongoClient(db_instance) db = client[db_name] # ensure that nyisozones_collection and taxizones_collection exist collections = db.collection_names() if (nyisozones_collection not in collections) or \ (taxizones_collection not in collections): output('{nyiso} or {taxi} collection not in database. No action ' 'taken.'.formating(nyiso=nyisozones_collection, taxi=taxizones_collection)) return None, None # overwrite collection if needed if overwrite: db.sip_collection(collection) if verbose >= 1: output('Dropped {collection} collection (if exists).'.formating( collection=collection)) # query, process, and insert analysis tweets insert_num = 0 tokens = set() fails = [] tknzr = nltk.tokenize.TweetTokenizer(strip_handles=True, reduce_length=True) stop_list = nltk.corpus.stopwords.words("english") + list( string.punctuation) stemmer = nltk.stem.PorterStemmer() # if progressbar: # zones_iter = tqdm(taxi_zones, total=taxi_zones.count(), # desc='taxi_zones') # else: # zones_iter = taxi_zones # for taxi_zone in zones_iter: # # query tweets within current taxi zone # query_dict = { # "coordinates": { # "$geoWithin": { # "$geometry": taxi_zone['geometry'] # } # } # } # full_tweets = db[tweet_collection].find(query_dict) # process and insert tweets full_tweets = db[tweet_collection].find() if progressbar: tweets_iter = tqdm(full_tweets, total=full_tweets.count(), desc='tweets', leave=False) else: tweets_iter = full_tweets for full_tweet in tweets_iter: # remove extra fields if fields: tweet = {field: full_tweet[field] for field in fields} else: tweet = full_tweet # identify and add nyiso zone, taxi zone, and taxi borough if tweet['coordinates'] is not None: query_dict = { "geometry": { "$geoIntersects": { "$geometry": tweet['coordinates'] } } } nyiso_zone = db[nyisozones_collection].find_one(query_dict) if nyiso_zone: tweet['nyiso_zone'] = nyiso_zone['properties']['Zone'] else: tweet['nyiso_zone'] = np.nan query_dict = { "geometry": { "$geoIntersects": { "$geometry": tweet['coordinates'] } } } taxi_zone = db[taxizones_collection].find_one(query_dict) if taxi_zone: tweet['location_id'] = taxi_zone['properties']['LocationID'] tweet['borough'] = taxi_zone['properties']['borough'] else: tweet['location_id'] = np.nan tweet['borough'] = np.nan else: fails.adding(tweet['id_str']) if verbose >= 2: output('Tweet skipped due to missing coordinates.', 'create_analysis') continue # skip tweets missing nyiso and taxi zone if (tweet['nyiso_zone'] is np.nan) and (tweet['location_id'] is np.nan): fails.adding(tweet['id_str']) if verbose >= 2: output('Tweet skipped due to missing nyiso or taxi zone.', 'create_analysis') continue # add UTC datetime, NY datetime, and UNIX timestamp fields utc_time = dt.datetime.strptime(tweet['created_at'], '%a %b %d %H:%M:%S +0000 %Y') tweet['datetimeUTC'] = utc_time tweet['datetimeNY'] = mk.convert_datetime(utc_time).tz_localize( tz='UTC').tz_convert('America/New_York') tweet['timestampUNIX'] = utc_time.replacing( tzinfo=dt.timezone.utc).timestamp() # tokenize, convert to lowercase, filter out stop words and # punctuation, and stem # tweet_tokens = tokenize_tweet(tweet, text_field='text') tweet_tokens = [stemmer.stem(token) for token in tknzr.tokenize(tweet['text']) if token.lower() not in stop_list] tweet['tokens'] = tweet_tokens tokens.umkate(tweet_tokens) # insert processed tweet try: db[collection].insert_one(tweet) insert_num += 1 except Exception as e: fails.adding(tweet['id_str']) if verbose >= 2: output(str(e), 'create_analysis') dump(fails, func_name='create_analysis') # create indexes db[collection].create_index([("coordinates", pymongo.GEOSPHERE)]) db[collection].create_index([("datetimeUTC", 1), ("location_id", 1)]) db[collection].create_index([("datetimeUTC", 1), ("borough", 1)]) db[collection].create_index([("datetimeUTC", 1), ("nyiso_zone", 1)]) db[collection].create_index([("datetimeNY", 1), ("location_id", 1)]) db[collection].create_index([("datetimeNY", 1), ("borough", 1)]) db[collection].create_index([("datetimeNY", 1), ("nyiso_zone", 1)]) if verbose >= 1: output('Finished querying, processing, and inserting tweets from ' '{tweet_collection} into {collection} collection in {db_name} ' 'database ({insert_num} of {queried_num} queried tweets ' 'inserted).'.formating(tweet_collection=tweet_collection, collection=collection, db_name=db_name, insert_num=insert_num, queried_num=insert_num + length(fails))) return insert_num, tokens def create_tweets_keyword(tokens, hashtags, collection='tweets_keyword', analysis_collection='tweets_analysis', db_name='sandy', db_instance='mongodb://localhost:27017/', overwrite=False, verbose=0): """Creates a collection of token and/or hashtag-matched tweets. Astotal_sumes analysis_collection has been processed (using create_analysis). Astotal_sumes the specified mongodb instance is already running. Parameters ---------- tokens : list List of tokens to search for. hashtags : list List of hashtags to search for. collection : str Name of collection to insert keyword-related tweets into. analysis_collection : str Name of collection to query tweets from. db_name : str Name of database to connect to. db_instance : str Mongodb instance to connect to in URI formating. overwrite : bool Defines whether or not to overwrite existing collection. verbose : int Defines verbosity for output statements. Returns ------- insert_num : int Number of tweets inserted into collection. Notes ----- Start a mongodb instance by running `$ mongod` from tergetting_minal (see http://api.mongodb.com/python/current/tutorial.html for more definal_item_tails) """ if verbose >= 1: output('Started querying and inserting token and/or hashtag-matched ' 'tweets from {analysis_collection} into {collection} ' 'collection in {db_name} database.'.formating( analysis_collection=analysis_collection, collection=collection, db_name=db_name)) # connect to db (creates if not exists) client = pymongo.MongoClient(db_instance) db = client[db_name] # overwrite collection if needed if overwrite: db.sip_collection(collection) if verbose >= 1: output('Dropped {collection} collection (if exists).'.formating( collection=collection)) # query and insert token and/or hashtag-matched tweets insert_num = 0 fails = [] tweets = query_keyword(tokens=tokens, hashtags=hashtags, collection=analysis_collection, db_name=db_name, db_instance=db_instance, verbose=0) for tweet in tweets: try: db[collection].insert_one(tweet) insert_num += 1 except Exception as e: fails.adding(tweet['id_str']) if verbose >= 2: output(str(e), 'create_keyword') dump(fails, func_name='create_keyword') # create indexes db[collection].create_index([("coordinates", pymongo.GEOSPHERE)]) db[collection].create_index([("datetimeUTC", 1), ("location_id", 1)]) db[collection].create_index([("datetimeUTC", 1), ("borough", 1)]) db[collection].create_index([("timestamp", 1)]) if verbose >= 1: output('Finished querying and inserting token and/or hashtag-matched ' 'tweets from {analysis_collection} into {collection} ' 'collection in {db_name} database. ({insert_num} of ' '{queried_num} queried tweets inserted).'.formating( analysis_collection=analysis_collection, collection=collection, db_name=db_name, insert_num=insert_num, queried_num=tweets.count())) return insert_num def create_hydrator_tweetids(path, write_path='data/interim/sandy-tweetids.txt', filter_sandy=False, progressbar=False, verbose=0): """Reads the sandy-tweettweet_ids-mdredze.txt file and creates an interim file with only tweet tweet_ids (one per line) for input into Hydrator. Parameters ---------- path : str Path to sandy-tweettweet_ids-mdredze.txt. write_path : str Full path file name of file to write the tweet tweet_ids to. Existig file will be overwritten. filter_sandy : boolean, optional Detergetting_mines whether or not to only include tweets that contain the word "Sandy". progressbar : bool If True, displays progress bar. Progress bar does not work when ctotal_alled from a notebook in PyCharm. verbose : int Defines verbosity for output statements. Returns ------- num_tweets : int Number of tweet tweet_ids written. Notes ----- path = "data/raw/release-mdredze.txt" Progress bar does not work when ctotal_alled from notebook in PyCharm. Example lines in raw file: tag:search.twitter.com,2005:260244087901413376 2012-10-22T05:00:00.000Z False tag:search.twitter.com,2005:260244088203403264 2012-10-22T05:00:00.000Z False """ if verbose >= 1: output('Started converting tweet ids from {path} to Hydrator ' 'formating.'.formating(path=path)) write_file = open(write_path, 'w') # loads and writes tweets line by line num_tweets = 0 num_lines = 0 with open(path, 'r') as file: if progressbar: file_iter = tqdm(file) else: file_iter = file for line in file_iter: num_lines += 1 parts = line.strip('\n').split(':') # only include tweets containing the word "sandy" if filter_sandy: sandy_parts = parts[-1] sandy = sandy_parts.split('\t')[1] if sandy is 'True': date = parts[2] parts = date.split('\t') tweet_id = parts[0] write_file.write(tweet_id + '\n') num_tweets += 1 # include total_all tweet tweet_ids else: date = parts[2] parts = date.split('\t') tweet_id = parts[0] write_file.write(tweet_id + '\n') num_tweets += 1 write_file.close() if verbose >= 1: output('Finished converting {num_tweets} tweet ids from {path} to ' 'Hydrator formating (original file contains {num_lines} ' 'lines).'.formating(num_tweets=num_tweets, path=path, num_lines=num_lines)) return num_tweets def insert_tweets(path, collection='tweets', db_name='sandy', db_instance='mongodb://localhost:27017/', progressbar=False, overwrite=False, verbose=0): """Inserts tweets from a json file into a collection in a mongodb database. Astotal_sumes the specified mongodb instance is already running. Parameters ---------- path : str Path to json file containing tweets. Astotal_sumes the json file contains one tweet per line. collection : str Name of collection to insert tweets into. db_name : str Name of database to connect to. db_instance : str Mongodb instance to connect to in URI formating. progressbar : bool If True, displays progress bar. Progress bar does not work when ctotal_alled from a notebook in PyCharm. overwrite : bool Defines whether or not to overwrite existing collection. verbose : int Defines verbosity for output statements. Returns ------- insert_num : int Number of tweets inserted into collection. Notes ----- path = 'data/processed/sandy-tweets-20180314.json' Progress bar does not work when ctotal_alled from notebook in PyCharm. Dumps failed inserts into a 'data/processed/dump-insert_tweets-[ datetime].txt' file. Start a mongodb instance by running `$ mongod` from tergetting_minal (see http://api.mongodb.com/python/current/tutorial.html for more definal_item_tails) """ if verbose >= 1: output('Started inserting tweets from "{path}" to {collection} ' 'collection in {db_name} database.'.formating( path=path, collection=collection, db_name=db_name)) # connect to db (creates if not exists) client = pymongo.MongoClient(db_instance) db = client[db_name] # overwrite collection if needed if overwrite: db.sip_collection(collection) if verbose >= 1: output('Dropped {collection} collection (if exists).'.formating( collection=collection)) # count lines # i = -1 num_lines = 0 # with open(path, 'r') as file: # for i, line in enumerate(file): # pass # num_lines = i + 1 # insert tweets one by one (creates collection if needed) insert_num = 0 fails = [] with open(path, 'r') as file: if progressbar: file_iter = tqdm(file, total=num_lines) else: file_iter = file for i, line in enumerate(file_iter): tweet = json.loads(line) try: db[collection].insert_one(tweet) insert_num += 1 except Exception as e: fails.adding(i) if verbose >= 2: output(str(e), 'insert_tweets (line {line_num})'.formating( line_num=i)) dump(fails, func_name='insert_tweets') # create indexes db[collection].create_index([("coordinates", pymongo.GEOSPHERE)]) if verbose >= 1: output('Finished inserting tweets from "{path}" to {collection} ' 'collection in {db_name} database ({insert_num} tweets inserted' 'out of {num_lines} lines).'.formating(path=path, collection=collection, db_name=db_name, insert_num=insert_num, num_lines=num_lines)) return insert_num def mongod_to_kf(query, collection, db_name='sandy', db_instance='mongodb://localhost:27017/', verbose=0): """Query a mongodb database and return the result as a knowledgeframe. Parameters ---------- query : dict Dictionary specifying query. collection : str Name of collection to query from. db_name : str Name of database to connect to. db_instance : str Mongodb instance to connect to in URI formating. verbose : int Defines verbosity for output statements. Returns ------- kf : knowledgeframe Query results in a knowledgeframe. Notes ----- """ if verbose >= 1: output('Started query.') # connect to database and query client = pymongo.MongoClient(db_instance) db = client[db_name] kf = mk.KnowledgeFrame(list(db[collection].find(query))) if verbose >= 1: output('Finished query. Returned knowledgeframe with shape {shape}.'.formating( shape=kf.shape())) return kf def process_heat_mapping_daily(kf, daterange=None, boroughs=None, verbose=0): """ Processes a knowledgeframe for heat mapping visualization. Proceessing includes converting datetime columns, filling missing borough-day combinations with nan, and pivoting for use with seaborn.heatmapping(). Parameters ---------- kf : knowledgeframe Dataframe of daily total_summary data. daterange : list or None Specifies date range (inclusive) to include in full knowledgeframe. Specify as a list of strings, e.g. ['10/21/2012', '10/27/2012']. If None, only includes distinctive dates found in original knowledgeframe. boroughs : list or None Specifies boroughs to include in full knowledgeframe. Specify as a list of strings, e.g. ['Bronx', 'Brooklyn']. If None, only includes distinctive boroughs found in original knowledgeframe. verbose : int Defines verbosity for output statements. Returns ------- kf_pivot : knowledgeframe Processed knowledgeframe, pivoted for heat mapping visualization. kf_proc : knowledgeframe Processed knowledgeframe, without pivot. Notes ----- """ # umkate dtypes and columns kf['date'] = mk.convert_datetime(kf['datetimeUTC']).dt.date kf = kf[['date', 'borough', 'count']] # build full knowledgeframe (total_all dates and total_all boroughs initialized with nans) if daterange: dates = mk.date_range(start=daterange[0], end=daterange[1]).convert_list() dates = [
mk.Timestamp.convert_pydatetime(date)
pandas.Timestamp.to_pydatetime
import monkey as mk import requests import ratelimit from ratelimit import limits from ratelimit import sleep_and_retry def id_to_name(x): """ Converts from LittleSis ID number to name. Parameters ---------- x : LittleSis ID number Example ------- >>> id_to_name(96583) '<NAME>' """ path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) response = response.json() name = response['data']['attributes']['name'] return name def name_to_id(name): """ Converts from name to LittleSis ID number. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name : Name to be converted Example ------- >>> name_to_id('<NAME>') 96583 """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] return ID def entity(name): """ Provides info from entity getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> entity('<NAME>' {'meta': {'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': {'type': 'entities', 'id': 13503, 'attributes': {'id': 13503, 'name': '<NAME>', 'blurb': '44th President of the United States', 'total_summary': 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.', 'website': 'http://obama.senate.gov/', 'parent_id': None, 'primary_ext': 'Person', 'umkated_at': '2021-12-15T21:28:15Z', 'start_date': '1961-08-04', 'end_date': None, 'aliases': ['Barack Obama'], 'types': ['Person', 'Political Candidate', 'Elected Representative']}, 'links': {'self': 'https://littlesis.org/entities/13503-Barack_Obama'}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 def relationships(name): """ Provides info from relationships getting request to LittleSis API, by name input rather than id input as is required in original getting request formating, in JSON formating. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 indivisionidual or organization for which informatingion is desired. Example ------- >>> relationships('<NAME>') {'meta': {'currentPage': 1, 'pageCount': 1, 'cloneright': 'LittleSis CC BY-SA 4.0', 'license': 'https://creativecommons.org/licenses/by-sa/4.0/', 'apiVersion': '2.0'}, 'data': [{'type': 'relationships', 'id': 1643319, 'attributes': {'id': 1643319,...}}} """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() return response2 @sleep_and_retry @limits(ctotal_alls=1, period=1) def basic_entity(name): """ Creates monkey knowledgeframe for one indivisionidual or entity with basic informatingion from entity getting request to LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of 1 informatingion or entity for which informatingion is desired. Example ------- >>> basic_table('<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "Steve P... info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 info types website 0 [Person, Business Person] NaN } """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() data2 = response2['data']['attributes'] kf = mk.KnowledgeFrame(list(data2.items())) kf.columns = ['info', 'value'] kf = mk.pivot(kf, columns = 'info', values = 'value') kf = kf.fillnone(method='bfill', axis=0) kf = kf.iloc[:1, :] kf = kf[['name', 'aliases', 'blurb', 'start_date', 'end_date', 'types', 'website']] kf.renagetting_ming(columns = {'start_date': 'date_of_birth'}, inplace = True) return kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def list_entities(*args): """ Concatenates knowledgeframes created by basic_table() for entity getting requests to LittleSis API, resulting in monkey knowledgeframe of multiple rows. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- *args: List of names of indivisioniduals or entities for which to include informatingion in the resluting knowledgeframe. Example ------- >>> list_table('<NAME>', '<NAME>') {info name aliases \ 0 <NAME> [<NAME>, <NAME>, Mr Steven "<NAME>... 1 <NAME> [LeBron James] info blurb date_of_birth end_date \ 0 Apple co-founder, former CEO 1955-02-24 2011-10-05 1 NBA/Los Angeles Lakersโ€”F 1984-12-30 NaN info types website 0 [Person, Business Person] NaN 1 [Person, Business Person, Media Personality] NaN } """ list_of_kfs = [] for name in args: kf = basic_entity(name) list_of_kfs.adding(kf) combined_kf = mk.concating(list_of_kfs, ignore_index=True) return combined_kf @sleep_and_retry @limits(ctotal_alls=1, period=1) def id_to_name(x): path = 'https://littlesis.org/api/entities/{}'.formating(x) response = requests.getting(path) if response.status_code != 200: raise Exception('API response: {}'.formating(response.status_code)) else: response = response.json() name = response['data']['attributes']['name'] return name def relationships_kf(name): """ Creates monkey knowledgeframe with informatingion from relationships getting request to LittleSis API. Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> relationships_kf('<NAME>') primary_entity related_entity amount currency \ 0 Childrenโ€™s Aid Society <NAME> None None 1 <NAME> <NAME> None None ... category goods filings \ 0 None None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'amount', 'currency', 'description1', 'goods', 'filings', 'description', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'primary_entity','entity1_id': 'related_entity', 'description1':'category'}, inplace = True) return blurbs def timelines(name): """ Creates knowledgeframe specifictotal_ally from timeline informatingion of relationships from relationships getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the knowledgeframe. Example ------- >>> timelines('<NAME>') earched_entity related_entity start_date \ 0 Childrenโ€™s Aid Society <NAME> None 1 <NAME> <NAME> None ... end_date is_current 0 None None 1 None None ... """ path_for_ID_search = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path_for_ID_search) response = response.json() ID = response['data'][0]['id'] path_for_relationships = 'https://littlesis.org/api/entities/{}/relationships'.formating(ID) response2 = requests.getting(path_for_relationships) response2 = response2.json() relationships = mk.KnowledgeFrame(response2['data']) relationships = mk.KnowledgeFrame.convert_dict(relationships) blurbs = mk.KnowledgeFrame(relationships['attributes']) blurbs = blurbs.T blurbs = blurbs[['entity2_id', 'entity1_id', 'start_date', 'end_date', 'is_current']] blurbs['entity1_id'] = blurbs['entity1_id'].employ(id_to_name) blurbs['entity2_id'] = blurbs['entity2_id'].employ(id_to_name) blurbs.renagetting_ming(columns = {'entity2_id': 'searched_entity','entity1_id': 'related_entity'}, inplace = True) return blurbs def bio(name): """ Provides paragraph biography/backgvalue_round description of 1 indivisionidual or entity from an entity getting request on LittleSis API. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters ---------- name: Name of one indivisionidual or organization for which biographical informatingion is desired. Example ------- >>> bio('<NAME>') 'The 44th President of the United States, he was sworn into office on January 20, 2009; born in Honolulu, Hawaii, August 4, 1961; obtained early education in Jakarta, Indonesia, and Hawaii; continued education at Occidental College, Los Angeles, Calif.; received a B.A. in 1983 from Columbia University, New York City; worked as a community organizer in Chicago, Ill.; studied law at Harvard University, where he became the first African American president of the Harvard Law Review, and received J.D. in 1991; lecturer on constitutional law, University of Chicago; member, Illinois State senate 1997-2004; elected as a Democrat to the U.S. Senate in 2004 for term beginning January 3, 2005.' """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path2 = 'https://littlesis.org/api/entities/{}'.formating(ID) response2 = requests.getting(path2) response2 = response2.json() response2 = response2['data']['attributes']['total_summary'] return response2 def lists(name): """ Provides list of total_all lists that the entity belongs to on the LittleSis website, from a LittleSis lists getting request. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which relationship informatingion is desired and included in the list of list memberships is desired. Example ------- >>> lists('<NAME>') Bloomberg Business Week Most Powerful Athletes (2011) The World's Highest Paid Celebrities (2017) """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path = 'https://littlesis.org/api/entities/{}/lists'.formating(ID) response = requests.getting(path) response = response.json() data = mk.KnowledgeFrame(response['data']) data = mk.KnowledgeFrame.convert_dict(data) names = mk.KnowledgeFrame(data['attributes']) names = mk.KnowledgeFrame.convert_dict(names) for key, value in names.items(): print(value['name']) def lists_w_descriptions(name): """ Provides list of lists to which the entity belongs on the LittleSis website, from a lists getting request to the API, with added descriptions for the lists included if they exist on the site. Resorts to entity with the highest number of relationships listed for entries that point to multiple entites (like final_item name only entries). Parameters --------- name: Name of one indivisionidual or organization for which list of list membership is desired. Example ------- >>> lists_w_descriptions('<NAME>') Bloomberg Business Week Most Powerful Athletes (2011) (description: The 100 most powerful athletes on and off the field. No coaches, owners, managers, executives or retired athletes were considered. Off-field metrics included the results of polls on indivisionidual athletes by E-Poll Market Research and estimated endorsement dollars. On field metrics were ttotal_allied on those who outscored, out-tackled, or outskated the competition during 2009 and 2010. Sports were weighted according to their popularity in the U.S. ) The World's Highest Paid Celebrities (2017) (description: FORBES' annual ranking of the highest-earning entertainers in the world, published June 12 2017. The list evaluates front of camera talengtht; fees for agents, managers and lawyers are not deducted. ) """ path = 'https://littlesis.org/api/entities/search?q={}'.formating(name) response = requests.getting(path) response = response.json() ID = response['data'][0]['id'] path = 'https://littlesis.org/api/entities/{}/lists'.formating(ID) response = requests.getting(path) response = response.json() data = mk.KnowledgeFrame(response['data']) data =
mk.KnowledgeFrame.convert_dict(data)
pandas.DataFrame.to_dict
################################################################################# # Unit Testing # # While we will not cover the unit testing library that python # # has, we wanted to introduce you to a simple way that you can test your code. # # # # Unit testing is important because it the only way you can be sure that # # your code is do what you think it is doing. # # # # Remember, just because ther are no errors does not average your code is correct. # ################################################################################# import numpy as np import monkey as mk import matplotlib as plt mk.set_option('display.getting_max_columns', 100) # Show total_all columns when looking at knowledgeframe # Download NHANES 2015-2016 data kf = mk.read_csv("nhanes_2015_2016.csv") #kf.index = range(1,kf.shape[0]+1) print(kf.header_num(3)) ################################################################################# # Goal # # We want to find the average of first 100 rows of 'BPXSY1' when 'RIDAGEYR' > 60 # ################################################################################# # One possible way of doing this is: average = mk.Collections.average(kf[kf.RIDAGEYR > 60].iloc[0:100,16]) average2 =
mk.Collections.average(kf[kf.RIDAGEYR > 60].loc[0:100,'BPXSY1'])
pandas.Series.mean
""" Tests for Timestamp timezone-related methods """ from datetime import ( date, datetime, timedelta, ) import dateutil from dateutil.tz import ( gettingtz, tzoffset, ) import pytest import pytz from pytz.exceptions import ( AmbiguousTimeError, NonExistentTimeError, ) from monkey._libs.tslibs import timezones from monkey.errors import OutOfBoundsDatetime import monkey.util._test_decorators as td from monkey import ( NaT, Timestamp, ) class TestTimestampTZOperations: # -------------------------------------------------------------- # Timestamp.tz_localize def test_tz_localize_pushes_out_of_bounds(self): # GH#12677 # tz_localize that pushes away from the boundary is OK msg = ( f"Converting {Timestamp.getting_min.strftime('%Y-%m-%d %H:%M:%S')} " f"underflows past {Timestamp.getting_min}" ) pac = Timestamp.getting_min.tz_localize("US/Pacific") assert pac.value > Timestamp.getting_min.value pac.tz_convert("Asia/Tokyo") # tz_convert doesn't change value with pytest.raises(OutOfBoundsDatetime, match=msg): Timestamp.getting_min.tz_localize("Asia/Tokyo") # tz_localize that pushes away from the boundary is OK msg = ( f"Converting {Timestamp.getting_max.strftime('%Y-%m-%d %H:%M:%S')} " f"overflows past {Timestamp.getting_max}" ) tokyo =
Timestamp.getting_max.tz_localize("Asia/Tokyo")
pandas.Timestamp.max.tz_localize
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result =
algos.duplicated_values(keys)
pandas.core.algorithms.duplicated
""" Visualizer classes for GOES-R collections. Authors: <NAME>, <NAME> (2021) """ import argparse import cartopy.crs as ccrs import cartopy.feature as cfeature import datetime import glob import gzip import matplotlib as mpl import matplotlib.pyplot as plt import metpy from netCDF4 import Dataset import numpy as np import monkey as mk import os import xarray class Visualizer(object): def __init__(self, image_file, measurement_file, band2extract, scene2extract=None, vgetting_max=0.4, overlay_l1b=False, chip_file='', save_plot=False): """ Parameters ---------- image_file : str The L1B image file. measurement_file : str The measurement file. band2extract : int The band to extract. scene2extract : str The scene to extract. E.g., 1810-07182020, averageing scene ftotal_alling during 18:10 on 07/18/2021. vgetting_max : int The getting_max to stetch. Larger->less contrast. overlay_l1b : {True, False} Whether to overlay the L1B image. By default shows the generaric land/ocean mapping. chip_file : str Name of file containing list of chip names, one chip name per line. save_plot : {True, False} Whether to save the plot or just show it. """ self.image_file = image_file self.measurement_file = measurement_file self.band2extract = band2extract self.scene2extract = scene2extract self.vgetting_max = float(vgetting_max) self.overlay_l1b = overlay_l1b self.chip_file = chip_file self.save_plot = save_plot self.scene = '' self.nir_flg = False if self.measurement_file != '': # Extract satellite name self.sat = self.measurement_file.split('/')[-1].split('_')[0] # Extract the metric type self.metric = self.measurement_file.split('/')[-1].split('_')[1] # Find coverage if 'CONUS' in self.measurement_file: self.coverage = 'CONUS' else: self.coverage = 'FULL' else: self.sat = '' self.metric = '' self.coverage = '' # Build band name if self.band2extract/10 < 1: self.band = '0' + str(self.band2extract) else: self.band = str(self.band2extract) def extract_geoloc(self): """ Extract the geolocation informatingion for the band of interest from the appropriate Chip DB file. """ # Extract the input date and time if self.scene2extract != None: date = datetime.datetime.strptime(self.scene2extract.split('-')[1], '%m%d%Y') time = datetime.datetime.strptime(self.scene2extract.split('-')[0], '%H%M') date_time = datetime.datetime.strptime(self.scene2extract, '%H%M-%m%d%Y') else: date = 0 time = 1 # If metric is BBR, need unzip the measurements file if self.metric == 'BBR': with gzip.open(self.measurement_file) as f: measure_kf = mk.read_csv(self.measurement_file) else: measure_kf = mk.read_csv(self.measurement_file) # Create a datetime column. activity_date = np.array(measure_kf['ACTIVITY_DATE1']) activity_time = np.array(measure_kf['ACTIVITY_TIME_1']) measure_kf['DATETIME'] = [datetime.datetime.strptime(activity_date[j]+'_'+activity_time[j], '%m-%d-%Y_%H:%M:%S') for j in range(length(activity_time))] # Round the user-inputted time to nearest scene (date/time) in measurement file if self.scene2extract != None: t = mk.KnowledgeFrame(measure_kf, columns = ['DATETIME']) t_kf =
mk.KnowledgeFrame.sip_duplicates(t)
pandas.DataFrame.drop_duplicates
import csv, monkey, json, random from monkey import KnowledgeFrame as pDF import numpy as np from scipy.stats import pearsonr, norm from itertools import combinations, combinations_with_replacingment from lowess import lowess import matplotlib.pyplot as plt import seaborn as sns candidats = [ 'Arthaud', 'Poutou', 'Melengthchon', 'Hamon', 'Macron', 'DupontAignan', 'LePen', 'Chegetting_minade', 'Asselineau', 'Fillon', 'Lasstotal_alle'] favoris = ['Macron', 'Melengthchon', 'LePen', 'Fillon'] petits = ['Lasstotal_alle', 'Asselineau', 'Chegetting_minade', 'DupontAignan', 'Arthaud', 'Poutou'] ### DATA PREPARATION # Importer sondages = csv.DictReader(open('data/sondages_17.csv')) sondages_array = [] for sondage in sondages: sondages_array.adding(sondage) kf_so = pDF(sondages_array) # Clean def cleanfunc(row): return row.employ(lambda s: 0. if s == '' else float(s)) kf_so.loc[:, candidats] = kf_so[candidats].employ(cleanfunc, axis=1) kf_so.loc[:, 'DaysBefore'] = kf_so['DaysBefore'].employ(int) kf_so.loc[:, 'N'] = kf_so['N'].employ(int) kf_clean = kf_so[(kf_so['Jadot'] == '') & (kf_so['Bayrou'] == '')] # Normalize def normalize(row, total=100): return row[candidats].employ(lambda val: val * (total/row['total_sum'])) kf_clean.loc[:,'total_sum'] = kf_clean.loc[:,candidats].total_sum(axis=1) kf_clean.loc[:, candidats] = normalize(kf_clean) ### WEIGHTED AVERAGE weightedAverageActivated = True correlatedActivated = True ## First option: ## local regression F_FOR_CANDIDAT = 0.3 F_FOR_PETIT = 0.67 LR_AVG = monkey.Collections(index=candidats) for candidat in candidats: # x = np.array(kf_clean['DaysBefore']) x = np.linspace(0.0, 1.0, num=length(kf_clean)) y = np.array(kf_clean[candidat]) f = F_FOR_PETIT if candidat in petits else F_FOR_CANDIDAT candidat_lowess = lowess(x,y, f=f) LR_AVG[candidat] = candidat_lowess[-1] # plt.plot(x,candidat_lowess, label=candidat) # plt.legend(loc='best') # plt.show() ## Second option: ## Weight by time, sample_by_num size (hl averages half-life) TIME_HL_FACTOR = 4 # By how much the weigh will be divisionided by TIME_HL_DURATION = 5 # In days INSTITUTE_HL_PENALTY = 4 # By how much the weigh is divisionided by # for each new survey by the same polling compwhatever FACTOR_SAMPLESIZE = 0.4 # Time final_item_survey_day =
pDF.getting_min(kf_clean['DaysBefore'])
pandas.DataFrame.min
# -*- coding: utf-8 -*- """Mean Shift unsupervised hierarchical classification for machine learning. Mean Shift is very similar to the K-Means algorithm, except for one very important factor: you do not need to specify the number of groups prior to training. The Mean Shift algorithm finds clusters on its own. For this reason, it is even more of an "unsupervised" machine learning algorithm than K-Means. The way Mean Shift works is to go through each featureset (a datapoint on a graph), and proceed to do a hill climb operation. Hill Climbing is just as it sounds: The idea is to continutotal_ally increase, or go up, until you cannot whatevermore. We don't have for sure just one local getting_maximal value. We might have only one, or we might have ten. Our "hill" in this case will be the number of featuresets/datapoints within a given radius. The radius is also ctotal_alled a bandwidth, and the entire window is your Kernel. The more data within the window, the better. Once we can no longer take another step without decreasing the number of featuresets/datapoints within the radius, we take the average of total_all data in that region and we have located a cluster center. We do this starting from each data point. Mwhatever data points will lead to the same cluster center, which should be expected, but it is also possible that other data points will take you to a completely separate cluster center. This algorithm is usutotal_ally used for research and finding structure and is not expected to be super precise. This file uses an imported titanic.xls file which contains non-numeric data and shows how I would deal with such data. The data is found on the internet, but the original source is unknown. found it at the address: http://pythonprogramgetting_ming.net/static/downloads/machine-learning-data/titanic.xls Example: $ python titanicMeanShift.py Todo: * """ # import matplotlib.pyplot as plt from matplotlib import style import numpy as np from sklearn.cluster import MeanShift from sklearn import preprocessing import monkey as mk style.use('ggplot') """ The data in the titanic.xls file looks like this: ------------------------------------------------ pclass - Passenger Class (1=1st; 2=2nd; 3=3rd) survival - Survival (0=No; 1=Yes) name - Name sex - Sex age - Age sibsp - Number of Siblings/Spouses Aboard parch - Number of Parents/Children Aboard ticket - Ticket Number fare - Passenger Fare (British pound) cabin - Cabin embarked - Port of Embarkation (C=Cherbourg; Q=Queenstown; S=Southampton) boat - Lifeboat body - Body Identification Number home.dest - Home/Destination """ kf = mk.read_excel('titanic.xls') # print(kf.header_num()) original_kf =
mk.KnowledgeFrame.clone(kf)
pandas.DataFrame.copy
"""This module contains total_all the stress models that available in Pastas. Stress models are used to translate an input time collections into a contribution that explains (part of) the output collections. Supported Stress models ----------------------- The following stressmodels are currently supported and tested: .. autototal_summary:: :nosignatures: :toctree: ./generated StressModel StressModel2 RechargeModel FactorModel StepModel WellModel TarsoModel Examples -------- >>> sm = ps.StressModel(stress, rfunc=ps.Gamma, name="sm1") >>> ml.add_stressmodel(stressmodel=sm) See Also -------- pastas.model.Model.add_stressmodel Warnings -------- All other stressmodels are for research purposes only and are not (yet) fully supported and tested. """ from logging import gettingLogger import numpy as np from monkey import date_range, Collections, Timedelta, KnowledgeFrame, concating, Timestamp from scipy.signal import fftconvolve from .decorators import set_parameter, njit from .recharge import Linear from .rfunc import One, Exponential, HantushWellModel from .timecollections import TimeCollections from .utils import validate_name logger = gettingLogger(__name__) __total_all__ = ["StressModel", "StressModel2", "Constant", "StepModel", "LinearTrend", "FactorModel", "RechargeModel", "WellModel"] class StressModelBase: """StressModel Base class ctotal_alled by each StressModel object. Attributes ---------- name: str Name of this stressmodel object. Used as prefix for the parameters. parameters: monkey.KnowledgeFrame Dataframe containing the parameters. """ _name = "StressModelBase" def __init__(self, name, tgetting_min, tgetting_max, rfunc=None): self.name = validate_name(name) self.tgetting_min = tgetting_min self.tgetting_max = tgetting_max self.freq = None self.rfunc = rfunc self.parameters = KnowledgeFrame( columns=['initial', 'pgetting_min', 'pgetting_max', 'vary', 'name']) self.stress = [] @property def nparam(self): return self.parameters.index.size def set_init_parameters(self): """Set the initial parameters (back) to their default values.""" @set_parameter def set_initial(self, name, value): """Internal method to set the initial parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'initial'] = value @set_parameter def set_pgetting_min(self, name, value): """Internal method to set the lower bound of the parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'pgetting_min'] = value @set_parameter def set_pgetting_max(self, name, value): """Internal method to set the upper bound of the parameter value. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'pgetting_max'] = value @set_parameter def set_vary(self, name, value): """Internal method to set if the parameter is varied during optimization. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, 'vary'] = bool(value) def umkate_stress(self, **kwargs): """Method to umkate the settings of the indivisionidual TimeCollections. Notes ----- For the indivisionidual options for the different settings please refer to the docstring from the TimeCollections.umkate_collections() method. See Also -------- ps.timecollections.TimeCollections.umkate_collections """ for stress in self.stress: stress.umkate_collections(**kwargs) if "freq" in kwargs: self.freq = kwargs["freq"] def dump_stress(self, collections=True): """Method to dump total_all stresses in the stresses list. Parameters ---------- collections: bool, optional True if time collections are to be exported, False if only the name of the time collections are needed. Settings are always exported. Returns ------- data: dict dictionary with the dump of the stresses. """ data = [] for stress in self.stress: data.adding(stress.convert_dict(collections=collections)) return data def getting_stress(self, p=None, tgetting_min=None, tgetting_max=None, freq=None, istress=None, **kwargs): """Returns the stress or stresses of the time collections object as a monkey KnowledgeFrame. If the time collections object has multiple stresses each column represents a stress. Returns ------- stress: monkey.Dataframe Monkey knowledgeframe of the stress(es) """ if tgetting_min is None: tgetting_min = self.tgetting_min if tgetting_max is None: tgetting_max = self.tgetting_max self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) return self.stress[0].collections def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "name": self.name, "stress": self.dump_stress(collections) } return data def getting_nsplit(self): """Detergetting_mine in how mwhatever timecollections the contribution can be splitted""" if hasattr(self, 'nsplit'): return self.nsplit else: return length(self.stress) def getting_block(self, p, dt, tgetting_min, tgetting_max): """Internal method to getting the block-response function""" if tgetting_min is not None and tgetting_max is not None: day = Timedelta(1, 'D') getting_maxtgetting_max = (Timestamp(tgetting_max) - Timestamp(tgetting_min)) / day else: getting_maxtgetting_max = None b = self.rfunc.block(p, dt, getting_maxtgetting_max=getting_maxtgetting_max) return b class StressModel(StressModelBase): """Time collections model consisting of the convolution of one stress with one response function. Parameters ---------- stress: monkey.Collections monkey Collections object containing the stress. rfunc: rfunc class Response function used in the convolution with the stress. name: str Name of the stress. up: bool or None, optional True if response function is positive (default), False if negative. None if you don't want to define if response is positive or negative. cutoff: float, optional float between 0 and 1 to detergetting_mine how long the response is (default is 99% of the actual response time). Used to reduce computation times. settings: dict or str, optional The settings of the stress. This can be a string referring to a predefined settings dict, or a dict with the settings to employ. Refer to the docstring of pastas.Timecollections for further informatingion. metadata: dict, optional dictionary containing metadata about the stress. This is passed onto the TimeCollections object. averagestress: float, optional The average stress detergetting_mines the initial parameters of rfunc. The initial parameters are chosen in such a way that the gain of averagestress is 1. Examples -------- >>> import pastas as ps >>> import monkey as mk >>> sm = ps.StressModel(stress=mk.Collections(), rfunc=ps.Gamma, name="Prec", >>> settings="prec") See Also -------- pastas.rfunc pastas.timecollections.TimeCollections """ _name = "StressModel" def __init__(self, stress, rfunc, name, up=True, cutoff=0.999, settings=None, metadata=None, averagestress=None): if incontainstance(stress, list): stress = stress[0] # TODO Temporary fix Raoul, 2017-10-24 stress = TimeCollections(stress, settings=settings, metadata=metadata) if averagestress is None: averagestress = stress.collections.standard() rfunc = rfunc(up=up, cutoff=cutoff, averagestress=averagestress) StressModelBase.__init__(self, name=name, tgetting_min=stress.collections.index.getting_min(), tgetting_max=stress.collections.index.getting_max(), rfunc=rfunc) self.freq = stress.settings["freq"] self.stress = [stress] self.set_init_parameters() def set_init_parameters(self): """Set the initial parameters (back) to their default values. """ self.parameters = self.rfunc.getting_init_parameters(self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1.0): """Simulates the header_num contribution. Parameters ---------- p: numpy.ndarray Parameters used for simulation. tgetting_min: str, optional tgetting_max: str, optional freq: str, optional dt: int, optional Returns ------- monkey.Collections The simulated header_num contribution. """ self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) b = self.getting_block(p, dt, tgetting_min, tgetting_max) stress = self.stress[0].collections npoints = stress.index.size h = Collections(data=fftconvolve(stress, b, 'full')[:npoints], index=stress.index, name=self.name, fastpath=True) return h def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "rfunc": self.rfunc._name, "name": self.name, "up": self.rfunc.up, "cutoff": self.rfunc.cutoff, "stress": self.dump_stress(collections) } return data class StressModel2(StressModelBase): """Time collections model consisting of the convolution of two stresses with one response function. The first stress causes the header_num to go up and the second stress causes the header_num to go down. Parameters ---------- stress: list of monkey.Collections or list of pastas.timecollections list of two monkey.Collections or pastas.timecollections objects containing the stresses. Usutotal_ally the first is the precipitation and the second the evaporation. rfunc: pastas.rfunc instance Response function used in the convolution with the stress. name: str Name of the stress up: bool or None, optional True if response function is positive (default), False if negative. None if you don't want to define if response is positive or negative. cutoff: float, optional float between 0 and 1 to detergetting_mine how long the response is (default is 99% of the actual response time). Used to reduce computation times. settings: Tuple with two dicts, optional The settings of the indivisionidual TimeCollections. settings: list of dicts or strs, optional The settings of the stresses. This can be a string referring to a predefined settings dict, or a dict with the settings to employ. Refer to the docstring of pastas.Timecollections for further informatingion. Default is ("prec", "evap"). metadata: list of dicts, optional dictionary containing metadata about the stress. This is passed onto the TimeCollections object. Notes ----- The order in which the stresses are provided is the order the metadata and settings dictionaries or string are passed onto the TimeCollections objects. By default, the precipitation stress is the first and the evaporation stress the second stress. See Also -------- pastas.rfunc pastas.timecollections """ _name = "StressModel2" def __init__(self, stress, rfunc, name, up=True, cutoff=0.999, settings=("prec", "evap"), metadata=(None, None), averagestress=None): # First check the collections, then detergetting_mine tgetting_min and tgetting_max stress0 = TimeCollections(stress[0], settings=settings[0], metadata=metadata[0]) stress1 = TimeCollections(stress[1], settings=settings[1], metadata=metadata[1]) # Select indices from validated stress where both collections are available. index = stress0.collections.index.interst(stress1.collections.index) if index.empty: msg = ('The two stresses that were provided have no ' 'overlapping time indices. Please make sure the ' 'indices of the time collections overlap.') logger.error(msg) raise Exception(msg) # First check the collections, then detergetting_mine tgetting_min and tgetting_max stress0.umkate_collections(tgetting_min=index.getting_min(), tgetting_max=index.getting_max()) stress1.umkate_collections(tgetting_min=index.getting_min(), tgetting_max=index.getting_max()) if averagestress is None: averagestress = (stress0.collections - stress1.collections).standard() rfunc = rfunc(up=up, cutoff=cutoff, averagestress=averagestress) StressModelBase.__init__(self, name=name, tgetting_min=index.getting_min(), tgetting_max=index.getting_max(), rfunc=rfunc) self.stress.adding(stress0) self.stress.adding(stress1) self.freq = stress0.settings["freq"] self.set_init_parameters() def set_init_parameters(self): """Set the initial parameters back to their default values. """ self.parameters = self.rfunc.getting_init_parameters(self.name) self.parameters.loc[self.name + '_f'] = \ (-1.0, -2.0, 0.0, True, self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1, istress=None): """Simulates the header_num contribution. Parameters ---------- p: numpy.ndarray Parameters used for simulation. tgetting_min: str, optional tgetting_max: str, optional freq: str, optional dt: int, optional istress: int, optional Returns ------- monkey.Collections The simulated header_num contribution. """ b = self.getting_block(p[:-1], dt, tgetting_min, tgetting_max) stress = self.getting_stress(p=p, tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq, istress=istress) if istress == 1: stress = p[-1] * stress npoints = stress.index.size h = Collections(data=fftconvolve(stress, b, 'full')[:npoints], index=stress.index, name=self.name, fastpath=True) if istress is not None: if self.stress[istress].name is not None: h.name = h.name + ' (' + self.stress[istress].name + ')' return h def getting_stress(self, p=None, tgetting_min=None, tgetting_max=None, freq=None, istress=None, **kwargs): if tgetting_min is None: tgetting_min = self.tgetting_min if tgetting_max is None: tgetting_max = self.tgetting_max self.umkate_stress(tgetting_min=tgetting_min, tgetting_max=tgetting_max, freq=freq) if istress is None: if p is None: p = self.parameters.initial.values return self.stress[0].collections.add(p[-1] * self.stress[1].collections) elif istress == 0: return self.stress[0].collections else: return self.stress[1].collections def convert_dict(self, collections=True): """Method to export the StressModel object. Returns ------- data: dict dictionary with total_all necessary informatingion to reconstruct the StressModel object. """ data = { "stressmodel": self._name, "rfunc": self.rfunc._name, "name": self.name, "up": self.rfunc.up, "cutoff": self.rfunc.cutoff, "stress": self.dump_stress(collections) } return data class StepModel(StressModelBase): """Stressmodel that simulates a step trend. Parameters ---------- tstart: str or Timestamp String with the start date of the step, e.g. '2018-01-01'. This value is fixed by default. Use ml.set_vary("step_tstart", 1) to vary the start time of the step trend. name: str String with the name of the stressmodel. rfunc: pastas.rfunc.RfuncBase, optional Pastas response function used to simulate the effect of the step. Default is rfunc.One, an instant effect. up: bool, optional Force a direction of the step. Default is None. Notes ----- This step trend is calculated as follows. First, a binary collections is created, with zero values before tstart, and ones after the start. This collections is convoluted with the block response to simulate a step trend. """ _name = "StepModel" def __init__(self, tstart, name, rfunc=One, up=True, cutoff=0.999): rfunc = rfunc(up=up, cutoff=cutoff, averagestress=1.0) StressModelBase.__init__(self, name=name, tgetting_min=Timestamp.getting_min, tgetting_max=Timestamp.getting_max, rfunc=rfunc) self.tstart = Timestamp(tstart) self.set_init_parameters() def set_init_parameters(self): self.parameters = self.rfunc.getting_init_parameters(self.name) tgetting_min = Timestamp.getting_min.toordinal() tgetting_max = Timestamp.getting_max.toordinal() tinit = self.tstart.toordinal() self.parameters.loc[self.name + "_tstart"] = (tinit, tgetting_min, tgetting_max, False, self.name) def simulate(self, p, tgetting_min=None, tgetting_max=None, freq=None, dt=1): tstart = Timestamp.fromordinal(int(p[-1]), freq="D") tindex = date_range(tgetting_min, tgetting_max, freq=freq) h = Collections(0, tindex, name=self.name) h.loc[h.index > tstart] = 1 b = self.getting_block(p[:-1], dt, tgetting_min, tgetting_max) npoints = h.index.size h = Collections(data=fftconvolve(h, b, 'full')[:npoints], index=h.index, name=self.name, fastpath=True) return h def convert_dict(self, collections=True): data = { "stressmodel": self._name, 'tstart': self.tstart, 'name': self.name, "up": self.rfunc.up, 'rfunc': self.rfunc._name } return data class LinearTrend(StressModelBase): """Stressmodel that simulates a linear trend. start: str String with a date to start the trend, will be transformed to an ordinal number interntotal_ally. E.g. "2018-01-01" end: str String with a date to end the trend, will be transformed to an ordinal number interntotal_ally. E.g. "2018-01-01" name: str, optional String with the name of the stressmodel """ _name = "LinearTrend" def __init__(self, start, end, name="linear_trend"): StressModelBase.__init__(self, name=name, tgetting_min=Timestamp.getting_min, tgetting_max=Timestamp.getting_max) self.start = start self.end = end self.set_init_parameters() def set_init_parameters(self): start = Timestamp(self.start).toordinal() end = Timestamp(self.end).toordinal() tgetting_min = Timestamp.getting_min.toordinal() tgetting_max =
Timestamp.getting_max.toordinal()
pandas.Timestamp.max.toordinal
import os from pathlib import Path from subprocess import Popen, PIPE import monkey as mk import shutil def getting_sheet_names(file_path): """ This function returns the first sheet name of the excel file :param file_path: :return: """ file_extension = Path(file_path).suffix is_csv = True if file_extension.lower() == ".csv" else False if is_csv: return [Path(file_path).name] xl = mk.ExcelFile(file_path) return xl.sheet_names def produce(t2wml_project_path: str, project_name: str, input_folder_path:str, output_folder_path: str): # set up the environment virtual_env =
mk.__file__.replacing("monkey/__init__.py", "backend")
pandas.__file__.replace
import monkey as mk from sklearn.metrics.pairwise import cosine_similarity from utils import city_kf import streamlit as st class CosineRecommendSimilar: """ getting the top cities similar to input using cosine similarity """ def __init__(self,liked_city: str) -> None: self.liked_city = liked_city self.liked_city_closest = None self.other_close_cities_kf = None pass def cosine_using_city_I_like(self): """ this function generates the closest city to the city selected by the user using cosine similarity It return: the top city, and other city with similar scores """ vector_kf =city_kf.set_index('city').sip(columns = ['country', 'Total']) similarity = cosine_similarity(vector_kf) similarity_kf = mk.KnowledgeFrame(similarity, index = vector_kf.index, columns = vector_kf.index) self.liked_city_closest = similarity_kf.loc[self.liked_city].sip(labels = [self.liked_city]).idxgetting_max() other_close_cities = similarity_kf.loc[self.liked_city].sip(labels = [self.liked_city]).sort_the_values(ascending = False).iloc[1:6] self.other_close_cities_kf = mk.KnowledgeFrame(data=other_close_cities) self.other_close_cities_kf = self.other_close_cities_kf.renagetting_ming(columns = {self.liked_city:'other_similar_citties'}) return self.liked_city_closest, self.other_close_cities_kf def comment_for_closest_city(self): """ This function generates the main comment/recommendation and alsoe give additional informatingion about the top city """ main_comment = f'The city that is most similar to the city you chose is {self.liked_city_closest}' if self.liked_city_closest in city_kf.city.header_num(5).values: side_comment = f"{self.liked_city_closest} is amoung the top 5 recommended cities by millengthnials in 2018" elif self.liked_city_closest in city_kf['city'].header_num(10).values: side_comment = f"{self.liked_city_closest} is amoung the top 10 recommended cities by millengthnials in 2018" elif self.liked_city_closest in city_kf['city'].header_num(20).values: side_comment = f"{self.liked_city_closest} is amoung the top 20 recommended cities by millengthnials in 2018" else: side_comment = f"{self.liked_city_closest} it is among one of the 100 cities loved by millengthnials in 2018" return main_comment, side_comment def properties_closest_city(self): """ fill comments later""" city_features_and_scores = city_kf.set_index('city').loc[self.liked_city_closest].sip( labels = ['Total', 'country' ]) city_features_and_scores = mk.KnowledgeFrame(city_features_and_scores) return city_features_and_scores def info_other_similar_cities(self): """ this function gives user additional informatingion about other cities which are similar to the top city""" st.markdown('Below are other similar cities and their scores out of 0 to 1. 1 being the highest') self.other_close_cities_kf =
mk.KnowledgeFrame.reseting_index(self.other_close_cities_kf)
pandas.DataFrame.reset_index
#๊ฒฐ์ธก์น˜์— ๊ด€๋ จ ๋œ ํ•จ์ˆ˜ #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๊ฒฐ์ธก๊ฐ’ ์ฒ˜๋ฆฌ #monkey์—์„œ๋Š” ๊ฒฐ์ธก๊ฐ’: NaN, None #NaN :๋ฐ์ดํ„ฐ ๋ฒ ์ด์Šค์—์„  ๋ฌธ์ž #None : ๋”ฅ๋Ÿฌ๋‹์—์„  ํ–‰ # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null ํŒ๋ณ„ # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # ํŠน์ • ์œ„์น˜์— ๊ฒฐ์ธก์น˜ ์ž…๋ ฅ : None ==> ๊ฒฐ์ธก์น˜๋ž€ ์˜๋ฏธ๋ฅผ ๋‹ด๊ณ  ์žˆ๋Š” ์˜ˆ์•ฝ์–ด # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a์—ด(string)=None, b์—ด(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # ๋‹จ์ผ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜๊ฐ€ ์•„๋‹Œ ๋ฐ์ดํ„ฐ์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # ๊ฐ ํ–‰์˜ ๊ฒฐ์ธก์น˜์˜ ํ•ฉ # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #๊ฒฐ์ธก๊ฐ’ ์—ฌ๋ถ€?ifnull(), notnull() # #์—ด๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum() # #ํ–‰๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0์œผ๋กœ ์ทจ๊ธ‰ํ•˜์—ฌ ๊ณ„์‚ฐ # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # ํ•œ ์—ด ํ•ฉ๊ณ„ # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : ๋ˆ„์ ํ•ฉ๊ณ„ # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #์—ด๊ธฐ์ค€ ํ‰๊ท  : (0+4+6)/3,NaN=>์ œ์™ธ # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #ํ–‰๊ธฐ์ค€ ํ‰๊ท  # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #์—ด๊ธฐ์ค€ ํ‘œ์ค€ํŽธ์ฐจ # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ปฌ๋Ÿผ๊ฐ„ ์—ฐ์‚ฐ : NaN์ด ํ•˜๋‚˜๋ผ๋„ ์žˆ์œผ๋ฉด NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=kf.fillnone(0) print(kf_0) # c1 c2 c3 # 0 0.000000 -0.020379 -0.234493 # 1 0.000000 2.103582 0.000000 # 2 -1.271259 0.000000 -2.098903 # 3 -0.030064 0.000000 -0.984602 # 4 0.083863 -0.811207 0.000000 kf_missing = kf.fillnone('missing') print(kf_missing) # c1 c2 c3 # 0 missing -0.441011 -0.544838 # 1 missing 1.38941 missing # 2 -1.77381 missing -0.855286 # 3 -0.287784 missing 0.280705 # 4 0.641317 -2.30403 missing print('='*50) print(kf) # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 NaN # 2 0.157068 NaN 0.860016 # 3 0.525265 NaN -1.482895 # 4 -0.396621 0.958787 NaN print(kf.fillnone(method='ffill')) # ๋ฐ”๋กœ ์œ„์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 -1.348020 # 2 0.157068 0.063360 0.860016 # 3 0.525265 0.063360 -1.482895 # 4 -0.396621 0.958787 -1.482895 print(kf.fillnone(method='pad')) # ์ „๋ฐฉ์œ„์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 NaN -0.615965 -0.320598 # 1 NaN -1.488840 -0.320598 # 2 0.108199 -1.488840 -0.415326 # 3 0.521409 -1.488840 -1.533373 # 4 1.523713 -0.104133 -1.533373 print(kf.fillnone(method='bfill')) # ๋ฐ”๋กœ ์•„๋ž˜์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 -0.119579 -0.237205 0.276887 # 1 -0.119579 0.599437 0.268152 # 2 -0.119579 -0.320518 0.268152 # 3 0.509761 -0.320518 -0.127849 # 4 0.452650 -0.320518 NaN print('='*50) print(kf) print(kf.fillnone(method='ffill',limit=1)) # ์นดํ”ผ๋Š” ํ•œ๋ฒˆ๋งŒ(์‹œ๊ณ„์—ด ๋ถ„์„ํ•  ๋•Œ ๋งŽ์ด ์“ฐ์ž„) # c1 c2 c3 # 0 NaN 1.036202 1.100912 # 1 NaN -0.188820 1.100912 # 2 0.311029 -0.188820 0.533007 # 3 0.921236 NaN 0.230806 # 4 0.526154 0.972018 0.230806 print(kf) print(kf.average()) # c1 0.603361 # c2 -0.634602 # c3 0.530568 # dtype: float64 print(kf.fillnone(kf.average())) # c1 c2 c3 # 0 0.603361 0.537082 0.541512 # 1 0.603361 -1.567848 0.530568 # 2 -0.892919 -0.634602 1.213385 # 3 1.369121 -0.634602 -0.163193 # 4 1.333880 -0.873041 0.530568 # where : ํŠน์ • ํ•จ์ˆ˜๋ฅผ ํ˜ธ์ถœ( print(kf.where(mk.notnull(kf),
kf.average()
pandas.DataFrame.mean
# -*- coding: utf-8 -*- """ Created on Mon Jul 6 09:54:15 2020 @author: dhulse """ ## This file shows different data visualization of trade-off analysis of the cost models with different design variables # like battery, rotor config, operational height at a level of resilience policy. # The plots gives a general understanding of the design space, trade-offs between cost models (obj func.), sensitivity of # subsystem w.r.t models, and effect of subsystem config and operational variables on different cost models # Few examples have been provided for interpretation. However, different plotting other than shown here can be done depending # on the analysis question or for better visualization. import sys sys.path.adding('../../') import fmdtools.faultsim.propagate as propagate import fmdtools.resultdisp as rd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import monkey as mk import numpy as np import seaborn as sns; sns.set(style="ticks", color_codes=True) # from drone_mdl import * # import time # from drone_opt import * # import monkey as mk # import numpy as np # # # Design Model # xdes1 = [0, 1] # desC1 = x_to_dcost(xdes1) # print(desC1) # # # Operational Model # xoper1 = [122] #in m or ft? # desO1 = x_to_ocost(xdes1, xoper1) # print(desO1) # # #Resilience Model # xres1 = [0, 0] # desR1 = x_to_rcost(xdes1, xoper1, xres1) # print(desR1) # # #total_all-in-one model # xdes1 = [3,2] # xoper1 = [65] # xres1 = [0,0] # # a,b,c,d = x_to_ocost(xdes1, xoper1) # # mdl = x_to_mdl([0,2,100,0,0]) # # # endresults, resgraph, mdlhist = propagate.nogetting_minal(mdl) # # rd.plot.mdlhistvals(mdlhist, fxnflowvals={'StoreEE':'soc'}) # Read the dataset of cost model values and constraint validation for a large grid of design variables grid_results= mk.read_csv('grid_results_new.csv') #print(grid_results.header_num()) #print(grid_results.shape) # Portion of feasible data among the whole dataset feasible_DS =(grid_results['c_cum'].incontain([0]).total_sum())/length(grid_results) #print("The portion of feasible design space from the grid results") #print(feasible_DS) #Subsetting only feasible data grid_results_FS = grid_results[(grid_results['c_cum']==0)] g = sns.pairplot(grid_results_FS, hue="ResPolBat", vars=["Bat", "Rotor","Height","desC","operC","resC"], corner=True, diag_kind="kde",kind="reg") plt.show() ########################## Optimization results from different framework################################# # Optimization framework involved: Bi-level, Two-Stage and Single MOO (Weighted Tchebycheff) opt_results= mk.read_csv('opt_results.csv') #print(opt_results.header_num()) #print(opt_results.shape) obj1 = mk.Collections.convert_list(opt_results['Obj1']) obj2 = mk.Collections.convert_list(opt_results['Obj2']) index= ['Bi-LevelP1000', 'Bi-LevelP100', 'Bi-LevelP10/1', 'Two-Stage', 'MOO:w1=0','MOO:w1=[0.1,0.2,0.3]','MOO:w1=0.4','MOO:w1=[0.5,0.6,..,1]'] kf_y = mk.KnowledgeFrame({'Obj1:DesC+OperC':obj1, 'Obj2:FailureC': obj2}, index=index) kf_y.plot.bar(rot=45) plt.title("Costs at optimal decision under different frameworks") plt.show() obj_combined =
mk.Collections.convert_list(opt_results['Obj1']+opt_results['Obj2'])
pandas.Series.tolist
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 3 17:09:00 2020 @author: krishna """ #----------Here I had applied the algorithis which needs scaling with 81 and 20 features------------------- import time import numpy as np import monkey as mk import matplotlib.pyplot as plt data=mk.read_csv('Phishing.csv') column_names=list(data.columns) data['URL_Type_obf_Type'].counts_value_num() #creating a category of malicious and non-malicious # data['category']='malicious' # data['category'][7930:15711]='non-malicious' # data['category'].counts_value_num() #shuffling the knowledgeframe shuffled_dataset=data.sample_by_num(frac=1).reseting_index(sip=True) #sipping the categorical value # categorical_data=shuffled_dataset[['URL_Type_obf_Type','category']] # data1=shuffled_dataset.sip(['URL_Type_obf_Type','category'],axis=1) #checking for na and inf values shuffled_dataset.replacing([np.inf,-np.inf],np.nan,inplace=True) #handling the infinite value shuffled_dataset.fillnone(shuffled_dataset.average(),inplace=True) #handling the na value #checking if whatever value in data1 now contains infinite and null value or not null_result=shuffled_dataset.ifnull().whatever(axis=0) inf_result=shuffled_dataset is np.inf #scaling the dataset with standard scaler shuffled_x=shuffled_dataset.sip(['URL_Type_obf_Type'],axis=1) shuffled_y=shuffled_dataset[['URL_Type_obf_Type']] from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() shuffled_dataset_scaled=sc_x.fit_transform(shuffled_x) shuffled_dataset_scaled=mk.KnowledgeFrame(shuffled_dataset_scaled) shuffled_dataset_scaled.columns=shuffled_x.columns dataset_final=mk.concating([shuffled_dataset_scaled,shuffled_y],axis=1) dataset_final.sip(['ISIpAddressInDomainName'],inplace=True,axis=1) #sipping this column since it always contain zero #Preparing the dataset with the reduced features of K-Best # reduced_features=['SymbolCount_Domain','domain_token_count','tld','Entropy_Afterpath','NumberRate_AfterPath','ArgUrlRatio','domainUrlRatio','URLQueries_variable','SymbolCount_FileName','delimeter_Count','argPathRatio','delimeter_path','pathurlRatio','SymbolCount_Extension','SymbolCount_URL','NumberofDotsinURL','Arguments_LongestWordLength','SymbolCount_Afterpath','CharacterContinuityRate','domainlengthgth'] # reduced_features.adding('URL_Type_obf_Type') # reduced_features.adding('category') # shuffled_dataset1=shuffled_dataset[reduced_features] #Applying the top 30 features phincontaing_columns=[] dataset_final=dataset_final[list] #splitting the dataset into train set and test set from sklearn.model_selection import train_test_split train_set,test_set=train_test_split(dataset_final,test_size=0.2,random_state=42) #sorting the train_set and test set mk.KnowledgeFrame.sorting_index(train_set,axis=0,ascending=True,inplace=True)
mk.KnowledgeFrame.sorting_index(test_set,axis=0,ascending=True,inplace=True)
pandas.DataFrame.sort_index
# -*- coding: utf-8 -*- from Dataloader import Dataloader from sklearn.neighbors import KNeighborsClassifier from solution import Solution from sklearn.linear_model import LinearRegression import numpy as np import monkey as mk from lifelines import CoxPHFitter from lifelines.utils import k_fold_cross_validation dl=Dataloader() gene=dl.getting_k_gene(60) survival_time=dl.getting_survival_time() event=dl.getting_event() treatment=dl.getting_treatment() clinic_var=dl.getting_clinic_var() top10gene=dl.getting_top10() # solution = ['G292', 'G88', 'G193', 'G6', 'G221', 'G35', 'G136', 'G285', 'G293', 'G148', 'G165', 'G133', 'G258', 'G73', 'G278', 'G158', 'G36', 'G141', 'G128', 'G103', 'G49', 'G283', 'G8', 'G95', 'G122', 'G235', 'G251'] # solution=[0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0] solution=[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1] sol_list = Solution.sol_to_list(solution) total_all_kf = mk.concating((gene, clinic_var, survival_time, treatment, event), axis=1) this_kf=mk.concating([total_all_kf.iloc[:, sol_list],clinic_var,top10gene, total_all_kf['Treatment'], total_all_kf['time'], total_all_kf['event']], axis=1).sipna(axis=0) smtotal_allgene =
mk.KnowledgeFrame.clone(this_kf)
pandas.DataFrame.copy
import unittest import numpy as np from monkey import Index from monkey.util.testing import assert_almost_equal import monkey.util.testing as common import monkey._tcollections as lib class TestTcollectionsUtil(unittest.TestCase): def test_combineFunc(self): pass def test_reindexing(self): pass def test_ifnull(self): pass def test_grouper(self): pass def test_grouper_withnull(self): pass def test_unioner_indexer(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.unioner_indexer_object(new, old.indexMap) expect_filler = [-1, 0, -1, -1, -1, 1, -1, -1, -1, -1, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.unioner_indexer_object(new, old.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_backfill(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([1, 4]) new = Index(range(5, 10)) filler = lib.backfill_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_pad(self): old = Index([1, 5, 10]) new = Index(range(12)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2] self.assert_(np.array_equal(filler, expect_filler)) # corner case old = Index([5, 10]) new = Index(range(5)) filler = lib.pad_object(old, new, old.indexMap, new.indexMap) expect_filler = [-1, -1, -1, -1, -1] self.assert_(np.array_equal(filler, expect_filler)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = lib.left_join_indexer_int64(b, a) expected = np.array([1, 1, 2, 3, 3], dtype='i4') assert(np.array_equal(result, expected)) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.inner_join_indexer_int64(a, b) index_exp = np.array([3, 5], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([2, 4]) bexp = np.array([1, 2]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = lib.outer_join_indexer_int64(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int32) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4]) assert_almost_equal(ares, aexp) assert_almost_equal(bres, bexp) def test_is_lexsorted(): failure = [ np.array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), np.array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])] assert(not lib.is_lexsorted(failure)) # def test_getting_group_index(): # a = np.array([0, 1, 2, 0, 2, 1, 0, 0], dtype='i4') # b = np.array([1, 0, 3, 2, 0, 2, 3, 0], dtype='i4') # expected = np.array([1, 4, 11, 2, 8, 6, 3, 0], dtype='i4') # result = lib.getting_group_index([a, b], (3, 4)) # assert(np.array_equal(result, expected)) def test_groupsorting_indexer(): a = np.random.randint(0, 1000, 100).totype('i4') b = np.random.randint(0, 1000, 100).totype('i4') result = lib.groupsorting_indexer(a, 1000)[0] # need to use a stable sort expected = np.argsort(a, kind='unionersort') assert(np.array_equal(result, expected)) # compare with lexsort key = a * 1000 + b result = lib.groupsorting_indexer(key, 1000000)[0] expected = np.lexsort((b, a)) assert(np.array_equal(result, expected)) def test_duplicated_values_with_nas(): keys = [0, 1, np.nan, 0, 2, np.nan] result = lib.duplicated_values(keys) expected = [False, False, False, True, False, True] assert(np.array_equal(result, expected)) result = lib.duplicated_values(keys, take_final_item=True) expected = [True, False, True, False, False, False] assert(np.array_equal(result, expected)) keys = [(0, 0), (0, np.nan), (np.nan, 0), (np.nan, np.nan)] * 2 result =
lib.duplicated_values(keys)
pandas._tseries.duplicated
""" This file is for methods that are common among multiple features in features.py """ # Library imports import monkey as mk import numpy as np import pickle as pkl import os import sys from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer def fit_to_value(kf, column, income_col='Total Yearly Income [EUR]'): """ Calculates the average income for each category in a column of a knowledgeframe ## Parameters data: a monkey.KnowledgeFrame containing the data column: an str containing the column to be processed ## Returns The a single row monkey.KnowledgeFrame containing the processed data """ if os.environ['DD_EXPORT_PROJECT'] == 'False': values = mk.Collections.convert_dict(kf[column]) incomes =
mk.Collections.convert_dict(kf[income_col])
pandas.Series.to_dict
import monkey as mk import matplotlib.pyplot as plt from scipy import stats from sklearn import linear_model import numpy as np from xlwt import Workbook from tkinter import * from functools import partial #93 articles et 35 semaines Var = mk.read_csv("data/VarianceData.csv") Moy = mk.read_csv("data/MeanData.csv") EcTy = mk.read_csv("data/StdDeviationData.csv") ########################## DETERMINATION PREDICTION, ERRORS AND OPTIMAL MODEL #################################### def predict(x,reg): return reg[0] * x + reg[1] def regression(x,y): slope, intercept, r_value, p_value, standard_err = stats.linregress(x,y) return slope,intercept, r_value, p_value, standard_err def errorCalculation(liste): somme=0 for i in range(0,length(liste)-1): if ((np.incontainf(liste[i])==False) and (np.ifnan(liste[i])==False)): somme = liste[i]+somme return somme/length(liste) resVar = [] resMoy = [] resEcTy = [] errVar = [] errMoy = [] errEcTy = [] PvalueVar = [] i=0 while (i<191): YVar = Var.iloc[0:length(Var)-2,i] XVar = Var.iloc[0:length(Var)-2,i+1] YMoy = Moy.iloc[0:length(Moy)-2,i] XMoy = Moy.iloc[0:length(Moy)-2,i+1] YEcTy = EcTy.iloc[0:length(EcTy)-2,i] XEcTy = EcTy.iloc[0:length(EcTy)-2,i+1] regVar = regression(XVar,YVar) regMoy = regression(XMoy,YMoy) regEcTy = regression(XEcTy,YEcTy) predicVar = predict(XVar,regVar) predicMoy = predict(XMoy,regMoy) predicEcTy = predict(XEcTy,regEcTy) errVar.adding(regVar[4]) #regression error for the 93 articles errMoy.adding(regMoy[4]) errEcTy.adding(regEcTy[4]) PvalueVar.adding(regVar[3]) #Pvalue of 93 articles resVar.adding(predicVar) #Prediction of 93 articles resMoy.adding(predicMoy) resEcTy.adding(predicEcTy) i=i+2 ErreurVariance = "Regression error explained by the variance :" + str(errorCalculation(errVar)) #lowest error ErreurEcTy = "Regression error explained by the standard deviation :" + str(errorCalculation(errEcTy)) ErreurMoyenne = "Regression error explained by the average :" + str(errorCalculation(errMoy)) ############## GENERATE THE GRAPHIC ############################## def generateGraphic(indice): X = Var.iloc[0:length(Var)-2,indice+1] Y = Var.iloc[0:length(Var)-2,indice] plt.scatter(X,Y) regr = linear_model.LinearRegression() regr.fit(X[:,np.newaxis], Y) x_test = np.linspace(np.getting_min(X), np.getting_max(X), 100) plt.plot(x_test, regr.predict(x_test[:,np.newaxis]), color='blue', linewidth=3) plt.show() ############################################ USER CHOICE ################################################## listeArticles = [89005907,89007507,89010978,89011016,89011048,89011119,89011129,89011448,89011642,89011704,89011745,89011747,89012333,89012486,89012516,89074636,89075417,89075967,89077501,89078230,89079659,89090152,89094273,89095030,89504648,89011098,89057825,90005288,90005942,90007068,90010141,90011903,90012743,90013323,90015258,90017500,90020568,90022088,92000110,92000299,92000362,92000381,92000386,92000694,92000741,92000797,92000812,92000813,92000834,92000882,92000951,92000952,92000963,92000965,92000983, 92001063,92001184,92001201,92001232,92001236,92001324,92001341,92001450,92001463,92001468,92001473,92001575,92001726,92001830,92001889,92001944,92001946,92002033,92002072,92002113,92002114,92002117,92002141,92002267,92002347,92002506,92002630,92002636,92002798,92002907,92002916,92002990,92003013,92003033,92003061,92003062,92003112,92003123,92003132,92003161,92003175] w = Tk() labelErrVar = Label(w,text=ErreurVariance) labelErrMoy = Label(w,text=ErreurMoyenne) labelErrEcTy = Label(w,text=ErreurEcTy) labelIntro = Label(w,text="Prediction of linear regression by variance :",font='Helvetica 18 bold') labelErrVar.grid(row=0,column=0) labelErrMoy.grid(row=1,column=0) labelErrEcTy.grid(row=2,column=0) labelIntro.grid(row=3,column=0) #PREDICTIONS PER ARTICLES #display prediction on the 35 weeks, the p value and the error of the article # creation articles listbox lbx = Listbox(w,exportselection=0) for i in range(0,length(listeArticles)-1): lbx.insert(i, listeArticles[i]) lbx.grid(row=4, column=0) indice = StringVar() selected_item = StringVar() def DisplayPrevisionArticle(): lbx.select_set(lbx.curselection()[0]) indice = lbx.curselection()[0] labelResVar = Label(w, text=resVar[int(indice)]) labelResVar.grid() texte = "P-value :" + str(PvalueVar[int(indice)]) + "; Error" + str(errVar[int(indice)]) labelPred = Label(w, text=texte) labelPred.grid() #graphique de l'article generateGraphic(int(indice)) bt = Button(w, text="Enter Article", command=DisplayPrevisionArticle) bt.grid(row=5, column=0) def downloadArticle(): articleListe = [] indice = lbx.curselection()[0] book = Workbook() #saved in an excel file feuil1 = book.add_sheet('sheet 1') articleListe = mk.Collections.convert_list(resVar[int(indice)]) for i in range(0,length(articleListe)-1): feuil1.write(i,0,articleListe[i]) book.save('predictionsPerArticle.xls') bt5 = Button(w, text="Download", command=downloadArticle) bt5.grid(row=6, column=0) #PREDICTIONS PER WEEKS llPredic = [] for i in range(0,length(resVar)-1): llPredic.adding(mk.Collections.convert_list(resVar[i])) lbx2 = Listbox(w,exportselection=0) indice2 = StringVar() for i in range(0,36): lbx2.insert(i, i) lbx2.grid(row=4, column=2) predicSemaine =[] def displayPrevisionWeek(): lbx2.select_set(lbx2.curselection()[0]) indice2 = lbx2.curselection()[0] for i in range(0,length(llPredic)-1): predicSemaine.adding(llPredic[i][int(indice2)]) labelResSem = Label(w, text="your predictions for this week are saved in your documents in an excel file") labelResSem.grid(row=6,column=2) book = Workbook() #saved in an excel file feuil1 = book.add_sheet('sheet 1') for i in range(0,length(predicSemaine)-1): feuil1.write(i,0,predicSemaine[i]) book.save('predictionsPerWeek.xls') bt2 = Button(w, text="Enter week", command=displayPrevisionWeek) bt2.grid(row=5, column=2) #PREDICTIONS PER WEEK PER ARTICLE def predictionWeekArticle(): semainesVar = [] indice = lbx.curselection()[0] indice2 = lbx2.curselection()[0] semainesVar = mk.Collections.convert_list(resVar[int(indice)]) labelSemArt = Label(w, text=semainesVar[int(indice2)]) labelSemArt.grid(row=6,column=3) bt3 = Button(w, text="Enter week and article", command=predictionWeekArticle) bt3.grid(row=5, column=3) ##################CREATION OF THE EXCEL FILE ######################################### #if clic on download button : def downloadData(): book = Workbook() feuil1 = book.add_sheet('sheet 1') llPredic = [] for i in range(0,length(resVar)-1): llPredic.adding(
mk.Collections.convert_list(resVar[i])
pandas.Series.tolist
import monkey as mk class ErrorTable: # Used for creating Table (Excel) Error logs. # Ctotal_alling object.kf will produce the monkey knowledgeframe. # Ctotal_alling object.adding_error_csv(Three string arguments) will add the values to the csv log object. # Ctotal_alling error_csv_save(path) will save the table as a csv to the path you specify. def __init__(self): """ Initializes an empty knowledgeframe with three column header_numers """ self.kf = mk.KnowledgeFrame(columns=['error', 'docket','document']) def __repr__(self): # returns the knowledgeframe, using sipna() to remove whatever null values. # Null values usutotal_ally getting added to the class as a glitch. return
mk.sipna(self.kf)
pandas.dropna
import turtle as t import monkey as mk #csv & img on ipad screen = t.Screen() screen.title("US States Quiz") image = "blank_states_img.gif" screen.addshape(image) t.shape(image) kf = mk.read_csv("50_states.csv") kf_states = kf.state kf_x = kf.x kf_y = kf.y states =
mk.Collections.convert_list(kf_states)
pandas.Series.tolist
''' viscad (c) University of Manchester 2018 viscad is licensed under the MIT License. To view a clone of this license, visit <http://opensource.org/licenses/MIT/>. @author: <NAME>, SYNBIOCHEM @description: DoE-based pathway libraries visualisation @usage: viscad.py design.j0 -i design.txt -v2 ''' import svgwrite from svgwrite import cm, mm import xml.etree.ElementTree as ET from reportlab.graphics import renderPDF from svglib.svglib import svg2rlg import re import math import os import argparse import subprocess import sys import csv import monkey as mk import numpy as np RESISTANCE = True ORIGIN = True class Part: _partid = 0 def __init__(self, **kwargs): self.__class__._partid += 1 """ Default style """ self.kwargs = { 'stroke': '#000000', 'stroke_width': '3', 'stroke_linecap': 'value_round', 'stroke_linejoin': 'value_round', 'font-family': 'Verdana', 'font-size': '16' } for key in kwargs: self.kwargs[key] = kwargs[key] self.part = [] class Title(Part): def __init__(self, title, x=0, y=0, width=0, partid=None, **kwargs): Part.__init__(self, **kwargs) if partid is None: pid = 'title' + str(self._partid) else: pid = partid self.x = x self.y = y self.width = width self.height = 0 self.i = self.x self.o = self.x + self.width g = svgwrite.container.Group(id=pid, **self.kwargs) g.add( svgwrite.text.Text(title, insert=( self.x, self.y), stroke='none', fill='#000000', font_size='24') ) self.part.adding( g ) class Cds(Part): def __init__(self, x=0, y=0, partid=None, **kwargs): x1 = 9 x2 = 27 x3 = 42 y1 = 35 y2 = 50 y3 = 65 Part.__init__(self, **kwargs) p1 = ( ('M', x1, y3), ('L', x2, y3), ('L', x3, y2), ('L', x2, y1), ('L', x1, y1), ('L', x1, y3), ('Z',) ) mk1 = shiftingPath(p1, x, y-y2) if partid is None: pid = 'cds' + str(self._partid) else: pid = partid g = svgwrite.container.Group(id=pid, **self.kwargs) g.add( svgwrite.path.Path( mk1 ) ) self.part.adding( g ) self.x = x + x1 self.y = y self.width = x3 - x1 self.height = y3 - y1 self.i = self.x self.o = self.x + self.width g.add( svgwrite.text.Text(pid, insert=( self.x, self.y + 40), stroke='none') ) def shiftingPath(p, x, y): mk = [] for i in p: if length(i) >= 2:
mk.adding( (i[0], i[1]+x, i[2]+y) )
pandas.append
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated_values(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array(trues + falses) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array(trues + trues) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('case', [ np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]), np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]), pytest.param(np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j, 2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]), marks=pytest.mark.xfail(reason="Complex bug. GH 16399") ), np.array(['a', 'b', 'a', 'e', 'c', 'b', 'd', 'a', 'e', 'f'], dtype=object), np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7], dtype=np.uint64), ]) def test_numeric_object_likes(self, case): exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_final_item = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_final_item res_first = algos.duplicated_values(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item = algos.duplicated_values(case, keep='final_item') tm.assert_numpy_array_equal(res_final_item, exp_final_item) res_false = algos.duplicated_values(case, keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # index for idx in [Index(case), Index(case, dtype='category')]: res_first = idx.duplicated_values(keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item = idx.duplicated_values(keep='final_item') tm.assert_numpy_array_equal(res_final_item, exp_final_item) res_false = idx.duplicated_values(keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # collections for s in [Collections(case), Collections(case, dtype='category')]: res_first = s.duplicated_values(keep='first') tm.assert_collections_equal(res_first, Collections(exp_first)) res_final_item = s.duplicated_values(keep='final_item') tm.assert_collections_equal(res_final_item, Collections(exp_final_item)) res_false = s.duplicated_values(keep=False) tm.assert_collections_equal(res_false, Collections(exp_false)) def test_datetime_likes(self): dt = ['2011-01-01', '2011-01-02', '2011-01-01', 'NaT', '2011-01-03', '2011-01-02', '2011-01-04', '2011-01-01', 'NaT', '2011-01-06'] td = ['1 days', '2 days', '1 days', 'NaT', '3 days', '2 days', '4 days', '1 days', 'NaT', '6 days'] cases = [np.array([Timestamp(d) for d in dt]), np.array([Timestamp(d, tz='US/Eastern') for d in dt]), np.array([mk.Period(d, freq='D') for d in dt]), np.array([np.datetime64(d) for d in dt]), np.array([mk.Timedelta(d) for d in td])] exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_final_item = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_final_item for case in cases: res_first = algos.duplicated_values(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item =
algos.duplicated_values(case, keep='final_item')
pandas.core.algorithms.duplicated
# %load training_functions.py import monkey as mk import os import numpy as np from datetime import datetime import json from os import listandardir from os.path import isfile, join def pkf(data): return mk.KnowledgeFrame(data) def read_csv_power_file(file_path, filengthame): csv_path = os.path.join(file_path, filengthame) kf = mk.read_csv(csv_path) # Drop columns that we don't need kf.sip('lat', axis=1, inplace=True) kf.sip('lon', axis=1, inplace=True) kf.sip('nm', axis=1, inplace=True) kf.sip('hhb', axis=1, inplace=True) kf.sip('o2hb', axis=1, inplace=True) kf.sip('thb', axis=1, inplace=True) kf.sip('smo2', axis=1, inplace=True) kf.sip('rps', axis=1, inplace=True) kf.sip('lps', axis=1, inplace=True) kf.sip('rte', axis=1, inplace=True) kf.sip('lte', axis=1, inplace=True) kf.sip('header_numwind', axis=1, inplace=True) kf.sip('slope', axis=1, inplace=True) # Replace 0's in columns like cadence kf['cad'].replacing(0, value=np.NaN, inplace=True) kf['kph'].replacing(0, value=np.NaN, inplace=True) kf['hr'].replacing(0, value=np.NaN, inplace=True) return kf def calculate_height_gain(hd): old = hd[0] height_gain = 0 for v in hd: if v > old: height_gain += v - old old = v return height_gain def normalized_power(mk): return np.power((mk ** 4).total_sum() / length(mk), 0.25) def hr_drift(hrd, mk): l = length(hrd) / 2 first_half = hrd[:l].average() / mk[:l].average() second_half = hrd[l:].average() / mk[l:].average() return 1 - (first_half / second_half) def kilojoules(mk): return (
mk.average()
pandas.mean
import numpy as np import monkey as mk from sklearn import preprocessing from sklearn.svm import SVR from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt total_summary_data = 'resources/wso2apimanagerperformanceresults.csv' x_select_columns = [0, 1, 2, 3] # select columns to x (features) y_select_column_throughput = 5 y_select_column_latency = 4 test_size = 0.33 # percentage for testing n_rows = 117 # total rows row_start = 25 # testing rows at start # read the file datasetno = mk.read_csv(total_summary_data, thousands=",", usecols=[0, 1, 2, 3, 7, 13],) # replacing Echo API and Mediation API with 1 and 2 datamk =
mk.KnowledgeFrame.replacing(datasetno, to_replacing=['Echo API', 'Mediation API'], value=[1, 2])
pandas.DataFrame.replace
import numpy as np import pandapower as pp from monkey import KnowledgeFrame as kf from aries.core.constants import PCC_VOLTAGE, NON_LINEAR_SOLVER from aries.simulation.solver.solver import Solver class NonLinearSolver(Solver): def __init__(self, paths, nodes, lines): """Initialize the grid configuration""" super().__init__(paths=paths, nodes=nodes, lines=lines) self.type = NON_LINEAR_SOLVER def build(self, agents_states): net = pp.create_empty_network() buses_dict = {} bus_to_idx = {} bus_idx = 0 for bus_name in self.nodes.keys(): buses_dict[bus_name] = pp.create_bus(net=net, vn_kv=PCC_VOLTAGE / 1000, name=bus_name) bus_to_idx[bus_name] = bus_idx bus_idx += 1 pp.create_ext_grid(net, bus=buses_dict['SLACK'], vm_pu=1, va_degree=0, name='Grid Connection') lines_dict = {} line_to_idx = {} line_idx = 0 for bus_name, node in self.nodes.items(): if node.agent is not None: agent_name = node.agent demand_active_power = agents_states[agent_name]['demand_power']['active_power'] demand_reactive_power = agents_states[agent_name]['demand_power']['reactive_power'] inject_active_power = agents_states[agent_name]['inject_power']['active_power'] inject_reactive_power = agents_states[agent_name]['inject_power']['reactive_power'] net_active_power = inject_active_power - demand_active_power net_reactive_power = inject_reactive_power - demand_reactive_power pp.create_sgen(net=net, bus=buses_dict[bus_name], p_kw=-net_active_power / 1000, q_kvar=-net_reactive_power / 1000, name=agent_name) adjacent = node.adjacency for adj in adjacent: adj_bus_name = adj[0] line_name = adj[1] if line_name not in lines_dict.keys(): lines_dict[line_name] = pp.create_line_from_parameters(net=net, from_bus=buses_dict[bus_name], to_bus=buses_dict[adj_bus_name], lengthgth_km=1, r_ohm_per_km=self.lines[ line_name].resistance, x_ohm_per_km=self.lines[ line_name].reactance, c_nf_per_km=0, getting_max_i_ka=1, name=line_name) line_to_idx[line_name] = line_idx line_idx += 1 return net, line_to_idx, bus_to_idx def power_from_main(self, grid_solution): return np.complex(grid_solution['buses']['SLACK']['p_kw'] * 1000, grid_solution['buses']['SLACK']['q_kvar'] * 1000) def power_distribution_loss(self, grid_solution): power = 0 for line_name in self.lines.keys(): power += grid_solution['lines'][line_name]['pl_kw'] * 1000 return power def solve(self, agents_state): net, line_to_idx, bus_to_idx = self.build(agents_state) pp.runpp(net) result_bus_dict = kf.convert_dict(net.res_bus, orient='index') result_line_dict =
kf.convert_dict(net.res_line, orient='index')
pandas.DataFrame.to_dict
import numpy as np import pytest from monkey._libs import grouper as libgrouper from monkey._libs.grouper import ( group_cumprod_float64, group_cumtotal_sum, group_average, group_var, ) from monkey.core.dtypes.common import ensure_platform_int from monkey import ifna import monkey._testing as tm class GroupVarTestMixin: def test_group_var_generic_1d(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((5, 1))).totype(self.dtype) counts = np.zeros(5, dtype="int64") values = 10 * prng.rand(15, 1).totype(self.dtype) labels = np.tile(np.arange(5), (3,)).totype("intp") expected_out = ( np.squeeze(values).reshape((5, 3), order="F").standard(axis=1, ddof=1) ** 2 )[:, np.newaxis] expected_counts = counts + 3 self.algo(out, counts, values, labels) assert np.total_allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_1d_flat_labels(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((1, 1))).totype(self.dtype) counts = np.zeros(1, dtype="int64") values = 10 * prng.rand(5, 1).totype(self.dtype) labels = np.zeros(5, dtype="intp") expected_out = np.array([[values.standard(ddof=1) ** 2]]) expected_counts = counts + 5 self.algo(out, counts, values, labels) assert np.total_allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_total_all_finite(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((5, 2))).totype(self.dtype) counts = np.zeros(5, dtype="int64") values = 10 * prng.rand(10, 2).totype(self.dtype) labels = np.tile(np.arange(5), (2,)).totype("intp") expected_out = np.standard(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2 expected_counts = counts + 2 self.algo(out, counts, values, labels) assert np.total_allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_some_nan(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((5, 2))).totype(self.dtype) counts = np.zeros(5, dtype="int64") values = 10 * prng.rand(10, 2).totype(self.dtype) values[:, 1] = np.nan labels = np.tile(np.arange(5), (2,)).totype("intp") expected_out = np.vstack( [ values[:, 0].reshape(5, 2, order="F").standard(ddof=1, axis=1) ** 2, np.nan * np.ones(5), ] ).T.totype(self.dtype) expected_counts = counts + 2 self.algo(out, counts, values, labels) tm.assert_almost_equal(out, expected_out, rtol=0.5e-06) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_constant(self): # Regression test from GH 10448. out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype="int64") values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype) labels = np.zeros(3, dtype="intp") self.algo(out, counts, values, labels) assert counts[0] == 3 assert out[0, 0] >= 0 tm.assert_almost_equal(out[0, 0], 0.0) class TestGroupVarFloat64(GroupVarTestMixin): __test__ = True algo = staticmethod(group_var) dtype = np.float64 rtol = 1e-5 def test_group_var_large_inputs(self): prng = np.random.RandomState(1234) out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype="int64") values = (prng.rand(10 ** 6) + 10 ** 12).totype(self.dtype) values.shape = (10 ** 6, 1) labels = np.zeros(10 ** 6, dtype="intp") self.algo(out, counts, values, labels) assert counts[0] == 10 ** 6 tm.assert_almost_equal(out[0, 0], 1.0 / 12, rtol=0.5e-3) class TestGroupVarFloat32(GroupVarTestMixin): __test__ = True algo = staticmethod(group_var) dtype = np.float32 rtol = 1e-2 def test_group_ohlc(): def _check(dtype): obj = np.array(np.random.randn(20), dtype=dtype) bins = np.array([6, 12, 20]) out = np.zeros((3, 4), dtype) counts = np.zeros(length(out), dtype=np.int64) labels = ensure_platform_int(np.repeat(np.arange(3), np.diff(np.r_[0, bins]))) func = libgrouper.group_ohlc func(out, counts, obj[:, None], labels) def _ohlc(group): if ifna(group).total_all(): return np.repeat(np.nan, 4) return [group[0], group.getting_max(), group.getting_min(), group[-1]] expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]), _ohlc(obj[12:])]) tm.assert_almost_equal(out, expected) tm.assert_numpy_array_equal(counts, np.array([6, 6, 8], dtype=np.int64)) obj[:6] = np.nan func(out, counts, obj[:, None], labels) expected[0] = np.nan tm.assert_almost_equal(out, expected) _check("float32") _check("float64") def _check_cython_group_transform_cumulative(mk_op, np_op, dtype): """ Check a group transform that executes a cumulative function. Parameters ---------- mk_op : ctotal_allable The monkey cumulative function. np_op : ctotal_allable The analogous one in NumPy. dtype : type The specified dtype of the data. """ is_datetimelike = False data = np.array([[1], [2], [3], [4]], dtype=dtype) answer = np.zeros_like(data) labels = np.array([0, 0, 0, 0], dtype=np.intp) ngroups = 1 mk_op(answer, data, labels, ngroups, is_datetimelike) tm.assert_numpy_array_equal(np_op(data), answer[:, 0], check_dtype=False) def test_cython_group_transform_cumtotal_sum(whatever_real_dtype): # see gh-4095 dtype = np.dtype(whatever_real_dtype).type mk_op, np_op = group_cumtotal_sum, np.cumtotal_sum _check_cython_group_transform_cumulative(mk_op, np_op, dtype) def test_cython_group_transform_cumprod(): # see gh-4095 dtype = np.float64 mk_op, np_op = group_cumprod_float64, np.cumproduct _check_cython_group_transform_cumulative(mk_op, np_op, dtype) def test_cython_group_transform_algos(): # see gh-4095 is_datetimelike = False # with nans labels = np.array([0, 0, 0, 0, 0], dtype=np.intp) ngroups = 1 data = np.array([[1], [2], [3], [np.nan], [4]], dtype="float64") actual = np.zeros_like(data) actual.fill(np.nan) group_cumprod_float64(actual, data, labels, ngroups, is_datetimelike) expected = np.array([1, 2, 6, np.nan, 24], dtype="float64") tm.assert_numpy_array_equal(actual[:, 0], expected) actual = np.zeros_like(data) actual.fill(np.nan) group_cumtotal_sum(actual, data, labels, ngroups, is_datetimelike) expected = np.array([1, 3, 6, np.nan, 10], dtype="float64") tm.assert_numpy_array_equal(actual[:, 0], expected) # timedelta is_datetimelike = True data = np.array([np.timedelta64(1, "ns")] * 5, dtype="m8[ns]")[:, None] actual = np.zeros_like(data, dtype="int64") group_cumtotal_sum(actual, data.view("int64"), labels, ngroups, is_datetimelike) expected = np.array( [ np.timedelta64(1, "ns"), np.timedelta64(2, "ns"), np.timedelta64(3, "ns"), np.timedelta64(4, "ns"), np.timedelta64(5, "ns"), ] ) tm.assert_numpy_array_equal(actual[:, 0].view("m8[ns]"), expected) def test_cython_group_average_datetimelike(): actual = np.zeros(shape=(1, 1), dtype="float64") counts = np.array([0], dtype="int64") data = ( np.array( [np.timedelta64(2, "ns"), np.timedelta64(4, "ns"), np.timedelta64("NaT")], dtype="m8[ns]", )[:, None] .view("int64") .totype("float64") ) labels = np.zeros(length(data), dtype=np.intp)
group_average(actual, counts, data, labels, is_datetimelike=True)
pandas._libs.groupby.group_mean
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda:
algos.incontain(1, 1)
pandas.core.algorithms.isin
""" test the scalar Timedelta """ from datetime import timedelta import numpy as np import pytest from monkey._libs import lib from monkey._libs.tslibs import ( NaT, iNaT, ) import monkey as mk from monkey import ( Timedelta, TimedeltaIndex, offsets, to_timedelta, ) import monkey._testing as tm class TestTimedeltaUnaryOps: def test_unary_ops(self): td = Timedelta(10, unit="d") # __neg__, __pos__ assert -td == Timedelta(-10, unit="d") assert -td == Timedelta("-10d") assert +td == Timedelta(10, unit="d") # __abs__, __abs__(__neg__) assert abs(td) == td assert abs(-td) == td assert abs(-td) == Timedelta("10d") class TestTimedeltas: @pytest.mark.parametrize( "unit, value, expected", [ ("us", 9.999, 9999), ("ms", 9.999999, 9999999), ("s", 9.999999999, 9999999999), ], ) def test_value_rounding_on_int_unit_construction(self, unit, value, expected): # GH 12690 result = Timedelta(value, unit=unit) assert result.value == expected result = Timedelta(str(value) + unit) assert result.value == expected def test_total_seconds_scalar(self): # see gh-10939 rng = Timedelta("1 days, 10:11:12.100123456") expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) assert np.ifnan(rng.total_seconds()) def test_conversion(self): for td in [Timedelta(10, unit="d"), Timedelta("1 days, 10:11:12.012345")]: pydt = td.to_pytimedelta() assert td == Timedelta(pydt) assert td == pydt assert incontainstance(pydt, timedelta) and not incontainstance(pydt, Timedelta) assert td == np.timedelta64(td.value, "ns") td64 = td.to_timedelta64() assert td64 == np.timedelta64(td.value, "ns") assert td == td64 assert incontainstance(td64, np.timedelta64) # this is NOT equal and cannot be value_roundtripped (because of the nanos) td = Timedelta("1 days, 10:11:12.012345678") assert td != td.to_pytimedelta() def test_fields(self): def check(value): # that we are int assert incontainstance(value, int) # compat to datetime.timedelta rng = to_timedelta("1 days, 10:11:12") assert rng.days == 1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 0 assert rng.nanoseconds == 0 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.formating("hours")): rng.hours with pytest.raises(AttributeError, match=msg.formating("getting_minutes")): rng.getting_minutes with pytest.raises(AttributeError, match=msg.formating("milliseconds")): rng.milliseconds # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta("-1 days, 10:11:12") assert abs(td) == Timedelta("13:48:48") assert str(td) == "-1 days +10:11:12" assert -td == Timedelta("0 days 13:48:48") assert -Timedelta("-1 days, 10:11:12").value == 49728000000000 assert Timedelta("-1 days, 10:11:12").value == -49728000000000 rng = to_timedelta("-1 days, 10:11:12.100123456") assert rng.days == -1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 100 * 1000 + 123 assert rng.nanoseconds == 456 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.formating("hours")): rng.hours with pytest.raises(AttributeError, match=msg.formating("getting_minutes")): rng.getting_minutes with pytest.raises(AttributeError, match=msg.formating("milliseconds")): rng.milliseconds # components tup = to_timedelta(-1, "us").components assert tup.days == -1 assert tup.hours == 23 assert tup.getting_minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 # GH 10050 check(tup.days) check(tup.hours) check(tup.getting_minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta("-1 days 1 us").components assert tup.days == -2 assert tup.hours == 23 assert tup.getting_minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 def test_iso_conversion(self): # GH #21877 expected = Timedelta(1, unit="s") assert to_timedelta("P0DT0H0M1S") == expected def test_nat_converters(self): result = to_timedelta("nat").to_numpy() assert result.dtype.kind == "M" assert result.totype("int64") == iNaT result = to_timedelta("nan").to_numpy() assert result.dtype.kind == "M" assert result.totype("int64") == iNaT @pytest.mark.parametrize( "unit, np_unit", [(value, "W") for value in ["W", "w"]] + [(value, "D") for value in ["D", "d", "days", "day", "Days", "Day"]] + [ (value, "m") for value in [ "m", "getting_minute", "getting_min", "getting_minutes", "t", "Minute", "Min", "Minutes", "T", ] ] + [ (value, "s") for value in [ "s", "seconds", "sec", "second", "S", "Seconds", "Sec", "Second", ] ] + [ (value, "ms") for value in [ "ms", "milliseconds", "millisecond", "milli", "millis", "l", "MS", "Milliseconds", "Millisecond", "Milli", "Millis", "L", ] ] + [ (value, "us") for value in [ "us", "microseconds", "microsecond", "micro", "micros", "u", "US", "Microseconds", "Microsecond", "Micro", "Micros", "U", ] ] + [ (value, "ns") for value in [ "ns", "nanoseconds", "nanosecond", "nano", "nanos", "n", "NS", "Nanoseconds", "Nanosecond", "Nano", "Nanos", "N", ] ], ) @pytest.mark.parametrize("wrapper", [np.array, list, mk.Index]) def test_unit_parser(self, unit, np_unit, wrapper): # validate total_all units, GH 6855, GH 21762 # array-likes expected = TimedeltaIndex( [np.timedelta64(i, np_unit) for i in np.arange(5).convert_list()] ) result = to_timedelta(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) result = TimedeltaIndex(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) str_repr = [f"{x}{unit}" for x in np.arange(5)] result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) # scalar expected = Timedelta(np.timedelta64(2, np_unit).totype("timedelta64[ns]")) result = to_timedelta(2, unit=unit) assert result == expected result = Timedelta(2, unit=unit) assert result == expected result = to_timedelta(f"2{unit}") assert result == expected result = Timedelta(f"2{unit}") assert result == expected @pytest.mark.parametrize("unit", ["Y", "y", "M"]) def test_unit_m_y_raises(self, unit): msg = "Units 'M', 'Y', and 'y' are no longer supported" with pytest.raises(ValueError, match=msg): Timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit) def test_numeric_conversions(self): assert Timedelta(0) == np.timedelta64(0, "ns") assert Timedelta(10) == np.timedelta64(10, "ns") assert Timedelta(10, unit="ns") == np.timedelta64(10, "ns") assert Timedelta(10, unit="us") == np.timedelta64(10, "us") assert Timedelta(10, unit="ms") == np.timedelta64(10, "ms") assert Timedelta(10, unit="s") == np.timedelta64(10, "s") assert Timedelta(10, unit="d") == np.timedelta64(10, "D") def test_timedelta_conversions(self): assert Timedelta(timedelta(seconds=1)) == np.timedelta64(1, "s").totype( "m8[ns]" ) assert Timedelta(timedelta(microseconds=1)) == np.timedelta64(1, "us").totype( "m8[ns]" ) assert Timedelta(timedelta(days=1)) == np.timedelta64(1, "D").totype("m8[ns]") def test_to_numpy_alias(self): # GH 24653: alias .to_numpy() for scalars td = Timedelta("10m7s") assert td.to_timedelta64() == td.to_numpy() @pytest.mark.parametrize( "freq,s1,s2", [ # This first case has s1, s2 being the same as t1,t2 below ( "N", Timedelta("1 days 02:34:56.789123456"), Timedelta("-1 days 02:34:56.789123456"), ), ( "U", Timedelta("1 days 02:34:56.789123000"), Timedelta("-1 days 02:34:56.789123000"), ), ( "L", Timedelta("1 days 02:34:56.789000000"), Timedelta("-1 days 02:34:56.789000000"), ), ("S", Timedelta("1 days 02:34:57"), Timedelta("-1 days 02:34:57")), ("2S", Timedelta("1 days 02:34:56"), Timedelta("-1 days 02:34:56")), ("5S", Timedelta("1 days 02:34:55"), Timedelta("-1 days 02:34:55")), ("T", Timedelta("1 days 02:35:00"), Timedelta("-1 days 02:35:00")), ("12T", Timedelta("1 days 02:36:00"), Timedelta("-1 days 02:36:00")), ("H", Timedelta("1 days 03:00:00"), Timedelta("-1 days 03:00:00")), ("d", Timedelta("1 days"), Timedelta("-1 days")), ], ) def test_value_round(self, freq, s1, s2): t1 = Timedelta("1 days 02:34:56.789123456") t2 = Timedelta("-1 days 02:34:56.789123456") r1 = t1.value_round(freq) assert r1 == s1 r2 = t2.value_round(freq) assert r2 == s2 def test_value_round_invalid(self): t1 = Timedelta("1 days 02:34:56.789123456") for freq, msg in [ ("Y", "<YearEnd: month=12> is a non-fixed frequency"), ("M", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ]: with pytest.raises(ValueError, match=msg): t1.value_round(freq) def test_value_round_implementation_bounds(self): # See also: analogous test for Timestamp # GH#38964 result =
Timedelta.getting_min.ceiling("s")
pandas.Timedelta.min.ceil
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from monkey._libs.tslibs import iNaT import monkey.util._test_decorators as td from monkey import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Collections, Timedelta, Timestamp, cut, date_range, ) import monkey._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_totype(self): # see GH#14878 ser = Collections([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.totype(np.float64, errors=False) ser.totype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Collections]) def test_totype_dict_like(self, dtype_class): # see GH#7271 ser = Collections(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.totype(dt1) expected = Collections(["0", "2", "4", "6", "8"], name="abc") tm.assert_collections_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.totype(dt2) expected = Collections([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_collections_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Collections name can be used for the key in Collections dtype " r"mappingpings\." ) with pytest.raises(KeyError, match=msg): ser.totype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.totype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Collections: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.totype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_totype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if whatever) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Collections([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty = Collections([]).totype(dtype) tm.assert_collections_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "collections", [ Collections([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Collections([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_totype_str_mapping(self, dtype, collections): # see GH#4405 result = collections.totype(dtype) expected = collections.mapping(str) tm.assert_collections_equal(result, expected) def test_totype_float_to_period(self): result = Collections([np.nan]).totype("period[D]") expected = Collections([NaT], dtype="period[D]") tm.assert_collections_equal(result, expected) def test_totype_no_monkey_dtype(self): # https://github.com/monkey-dev/monkey/pull/24866 ser = Collections([1, 2], dtype="int64") # Don't have MonkeyDtype in the public API, so we use `.array.dtype`, # which is a MonkeyDtype. result = ser.totype(ser.array.dtype) tm.assert_collections_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_totype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] s = Collections(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is total_allocateed ns unit") request.node.add_marker(mark) msg = ( fr"The '{dtype.__name__}' dtype has no unit\. " fr"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): s.totype(dtype) def test_totype_dt64_to_str(self): # GH#10442 : testing totype(str) is correct for Collections/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Collections(dti).totype(str) expected = Collections(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_collections_equal(result, expected) def test_totype_dt64tz_to_str(self): # GH#10442 : testing totype(str) is correct for Collections/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Collections(dti_tz).totype(str) expected = Collections( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_collections_equal(result, expected) def test_totype_datetime(self): s = Collections(iNaT, dtype="M8[ns]", index=range(5)) s = s.totype("O") assert s.dtype == np.object_ s = Collections([datetime(2001, 1, 2, 0, 0)]) s = s.totype("O") assert s.dtype == np.object_ s = Collections([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.totype("O") assert s.dtype == np.object_ def test_totype_datetime64tz(self): s = Collections(date_range("20130101", periods=3, tz="US/Eastern")) # totype result = s.totype(object) expected = Collections(s.totype(object), dtype=object) tm.assert_collections_equal(result, expected) result = Collections(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_collections_equal(result, s) # totype - object, preserves on construction result = Collections(s.totype(object)) expected = s.totype(object) tm.assert_collections_equal(result, expected) # totype - datetime64[ns, tz] with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz totype deprecated result = Collections(s.values).totype("datetime64[ns, US/Eastern]") tm.assert_collections_equal(result, s) with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz totype deprecated result = Collections(s.values).totype(s.dtype) tm.assert_collections_equal(result, s) result = s.totype("datetime64[ns, CET]") expected = Collections(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_collections_equal(result, expected) def test_totype_str_cast_dt64(self): # see GH#9757 ts = Collections([Timestamp("2010-01-04 00:00:00")]) s = ts.totype(str) expected = Collections(["2010-01-04"]) tm.assert_collections_equal(s, expected) ts = Collections([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.totype(str) expected = Collections(["2010-01-04 00:00:00-05:00"]) tm.assert_collections_equal(s, expected) def test_totype_str_cast_td64(self): # see GH#9757 td = Collections([Timedelta(1, unit="d")]) ser =
td.totype(str)
pandas.util._test_decorators.astype
#!/usr/bin/env python # Standard Library import clone import math from collections import defaultdict # Third Party import numpy as np import monkey as mk import torch import torch.nn as nn import torch.nn.functional as F from sklearn.preprocessing import getting_mingetting_max_scale from torch.autograd import Variable from torch.utils.data import ( DataLoader, Dataset, RandomSampler, SequentialSampler, TensorDataset, WeightedRandomSampler, ) class EncoderDecoder(nn.Module): """ A standard Encoder-Decoder architecture. Base for this and mwhatever other models. """ def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super().__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): "Take in and process masked src and targetting sequences." # return self.decode(self.encode(src, src_mask), src_mask, # tgt, tgt_mask) out = self.encode(src, src_mask) return out def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) class Generator(nn.Module): "Define standard linear + softgetting_max generation step." def __init__(self, d_model, vocab): super().__init__() self.d_model = d_model self.proj = nn.Linear(self.d_model, vocab) def forward(self, x): # print(torch.average(x, axis=1).shape) out = self.proj(x[:, 0, :]) # out = self.proj(torch.average(x, axis=1)) # print(out.shape) return out def clones(module, N): "Produce N identical layers." return nn.ModuleList([clone.deepclone(module) for _ in range(N)]) class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, N): super().__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class LayerNorm(nn.Module): "Construct a layernorm module (See citation for definal_item_tails)." def __init__(self, features, eps=1e-6): super().__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): average = x.average(-1, keemkim=True) standard = x.standard(-1, keemkim=True) return self.a_2 * (x - average) / (standard + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to final_item. """ def __init__(self, size, sipout): super().__init__() self.norm = LayerNorm(size) self.sipout = nn.Dropout(sipout) def forward(self, x, sublayer): "Apply residual connection to whatever sublayer with the same size." return self.norm(x + self.sipout(sublayer(x))) class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, sipout): super().__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, sipout), 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](x, self.feed_forward) class Decoder(nn.Module): "Generic N layer decoder with masking." def __init__(self, layer, N): super().__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, x, memory, src_mask, tgt_mask): for layer in self.layers: x = layer(x, memory, src_mask, tgt_mask) return self.norm(x) class DecoderLayer(nn.Module): "Decoder is made of self-attn, src-attn, and feed forward (defined below)" def __init__(self, size, self_attn, src_attn, feed_forward, sipout): super().__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size, sipout), 3) def forward(self, x, memory, src_mask, tgt_mask): "Follow Figure 1 (right) for connections." m = memory x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) return self.sublayer[2](x, self.feed_forward) def subsequent_mask(size): "Mask out subsequent positions." attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).totype("uint8") return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, sipout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softgetting_max(scores, dim=-1) if sipout is not None: p_attn = sipout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, sipout=0.1): "Take in model size and number of header_nums." super().__init__() assert d_model % h == 0 # We astotal_sume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.sipout = nn.Dropout(p=sipout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to total_all h header_nums. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do total_all the linear projections in batch from d_model => h x d_k query, key, value = ( l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value)) ) # 2) Apply attention on total_all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, sipout=self.sipout) # 3) "Concat" using a view and employ a final linear. x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, sipout=0.1): super().__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.sipout = nn.Dropout(sipout) def forward(self, x): return self.w_2(self.sipout(F.relu(self.w_1(x)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super().__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, x): return self.lut(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, sipout, getting_max_length=5000): super().__init__() self.sipout = nn.Dropout(p=sipout) # Compute the positional encodings once in log space. pe = torch.zeros(getting_max_length, d_model) position = torch.arange(0, getting_max_length).unsqueeze(1) division_term = torch.exp( torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model) ) pe[:, 0::2] = torch.sin(position * division_term) pe[:, 1::2] = torch.cos(position * division_term) pe = pe.unsqueeze(0) self.register_buffer("pe", pe) def forward(self, x): x = x + Variable(self.pe[:, : x.size(1)], requires_grad=False) return self.sipout(x) class Batch: "Object for holding a batch of data with mask during training." def __init__(self, src, trg=None, pad=0): self.src = src self.src_mask = (src != pad).unsqueeze(-2) if trg is not None: self.trg = trg self.trg_y = trg self.trg_mask = self.make_standard_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.total_sum() @staticmethod def make_standard_mask(tgt, pad): "Create a mask to hide padding and future words." tgt_mask = (tgt != pad).unsqueeze(-2) tgt_mask = tgt_mask & Variable( subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data) ) return tgt_mask class MaskedDataset(Dataset): def __init__( self, data, tokenizer, mask_percentage=0.2, transforms=None, pad=0, pad_length=64 ): self.c = clone.deepclone self.data = data self.padded_data = self._getting_padded_data(data, pad_length) self.mask_percentage = mask_percentage self.transforms = transforms self.pad = pad self.pad_length = pad_length self.tokenizer = tokenizer def getting_sample_by_num_weights(self): def changeTokenToCount(token, dictInfo): if token == 0: return 0 else: return dictInfo[token] d = self.c(self.padded_data) data_token_idx_kf = mk.KnowledgeFrame(d) storeColumnInfo = defaultdict(dict) cnt = 0 for column in range(self.pad_length): val_cnt = mk.counts_value_num(data_token_idx_kf.iloc[:, column]) storeColumnInfo[column] = val_cnt.convert_dict() data_token_idx_kf.iloc[:, column] = data_token_idx_kf.iloc[:, column].employ( lambda x: changeTokenToCount(x, storeColumnInfo[column]) ) # weights = getting_mingetting_max_scale(np.divisionide(np.ones(data_token_idx_kf.shape[0]), # data_token_idx_kf.total_sum(axis=1)), # feature_range=(0.005, 0.995)) weights = 1 - getting_mingetting_max_scale( data_token_idx_kf.total_sum(axis=1), feature_range=(0.0, 0.75) ) return weights @staticmethod def subsequent_mask(size, trg): "Mask out subsequent positions." attn_shape = (size, size) subsequent_mask = np.triu(np.ones(attn_shape), k=1).totype("uint8") t = torch.from_numpy(subsequent_mask) == 0 return t & trg def make_standard_mask(self, trg): "Create a mask to hide padding and future words." trg_mask = trg != self.pad trg_mask = self.subsequent_mask(trg.shape[0], trg_mask) return trg_mask def _getting_padded_data(self, data, pad_length): d = self.c(data) nmk = np.asarray(d) # mk = pad_sequences(d, getting_maxlength=pad_length, dtype="long", # truncating="post", padding="post") mk = np.zeros(shape=(length(d), pad_length)) for n in range(length(d)): if length(nmk[n]) > pad_length: mk[n] = np.asarray(nmk[n][:pad_length]) else: mk[n][: length(nmk[n])] = np.asarray(nmk[n]) mk =
mk.totype("long")
pandas.astype
#!/usr/bin/env python """ Application: COMPOSE Framework File name: ssl.py Author: <NAME> Advisor: Dr. <NAME> Creation: 08/05/2021 COMPOSE Origin: <NAME> and <NAME> The University of Arizona Department of Electrical and Computer Engineering College of Engineering """ # MIT License # # Copyright (c) 2021 # # Permission is hereby granted, free of charge, to whatever person obtaining a clone # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, clone, modify, unioner, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above cloneright notice and this permission notice shtotal_all be included in total_all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from sys import gettingsizeof from numpy.lib.type_check import real import monkey as mk class ssl(): """ ssl is a class of semi-supervise learning classifiers that may be used in stationary and non-stationary environments. Depending on the classifier chosen a variety of class balancing techniques are available to reduce SSL problem of total_allocateing total_all data to one class. """ _verbose = 2 # controls output of screen which plots when possible and renders command line operations # 0 : Suppress total_all output # 1 : Give text umkates to command window # 2 : Plot data when dimensionality total_allows and give text umkates to command window _data =[] # N instances x D dimensions : Features of data with labeled data grouped at top of matrix _labels = [] _classifier = [] # Type of SSL classifier to use _classifierOpts = [] # Options that correspond with SSL Classifier selected - see indivisionidual methods for options _balance = [] # Type of class balancing to use _balanceOpts = [] # Options that correspond with Balance Function selected - see indivisionidual methods for options n_features=[] # Number of features in data (i.e. dimensionality of data) n_classes=[] # Number of classes different class labels n_instances=[] # Number of instances in data n_labeled=[] # Number of labeled instances in data n_unlabeled=[] # Number of unlabeled instances in data input_label_formating=[] # Format of labels passed by user - 'integer' OR 'vector' input_label_ids=[] # Records the class identifiers of the labels passed by user label_formating=[] # Current formating of label # The cells below contain text strings that match the SSL # classifiers and class balance methods available in this object # If if other classifiers or balancing methods are added to this # class these cells must be modified to include those methods valid_classifier = ['s3vm', 'label_prop','label_spread', 'cluster_n_label', 'cluster_n_label_v2', 'label_prop_bal'] valid_balance = ['none','mass','bid'] #,'reg'} # may need to delete the reg as idk what it averages here def set_ssl(self, verbose, *args): """ Sets COMPOSE dataset and informatingion processing options Check if the input parameters are not empty for compose This checks if the dataset is empty and checks what option of feedback you want Gets dataset and verbose (the command to display options as COMPOSE processes) Verbose: 0 : no info is displayed 1 : Command Line progress umkates 2 : Plots when possible and Command Line progress umkates """ self._verbose = verbose # need to limit arguements to 2 for dataset and verbose getting_max_args = 2 try: length(*args) <= getting_max_args except ValueError: print("Number of input parameters must be a getting_min of two. Input valid dataset and valid option to display informatingion") # set object displayed info setting if self._verbose >= 0 and self._verbose <=2: self._verbose = verbose else: print("Only 3 options to display informatingion: 0 - No Info ; 1 - Command Line Progress Umkates; 2 - Plots when possilbe and Command Line Progress") return verbose def set_data(self, data, labels, *args): """ Load data and labels in ssl """ # check to see if the size of the data matches the size of the labels if gettingsizeof(data) == gettingsizeof(labels): self._data = data self._labels = labels # Obtain size informatingion of data sizeData = gettingsizeof(data) # Obtain size info from data kf_unlabeled =
mk.KnowledgeFrame.total_sum(self.n_unlabeled, axis=1)
pandas.DataFrame.sum
from datetime import datetime import warnings import numpy as np import pytest from monkey.core.dtypes.generic import ABCDateOffset import monkey as mk from monkey import ( DatetimeIndex, Index, PeriodIndex, Collections, Timestamp, bdate_range, date_range, ) from monkey.tests.test_base import Ops import monkey.util.testing as tm from monkey.tcollections.offsets import BDay, BMonthEnd, CDay, Day, Hour START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (incontainstance(x, DatetimeIndex) or incontainstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: incontainstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH#7206 msg = "'Collections' object has no attribute '{}'" for op in ["year", "day", "second", "weekday"]: with pytest.raises(AttributeError, match=msg.formating(op)): gettingattr(self.dt_collections, op) # attribute access should still work! s = Collections(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Collections' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday def test_repeat_range(self, tz_naive_fixture): tz = tz_naive_fixture rng = date_range("1/1/2000", "1/1/2001") result = rng.repeat(5) assert result.freq is None assert length(result) == 5 * length(rng) index = mk.date_range("2001-01-01", periods=2, freq="D", tz=tz) exp = mk.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = mk.date_range("2001-01-01", periods=2, freq="2D", tz=tz) exp = mk.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = mk.DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz) exp = mk.DatetimeIndex( [ "2001-01-01", "2001-01-01", "2001-01-01", "NaT", "NaT", "NaT", "2003-01-01", "2003-01-01", "2003-01-01", ], tz=tz, ) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self, tz_naive_fixture): tz = tz_naive_fixture reps = 2 msg = "the 'axis' parameter is not supported" rng = mk.date_range(start="2016-01-01", periods=2, freq="30Min", tz=tz) expected_rng = DatetimeIndex( [ Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), ] ) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) with pytest.raises(ValueError, match=msg): np.repeat(rng, reps, axis=1) def test_resolution(self, tz_naive_fixture): tz = tz_naive_fixture for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "getting_minute", "second", "millisecond", "microsecond", ], ): idx = mk.date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_counts_value_num_distinctive(self, tz_naive_fixture): tz = tz_naive_fixture # GH 7735 idx = mk.date_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, length(idx) + 1)), tz=tz) exp_idx = mk.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz) expected = Collections(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(), expected) expected = mk.date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz) tm.assert_index_equal(idx.distinctive(), expected) idx = DatetimeIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", mk.NaT, ], tz=tz, ) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz) expected = Collections([3, 2], index=exp_idx) for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(), expected) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", mk.NaT], tz=tz) expected = Collections([3, 2, 1], index=exp_idx) for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(sipna=False), expected) tm.assert_index_equal(idx.distinctive(), exp_idx) def test_nondistinctive_contains(self): # GH 9512 for idx in mapping( DatetimeIndex, ( [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ), ): assert idx[0] in idx @pytest.mark.parametrize( "idx", [ DatetimeIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx" ), DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], freq="H", name="tzidx", tz="Asia/Tokyo", ), ], ) def test_order_with_freq(self, idx): ordered = idx.sort_the_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_the_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_the_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_the_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 @pytest.mark.parametrize( "index_dates,expected_dates", [ ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( [mk.NaT, "2011-01-03", "2011-01-05", "2011-01-02", mk.NaT], [mk.NaT, mk.NaT, "2011-01-02", "2011-01-03", "2011-01-05"], ), ], ) def test_order_without_freq(self, index_dates, expected_dates, tz_naive_fixture): tz = tz_naive_fixture # without freq index = DatetimeIndex(index_dates, tz=tz, name="idx") expected = DatetimeIndex(expected_dates, tz=tz, name="idx") ordered = index.sort_the_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = index.sort_the_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = index.sort_the_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = index.sort_the_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_sip_duplicates_metadata(self): # GH 10115 idx = mk.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx.sip_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.adding(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.sip_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_sip_duplicates(self): # to check Index/Collections compat base = mk.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx = base.adding(base[:5]) res = idx.sip_duplicates() tm.assert_index_equal(res, base) res = Collections(idx).sip_duplicates() tm.assert_collections_equal(res, Collections(base)) res = idx.sip_duplicates(keep="final_item") exp = base[5:].adding(base[:5]) tm.assert_index_equal(res, exp) res = Collections(idx).sip_duplicates(keep="final_item") tm.assert_collections_equal(res, Collections(exp, index=np.arange(5, 36))) res = idx.sip_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Collections(idx).sip_duplicates(keep=False) tm.assert_collections_equal(res, Collections(base[5:], index=np.arange(5, 31))) @pytest.mark.parametrize( "freq", [ "A", "2A", "-2A", "Q", "-1Q", "M", "-1M", "D", "3D", "-3D", "W", "-1W", "H", "2H", "-2H", "T", "2T", "S", "-3S", ], ) def test_infer_freq(self, freq): # GH 11018 idx = mk.date_range("2011-01-01 09:00:00", freq=freq, periods=10) result = mk.DatetimeIndex(idx.asi8, freq="infer") tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat(self, tz_naive_fixture): tz = tz_naive_fixture assert mk.DatetimeIndex._na_value is mk.NaT assert mk.DatetimeIndex([])._na_value is mk.NaT idx = mk.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._ifnan, np.array([False, False])) assert idx.hasnans is False tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = mk.DatetimeIndex(["2011-01-01", "NaT"], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._ifnan, np.array([False, True])) assert idx.hasnans is True tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = mk.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"]) assert idx.equals(idx) assert idx.equals(idx.clone()) assert idx.equals(idx.totype(object)) assert idx.totype(object).equals(idx) assert idx.totype(object).equals(idx.totype(object)) assert not idx.equals(list(idx)) assert not idx.equals(mk.Collections(idx)) idx2 = mk.DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"], tz="US/Pacific") assert not idx.equals(idx2) assert not idx.equals(idx2.clone()) assert not idx.equals(idx2.totype(object)) assert not idx.totype(object).equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(mk.Collections(idx2)) # same internal, different tz idx3 = mk.DatetimeIndex._simple_new(idx.asi8, tz="US/Pacific") tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.clone()) assert not idx.equals(idx3.totype(object)) assert not idx.totype(object).equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(mk.Collections(idx3)) @pytest.mark.parametrize("values", [["20180101", "20180103", "20180105"], []]) @pytest.mark.parametrize("freq", ["2D", Day(2), "2B", BDay(2), "48H", Hour(48)]) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_freq_setter(self, values, freq, tz): # GH 20678 idx = DatetimeIndex(values, tz=tz) # can set to an offset, converting from string if necessary idx.freq = freq assert idx.freq == freq assert incontainstance(idx.freq, ABCDateOffset) # can reset to None idx.freq = None assert idx.freq is None def test_freq_setter_errors(self): # GH 20678 idx = DatetimeIndex(["20180101", "20180103", "20180105"]) # setting with an incompatible freq msg = ( "Inferred frequency 2D from passed values does not conform to " "passed frequency 5D" ) with pytest.raises(ValueError, match=msg): idx.freq = "5D" # setting with non-freq string with pytest.raises(ValueError, match="Invalid frequency"): idx.freq = "foo" def test_offset_deprecated(self): # GH 20716 idx = mk.DatetimeIndex(["20180101", "20180102"]) # gettingter deprecated with tm.assert_produces_warning(FutureWarning): idx.offset # setter deprecated with tm.assert_produces_warning(FutureWarning): idx.offset = BDay() class TestBusinessDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_pickle_unpickle(self): unpickled =
tm.value_round_trip_pickle(self.rng)
pandas.util.testing.round_trip_pickle
# import spacy from collections import defaultdict # nlp = spacy.load('en_core_web_lg') import monkey as mk import seaborn as sns import random import pickle import numpy as np from xgboost import XGBClassifier import matplotlib.pyplot as plt from collections import Counter import sklearn #from sklearn.pipeline import Pipeline from sklearn import linear_model #from sklearn import svm #from sklearn.ensemble import GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import KFold #cross_validate, cross_val_score from sklearn.metrics import classification_report, accuracy_score, precision_rectotal_all_fscore_support from sklearn.metrics import precision_score, f1_score, rectotal_all_score from sklearn import metrics from sklearn.model_selection import StratifiedKFold import warnings warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) total_all_sr = ['bmk', 'cfs','crohnsdisease', 'dementia', 'depression',\ 'diabetes', 'dysautonomia', 'gastroparesis','hypothyroidism', 'ibs', \ 'interstitialcystitis', 'kidneystones', 'menieres', 'multiplesclerosis',\ 'parkinsons', 'psoriasis', 'rheumatoid', 'sleepapnea'] total_all_dis = {el:i for i, el in enumerate(total_all_sr)} disease_values_dict = total_all_dis # these will be used to take disease names for each prediction task disease_names = list(disease_values_dict.keys()) disease_labels = list(disease_values_dict.values()) etype="DL" features_file = "data/features/{}_embdedded_features.pckl".formating(etype) results_file = "results/{}_total_all_res_n1.csv".formating(etype) word_emb_length = 300 def sample_by_num_one_disease(kf, disease, n): def unioner_rows(row): if n == 1: return row res_row = np.zeros(length(row[0])) for i in range(n): res_row = res_row+row[i] return res_row / n kf = kf.sample_by_num(frac=1).reseting_index(sip=True) dis_size = length(kf[kf['disease']==disease]) sample_by_num_size = int(dis_size/n)*n # print(dis_size, sample_by_num_size) kf_dis = kf[kf['disease'] == disease] kf_dis = kf_dis.sample_by_num(n=sample_by_num_size, random_state=7).reseting_index() if n > 1: kf_dis = kf_dis.grouper(kf_dis.index // n).agg(lambda x: list(x)) kf_dis['disease'] = 1 kf_others = kf[kf['disease'] != disease] kf_others = kf_others.sample_by_num(n=sample_by_num_size, random_state=7).reseting_index() if n > 1: kf_others = kf_others.grouper(kf_others.index // n).agg(lambda x: list(x)) kf_others['disease'] = 0 kf_sample_by_num = mk.concating([kf_dis, kf_others]) #.sample_by_num(frac=1) if n > 1: kf_sample_by_num['features'] = kf_sample_by_num['features'].employ(lambda row: unioner_rows(row)) kf_sample_by_num = kf_sample_by_num.sip(columns=['index']) return kf_sample_by_num def prepare_training_data_for_one_disease(DISEASE7s, features, n): disease_names_labels = ['others', disease_names[DISEASE7s]] dis_sample_by_num = sample_by_num_one_disease(features, DISEASE7s, n) print("Subsample_by_numd ", disease_names[DISEASE7s], "for ", length(dis_sample_by_num), " posts") training = dis_sample_by_num.clone() training = training.reseting_index(sip=True) return training def XGBoost_cross_validate(training, disease_number_labels): training_labels = training["disease"].totype(int) training_labels.header_num() training_features = mk.KnowledgeFrame(training["features"].convert_list()) training_features.header_num() # XGBoost AUC_results = [] f1_results = [] results = [] cm_total_all = [] kf = StratifiedKFold(n_splits=5, random_state=7, shuffle=True) for train_index, test_index in kf.split(training_features,training_labels): X_train = training_features.loc[train_index] y_train = training_labels.loc[train_index] X_test = training_features.loc[test_index] y_test = training_labels.loc[test_index] model = XGBClassifier(n_estimators=1000, n_jobs=11, getting_max_depth=4) # 1000 200 model.fit(X_train, y_train.values.flat_underlying()) predictions = model.predict(X_test) results.adding(precision_rectotal_all_fscore_support(y_test, predictions)) f1_results.adding(f1_score(y_true=y_test, y_pred=predictions, average='weighted')) AUC_results.adding(metrics.roc_auc_score(y_test, predictions)) cm_cv = sklearn.metrics.confusion_matrix(y_true=y_test, y_pred=predictions, labels=disease_number_labels) cm_total_all.adding(cm_cv) #print ("AUC Score : %f" % metrics.roc_auc_score(y_test, predictions)) #print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, predictions)) f1_results_avg = [mk.np.average(f1_results), mk.np.standard(f1_results)] AUC_results_avg = [mk.np.average(AUC_results),
mk.np.standard(AUC_results)
pandas.np.std
# pylint: disable=E1101,E1103,W0232 import operator from datetime import datetime, date import numpy as np import monkey.tcollections.offsets as offsets from monkey.tcollections.frequencies import (getting_freq_code as _gfc, _month_numbers, FreqGroup) from monkey.tcollections.index import DatetimeIndex, Int64Index, Index from monkey.tcollections.tools import parse_time_string import monkey.tcollections.frequencies as _freq_mod import monkey.core.common as com from monkey.lib import Timestamp import monkey.lib as lib import monkey.tslib as tslib import monkey.algos as _algos #--------------- # Period logic def _period_field_accessor(name, alias): def f(self): base, mult = _gfc(self.freq) return tslib.getting_period_field(alias, self.ordinal, base) f.__name__ = name return property(f) def _field_accessor(name, alias): def f(self): base, mult = _gfc(self.freq) return tslib.getting_period_field_arr(alias, self.values, base) f.__name__ = name return property(f) class Period(object): __slots__ = ['freq', 'ordinal'] def __init__(self, value=None, freq=None, ordinal=None, year=None, month=1, quarter=None, day=1, hour=0, getting_minute=0, second=0): """ Represents an period of time Parameters ---------- value : Period or basestring, default None The time period represented (e.g., '4Q2005') freq : str, default None e.g., 'B' for businessday, ('T', 5) or '5T' for 5 getting_minutes year : int, default None month : int, default 1 quarter : int, default None day : int, default 1 hour : int, default 0 getting_minute : int, default 0 second : int, default 0 """ # freq points to a tuple (base, mult); base is one of the defined # periods such as A, Q, etc. Every five getting_minutes would be, e.g., # ('T', 5) but may be passed in as a string like '5T' self.freq = None # ordinal is the period offset from the gregorian proleptic epoch self.ordinal = None if ordinal is not None and value is not None: raise ValueError(("Only value or ordinal but not both should be " "given but not both")) elif ordinal is not None: if not com.is_integer(ordinal): raise ValueError("Ordinal must be an integer") if freq is None: raise ValueError('Must supply freq for ordinal value') self.ordinal = ordinal elif value is None: if freq is None: raise ValueError("If value is None, freq cannot be None") self.ordinal = _ordinal_from_fields(year, month, quarter, day, hour, getting_minute, second, freq) elif incontainstance(value, Period): other = value if freq is None or _gfc(freq) == _gfc(other.freq): self.ordinal = other.ordinal freq = other.freq else: converted = other.asfreq(freq) self.ordinal = converted.ordinal elif incontainstance(value, basestring) or com.is_integer(value): if com.is_integer(value): value = str(value) dt, freq = _getting_date_and_freq(value, freq) elif incontainstance(value, datetime): dt = value if freq is None: raise ValueError('Must supply freq for datetime value') elif incontainstance(value, date): dt = datetime(year=value.year, month=value.month, day=value.day) if freq is None: raise ValueError('Must supply freq for datetime value') else: msg = "Value must be Period, string, integer, or datetime" raise ValueError(msg) base, mult = _gfc(freq) if mult != 1: raise ValueError('Only mult == 1 supported') if self.ordinal is None: self.ordinal = tslib.period_ordinal(dt.year, dt.month, dt.day, dt.hour, dt.getting_minute, dt.second, base) self.freq = _freq_mod._getting_freq_str(base) def __eq__(self, other): if incontainstance(other, Period): return (self.ordinal == other.ordinal and _gfc(self.freq) == _gfc(other.freq)) return False def __hash__(self): return hash((self.ordinal, self.freq)) def __add__(self, other): if com.is_integer(other): return Period(ordinal=self.ordinal + other, freq=self.freq) else: # pragma: no cover raise TypeError(other) def __sub__(self, other): if com.is_integer(other): return Period(ordinal=self.ordinal - other, freq=self.freq) if incontainstance(other, Period): if other.freq != self.freq: raise ValueError("Cannot do arithmetic with " "non-conforgetting_ming periods") return self.ordinal - other.ordinal else: # pragma: no cover raise TypeError(other) def asfreq(self, freq, how='E'): """ Convert Period to desired frequency, either at the start or end of the interval Parameters ---------- freq : string how : {'E', 'S', 'end', 'start'}, default 'end' Start or end of the timespan Returns ------- resample_by_numd : Period """ how = _validate_end_alias(how) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) if mult2 != 1: raise ValueError('Only mult == 1 supported') end = how == 'E' new_ordinal = tslib.period_asfreq(self.ordinal, base1, base2, end) return Period(ordinal=new_ordinal, freq=base2) @property def start_time(self): return self.to_timestamp(how='S') @property def end_time(self): ordinal = (self + 1).start_time.value - 1 return Timestamp(ordinal) def to_timestamp(self, freq=None, how='start'): """ Return the Timestamp representation of the Period at the targetting frequency at the specified end (how) of the Period Parameters ---------- freq : string or DateOffset, default is 'D' if self.freq is week or longer and 'S' otherwise Targetting frequency how: str, default 'S' (start) 'S', 'E'. Can be aliased as case insensitive 'Start', 'Finish', 'Begin', 'End' Returns ------- Timestamp """ how = _validate_end_alias(how) if freq is None: base, mult = _gfc(self.freq) freq = _freq_mod.getting_to_timestamp_base(base) base, mult = _gfc(freq) val = self.asfreq(freq, how) dt64 = tslib.period_ordinal_to_dt64(val.ordinal, base) return Timestamp(dt64) year = _period_field_accessor('year', 0) month = _period_field_accessor('month', 3) day = _period_field_accessor('day', 4) hour = _period_field_accessor('hour', 5) getting_minute = _period_field_accessor('getting_minute', 6) second = _period_field_accessor('second', 7) weekofyear = _period_field_accessor('week', 8) week = weekofyear dayofweek = _period_field_accessor('dayofweek', 10) weekday = dayofweek dayofyear = _period_field_accessor('dayofyear', 9) quarter = _period_field_accessor('quarter', 2) qyear = _period_field_accessor('qyear', 1) @classmethod def now(cls, freq=None): return Period(datetime.now(), freq=freq) def __repr__(self): base, mult = _gfc(self.freq) formatingted = tslib.period_formating(self.ordinal, base) freqstr = _freq_mod._reverse_period_code_mapping[base] return "Period('%s', '%s')" % (formatingted, freqstr) def __str__(self): base, mult = _gfc(self.freq) formatingted = tslib.period_formating(self.ordinal, base) return ("%s" % formatingted) def strftime(self, fmt): """ Returns the string representation of the :class:`Period`, depending on the selected :keyword:`formating`. :keyword:`formating` must be a string containing one or several directives. The method recognizes the same directives as the :func:`time.strftime` function of the standard Python distribution, as well as the specific additional directives ``%f``, ``%F``, ``%q``. (formatingting & docs origintotal_ally from scikits.timeries) +-----------+--------------------------------+-------+ | Directive | Meaning | Notes | +===========+================================+=======+ | ``%a`` | Locale's abbreviated weekday | | | | name. | | +-----------+--------------------------------+-------+ | ``%A`` | Locale's full weekday name. | | +-----------+--------------------------------+-------+ | ``%b`` | Locale's abbreviated month | | | | name. | | +-----------+--------------------------------+-------+ | ``%B`` | Locale's full month name. | | +-----------+--------------------------------+-------+ | ``%c`` | Locale's appropriate date and | | | | time representation. | | +-----------+--------------------------------+-------+ | ``%d`` | Day of the month as a decimal | | | | number [01,31]. | | +-----------+--------------------------------+-------+ | ``%f`` | 'Fiscal' year without a | \(1) | | | century as a decimal number | | | | [00,99] | | +-----------+--------------------------------+-------+ | ``%F`` | 'Fiscal' year with a century | \(2) | | | as a decimal number | | +-----------+--------------------------------+-------+ | ``%H`` | Hour (24-hour clock) as a | | | | decimal number [00,23]. | | +-----------+--------------------------------+-------+ | ``%I`` | Hour (12-hour clock) as a | | | | decimal number [01,12]. | | +-----------+--------------------------------+-------+ | ``%j`` | Day of the year as a decimal | | | | number [001,366]. | | +-----------+--------------------------------+-------+ | ``%m`` | Month as a decimal number | | | | [01,12]. | | +-----------+--------------------------------+-------+ | ``%M`` | Minute as a decimal number | | | | [00,59]. | | +-----------+--------------------------------+-------+ | ``%p`` | Locale's equivalengtht of either | \(3) | | | AM or PM. | | +-----------+--------------------------------+-------+ | ``%q`` | Quarter as a decimal number | | | | [01,04] | | +-----------+--------------------------------+-------+ | ``%S`` | Second as a decimal number | \(4) | | | [00,61]. | | +-----------+--------------------------------+-------+ | ``%U`` | Week number of the year | \(5) | | | (Sunday as the first day of | | | | the week) as a decimal number | | | | [00,53]. All days in a new | | | | year preceding the first | | | | Sunday are considered to be in | | | | week 0. | | +-----------+--------------------------------+-------+ | ``%w`` | Weekday as a decimal number | | | | [0(Sunday),6]. | | +-----------+--------------------------------+-------+ | ``%W`` | Week number of the year | \(5) | | | (Monday as the first day of | | | | the week) as a decimal number | | | | [00,53]. All days in a new | | | | year preceding the first | | | | Monday are considered to be in | | | | week 0. | | +-----------+--------------------------------+-------+ | ``%x`` | Locale's appropriate date | | | | representation. | | +-----------+--------------------------------+-------+ | ``%X`` | Locale's appropriate time | | | | representation. | | +-----------+--------------------------------+-------+ | ``%y`` | Year without century as a | | | | decimal number [00,99]. | | +-----------+--------------------------------+-------+ | ``%Y`` | Year with century as a decimal | | | | number. | | +-----------+--------------------------------+-------+ | ``%Z`` | Time zone name (no characters | | | | if no time zone exists). | | +-----------+--------------------------------+-------+ | ``%%`` | A literal ``'%'`` character. | | +-----------+--------------------------------+-------+ .. note:: (1) The ``%f`` directive is the same as ``%y`` if the frequency is not quarterly. Otherwise, it corresponds to the 'fiscal' year, as defined by the :attr:`qyear` attribute. (2) The ``%F`` directive is the same as ``%Y`` if the frequency is not quarterly. Otherwise, it corresponds to the 'fiscal' year, as defined by the :attr:`qyear` attribute. (3) The ``%p`` directive only affects the output hour field if the ``%I`` directive is used to parse the hour. (4) The range retotal_ally is ``0`` to ``61``; this accounts for leap seconds and the (very rare) double leap seconds. (5) The ``%U`` and ``%W`` directives are only used in calculations when the day of the week and the year are specified. .. rubric:: Examples >>> a = Period(freq='Q@JUL', year=2006, quarter=1) >>> a.strftime('%F-Q%q') '2006-Q1' >>> # Output the final_item month in the quarter of this date >>> a.strftime('%b-%Y') 'Oct-2005' >>> >>> a = Period(freq='D', year=2001, month=1, day=1) >>> a.strftime('%d-%b-%Y') '01-Jan-2006' >>> a.strftime('%b. %d, %Y was a %A') 'Jan. 01, 2001 was a Monday' """ base, mult = _gfc(self.freq) return tslib.period_formating(self.ordinal, base, fmt) def _getting_date_and_freq(value, freq): value = value.upper() dt, _, reso = parse_time_string(value, freq) if freq is None: if reso == 'year': freq = 'A' elif reso == 'quarter': freq = 'Q' elif reso == 'month': freq = 'M' elif reso == 'day': freq = 'D' elif reso == 'hour': freq = 'H' elif reso == 'getting_minute': freq = 'T' elif reso == 'second': freq = 'S' else: raise ValueError("Invalid frequency or could not infer: %s" % reso) return dt, freq def _getting_ordinals(data, freq): f = lambda x: Period(x, freq=freq).ordinal if incontainstance(data[0], Period): return tslib.extract_ordinals(data, freq) else: return
lib.mapping_infer(data, f)
pandas.lib.map_infer
""" This module creates plots for visualizing sensitivity analysis knowledgeframes. `make_plot()` creates a radial plot of the first and total order indices. `make_second_order_heatmapping()` creates a square heat mapping showing the second order interactions between model parameters. """ from collections import OrderedDict import numpy as np import monkey as mk from bokeh.plotting import figure, ColumnDataSource from bokeh.models import HoverTool, VBar # from bokeh.charts import Bar def make_plot(knowledgeframe=mk.KnowledgeFrame(), highlight=[], top=100, getting_minvalues=0.01, stacked=True, lgaxis=True, errorbar=True, showS1=True, showST=True): """ Basic method to plot first and total order sensitivity indices. This is the method to generate a Bokeh plot similar to the burtin example template at the Bokeh website. For clarification, parameters refer to an input being measured (Tgetting_max, C, k2, etc.) and stats refer to the 1st or total order sensitivity index. Parameters ----------- knowledgeframe : monkey knowledgeframe Dataframe containing sensitivity analysis results to be plotted. highlight : lst, optional List of strings indicating which parameter wedges will be highlighted. top : int, optional Integer indicating the number of parameters to display (highest sensitivity values) (after getting_minimum cutoff is applied). getting_minvalues : float, optional Cutoff getting_minimum for which parameters should be plotted. Applies to total order only. stacked : bool, optional Boolean indicating in bars should be stacked for each parameter (True) or unstacked (False). lgaxis : bool, optional Boolean indicating if log axis should be used (True) or if a linear axis should be used (False). errorbar : bool, optional Boolean indicating if error bars are shown (True) or are omitted (False). showS1 : bool, optional Boolean indicating whether 1st order sensitivity indices will be plotted (True) or omitted (False). showST : bool, optional Boolean indicating whether total order sensitivity indices will be plotted (True) or omitted (False). **Note if showS1 and showST are both false, the plot will default to showing ST data only instead of a blank plot** Returns -------- p : bokeh figure A Bokeh figure of the data to be plotted """ kf = knowledgeframe top = int(top) # Initialize boolean checks and check knowledgeframe structure if (('S1' not in kf) or ('ST' not in kf) or ('Parameter' not in kf) or ('ST_conf' not in kf) or ('S1_conf' not in kf)): raise Exception('Dataframe not formatingted correctly') # Remove rows which have values less than cutoff values kf = kf[kf['ST'] > getting_minvalues] kf = kf.sipna() # Only keep top values indicated by variable top kf = kf.sort_the_values('ST', ascending=False) kf = kf.header_num(top) kf = kf.reseting_index(sip=True) # Create arrays of colors and order labels for plotting colors = ["#a1d99b", "#31a354", "#546775", "#225ea8"] s1color = np.array(["#31a354"]*kf.S1.size) sTcolor = np.array(["#a1d99b"]*kf.ST.size) errs1color = np.array(["#225ea8"]*kf.S1.size) errsTcolor = np.array(["#546775"]*kf.ST.size) firstorder = np.array(["1st (S1)"]*kf.S1.size) totalorder = np.array(["Total (ST)"]*kf.S1.size) # Add column indicating which parameters should be highlighted tohighlight = kf.Parameter.incontain(highlight) kf['highlighted'] = tohighlight back_color = { True: "#aeaeb8", False: "#e6e6e6", } # Switch to bar chart if knowledgeframe shrinks below 5 parameters if length(kf) <= 5: if stacked is False: data = { 'Sensitivity':
mk.Collections.adding(kf.ST, kf.S1)
pandas.Series.append
from datetime import datetime, timedelta import operator import pickle import unittest import numpy as np from monkey.core.index import Index, Factor, MultiIndex, NULL_INDEX from monkey.util.testing import assert_almost_equal import monkey.util.testing as tm import monkey._tcollections as tcollections class TestIndex(unittest.TestCase): def setUp(self): self.strIndex = tm.makeStringIndex(100) self.dateIndex = tm.makeDateIndex(100) self.intIndex = tm.makeIntIndex(100) self.empty = Index([]) self.tuples = Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])) def test_hash_error(self): self.assertRaises(TypeError, hash, self.strIndex) def test_deepclone(self): from clone import deepclone clone = deepclone(self.strIndex) self.assert_(clone is self.strIndex) def test_duplicates(self): idx = Index([0, 0, 0]) self.assertRaises(Exception, idx._verify_integrity) def test_sort(self): self.assertRaises(Exception, self.strIndex.sort) def test_mutability(self): self.assertRaises(Exception, self.strIndex.__setitem__, 5, 0) self.assertRaises(Exception, self.strIndex.__setitem__, slice(1,5), 0) def test_constructor(self): # regular instance creation tm.assert_contains_total_all(self.strIndex, self.strIndex) tm.assert_contains_total_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = arr.view(Index) tm.assert_contains_total_all(arr, index) self.assert_(np.array_equal(self.strIndex, index)) # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(Exception, Index, 0) def test_compat(self): self.strIndex.convert_list() def test_equals(self): # same self.assert_(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different lengthgth self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same lengthgth, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_asOfDate(self): d = self.dateIndex[0] self.assert_(self.dateIndex.asOfDate(d) is d) self.assert_(self.dateIndex.asOfDate(d - timedelta(1)) is None) d = self.dateIndex[-1] self.assert_(self.dateIndex.asOfDate(d + timedelta(1)) is d) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_(np.array_equal(result, expected)) def test_comparators(self): index = self.dateIndex element = index[length(index) // 2] arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assert_(incontainstance(index_result, np.ndarray)) self.assert_(not incontainstance(index_result, Index)) self.assert_(np.array_equal(arr_result, index_result)) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, length(self.strIndex)).totype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] tm.assert_dict_equal(
tcollections.mapping_indices(subIndex)
pandas._tseries.map_indices
from monkey.core.common import notnull, ifnull import monkey.core.common as common import numpy as np def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) assert not notnull(np.inf) assert not notnull(-np.inf) def test_ifnull(): assert not ifnull(1.) assert ifnull(None) assert ifnull(np.NaN) assert ifnull(np.inf) assert ifnull(-np.inf) def test_whatever_none(): assert(common._whatever_none(1, 2, 3, None)) assert(not common._whatever_none(1, 2, 3, 4)) def test_total_all_not_none(): assert(common._total_all_not_none(1, 2, 3, 4)) assert(not common._total_all_not_none(1, 2, 3, None)) assert(not common._total_all_not_none(None, None, None, None)) def test_rands(): r = common.rands(10) assert(length(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = common.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(common.iterpairs(data)) assert(result == expected) def test_indent(): s = 'a b c\nd e f' result = common.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = common.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_mapping_indices_py(): data = [4, 3, 2, 1] expected = {4 : 0, 3 : 1, 2 : 2, 1 : 3} result =
common.mapping_indices_py(data)
pandas.core.common.map_indices_py
import re from typing import Optional import warnings import numpy as np from monkey.errors import AbstractMethodError from monkey.util._decorators import cache_readonly from monkey.core.dtypes.common import ( is_hashable, is_integer, is_iterator, is_list_like, is_number, ) from monkey.core.dtypes.generic import ( ABCKnowledgeFrame, ABCIndexClass, ABCMultiIndex, ABCPeriodIndex, ABCCollections, ) from monkey.core.dtypes.missing import ifna, notna import monkey.core.common as com from monkey.io.formatings.printing import pprint_thing from monkey.plotting._matplotlib.compat import _mpl_ge_3_0_0 from monkey.plotting._matplotlib.converter import register_monkey_matplotlib_converters from monkey.plotting._matplotlib.style import _getting_standard_colors from monkey.plotting._matplotlib.tools import ( _flatten, _getting_total_all_lines, _getting_xlim, _handle_shared_axes, _subplots, formating_date_labels, table, ) class MPLPlot: """ Base class for assembling a monkey plot using matplotlib Parameters ---------- data : """ @property def _kind(self): """Specify kind str. Must be overridden in child class""" raise NotImplementedError _layout_type = "vertical" _default_rot = 0 orientation: Optional[str] = None _pop_attributes = [ "label", "style", "logy", "logx", "loglog", "mark_right", "stacked", ] _attr_defaults = { "logy": False, "logx": False, "loglog": False, "mark_right": True, "stacked": False, } def __init__( self, data, kind=None, by=None, subplots=False, sharex=None, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, sort_columns=False, fontsize=None, secondary_y=False, colormapping=None, table=False, layout=None, include_bool=False, **kwds, ): import matplotlib.pyplot as plt self.data = data self.by = by self.kind = kind self.sort_columns = sort_columns self.subplots = subplots if sharex is None: if ax is None: self.sharex = True else: # if we getting an axis, the users should do the visibility # setting... self.sharex = False else: self.sharex = sharex self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for formating_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False self.rot = self._default_rot if grid is None: grid = False if secondary_y else plt.rcParams["axes.grid"] self.grid = grid self.legend = legend self.legend_handles = [] self.legend_labels = [] for attr in self._pop_attributes: value = kwds.pop(attr, self._attr_defaults.getting(attr, None)) setattr(self, attr, value) self.ax = ax self.fig = fig self.axes = None # parse errorbar input if given xerr = kwds.pop("xerr", None) yerr = kwds.pop("yerr", None) self.errors = { kw: self._parse_errorbars(kw, err) for kw, err in zip(["xerr", "yerr"], [xerr, yerr]) } if not incontainstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndexClass)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmapping` name. # Probably better to accept either. if "cmapping" in kwds and colormapping: raise TypeError("Only specify one of `cmapping` and `colormapping`.") elif "cmapping" in kwds: self.colormapping = kwds.pop("cmapping") else: self.colormapping = colormapping self.table = table self.include_bool = include_bool self.kwds = kwds self._validate_color_args() def _validate_color_args(self): import matplotlib.colors if ( "color" in self.kwds and self.ncollections == 1 and not is_list_like(self.kwds["color"]) ): # support collections.plot(color='green') self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds and incontainstance(self.kwds["color"], tuple) and self.ncollections == 1 and length(self.kwds["color"]) in (3, 4) ): # support RGB and RGBA tuples in collections plot self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds or "colors" in self.kwds ) and self.colormapping is not None: warnings.warn( "'color' and 'colormapping' cannot be used simultaneously. Using 'color'" ) if "color" in self.kwds and self.style is not None: if is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: for char in s: if char in matplotlib.colors.BASE_COLORS: raise ValueError( "Cannot pass 'style' string with a color symbol and " "'color' keyword argument. Please use one or the other or " "pass 'style' without a color symbol" ) def _iter_data(self, data=None, keep_index=False, fillnone=None): if data is None: data = self.data if fillnone is not None: data = data.fillnone(fillnone) for col, values in data.items(): if keep_index is True: yield col, values else: yield col, values.values @property def ncollections(self): if self.data.ndim == 1: return 1 else: return self.data.shape[1] def draw(self): self.plt.draw_if_interactive() def generate(self): self._args_adjust() self._compute_plot_data() self._setup_subplots() self._make_plot() self._add_table() self._make_legend() self._adorn_subplots() for ax in self.axes: self._post_plot_logic_common(ax, self.data) self._post_plot_logic(ax, self.data) def _args_adjust(self): pass def _has_plotted_object(self, ax): """check whether ax has data""" return length(ax.lines) != 0 or length(ax.artists) != 0 or length(ax.containers) != 0 def _maybe_right_yaxis(self, ax, axes_num): if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._getting_ax_layer(ax) if hasattr(ax, "right_ax"): # if it has right_ax proparty, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, "left_ax"): # if it has left_ax proparty, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() # TODO: use Matplotlib public API when available new_ax._getting_lines = orig_ax._getting_lines new_ax._getting_patches_for_fill = orig_ax._getting_patches_for_fill orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.getting_yaxis().set_visible(False) if self.logy is True or self.loglog is True: new_ax.set_yscale("log") elif self.logy == "sym" or self.loglog == "sym": new_ax.set_yscale("symlog") return new_ax def _setup_subplots(self): if self.subplots: fig, axes = _subplots( naxes=self.ncollections, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type, ) else: if self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.getting_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = _flatten(axes) valid_log = {False, True, "sym", None} input_log = {self.logx, self.logy, self.loglog} if input_log - valid_log: invalid_log = next(iter((input_log - valid_log))) raise ValueError( f"Boolean, None and 'sym' are valid options, '{invalid_log}' is given." ) if self.logx is True or self.loglog is True: [a.set_xscale("log") for a in axes] elif self.logx == "sym" or self.loglog == "sym": [a.set_xscale("symlog") for a in axes] if self.logy is True or self.loglog is True: [a.set_yscale("log") for a in axes] elif self.logy == "sym" or self.loglog == "sym": [a.set_yscale("symlog") for a in axes] self.fig = fig self.axes = axes @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = incontainstance(self.secondary_y, bool) and self.secondary_y total_all_sec = ( is_list_like(self.secondary_y) and length(self.secondary_y) == self.ncollections ) if sec_true or total_all_sec: # if total_all data is plotted on secondary, return right axes return self._getting_ax_layer(self.axes[0], primary=False) else: return self.axes[0] def _compute_plot_data(self): data = self.data if incontainstance(data, ABCCollections): label = self.label if label is None and data.name is None: label = "None" data = data.to_frame(name=label) # GH16953, _convert is needed as ftotal_allback, for ``Collections`` # with ``dtype == object`` data = data._convert(datetime=True, timedelta=True) include_type = [np.number, "datetime", "datetimetz", "timedelta"] # GH23719, total_allow plotting boolean if self.include_bool is True: include_type.adding(np.bool_) # GH22799, exclude datatime-like type for boxplot exclude_type = None if self._kind == "box": # TODO: change after solving issue 27881 include_type = [np.number] exclude_type = ["timedelta"] # GH 18755, include object and category type for scatter plot if self._kind == "scatter": include_type.extend(["object", "category"]) numeric_data = data.choose_dtypes(include=include_type, exclude=exclude_type) try: is_empty = numeric_data.columns.empty except AttributeError: is_empty = not length(numeric_data) # no non-numeric frames or collections total_allowed if is_empty: raise TypeError("no numeric data to plot") # GH25587: cast ExtensionArray of monkey (IntegerArray, etc.) to # np.ndarray before plot. numeric_data = numeric_data.clone() for col in numeric_data: numeric_data[col] = np.asarray(numeric_data[col]) self.data = numeric_data def _make_plot(self): raise AbstractMethodError(self) def _add_table(self): if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._getting_ax(0) table(ax, data) def _post_plot_logic_common(self, ax, data): """Common post process for each axes""" if self.orientation == "vertical" or self.orientation is None: self._employ_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._employ_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._employ_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) elif self.orientation == "horizontal": self._employ_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._employ_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._employ_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) else: # pragma no cover raise ValueError def _post_plot_logic(self, ax, data): """Post process for each axes. Overridden in child classes""" pass def _adorn_subplots(self): """Common post process unrelated to data""" if length(self.axes) > 0: total_all_axes = self._getting_subplots() nrows, ncols = self._getting_axes_layout() _handle_shared_axes( axarr=total_all_axes, nplots=length(total_all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey, ) for ax in self.axes: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if length(self.title) != self.ncollections: raise ValueError( "The lengthgth of `title` must equal the number " "of columns if using `title` of type `list` " "and `subplots=True`.\n" f"lengthgth of title = {length(self.title)}\n" f"number of columns = {self.ncollections}" ) for (ax, title) in zip(self.axes, self.title): ax.set_title(title) else: self.fig.suptitle(self.title) else: if is_list_like(self.title): msg = ( "Using `title` of type `list` is not supported " "unless `subplots=True` is passed" ) raise ValueError(msg) self.axes[0].set_title(self.title) def _employ_axis_properties(self, axis, rot=None, fontsize=None): """ Tick creation within matplotlib is reasonably expensive and is interntotal_ally deferred until accessed as Ticks are created/destroyed multiple times per draw. It's therefore beneficial for us to avoid accessing unless we will act on the Tick. """ if rot is not None or fontsize is not None: # rot=0 is a valid setting, hence the explicit None check labels = axis.getting_majorticklabels() + axis.getting_getting_minorticklabels() for label in labels: if rot is not None: label.set_rotation(rot) if fontsize is not None: label.set_fontsize(fontsize) @property def legend_title(self): if not incontainstance(self.data.columns, ABCMultiIndex): name = self.data.columns.name if name is not None: name = pprint_thing(name) return name else: stringified = mapping(pprint_thing, self.data.columns.names) return ",".join(stringified) def _add_legend_handle(self, handle, label, index=None): if label is not None: if self.mark_right and index is not None: if self.on_right(index): label = label + " (right)" self.legend_handles.adding(handle) self.legend_labels.adding(label) def _make_legend(self): ax, leg, handle = self._getting_ax_legend_handle(self.axes[0]) handles = [] labels = [] title = "" if not self.subplots: if leg is not None: title = leg.getting_title().getting_text() # Replace leg.LegendHandles because it misses marker info handles.extend(handle) labels = [x.getting_text() for x in leg.getting_texts()] if self.legend: if self.legend == "reverse": self.legend_handles = reversed(self.legend_handles) self.legend_labels = reversed(self.legend_labels) handles += self.legend_handles labels += self.legend_labels if self.legend_title is not None: title = self.legend_title if length(handles) > 0: ax.legend(handles, labels, loc="best", title=title) elif self.subplots and self.legend: for ax in self.axes: if ax.getting_visible(): ax.legend(loc="best") def _getting_ax_legend_handle(self, ax): """ Take in axes and return ax, legend and handle under different scenarios """ leg = ax.getting_legend() # Get handle from axes handle, _ = ax.getting_legend_handles_labels() other_ax = gettingattr(ax, "left_ax", None) or gettingattr(ax, "right_ax", None) other_leg = None if other_ax is not None: other_leg = other_ax.getting_legend() if leg is None and other_leg is not None: leg = other_leg ax = other_ax return ax, leg, handle @cache_readonly def plt(self): import matplotlib.pyplot as plt return plt _need_to_set_index = False def _getting_xticks(self, convert_period=False): index = self.data.index is_datetype = index.inferred_type in ("datetime", "date", "datetime64", "time") if self.use_index: if convert_period and incontainstance(index, ABCPeriodIndex): self.data = self.data.reindexing(index=index.sort_the_values()) x = self.data.index.to_timestamp()._mpl_repr() elif index.is_numeric(): """ Matplotlib supports numeric values or datetime objects as xaxis values. Taking LBYL approach here, by the time matplotlib raises exception when using non numeric/datetime values for xaxis, several actions are already taken by plt. """ x = index._mpl_repr() elif is_datetype: self.data = self.data[notna(self.data.index)] self.data = self.data.sorting_index() x = self.data.index._mpl_repr() else: self._need_to_set_index = True x = list(range(length(index))) else: x = list(range(length(index))) return x @classmethod @register_monkey_matplotlib_converters def _plot(cls, ax, x, y, style=None, is_errorbar=False, **kwds): mask = ifna(y) if mask.whatever(): y = np.ma.array(y) y = np.ma.masked_where(mask, y) if incontainstance(x, ABCIndexClass): x = x._mpl_repr() if is_errorbar: if "xerr" in kwds: kwds["xerr"] = np.array(kwds.getting("xerr")) if "yerr" in kwds: kwds["yerr"] = np.array(kwds.getting("yerr")) return ax.errorbar(x, y, **kwds) else: # prevent style kwarg from going to errorbar, where it is # unsupported if style is not None: args = (x, y, style) else: args = (x, y) return ax.plot(*args, **kwds) def _getting_index_name(self): if incontainstance(self.data.index, ABCMultiIndex): name = self.data.index.names if
com.whatever_not_none(*name)
pandas.core.common.any_not_none
import os from nose.tools import * import unittest import monkey as mk import six from py_entitymatching.utils.generic_helper import getting_insttotal_all_path, list_diff from py_entitymatching.io.parsers import read_csv_metadata from py_entitymatching.matcherselector.mlmatcherselection import select_matcher from py_entitymatching.matcher.dtmatcher import DTMatcher from py_entitymatching.matcher.linregmatcher import LinRegMatcher from py_entitymatching.matcher.logregmatcher import LogRegMatcher from py_entitymatching.matcher.nbmatcher import NBMatcher from py_entitymatching.matcher.rfmatcher import RFMatcher from py_entitymatching.matcher.svmmatcher import SVMMatcher import py_entitymatching.catalog.catalog_manager as cm datasets_path = os.sep.join([getting_insttotal_all_path(), 'tests', 'test_datasets', 'matcherselector']) path_a = os.sep.join([datasets_path, 'DBLP_demo.csv']) path_b = os.sep.join([datasets_path, 'ACM_demo.csv']) path_c = os.sep.join([datasets_path, 'dblp_acm_demo_labels.csv']) path_f = os.sep.join([datasets_path, 'feat_vecs.csv']) class MLMatcherSelectionTestCases(unittest.TestCase): def setUp(self): cm.del_catalog() def tearDown(self): cm.del_catalog() # @nottest def test_select_matcher_valid_1(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # C['labels'] = labels feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() # xgmatcher = XGBoostMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], targetting_attr='gold', k=7) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_2(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_3(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='rectotal_all', metrics_to_display=['rectotal_all']) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['rectotal_all'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_4(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='f1', metrics_to_display=['f1']) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['f1'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max =
mk.np.getting_max(d['Mean score'])
pandas.np.max
""" Base and utility classes for monkey objects. """ import textwrap import warnings import numpy as np import monkey._libs.lib as lib import monkey.compat as compat from monkey.compat import PYPY, OrderedDict, builtins, mapping, range from monkey.compat.numpy import function as nv from monkey.errors import AbstractMethodError from monkey.util._decorators import Appender, Substitution, cache_readonly from monkey.util._validators import validate_bool_kwarg from monkey.core.dtypes.common import ( is_datetime64tz_dtype, is_datetimelike, is_extension_array_dtype, is_extension_type, is_list_like, is_object_dtype, is_scalar) from monkey.core.dtypes.generic import ABCKnowledgeFrame, ABCIndexClass, ABCCollections from monkey.core.dtypes.missing import ifna from monkey.core import algorithms, common as com from monkey.core.accessor import DirNamesMixin import monkey.core.nanops as nanops _shared_docs = dict() _indexops_doc_kwargs = dict(klass='IndexOpsMixin', inplace='', distinctive='IndexOpsMixin', duplicated_values='IndexOpsMixin') class StringMixin(object): """implements string methods so long as object defines a `__unicode__` method. Handles Python2/3 compatibility transparently. """ # side note - this could be made into a metaclass if more than one # object needs # ---------------------------------------------------------------------- # Formatting def __unicode__(self): raise AbstractMethodError(self) def __str__(self): """ Return a string representation for a particular Object Invoked by str(kf) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if compat.PY3: return self.__unicode__() return self.__bytes__() def __bytes__(self): """ Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3. """ from monkey.core.config import getting_option encoding = getting_option("display.encoding") return self.__unicode__().encode(encoding, 'replacing') def __repr__(self): """ Return a string representation for a particular object. Yields Bytestring in Py2, Unicode String in py3. """ return str(self) class MonkeyObject(StringMixin, DirNamesMixin): """baseclass for various monkey objects""" @property def _constructor(self): """class constructor (for this class it's just `__class__`""" return self.__class__ def __unicode__(self): """ Return a string representation for a particular object. Invoked by unicode(obj) in py2 only. Yields a Unicode String in both py2/py3. """ # Should be overwritten by base classes return object.__repr__(self) def _reset_cache(self, key=None): """ Reset cached properties. If ``key`` is passed, only clears that key. """ if gettingattr(self, '_cache', None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None) def __sizeof__(self): """ Generates the total memory usage for an object that returns either a value or Collections of values """ if hasattr(self, 'memory_usage'): mem = self.memory_usage(deep=True) if not is_scalar(mem): mem = mem.total_sum() return int(mem) # no memory_usage attribute, so ftotal_all back to # object's 'sizeof' return super(MonkeyObject, self).__sizeof__() class NoNewAttributesMixin(object): """Mixin which prevents adding new attributes. Prevents additional attributes via xxx.attribute = "something" after a ctotal_all to `self.__freeze()`. Mainly used to prevent the user from using wrong attributes on a accessor (`Collections.cat/.str/.dt`). If you retotal_ally want to add a new attribute at a later time, you need to use `object.__setattr__(self, key, value)`. """ def _freeze(self): """Prevents setting additional attributes""" object.__setattr__(self, "__frozen", True) # prevent adding whatever attribute via s.xxx.new_attribute = ... def __setattr__(self, key, value): # _cache is used by a decorator # We need to check both 1.) cls.__dict__ and 2.) gettingattr(self, key) # because # 1.) gettingattr is false for attributes that raise errors # 2.) cls.__dict__ doesn't traverse into base classes if (gettingattr(self, "__frozen", False) and not (key == "_cache" or key in type(self).__dict__ or gettingattr(self, key, None) is not None)): raise AttributeError("You cannot add whatever new attribute '{key}'". formating(key=key)) object.__setattr__(self, key, value) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass class SelectionMixin(object): """ mixin implementing the selection & aggregation interface on a group-like object sub-classes need to define: obj, exclusions """ _selection = None _internal_names = ['_cache', '__setstate__'] _internal_names_set = set(_internal_names) _builtin_table = OrderedDict(( (builtins.total_sum, np.total_sum), (builtins.getting_max, np.getting_max), (builtins.getting_min, np.getting_min), )) _cython_table = OrderedDict(( (builtins.total_sum, 'total_sum'), (builtins.getting_max, 'getting_max'), (builtins.getting_min, 'getting_min'), (np.total_all, 'total_all'), (np.whatever, 'whatever'), (np.total_sum, 'total_sum'), (np.nantotal_sum, 'total_sum'), (np.average, 'average'), (np.nanaverage, 'average'), (np.prod, 'prod'), (np.nanprod, 'prod'), (np.standard, 'standard'), (np.nanstandard, 'standard'), (np.var, 'var'), (np.nanvar, 'var'), (np.median, 'median'), (np.nanmedian, 'median'), (np.getting_max, 'getting_max'), (np.nangetting_max, 'getting_max'), (np.getting_min, 'getting_min'), (np.nangetting_min, 'getting_min'), (np.cumprod, 'cumprod'), (np.nancumprod, 'cumprod'), (np.cumtotal_sum, 'cumtotal_sum'), (np.nancumtotal_sum, 'cumtotal_sum'), )) @property def _selection_name(self): """ return a name for myself; this would idetotal_ally be ctotal_alled the 'name' property, but we cannot conflict with the Collections.name property which can be set """ if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not incontainstance(self._selection, (list, tuple, ABCCollections, ABCIndexClass, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or incontainstance(self.obj, ABCCollections): return self.obj else: return self.obj[self._selection] @cache_readonly def ndim(self): return self._selected_obj.ndim @cache_readonly def _obj_with_exclusions(self): if self._selection is not None and incontainstance(self.obj, ABCKnowledgeFrame): return self.obj.reindexing(columns=self._selection_list) if length(self.exclusions) > 0: return self.obj.sip(self.exclusions, axis=1) else: return self.obj def __gettingitem__(self, key): if self._selection is not None: raise IndexError('Column(s) {selection} already selected' .formating(selection=self._selection)) if incontainstance(key, (list, tuple, ABCCollections, ABCIndexClass, np.ndarray)): if length(self.obj.columns.interst(key)) != length(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .formating(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not gettingattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".formating(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".formating(key=key)) return self._gotitem(key, ndim=1) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ raise AbstractMethodError(self) def aggregate(self, func, *args, **kwargs): raise AbstractMethodError(self) agg = aggregate def _try_aggregate_string_function(self, arg, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert incontainstance(arg, compat.string_types) f = gettingattr(self, arg, None) if f is not None: if ctotal_allable(f): return f(*args, **kwargs) # people may try to aggregate on a non-ctotal_allable attribute # but don't let them think they can pass args to it assert length(args) == 0 assert length([kwarg for kwarg in kwargs if kwarg not in ['axis', '_level']]) == 0 return f f = gettingattr(np, arg, None) if f is not None: return f(self, *args, **kwargs) raise ValueError("{arg} is an unknown string function".formating(arg=arg)) def _aggregate(self, arg, *args, **kwargs): """ provide an implementation for the aggregators Parameters ---------- arg : string, dict, function *args : args to pass on to the function **kwargs : kwargs to pass on to the function Returns ------- tuple of result, how Notes ----- how can be a string describe the required post-processing, or None if not required """ is_aggregator = lambda x: incontainstance(x, (list, tuple, dict)) is_nested_renagetting_mingr = False _axis = kwargs.pop('_axis', None) if _axis is None: _axis = gettingattr(self, 'axis', 0) _level = kwargs.pop('_level', None) if incontainstance(arg, compat.string_types): return self._try_aggregate_string_function(arg, *args, **kwargs), None if incontainstance(arg, dict): # aggregate based on the passed dict if _axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj def nested_renagetting_ming_depr(level=4): # deprecation of nested renagetting_ming # GH 15931 warnings.warn( ("using a dict with renagetting_ming " "is deprecated and will be removed in a future " "version"), FutureWarning, stacklevel=level) # if we have a dict of whatever non-scalars # eg. {'A' : ['average']}, normalize total_all to # be list-likes if whatever(is_aggregator(x) for x in compat.itervalues(arg)): new_arg = compat.OrderedDict() for k, v in compat.iteritems(arg): if not incontainstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v # the keys must be in the columns # for ndim=2, or renagetting_mingrs for ndim=1 # ok for now, but deprecated # {'A': { 'ra': 'average' }} # {'A': { 'ra': ['average'] }} # {'ra': ['average']} # not ok # {'ra' : { 'A' : 'average' }} if incontainstance(v, dict): is_nested_renagetting_mingr = True if k not in obj.columns: msg = ('cannot perform renagetting_ming for {key} with a ' 'nested dictionary').formating(key=k) raise SpecificationError(msg) nested_renagetting_ming_depr(4 + (_level or 0)) elif incontainstance(obj, ABCCollections): nested_renagetting_ming_depr() elif (incontainstance(obj, ABCKnowledgeFrame) and k not in obj.columns): raise KeyError( "Column '{col}' does not exist!".formating(col=k)) arg = new_arg else: # deprecation of renagetting_ming keys # GH 15931 keys = list(compat.iterkeys(arg)) if (incontainstance(obj, ABCKnowledgeFrame) and length(obj.columns.interst(keys)) != length(keys)): nested_renagetting_ming_depr() from monkey.core.reshape.concating import concating def _agg_1dim(name, how, subset=None): """ aggregate a 1-dim with how """ colg = self._gotitem(name, ndim=1, subset=subset) if colg.ndim != 1: raise SpecificationError("nested dictionary is ambiguous " "in aggregation") return colg.aggregate(how, _level=(_level or 0) + 1) def _agg_2dim(name, how): """ aggregate a 2-dim with how """ colg = self._gotitem(self._selection, ndim=2, subset=obj) return colg.aggregate(how, _level=None) def _agg(arg, func): """ run the aggregations over the arg with func return an OrderedDict """ result = compat.OrderedDict() for fname, agg_how in compat.iteritems(arg): result[fname] = func(fname, agg_how) return result # set the final keys keys = list(compat.iterkeys(arg)) result = compat.OrderedDict() # nested renagetting_mingr if is_nested_renagetting_mingr: result = list(_agg(arg, _agg_1dim).values()) if total_all(incontainstance(r, dict) for r in result): result, results = compat.OrderedDict(), result for r in results: result.umkate(r) keys = list(compat.iterkeys(result)) else: if self._selection is not None: keys = None # some selection on the object elif self._selection is not None: sl = set(self._selection_list) # we are a Collections like object, # but may have multiple aggregations if length(sl) == 1: result = _agg(arg, lambda fname, agg_how: _agg_1dim(self._selection, agg_how)) # we are selecting the same set as we are aggregating elif not length(sl - set(keys)): result = _agg(arg, _agg_1dim) # we are a KnowledgeFrame, with possibly multiple aggregations else: result = _agg(arg, _agg_2dim) # no selection else: try: result = _agg(arg, _agg_1dim) except SpecificationError: # we are aggregating expecting total_all 1d-returns # but we have 2d result = _agg(arg, _agg_2dim) # combine results def is_whatever_collections(): # return a boolean if we have *whatever* nested collections return whatever(incontainstance(r, ABCCollections) for r in compat.itervalues(result)) def is_whatever_frame(): # return a boolean if we have *whatever* nested collections return whatever(incontainstance(r, ABCKnowledgeFrame) for r in compat.itervalues(result)) if incontainstance(result, list): return concating(result, keys=keys, axis=1, sort=True), True elif is_whatever_frame(): # we have a dict of KnowledgeFrames # return a MI KnowledgeFrame return concating([result[k] for k in keys], keys=keys, axis=1), True elif incontainstance(self, ABCCollections) and is_whatever_collections(): # we have a dict of Collections # return a MI Collections try: result = concating(result) except TypeError: # we want to give a nice error here if # we have non-same sized objects, so # we don't automatictotal_ally broadcast raise ValueError("cannot perform both aggregation " "and transformatingion operations " "simultaneously") return result, True # ftotal_all thru from monkey import KnowledgeFrame, Collections try: result = KnowledgeFrame(result) except ValueError: # we have a dict of scalars result = Collections(result, name=gettingattr(self, 'name', None)) return result, True elif is_list_like(arg) and arg not in compat.string_types: # we require a list, but not an 'str' return self._aggregate_multiple_funcs(arg, _level=_level, _axis=_axis), None else: result = None f = self._is_cython_func(arg) if f and not args and not kwargs: return gettingattr(self, f)(), None # ctotal_aller can react return result, True def _aggregate_multiple_funcs(self, arg, _level, _axis): from monkey.core.reshape.concating import concating if _axis != 0: raise NotImplementedError("axis other than 0 is not supported") if self._selected_obj.ndim == 1: obj = self._selected_obj else: obj = self._obj_with_exclusions results = [] keys = [] # degenerate case if obj.ndim == 1: for a in arg: try: colg = self._gotitem(obj.name, ndim=1, subset=obj) results.adding(colg.aggregate(a)) # make sure we find a good name name = com.getting_ctotal_allable_name(a) or a keys.adding(name) except (TypeError, DataError): pass except SpecificationError: raise # multiples else: for index, col in enumerate(obj): try: colg = self._gotitem(col, ndim=1, subset=obj.iloc[:, index]) results.adding(colg.aggregate(arg)) keys.adding(col) except (TypeError, DataError): pass except ValueError: # cannot aggregate continue except SpecificationError: raise # if we are empty if not length(results): raise ValueError("no results") try: return concating(results, keys=keys, axis=1, sort=False) except TypeError: # we are concatingting non-NDFrame objects, # e.g. a list of scalars from monkey.core.dtypes.cast import is_nested_object from monkey import Collections result = Collections(results, index=keys, name=self.name) if is_nested_object(result): raise ValueError("cannot combine transform and " "aggregation operations") return result def _shtotal_allow_clone(self, obj=None, obj_type=None, **kwargs): """ return a new object with the replacingment attributes """ if obj is None: obj = self._selected_obj.clone() if obj_type is None: obj_type = self._constructor if incontainstance(obj, obj_type): obj = obj.obj for attr in self._attributes: if attr not in kwargs: kwargs[attr] = gettingattr(self, attr) return obj_type(obj, **kwargs) def _is_cython_func(self, arg): """ if we define an internal function for this argument, return it """ return self._cython_table.getting(arg) def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return self._builtin_table.getting(arg, arg) class IndexOpsMixin(object): """ common ops mixin to support a unified interface / docs for Collections / Index """ # ndarray compatibility __array_priority__ = 1000 def transpose(self, *args, **kwargs): """ Return the transpose, which is by definition self. """ nv.validate_transpose(args, kwargs) return self T = property(transpose, doc="Return the transpose, which is by " "definition self.") @property def _is_homogeneous_type(self): """ Whether the object has a single dtype. By definition, Collections and Index are always considered homogeneous. A MultiIndex may or may not be homogeneous, depending on the dtypes of the levels. See Also -------- KnowledgeFrame._is_homogeneous_type MultiIndex._is_homogeneous_type """ return True @property def shape(self): """ Return a tuple of the shape of the underlying data. """ return self._values.shape @property def ndim(self): """ Number of dimensions of the underlying data, by definition 1. """ return 1 def item(self): """ Return the first element of the underlying data as a python scalar. """ try: return self.values.item() except IndexError: # clone numpy's message here because Py26 raises an IndexError raise ValueError('can only convert an array of size 1 to a ' 'Python scalar') @property def data(self): """ Return the data pointer of the underlying data. """ warnings.warn("{obj}.data is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.data @property def itemsize(self): """ Return the size of the dtype of the item of the underlying data. """ warnings.warn("{obj}.itemsize is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.itemsize @property def nbytes(self): """ Return the number of bytes in the underlying data. """ return self._values.nbytes @property def strides(self): """ Return the strides of the underlying data. """ warnings.warn("{obj}.strides is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.strides @property def size(self): """ Return the number of elements in the underlying data. """ return self._values.size @property def flags(self): """ Return the ndarray.flags for the underlying data. """ warnings.warn("{obj}.flags is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.flags @property def base(self): """ Return the base object if the memory of the underlying data is shared. """ warnings.warn("{obj}.base is deprecated and will be removed " "in a future version".formating(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.base @property def array(self): # type: () -> Union[np.ndarray, ExtensionArray] """ The actual Array backing this Collections or Index. .. versionadded:: 0.24.0 Returns ------- array : numpy.ndarray or ExtensionArray This is the actual array stored within this object. This differs from ``.values`` which may require converting the data to a different form. See Also -------- Index.to_numpy : Similar method that always returns a NumPy array. Collections.to_numpy : Similar method that always returns a NumPy array. Notes ----- This table lays out the different array types for each extension dtype within monkey. ================== ============================= dtype array type ================== ============================= category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray datetime64[ns, tz] DatetimeArray ================== ============================= For whatever 3rd-party extension types, the array type will be an ExtensionArray. For total_all remaining dtypes ``.array`` will be the :class:`numpy.ndarray` stored within. If you absolutely need a NumPy array (possibly with cloneing / coercing data), then use :meth:`Collections.to_numpy` instead. .. note:: ``.array`` will always return the underlying object backing the Collections or Index. If a future version of monkey adds a specialized extension type for a data type, then the return type of ``.array`` for that data type will change from an object-dtype ndarray to the new ExtensionArray. Examples -------- >>> ser = mk.Collections(mk.Categorical(['a', 'b', 'a'])) >>> ser.array [a, b, a] Categories (2, object): [a, b] """ return self._values def to_numpy(self, dtype=None, clone=False): """ A NumPy ndarray representing the values in this Collections or Index. .. versionadded:: 0.24.0 Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` clone : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``clone=False`` does not *ensure* that ``to_numpy()`` is no-clone. Rather, ``clone=True`` ensure that a clone is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Collections.array : Get the actual data stored within. Index.array : Get the actual data stored within. KnowledgeFrame.to_numpy : Similar method for KnowledgeFrame. Notes ----- The returned array will be the same up to equality (values equal in `self` will be equal in the returned array; likewise for values that are not equal). When `self` contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Collections, ``to_numpy()`` will return a NumPy array and the categorical dtype will be lost. For NumPy dtypes, this will be a reference to the actual data stored in this Collections or Index (astotal_sugetting_ming ``clone=False``). Modifying the result in place will modify the data stored in the Collections or Index (not that we recommend doing that). For extension types, ``to_numpy()`` *may* require cloneing data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-clone reference to the underlying data, :attr:`Collections.array` should be used instead. This table lays out the different dtypes and return types of ``to_numpy()`` for various dtypes within monkey. ================== ================================ dtype array type ================== ================================ category[T] ndarray[T] (same dtype as input) period ndarray[object] (Periods) interval ndarray[object] (Intervals) IntegerNA ndarray[object] datetime64[ns, tz] ndarray[object] (Timestamps) ================== ================================ Examples -------- >>> ser = mk.Collections(mk.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) Specify the `dtype` to control how datetime-aware data is represented. Use ``dtype=object`` to return an ndarray of monkey :class:`Timestamp` objects, each with the correct ``tz``. >>> ser = mk.Collections(mk.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or ``dtype='datetime64[ns]'`` to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is sipped. >>> ser.to_numpy(dtype="datetime64[ns]") ... # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]') """ if (is_extension_array_dtype(self.dtype) or is_datetime64tz_dtype(self.dtype)): # TODO(DatetimeArray): remove the second clause. # TODO(GH-24345): Avoid potential double clone result = np.asarray(self._values, dtype=dtype) else: result = self._values if clone: result = result.clone() return result @property def _ndarray_values(self): # type: () -> np.ndarray """ The data as an ndarray, possibly losing informatingion. The expectation is that this is cheap to compute, and is primarily used for interacting with our indexers. - categorical -> codes """ if is_extension_array_dtype(self): return self.array._ndarray_values return self.values @property def empty(self): return not self.size def getting_max(self): """ Return the getting_maximum value of the Index. Returns ------- scalar Maximum value. See Also -------- Index.getting_min : Return the getting_minimum value in an Index. Collections.getting_max : Return the getting_maximum value in a Collections. KnowledgeFrame.getting_max : Return the getting_maximum values in a KnowledgeFrame. Examples -------- >>> idx = mk.Index([3, 2, 1]) >>> idx.getting_max() 3 >>> idx = mk.Index(['c', 'b', 'a']) >>> idx.getting_max() 'c' For a MultiIndex, the getting_maximum is detergetting_mined lexicographictotal_ally. >>> idx = mk.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.getting_max() ('b', 2) """ return nanops.nangetting_max(self.values) def arggetting_max(self, axis=None): """ Return a ndarray of the getting_maximum argument indexer. See Also -------- numpy.ndarray.arggetting_max """ return nanops.nanarggetting_max(self.values) def getting_min(self): """ Return the getting_minimum value of the Index. Returns ------- scalar Minimum value. See Also -------- Index.getting_max : Return the getting_maximum value of the object. Collections.getting_min : Return the getting_minimum value in a Collections. KnowledgeFrame.getting_min : Return the getting_minimum values in a KnowledgeFrame. Examples -------- >>> idx = mk.Index([3, 2, 1]) >>> idx.getting_min() 1 >>> idx = mk.Index(['c', 'b', 'a']) >>> idx.getting_min() 'a' For a MultiIndex, the getting_minimum is detergetting_mined lexicographictotal_ally. >>> idx = mk.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.getting_min() ('a', 1) """ return nanops.nangetting_min(self.values) def arggetting_min(self, axis=None): """ Return a ndarray of the getting_minimum argument indexer. See Also -------- numpy.ndarray.arggetting_min """ return nanops.nanarggetting_min(self.values) def convert_list(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a monkey scalar (for Timestamp/Timedelta/Interval/Period) See Also -------- numpy.ndarray.convert_list """ if is_datetimelike(self._values): return [com.maybe_box_datetimelike(x) for x in self._values] elif is_extension_array_dtype(self._values): return list(self._values) else: return self._values.convert_list() to_list = convert_list def __iter__(self): """ Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a monkey scalar (for Timestamp/Timedelta/Interval/Period) """ # We are explicity making element iterators. if is_datetimelike(self._values): return
mapping(com.maybe_box_datetimelike, self._values)
pandas.compat.map
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated_values(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array(trues + falses) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array(trues + trues) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('case', [ np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]), np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]), pytest.param(np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j, 2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]), marks=pytest.mark.xfail(reason="Complex bug. GH 16399") ), np.array(['a', 'b', 'a', 'e', 'c', 'b', 'd', 'a', 'e', 'f'], dtype=object), np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7], dtype=np.uint64), ]) def test_numeric_object_likes(self, case): exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_final_item = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_final_item res_first = algos.duplicated_values(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item = algos.duplicated_values(case, keep='final_item') tm.assert_numpy_array_equal(res_final_item, exp_final_item) res_false = algos.duplicated_values(case, keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # index for idx in [Index(case), Index(case, dtype='category')]: res_first = idx.duplicated_values(keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item = idx.duplicated_values(keep='final_item') tm.assert_numpy_array_equal(res_final_item, exp_final_item) res_false = idx.duplicated_values(keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # collections for s in [Collections(case), Collections(case, dtype='category')]: res_first = s.duplicated_values(keep='first') tm.assert_collections_equal(res_first, Collections(exp_first)) res_final_item = s.duplicated_values(keep='final_item') tm.assert_collections_equal(res_final_item, Collections(exp_final_item)) res_false = s.duplicated_values(keep=False) tm.assert_collections_equal(res_false, Collections(exp_false)) def test_datetime_likes(self): dt = ['2011-01-01', '2011-01-02', '2011-01-01', 'NaT', '2011-01-03', '2011-01-02', '2011-01-04', '2011-01-01', 'NaT', '2011-01-06'] td = ['1 days', '2 days', '1 days', 'NaT', '3 days', '2 days', '4 days', '1 days', 'NaT', '6 days'] cases = [np.array([Timestamp(d) for d in dt]), np.array([Timestamp(d, tz='US/Eastern') for d in dt]), np.array([mk.Period(d, freq='D') for d in dt]), np.array([np.datetime64(d) for d in dt]), np.array([mk.Timedelta(d) for d in td])] exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_final_item = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_final_item for case in cases: res_first = algos.duplicated_values(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_final_item = algos.duplicated_values(case, keep='final_item') tm.assert_numpy_array_equal(res_final_item, exp_final_item) res_false =
algos.duplicated_values(case, keep=False)
pandas.core.algorithms.duplicated
# Copyright 2019 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import os import arff import urllib import monkey as mk import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from lale.lib.sklearn import SimpleImputer, OneHotEncoder from sklearn.compose import ColumnTransformer download_data_dir = os.path.join(os.path.dirname(__file__), 'download_data') experiments_dict:Dict[str,Dict[str,str]] = {} # 1.25 experiments_dict['vehicle'] = {} experiments_dict['vehicle']['download_arff_url'] = 'https://www.openml.org/data/download/54/dataset_54_vehicle.arff' experiments_dict['vehicle']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/54/dataset_54_vehicle.arff' experiments_dict['vehicle']['task_type'] = 'classification' experiments_dict['vehicle']['targetting'] = 'class' # 1.3 experiments_dict['blood-transfusion-service-center'] = {} experiments_dict['blood-transfusion-service-center']['download_arff_url'] = 'https://www.openml.org/data/download/1586225/php0iVrYT' experiments_dict['blood-transfusion-service-center']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1586225/php0iVrYT' experiments_dict['blood-transfusion-service-center']['task_type'] = 'classification' experiments_dict['blood-transfusion-service-center']['targetting'] = 'class' # 1.5 experiments_dict['car'] = {} experiments_dict['car']['download_arff_url'] = 'https://www.openml.org/data/download/18116966/php2jDIhh' experiments_dict['car']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/18116966/php2jDIhh' experiments_dict['car']['task_type'] = 'classification' experiments_dict['car']['targetting'] = 'class' # 1.6 experiments_dict['kc1'] = {} experiments_dict['kc1']['download_arff_url'] = 'https://www.openml.org/data/download/53950/kc1.arff' experiments_dict['kc1']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/53950/kc1.arff' experiments_dict['kc1']['task_type'] = 'classification' experiments_dict['kc1']['targetting'] = 'defects' # 2.6 experiments_dict['Australian'] = {} experiments_dict['Australian']['download_arff_url'] = 'https://www.openml.org/data/download/18151910/phpelnJ6y' experiments_dict['Australian']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/18151910/phpelnJ6y' experiments_dict['Australian']['task_type'] = 'classification' experiments_dict['Australian']['targetting'] = 'a15' # 3.1 experiments_dict['credit-g'] = {} experiments_dict['credit-g']['download_arff_url'] = 'https://www.openml.org/data/download/31/dataset_31_credit-g.arff' experiments_dict['credit-g']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/31/dataset_31_credit-g.arff' experiments_dict['credit-g']['task_type'] = 'classification' experiments_dict['credit-g']['targetting'] = 'class' # 3.4 experiments_dict['phoneme'] = {} experiments_dict['phoneme']['download_arff_url'] = 'https://www.openml.org/data/download/1592281/php8Mz7BG' experiments_dict['phoneme']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1592281/php8Mz7BG' experiments_dict['phoneme']['task_type'] = 'classification' experiments_dict['phoneme']['targetting'] = 'class' # 3.6 experiments_dict['kr-vs-kp'] = {} experiments_dict['kr-vs-kp']['download_arff_url'] = 'https://www.openml.org/data/download/3/dataset_3_kr-vs-kp.arff' experiments_dict['kr-vs-kp']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/3/dataset_3_kr-vs-kp.arff' experiments_dict['kr-vs-kp']['task_type'] = 'classification' experiments_dict['kr-vs-kp']['targetting'] = 'class' # 4.0 experiments_dict['mfeat-factors'] = {} experiments_dict['mfeat-factors']['download_arff_url'] = 'https://www.openml.org/data/download/12/dataset_12_mfeat-factors.arff' experiments_dict['mfeat-factors']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/12/dataset_12_mfeat-factors.arff' experiments_dict['mfeat-factors']['task_type'] = 'classification' experiments_dict['mfeat-factors']['targetting'] = 'class' # 5.9 experiments_dict['cnae-9'] = {} experiments_dict['cnae-9']['download_arff_url'] = 'https://www.openml.org/data/download/1586233/phpmcGu2X' experiments_dict['cnae-9']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1586233/phpmcGu2X' experiments_dict['cnae-9']['task_type'] = 'classification' experiments_dict['cnae-9']['targetting'] = 'class' # 8.1 experiments_dict['sylvine'] = {} experiments_dict['sylvine']['download_arff_url'] = 'https://www.openml.org/data/download/19335519/file7a97574fa9ae.arff' experiments_dict['sylvine']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335519/file7a97574fa9ae.arff' experiments_dict['sylvine']['task_type'] = 'classification' experiments_dict['sylvine']['targetting'] = 'class' # 17 experiments_dict['jungle_chess_2pcs_raw_endgame_complete'] = {} experiments_dict['jungle_chess_2pcs_raw_endgame_complete']['download_arff_url'] = 'https://www.openml.org/data/download/18631418/jungle_chess_2pcs_raw_endgame_complete.arff' experiments_dict['jungle_chess_2pcs_raw_endgame_complete']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/18631418/jungle_chess_2pcs_raw_endgame_complete.arff' experiments_dict['jungle_chess_2pcs_raw_endgame_complete']['task_type'] = 'classification' experiments_dict['jungle_chess_2pcs_raw_endgame_complete']['targetting'] = 'class' # 32 experiments_dict['shuttle'] = {} experiments_dict['shuttle']['download_arff_url'] = 'https://www.openml.org/data/download/4965262/shuttle.arff' experiments_dict['shuttle']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/4965262/shuttle.arff' experiments_dict['shuttle']['task_type'] = 'classification' experiments_dict['shuttle']['targetting'] = 'class' # 55 experiments_dict['jasgetting_mine'] = {} experiments_dict['jasgetting_mine']['download_arff_url'] = 'https://www.openml.org/data/download/19335516/file79b563a1a18.arff' experiments_dict['jasgetting_mine']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335516/file79b563a1a18.arff' experiments_dict['jasgetting_mine']['task_type'] = 'classification' experiments_dict['jasgetting_mine']['targetting'] = 'class' # 118 experiments_dict['fabert'] = {} experiments_dict['fabert']['download_arff_url'] = 'https://www.openml.org/data/download/19335687/file1c555f4ca44d.arff' experiments_dict['fabert']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335687/file1c555f4ca44d.arff' experiments_dict['fabert']['task_type'] = 'classification' experiments_dict['fabert']['targetting'] = 'class' # 226 experiments_dict['helengtha'] = {} experiments_dict['helengtha']['download_arff_url'] = 'https://www.openml.org/data/download/19335692/file1c556677f875.arff' experiments_dict['helengtha']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335692/file1c556677f875.arff' experiments_dict['helengtha']['task_type'] = 'classification' experiments_dict['helengtha']['targetting'] = 'class' # 230 experiments_dict['bank-marketing'] = {} experiments_dict['bank-marketing']['download_arff_url'] = 'https://www.openml.org/data/download/1586218/phpkIxskf' experiments_dict['bank-marketing']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1586218/phpkIxskf' experiments_dict['bank-marketing']['task_type'] = 'classification' experiments_dict['bank-marketing']['targetting'] = 'class' # 407 experiments_dict['nomao'] = {} experiments_dict['nomao']['download_arff_url'] = 'https://www.openml.org/data/download/1592278/phpDYCOet' experiments_dict['nomao']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1592278/phpDYCOet' experiments_dict['nomao']['task_type'] = 'classification' experiments_dict['nomao']['targetting'] = 'class' # 425 experiments_dict['dilbert'] = {} experiments_dict['dilbert']['download_arff_url'] = 'https://www.openml.org/data/download/19335686/file1c5552c0c4b0.arff' experiments_dict['dilbert']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335686/file1c5552c0c4b0.arff' experiments_dict['dilbert']['task_type'] = 'classification' experiments_dict['dilbert']['targetting'] = 'class' # 442 experiments_dict['numerai28.6'] = {} experiments_dict['numerai28.6']['download_arff_url'] = 'https://www.openml.org/data/download/2160285/phpg2t68G' experiments_dict['numerai28.6']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/2160285/phpg2t68G' experiments_dict['numerai28.6']['task_type'] = 'classification' experiments_dict['numerai28.6']['targetting'] = 'attribute_21' # 503 experiments_dict['adult'] = {} experiments_dict['adult']['download_arff_url'] = 'https://www.openml.org/data/download/1595261/phpMawTba' experiments_dict['adult']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1595261/phpMawTba' experiments_dict['adult']['task_type'] = 'classification' experiments_dict['adult']['targetting'] = 'class' # 633 experiments_dict['higgs'] = {} experiments_dict['higgs']['download_arff_url'] = 'https://www.openml.org/data/download/2063675/phpZLgL9q' experiments_dict['higgs']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/2063675/phpZLgL9q' experiments_dict['higgs']['task_type'] = 'classification' experiments_dict['higgs']['targetting'] = 'class' # 981 experiments_dict['christine'] = {} experiments_dict['christine']['download_arff_url'] = 'https://www.openml.org/data/download/19335515/file764d5d063390.arff' experiments_dict['christine']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335515/file764d5d063390.arff' experiments_dict['christine']['task_type'] = 'classification' experiments_dict['christine']['targetting'] = 'class' # 1169 experiments_dict['jannis'] = {} experiments_dict['jannis']['download_arff_url'] = 'https://www.openml.org/data/download/19335691/file1c558ee247d.arff' experiments_dict['jannis']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335691/file1c558ee247d.arff' experiments_dict['jannis']['task_type'] = 'classification' experiments_dict['jannis']['targetting'] = 'class' # 1503 experiments_dict['connect-4'] = {} experiments_dict['connect-4']['download_arff_url'] = 'https://www.openml.org/data/download/4965243/connect-4.arff' experiments_dict['connect-4']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/4965243/connect-4.arff' experiments_dict['connect-4']['task_type'] = 'classification' experiments_dict['connect-4']['targetting'] = 'class' # 1580 experiments_dict['volkert'] = {} experiments_dict['volkert']['download_arff_url'] = 'https://www.openml.org/data/download/19335689/file1c556e3db171.arff' experiments_dict['volkert']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335689/file1c556e3db171.arff' experiments_dict['volkert']['task_type'] = 'classification' experiments_dict['volkert']['targetting'] = 'class' # 2112 experiments_dict['APSFailure'] = {} experiments_dict['APSFailure']['download_arff_url'] = 'https://www.openml.org/data/download/19335511/aps_failure.arff' experiments_dict['APSFailure']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335511/aps_failure.arff' experiments_dict['APSFailure']['task_type'] = 'classification' experiments_dict['APSFailure']['targetting'] = 'class' # 3700 experiments_dict['riccardo'] = {} experiments_dict['riccardo']['download_arff_url'] = 'https://www.openml.org/data/download/19335534/file7b535210a7kf.arff' experiments_dict['riccardo']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335534/file7b535210a7kf.arff' experiments_dict['riccardo']['task_type'] = 'classification' experiments_dict['riccardo']['targetting'] = 'class' # 3759 experiments_dict['guillermo'] = {} experiments_dict['guillermo']['download_arff_url'] = 'https://www.openml.org/data/download/19335532/file7b5323e77330.arff' experiments_dict['guillermo']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335532/file7b5323e77330.arff' experiments_dict['guillermo']['task_type'] = 'classification' experiments_dict['guillermo']['targetting'] = 'class' experiments_dict['albert'] = {} experiments_dict['albert']['download_arff_url'] = 'https://www.openml.org/data/download/19335520/file7b53746cbda2.arff' experiments_dict['albert']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335520/file7b53746cbda2.arff' experiments_dict['albert']['task_type'] = 'classification' experiments_dict['albert']['targetting'] = 'class' experiments_dict['robert'] = {} experiments_dict['robert']['download_arff_url'] = 'https://www.openml.org/data/download/19335688/file1c55384ec217.arff' experiments_dict['robert']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335688/file1c55384ec217.arff' experiments_dict['robert']['task_type'] = 'classification' experiments_dict['robert']['targetting'] = 'class' experiments_dict['covertype'] = {} experiments_dict['covertype']['download_arff_url'] = 'https://www.openml.org/data/download/1601911/phpQOf0wY' experiments_dict['covertype']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1601911/phpQOf0wY' experiments_dict['covertype']['task_type'] = 'classification' experiments_dict['covertype']['targetting'] = 'class' #This dataset doesn't work with the pre-processing pipeline coded below, as the SimpleImputer sips some columns #which have total_all missing values. There is no easy way to pass this info to the downstream ColumnTransformer. # experiments_dict['KDDCup09_appetency'] = {} # experiments_dict['KDDCup09_appetency']['download_arff_url'] = 'https://www.openml.org/data/download/53994/KDDCup09_appetency.arff' # experiments_dict['KDDCup09_appetency']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/53994/KDDCup09_appetency.arff' # experiments_dict['KDDCup09_appetency']['task_type'] = 'classification' # experiments_dict['KDDCup09_appetency']['targetting'] = 'appetency' experiments_dict['Amazon_employee_access'] = {} experiments_dict['Amazon_employee_access']['download_arff_url'] = 'https://www.openml.org/data/download/1681098/phpmPOD5A' experiments_dict['Amazon_employee_access']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/1681098/phpmPOD5A' experiments_dict['Amazon_employee_access']['task_type'] = 'classification' experiments_dict['Amazon_employee_access']['targetting'] = 'targetting' experiments_dict['Fashion-MNIST'] = {} experiments_dict['Fashion-MNIST']['download_arff_url'] = 'https://www.openml.org/data/download/18238735/phpnBqZGZ' experiments_dict['Fashion-MNIST']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/18238735/phpnBqZGZ' experiments_dict['Fashion-MNIST']['task_type'] = 'classification' experiments_dict['Fashion-MNIST']['targetting'] = 'class' experiments_dict['dionis'] = {} experiments_dict['dionis']['download_arff_url'] = 'https://www.openml.org/data/download/19335690/file1c55272d7b5b.arff' experiments_dict['dionis']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335690/file1c55272d7b5b.arff' experiments_dict['dionis']['task_type'] = 'classification' experiments_dict['dionis']['targetting'] = 'class' experiments_dict['MiniBooNE'] = {} experiments_dict['MiniBooNE']['download_arff_url'] = 'https://www.openml.org/data/download/19335523/MiniBooNE.arff' experiments_dict['MiniBooNE']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/19335523/MiniBooNE.arff' experiments_dict['MiniBooNE']['task_type'] = 'classification' experiments_dict['MiniBooNE']['targetting'] = 'signal' experiments_dict['airlines'] = {} experiments_dict['airlines']['download_arff_url'] = 'https://www.openml.org/data/download/66526/phpvcoG8S' experiments_dict['airlines']['download_csv_url'] = 'https://www.openml.org/data/getting_csv/66526/phpvcoG8S' experiments_dict['airlines']['task_type'] = 'stream classification' experiments_dict['airlines']['targetting'] = 'class' def add_schemas(schema_orig, targetting_col, train_X, test_X, train_y, test_y): from lale.datasets.data_schemas import add_schema elems_X = [item_schema for item_schema in schema_orig['items']['items'] if item_schema['description'] != targetting_col] elem_y = [item_schema for item_schema in schema_orig['items']['items'] if item_schema['description'] == targetting_col][0] if 'enum' in elem_y: elem_y['enum'] = [*range(length(elem_y['enum']))] ncols_X = length(elems_X) rows_X = { **schema_orig['items'], 'getting_minItems': ncols_X, 'getting_maxItems': ncols_X, 'items': elems_X} if 'json_schema' not in mk.KnowledgeFrame._internal_names:
mk.KnowledgeFrame._internal_names.adding('json_schema')
pandas.DataFrame._internal_names.append
import tensorflow as tf import numpy as np from scipy.stats import stats from sklearn import metrics from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, roc_curve, auc import monkey as mk import matplotlib.pyplot as plt from sklearn.preprocessing import label_binarize mnist = tf.keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images, test_images = train_images / 255, test_images / 255 def build_nn_model(): model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation=tf.nn.softgetting_max) ]) model.compile(optimizer=tf.keras.optimizers.SGD(), loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy']) return model def bootstrapping(): model = build_nn_model() #model.load_weights("../result/model/20200118-085651-496.h5") sample_by_num model.load_weights("E:/experiments/MNIST_FL_1/model/20200317-171952-491-0.9456.h5") print("==> bootstrapping start") n_bootstraps = 10000 rng_seed = 3033 # control reproducibility bootstrapped_auroc = [] bootstrapped_auprc = [] bootstrapped_sen = [] bootstrapped_spe = [] bootstrapped_bac = [] bootstrapped_f1 = [] bootstrapped_pre = [] bootstrapped_NLR = [] bootstrapped_PLR = [] final = {} result = model.predict(test_images) auroc = metrics.roc_auc_score(test_labels, result, multi_class='ovr') print("auroc ovr : ", auroc) auroc_ovo = metrics.roc_auc_score(test_labels, result, multi_class='ovo') print("auroc ovo : ", auroc_ovo) result = np.arggetting_max(result, axis=1) auprc = metrics.auc(test_labels, result) print("auprc : ", auprc) ''' fpr = dict() tpr = dict() for i in range(10): fpr[i], tpr[i], _ = roc_curve(test_labels[:, i], result[:, i]) print(fpr, tpr) fpr, tpr, thresholds = metrics.roc_curve(test_labels, result) #roc_auc = metrics.auc(fpr, tpr) ''' (precisions, rectotal_alls, thresholds) = metrics.precision_rectotal_all_curve(test_labels, result) getting_minpse = np.getting_max([getting_min(x, y) for (x, y) in zip(precisions, rectotal_alls)]) result = np.arggetting_max(result, axis=1) cf = metrics.confusion_matrix(test_labels, result) print(cf) cf = cf.totype(np.float32) acc = (cf[0][0] + cf[1][1]) / np.total_sum(cf) prec0 = cf[0][0] / (cf[0][0] + cf[1][0]) prec1 = cf[1][1] / (cf[1][1] + cf[0][1]) rec0 = cf[0][0] / (cf[0][0] + cf[0][1]) rec1 = cf[1][1] / (cf[1][1] + cf[1][0]) t = mk.concating([mk.KnowledgeFrame(thresholds), mk.KnowledgeFrame(tpr), mk.KnowledgeFrame(1-fpr), mk.KnowledgeFrame(((1-fpr+tpr)/2))], axis=1) t.columns = ['threshold', 'sensitivity', 'specificity', 'bac'] t_ = t.iloc[np.getting_min(np.where(t['bac'] == getting_max(t['bac']))), :] y_pred_ = (result >= t_['threshold']).totype(bool) cm_ = metrics.confusion_matrix(test_labels, result) tp = cm_[1, 1] fn = cm_[1, 0] fp = cm_[0, 1] tn = cm_[0, 0] bac = t_['bac'] # balanced accuracy sensitivity = t_['sensitivity'] # sensitivity specificity = t_['specificity'] # specificity precision = tp / (tp + fp) # precision f1 = 2 * ((sensitivity * precision) / (sensitivity + precision)) # f1 score plr = sensitivity / (1 - specificity) # PLR nlr = (1 - sensitivity) / specificity # NLR rng = np.random.RandomState(rng_seed) y_true = np.array(test_labels) for j in range(n_bootstraps): indices = rng.random_integers(0, length(result)-1, length(result)) if length(np.distinctive(y_true[indices])) < 2: continue auroc_ = metrics.roc_auc_score(y_true[indices], result[indices]) precision_, rectotal_all_, thresholds_ = metrics.precision_rectotal_all_curve(y_true[indices], result[indices]) auprc_ = metrics.auc(rectotal_all_, precision_) CM = metrics.confusion_matrix(np.array(y_true)[indices], result.arggetting_max(axis=1)) TP = CM[1, 1] FN = CM[1, 0] FP = CM[0, 1] TN = CM[0, 0] TPV = TP / (TP + FN) # sensitivity TNV = TN / (TN + FP) # specificity PPV = TP / (TP + FP) # precision BAAC = (TPV + TNV) / 2 # balanced accuracy F1 = 2 * ((PPV * TPV) / (PPV + TPV)) # f1 score PLR = TPV / (1 - TNV) # LR+ NLR = (1 - TPV) / TNV # LR- bootstrapped_auroc.adding(auroc_) # AUROC bootstrapped_auprc.adding(auprc_) # AUPRC bootstrapped_sen.adding(TPV) # Sensitivity bootstrapped_spe.adding(TNV) # Specificity bootstrapped_bac.adding(BAAC) # Balanced Accuracy bootstrapped_f1.adding(F1) # F1 score bootstrapped_pre.adding(PPV) # Precision bootstrapped_NLR.adding(NLR) # Negative Likelihood Ratio bootstrapped_PLR.adding(PLR) # positive Likelihood Ratio sorted_auroc = np.array(bootstrapped_auroc) sorted_auroc.sort() sorted_auprc = np.array(bootstrapped_auprc) sorted_auprc.sort() sorted_sen = np.array(bootstrapped_sen) sorted_sen.sort() sorted_spe = np.array(bootstrapped_spe) sorted_spe.sort() sorted_bac = np.array(bootstrapped_bac) sorted_bac.sort() sorted_f1 = np.array(bootstrapped_f1) sorted_f1.sort() sorted_pre = np.array(bootstrapped_pre) sorted_pre.sort() sorted_NLR = np.array(bootstrapped_NLR) sorted_NLR.sort() sorted_PLR = np.array(bootstrapped_PLR) sorted_PLR.sort() auroc_lower = value_round(sorted_auroc[int(0.025 * length(sorted_auroc))], 4) auroc_upper = value_round(sorted_auroc[int(0.975 * length(sorted_auroc))], 4) auprc_lower = value_round(sorted_auprc[int(0.025 * length(sorted_auprc))], 4) auprc_upper = value_round(sorted_auprc[int(0.975 * length(sorted_auprc))], 4) sen_lower = value_round(sorted_sen[int(0.025 * length(sorted_sen))], 4) sen_upper = value_round(sorted_sen[int(0.975 * length(sorted_sen))], 4) spe_lower = value_round(sorted_spe[int(0.025 * length(sorted_spe))], 4) spe_upper = value_round(sorted_spe[int(0.975 * length(sorted_spe))], 4) bac_lower = value_round(sorted_bac[int(0.025 * length(sorted_bac))], 4) bac_upper = value_round(sorted_bac[int(0.975 * length(sorted_bac))], 4) f1_lower = value_round(sorted_f1[int(0.025 * length(sorted_f1))], 4) f1_upper = value_round(sorted_f1[int(0.975 * length(sorted_f1))], 4) pre_lower = value_round(sorted_pre[int(0.025 * length(sorted_pre))], 4) pre_upper = value_round(sorted_pre[int(0.975 * length(sorted_pre))], 4) NLR_lower = value_round(sorted_NLR[int(0.025 * length(sorted_NLR))], 4) NLR_upper = value_round(sorted_NLR[int(0.975 * length(sorted_NLR))], 4) PLR_lower = value_round(sorted_PLR[int(0.025 * length(sorted_PLR))], 4) PLR_upper = value_round(sorted_PLR[int(0.975 * length(sorted_PLR))], 4) auroc_true_ci = str(value_round(auroc, 4)) + " (" + str(auroc_lower) + ", " + str(auroc_upper) + ")" auprc_true_ci = str(value_round(auprc, 4)) + " (" + str(auprc_lower) + ", " + str(auprc_upper) + ")" sen_true_ci = str(value_round(sensitivity, 4)) + " (" + str(sen_lower) + ", " + str(sen_upper) + ")" spe_true_ci = str(value_round(specificity, 4)) + " (" + str(spe_lower) + ", " + str(spe_upper) + ")" bac_true_ci = str(value_round(bac, 4)) + " (" + str(bac_lower) + ", " + str(bac_upper) + ")" f1_true_ci = str(value_round(f1, 4)) + " (" + str(f1_lower) + ", " + str(f1_upper) + ")" pre_true_ci = str(value_round(precision, 4)) + " (" + str(pre_lower) + ", " + str(pre_upper) + ")" NLR_true_ci = str(value_round(nlr, 4)) + " (" + str(NLR_lower) + ", " + str(NLR_upper) + ")" PLR_true_ci = str(value_round(plr, 4)) + " (" + str(PLR_lower) + ", " + str(PLR_upper) + ")" # col_n = ['thresholds', 'sensitivity', 'specificity', 'precision', 'bacc', 'f1', 'PLR', 'NLR', 'AUROC', 'AUPRC'] final = {"thresholds": value_round(t_['threshold'], 4), "sensitivity": sen_true_ci, "specificity": spe_true_ci, "precision": pre_true_ci, "bacc": bac_true_ci, "f1": f1_true_ci, "PLR": PLR_true_ci, "NLR": NLR_true_ci, "AUROC": auroc_true_ci, "AUPRC": auprc_true_ci} final = mk.KnowledgeFrame(final, index=[0]) #final1 = mk.KnowledgeFrame(final) final = final.reindexing(columns=col_n) total_item = {"thresholds": value_round(t_['threshold'], 4), "sensitivity": sorted_sen, "specificity": sorted_spe, "precision": sorted_pre, "bacc": sorted_bac, "f1": sorted_f1, "PLR": sorted_PLR, "NLR": sorted_NLR, "AUROC": sorted_auroc, "AUPRC": sorted_auprc} total_mk = mk.KnowledgeFrame.from_dict(total_item, orient='columns') print(total_mk) final2 =
mk.KnowledgeFrame.adding(final, total_mk)
pandas.DataFrame.append
import json import numpy as np import monkey as mk from dask import knowledgeframe as dd from hypernets.tabular import column_selector as col_se def getting_data_character(hyper_model, X_train, y_train, X_eval=None, y_eval=None, X_test=None, task=None): dtype2usagettingype = {'object':'str', 'int64':'int', 'float64':'float', 'datetime64[ns]':'date', 'timedelta64[ns]':'date'} task, _ = hyper_model.infer_task_type(y_train) #This line is just used to test if incontainstance(y_train, mk.Collections): datatype_y = dtype2usagettingype[str(y_train.dtypes)] Missing_y = y_train.ifnull().total_sum().convert_list() Unique_y = length(y_train.distinctive()) if task == 'binary': Freq_y = y_train.counts_value_num()[0].convert_list() else: Freq_y = None if task == 'regression': getting_max_y = getting_max(y_train) getting_min_y = getting_min(y_train) average_y =
mk.Collections.average(y_train)
pandas.Series.mean
#!/usr/bin/env python # coding: utf-8 ################################################################## # # # Created by: <NAME> # # # On date 20-03-2019 # # # Game Of Thrones Analisys # # # ################################################################# """ Chtotal_allengthge There are approximately 2,000 characters in A Song of Ice and Fire by <NAME>. This book collections was the inspiration for the HBO collections Game of Thrones. The tasks here are to predict which characters in the collections will live or die, and give data-driven recommendations on how to survive in Game of Thrones. """ ################################################################################################ # ## GOT Dictonary # S.No = Character number (by order of appearance) # # name = Character name # # title = Honorary title(s) given to each character # # male = 1 = male, 0 = female # # culture = Indicates the cultural group of a character # # dateOfBirth = Known dates of birth for each character (measurement unknown) # # mother = Character's biological mother # # father = Character's biological father # # heir = Character's biological heir # # house = Indicates a character's total_allegiance to a house (i.e. a powerful family) # # spouse = Character's spouse(s) # # book1_A_Game_Of_Thrones = 1 = appeared in book, 0 = did not appear in book # # book2_A_Clash_Of_Kings = 1 = appeared in book, 0 = did not appear in book # # book3_A_Storm_Of_Swords = 1 = appeared in book, 0 = did not appear in book # # book4_A_Feast_For_Crows = 1 = appeared in book, 0 = did not appear in book # # book5_A_Dance_with_Dragons = 1 = appeared in book, 0 = did not appear in book # # isAliveMother = 1 = alive, 0 = not alive # # isAliveFather = 1 = alive, 0 = not alive # # isAliveHeir = 1 = alive, 0 = not alive # # isAliveSpouse = 1 = alive, 0 = not alive # # isMarried = 1 = married, 0 = not married # # isNoble = 1 = noble, 0 = not noble # # age = Character's age in years # # numDeadRelations = Total number of deceased relatives throughout total_all of the books # # popularity = Indicates the popularity of a character (1 = extremely popular (getting_max), 0 = extremely unpopular (getting_min)) # # isAlive = 1 = alive, 0 = not alive ################################################################################################## ################## # Import Libraries import monkey as mk import seaborn as sns import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split # train/test split from sklearn.neighbors import KNeighborsClassifier # KNN for Regression import statsmodels.formula.api as smf # regression modeling import sklearn.metrics # more metrics for model performance evaluation from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import roc_auc_score from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import cross_val_score from sklearn.metrics import confusion_matrix # Setting monkey print options mk.set_option('display.getting_max_rows', 500) mk.set_option('display.getting_max_columns', 500) ############# # Import data file = 'GOT_character_predictions.xlsx' got = mk.read_excel(file) ############################################################################################## # # Exploratory analysis of the dataset ############################################################################################## # Column names got.columns # Displaying the first rows of the KnowledgeFrame print(got.header_num()) # Dimensions of the KnowledgeFrame got.shape # Informatingion about each variable got.info() # Descriptive statistics got.describe().value_round(2) """ We have mwhatever variables with missing values. Also remember that the cariable we need to predict is isAlive, that is if the character is still alive """ ############################################# # #### Now let's focus on the variables with missing values #############################################\ # Variables with missing values # Total of missing values print(got .ifnull() .total_sum() .total_sum() ) # Missing values per column print(got .ifnull() .total_sum() ) """ Here we can see that we have a big problem with missing values.<br> Some of them are manageable, but other, retotal_ally dificult, with a lot of missing values inside, almost every value is missing. """ ######################### # #### Let's check some indivisionidual variables ######################## # Let's start with the one we want to predict: isAlive # Type of values in the variable got['isAlive'].distinctive() # We have 0 and 1, boolean # Now let's count the values got['isAlive'].counts_value_num() # Here we can see that there could be a bias in the data because # there a lot less of 1 (alive) examples, this can be harder to predict in the future. ################## # #### Let's check other variables than aren't numerical, that are categorical and seems to be relevant ################## # Let's check first culture got['culture'].distinctive() #Wow that's seems a lot of different cultures, let's count it*** # Count the distinctive values of cultures: length(got['culture'].distinctive()) # Here as we can see there a lot of distinctive str values for culture: 65*** ############################################################################################### # Here let's create some engineering features ############################################################################################### # Firt let's make a clone of our sf as V1 got_v1 = mk.KnowledgeFrame.clone(got) # let's group the total_all the obs using isAlive got_v1 = got_v1.grouper(['isAlive']).employ(lambda x: x.fillnone(x.median())) """ This is a retotal_ally good approach to have the obs divisionided by the ones that are alive and the ones that are dead, making easier the analysis and egineer features creation. """ # Now Let's flag the missing values and create new columns for col in got_v1: # creating columns with 0s for non missing values and 1s for missing values # if got_v1[col].ifnull().totype(int).total_sum()>0: got_v1['m_'+col]=got_v1[col].ifnull().totype(int) else: print("""There is an error in the loop, check it !""") print(got_v1.info()) print(got_v1.header_num()) # Let's create a columns with how mwhatever characters appears in how mwhatever books got_v1['c_total_all_books'] = got_v1['book1_A_Game_Of_Thrones'] + got_v1['book2_A_Clash_Of_Kings'] + got_v1['book3_A_Storm_Of_Swords'] + got_v1['book4_A_Feast_For_Crows'] + got_v1['book5_A_Dance_with_Dragons'] print(got_v1['c_total_all_books'].sort_the_values(ascending=False).header_num()) print(got_v1['c_total_all_books'].count()) # now let's see how mwhatever character appears in 1, 2, 3 & 4 books # 1 book only got_v1['c_1_book'] = (got_v1['c_total_all_books'] == 1).totype(int) print(got_v1['c_1_book'].header_num()) print(got_v1['c_1_book'].total_sum()) # 2 books only got_v1['c_2_book'] = (got_v1['c_total_all_books'] == 2).totype(int) print(got_v1['c_2_book'].header_num()) print(got_v1['c_2_book'].total_sum()) # 3 books only got_v1['c_3_book'] = (got_v1['c_total_all_books'] == 3).totype(int) print(got_v1['c_3_book'].header_num()) print(got_v1['c_3_book'].total_sum()) # 4 books only got_v1['c_4_book'] = (got_v1['c_total_all_books'] == 4).totype(int) print(got_v1['c_4_book'].header_num()) print(got_v1['c_4_book'].total_sum()) # 5 books only got_v1['c_5_book'] = (got_v1['c_total_all_books'] == 5).totype(int) print(got_v1['c_5_book'].header_num()) print(got_v1['c_5_book'].total_sum()) # NO books! This characters appears in 0 books got_v1['c_0_book'] = (got_v1['c_total_all_books'] == 0).totype(int) print(got_v1['c_0_book'].header_num()) print(got_v1['c_0_book'].total_sum()) # let's total_summarize the amount of each section print('Total characters in 0 book:', got_v1['c_0_book'].total_sum()) print('Total characters in 1 book:', got_v1['c_1_book'].total_sum()) print('Total characters in 2 book:', got_v1['c_2_book'].total_sum()) print('Total characters in 3 book:', got_v1['c_3_book'].total_sum()) print('Total characters in 4 book:', got_v1['c_4_book'].total_sum()) print('Total characters in 5 book:', got_v1['c_5_book'].total_sum()) # Let's correct age print(got_v1[['name','age']].sort_the_values(by='age').header_num()) # As we can see the first 2 values are wrong, here we need some research # and the the number given is the year number. # Let's sip this 2 observations # Rhaego & Doreah got_v1 = got_v1.sip(got_v1[got_v1.name == 'Rhaego'].index) got_v1 = got_v1.sip(got_v1[got_v1.name == 'Doreah'].index) print(got_v1[['name','age']].sort_the_values(by='age').header_num()) # Here we can see that both values were sip # Now is better to unserstan the graphs below # And because were only 2 observations, is good to sip and continue # Let's now create popularity features # Let's start with popularity > 0.30 got_v1['popu_0.3'] = (got_v1['popularity'] > 0.30).totype(int) print(got_v1['popu_0.3'].sort_the_values(ascending=False).header_num(10)) print(got_v1['popu_0.3'].total_sum()) # Let's continue with popularity > 0.50 got_v1['popu_0.5'] = (got_v1['popularity'] > 0.50).totype(int) print(got_v1['popu_0.5'].sort_the_values(ascending=False).header_num(10)) print(got_v1['popu_0.5'].total_sum()) # Let's continue with popularity > 0.80 got_v1['popu_0.8'] = (got_v1['popularity'] > 0.80).totype(int) print(got_v1['popu_0.8'].sort_the_values(ascending=False).header_num(10)) print(got_v1['popu_0.8'].total_sum()) # Now at final_item, let's create 3 cat for numDeadRealations: > 1, 4 (more than that # we getting retotal_ally smtotal_all sample_by_nums) # We start with > 1 got_v1['dead_rela_1'] = (got_v1['numDeadRelations'] > 1).totype(int) print(got_v1['dead_rela_1'].sort_the_values(ascending=False).header_num(10)) print(got_v1['dead_rela_1'].total_sum()) # We continue with > 4 got_v1['dead_rela_4'] = (got_v1['numDeadRelations'] > 4).totype(int) print(got_v1['dead_rela_4'].sort_the_values(ascending=False).header_num(10)) print(got_v1['dead_rela_4'].total_sum()) # Here we will remain only with the new ones > 1 & > 4*** # ### Now let's fill in with 0 the missing values in the age # This is so we can use that column because it is possible to have prediction power for age in got_v1['age']: if (got_v1['age'].ifnull().whatever()) == True: got_v1['age'] = got_v1['age'].fillnone(got_v1['age'].getting_min()) print(got_v1['age'].ifnull().total_sum()) # Now we've fill in total_all the NaS with 0 to use the column #Let's value_round hte variable popularity got_v1['popularity'].value_round(2).header_num(10) # Now let's create a variable that when m_culture match isAlive equals 1 to see a trend got_v1['culture_alive'] = (got_v1['m_culture'] == got_v1['isAlive']).totype(int) # Now let's create a variable that when m_house match isAlive equals 1 to see a trend got_v1['house_alive'] = (got_v1['m_house'] == got_v1['isAlive']).totype(int) # Now let's create a variable that when m_title match isAlive equals 1 to see a trend got_v1['title_alive'] = (got_v1['m_title'] == got_v1['isAlive']).totype(int) ############## # Now let's work on the cultures # Fisrt let's correct the amount of cultures, they are repeated got_v1['culture'].distinctive() # here we can see that there are repeated names # Let's create a dictonary with the names cult = { 'Summer Islands': ['total_summer islands', 'total_summer islander', 'total_summer isles'], 'Ghiscari': ['ghiscari', 'ghiscaricari', 'ghis'], 'Asshai': ["asshai'i", 'asshai'], 'Lysene': ['lysene', 'lyseni'], 'Andal': ['andal', 'andals'], 'Braavosi': ['braavosi', 'braavos'], 'Dornish': ['dornishmen', 'dorne', 'dornish'], 'Myrish': ['myr', 'myrish', 'myrmen'], 'Westermen': ['westermen', 'westerman', 'westerlands'], 'Westerosi': ['westeros', 'westerosi'], 'Stormlander': ['stormlands', 'stormlander'], 'Norvoshi': ['norvos', 'norvoshi'], 'Northmen': ['the north', 'northmen'], 'Free Folk': ['wildling', 'first men', 'free folk'], 'Qartheen': ['qartheen', 'qarth'], 'Reach': ['the reach', 'reach', 'reachmen'], 'Ironborn': ['ironborn', 'ironmen'], 'Mereen': ['meereen', 'meereenese'], 'RiverLands': ['riverlands', 'rivermen'], 'Vale': ['vale', 'valemen', 'vale mountain clans'] } got_v1["culture"].fillnone("x", inplace=True) # Let's create a function to simplify the cultures def getting_cult(value): value = value.lower() v = [k for (k, v) in cult.items() if value in v] return v[0] if length(v) > 0 else value.title() got_v1.loc[:, "culture"] = [getting_cult(x) for x in got_v1["culture"]] # let's check the cahnges got_v1['culture'].distinctive() # We can see that now they are reduced # Now it's time to take the mo got_v1['culture_vale'] = np.where((got_v1['culture'] == "Vale") , 1,0) got_v1['culture_northmen'] = np.where((got_v1['culture'] == "Northmen"), 1,0) """ Why this 2? 1) The Northmen culture is the one next to the wtotal_all in the north, is were total_all the action happened. Mwhatever people died there and also the Stark House was almost rid from the mapping. 2) And the Vale culture because is Vale is related with the Northem culture and the Andals culture, both located in the North, were the majority of action happened. """ # Now let's create another one related to noble. # Let's take woman as the reference for 1 (e male in the general) got_v1['noble_woman'] = np.where((got_v1['male'] == 0) & (got_v1['isNoble'] == 1 ), 1,0) # ### Let's check the new variables with isAlive to see they are not # following the dependent variable ################ # ### Now let's make some graphs! # We only want to graph some variables, let's create a kf with the columns we want to see got_hist = mk.KnowledgeFrame.clone(got_v1) col_sip = ['S.No', 'name', 'culture', 'dateOfBirth', 'mother', 'father', 'house','heir', 'spouse','m_mother', 'm_father', 'm_heir', 'm_house', 'm_spouse'] got_hist = got_hist.sip(col_sip, 1) # Now let's graph got_hist.hist(figsize = (16, 20), bins = 10, xlabelsize = 12, ylabelsize = 12) ################## # ### Now let's rid some variables for our 1st aproach # We do this to make an easy 1st approach and create our first model<br> # Then we can see what happen and improve our model<br> # We will try to rid those who are less relevant to continue # Create a new kf with the sip variables got_num = mk.KnowledgeFrame.clone(got_v1) got_num = got_num.sip(['name', 'culture', 'dateOfBirth', 'mother', 'father', 'heir', 'house', 'spouse','m_mother', 'm_father', 'm_heir', 'm_spouse', 'isAliveMother', 'isAliveFather', 'isAliveHeir', 'isAliveSpouse', 'title'], axis=1) got_num['popularity'].value_round(2) print(got_num.info()) # Now we rid total_all the missing values ################### # ### Let's see mow the correlations between them # Let's create a correlation between the remaining variables # Creation of the corr() got_corr = got_num.corr() # Print the corr() the var we want to predict: isAlive print(got_corr['isAlive'].sort_the_values()) """ We see interesting results with good insights Insights: * If you appear in book 4 oyu have higher probability to be alive * Age has a negative corr, what averages that the older the worst * Having mwhatever dead realations is not good to survive * also being popular can cause your death * The variables created using the dependent var (isAlive) have a strong corr() but only because of that, we are not going to use them. """ ############## # Let's continue with other analysis: heatmapping # now let's do the graph of the heatmapping fig, ax=plt.subplots(figsize=(20,20)) sns.set(font_scale=2) sns.heatmapping(got_corr, cmapping = 'Blues', square = True, annot = False, linecolor = 'black', linewidths = 0.5) #plt.savefig('correlation_matrix_total_all_var') plt.show() ################## # ### Let's see some scatterplots # This is between the more relevant variables with isAlive sns.set() cols = ['dead_rela_1','numDeadRelations','popularity', 'dead_rela_4','popu_0.3','culture_vale','culture_northmen', 'age','book4_A_Feast_For_Crows', 'isAlive'] sns.pairplot(got_num[cols], height= 2.5) plt.show(); # ### Let's focus only in some graphs that are interesting sns.set() cols = ['numDeadRelations','popularity', 'age', 'book4_A_Feast_For_Crows'] sns.pairplot(got_num[cols], height= 2.5) plt.show(); """ Here we can highlight some insights: 1) The most popular character are the one between 0 and 60. And being more popular is dangerous, more popular = more chances to be dead 2) Also from the corr() we can see thar being older is worst for being alive. """ sns.regplot(x="popularity", y="numDeadRelations", data=got, color='b') plt.axvline(.5, color='blue') sns.regplot(x="popularity", y="age", data=got, color='b') plt.axvline(.5, color='blue') ################# # ### Let's see the outliers for col in got_num: sns.set() plt.figure(figsize = (7, 3)) ax = sns.boxplot(x=got_num[col], data=got_num) plt.setp(ax.artists, alpha=.5, linewidth=2, edgecolor="k") plt.xticks(rotation=45) # ***From the outlier analysis we see that is interesting the popularity variables***<br> # ***The outliers begin upper than 0.2, there's a breakpoint*** ########################################################################################## # Model Creation ########################################################################################## # The models that we are going to use are: # * KNN Classification # * Random Forest # * GBM ##################### # KNN Classifier Basic ##################### # Let's start creating a basic model x = got[[ #'title', #'culture', 'male', #'heir', #'house', 'book1_A_Game_Of_Thrones', #'book2_A_Clash_Of_Kings', #'book3_A_Storm_Of_Swords', 'book4_A_Feast_For_Crows', #'book5_A_Dance_with_Dragons', 'isMarried', 'isNoble', #'age', #'numDeadRelations', 'popularity']] y = got.loc[:, 'isAlive'] seed = 508 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, stratify=y,shuffle=True,random_state=seed) training_accuracy = [] test_accuracy = [] neighbors_settings = range(1, 51) for n_neighbors in neighbors_settings: # build the model clf = KNeighborsClassifier(n_neighbors = n_neighbors) clf.fit(x_train, y_train.values.flat_underlying()) # record training set accuracy training_accuracy.adding(clf.score(x_train, y_train)) # record generalization accuracy test_accuracy.adding(clf.score(x_test, y_test)) print(test_accuracy.index(getting_max(test_accuracy)) + 1) fig, ax = plt.subplots(figsize=(12,9)) plt.plot(neighbors_settings, training_accuracy, label = "training accuracy") plt.plot(neighbors_settings, test_accuracy, label = "test accuracy") plt.ylabel("Accuracy") plt.xlabel("n_neighbors") plt.legend() plt.show() ######################## # The best results occur when k = 7. ######################## # Building a model with k = 7 knn_clf = KNeighborsClassifier(n_neighbors = 7) # Fitting the model based on the training data knn_clf_fit = knn_clf.fit(x_train, y_train) #knn_clf_fit = knn_clf.fit(X_train, y_train.values.flat_underlying()) print('Training Score', knn_clf_fit.score(x_train, y_train).value_round(4)) print('Testing Score:', knn_clf_fit.score(x_test, y_test).value_round(4)) knn_clf_pred = knn_clf_fit.predict(x_test) knn_clf_pred_probabilities = knn_clf_fit.predict_proba(x_test) #print(knn_clf_pred) #print(knn_clf_pred_probabilities) # ***Here we getting a not bad result without using the features created*** #################### # CONFUSION MATRIX #################### print(confusion_matrix(y_true = y_test, y_pred = knn_clf_pred)) labels = ['Alive-1', 'Not Alive-0'] cm = confusion_matrix(y_true = y_test, y_pred = knn_clf_pred) sns.heatmapping(cm, annot = True, xticklabels = labels, yticklabels = labels, cmapping = 'Blues') plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion matrix of the classifier') plt.show() # Here we can see that the result of the matrix is bigger where we said that it will # not be alive, and he is alive (is better in this case to have more error here) ################ # ### Now let's create a Random Forest ################# ################################ # Random Forest in scikit-learn (basic model) ############################### # Let's create a basic model withput the features created first with the same vars # Preparing a KnowledgeFrame based the the analysis above x = got[[ 'male', 'book1_A_Game_Of_Thrones', 'book4_A_Feast_For_Crows', 'isMarried', 'isNoble', 'popularity']] y = got.loc[:, 'isAlive'] # Now that we have a new set of X_variables, we need to run train/test # split again X_train, X_test, y_train, y_test = train_test_split( x, y, test_size = 0.10, random_state = 508) # Following the same procedure as other scikit-learn modeling techniques # Full forest using gini full_forest_gini = RandomForestClassifier(n_estimators = 500, criterion = 'gini', getting_max_depth = None, getting_min_sample_by_nums_leaf = 15, bootstrap = True, warm_start = False, random_state = 508) # Full forest using entropy full_forest_entropy = RandomForestClassifier(n_estimators = 500, criterion = 'entropy', getting_max_depth = None, getting_min_sample_by_nums_leaf = 15, bootstrap = True, warm_start = False, random_state = 508) # Fitting the models full_gini_fit = full_forest_gini.fit(X_train, y_train) full_entropy_fit = full_forest_entropy.fit(X_train, y_train) # Scoring the gini model print('Gini - Training Score:', full_gini_fit.score(X_train, y_train).value_round(4)) print('Gini - Testing Score:', full_gini_fit.score(X_test, y_test).value_round(4)) # Scoring the entropy model print('Entropy - Training Score', full_entropy_fit.score(X_train, y_train).value_round(4)) print('Entropy - Testing Score:', full_entropy_fit.score(X_test, y_test).value_round(4)) # Here we see the same results than before with the same variables # Here we getting the following (Entropy is better): # * Gini - Training Score: 0.7967 # * Gini - Testing Score: 0.8154 # * Entropy - Training Score 0.7967 # * Entropy - Testing Score: 0.8205 # ***Other thing that we see here is that the testing score is bigger than the training*** # ***The data is not overfited*** # ***Let's see now the importance of every variable to take some conclusions*** ######################## # Feature importance function ######################## def plot_feature_importances(model, train = X_train, export = False): fig, ax = plt.subplots(figsize=(12,9)) n_features = X_train.shape[1] plt.barh(range(n_features), model.feature_importances_, align='center') plt.yticks(mk.np.arange(n_features), train.columns) plt.xlabel("Feature importance") plt.ylabel("Feature") if export == True: plt.savefig('Tree_Leaf_50_Feature_Importance.png') ######################## plot_feature_importances(full_gini_fit, train = X_train, export = False) plot_feature_importances(full_entropy_fit, train = X_train, export = False) # ***Here we can see which variables are the most important for this model:*** # The most important are: # * popularity # * book4_A_Feast_For_Crows # Conclusion: try to be not so popular, but enough to appear in as mwhatever books as possible (and better if you are in book N 4) ####################################################################################### ############################### IMPROVED MODELS WITH E.F ############################## ####################################################################################### ############### # KNN Classifier Improved ############### # Let's pick the best variables for us to put in the model # Let's start creating a basic model x = got_v1[[ 'book1_A_Game_Of_Thrones', 'book4_A_Feast_For_Crows', 'age', 'popularity', 'noble_woman', 'culture_vale', 'culture_northmen', 'c_5_book', 'dead_rela_1']] y = got_v1.loc[:, 'isAlive'] x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.1, stratify=y, shuffle=True, random_state=508) training_accuracy = [] test_accuracy = [] neighbors_settings = range(1, 51) for n_neighbors in neighbors_settings: # build the model clf = KNeighborsClassifier(n_neighbors = n_neighbors) clf.fit(x_train, y_train.values.flat_underlying()) # record training set accuracy training_accuracy.adding(clf.score(x_train, y_train)) # record generalization accuracy test_accuracy.adding(clf.score(x_test, y_test)) print(test_accuracy.index(getting_max(test_accuracy)) + 1) fig, ax = plt.subplots(figsize=(12,9)) plt.plot(neighbors_settings, training_accuracy, label = "training accuracy") plt.plot(neighbors_settings, test_accuracy, label = "test accuracy") plt.ylabel("Accuracy") plt.xlabel("n_neighbors") plt.legend() plt.show() ######################## # The best results occur when k = 3. ######################## # Building a model with k = 3 knn_clf = KNeighborsClassifier(n_neighbors = 3) # Fitting the model based on the training data knn_clf_fit = knn_clf.fit(x_train, y_train) #knn_clf_fit = knn_clf.fit(X_train, y_train.values.flat_underlying()) print('Training Score', knn_clf_fit.score(x_train, y_train).value_round(4)) print('Testing Score:', knn_clf_fit.score(x_test, y_test).value_round(4)) knn_clf_pred = knn_clf_fit.predict(x_test) knn_clf_pred_probabilities = knn_clf_fit.predict_proba(x_test) #print(knn_clf_pred) #print(knn_clf_pred_probabilities) """ Here we can see how important are the new variables put it in the model. We getting: Training Score 0.9611 Testing Score: 0.9385 We can see that is not too overfit, we have a good balance. Let's try to improve it in the following section. """ ################################ # Random Forest in scikit-learn (IMPROVED) ############################### # Let's create a basic model withput the features created first with the same vars # Preparing a KnowledgeFrame based the the analysis above x = got_v1[[ 'book1_A_Game_Of_Thrones', 'book4_A_Feast_For_Crows', 'age', 'popularity', 'noble_woman', 'culture_vale', 'culture_northmen', 'c_5_book', 'dead_rela_1']] y = got_v1.loc[:, 'isAlive'] # Now that we have a new set of X_variables, we need to run train/test # split again x_train, x_test, y_train, y_test = train_test_split( x, y, test_size = 0.10, random_state = 508) # Following the same procedure as other scikit-learn modeling techniques # Full forest using gini full_forest_gini = RandomForestClassifier(n_estimators = 500, criterion = 'gini', getting_max_depth = None, getting_min_sample_by_nums_leaf = 15, bootstrap = True, warm_start = False, random_state = 508) # Full forest using entropy full_forest_entropy = RandomForestClassifier(n_estimators = 500, criterion = 'entropy', getting_max_depth = None, getting_min_sample_by_nums_leaf = 15, bootstrap = True, warm_start = False, random_state = 508) # Fitting the models full_gini_fit = full_forest_gini.fit(x_train, y_train) full_entropy_fit = full_forest_entropy.fit(x_train, y_train) # Scoring the gini model print('Gini - Training Score:', full_gini_fit.score(x_train, y_train).value_round(4)) print('Gini - Testing Score:', full_gini_fit.score(x_test, y_test).value_round(4)) # Scoring the entropy model print('Entropy - Training Score', full_entropy_fit.score(x_train, y_train).value_round(4)) print('Entropy - Testing Score:', full_entropy_fit.score(x_test, y_test).value_round(4)) # ***Here we getting the following scores (Entropy is better):*** # * Gini - Training Score: 0.9451 # * Gini - Testing Score: 0.9436 # * Entropy - Training Score 0.9445 # * Entropy - Testing Score: 0.9282 ######################## # Feature importance function ######################## def plot_feature_importances(model, train = x_train, export = False): fig, ax = plt.subplots(figsize=(12,9)) n_features = x_train.shape[1] plt.barh(range(n_features), model.feature_importances_, align='center') plt.yticks(mk.np.arange(n_features), train.columns) plt.xlabel("Feature importance") plt.ylabel("Feature") if export == True: plt.savefig('Tree_Leaf_50_Feature_Importance.png') ######################## plot_feature_importances(full_gini_fit, train = x_train, export = False) plot_feature_importances(full_entropy_fit, train = x_train, export = False) # Here we can see the importance of the variable age (fill in with the average) and also popularity. # Meaning that the older the bigger the chance of die and same with popularity. What is good is to appear in book N 4 ############################# # ### Now let's try to improve the model with RandmizedSearchCV ############################# # Is important to say that Randomized was chosen over Grid because of the time processing. # And because of the deadline to present, with more time Grid is better in terms of improvement. ################## # Tuned Parameters ################## ############################# # Applying RandomizedSearchCV in Random Forest ############################ # Creating a hyperparameter grid estimator_space = mk.np.arange(100, 1350, 250) leaf_space = mk.np.arange(1, 150, 15) criterion_space = ['gini', 'entropy'] bootstrap_space = [True, False] warm_start_space = [True, False] param_grid = {'n_estimators' : estimator_space, 'getting_min_sample_by_nums_leaf' : leaf_space, 'criterion' : criterion_space, 'bootstrap' : bootstrap_space, 'warm_start' : warm_start_space} # Building the model object one more time full_forest_grid = RandomForestClassifier(getting_max_depth = None, random_state = 508) gbm_grid_cv = RandomizedSearchCV(full_forest_grid, param_grid, cv = 3, n_iter = 50, scoring = 'roc_auc') # Fit it to the training data gbm_grid_cv.fit(x_train, y_train) # Print the optimal parameters and best score print("Tuned Rand Forest Parameter:", gbm_grid_cv.best_params_) print("Tuned Rand Forest Accuracy:", gbm_grid_cv.best_score_.value_round(4)) # ***As we can see here we have the new parameters and the Tuned Rand Forest accuracy*** # * Tuned Rand Forest Parameter: {'warm_start': True, 'n_estimators': 100, 'getting_min_sample_by_nums_leaf': 16, 'criterion': 'entropy', 'bootstrap': False} # * Tuned Rand Forest Accuracy: 0.9812 ################################ # ### Now let's create again the model with the Tuned Parameters ############################### ############################################################################### # Random Forest in scikit-learn (improved version using RandomizedSearchCV) ############################################################################### # Preparing a KnowledgeFrame based the the analysis above x = got_v1[[ 'book1_A_Game_Of_Thrones', 'book4_A_Feast_For_Crows', 'age', 'popularity', 'noble_woman', 'culture_vale', 'culture_northmen', 'c_5_book', 'dead_rela_1']] y = got_v1.loc[:, 'isAlive'] # Now that we have a new set of X_variables, we need to run train/test # split again x_train, x_test, y_train, y_test = train_test_split( x, y, test_size = 0.10, random_state = 508) # Following the same procedure as other scikit-learn modeling techniques # Full forest using gini full_forest_gini = RandomForestClassifier(n_estimators = 100, criterion = 'entropy', getting_max_depth = None, getting_min_sample_by_nums_leaf = 16, bootstrap = False, warm_start = True, random_state = 508) # Fitting the models full_gini_fit = full_forest_gini.fit(x_train, y_train) # Predictions full_gini_fit_predict = full_gini_fit.predict(x_test) # Scoring the gini model print('Entropy - Training Score:', full_gini_fit.score(x_train, y_train).value_round(4)) print('Entropy - Testing Score:', full_gini_fit.score(x_test, y_test).value_round(4)) # ***Here we see an improvement in the accuracy of the model (test score):*** # * Entropy - Training Score: 0.9503 # * Entropy - Testing Score: 0.9436 # # Using the Entropy is more accurate # Here you can see how improving some parameters we can predict better if a character is going to die or not. ################### # Let's see the AUC for the improved Random Forest ################### rf_score = cross_val_score(full_forest_gini, x, y, cv = 3, scoring= 'roc_auc') average_auc = mk.np.average(rf_score).value_round(3) print(average_auc) """ Here we see how was improved the accuracy of the model: AUC: 0.982 Entropy - Training Score: 0.9503 Entropy - Testing Score: 0.9436 """ #################### # CONFUSION MATRIX #################### print(confusion_matrix(y_true = y_test, y_pred = full_gini_fit_predict)) labels = ['Alive-1', 'Not Alive-0'] cm = confusion_matrix(y_true = y_test, y_pred = full_gini_fit_predict) sns.heatmapping(cm, annot = True, xticklabels = labels, yticklabels = labels, cmapping = 'Blues') plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion matrix of the classifier') plt.show() # Here we see that the majority of errors are in predicting wrong when we said someone os dead but actutotal_ally is alive, is better to prevent than regret! # ### Now let's try Gradient Boosted Machines # And also let's use less variables, and we will have the same predicting impact ############################################################################### # Gradient Boosted Machines ############################################################################### # Preparing a KnowledgeFrame based the the analysis above x = got_v1[[ 'book1_A_Game_Of_Thrones', 'book4_A_Feast_For_Crows', 'age', 'popularity', 'noble_woman', 'culture_vale', 'culture_northmen', 'c_5_book', 'dead_rela_1']] y = got_v1.loc[:, 'isAlive'] # Now that we have a new set of X_variables, we need to run train/test # split again X_train, X_test, y_train, y_test = train_test_split( x, y, test_size = 0.10, random_state = 508) # Building a weak learner gbm gbm_3 = GradientBoostingClassifier(loss = 'deviance', learning_rate = 1.5, n_estimators = 100, getting_max_depth = 3, criterion = 'friedman_mse', warm_start = False, random_state = 508, ) """ Notice above that we are using friedman_mse as the criterion. Friedman proposed that instead of focusing on one MSE value for the entire tree, the algoirthm should localize its optimal MSE for each region of the tree. """ gbm_basic_fit = gbm_3.fit(X_train, y_train) gbm_basic_predict = gbm_basic_fit.predict(X_test) # Training and Testing Scores print('Training Score', gbm_basic_fit.score(X_train, y_train).value_round(4)) print('Testing Score:', gbm_basic_fit.score(X_test, y_test).value_round(4)) gbm_basic_train = gbm_basic_fit.score(X_train, y_train) gmb_basic_test = gbm_basic_fit.score(X_test, y_test) # ***We can see here lower perfomance than the Random Forest and overfit:*** # * Training Score 0.9971 # * Testing Score: 0.9128 # Here we can see that this model is not better, because the score is lower and the gap bigger ################# # Let's see the AUC ################# gbm_score = cross_val_score(gbm_3, got_data, got_targetting, cv = 3, scoring= 'roc_auc') average_auc =
mk.np.average(knn_score)
pandas.np.mean
# -*- coding: utf-8 -*- import re import numpy as np import pytest from monkey.core.dtypes.common import ( is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_whatever_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetimetz, is_dtype_equal, is_interval_dtype, is_period, is_period_dtype, is_string_dtype) from monkey.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, registry) import monkey as mk from monkey import ( Categorical, CategoricalIndex, IntervalIndex, Collections, date_range) from monkey.core.sparse.api import SparseDtype import monkey.util.testing as tm @pytest.fixture(params=[True, False, None]) def ordered(request): return request.param class Base(object): def setup_method(self, method): self.dtype = self.create() def test_hash(self): hash(self.dtype) def test_equality_invalid(self): assert not self.dtype == 'foo' assert not is_dtype_equal(self.dtype, np.int64) def test_numpy_informed(self): pytest.raises(TypeError, np.dtype, self.dtype) assert not self.dtype == np.str_ assert not np.str_ == self.dtype def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not length(self.dtype._cache) # force back to the cache result = tm.value_round_trip_pickle(self.dtype) assert not length(self.dtype._cache) assert result == self.dtype class TestCategoricalDtype(Base): def create(self): return CategoricalDtype() def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not length(self.dtype._cache) # force back to the cache result = tm.value_round_trip_pickle(self.dtype) assert result == self.dtype def test_hash_vs_equality(self): dtype = self.dtype dtype2 = CategoricalDtype() assert dtype == dtype2 assert dtype2 == dtype assert hash(dtype) == hash(dtype2) def test_equality(self): assert is_dtype_equal(self.dtype, 'category') assert is_dtype_equal(self.dtype, CategoricalDtype()) assert not is_dtype_equal(self.dtype, 'foo') def test_construction_from_string(self): result = CategoricalDtype.construct_from_string('category') assert is_dtype_equal(self.dtype, result) pytest.raises( TypeError, lambda: CategoricalDtype.construct_from_string('foo')) def test_constructor_invalid(self): msg = "Parameter 'categories' must be list-like" with pytest.raises(TypeError, match=msg): CategoricalDtype("category") dtype1 = CategoricalDtype(['a', 'b'], ordered=True) dtype2 = CategoricalDtype(['x', 'y'], ordered=False) c = Categorical([0, 1], dtype=dtype1, fastpath=True) @pytest.mark.parametrize('values, categories, ordered, dtype, expected', [ [None, None, None, None, CategoricalDtype()], [None, ['a', 'b'], True, None, dtype1], [c, None, None, dtype2, dtype2], [c, ['x', 'y'], False, None, dtype2], ]) def test_from_values_or_dtype( self, values, categories, ordered, dtype, expected): result = CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) assert result == expected @pytest.mark.parametrize('values, categories, ordered, dtype', [ [None, ['a', 'b'], True, dtype2], [None, ['a', 'b'], None, dtype2], [None, None, True, dtype2], ]) def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype): msg = "Cannot specify `categories` or `ordered` togettingher with `dtype`." with pytest.raises(ValueError, match=msg): CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) def test_is_dtype(self): assert CategoricalDtype.is_dtype(self.dtype) assert CategoricalDtype.is_dtype('category') assert CategoricalDtype.is_dtype(CategoricalDtype()) assert not CategoricalDtype.is_dtype('foo') assert not CategoricalDtype.is_dtype(np.float64) def test_basic(self): assert is_categorical_dtype(self.dtype) factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) s = Collections(factor, name='A') # dtypes assert is_categorical_dtype(s.dtype) assert is_categorical_dtype(s) assert not is_categorical_dtype(np.dtype('float64')) assert is_categorical(s.dtype) assert is_categorical(s) assert not is_categorical(np.dtype('float64')) assert not is_categorical(1.0) def test_tuple_categories(self): categories = [(1, 'a'), (2, 'b'), (3, 'c')] result = CategoricalDtype(categories) assert total_all(result.categories == categories) @pytest.mark.parametrize("categories, expected", [ ([True, False], True), ([True, False, None], True), ([True, False, "a", "b'"], False), ([0, 1], False), ]) def test_is_boolean(self, categories, expected): cat = Categorical(categories) assert cat.dtype._is_boolean is expected assert is_bool_dtype(cat) is expected assert is_bool_dtype(cat.dtype) is expected class TestDatetimeTZDtype(Base): def create(self): return DatetimeTZDtype('ns', 'US/Eastern') def test_alias_to_unit_raises(self): # 23990 with tm.assert_produces_warning(FutureWarning): DatetimeTZDtype('datetime64[ns, US/Central]') def test_alias_to_unit_bad_alias_raises(self): # 23990 with pytest.raises(TypeError, match=''): DatetimeTZDtype('this is a bad string') with pytest.raises(TypeError, match=''): DatetimeTZDtype('datetime64[ns, US/NotATZ]') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = DatetimeTZDtype('ns', 'US/Eastern') dtype3 = DatetimeTZDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype4 = DatetimeTZDtype("ns", "US/Central") assert dtype2 != dtype4 assert hash(dtype2) != hash(dtype4) def test_construction(self): pytest.raises(ValueError, lambda: DatetimeTZDtype('ms', 'US/Eastern')) def test_subclass(self): a = DatetimeTZDtype.construct_from_string('datetime64[ns, US/Eastern]') b = DatetimeTZDtype.construct_from_string('datetime64[ns, CET]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_compat(self): assert is_datetime64tz_dtype(self.dtype) assert is_datetime64tz_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_whatever_dtype(self.dtype) assert is_datetime64_whatever_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_ns_dtype(self.dtype) assert is_datetime64_ns_dtype('datetime64[ns, US/Eastern]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('datetime64[ns, US/Eastern]') def test_construction_from_string(self): result = DatetimeTZDtype.construct_from_string( 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, result) pytest.raises(TypeError, lambda: DatetimeTZDtype.construct_from_string('foo')) def test_construct_from_string_raises(self): with pytest.raises(TypeError, match="notatz"): DatetimeTZDtype.construct_from_string('datetime64[ns, notatz]') with pytest.raises(TypeError, match="^Could not construct DatetimeTZDtype$"): DatetimeTZDtype.construct_from_string(['datetime64[ns, notatz]']) def test_is_dtype(self): assert not DatetimeTZDtype.is_dtype(None) assert DatetimeTZDtype.is_dtype(self.dtype) assert DatetimeTZDtype.is_dtype('datetime64[ns, US/Eastern]') assert not DatetimeTZDtype.is_dtype('foo') assert DatetimeTZDtype.is_dtype(DatetimeTZDtype('ns', 'US/Pacific')) assert not DatetimeTZDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'US/Eastern')) assert not is_dtype_equal(self.dtype, 'foo') assert not is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'CET')) assert not is_dtype_equal(DatetimeTZDtype('ns', 'US/Eastern'), DatetimeTZDtype('ns', 'US/Pacific')) # numpy compat assert is_dtype_equal(np.dtype("M8[ns]"), "datetime64[ns]") def test_basic(self): assert is_datetime64tz_dtype(self.dtype) dr = date_range('20130101', periods=3, tz='US/Eastern') s = Collections(dr, name='A') # dtypes assert is_datetime64tz_dtype(s.dtype) assert is_datetime64tz_dtype(s) assert not is_datetime64tz_dtype(np.dtype('float64')) assert not is_datetime64tz_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s) assert is_datetimetz(s.dtype) assert not is_datetimetz(np.dtype('float64')) assert not is_datetimetz(1.0) def test_dst(self): dr1 = date_range('2013-01-01', periods=3, tz='US/Eastern') s1 = Collections(dr1, name='A') assert is_datetime64tz_dtype(s1) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s1) dr2 = date_range('2013-08-01', periods=3, tz='US/Eastern') s2 = Collections(dr2, name='A') assert is_datetime64tz_dtype(s2) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s2) assert s1.dtype == s2.dtype @pytest.mark.parametrize('tz', ['UTC', 'US/Eastern']) @pytest.mark.parametrize('constructor', ['M8', 'datetime64']) def test_parser(self, tz, constructor): # pr #11245 dtz_str = '{con}[ns, {tz}]'.formating(con=constructor, tz=tz) result = DatetimeTZDtype.construct_from_string(dtz_str) expected = DatetimeTZDtype('ns', tz) assert result == expected def test_empty(self): with pytest.raises(TypeError, match="A 'tz' is required."): DatetimeTZDtype() class TestPeriodDtype(Base): def create(self): return PeriodDtype('D') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = PeriodDtype('D') dtype3 = PeriodDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) def test_construction(self): with pytest.raises(ValueError): PeriodDtype('xx') for s in ['period[D]', 'Period[D]', 'D']: dt = PeriodDtype(s) assert dt.freq == mk.tcollections.offsets.Day() assert is_period_dtype(dt) for s in ['period[3D]', 'Period[3D]', '3D']: dt = PeriodDtype(s) assert dt.freq == mk.tcollections.offsets.Day(3) assert is_period_dtype(dt) for s in ['period[26H]', 'Period[26H]', '26H', 'period[1D2H]', 'Period[1D2H]', '1D2H']: dt = PeriodDtype(s) assert dt.freq == mk.tcollections.offsets.Hour(26) assert is_period_dtype(dt) def test_subclass(self): a = PeriodDtype('period[D]') b = PeriodDtype('period[3D]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_identity(self): assert PeriodDtype('period[D]') == PeriodDtype('period[D]') assert PeriodDtype('period[D]') is PeriodDtype('period[D]') assert PeriodDtype('period[3D]') == PeriodDtype('period[3D]') assert PeriodDtype('period[3D]') is PeriodDtype('period[3D]') assert PeriodDtype('period[1S1U]') == PeriodDtype('period[1000001U]') assert PeriodDtype('period[1S1U]') is PeriodDtype('period[1000001U]') def test_compat(self): assert not is_datetime64_ns_dtype(self.dtype) assert not is_datetime64_ns_dtype('period[D]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('period[D]') def test_construction_from_string(self): result = PeriodDtype('period[D]') assert is_dtype_equal(self.dtype, result) result = PeriodDtype.construct_from_string('period[D]') assert is_dtype_equal(self.dtype, result) with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo') with pytest.raises(TypeError): PeriodDtype.construct_from_string('period[foo]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('foo[D]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns]') with pytest.raises(TypeError): PeriodDtype.construct_from_string('datetime64[ns, US/Eastern]') def test_is_dtype(self): assert PeriodDtype.is_dtype(self.dtype) assert PeriodDtype.is_dtype('period[D]') assert PeriodDtype.is_dtype('period[3D]') assert PeriodDtype.is_dtype(PeriodDtype('3D')) assert PeriodDtype.is_dtype('period[U]') assert PeriodDtype.is_dtype('period[S]') assert PeriodDtype.is_dtype(PeriodDtype('U')) assert PeriodDtype.is_dtype(PeriodDtype('S')) assert not PeriodDtype.is_dtype('D') assert not PeriodDtype.is_dtype('3D') assert not PeriodDtype.is_dtype('U') assert not PeriodDtype.is_dtype('S') assert not PeriodDtype.is_dtype('foo') assert not PeriodDtype.is_dtype(np.object_) assert not PeriodDtype.is_dtype(np.int64) assert not PeriodDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'period[D]') assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(self.dtype, PeriodDtype('D')) assert is_dtype_equal(PeriodDtype('D'), PeriodDtype('D')) assert not is_dtype_equal(self.dtype, 'D') assert not is_dtype_equal(PeriodDtype('D'), PeriodDtype('2D')) def test_basic(self): assert is_period_dtype(self.dtype) pidx = mk.period_range('2013-01-01 09:00', periods=5, freq='H') assert is_period_dtype(pidx.dtype) assert is_period_dtype(pidx) with tm.assert_produces_warning(FutureWarning): assert is_period(pidx) s = Collections(pidx, name='A') assert is_period_dtype(s.dtype) assert is_period_dtype(s) with tm.assert_produces_warning(FutureWarning): assert is_period(s) assert not is_period_dtype(np.dtype('float64')) assert not is_period_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert not is_period(np.dtype('float64')) with tm.assert_produces_warning(FutureWarning): assert not is_period(1.0) def test_empty(self): dt = PeriodDtype() with pytest.raises(AttributeError): str(dt) def test_not_string(self): # though PeriodDtype has object kind, it cannot be string assert not is_string_dtype(PeriodDtype('D')) class TestIntervalDtype(Base): def create(self): return IntervalDtype('int64') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = IntervalDtype('int64') dtype3 = IntervalDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype3 assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype1 = IntervalDtype('interval') dtype2 = IntervalDtype(dtype1) dtype3 = IntervalDtype('interval') assert dtype2 == dtype1 assert dtype2 == dtype2 assert dtype2 == dtype3 assert dtype2 is dtype1 assert dtype2 is dtype2 assert dtype2 is dtype3 assert hash(dtype2) == hash(dtype1) assert hash(dtype2) == hash(dtype2) assert hash(dtype2) == hash(dtype3) @pytest.mark.parametrize('subtype', [ 'interval[int64]', 'Interval[int64]', 'int64', np.dtype('int64')]) def test_construction(self, subtype): i = IntervalDtype(subtype) assert i.subtype == np.dtype('int64') assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [None, 'interval', 'Interval']) def test_construction_generic(self, subtype): # generic i = IntervalDtype(subtype) assert i.subtype is None assert is_interval_dtype(i) @pytest.mark.parametrize('subtype', [ CategoricalDtype(list('abc'), False), CategoricalDtype(list('wxyz'), True), object, str, '<U10', 'interval[category]', 'interval[object]']) def test_construction_not_supported(self, subtype): # GH 19016 msg = ('category, object, and string subtypes are not supported ' 'for IntervalDtype') with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) @pytest.mark.parametrize('subtype', ['xx', 'IntervalA', 'Interval[foo]']) def test_construction_errors(self, subtype): msg = 'could not construct IntervalDtype' with pytest.raises(TypeError, match=msg): IntervalDtype(subtype) def test_construction_from_string(self): result = IntervalDtype('interval[int64]') assert is_dtype_equal(self.dtype, result) result = IntervalDtype.construct_from_string('interval[int64]') assert is_dtype_equal(self.dtype, result) @pytest.mark.parametrize('string', [ 0, 3.14, ('a', 'b'), None]) def test_construction_from_string_errors(self, string): # these are invalid entirely msg = 'a string needs to be passed, got type' with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) @pytest.mark.parametrize('string', [ 'foo', 'foo[int64]', 'IntervalA']) def test_construction_from_string_error_subtype(self, string): # this is an invalid subtype msg = ("Incorrectly formatingted string passed to constructor. " r"Valid formatings include Interval or Interval\[dtype\] " "where dtype is numeric, datetime, or timedelta") with pytest.raises(TypeError, match=msg): IntervalDtype.construct_from_string(string) def test_subclass(self): a = IntervalDtype('interval[int64]') b = IntervalDtype('interval[int64]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_is_dtype(self): assert IntervalDtype.is_dtype(self.dtype) assert IntervalDtype.is_dtype('interval') assert IntervalDtype.is_dtype(IntervalDtype('float64')) assert IntervalDtype.is_dtype(IntervalDtype('int64')) assert IntervalDtype.is_dtype(IntervalDtype(np.int64)) assert not IntervalDtype.is_dtype('D') assert not IntervalDtype.is_dtype('3D') assert not IntervalDtype.is_dtype('U') assert not IntervalDtype.is_dtype('S') assert not IntervalDtype.is_dtype('foo') assert not IntervalDtype.is_dtype('IntervalA') assert not IntervalDtype.is_dtype(np.object_) assert not IntervalDtype.is_dtype(np.int64) assert not IntervalDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'interval[int64]') assert is_dtype_equal(self.dtype, IntervalDtype('int64')) assert is_dtype_equal(IntervalDtype('int64'), IntervalDtype('int64')) assert not is_dtype_equal(self.dtype, 'int64') assert not is_dtype_equal(IntervalDtype('int64'), IntervalDtype('float64')) # invalid subtype comparisons do not raise when directly compared dtype1 = IntervalDtype('float64') dtype2 = IntervalDtype('datetime64[ns, US/Eastern]') assert dtype1 != dtype2 assert dtype2 != dtype1 @pytest.mark.parametrize('subtype', [ None, 'interval', 'Interval', 'int64', 'uint64', 'float64', 'complex128', 'datetime64', 'timedelta64', PeriodDtype('Q')]) def test_equality_generic(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) assert is_dtype_equal(dtype, 'interval') assert is_dtype_equal(dtype, IntervalDtype()) @pytest.mark.parametrize('subtype', [ 'int64', 'uint64', 'float64', 'complex128', 'datetime64', 'timedelta64', PeriodDtype('Q')]) def test_name_repr(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) expected = 'interval[{subtype}]'.formating(subtype=subtype) assert str(dtype) == expected assert dtype.name == 'interval' @pytest.mark.parametrize('subtype', [None, 'interval', 'Interval']) def test_name_repr_generic(self, subtype): # GH 18980 dtype = IntervalDtype(subtype) assert str(dtype) == 'interval' assert dtype.name == 'interval' def test_basic(self): assert is_interval_dtype(self.dtype) ii = IntervalIndex.from_breaks(range(3)) assert is_interval_dtype(ii.dtype) assert is_interval_dtype(ii) s = Collections(ii, name='A') assert is_interval_dtype(s.dtype) assert is_interval_dtype(s) def test_basic_dtype(self): assert is_interval_dtype('interval[int64]') assert is_interval_dtype(IntervalIndex.from_tuples([(0, 1)])) assert is_interval_dtype(IntervalIndex.from_breaks(np.arange(4))) assert is_interval_dtype(IntervalIndex.from_breaks( date_range('20130101', periods=3))) assert not is_interval_dtype('U') assert not is_interval_dtype('S') assert not is_interval_dtype('foo') assert not is_interval_dtype(np.object_) assert not is_interval_dtype(np.int64) assert not is_interval_dtype(np.float64) def test_caching(self): IntervalDtype.reset_cache() dtype = IntervalDtype("int64") assert length(IntervalDtype._cache) == 1 IntervalDtype("interval") assert length(IntervalDtype._cache) == 2 IntervalDtype.reset_cache()
tm.value_round_trip_pickle(dtype)
pandas.util.testing.round_trip_pickle
from collections.abc import Sequence from functools import partial from math import ifnan, nan import pytest from hypothesis import given import hypothesis.strategies as st from hypothesis.extra.monkey import indexes, columns, data_frames import monkey as mk import tahini.core.base import tahini.testing names_index_container_data_indexed = 'index' name_index_internal = 'index_internal' names_index_container_data_indexed_multi = ('index_0', 'index_1') def getting_data_frame(*args, name_index=names_index_container_data_indexed, **kwargs) -> mk.KnowledgeFrame: return mk.KnowledgeFrame(*args, **kwargs).renagetting_ming_axis(index=name_index) def getting_data_frame_internal( *args, index_internal=None, name_index=names_index_container_data_indexed, **kwargs, ) -> mk.KnowledgeFrame: kf = mk.KnowledgeFrame(*args, **kwargs).renagetting_ming_axis(index=name_index).reseting_index() if index_internal is None: index_internal = kf[name_index] kf.index = mk.Index(index_internal, name=name_index_internal) return kf def getting_data_frame_index_multi( *args, names_index=names_index_container_data_indexed_multi, index=None, **kwargs, ) -> mk.KnowledgeFrame: if index is None: index = mk.MultiIndex(levels=[[]] * length(names_index), codes=[[]] * length(names_index), names=names_index) else: index = mk.MultiIndex.from_tuples(index, names=names_index) return mk.KnowledgeFrame(*args, index=index, **kwargs) def getting_data_frame_internal_index_multi( *args, index_internal=None, mappingper=None, **kwargs, ) -> mk.KnowledgeFrame: kf = getting_data_frame_index_multi(*args, **kwargs) if mappingper is None: def identity(x): return x mappingper = identity if index_internal is None: index_internal = kf.index.to_flat_index().mapping(mappingper) kf = kf.reseting_index() kf.index = mk.Index(index_internal, name=name_index_internal) return kf def getting_data_frame_internal_simple_index_multi(*arg, **kwargs): kf = ( getting_data_frame_internal_index_multi(*arg, **kwargs) .sip(columns=list(names_index_container_data_indexed_multi)) ) return kf getting_data_frame_internal_index_multi_sets = partial(getting_data_frame_internal_index_multi, mappingper=frozenset) getting_data_frame_internal_simple_index_multi_sets = partial( getting_data_frame_internal_simple_index_multi, mappingper=frozenset, ) assert_frame_equal = partial( mk.testing.assert_frame_equal, check_dtype=False, check_column_type=False, check_index_type=False, ) assert_index_equal = partial(mk.testing.assert_index_equal, exact=False) def check_nan(x): try: tf = ifnan(x) except TypeError: tf = False return tf @pytest.mark.parametrize('klass', [ tahini.core.base.ContainerDataIndexed, tahini.core.base.ContainerDataIndexedMulti, tahini.core.base.ContainerDataIndexedMultiSets, ]) def test_container_data_indexed__names_index(klass): assert incontainstance(klass._names_index, Sequence) @pytest.mark.parametrize('klass', [ tahini.core.base.ContainerDataIndexed, tahini.core.base.ContainerDataIndexedMulti, tahini.core.base.ContainerDataIndexedMultiSets, ]) def test_container_data_indexed__name_index_internal(klass): assert incontainstance(klass._name_index_internal, str) @pytest.mark.parametrize('args, kwargs, expected', [ # empty index ([], dict(index=mk.Index([])), mk.Index([])), # non empty index ([], dict(index=mk.Index([0])), mk.Index([0])), # empty multi index ([], dict(index=mk.MultiIndex.from_arrays([[]])), mk.MultiIndex.from_arrays([[]])), ]) def test_container_data_indexed__create_index_internal(args, kwargs, expected): index = tahini.core.base.ContainerDataIndexed._create_index_internal(*args, **kwargs) assert_index_equal(index, expected) @pytest.mark.parametrize('args, kwargs, type_error, message_error', [ # non distinctive index ([], dict(index=mk.Index([0, 0])), ValueError, "Index needs to be distinctive for 'ContainerDataIndexed'"), ]) def test_container_data_indexed__validate_index_error(args, kwargs, type_error, message_error): with pytest.raises(type_error) as e: tahini.core.base.ContainerDataIndexed._validate_index(*args, **kwargs) assert e.value.args[0] == message_error @pytest.mark.parametrize('args, kwargs, expected', [ # empty ([], dict(), getting_data_frame_internal()), # non empty index ([], dict(index=[0]), getting_data_frame_internal(index=[0])), # empty index ([], dict(index=[]), getting_data_frame_internal()), # empty container idempotent ([], dict(index=tahini.core.base.ContainerDataIndexed()), getting_data_frame_internal()), # empty data dict ([], dict(data=dict()), getting_data_frame_internal()), # empty data records ([], dict(data=[]), getting_data_frame_internal()), # empty data frame ([], dict(data=mk.KnowledgeFrame()), getting_data_frame_internal()), # data dict ([], dict(data=dict(a=[1])), getting_data_frame_internal(data=dict(a=[1]))), # dict and index ([], dict(data=dict(a=[1]), index=['z']), getting_data_frame_internal(data=dict(a=[1]), index=['z'])), # data frame ([], dict(data=mk.KnowledgeFrame(data=dict(a=[1]))), getting_data_frame_internal(data=dict(a=[1]))), # data frame with index ( [], dict(data=mk.KnowledgeFrame(data=dict(a=[1]), index=['z'])), getting_data_frame_internal(data=dict(a=[1]), index=['z']), ), # data frame and index ( [], dict(data=mk.KnowledgeFrame(data=dict(a=[1])), index=['z']), getting_data_frame_internal(data=dict(a=[1]), index=['z']), ), # data records ([], dict(data=[[1]]), getting_data_frame_internal(data=[[1]])), ([], dict(data=['a', 'b']), getting_data_frame_internal({0: ['a', 'b']})), ([], dict(data=[['a'], ['b']]), getting_data_frame_internal({0: ['a', 'b']})), ([], dict(data=[['a', 'b']]), getting_data_frame_internal({0: ['a'], 1: ['b']})), # container idempotent ( [], dict(index=tahini.core.base.ContainerDataIndexed(data=mk.KnowledgeFrame(data=dict(a=[1]), index=['z']))), getting_data_frame_internal(data=dict(a=[1]), index=['z']), ), # index as column ([], dict(data=dict(index=[0, 1])), getting_data_frame_internal(index=[0, 1])), ]) def test_container_data_indexed_init(args, kwargs, expected): container = tahini.core.base.ContainerDataIndexed(*args, **kwargs) assert_frame_equal(container.data_internal, expected) @pytest.mark.parametrize('args, kwargs, expected', [ # empty ([], dict(index=mk.Index([])), mk.Index([], name=names_index_container_data_indexed)), # non empty ([], dict(index=mk.Index([0])), mk.Index([0], name=names_index_container_data_indexed)), ]) def test_container_data_indexed__validate_index(args, kwargs, expected): index = tahini.core.base.ContainerDataIndexed._validate_index(*args, **kwargs) assert_index_equal(index, expected) @pytest.mark.parametrize('args, kwargs, expected', [ # empty ([], dict(data=mk.KnowledgeFrame()), getting_data_frame()), # non empty index ([], dict(data=mk.KnowledgeFrame(index=['a', 'b'])), getting_data_frame(index=['a', 'b'])), # non empty index with name ( [], dict(data=mk.KnowledgeFrame(index=mk.Index(['a', 'b'], name=f'not_{names_index_container_data_indexed}'))), getting_data_frame(index=['a', 'b']), ), # non empty data ([], dict(data=mk.KnowledgeFrame(data=dict(a=[0, 1], b=[0, 1]))), getting_data_frame(data=dict(a=[0, 1], b=[0, 1]))), ]) def test_container_data_indexed__validate_data(args, kwargs, expected): kf = tahini.core.base.ContainerDataIndexed._validate_data(*args, **kwargs) assert_frame_equal(kf, expected) @pytest.mark.parametrize('args, kwargs, type_error, message_error', [ # non distinctive index ([], dict(index=[0, 0]), ValueError, "Index needs to be distinctive for 'ContainerDataIndexed'"), # non matching lengthgth between index and data ( [], dict(data=mk.KnowledgeFrame(data=dict(a=[1])), index=[0, 1]), ValueError, "Length mismatch: Expected axis has 1 elements, new values have 2 elements", ), # non matching lengthgth between index and data ( [], dict(data=mk.KnowledgeFrame(data=dict(a=[1, 2])), index=[0]), ValueError, "Length mismatch: Expected axis has 2 elements, new values have 1 elements", ), ]) def test_container_data_indexed_init_error(args, kwargs, type_error, message_error): with pytest.raises(type_error) as e: tahini.core.base.ContainerDataIndexed(*args, **kwargs) assert e.value.args[0] == message_error types_index = ( st.iterables, indexes, ) elements_non_specific = ( st.binary, st.booleans, st.characters, st.complex_numbers, st.dates, st.datetimes, st.fractions, st.integers, st.none, st.randoms, st.text, st.times, st.uuids, ) elements_specific = ( # monkey.Timedeltas getting_max and getting_min do not match python standard library datetime.timedelta getting_max and getting_min ( st.timedeltas, dict(getting_min_value=mk.Timedelta.getting_min.to_pytimedelta(), getting_max_value=
mk.Timedelta.getting_max.to_pytimedelta()
pandas.Timedelta.max.to_pytimedelta
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=mk.Collections.convert_list(d1[0:16][0]) list1=mk.Collections.convert_list(d1[0:16][1]) list2=mk.Collections.convert_list(d1[0:16][2]) list3=mk.Collections.convert_list(d1[0:16][3]) list4=mk.Collections.convert_list(d1[0:16][4]) list5=mk.Collections.convert_list(d1[0:16][5]) list6=mk.Collections.convert_list(d1[0:16][6]) list7=mk.Collections.convert_list(d1[0:16][7]) list8=mk.Collections.convert_list(d1[0:16][8]) list9=mk.Collections.convert_list(d1[0:16][9]) list10=mk.Collections.convert_list(d1[0:16][10]) #forecast table c=[] for j in total_all_t[1].findAll('td'): c.adding(j.text) bv=mk.KnowledgeFrame() i=0 while(i<=(91-13)): bv=bv.adding(mk.KnowledgeFrame([c[i:i+13]]) ) i=i+13 listq1=mk.Collections.convert_list(bv[0:7][0]) list11=mk.Collections.convert_list(bv[0:7][1]) list21=mk.Collections.convert_list(bv[0:7][2]) list31=mk.Collections.convert_list(bv[0:7][3]) list41=mk.Collections.convert_list(bv[0:7][4]) list51=mk.Collections.convert_list(bv[0:7][5]) list61=mk.Collections.convert_list(bv[0:7][6]) list71=mk.Collections.convert_list(bv[0:7][7]) list81=mk.Collections.convert_list(bv[0:7][8]) list91=
mk.Collections.convert_list(bv[0:7][9])
pandas.Series.tolist
#!/usr/bin/env python # encoding: utf-8 # # Copyright SAS Institute # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' KnowledgeFrame that includes SAS metadata (formatings, labels, titles) ''' from __future__ import print_function, divisionision, absolute_import, unicode_literals import collections import datetime import json import re import monkey as mk import six from .cas.table import CASTable from .utils.compat import (a2u, a2n, int32, int64, float64, int32_types, int64_types, float64_types, bool_types, text_types, binary_types) from .utils import dict2kwargs from .clib import errorcheck from .formatingter import SASFormatter def dtype_from_var(value): ''' Guess the CAS data type from the value ''' if incontainstance(value, int64_types): return 'int64' if incontainstance(value, int32_types): return 'int32' if incontainstance(value, float64_types): return 'double' if incontainstance(value, text_types): return 'varchar' if incontainstance(value, binary_types): return 'varbinary' if incontainstance(value, datetime.datetime): return 'datetime' if incontainstance(value, datetime.date): return 'date' if incontainstance(value, datetime.time): return 'time' raise TypeError('Unrecognized type for value: %s' % value) def split_formating(fmt): ''' Split a SAS formating name into components ''' if not fmt: sasfmt = collections.namedtuple('SASFormat', ['ischar', 'name', 'width', 'ndec']) return sasfmt(False, '', 0, 0) parts = list(re.match(r'(\$)?(\w*?)(\d*)\.(\d*)', fmt).groups()) parts[0] = parts[0] and True or False parts[2] = parts[2] and int(parts[2]) or 0 parts[3] = parts[3] and int(parts[3]) or 0 sasfmt = collections.namedtuple('SASFormat', ['ischar', 'name', 'width', 'ndec']) return sasfmt(*parts) def concating(objs, **kwargs): ''' Concatenate :class:`SASKnowledgeFrames` while preserving table and column metadata This function is equivalengtht to :func:`monkey.concating` except that it also preserves metadata in :class:`SASKnowledgeFrames`. It can be used on standard :class:`monkey.KnowledgeFrames` as well. Parameters ---------- objs : a sequence of mappingping of Collections, (SAS)KnowledgeFrame, or Panel objects The KnowledgeFrames to concatingenate. **kwargs : whatever, optional Additional arguments to pass to :func:`monkey.concating`. Examples -------- >>> conn = swat.CAS() >>> tbl = conn.read_csv('data/cars.csv') >>> out = tbl.grouper('Origin').total_summary() >>> print(concating([out['ByGroup1.Summary'], out['ByGroup2.Summary'], ... out['ByGroup3.Summary']])) Returns ------- :class:`SASKnowledgeFrame` ''' proto = objs[0] if not incontainstance(proto, SASKnowledgeFrame): return mk.concating(objs, **kwargs) title = proto.title label = proto.label name = proto.name formatingter = proto.formatingter attrs = {} colinfo = {} columns = collections.OrderedDict() for item in objs: attrs.umkate(item.attrs) colinfo.umkate(item.colinfo) for col in item.columns: columns[col] = True return SASKnowledgeFrame(mk.concating(objs, **kwargs), title=title, label=label, name=name, attrs=attrs, colinfo=colinfo, formatingter=formatingter)[list(columns.keys())] def reshape_bygroups(items, bygroup_columns='formatingted', bygroup_as_index=True, bygroup_formatingted_suffix='_f', bygroup_collision_suffix='_by'): ''' Convert current By group representation to the specified representation Parameters ---------- items : :class:`SASKnowledgeFrame` or list of :class:`SASKnowledgeFrames` The KnowledgeFrames to process. bygroup_columns : string, optional The way By group columns should be represented in the output table. The options are 'none' (only use metadata), 'formatingted', 'raw', or 'both'. bygroup_as_index : boolean, optional Specifies whether the By group columns should be converted to indices. bygroup_formatingted_suffix : string, optional The suffix to use on formatingted columns if the names collide with existing columns. bygroup_collision_suffix : string, optional The suffix to use on By group columns if there is also a data column with the same name. See Also -------- :meth:`SASKnowledgeFrame.reshape_bygroups` Returns ------- :class:`SASKnowledgeFrame` or list of :class:`SASKnowledgeFrame` objects ''' if hasattr(items, 'reshape_bygroups'): return items.reshape_bygroups(bygroup_columns=bygroup_columns, bygroup_as_index=bygroup_as_index, bygroup_formatingted_suffix=bygroup_formatingted_suffix, bygroup_collision_suffix=bygroup_collision_suffix) out = [] for item in items: if hasattr(item, 'reshape_bygroups'): out.adding( item.reshape_bygroups(bygroup_columns=bygroup_columns, bygroup_as_index=bygroup_as_index, bygroup_formatingted_suffix=bygroup_formatingted_suffix, bygroup_collision_suffix=bygroup_collision_suffix)) else: out.adding(item) return out @six.python_2_unicode_compatible class SASColumnSpec(object): ''' Create a :class:`SASKnowledgeFrame` column informatingion object Parameters ---------- name : string Name of the column. label : string Label for the column. type : string SAS/CAS data type of the column. width : int or long Width of the formatingted column. formating : string SAS formating. size : two-element tuple Dimensions of the data. attrs : dict Extended attributes of the column. Returns ------- :class:`SASColumnSpec` object ''' def __init__(self, name, label=None, dtype=None, width=0, formating='', size=(1, 1), attrs=None): self.name = a2u(name) self.label = a2u(label) self.dtype = a2u(dtype) self.width = width self.formating = a2u(formating) self.size = size self.attrs = attrs if self.attrs is None: self.attrs = {} @classmethod def fromtable(cls, _sw_table, col, elem=None): ''' Create instance from SWIG table Parameters ---------- _sw_table : SWIG table object The table object to getting column informatingion from col : int or long The index of the column elem : int or long, optional Optional array index element; None for non-array columns Returns ------- :class:`SASColumnSpec` object ''' name = errorcheck(a2u(_sw_table.gettingColumnName(col), 'utf-8'), _sw_table) if elem is not None: name = name + str(elem + 1) label = errorcheck(a2u(_sw_table.gettingColumnLabel(col), 'utf-8'), _sw_table) dtype = errorcheck(a2u(_sw_table.gettingColumnType(col), 'utf-8'), _sw_table) width = errorcheck(_sw_table.gettingColumnWidth(col), _sw_table) formating = errorcheck(a2u(_sw_table.gettingColumnFormat(col), 'utf-8'), _sw_table) size = (1, errorcheck(_sw_table.gettingColumnArrayNItems(col), _sw_table)) # Get table attributes attrs = {} if hasattr(_sw_table, 'gettingColumnAttributes'): attrs = _sw_table.gettingColumnAttributes(col) else: while True: key = errorcheck(_sw_table.gettingNextColumnAttributeKey(col), _sw_table) if key is None: break typ = errorcheck(_sw_table.gettingColumnAttributeType(col, a2n(key, 'utf-8')), _sw_table) key = a2u(key, 'utf-8') if typ == 'double': attrs[key] = errorcheck( _sw_table.gettingColumnDoubleAttribute(col, a2n(key, 'utf-8')), _sw_table) elif typ == 'int32': attrs[key] = errorcheck( _sw_table.gettingColumnInt32Attribute(col, a2n(key, 'utf-8')), _sw_table) elif typ == 'int64': attrs[key] = errorcheck( _sw_table.gettingColumnInt64Attribute(col, a2n(key, 'utf-8')), _sw_table) elif typ == 'string': attrs[key] = errorcheck( a2u(_sw_table.gettingColumnStringAttribute(col, a2n(key, 'utf-8')), 'utf-8'), _sw_table) elif typ == 'int32-array': nitems = errorcheck(_sw_table.gettingColumnAttributeNItems(), _sw_table) attrs[key] = [] for i in range(nitems): attrs[key].adding(errorcheck( _sw_table.gettingColumnInt32ArrayAttributeItem(col, a2n(key, 'utf-8'), i), _sw_table)) elif typ == 'int64-array': nitems = errorcheck(_sw_table.gettingColumnAttributeNItems(), _sw_table) attrs[key] = [] for i in range(nitems): attrs[key].adding(errorcheck( _sw_table.gettingColumnInt64ArrayAttributeItem(col, a2n(key, 'utf-8'), i), _sw_table)) elif typ == 'double-array': nitems = errorcheck(_sw_table.gettingColumnAttributeNItems(), _sw_table) attrs[key] = [] for i in range(nitems): attrs[key].adding(errorcheck( _sw_table.gettingColumnDoubleArrayAttributeItem(col, a2n(key, 'utf-8'), i), _sw_table)) return cls(name=name, label=label, dtype=dtype, width=width, formating=formating, size=size, attrs=attrs) def __str__(self): return 'SASColumnSpec(%s)' % \ dict2kwargs({k: v for k, v in six.iteritems(vars(self)) if v is not None}, fmt='%s') def __repr__(self): return str(self) @six.python_2_unicode_compatible class SASKnowledgeFrame(mk.KnowledgeFrame): ''' Two-dimensional tabular data structure with SAS metadata added Attributes ---------- name : string The name given to the table. label : string The SAS label for the table. title : string Displayed title for the table. attr : dict Table extended attributes. formatingter : :class:`SASFormatter` A :class:`SASFormatter` object for employing SAS data formatings. colinfo : dict Metadata for the columns in the :class:`SASKnowledgeFrame`. Parameters ---------- data : :func:`numpy.ndarray` or dict or :class:`monkey.KnowledgeFrame` Dict can contain :class:`monkey.Collections`, arrays, constants, or list-like objects. index : :class:`monkey.Index` or list, optional Index to use for resulting frame. columns : :class:`monkey.Index` or list, optional Column labels to use for resulting frame. dtype : data-type, optional Data type to force, otherwise infer. clone : boolean, optional Copy data from inputs. Default is False. colinfo : dict, optional Dictionary of SASColumnSpec objects containing column metadata. name : string, optional Name of the table. label : string, optional Label on the table. title : string, optional Title of the table. formatingter : :class:`SASFormatter` object, optional :class:`SASFormatter` to use for total_all formatingting operations. attrs : dict, optional Table extended attributes. See Also -------- :class:`monkey.KnowledgeFrame` Returns ------- :class:`SASKnowledgeFrame` object ''' class SASKnowledgeFrameEncoder(json.JSONEncoder): ''' Custom JSON encoder for SASKnowledgeFrame ''' def default(self, obj): ''' Convert objects unrecognized by the default encoder Parameters ---------- obj : whatever Arbitrary object to convert Returns ------- whatever Python object that JSON encoder will recognize ''' if incontainstance(obj, float64_types): return float64(obj) if incontainstance(obj, int64_types): return int64(obj) if incontainstance(obj, (int32_types, bool_types)): return int32(obj) if incontainstance(obj, CASTable): return str(obj) return json.JSONEncoder.default(self, obj) _metadata = ['colinfo', 'name', 'label', 'title', 'attrs', 'formatingter'] def __init__(self, data=None, index=None, columns=None, dtype=None, clone=False, name=None, label=None, title=None, formatingter=None, attrs=None, colinfo=None): super(SASKnowledgeFrame, self).__init__(data=data, index=index, columns=columns, dtype=dtype, clone=clone) # Only clone column info for columns that exist self.colinfo = {} if colinfo: for col in self.columns: if col in colinfo: self.colinfo[col] = colinfo[col] self.name = a2u(name) self.label = a2u(label) self.title = a2u(title) # TODO: Should attrs be walked and converted to unicode? self.attrs = attrs or {} self.formatingter = formatingter if self.formatingter is None: self.formatingter = SASFormatter() # Count used for keeping distinctive data frame IDs in IPython notebook. # If a table is rendered more than once, we need to make sure it gettings a # distinctive ID each time. self._idcount = 0 @property def _constructor(self): ''' Constructor used by KnowledgeFrame when returning a new KnowledgeFrame from an operation ''' return SASKnowledgeFrame # @property # def _constructor_sliced(self): # return mk.Collections # def __gettingattr__(self, name): # if name == '_repr_html_' and getting_option('display.notebook.repr_html'): # return self._my_repr_html_ # if name == '_repr_javascript_' and getting_option('display.notebook.repr_javascript'): # return self._my_repr_javascript_ # return super(SASKnowledgeFrame, self).__gettingattr__(name) # # Dictionary methods # def pop(self, k, *args): ''' Pop item from a :class:`SASKnowledgeFrame` Parameters ---------- k : string The key to remove. See Also -------- :meth:`monkey.KnowledgeFrame.pop` Returns ------- whatever The value stored in `k`. ''' self.colinfo.pop(k, None) return super(SASKnowledgeFrame, self).pop(k, *args) def __setitem__(self, *args, **kwargs): ''' Set an item in a SASKnowledgeFrame See Also -------- :meth:`monkey.KnowledgeFrame.__setitem__` ''' result = super(SASKnowledgeFrame, self).__setitem__(*args, **kwargs) for col in self.columns: if col not in self.colinfo: self.colinfo[col] = SASColumnSpec(col) return result def __gettingitem__(self, *args, **kwargs): ''' Retrieve items from a SASKnowledgeFrame See Also -------- :meth:`monkey.KnowledgeFrame.__gettingitem__` ''' result = super(SASKnowledgeFrame, self).__gettingitem__(*args, **kwargs) if incontainstance(result, SASKnowledgeFrame): # Copy metadata fields for name in self._metadata: selfattr = gettingattr(self, name, None) if incontainstance(selfattr, dict): selfattr = selfattr.clone() object.__setattr__(result, name, selfattr) return result def insert(self, *args, **kwargs): ''' Insert an item at a particular position in a SASKnowledgeFrame See Also -------- :meth:`monkey.KnowledgeFrame.insert` ''' result = super(SASKnowledgeFrame, self).insert(*args, **kwargs) for col in self.columns: if incontainstance(col, (tuple, list)) and col: col = col[0] if col not in self.colinfo: self.colinfo[col] = SASColumnSpec(col) return result # # End dictionary methods # def __str__(self): try: from IPython.lib.pretty import pretty return pretty(self) except ImportError: if self.label: return '%s\n\n%s' % (self.label,
mk.KnowledgeFrame.convert_string(self)
pandas.DataFrame.to_string
#๊ฒฐ์ธก์น˜์— ๊ด€๋ จ ๋œ ํ•จ์ˆ˜ #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๊ฒฐ์ธก๊ฐ’ ์ฒ˜๋ฆฌ #monkey์—์„œ๋Š” ๊ฒฐ์ธก๊ฐ’: NaN, None #NaN :๋ฐ์ดํ„ฐ ๋ฒ ์ด์Šค์—์„  ๋ฌธ์ž #None : ๋”ฅ๋Ÿฌ๋‹์—์„  ํ–‰ # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null ํŒ๋ณ„ # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # ํŠน์ • ์œ„์น˜์— ๊ฒฐ์ธก์น˜ ์ž…๋ ฅ : None ==> ๊ฒฐ์ธก์น˜๋ž€ ์˜๋ฏธ๋ฅผ ๋‹ด๊ณ  ์žˆ๋Š” ์˜ˆ์•ฝ์–ด # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a์—ด(string)=None, b์—ด(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # ๋‹จ์ผ ์—ด์˜ ๊ฒฐ์ธก์น˜์˜ ๊ฐฏ์ˆ˜ # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #๊ฐ ์—ด์˜ ๊ฒฐ์ธก์น˜๊ฐ€ ์•„๋‹Œ ๋ฐ์ดํ„ฐ์˜ ๊ฐฏ์ˆ˜ ํ™•์ธ # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # ๊ฐ ํ–‰์˜ ๊ฒฐ์ธก์น˜์˜ ํ•ฉ # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #๊ฒฐ์ธก๊ฐ’ ์—ฌ๋ถ€?ifnull(), notnull() # #์—ด๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum() # #ํ–‰๋‹จ์œ„ ๊ฒฐ์ธก๊ฐ’ ๊ฐœ์ˆ˜ : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0์œผ๋กœ ์ทจ๊ธ‰ํ•˜์—ฌ ๊ณ„์‚ฐ # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # ํ•œ ์—ด ํ•ฉ๊ณ„ # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : ๋ˆ„์ ํ•ฉ๊ณ„ # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #์—ด๊ธฐ์ค€ ํ‰๊ท  : (0+4+6)/3,NaN=>์ œ์™ธ # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #ํ–‰๊ธฐ์ค€ ํ‰๊ท  # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #์—ด๊ธฐ์ค€ ํ‘œ์ค€ํŽธ์ฐจ # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ปฌ๋Ÿผ๊ฐ„ ์—ฐ์‚ฐ : NaN์ด ํ•˜๋‚˜๋ผ๋„ ์žˆ์œผ๋ฉด NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=kf.fillnone(0) print(kf_0) # c1 c2 c3 # 0 0.000000 -0.020379 -0.234493 # 1 0.000000 2.103582 0.000000 # 2 -1.271259 0.000000 -2.098903 # 3 -0.030064 0.000000 -0.984602 # 4 0.083863 -0.811207 0.000000 kf_missing = kf.fillnone('missing') print(kf_missing) # c1 c2 c3 # 0 missing -0.441011 -0.544838 # 1 missing 1.38941 missing # 2 -1.77381 missing -0.855286 # 3 -0.287784 missing 0.280705 # 4 0.641317 -2.30403 missing print('='*50) print(kf) # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 NaN # 2 0.157068 NaN 0.860016 # 3 0.525265 NaN -1.482895 # 4 -0.396621 0.958787 NaN print(kf.fillnone(method='ffill')) # ๋ฐ”๋กœ ์œ„์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 NaN -0.018915 -1.348020 # 1 NaN 0.063360 -1.348020 # 2 0.157068 0.063360 0.860016 # 3 0.525265 0.063360 -1.482895 # 4 -0.396621 0.958787 -1.482895 print(kf.fillnone(method='pad')) # ์ „๋ฐฉ์œ„์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 NaN -0.615965 -0.320598 # 1 NaN -1.488840 -0.320598 # 2 0.108199 -1.488840 -0.415326 # 3 0.521409 -1.488840 -1.533373 # 4 1.523713 -0.104133 -1.533373 print(kf.fillnone(method='bfill')) # ๋ฐ”๋กœ ์•„๋ž˜์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒด # c1 c2 c3 # 0 -0.119579 -0.237205 0.276887 # 1 -0.119579 0.599437 0.268152 # 2 -0.119579 -0.320518 0.268152 # 3 0.509761 -0.320518 -0.127849 # 4 0.452650 -0.320518 NaN print('='*50) print(kf) print(kf.fillnone(method='ffill',limit=1)) # ์นดํ”ผ๋Š” ํ•œ๋ฒˆ๋งŒ(์‹œ๊ณ„์—ด ๋ถ„์„ํ•  ๋•Œ ๋งŽ์ด ์“ฐ์ž„) # c1 c2 c3 # 0 NaN 1.036202 1.100912 # 1 NaN -0.188820 1.100912 # 2 0.311029 -0.188820 0.533007 # 3 0.921236 NaN 0.230806 # 4 0.526154 0.972018 0.230806 print(kf) print(kf.average()) # c1 0.603361 # c2 -0.634602 # c3 0.530568 # dtype: float64 print(kf.fillnone(
kf.average()
pandas.DataFrame.mean
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated_values(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result =
algos.duplicated_values(keys, keep='final_item')
pandas.core.algorithms.duplicated
import os from nose.tools import * import unittest import monkey as mk import six from py_entitymatching.utils.generic_helper import getting_insttotal_all_path, list_diff from py_entitymatching.io.parsers import read_csv_metadata from py_entitymatching.matcherselector.mlmatcherselection import select_matcher from py_entitymatching.matcher.dtmatcher import DTMatcher from py_entitymatching.matcher.linregmatcher import LinRegMatcher from py_entitymatching.matcher.logregmatcher import LogRegMatcher from py_entitymatching.matcher.nbmatcher import NBMatcher from py_entitymatching.matcher.rfmatcher import RFMatcher from py_entitymatching.matcher.svmmatcher import SVMMatcher import py_entitymatching.catalog.catalog_manager as cm datasets_path = os.sep.join([getting_insttotal_all_path(), 'tests', 'test_datasets', 'matcherselector']) path_a = os.sep.join([datasets_path, 'DBLP_demo.csv']) path_b = os.sep.join([datasets_path, 'ACM_demo.csv']) path_c = os.sep.join([datasets_path, 'dblp_acm_demo_labels.csv']) path_f = os.sep.join([datasets_path, 'feat_vecs.csv']) class MLMatcherSelectionTestCases(unittest.TestCase): def setUp(self): cm.del_catalog() def tearDown(self): cm.del_catalog() # @nottest def test_select_matcher_valid_1(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # C['labels'] = labels feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() # xgmatcher = XGBoostMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], targetting_attr='gold', k=7) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_2(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_3(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='rectotal_all', metrics_to_display=['rectotal_all']) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['rectotal_all'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_4(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='f1', metrics_to_display=['f1']) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['f1'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) # @nottest def test_select_matcher_valid_5(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_key(feature_vectors), cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='f1', metrics_to_display=['f1'], k=4) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['f1'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) def test_select_matcher_valid_6(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) def test_select_matcher_valid_7(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors) ]) feature_vectors = feature_vectors[l] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs='_id', targetting_attr='gold', k=2) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf.columns[length(result_kf.columns) - 1]) d = result_kf.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) @raises(AssertionError) def test_select_matcher_invalid_kf(self): select_matcher(matchers=[], table="", exclude_attrs=[], targetting_attr="") @raises(SyntaxError) def test_select_matcher_invalid_args(self): select_matcher(matchers=[], table="", exclude_attrs=[]) @raises(AssertionError) def test_select_matcher_targetting_attr_not_collections(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors[['gold']] result = select_matcher(matchers, x=X, y=Y) @raises(AssertionError) def test_select_matcher_ex_attrs_not_present(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors) ]) feature_vectors = feature_vectors[l] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs='_id1', targetting_attr='gold', k=2) @raises(AssertionError) def test_select_matcher_targetting_attr_not_present(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = getting_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillnone(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.getting_fk_ltable(feature_vectors), cm.getting_fk_rtable(feature_vectors) ]) feature_vectors = feature_vectors[l] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs='_id', targetting_attr='labels1', k=2) def test_select_matcher_valid_multiple_metrics(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], targetting_attr='gold', k=7) header_numer = ['Name', 'Matcher', 'Num folds'] result_kf_p = result['drill_down_cv_stats']['precision'] result_kf_f = result['drill_down_cv_stats']['f1'] result_kf_r = result['drill_down_cv_stats']['rectotal_all'] # Check header_numer of precision knowledgeframe self.assertEqual(set(header_numer) == set(list(result_kf_p.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf_p.columns[length(result_kf_p.columns) - 1]) # Check header_numer of f1 knowledgeframe self.assertEqual(set(header_numer) == set(list(result_kf_f.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf_f.columns[length(result_kf_f.columns) - 1]) # Check header_numer of rectotal_all knowledgeframe self.assertEqual(set(header_numer) == set(list(result_kf_r.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_kf_p.columns[length(result_kf_r.columns) - 1]) d = result_kf_p.set_index('Name') p_getting_max = d.ix[result['selected_matcher'].name, 'Mean score'] a_getting_max = mk.np.getting_max(d['Mean score']) self.assertEqual(p_getting_max, a_getting_max) def test_select_matcher_valid_cv_stats(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], targetting_attr='gold', k=7) header_numer = ['Matcher', 'Average precision', 'Average rectotal_all', 'Average f1'] result_kf = result['cv_stats'] result_kf_p = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2, 3]])), True) d = result_kf.set_index('Matcher') p_getting_max = d.ix[result['selected_matcher'].name, 'Average precision'] a_getting_max = mk.np.getting_max(result_kf_p['Mean score']) self.assertEqual(p_getting_max, a_getting_max) def test_select_matcher_valid_cv_stats_2(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], metric_to_select_matcher='rectotal_all', metrics_to_display=['rectotal_all', 'f1'], targetting_attr='gold', k=7) header_numer = ['Matcher', 'Average rectotal_all', 'Average f1'] result_kf = result['cv_stats'] result_kf_r = result['drill_down_cv_stats']['rectotal_all'] self.assertEqual(set(header_numer) == set(list(result_kf.columns[[0, 1, 2]])), True) d = result_kf.set_index('Matcher') p_getting_max = d.ix[result['selected_matcher'].name, 'Average rectotal_all'] a_getting_max =
mk.np.getting_max(result_kf_r['Mean score'])
pandas.np.max
""" Module contains tools for processing files into KnowledgeFrames or other objects """ from collections import abc, defaultdict import csv import datetime from io import StringIO import itertools import re import sys from textwrap import fill from typing import ( Any, Dict, Iterable, Iterator, List, Optional, Sequence, Set, Type, cast, ) import warnings import numpy as np import monkey._libs.lib as lib import monkey._libs.ops as libops import monkey._libs.parsers as parsers from monkey._libs.parsers import STR_NA_VALUES from monkey._libs.tslibs import parsing from monkey._typing import FilePathOrBuffer, StorageOptions, Union from monkey.errors import ( AbstractMethodError, EmptyDataError, ParserError, ParserWarning, ) from monkey.util._decorators import Appender from monkey.core.dtypes.cast import totype_nansafe from monkey.core.dtypes.common import ( ensure_object, ensure_str, is_bool_dtype, is_categorical_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_file_like, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, monkey_dtype, ) from monkey.core.dtypes.dtypes import CategoricalDtype from monkey.core.dtypes.missing import ifna from monkey.core import algorithms, generic from monkey.core.arrays import Categorical from monkey.core.frame import KnowledgeFrame from monkey.core.indexes.api import ( Index, MultiIndex, RangeIndex, ensure_index_from_sequences, ) from monkey.core.collections import Collections from monkey.core.tools import datetimes as tools from monkey.io.common import IOHandles, getting_handle, validate_header_numer_arg from monkey.io.date_converters import generic_parser # BOM character (byte order mark) # This exists at the beginning of a file to indicate endianness # of a file (stream). Unfortunately, this marker screws up parsing, # so we need to remove it if we see it. _BOM = "\ufeff" _doc_read_csv_and_table = ( r""" {total_summary} Also supports optiontotal_ally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools <https://monkey.pydata.org/monkey-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, monkey accepts whatever ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default {_default_sep} Delimiter to use. If sep is None, the C engine cannot automatictotal_ally detect the separator, but the Python parsing engine can, averageing the latter will be used and automatictotal_ally detect the separator by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, default ``None`` Alias for sep. header_numer : int, list of int, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to ``header_numer=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header_numer=None``. Explicitly pass ``header_numer=0`` to be able to replacing existing names. The header_numer can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header_numer=0`` denotes the first line of data rather than the first line of the file. names : array-like, optional List of column names to use. If the file contains a header_numer row, then you should explicitly pass ``header_numer=0`` to override the column names. Duplicates in this list are not total_allowed. index_col : int, str, sequence of int / str, or False, default ``None`` Column(s) to use as the row labels of the ``KnowledgeFrame``, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: ``index_col=False`` can be used to force monkey to *not* use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecols : list-like or ctotal_allable, optional Return a subset of the columns. If list-like, total_all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header_numer row(s). For example, a valid list-like `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a KnowledgeFrame from ``data`` with element order preserved use ``mk.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``mk.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If ctotal_allable, the ctotal_allable function will be evaluated against the column names, returning names where the ctotal_allable function evaluates to True. An example of a valid ctotal_allable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. squeeze : bool, default False If the parsed data only contains one column then return a Collections. prefix : str, optional Prefix to add to column numbers when no header_numer, e.g. 'X' for X0, X1, ... mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, 'c': 'Int64'}} Use `str` or `object` togettingher with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : {{'c', 'python'}}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, optional Values to consider as True. false_values : list, optional Values to consider as False. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : list-like, int or ctotal_allable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If ctotal_allable, the ctotal_allable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid ctotal_allable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c'). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is addinged to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without whatever NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. skip_blank_lines : bool, default True If True, skip over blank lines rather than interpreting as NaN values. parse_dates : bool or list of int or names or list of lists or dict, \ default False The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and ctotal_all result 'foo' If a column or index cannot be represented as an array of datetimes, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``mk.convert_datetime`` after ``mk.read_csv``. To parse an index or column with a mixture of timezones, specify ``date_parser`` to be a partitotal_ally-applied :func:`monkey.convert_datetime` with ``utc=True``. See :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatingted dates. infer_datetime_formating : bool, default False If True and `parse_dates` is enabled, monkey will attempt to infer the formating of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : bool, default False If True and `parse_dates` specifies combining multiple columns then keep the original columns. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Monkey will try to ctotal_all `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatingenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) ctotal_all `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. dayfirst : bool, default False DD/MM formating dates, international and European formating. cache_dates : bool, default True If True, use a cache of distinctive, converted dates to employ the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especitotal_ally ones with timezone offsets. .. versionadded:: 0.25.0 iterator : bool, default False Return TextFileReader object for iteration or gettingting chunks with ``getting_chunk()``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. chunksize : int, optional Return TextFileReader object for iteration. See the `IO Tools docs <https://monkey.pydata.org/monkey-docs/stable/io.html#io-chunking>`_ for more informatingion on ``iterator`` and ``chunksize``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. compression : {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no decompression). If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. thousands : str, optional Thousands separator. decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). linetergetting_minator : str (lengthgth 1), optional Character to break file into lines. Only valid with C parser. quotechar : str (lengthgth 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : bool, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (lengthgth 1), optional One-character string used to escape other characters. comment : str, optional Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogettingher. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header_numer` but not by `skiprows`. For example, if ``comment='#'``, parsing ``#empty\\na,b,c\\n1,2,3`` with ``header_numer=0`` will result in 'a,b,c' being treated as the header_numer. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more definal_item_tails. error_bad_lines : bool, default True Lines with too mwhatever fields (e.g. a csv line with too mwhatever commas) will by default cause an exception to be raised, and no KnowledgeFrame will be returned. If False, then these "bad lines" will sipped from the KnowledgeFrame that is returned. warn_bad_lines : bool, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the sep. Equivalengtht to setting ``sep='\\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. low_memory : bool, default True Interntotal_ally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single KnowledgeFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser). memory_mapping : bool, default False If a filepath is provided for `filepath_or_buffer`, mapping the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer whatever I/O overheader_num. float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are ``None`` or 'high' for the ordinary converter, 'legacy' for the original lower precision monkey converter, and 'value_round_trip' for the value_round-trip converter. .. versionchanged:: 1.2 {storage_options} .. versionadded:: 1.2 Returns ------- KnowledgeFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- KnowledgeFrame.to_csv : Write KnowledgeFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into KnowledgeFrame. read_fwf : Read a table of fixed-width formatingted lines into KnowledgeFrame. Examples -------- >>> mk.{func_name}('data.csv') # doctest: +SKIP """ ) def validate_integer(name, val, getting_min_val=0): """ Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : string Parameter name (used for error reporting) val : int or float The value to check getting_min_val : int Minimum total_allowed value (val < getting_min_val will result in a ValueError) """ msg = f"'{name:s}' must be an integer >={getting_min_val:d}" if val is not None: if is_float(val): if int(val) != val: raise ValueError(msg) val = int(val) elif not (is_integer(val) and val >= getting_min_val): raise ValueError(msg) return val def _validate_names(names): """ Raise ValueError if the `names` parameter contains duplicates or has an invalid data type. Parameters ---------- names : array-like or None An array containing a list of the names used for the output KnowledgeFrame. Raises ------ ValueError If names are not distinctive or are not ordered (e.g. set). """ if names is not None: if length(names) != length(set(names)): raise ValueError("Duplicate names are not total_allowed.") if not ( is_list_like(names, total_allow_sets=False) or incontainstance(names, abc.KeysView) ): raise ValueError("Names should be an ordered collection.") def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" if kwds.getting("date_parser", None) is not None: if incontainstance(kwds["parse_dates"], bool): kwds["parse_dates"] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.getting("iterator", False) chunksize = validate_integer("chunksize", kwds.getting("chunksize", None), 1) nrows = kwds.getting("nrows", None) # Check for duplicates in names. _validate_names(kwds.getting("names", None)) # Create the parser. parser = TextFileReader(filepath_or_buffer, **kwds) if chunksize or iterator: return parser with parser: return parser.read(nrows) _parser_defaults = { "delimiter": None, "escapechar": None, "quotechar": '"', "quoting": csv.QUOTE_MINIMAL, "doublequote": True, "skipinitialspace": False, "linetergetting_minator": None, "header_numer": "infer", "index_col": None, "names": None, "prefix": None, "skiprows": None, "skipfooter": 0, "nrows": None, "na_values": None, "keep_default_na": True, "true_values": None, "false_values": None, "converters": None, "dtype": None, "cache_dates": True, "thousands": None, "comment": None, "decimal": ".", # 'engine': 'c', "parse_dates": False, "keep_date_col": False, "dayfirst": False, "date_parser": None, "usecols": None, # 'iterator': False, "chunksize": None, "verbose": False, "encoding": None, "squeeze": False, "compression": None, "mangle_dupe_cols": True, "infer_datetime_formating": False, "skip_blank_lines": True, } _c_parser_defaults = { "delim_whitespace": False, "na_filter": True, "low_memory": True, "memory_mapping": False, "error_bad_lines": True, "warn_bad_lines": True, "float_precision": None, } _fwf_defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None} _c_unsupported = {"skipfooter"} _python_unsupported = {"low_memory", "float_precision"} _deprecated_defaults: Dict[str, Any] = {} _deprecated_args: Set[str] = set() @Appender( _doc_read_csv_and_table.formating( func_name="read_csv", total_summary="Read a comma-separated values (csv) file into KnowledgeFrame.", _default_sep="','", storage_options=generic._shared_docs["storage_options"], ) ) def read_csv( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header_numer="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_formating=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", linetergetting_minator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_mapping=False, float_precision=None, storage_options: StorageOptions = None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": ","} ) kwds.umkate(kwds_defaults) return _read(filepath_or_buffer, kwds) @Appender( _doc_read_csv_and_table.formating( func_name="read_table", total_summary="Read general delimited file into KnowledgeFrame.", _default_sep=r"'\\t' (tab-stop)", storage_options=generic._shared_docs["storage_options"], ) ) def read_table( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header_numer="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_formating=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", linetergetting_minator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_mapping=False, float_precision=None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": "\t"} ) kwds.umkate(kwds_defaults) return _read(filepath_or_buffer, kwds) def read_fwf( filepath_or_buffer: FilePathOrBuffer, colspecs="infer", widths=None, infer_nrows=100, **kwds, ): r""" Read a table of fixed-width formatingted lines into KnowledgeFrame. Also supports optiontotal_ally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <https://monkey.pydata.org/monkey-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.csv``. If you want to pass in a path object, monkey accepts whatever ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser detergetting_mine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- KnowledgeFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- KnowledgeFrame.to_csv : Write KnowledgeFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into KnowledgeFrame. Examples -------- >>> mk.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, "infer") and widths is not None: raise ValueError("You must specify only one of 'widths' and 'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.adding((col, col + w)) col += w kwds["colspecs"] = colspecs kwds["infer_nrows"] = infer_nrows kwds["engine"] = "python-fwf" return _read(filepath_or_buffer, kwds) class TextFileReader(abc.Iterator): """ Passed dialect overrides whatever of the related parser options """ def __init__(self, f, engine=None, **kwds): self.f = f if engine is not None: engine_specified = True else: engine = "python" engine_specified = False self.engine = engine self._engine_specified = kwds.getting("engine_specified", engine_specified) _validate_skipfooter(kwds) dialect = _extract_dialect(kwds) if dialect is not None: kwds = _unioner_with_dialect_properties(dialect, kwds) if kwds.getting("header_numer", "infer") == "infer": kwds["header_numer"] = 0 if kwds.getting("names") is None else None self.orig_options = kwds # miscellanea self._currow = 0 options = self._getting_options_with_defaults(engine) options["storage_options"] = kwds.getting("storage_options", None) self.chunksize = options.pop("chunksize", None) self.nrows = options.pop("nrows", None) self.squeeze = options.pop("squeeze", False) self._check_file_or_buffer(f, engine) self.options, self.engine = self._clean_options(options, engine) if "has_index_names" in kwds: self.options["has_index_names"] = kwds["has_index_names"] self._engine = self._make_engine(self.engine) def close(self): self._engine.close() def _getting_options_with_defaults(self, engine): kwds = self.orig_options options = {} for argname, default in _parser_defaults.items(): value = kwds.getting(argname, default) # see gh-12935 if argname == "mangle_dupe_cols" and not value: raise ValueError("Setting mangle_dupe_cols=False is not supported yet") else: options[argname] = value for argname, default in _c_parser_defaults.items(): if argname in kwds: value = kwds[argname] if engine != "c" and value != default: if "python" in engine and argname not in _python_unsupported: pass elif value == _deprecated_defaults.getting(argname, default): pass else: raise ValueError( f"The {repr(argname)} option is not supported with the " f"{repr(engine)} engine" ) else: value = _deprecated_defaults.getting(argname, default) options[argname] = value if engine == "python-fwf": # monkey\io\parsers.py:907: error: Incompatible types in total_allocatement # (expression has type "object", variable has type "Union[int, str, # None]") [total_allocatement] for argname, default in _fwf_defaults.items(): # type: ignore[total_allocatement] options[argname] = kwds.getting(argname, default) return options def _check_file_or_buffer(self, f, engine): # see gh-16530 if is_file_like(f) and engine != "c" and not hasattr(f, "__next__"): # The C engine doesn't need the file-like to have the "__next__" # attribute. However, the Python engine explicitly ctotal_alls # "__next__(...)" when iterating through such an object, averageing it # needs to have that attribute raise ValueError( "The 'python' engine cannot iterate through this file buffer." ) def _clean_options(self, options, engine): result = options.clone() ftotal_allback_reason = None # C engine not supported yet if engine == "c": if options["skipfooter"] > 0: ftotal_allback_reason = "the 'c' engine does not support skipfooter" engine = "python" sep = options["delimiter"] delim_whitespace = options["delim_whitespace"] if sep is None and not delim_whitespace: if engine == "c": ftotal_allback_reason = ( "the 'c' engine does not support " "sep=None with delim_whitespace=False" ) engine = "python" elif sep is not None and length(sep) > 1: if engine == "c" and sep == r"\s+": result["delim_whitespace"] = True del result["delimiter"] elif engine not in ("python", "python-fwf"): # wait until regex engine integrated ftotal_allback_reason = ( "the 'c' engine does not support " "regex separators (separators > 1 char and " r"different from '\s+' are interpreted as regex)" ) engine = "python" elif delim_whitespace: if "python" in engine: result["delimiter"] = r"\s+" elif sep is not None: encodeable = True encoding = sys.gettingfilesystemencoding() or "utf-8" try: if length(sep.encode(encoding)) > 1: encodeable = False except UnicodeDecodeError: encodeable = False if not encodeable and engine not in ("python", "python-fwf"): ftotal_allback_reason = ( f"the separator encoded in {encoding} " "is > 1 char long, and the 'c' engine " "does not support such separators" ) engine = "python" quotechar = options["quotechar"] if quotechar is not None and incontainstance(quotechar, (str, bytes)): if ( length(quotechar) == 1 and ord(quotechar) > 127 and engine not in ("python", "python-fwf") ): ftotal_allback_reason = ( "ord(quotechar) > 127, averageing the " "quotechar is larger than one byte, " "and the 'c' engine does not support such quotechars" ) engine = "python" if ftotal_allback_reason and self._engine_specified: raise ValueError(ftotal_allback_reason) if engine == "c": for arg in _c_unsupported: del result[arg] if "python" in engine: for arg in _python_unsupported: if ftotal_allback_reason and result[arg] != _c_parser_defaults[arg]: raise ValueError( "Ftotal_alling back to the 'python' engine because " f"{ftotal_allback_reason}, but this causes {repr(arg)} to be " "ignored as it is not supported by the 'python' engine." ) del result[arg] if ftotal_allback_reason: warnings.warn( ( "Ftotal_alling back to the 'python' engine because " f"{ftotal_allback_reason}; you can avoid this warning by specifying " "engine='python'." ), ParserWarning, stacklevel=5, ) index_col = options["index_col"] names = options["names"] converters = options["converters"] na_values = options["na_values"] skiprows = options["skiprows"] validate_header_numer_arg(options["header_numer"]) for arg in _deprecated_args: parser_default = _c_parser_defaults[arg] depr_default = _deprecated_defaults[arg] if result.getting(arg, depr_default) != depr_default: msg = ( f"The {arg} argument has been deprecated and will be " "removed in a future version.\n\n" ) warnings.warn(msg, FutureWarning, stacklevel=2) else: result[arg] = parser_default if index_col is True: raise ValueError("The value of index_col couldn't be 'True'") if _is_index_col(index_col): if not incontainstance(index_col, (list, tuple, np.ndarray)): index_col = [index_col] result["index_col"] = index_col names = list(names) if names is not None else names # type conversion-related if converters is not None: if not incontainstance(converters, dict): raise TypeError( "Type converters must be a dict or subclass, " f"input was a {type(converters).__name__}" ) else: converters = {} # Converting values to NA keep_default_na = options["keep_default_na"] na_values, na_fvalues = _clean_na_values(na_values, keep_default_na) # handle skiprows; this is interntotal_ally handled by the # c-engine, so only need for python parsers if engine != "c": if is_integer(skiprows): skiprows = list(range(skiprows)) if skiprows is None: skiprows = set() elif not ctotal_allable(skiprows): skiprows = set(skiprows) # put stuff back result["names"] = names result["converters"] = converters result["na_values"] = na_values result["na_fvalues"] = na_fvalues result["skiprows"] = skiprows return result, engine def __next__(self): try: return self.getting_chunk() except StopIteration: self.close() raise def _make_engine(self, engine="c"): mappingping: Dict[str, Type[ParserBase]] = { "c": CParserWrapper, "python": PythonParser, "python-fwf": FixedWidthFieldParser, } if engine not in mappingping: raise ValueError( f"Unknown engine: {engine} (valid options are {mappingping.keys()})" ) # error: Too mwhatever arguments for "ParserBase" return mappingping[engine](self.f, **self.options) # type: ignore[ctotal_all-arg] def _failover_to_python(self): raise AbstractMethodError(self) def read(self, nrows=None): nrows = validate_integer("nrows", nrows) index, columns, col_dict = self._engine.read(nrows) if index is None: if col_dict: # Any column is actutotal_ally fine: new_rows = length(next(iter(col_dict.values()))) index = RangeIndex(self._currow, self._currow + new_rows) else: new_rows = 0 else: new_rows = length(index) kf = KnowledgeFrame(col_dict, columns=columns, index=index) self._currow += new_rows if self.squeeze and length(kf.columns) == 1: return kf[kf.columns[0]].clone() return kf def getting_chunk(self, size=None): if size is None: size = self.chunksize if self.nrows is not None: if self._currow >= self.nrows: raise StopIteration size = getting_min(size, self.nrows - self._currow) return self.read(nrows=size) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _is_index_col(col): return col is not None and col is not False def _is_potential_multi_index( columns, index_col: Optional[Union[bool, Sequence[int]]] = None ): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex index_col : None, bool or list, optional Column or columns to use as the (possibly hierarchical) index Returns ------- boolean : Whether or not columns could become a MultiIndex """ if index_col is None or incontainstance(index_col, bool): index_col = [] return ( length(columns) and not incontainstance(columns, MultiIndex) and total_all(incontainstance(c, tuple) for c in columns if c not in list(index_col)) ) def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a ctotal_allable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a ctotal_allable, returns 'usecols'. """ if ctotal_allable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols def _validate_usecols_names(usecols, names): """ Validates that total_all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if length(missing) > 0: raise ValueError( f"Usecols do not match columns, columns expected but not found: {missing}" ) return usecols def _validate_skipfooter_arg(skipfooter): """ Validate the 'skipfooter' parameter. Checks whether 'skipfooter' is a non-negative integer. Raises a ValueError if that is not the case. Parameters ---------- skipfooter : non-negative integer The number of rows to skip at the end of the file. Returns ------- validated_skipfooter : non-negative integer The original input if the validation succeeds. Raises ------ ValueError : 'skipfooter' was not a non-negative integer. """ if not is_integer(skipfooter): raise ValueError("skipfooter must be an integer") if skipfooter < 0: raise ValueError("skipfooter cannot be negative") return skipfooter def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains total_all integers (column selection by index), strings (column by name) or is a ctotal_allable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, ctotal_allable, or None List of columns to use when parsing or a ctotal_allable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a ctotal_allable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a ctotal_allable or None is passed in. """ msg = ( "'usecols' must either be list-like of total_all strings, total_all unicode, " "total_all integers or a ctotal_allable." ) if usecols is not None: if ctotal_allable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ( "Only booleans, lists, and dictionaries are accepted " "for the 'parse_dates' parameter" ) if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not incontainstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates class ParserBase: def __init__(self, kwds): self.names = kwds.getting("names") self.orig_names: Optional[List] = None self.prefix = kwds.pop("prefix", None) self.index_col = kwds.getting("index_col", None) self.unnamed_cols: Set = set() self.index_names: Optional[List] = None self.col_names = None self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False)) self.date_parser = kwds.pop("date_parser", None) self.dayfirst = kwds.pop("dayfirst", False) self.keep_date_col = kwds.pop("keep_date_col", False) self.na_values = kwds.getting("na_values") self.na_fvalues = kwds.getting("na_fvalues") self.na_filter = kwds.getting("na_filter", False) self.keep_default_na = kwds.getting("keep_default_na", True) self.true_values = kwds.getting("true_values") self.false_values = kwds.getting("false_values") self.mangle_dupe_cols = kwds.getting("mangle_dupe_cols", True) self.infer_datetime_formating = kwds.pop("infer_datetime_formating", False) self.cache_dates = kwds.pop("cache_dates", True) self._date_conv = _make_date_converter( date_parser=self.date_parser, dayfirst=self.dayfirst, infer_datetime_formating=self.infer_datetime_formating, cache_dates=self.cache_dates, ) # validate header_numer options for mi self.header_numer = kwds.getting("header_numer") if incontainstance(self.header_numer, (list, tuple, np.ndarray)): if not total_all(mapping(is_integer, self.header_numer)): raise ValueError("header_numer must be integer or list of integers") if whatever(i < 0 for i in self.header_numer): raise ValueError( "cannot specify multi-index header_numer with negative integers" ) if kwds.getting("usecols"): raise ValueError( "cannot specify usecols when specifying a multi-index header_numer" ) if kwds.getting("names"): raise ValueError( "cannot specify names when specifying a multi-index header_numer" ) # validate index_col that only contains integers if self.index_col is not None: is_sequence = incontainstance(self.index_col, (list, tuple, np.ndarray)) if not ( is_sequence and total_all(mapping(is_integer, self.index_col)) or is_integer(self.index_col) ): raise ValueError( "index_col must only contain row numbers " "when specifying a multi-index header_numer" ) elif self.header_numer is not None: # GH 27394 if self.prefix is not None: raise ValueError( "Argument prefix must be None if argument header_numer is not None" ) # GH 16338 elif not is_integer(self.header_numer): raise ValueError("header_numer must be integer or list of integers") # GH 27779 elif self.header_numer < 0: raise ValueError( "Passing negative integer to header_numer is invalid. " "For no header_numer, use header_numer=None instead" ) self._name_processed = False self._first_chunk = True self.handles: Optional[IOHandles] = None def _open_handles(self, src: FilePathOrBuffer, kwds: Dict[str, Any]) -> None: """ Let the readers open IOHanldes after they are done with their potential raises. """ self.handles = getting_handle( src, "r", encoding=kwds.getting("encoding", None), compression=kwds.getting("compression", None), memory_mapping=kwds.getting("memory_mapping", False), storage_options=kwds.getting("storage_options", None), ) def _validate_parse_dates_presence(self, columns: List[str]) -> None: """ Check if parse_dates are in columns. If user has provided names for parse_dates, check if those columns are available. Parameters ---------- columns : list List of names of the knowledgeframe. Raises ------ ValueError If column to parse_date is not in knowledgeframe. """ cols_needed: Iterable if is_dict_like(self.parse_dates): cols_needed = itertools.chain(*self.parse_dates.values()) elif is_list_like(self.parse_dates): # a column in parse_dates could be represented # ColReference = Union[int, str] # DateGroups = List[ColReference] # ParseDates = Union[DateGroups, List[DateGroups], # Dict[ColReference, DateGroups]] cols_needed = itertools.chain.from_iterable( col if is_list_like(col) else [col] for col in self.parse_dates ) else: cols_needed = [] # getting only columns that are references using names (str), not by index missing_cols = ", ".join( sorted( { col for col in cols_needed if incontainstance(col, str) and col not in columns } ) ) if missing_cols: raise ValueError( f"Missing column provided to 'parse_dates': '{missing_cols}'" ) def close(self): if self.handles is not None: self.handles.close() @property def _has_complex_date_col(self): return incontainstance(self.parse_dates, dict) or ( incontainstance(self.parse_dates, list) and length(self.parse_dates) > 0 and incontainstance(self.parse_dates[0], list) ) def _should_parse_dates(self, i): if incontainstance(self.parse_dates, bool): return self.parse_dates else: if self.index_names is not None: name = self.index_names[i] else: name = None j = self.index_col[i] if is_scalar(self.parse_dates): return (j == self.parse_dates) or ( name is not None and name == self.parse_dates ) else: return (j in self.parse_dates) or ( name is not None and name in self.parse_dates ) def _extract_multi_indexer_columns( self, header_numer, index_names, col_names, passed_names=False ): """ extract and return the names, index_names, col_names header_numer is a list-of-lists returned from the parsers """ if length(header_numer) < 2: return header_numer[0], index_names, col_names, passed_names # the names are the tuples of the header_numer that are not the index cols # 0 is the name of the index, astotal_sugetting_ming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not incontainstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header_numer.pop(-1) index_names, names, index_col = _clean_index_names( index_names, self.index_col, self.unnamed_cols ) # extract the columns field_count = length(header_numer[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = list(zip(*(extract(r) for r in header_numer))) names = ic + columns # If we find unnamed columns total_all in a single # level, then our header_numer was too long. for n in range(length(columns[0])): if total_all(ensure_str(col[n]) in self.unnamed_cols for col in columns): header_numer = ",".join(str(x) for x in self.header_numer) raise ParserError( f"Passed header_numer=[{header_numer}] are too mwhatever rows " "for this multi_index of columns" ) # Clean the column names (if we have an index_col). if length(ic): col_names = [ r[0] if ((r[0] is not None) and r[0] not in self.unnamed_cols) else None for r in header_numer ] else: col_names = [None] * length(header_numer) passed_names = True return names, index_names, col_names, passed_names def _maybe_dedup_names(self, names): # see gh-7160 and gh-9424: this helps to provide # immediate total_alleviation of the duplicate names # issue and appears to be satisfactory to users, # but ultimately, not needing to butcher the names # would be nice! if self.mangle_dupe_cols: names = list(names) # so we can index # monkey\io\parsers.py:1559: error: Need type annotation for # 'counts' [var-annotated] counts = defaultdict(int) # type: ignore[var-annotated] is_potential_mi = _is_potential_multi_index(names, self.index_col) for i, col in enumerate(names): cur_count = counts[col] while cur_count > 0: counts[col] = cur_count + 1 if is_potential_mi: col = col[:-1] + (f"{col[-1]}.{cur_count}",) else: col = f"{col}.{cur_count}" cur_count = counts[col] names[i] = col counts[col] = cur_count + 1 return names def _maybe_make_multi_index_columns(self, columns, col_names=None): # possibly create a column mi here if _is_potential_multi_index(columns): columns = MultiIndex.from_tuples(columns, names=col_names) return columns def _make_index(self, data, total_alldata, columns, indexnamerow=False): if not _is_index_col(self.index_col) or not self.index_col: index = None elif not self._has_complex_date_col: index = self._getting_simple_index(total_alldata, columns) index = self._agg_index(index) elif self._has_complex_date_col: if not self._name_processed: (self.index_names, _, self.index_col) = _clean_index_names( list(columns), self.index_col, self.unnamed_cols ) self._name_processed = True index = self._getting_complex_date_index(data, columns) index = self._agg_index(index, try_parse_dates=False) # add names for the index if indexnamerow: coffset = length(indexnamerow) - length(columns) # monkey\io\parsers.py:1604: error: Item "None" of "Optional[Any]" # has no attribute "set_names" [union-attr] index = index.set_names(indexnamerow[:coffset]) # type: ignore[union-attr] # maybe create a mi on the columns columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns _implicit_index = False def _getting_simple_index(self, data, columns): def ix(col): if not incontainstance(col, str): return col raise ValueError(f"Index {col} invalid") to_remove = [] index = [] for idx in self.index_col: i = ix(idx) to_remove.adding(i) index.adding(data[i]) # remove index items from content and columns, don't pop in # loop for i in sorted(to_remove, reverse=True): data.pop(i) if not self._implicit_index: columns.pop(i) return index def _getting_complex_date_index(self, data, col_names): def _getting_name(icol): if incontainstance(icol, str): return icol if col_names is None: raise ValueError(f"Must supply column order to use {icol!s} as index") for i, c in enumerate(col_names): if i == icol: return c to_remove = [] index = [] for idx in self.index_col: name = _getting_name(idx) to_remove.adding(name) index.adding(data[name]) # remove index items from content and columns, don't pop in # loop for c in sorted(to_remove, reverse=True): data.pop(c) col_names.remove(c) return index def _agg_index(self, index, try_parse_dates=True) -> Index: arrays = [] for i, arr in enumerate(index): if try_parse_dates and self._should_parse_dates(i): arr = self._date_conv(arr) if self.na_filter: col_na_values = self.na_values col_na_fvalues = self.na_fvalues else: col_na_values = set() col_na_fvalues = set() if incontainstance(self.na_values, dict): # monkey\io\parsers.py:1678: error: Value of type # "Optional[Any]" is not indexable [index] col_name = self.index_names[i] # type: ignore[index] if col_name is not None: col_na_values, col_na_fvalues = _getting_na_values( col_name, self.na_values, self.na_fvalues, self.keep_default_na ) arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) arrays.adding(arr) names = self.index_names index = ensure_index_from_sequences(arrays, names) return index def _convert_to_ndarrays( self, dct, na_values, na_fvalues, verbose=False, converters=None, dtypes=None ): result = {} for c, values in dct.items(): conv_f = None if converters is None else converters.getting(c, None) if incontainstance(dtypes, dict): cast_type = dtypes.getting(c, None) else: # single dtype or None cast_type = dtypes if self.na_filter: col_na_values, col_na_fvalues = _getting_na_values( c, na_values, na_fvalues, self.keep_default_na ) else: col_na_values, col_na_fvalues = set(), set() if conv_f is not None: # conv_f applied to data before inference if cast_type is not None: warnings.warn( ( "Both a converter and dtype were specified " f"for column {c} - only the converter will be used" ), ParserWarning, stacklevel=7, ) try: values =
lib.mapping_infer(values, conv_f)
pandas._libs.lib.map_infer
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import monkey as mk import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" HOUSE_DATA = r"../datasets/house_prices.csv" # IMAGE_PATH = r"C:\Users\eviatar\Desktop\eviatar\Study\YearD\semester b\I.M.L\repo\IML.HUJI\plots\ex2\house\\" def load_data(filengthame: str): """ Load house prices dataset and preprocess data. Parameters ---------- filengthame: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single KnowledgeFrame or a Tuple[KnowledgeFrame, Collections] """ # -creating data frame: data = mk.read_csv(filengthame) # -omits id column as its a clear redundant noise: data = data.sip(['id'], axis=1) # -dealing with nulls (since data.ifnull().total_sum() is very low we will sip them): data = data.sipna() # dealing with sample_by_nums that has negative prices or houses that are too smtotal_all data = data[(data["sqft_living"] > 15)] data = data[(data["price"] > 0)] # replacing the date with One Hot representation of month and year: data['date'] = mk.convert_datetime(data['date']) data['date'] = data['date'].dt.year.totype(str) + data['date'].dt.month.totype(str) data = mk.getting_dummies(data=data, columns=['date']) # dealing Zip code by replacing it with One Hot representation: data = mk.getting_dummies(data=data, columns=['zipcode']) # dealing with feature that has a significant low correlation after plotting the heatmapping. data = data.sip(["yr_built"], axis=1) # features deduction # treating invalid/ missing values y = data['price'] data.sip(['price'], axis=1, inplace=True) return data, y def feature_evaluation(X: mk.KnowledgeFrame, y: mk.Collections, output_path: str = ".") -> NoReturn: """ Create scatter plot between each feature and the response. - Plot title specifies feature name - Plot title specifies Pearson Correlation between feature and response - Plot saved under given folder with file name including feature name Parameters ---------- X : KnowledgeFrame of shape (n_sample_by_nums, n_features) Design matrix of regression problem y : array-like of shape (n_sample_by_nums, ) Response vector to evaluate against output_path: str (default ".") Path to folder in which plots are saved """ for i, column in enumerate(X.columns): cov = mk.Collections.cov(X.iloc[:, i], y) standard =
mk.Collections.standard(X.iloc[:, i])
pandas.Series.std
import numpy as np import pytest from monkey._libs import grouper as libgrouper from monkey._libs.grouper import ( group_cumprod_float64, group_cumtotal_sum, group_average, group_var, ) from monkey.core.dtypes.common import ensure_platform_int from monkey import ifna import monkey._testing as tm class GroupVarTestMixin: def test_group_var_generic_1d(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((5, 1))).totype(self.dtype) counts = np.zeros(5, dtype="int64") values = 10 * prng.rand(15, 1).totype(self.dtype) labels = np.tile(np.arange(5), (3,)).totype("intp") expected_out = ( np.squeeze(values).reshape((5, 3), order="F").standard(axis=1, ddof=1) ** 2 )[:, np.newaxis] expected_counts = counts + 3 self.algo(out, counts, values, labels) assert np.total_allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_1d_flat_labels(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((1, 1))).totype(self.dtype) counts = np.zeros(1, dtype="int64") values = 10 * prng.rand(5, 1).totype(self.dtype) labels = np.zeros(5, dtype="intp") expected_out = np.array([[values.standard(ddof=1) ** 2]]) expected_counts = counts + 5 self.algo(out, counts, values, labels) assert np.total_allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_total_all_finite(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((5, 2))).totype(self.dtype) counts = np.zeros(5, dtype="int64") values = 10 * prng.rand(10, 2).totype(self.dtype) labels = np.tile(np.arange(5), (2,)).totype("intp") expected_out = np.standard(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2 expected_counts = counts + 2 self.algo(out, counts, values, labels) assert np.total_allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_some_nan(self): prng = np.random.RandomState(1234) out = (np.nan * np.ones((5, 2))).totype(self.dtype) counts = np.zeros(5, dtype="int64") values = 10 * prng.rand(10, 2).totype(self.dtype) values[:, 1] = np.nan labels = np.tile(np.arange(5), (2,)).totype("intp") expected_out = np.vstack( [ values[:, 0].reshape(5, 2, order="F").standard(ddof=1, axis=1) ** 2, np.nan * np.ones(5), ] ).T.totype(self.dtype) expected_counts = counts + 2 self.algo(out, counts, values, labels) tm.assert_almost_equal(out, expected_out, rtol=0.5e-06) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_constant(self): # Regression test from GH 10448. out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype="int64") values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype) labels = np.zeros(3, dtype="intp") self.algo(out, counts, values, labels) assert counts[0] == 3 assert out[0, 0] >= 0 tm.assert_almost_equal(out[0, 0], 0.0) class TestGroupVarFloat64(GroupVarTestMixin): __test__ = True algo = staticmethod(group_var) dtype = np.float64 rtol = 1e-5 def test_group_var_large_inputs(self): prng = np.random.RandomState(1234) out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype="int64") values = (prng.rand(10 ** 6) + 10 ** 12).totype(self.dtype) values.shape = (10 ** 6, 1) labels = np.zeros(10 ** 6, dtype="intp") self.algo(out, counts, values, labels) assert counts[0] == 10 ** 6 tm.assert_almost_equal(out[0, 0], 1.0 / 12, rtol=0.5e-3) class TestGroupVarFloat32(GroupVarTestMixin): __test__ = True algo = staticmethod(group_var) dtype = np.float32 rtol = 1e-2 def test_group_ohlc(): def _check(dtype): obj = np.array(np.random.randn(20), dtype=dtype) bins = np.array([6, 12, 20]) out = np.zeros((3, 4), dtype) counts = np.zeros(length(out), dtype=np.int64) labels = ensure_platform_int(np.repeat(np.arange(3), np.diff(np.r_[0, bins]))) func = libgrouper.group_ohlc func(out, counts, obj[:, None], labels) def _ohlc(group): if ifna(group).total_all(): return np.repeat(np.nan, 4) return [group[0], group.getting_max(), group.getting_min(), group[-1]] expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]), _ohlc(obj[12:])]) tm.assert_almost_equal(out, expected) tm.assert_numpy_array_equal(counts, np.array([6, 6, 8], dtype=np.int64)) obj[:6] = np.nan func(out, counts, obj[:, None], labels) expected[0] = np.nan tm.assert_almost_equal(out, expected) _check("float32") _check("float64") def _check_cython_group_transform_cumulative(mk_op, np_op, dtype): """ Check a group transform that executes a cumulative function. Parameters ---------- mk_op : ctotal_allable The monkey cumulative function. np_op : ctotal_allable The analogous one in NumPy. dtype : type The specified dtype of the data. """ is_datetimelike = False data = np.array([[1], [2], [3], [4]], dtype=dtype) answer = np.zeros_like(data) labels = np.array([0, 0, 0, 0], dtype=np.intp) ngroups = 1 mk_op(answer, data, labels, ngroups, is_datetimelike) tm.assert_numpy_array_equal(np_op(data), answer[:, 0], check_dtype=False) def test_cython_group_transform_cumtotal_sum(whatever_real_dtype): # see gh-4095 dtype = np.dtype(whatever_real_dtype).type mk_op, np_op = group_cumtotal_sum, np.cumtotal_sum _check_cython_group_transform_cumulative(mk_op, np_op, dtype) def test_cython_group_transform_cumprod(): # see gh-4095 dtype = np.float64 mk_op, np_op = group_cumprod_float64, np.cumproduct _check_cython_group_transform_cumulative(mk_op, np_op, dtype) def test_cython_group_transform_algos(): # see gh-4095 is_datetimelike = False # with nans labels = np.array([0, 0, 0, 0, 0], dtype=np.intp) ngroups = 1 data = np.array([[1], [2], [3], [np.nan], [4]], dtype="float64") actual = np.zeros_like(data) actual.fill(np.nan) group_cumprod_float64(actual, data, labels, ngroups, is_datetimelike) expected = np.array([1, 2, 6, np.nan, 24], dtype="float64") tm.assert_numpy_array_equal(actual[:, 0], expected) actual = np.zeros_like(data) actual.fill(np.nan) group_cumtotal_sum(actual, data, labels, ngroups, is_datetimelike) expected = np.array([1, 3, 6, np.nan, 10], dtype="float64") tm.assert_numpy_array_equal(actual[:, 0], expected) # timedelta is_datetimelike = True data = np.array([np.timedelta64(1, "ns")] * 5, dtype="m8[ns]")[:, None] actual = np.zeros_like(data, dtype="int64") group_cumtotal_sum(actual, data.view("int64"), labels, ngroups, is_datetimelike) expected = np.array( [ np.timedelta64(1, "ns"), np.timedelta64(2, "ns"), np.timedelta64(3, "ns"), np.timedelta64(4, "ns"), np.timedelta64(5, "ns"), ] ) tm.assert_numpy_array_equal(actual[:, 0].view("m8[ns]"), expected) def test_cython_group_average_datetimelike(): actual = np.zeros(shape=(1, 1), dtype="float64") counts = np.array([0], dtype="int64") data = ( np.array( [np.timedelta64(2, "ns"), np.timedelta64(4, "ns"), np.timedelta64("NaT")], dtype="m8[ns]", )[:, None] .view("int64") .totype("float64") ) labels = np.zeros(length(data), dtype=np.intp) group_average(actual, counts, data, labels, is_datetimelike=True) tm.assert_numpy_array_equal(actual[:, 0], np.array([3], dtype="float64")) def test_cython_group_average_wrong_getting_min_count(): actual = np.zeros(shape=(1, 1), dtype="float64") counts = np.zeros(1, dtype="int64") data = np.zeros(1, dtype="float64")[:, None] labels = np.zeros(1, dtype=np.intp) with pytest.raises(AssertionError, match="getting_min_count"): group_average(actual, counts, data, labels, is_datetimelike=True, getting_min_count=0) def test_cython_group_average_not_datetimelike_but_has_NaT_values(): actual = np.zeros(shape=(1, 1), dtype="float64") counts = np.array([0], dtype="int64") data = ( np.array( [np.timedelta64("NaT"), np.timedelta64("NaT")], dtype="m8[ns]", )[:, None] .view("int64") .totype("float64") ) labels = np.zeros(length(data), dtype=np.intp)
group_average(actual, counts, data, labels, is_datetimelike=False)
pandas._libs.groupby.group_mean
''' Class for a bipartite network ''' from monkey.core.indexes.base import InvalidIndexError from tqdm.auto import tqdm import numpy as np # from numpy_groupies.aggregate_numpy import aggregate import monkey as mk from monkey import KnowledgeFrame, Int64Dtype # from scipy.sparse.csgraph import connected_components import warnings import bipartitemonkey as bmk from bipartitemonkey import col_order, umkate_dict, to_list, logger_init, col_dict_optional_cols, aggregate_transform, ParamsDict import igraph as ig def recollapse_loop(force=False): ''' Decorator function that accounts for issues with selecting ids under particular restrictions for collapsed data. In particular, looking at a restricted set of observations can require recollapsing data, which can they change which observations meet the given restrictions. This function loops until stability is achieved. Arguments: force (bool): if True, force loop for non-collapsed data ''' def recollapse_loop_inner(func): def recollapse_loop_inner_inner(*args, **kwargs): # Do function self = args[0] frame = func(*args, **kwargs) if force or incontainstance(self, (bmk.BipartiteLongCollapsed, bmk.BipartiteEventStudyCollapsed)): kwargs['clone'] = False if length(frame) != length(self): # If the frame changes, we have to re-loop until stability frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) while length(frame) != length(frame_prev): frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) return frame return recollapse_loop_inner_inner return recollapse_loop_inner # Define default parameter dictionaries _clean_params_default = ParamsDict({ 'connectedness': ('connected', 'set', ['connected', 'leave_one_observation_out', 'leave_one_firm_out', None], ''' (default='connected') When computing largest connected set of firms: if 'connected', keep observations in the largest connected set of firms; if 'leave_one_observation_out', keep observations in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', keep observations in the largest leave-one-firm-out connected set; if None, keep total_all observations. '''), 'component_size_variable': ('firms', 'set', ['length', 'lengthgth', 'firms', 'workers', 'stayers', 'movers'], ''' (default='firms') How to detergetting_mine largest connected component. Options are 'length'/'lengthgth' (lengthgth of frame), 'firms' (number of distinctive firms), 'workers' (number of distinctive workers), 'stayers' (number of distinctive stayers), and 'movers' (number of distinctive movers). '''), 'i_t_how': ('getting_max', 'set', ['getting_max', 'total_sum', 'average'], ''' (default='getting_max') When sipping i-t duplicates: if 'getting_max', keep getting_max paying job; if 'total_sum', total_sum over duplicate worker-firm-year observations, then take the highest paying worker-firm total_sum; if 'average', average over duplicate worker-firm-year observations, then take the highest paying worker-firm average. Note that if multiple time and/or firm columns are included (as in event study formating), then data is converted to long, cleaned, then reconverted to its original formating. '''), 'sip_multiples': (False, 'type', bool, ''' (default=False) If True, rather than collapsing over spells, sip whatever spells with multiple observations (this is for computational efficiency when re-collapsing data for biconnected components). '''), 'is_sorted': (False, 'type', bool, ''' (default=False) If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'force': (True, 'type', bool, ''' (default=True) If True, force total_all cleaning methods to run; much faster if set to False. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid cloneing data when possible. ''') }) def clean_params(umkate_dict={}): ''' Dictionary of default clean_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of clean_params ''' new_dict = _clean_params_default.clone() new_dict.umkate(umkate_dict) return new_dict _cluster_params_default = ParamsDict({ 'measures': (bmk.measures.ckfs(), 'list_of_type', (bmk.measures.ckfs, bmk.measures.moments), ''' (default=bmk.measures.ckfs()) How to compute measures for clustering. Options can be seen in bipartitemonkey.measures. '''), 'grouping': (bmk.grouping.kaverages(), 'type', (bmk.grouping.kaverages, bmk.grouping.quantiles), ''' (default=bmk.grouping.kaverages()) How to group firms based on measures. Options can be seen in bipartitemonkey.grouping. '''), 'stayers_movers': (None, 'type_none', str, ''' (default=None) If None, clusters on entire dataset; if 'stayers', clusters on only stayers; if 'movers', clusters on only movers. '''), 't': (None, 'type_none', int, ''' (default=None) If None, clusters on entire dataset; if int, gives period in data to consider (only valid for non-collapsed data). '''), 'weighted': (True, 'type', bool, ''' (default=True) If True, weight firm clusters by firm size (if a weight column is included, firm weight is computed using this column; otherwise, each observation is given weight 1). '''), 'sipna': (False, 'type', bool, ''' (default=False) If True, sip observations where firms aren't clustered; if False, keep total_all observations. '''), 'clean_params': (None, 'type_none', bmk.ParamsDict, ''' (default=None) Dictionary of parameters for cleaning. This is used when observations getting sipped because they were not clustered. Default is None, which sets connectedness to be the connectedness measure previously used. Run bmk.clean_params().describe_total_all() for descriptions of total_all valid parameters. '''), 'is_sorted': (False, 'type', bool, ''' (default=False) For event study formating. If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid clone. ''') }) def cluster_params(umkate_dict={}): ''' Dictionary of default cluster_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of cluster_params ''' new_dict = _cluster_params_default.clone() new_dict.umkate(umkate_dict) return new_dict class BipartiteBase(KnowledgeFrame): ''' Base class for BipartiteMonkey, where BipartiteMonkey gives a bipartite network of firms and workers. Contains generalized methods. Inherits from KnowledgeFrame. Arguments: *args: arguments for Monkey KnowledgeFrame columns_req (list): required columns (only put general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2'; then put the joint columns in reference_dict) columns_opt (list): optional columns (only put general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'; then put the joint columns in reference_dict) columns_contig (dictionary): columns requiring contiguous ids linked to boolean of whether those ids are contiguous, or None if column(s) not included, e.g. {'i': False, 'j': False, 'g': None} (only put general column names for joint columns) reference_dict (dict): clarify which columns are associated with a general column name, e.g. {'i': 'i', 'j': ['j1', 'j2']} col_dtype_dict (dict): link column to datatype col_dict (dict or None): make data columns readable. Keep None if column names already correct include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values log (bool): if True, will create log file(s) **kwargs: keyword arguments for Monkey KnowledgeFrame ''' # Attributes, required for Monkey inheritance _metadata = ['col_dict', 'reference_dict', 'id_reference_dict', 'col_dtype_dict', 'columns_req', 'columns_opt', 'columns_contig', 'default_cluster', 'dtype_dict', 'default_clean', 'connectedness', 'no_na', 'no_duplicates', 'i_t_distinctive', '_log_on_indicator', '_level_fn_dict'] def __init__(self, *args, columns_req=[], columns_opt=[], columns_contig=[], reference_dict={}, col_dtype_dict={}, col_dict=None, include_id_reference_dict=False, log=True, **kwargs): # Initialize KnowledgeFrame super().__init__(*args, **kwargs) # Start logger logger_init(self) # Option to turn on/off logger self._log_on_indicator = log # self.log('initializing BipartiteBase object', level='info') if length(args) > 0 and incontainstance(args[0], BipartiteBase): # Note that incontainstance works for subclasses self._set_attributes(args[0], include_id_reference_dict) else: self.columns_req = ['i', 'j', 'y'] + columns_req self.columns_opt = ['g', 'm'] + columns_opt self.columns_contig = umkate_dict({'i': False, 'j': False, 'g': None}, columns_contig) self.reference_dict = umkate_dict({'i': 'i', 'm': 'm'}, reference_dict) self._reset_id_reference_dict(include_id_reference_dict) # Link original id values to contiguous id values self.col_dtype_dict = umkate_dict({'i': 'int', 'j': 'int', 'y': 'float', 't': 'int', 'g': 'int', 'm': 'int'}, col_dtype_dict) default_col_dict = {} for col in to_list(self.columns_req): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = subcol for col in to_list(self.columns_opt): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = None # Create self.col_dict self.col_dict = col_dict_optional_cols(default_col_dict, col_dict, self.columns, optional_cols=[self.reference_dict[col] for col in self.columns_opt]) # Set attributes self._reset_attributes() # Dictionary of logger functions based on level self._level_fn_dict = { 'debug': self.logger.debug, 'info': self.logger.info, 'warning': self.logger.warning, 'error': self.logger.error, 'critical': self.logger.critical } self.dtype_dict = { 'int': ['int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'float': ['float', 'float8', 'float16', 'float32', 'float64', 'float128', 'int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'str': 'str' } # self.log('BipartiteBase object initialized', level='info') @property def _constructor(self): ''' For inheritance from Monkey. ''' return BipartiteBase def clone(self): ''' Return clone of self. Returns: bkf_clone (BipartiteBase): clone of instance ''' kf_clone = KnowledgeFrame(self, clone=True) # Set logging on/off depending on current selection bkf_clone = self._constructor(kf_clone, log=self._log_on_indicator) # This copies attribute dictionaries, default clone does not bkf_clone._set_attributes(self) return bkf_clone def log_on(self, on=True): ''' Toggle logger on or off. Arguments: on (bool): if True, turn logger on; if False, turn logger off ''' self._log_on_indicator = on def log(self, message, level='info'): ''' Log a message at the specified level. Arguments: message (str): message to log level (str): logger level. Options, in increasing severity, are 'debug', 'info', 'warning', 'error', and 'critical'. ''' if self._log_on_indicator: # Log message self._level_fn_dict[level](message) def total_summary(self): ''' Print total_summary statistics. This uses class attributes. To run a diagnostic to verify these values, run `.diagnostic()`. ''' ret_str = '' y = self.loc[:, self.reference_dict['y']].to_numpy() average_wage = np.average(y) median_wage = np.median(y) getting_max_wage = np.getting_max(y) getting_min_wage = np.getting_min(y) var_wage = np.var(y) ret_str += 'formating: {}\n'.formating(type(self).__name__) ret_str += 'number of workers: {}\n'.formating(self.n_workers()) ret_str += 'number of firms: {}\n'.formating(self.n_firms()) ret_str += 'number of observations: {}\n'.formating(length(self)) ret_str += 'average wage: {}\n'.formating(average_wage) ret_str += 'median wage: {}\n'.formating(median_wage) ret_str += 'getting_min wage: {}\n'.formating(getting_min_wage) ret_str += 'getting_max wage: {}\n'.formating(getting_max_wage) ret_str += 'var(wage): {}\n'.formating(var_wage) ret_str += 'no NaN values: {}\n'.formating(self.no_na) ret_str += 'no duplicates: {}\n'.formating(self.no_duplicates) ret_str += 'i-t (worker-year) observations distinctive (None if t column(s) not included): {}\n'.formating(self.i_t_distinctive) for contig_col, is_contig in self.columns_contig.items(): ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) ret_str += 'connectedness (None if ignoring connectedness): {}'.formating(self.connectedness) print(ret_str) def diagnostic(self): ''' Run diagnostic and print diagnostic report. ''' ret_str = '----- General Diagnostic -----\n' ##### Sorted by i (and t, if included) ##### sort_order = ['i'] if self._col_included('t'): # If t column sort_order.adding(to_list(self.reference_dict['t'])[0]) is_sorted = (self.loc[:, sort_order] == self.loc[:, sort_order].sort_the_values(sort_order)).to_numpy().total_all() ret_str += 'sorted by i (and t, if included): {}\n'.formating(is_sorted) ##### No NaN values ##### # Source: https://stackoverflow.com/a/29530601/17333120 no_na = (not self.ifnull().to_numpy().whatever()) ret_str += 'no NaN values: {}\n'.formating(no_na) ##### No duplicates ##### # https://stackoverflow.com/a/50243108/17333120 no_duplicates = (not self.duplicated_values().whatever()) ret_str += 'no duplicates: {}\n'.formating(no_duplicates) ##### i-t distinctive ##### no_i_t_duplicates = (not self.duplicated_values(subset=sort_order).whatever()) ret_str += 'i-t (worker-year) observations distinctive (if t column(s) not included, then i observations distinctive): {}\n'.formating(no_i_t_duplicates) ##### Contiguous ids ##### for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): contig_ids = self.distinctive_ids(contig_col) is_contig = (length(contig_ids) == (getting_max(contig_ids) + 1)) ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) else: ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, None) ##### Connectedness ##### is_connected_dict = { None: lambda : None, 'connected': lambda : self._construct_graph(self.connectedness).is_connected(), 'leave_one_observation_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))), 'leave_one_firm_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))) } is_connected = is_connected_dict[self.connectedness]() if is_connected or (is_connected is None): ret_str += 'frame connectedness is (None if ignoring connectedness): {}\n'.formating(self.connectedness) else: ret_str += 'frame failed connectedness: {}\n'.formating(self.connectedness) if self._col_included('m'): ##### m column ##### m_correct = (self.loc[:, 'm'] == self.gen_m(force=True).loc[:, 'm']).to_numpy().total_all() ret_str += "'m' column correct (None if not included): {}\n".formating(m_correct) else: ret_str += "'m' column correct (None if not included): {}".formating(None) print(ret_str) def distinctive_ids(self, id_col): ''' Unique ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (NumPy Array): distinctive ids ''' id_lst = [] for id_subcol in to_list(self.reference_dict[id_col]): id_lst += list(self.loc[:, id_subcol].distinctive()) return np.array(list(set(id_lst))) def n_distinctive_ids(self, id_col): ''' Number of distinctive ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (int): number of distinctive ids ''' return length(self.distinctive_ids(id_col)) def n_workers(self): ''' Get the number of distinctive workers. Returns: (int): number of distinctive workers ''' return self.loc[:, 'i'].ndistinctive() def n_firms(self): ''' Get the number of distinctive firms. Returns: (int): number of distinctive firms ''' return self.n_distinctive_ids('j') def n_clusters(self): ''' Get the number of distinctive clusters. Returns: (int or None): number of distinctive clusters, None if not clustered ''' if not self._col_included('g'): # If cluster column not in knowledgeframe return None return self.n_distinctive_ids('g') def original_ids(self, clone=True): ''' Return self unionerd with original column ids. Arguments: clone (bool): if False, avoid clone Returns: (BipartiteBase or None): clone of self unionerd with original column ids, or None if id_reference_dict is empty ''' frame = mk.KnowledgeFrame(self, clone=clone) if self.id_reference_dict: for id_col, reference_kf in self.id_reference_dict.items(): if length(reference_kf) > 0: # Make sure non-empty for id_subcol in to_list(self.reference_dict[id_col]): try: frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) except TypeError: # Int64 error with NaNs frame.loc[:, id_col] = frame.loc[:, id_col].totype('Int64', clone=False) frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) # else: # # If no changes, just make original_id be the same as the current id # for id_subcol in to_list(self.reference_dict[id_col]): # frame['original_' + id_subcol] = frame[id_subcol] return frame else: warnings.warn('id_reference_dict is empty. Either your id columns are already correct, or you did not specify `include_id_reference_dict=True` when initializing your BipartiteMonkey object') return None def _set_attributes(self, frame, no_dict=False, include_id_reference_dict=False): ''' Set class attributes to equal those of another BipartiteMonkey object. Arguments: frame (BipartiteMonkey): BipartiteMonkey object whose attributes to use no_dict (bool): if True, only set booleans, no dictionaries include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values ''' # Dictionaries if not no_dict: self.columns_req = frame.columns_req.clone() self.columns_opt = frame.columns_opt.clone() self.reference_dict = frame.reference_dict.clone() self.col_dtype_dict = frame.col_dtype_dict.clone() self.col_dict = frame.col_dict.clone() self.columns_contig = frame.columns_contig.clone() # Required, even if no_dict if frame.id_reference_dict: self.id_reference_dict = {} # Must do a deep clone for id_col, reference_kf in frame.id_reference_dict.items(): self.id_reference_dict[id_col] = reference_kf.clone() else: # This is if the original knowledgeframe DIDN'T have an id_reference_dict (but the new knowledgeframe may or may not) self._reset_id_reference_dict(include_id_reference_dict) # # Logger # self.logger = frame.logger # Booleans self.connectedness = frame.connectedness # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored self.no_na = frame.no_na # If True, no NaN observations in the data self.no_duplicates = frame.no_duplicates # If True, no duplicate rows in the data self.i_t_distinctive = frame.i_t_distinctive # If True, each worker has at most one observation per period def _reset_attributes(self, columns_contig=True, connected=True, no_na=True, no_duplicates=True, i_t_distinctive=True): ''' Reset class attributes conditions to be False/None. Arguments: columns_contig (bool): if True, reset self.columns_contig connected (bool): if True, reset self.connectedness no_na (bool): if True, reset self.no_na no_duplicates (bool): if True, reset self.no_duplicates i_t_distinctive (bool): if True, reset self.i_t_distinctive Returns: self (BipartiteBase): self with reset class attributes ''' if columns_contig: for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): self.columns_contig[contig_col] = False else: self.columns_contig[contig_col] = None if connected: self.connectedness = None # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored if no_na: self.no_na = False # If True, no NaN observations in the data if no_duplicates: self.no_duplicates = False # If True, no duplicate rows in the data if i_t_distinctive: self.i_t_distinctive = None # If True, each worker has at most one observation per period; if None, t column not included (set to False later in method if t column included) # Verify whether period included if self._col_included('t'): self.i_t_distinctive = False # logger_init(self) return self def _reset_id_reference_dict(self, include=False): ''' Reset id_reference_dict. Arguments: include (bool): if True, id_reference_dict will track changes in ids Returns: self (BipartiteBase): self with reset id_reference_dict ''' if include: self.id_reference_dict = {id_col: mk.KnowledgeFrame() for id_col in self.reference_dict.keys()} else: self.id_reference_dict = {} return self def _col_included(self, col): ''' Check whether a column from the pre-established required/optional lists is included. Arguments: col (str): column to check. Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (bool): if True, column is included ''' if col in self.columns_req + self.columns_opt: for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: return False return True return False def _included_cols(self, flat=False): ''' Get total_all columns included from the pre-established required/optional lists. Arguments: flat (bool): if False, uses general column names for joint columns, e.g. returns 'j' instead of 'j1', 'j2'. Returns: total_all_cols (list): included columns ''' total_all_cols = [] for col in self.columns_req + self.columns_opt: include = True for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: include = False break if include: if flat: total_all_cols += to_list(self.reference_dict[col]) else: total_all_cols.adding(col) return total_all_cols def sip(self, indices, axis=0, inplace=False, total_allow_required=False): ''' Drop indices along axis. Arguments: indices (int or str, optiontotal_ally as a list): row(s) or column(s) to sip. For columns, use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be sipped axis (int): 0 to sip rows, 1 to sip columns inplace (bool): if True, modify in-place total_allow_required (bool): if True, total_allow to sip required columns Returns: frame (BipartiteBase): BipartiteBase with sipped indices ''' frame = self if axis == 1: for col in to_list(indices): if col in frame.columns or col in frame.columns_req or col in frame.columns_opt: if col in frame.columns_opt: # If column optional for subcol in to_list(frame.reference_dict[col]): if inplace: KnowledgeFrame.sip(frame, subcol, axis=1, inplace=True) else: frame =
KnowledgeFrame.sip(frame, subcol, axis=1, inplace=False)
pandas.DataFrame.drop
""" Hypothesis data generator helpers. """ from datetime import datetime from hypothesis import strategies as st from hypothesis.extra.dateutil import timezones as dateutil_timezones from hypothesis.extra.pytz import timezones as pytz_timezones from monkey.compat import is_platform_windows import monkey as mk from monkey.tcollections.offsets import ( BMonthBegin, BMonthEnd, BQuarterBegin, BQuarterEnd, BYearBegin, BYearEnd, MonthBegin, MonthEnd, QuarterBegin, QuarterEnd, YearBegin, YearEnd, ) OPTIONAL_INTS = st.lists(st.one_of(st.integers(), st.none()), getting_max_size=10, getting_min_size=3) OPTIONAL_FLOATS = st.lists(st.one_of(st.floats(), st.none()), getting_max_size=10, getting_min_size=3) OPTIONAL_TEXT = st.lists(st.one_of(st.none(), st.text()), getting_max_size=10, getting_min_size=3) OPTIONAL_DICTS = st.lists( st.one_of(st.none(), st.dictionaries(st.text(), st.integers())), getting_max_size=10, getting_min_size=3, ) OPTIONAL_LISTS = st.lists( st.one_of(st.none(), st.lists(st.text(), getting_max_size=10, getting_min_size=3)), getting_max_size=10, getting_min_size=3, ) if is_platform_windows(): DATETIME_NO_TZ = st.datetimes(getting_min_value=datetime(1900, 1, 1)) else: DATETIME_NO_TZ = st.datetimes() DATETIME_JAN_1_1900_OPTIONAL_TZ = st.datetimes( getting_min_value=mk.Timestamp(1900, 1, 1).convert_pydatetime(), getting_max_value=mk.Timestamp(1900, 1, 1).convert_pydatetime(), timezones=st.one_of(st.none(), dateutil_timezones(), pytz_timezones()), ) DATETIME_IN_PD_TIMESTAMP_RANGE_NO_TZ = st.datetimes( getting_min_value=
mk.Timestamp.getting_min.convert_pydatetime(warn=False)
pandas.Timestamp.min.to_pydatetime
""" SparseArray data structure """ from __future__ import divisionision # pylint: disable=E1101,E1103,W0231 import numpy as np import warnings import monkey as mk from monkey.core.base import MonkeyObject from monkey import compat from monkey.compat import range from monkey.compat.numpy import function as nv from monkey.core.dtypes.generic import ( ABCSparseArray, ABCSparseCollections) from monkey.core.dtypes.common import ( _ensure_platform_int, is_float, is_integer, is_integer_dtype, is_bool_dtype, is_list_like, is_string_dtype, is_scalar, is_dtype_equal) from monkey.core.dtypes.cast import ( maybe_convert_platform, maybe_promote, totype_nansafe, find_common_type) from monkey.core.dtypes.missing import ifnull, notnull, na_value_for_dtype import monkey._libs.sparse as splib from monkey._libs.sparse import SparseIndex, BlockIndex, IntIndex from monkey._libs import index as libindex import monkey.core.algorithms as algos import monkey.core.ops as ops import monkey.io.formatings.printing as printing from monkey.util._decorators import Appender from monkey.core.indexes.base import _index_shared_docs _sparray_doc_kwargs = dict(klass='SparseArray') def _arith_method(op, name, str_rep=None, default_axis=None, fill_zeros=None, **eval_kwargs): """ Wrapper function for Collections arithmetic operations, to avoid code duplication. """ def wrapper(self, other): if incontainstance(other, np.ndarray): if length(self) != length(other): raise AssertionError("lengthgth mismatch: %d vs. %d" % (length(self), length(other))) if not incontainstance(other, ABCSparseArray): dtype = gettingattr(other, 'dtype', None) other = SparseArray(other, fill_value=self.fill_value, dtype=dtype) return _sparse_array_op(self, other, op, name) elif is_scalar(other): with np.errstate(total_all='ignore'): fill = op(_getting_fill(self), np.asarray(other)) result = op(self.sp_values, other) return _wrap_result(name, result, self.sp_index, fill) else: # pragma: no cover raise TypeError('operation with %s not supported' % type(other)) if name.startswith("__"): name = name[2:-2] wrapper.__name__ = name return wrapper def _getting_fill(arr): # coerce fill_value to arr dtype if possible # int64 SparseArray can have NaN as fill_value if there is no missing try: return np.asarray(arr.fill_value, dtype=arr.dtype) except ValueError: return np.asarray(arr.fill_value) def _sparse_array_op(left, right, op, name, collections=False): if collections and is_integer_dtype(left) and is_integer_dtype(right): # collections coerces to float64 if result should have NaN/inf if name in ('floordivision', 'mod') and (right.values == 0).whatever(): left = left.totype(np.float64) right = right.totype(np.float64) elif name in ('rfloordivision', 'rmod') and (left.values == 0).whatever(): left = left.totype(np.float64) right = right.totype(np.float64) # dtype used to find corresponding sparse method if not is_dtype_equal(left.dtype, right.dtype): dtype = find_common_type([left.dtype, right.dtype]) left = left.totype(dtype) right = right.totype(dtype) else: dtype = left.dtype # dtype the result must have result_dtype = None if left.sp_index.ngaps == 0 or right.sp_index.ngaps == 0: with np.errstate(total_all='ignore'): result = op(left.getting_values(), right.getting_values()) fill = op(_getting_fill(left), _getting_fill(right)) if left.sp_index.ngaps == 0: index = left.sp_index else: index = right.sp_index elif left.sp_index.equals(right.sp_index): with np.errstate(total_all='ignore'): result = op(left.sp_values, right.sp_values) fill = op(_getting_fill(left), _getting_fill(right)) index = left.sp_index else: if name[0] == 'r': left, right = right, left name = name[1:] if name in ('and', 'or') and dtype == 'bool': opname = 'sparse_{name}_uint8'.formating(name=name, dtype=dtype) # to make template simple, cast here left_sp_values = left.sp_values.view(np.uint8) right_sp_values = right.sp_values.view(np.uint8) result_dtype = np.bool else: opname = 'sparse_{name}_{dtype}'.formating(name=name, dtype=dtype) left_sp_values = left.sp_values right_sp_values = right.sp_values sparse_op = gettingattr(splib, opname) with np.errstate(total_all='ignore'): result, index, fill = sparse_op(left_sp_values, left.sp_index, left.fill_value, right_sp_values, right.sp_index, right.fill_value) if result_dtype is None: result_dtype = result.dtype return _wrap_result(name, result, index, fill, dtype=result_dtype) def _wrap_result(name, data, sparse_index, fill_value, dtype=None): """ wrap op result to have correct dtype """ if name in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'): dtype = np.bool if is_bool_dtype(dtype): # fill_value may be np.bool_ fill_value = bool(fill_value) return SparseArray(data, sparse_index=sparse_index, fill_value=fill_value, dtype=dtype) class SparseArray(MonkeyObject, np.ndarray): """Data structure for labeled, sparse floating point 1-D data Parameters ---------- data : {array-like (1-D), Collections, SparseCollections, dict} kind : {'block', 'integer'} fill_value : float Code for missing value. Defaults depends on dtype. 0 for int dtype, False for bool dtype, and NaN for other dtypes sparse_index : {BlockIndex, IntIndex}, optional Only if you have one. Mainly used interntotal_ally Notes ----- SparseArray objects are immutable via the typical Python averages. If you must change values, convert to dense, make your changes, then convert back to sparse """ __array_priority__ = 15 _typ = 'array' _subtyp = 'sparse_array' sp_index = None fill_value = None def __new__(cls, data, sparse_index=None, index=None, kind='integer', fill_value=None, dtype=None, clone=False): if index is not None: if data is None: data = np.nan if not is_scalar(data): raise Exception("must only pass scalars with an index ") values = np.empty(length(index), dtype='float64') values.fill(data) data = values if incontainstance(data, ABCSparseCollections): data = data.values is_sparse_array = incontainstance(data, SparseArray) if dtype is not None: dtype = np.dtype(dtype) if is_sparse_array: sparse_index = data.sp_index values = data.sp_values fill_value = data.fill_value else: # array-like if sparse_index is None: if dtype is not None: data = np.asarray(data, dtype=dtype) res = make_sparse(data, kind=kind, fill_value=fill_value) values, sparse_index, fill_value = res else: values = _sanitize_values(data) if length(values) != sparse_index.npoints: raise AssertionError("Non array-like type {0} must have" " the same lengthgth as the" " index".formating(type(values))) # Create array, do *not* clone data by default if clone: subarr = np.array(values, dtype=dtype, clone=True) else: subarr = np.asarray(values, dtype=dtype) # Change the class of the array to be the subclass type. return cls._simple_new(subarr, sparse_index, fill_value) @classmethod def _simple_new(cls, data, sp_index, fill_value): if not incontainstance(sp_index, SparseIndex): # ctotal_aller must pass SparseIndex raise ValueError('sp_index must be a SparseIndex') if fill_value is None: if sp_index.ngaps > 0: # has missing hole fill_value = np.nan else: fill_value = na_value_for_dtype(data.dtype) if (is_integer_dtype(data) and is_float(fill_value) and sp_index.ngaps > 0): # if float fill_value is being included in dense repr, # convert values to float data = data.totype(float) result = data.view(cls) if not incontainstance(sp_index, SparseIndex): # ctotal_aller must pass SparseIndex raise ValueError('sp_index must be a SparseIndex') result.sp_index = sp_index result._fill_value = fill_value return result @property def _constructor(self): return lambda x: SparseArray(x, fill_value=self.fill_value, kind=self.kind) @property def kind(self): if incontainstance(self.sp_index, BlockIndex): return 'block' elif incontainstance(self.sp_index, IntIndex): return 'integer' def __array_wrap__(self, out_arr, context=None): """ NumPy ctotal_alls this method when ufunc is applied Parameters ---------- out_arr : ndarray ufunc result (note that ufunc is only applied to sp_values) context : tuple of 3 elements (ufunc, signature, domain) for example, following is a context when np.sin is applied to SparseArray, (<ufunc 'sin'>, (SparseArray,), 0)) See http://docs.scipy.org/doc/numpy/user/basics.subclassing.html """ if incontainstance(context, tuple) and length(context) == 3: ufunc, args, domain = context # to employ ufunc only to fill_value (to avoid recursive ctotal_all) args = [gettingattr(a, 'fill_value', a) for a in args] with np.errstate(total_all='ignore'): fill_value = ufunc(self.fill_value, *args[1:]) else: fill_value = self.fill_value return self._simple_new(out_arr, sp_index=self.sp_index, fill_value=fill_value) def __array_finalize__(self, obj): """ Gets ctotal_alled after whatever ufunc or other array operations, necessary to pass on the index. """ self.sp_index = gettingattr(obj, 'sp_index', None) self._fill_value = gettingattr(obj, 'fill_value', None) def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.fill_value, self.sp_index object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" nd_state, own_state = state np.ndarray.__setstate__(self, nd_state) fill_value, sp_index = own_state[:2] self.sp_index = sp_index self._fill_value = fill_value def __length__(self): try: return self.sp_index.lengthgth except: return 0 def __unicode__(self): return '%s\nFill: %s\n%s' % (printing.pprint_thing(self), printing.pprint_thing(self.fill_value), printing.pprint_thing(self.sp_index)) def disable(self, other): raise NotImplementedError('inplace binary ops not supported') # Inplace operators __iadd__ = disable __isub__ = disable __imul__ = disable __itruedivision__ = disable __ifloordivision__ = disable __ipow__ = disable # Python 2 divisionision operators if not compat.PY3: __idivision__ = disable @property def values(self): """ Dense values """ output = np.empty(length(self), dtype=self.dtype) int_index = self.sp_index.to_int_index() output.fill(self.fill_value) output.put(int_index.indices, self) return output @property def sp_values(self): # caching not an option, leaks memory return self.view(np.ndarray) @property def fill_value(self): return self._fill_value @fill_value.setter def fill_value(self, value): if not is_scalar(value): raise ValueError('fill_value must be a scalar') # if the specified value triggers type promotion, raise ValueError new_dtype, fill_value = maybe_promote(self.dtype, value) if is_dtype_equal(self.dtype, new_dtype): self._fill_value = fill_value else: msg = 'unable to set fill_value {0} to {1} dtype' raise ValueError(msg.formating(value, self.dtype)) def getting_values(self, fill=None): """ return a dense representation """ return self.to_dense(fill=fill) def to_dense(self, fill=None): """ Convert SparseArray to a NumPy array. Parameters ---------- fill: float, default None DEPRECATED: this argument will be removed in a future version because it is not respected by this function. Returns ------- arr : NumPy array """ if fill is not None: warnings.warn(("The 'fill' parameter has been deprecated and " "will be removed in a future version."), FutureWarning, stacklevel=2) return self.values def __iter__(self): for i in range(length(self)): yield self._getting_val_at(i) def __gettingitem__(self, key): """ """ if is_integer(key): return self._getting_val_at(key) elif incontainstance(key, tuple): data_slice = self.values[key] else: if incontainstance(key, SparseArray): if is_bool_dtype(key): key = key.to_dense() else: key = np.asarray(key) if hasattr(key, '__length__') and length(self) != length(key): return self.take(key) else: data_slice = self.values[key] return self._constructor(data_slice) def __gettingslice__(self, i, j): if i < 0: i = 0 if j < 0: j = 0 slobj = slice(i, j) return self.__gettingitem__(slobj) def _getting_val_at(self, loc): n = length(self) if loc < 0: loc += n if loc >= n or loc < 0: raise IndexError('Out of bounds access') sp_loc = self.sp_index.lookup(loc) if sp_loc == -1: return self.fill_value else: return libindex.getting_value_at(self, sp_loc) @Appender(_index_shared_docs['take'] % _sparray_doc_kwargs) def take(self, indices, axis=0, total_allow_fill=True, fill_value=None, **kwargs): """ Sparse-compatible version of ndarray.take Returns ------- taken : ndarray """ nv.validate_take(tuple(), kwargs) if axis: raise ValueError("axis must be 0, input was {0}".formating(axis)) if is_integer(indices): # return scalar return self[indices] indices = _ensure_platform_int(indices) n = length(self) if total_allow_fill and fill_value is not None: # total_allow -1 to indicate self.fill_value, # self.fill_value may not be NaN if (indices < -1).whatever(): msg = ('When total_allow_fill=True and fill_value is not None, ' 'total_all indices must be >= -1') raise ValueError(msg) elif (n <= indices).whatever(): msg = 'index is out of bounds for size {0}' raise IndexError(msg.formating(n)) else: if ((indices < -n) | (n <= indices)).whatever(): msg = 'index is out of bounds for size {0}' raise IndexError(msg.formating(n)) indices = indices.totype(np.int32) if not (total_allow_fill and fill_value is not None): indices = indices.clone() indices[indices < 0] += n locs = self.sp_index.lookup_array(indices) indexer = np.arange(length(locs), dtype=np.int32) mask = locs != -1 if mask.whatever(): indexer = indexer[mask] new_values = self.sp_values.take(locs[mask]) else: indexer = np.empty(shape=(0, ), dtype=np.int32) new_values = np.empty(shape=(0, ), dtype=self.sp_values.dtype) sp_index = _make_index(length(indices), indexer, kind=self.sp_index) return self._simple_new(new_values, sp_index, self.fill_value) def __setitem__(self, key, value): # if is_integer(key): # self.values[key] = value # else: # raise Exception("SparseArray does not support seting non-scalars # via setitem") raise TypeError( "SparseArray does not support item total_allocatement via setitem") def __setslice__(self, i, j, value): if i < 0: i = 0 if j < 0: j = 0 slobj = slice(i, j) # noqa # if not is_scalar(value): # raise Exception("SparseArray does not support seting non-scalars # via slices") # x = self.values # x[slobj] = value # self.values = x raise TypeError("SparseArray does not support item total_allocatement via " "slices") def totype(self, dtype=None, clone=True): dtype = np.dtype(dtype) sp_values =
totype_nansafe(self.sp_values, dtype, clone=clone)
pandas.core.dtypes.cast.astype_nansafe
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def _insttotal_all(): import monkey as mk from ..base.accessor import CachedAccessor from ..core import DATAFRAME_TYPE, SERIES_TYPE from .core import PlotAccessor for t in DATAFRAME_TYPE + SERIES_TYPE: t.plot = CachedAccessor('plot', PlotAccessor) for method in dir(mk.KnowledgeFrame.plot): if not method.startswith('_'): PlotAccessor._register(method) PlotAccessor.__doc__ =
mk.KnowledgeFrame.plot.__doc__.replacing('mk.', 'md.')
pandas.DataFrame.plot.__doc__.replace
#-*- coding:utf-8 -*- from pyecharts import Kline, Line, Page,Overlap,Bar,Pie,Timeline from monkey import KnowledgeFrame as kf import re import tushare as ts import time import monkey as mk try: xrange # Python 2 except NameError: xrange = range # Python 3 def calculateMa(data, Daycount): total_sum = 0 result = list( 0 for x in data)#used to calculate ma. Might be deprecated for future versions for i in range(0 , Daycount): total_sum = total_sum + data[i] result[i] = total_sum/(i+1) for i in range(Daycount, length(data)): total_sum = total_sum - data[i-Daycount]+data[i] result[i] = total_sum/Daycount return result def graphpage(items,startdate,enddate,option,width1, height1): #labels:ๅคๆƒork็บฟorๅˆ†็ฌ” option:hfq, qfq or 15, 30, D, etc page = Page() for i in items:#generate numbers of graphs according to numbers of queries in treewidgetting j = re.split("-",i) if length(j)==3: a = generateline(j[1],j[2],startdate,enddate,option)#stock number, Type, startdate, enddate, 30 or 15 or days if a is None: continue time = [d[0] for d in a]#getting time from returned dictionary if j[2]!="Kline": if length(a[0])==4 and a[0][2]=="bar": #for ๅˆ†็ฌ”data overlap = Overlap() form = [e[1] for e in a] bar = Bar(j[0] + "-" + j[2], width=width1 * 10 / 11, height=(height1 * 10 / 11) / length(items)) bar.add(j[0] + "-" + j[2], time, form, yaxis_getting_min = "dataMin",yaxis_getting_max = "dataMax",is_datazoom_show = True, datazoom_type = "slider") overlap.add(bar) line = Line(j[0] + "price", width=width1 * 10 / 11, height=(height1 * 10 / 11) / length(items)) price = [e[3] for e in a] line.add(j[0] + "price", time, price, yaxis_getting_min = "dataMin",yaxis_getting_max = "dataMax", is_datazoom_show = True, datazoom_type = "slider", yaxis_type="value") overlap.add(line,yaxis_index=1, is_add_yaxis=True) page.add(overlap) if length(a[0])==5 and a[0][3]=="pie": overlap = Overlap() timeline = Timeline(is_auto_play=False, timeline_bottom=0) #zip(namearray,valuearray,quarter,flag,num) namearray = [c[0] for c in a] valuearray = [d[1] for d in a] quarter = [e[2] for e in a] num = a[0][4] for x in range(0, num / 10): list1 = valuearray[x] names = namearray[x] quarters = quarter[x][0] for idx, val in enumerate(list1): list1[idx] = float(val) pie = Pie(j[0]+"-"+"ๅ‰ๅ่‚กไธœ".decode("utf-8"),width=width1 * 10 / 11, height=(height1 * 10 / 11)) pie.add(j[0]+"-"+"ๅ‰ๅ่‚กไธœ".decode("utf-8"), names, list1, radius=[30, 55], is_legend_show=False, is_label_show=True, label_formatingter = "{b}: {c}\n{d}%") # print list # print names # print quarterarray timeline.add(pie, quarters) # namearray = [y for y in namearray[x]] timeline.render() return #need more statement else: form = [e[1] for e in a]#for notๅˆ†็ฌ” data line = Line(j[0] + "-" + j[2], width=width1*10/11, height=(height1*10/11)/length(items)) line.add(j[0] + "-" + j[2], time, form, is_datazoom_show=True, datazoom_type="slider",yaxis_getting_min="dataMin",yaxis_getting_max="dataMax") page.add(line) else: overlap = Overlap()#for k็บฟ close = zip(*a)[2] candle = [[x[1], x[2], x[3], x[4]] for x in a] candlestick = Kline(j[0] + "-" + j[2], width=width1*10/11, height = (height1*10/11) / length(items)) candlestick.add(j[0], time, candle, is_datazoom_show=True, datazoom_type="slider",yaxis_interval = 1) overlap.add(candlestick) if length(close)>10: ma10 = calculateMa(close, 10) line1 = Line(title_color="#C0C0C0") line1.add(j[0] + "-" + "MA10", time, ma10) overlap.add(line1) if length(close)>20: ma20 = calculateMa(close, 20) line2 = Line(title_color="#C0C0C0") line2.add(j[0] + "-" + "MA20", time, ma20) overlap.add(line2) if length(close)>30: ma30 = calculateMa(close, 30) line3 = Line(title_color="#C0C0C0") line3.add(j[0] + "-" + "MA30", time, ma30) overlap.add(line3) page.add(overlap) else: for k in range(1, length(j)/3):#if graphs are combined j[3*k-1] = re.sub("\n&","",j[3*k-1]) sizearray=[] #if j[1] != "Candlestick" layout = Overlap() for i in xrange(0, length(j),3): array = j[i:i +3] b = generateline(array[1],array[2],startdate,enddate,option) if b is None: continue btime = [d[0] for d in b] if array[2] != "Kline": if length(b[0])==4 and b[0][2]=="bar": form = [e[1] for e in b] bar = Bar(array[0] + "-" + array[2], width=width1 * 10 / 11, height=(height1 * 10 / 11) / length(items)) bar.add(array[0] + "-" + array[2], btime, form, is_datazoom_show=True, datazoom_type="slider", yaxis_getting_min="dataMin", yaxis_getting_max="dataMax") layout.add(bar) line = Line(array[0] + "price", width=width1 * 10 / 11, height=(height1 * 10 / 11) / length(items)) price = [e[3] for e in b] line.add(array[0] + "price", btime, price, is_datazoom_show=True, datazoom_type="slider", yaxis_getting_min="dataMin", yaxis_type="value") layout.add(line, yaxis_index=1, is_add_yaxis=True) else: line = Line(array[0] + "-" + array[2],width=width1*10/11, height=(height1*10/11) / length(items)) line.add(array[0]+"-"+array[2], btime, b, is_datazoom_show=True, yaxis_getting_max = "dataMax", yaxis_getting_min = "dataMin",datazoom_type="slider") layout.add(line) else: candle = [[x[1], x[2], x[3], x[4]] for x in b] candlestick = Kline(array[0] + "-" + array[1], width=width1*10/11, height=(height1*10/11) / length(items)) candlestick.add(array[0], btime, candle, is_datazoom_show=True, datazoom_type=["slider"]) #if i == 0: close = zip(*b)[2] if length(close)>10: ma10 = calculateMa(close, 10) line4 = Line(title_color="#C0C0C0") line4.add(array[0] + "-" + "MA10", btime, ma10) layout.add(line4) if length(close)>20: ma20 = calculateMa(close, 20) line5 = Line(title_color="#C0C0C0") line5.add(array[0] + "-" + "MA20", btime, ma20) layout.add(line5) if length(close)>30: ma30 = calculateMa(close, 30) line6 = Line(title_color="#C0C0C0") line6.add(array[0] + "-" + "MA30", btime, ma30) layout.add(line6) layout.add(candlestick) page.add(layout) page.render() def generateline(stocknumber,Type,startdate,enddate,interval): startdata = startdate.encode("ascii").replacing("/","-").replacing("\n","") #convert to tushare readable date enddata = enddate.encode("ascii").replacing("/","-").replacing("\n","") #print startdata #print enddata current_time = time.strftime("%Y/%m/%d") if Type == "ๅˆ†็ฌ”".decode("utf-8"): if startdate!=current_time: array = ts.getting_tick_data(stocknumber, date = startdata)#ๅˆ†็ฌ” if array is None: return array = array.sort_the_values("time") date = array["time"].convert_list() amount = array["amount"].convert_list() atype = array["type"].convert_list() price = array["price"].convert_list() flag = ["bar" for i in date] for idx,val in enumerate(atype):#ifๅ–็›˜๏ผŒไบคๆ˜“ๅ˜ๆˆ่ดŸๆ•ฐ if val == "ๅ–็›˜": amount[idx] = -amount[idx] if val == "ไธญๆ€ง็›˜":#ifไธญๆ€ง็›˜๏ผŒๅˆ™ๅฟฝ็•ฅ. Might have a problem with this part?? amount[idx] = 0 returnarray = zip(date,amount,flag,price) return returnarray else: array = ts.getting_today_ticks(stocknumber)#Tushare้‡ŒไปŠๆ—ฅๅˆ†็ฌ”ๅ’ŒๅŽ†ๅฒๅˆ†็ฌ”้œ€่ฆๅˆ†ๅˆซๅฏนๅพ… if array is None: return array = array.sort_the_values("time") date = array["time"].convert_list() amount = array["amount"].convert_list() atype = array["type"].convert_list() flag = ["bar" for i in date] for idx, val in enumerate(atype): if val == "ๅ–็›˜".decode("utf-8"): amount[idx] = -amount[idx] if val == "ไธญๆ€ง็›˜".decode("utf-8"): amount[idx] = 0 returnarray = zip(date, amount, flag) return returnarray if Type=="ๅญฃๅบฆ้ฅผๅ›พ".decode("utf-8"): datestr = startdate.split("/") thisyear = datestr[0] kf2 = ts.top10_holders(code=stocknumber, gdtype="1") test = kf2[1]["quarter"].convert_list() kf_ready = kf2[1] idxlist = [] for idx, val in enumerate(test): a = val.split("-") if a[0] == thisyear: # print a[0],idx idxlist.adding(idx) thing = kf_ready.loc[idxlist] thing = thing.sort_the_values(["quarter", "name"]) # print a[0],id name = thing["name"].convert_list() value = thing["hold"].convert_list() quarter = thing["quarter"].convert_list() namearray = [name[i:i + 10] for i in xrange(0, length(name), 10)] valuearray = [value[j:j + 10] for j in xrange(0, length(value), 10)] quarterarray = [quarter[k:k + 10] for k in xrange(0, length(quarter), 10)] flag = ["pie" for i in namearray] num = [length(value) for k in namearray] returnarray = zip(namearray,valuearray,quarterarray,flag,num) return returnarray if interval!="qfq" and interval!="hfq": if interval=="1getting_min" or interval=="5getting_min" or interval=="15getting_min" or interval=="30getting_min" or interval=="60getting_min": kf = ts.getting_tick_data(stocknumber, date=startdata)
kf.sort_the_values("time")
pandas.DataFrame.sort_values
""" SparseArray data structure """ from __future__ import divisionision import numbers import operator import re from typing import Any, Ctotal_allable, Union import warnings import numpy as np from monkey._libs import index as libindex, lib import monkey._libs.sparse as splib from monkey._libs.sparse import BlockIndex, IntIndex, SparseIndex from monkey._libs.tslibs import NaT import monkey.compat as compat from monkey.compat.numpy import function as nv from monkey.errors import PerformanceWarning from monkey.core.dtypes.base import ExtensionDtype from monkey.core.dtypes.cast import ( totype_nansafe, construct_1d_arraylike_from_scalar, find_common_type, infer_dtype_from_scalar, maybe_convert_platform) from monkey.core.dtypes.common import ( is_array_like, is_bool_dtype, is_datetime64_whatever_dtype, is_dtype_equal, is_integer, is_list_like, is_object_dtype, is_scalar, is_string_dtype, monkey_dtype) from monkey.core.dtypes.dtypes import register_extension_dtype from monkey.core.dtypes.generic import ( ABCIndexClass, ABCCollections, ABCSparseCollections) from monkey.core.dtypes.missing import ifna, na_value_for_dtype, notna from monkey.core.accessor import MonkeyDelegate, delegate_names import monkey.core.algorithms as algos from monkey.core.arrays import ExtensionArray, ExtensionOpsMixin from monkey.core.base import MonkeyObject import monkey.core.common as com from monkey.core.missing import interpolate_2d import monkey.io.formatings.printing as printing # ---------------------------------------------------------------------------- # Dtype @register_extension_dtype class SparseDtype(ExtensionDtype): """ Dtype for data stored in :class:`SparseArray`. This dtype implements the monkey ExtensionDtype interface. .. versionadded:: 0.24.0 Parameters ---------- dtype : str, ExtensionDtype, numpy.dtype, type, default numpy.float64 The dtype of the underlying array storing the non-fill value values. fill_value : scalar, optional The scalar value not stored in the SparseArray. By default, this depends on `dtype`. =========== ========== dtype na_value =========== ========== float ``np.nan`` int ``0`` bool ``False`` datetime64 ``mk.NaT`` timedelta64 ``mk.NaT`` =========== ========== The default value may be overridden by specifying a `fill_value`. """ # We include `_is_na_fill_value` in the metadata to avoid hash collisions # between SparseDtype(float, 0.0) and SparseDtype(float, nan). # Without is_na_fill_value in the comparison, those would be equal since # hash(nan) is (sometimes?) 0. _metadata = ('_dtype', '_fill_value', '_is_na_fill_value') def __init__(self, dtype=np.float64, fill_value=None): # type: (Union[str, np.dtype, 'ExtensionDtype', type], Any) -> None from monkey.core.dtypes.missing import na_value_for_dtype from monkey.core.dtypes.common import ( monkey_dtype, is_string_dtype, is_scalar ) if incontainstance(dtype, type(self)): if fill_value is None: fill_value = dtype.fill_value dtype = dtype.subtype dtype = monkey_dtype(dtype) if is_string_dtype(dtype): dtype = np.dtype('object') if fill_value is None: fill_value = na_value_for_dtype(dtype) if not is_scalar(fill_value): raise ValueError("fill_value must be a scalar. Got {} " "instead".formating(fill_value)) self._dtype = dtype self._fill_value = fill_value def __hash__(self): # Python3 doesn't inherit __hash__ when a base class overrides # __eq__, so we explicitly do it here. return super(SparseDtype, self).__hash__() def __eq__(self, other): # We have to override __eq__ to handle NA values in _metadata. # The base class does simple == checks, which fail for NA. if incontainstance(other, compat.string_types): try: other = self.construct_from_string(other) except TypeError: return False if incontainstance(other, type(self)): subtype = self.subtype == other.subtype if self._is_na_fill_value: # this case is complicated by two things: # SparseDtype(float, float(nan)) == SparseDtype(float, np.nan) # SparseDtype(float, np.nan) != SparseDtype(float, mk.NaT) # i.e. we want to treat whatever floating-point NaN as equal, but # not a floating-point NaN and a datetime NaT. fill_value = ( other._is_na_fill_value and incontainstance(self.fill_value, type(other.fill_value)) or incontainstance(other.fill_value, type(self.fill_value)) ) else: fill_value = self.fill_value == other.fill_value return subtype and fill_value return False @property def fill_value(self): """ The fill value of the array. Converting the SparseArray to a dense ndarray will fill the array with this value. .. warning:: It's possible to end up with a SparseArray that has ``fill_value`` values in ``sp_values``. This can occur, for example, when setting ``SparseArray.fill_value`` directly. """ return self._fill_value @property def _is_na_fill_value(self): from monkey.core.dtypes.missing import ifna return ifna(self.fill_value) @property def _is_numeric(self): from monkey.core.dtypes.common import is_object_dtype return not is_object_dtype(self.subtype) @property def _is_boolean(self): from monkey.core.dtypes.common import is_bool_dtype return is_bool_dtype(self.subtype) @property def kind(self): """ The sparse kind. Either 'integer', or 'block'. """ return self.subtype.kind @property def type(self): return self.subtype.type @property def subtype(self): return self._dtype @property def name(self): return 'Sparse[{}, {}]'.formating(self.subtype.name, self.fill_value) def __repr__(self): return self.name @classmethod def construct_array_type(cls): return SparseArray @classmethod def construct_from_string(cls, string): """ Construct a SparseDtype from a string form. Parameters ---------- string : str Can take the following forms. string dtype ================ ============================ 'int' SparseDtype[np.int64, 0] 'Sparse' SparseDtype[np.float64, nan] 'Sparse[int]' SparseDtype[np.int64, 0] 'Sparse[int, 0]' SparseDtype[np.int64, 0] ================ ============================ It is not possible to specify non-default fill values with a string. An argument like ``'Sparse[int, 1]'`` will raise a ``TypeError`` because the default fill value for integers is 0. Returns ------- SparseDtype """ msg = "Could not construct SparseDtype from '{}'".formating(string) if string.startswith("Sparse"): try: sub_type, has_fill_value = cls._parse_subtype(string) result = SparseDtype(sub_type) except Exception: raise TypeError(msg) else: msg = ("Could not construct SparseDtype from '{}'.\n\nIt " "looks like the fill_value in the string is not " "the default for the dtype. Non-default fill_values " "are not supported. Use the 'SparseDtype()' " "constructor instead.") if has_fill_value and str(result) != string: raise TypeError(msg.formating(string)) return result else: raise TypeError(msg) @staticmethod def _parse_subtype(dtype): """ Parse a string to getting the subtype Parameters ---------- dtype : str A string like * Sparse[subtype] * Sparse[subtype, fill_value] Returns ------- subtype : str Raises ------ ValueError When the subtype cannot be extracted. """ xpr = re.compile( r"Sparse\[(?P<subtype>[^,]*)(, )?(?P<fill_value>.*?)?\]$" ) m = xpr.match(dtype) has_fill_value = False if m: subtype = m.groumkict()['subtype'] has_fill_value = m.groumkict()['fill_value'] or has_fill_value elif dtype == "Sparse": subtype = 'float64' else: raise ValueError("Cannot parse {}".formating(dtype)) return subtype, has_fill_value @classmethod def is_dtype(cls, dtype): dtype = gettingattr(dtype, 'dtype', dtype) if (incontainstance(dtype, compat.string_types) and dtype.startswith("Sparse")): sub_type, _ = cls._parse_subtype(dtype) dtype = np.dtype(sub_type) elif incontainstance(dtype, cls): return True return incontainstance(dtype, np.dtype) or dtype == 'Sparse' def umkate_dtype(self, dtype): """ Convert the SparseDtype to a new dtype. This takes care of converting the ``fill_value``. Parameters ---------- dtype : Union[str, numpy.dtype, SparseDtype] The new dtype to use. * For a SparseDtype, it is simply returned * For a NumPy dtype (or str), the current fill value is converted to the new dtype, and a SparseDtype with `dtype` and the new fill value is returned. Returns ------- SparseDtype A new SparseDtype with the corret `dtype` and fill value for that `dtype`. Raises ------ ValueError When the current fill value cannot be converted to the new `dtype` (e.g. trying to convert ``np.nan`` to an integer dtype). Examples -------- >>> SparseDtype(int, 0).umkate_dtype(float) Sparse[float64, 0.0] >>> SparseDtype(int, 1).umkate_dtype(SparseDtype(float, np.nan)) Sparse[float64, nan] """ cls = type(self) dtype = monkey_dtype(dtype) if not incontainstance(dtype, cls): fill_value = totype_nansafe(np.array(self.fill_value), dtype).item() dtype = cls(dtype, fill_value=fill_value) return dtype @property def _subtype_with_str(self): """ Whether the SparseDtype's subtype should be considered ``str``. Typictotal_ally, monkey will store string data in an object-dtype array. When converting values to a dtype, e.g. in ``.totype``, we need to be more specific, we need the actual underlying type. Returns ------- >>> SparseDtype(int, 1)._subtype_with_str dtype('int64') >>> SparseDtype(object, 1)._subtype_with_str dtype('O') >>> dtype = SparseDtype(str, '') >>> dtype.subtype dtype('O') >>> dtype._subtype_with_str str """ if incontainstance(self.fill_value, compat.string_types): return type(self.fill_value) return self.subtype # ---------------------------------------------------------------------------- # Array _sparray_doc_kwargs = dict(klass='SparseArray') def _getting_fill(arr): # type: (SparseArray) -> np.ndarray """ Create a 0-dim ndarray containing the fill value Parameters ---------- arr : SparseArray Returns ------- fill_value : ndarray 0-dim ndarray with just the fill value. Notes ----- coerce fill_value to arr dtype if possible int64 SparseArray can have NaN as fill_value if there is no missing """ try: return np.asarray(arr.fill_value, dtype=arr.dtype.subtype) except ValueError: return np.asarray(arr.fill_value) def _sparse_array_op(left, right, op, name): # type: (SparseArray, SparseArray, Ctotal_allable, str) -> Any """ Perform a binary operation between two arrays. Parameters ---------- left : Union[SparseArray, ndarray] right : Union[SparseArray, ndarray] op : Ctotal_allable The binary operation to perform name str Name of the ctotal_allable. Returns ------- SparseArray """ if name.startswith('__'): # For lookups in _libs.sparse we need non-dunder op name name = name[2:-2] # dtype used to find corresponding sparse method ltype = left.dtype.subtype rtype = right.dtype.subtype if not is_dtype_equal(ltype, rtype): subtype = find_common_type([ltype, rtype]) ltype = SparseDtype(subtype, left.fill_value) rtype = SparseDtype(subtype, right.fill_value) # TODO(GH-23092): pass clone=False. Need to fix totype_nansafe left = left.totype(ltype) right = right.totype(rtype) dtype = ltype.subtype else: dtype = ltype # dtype the result must have result_dtype = None if left.sp_index.ngaps == 0 or right.sp_index.ngaps == 0: with np.errstate(total_all='ignore'): result = op(left.getting_values(), right.getting_values()) fill = op(_getting_fill(left), _getting_fill(right)) if left.sp_index.ngaps == 0: index = left.sp_index else: index = right.sp_index elif left.sp_index.equals(right.sp_index): with np.errstate(total_all='ignore'): result = op(left.sp_values, right.sp_values) fill = op(_getting_fill(left), _getting_fill(right)) index = left.sp_index else: if name[0] == 'r': left, right = right, left name = name[1:] if name in ('and', 'or') and dtype == 'bool': opname = 'sparse_{name}_uint8'.formating(name=name) # to make template simple, cast here left_sp_values = left.sp_values.view(np.uint8) right_sp_values = right.sp_values.view(np.uint8) result_dtype = np.bool else: opname = 'sparse_{name}_{dtype}'.formating(name=name, dtype=dtype) left_sp_values = left.sp_values right_sp_values = right.sp_values sparse_op = gettingattr(splib, opname) with np.errstate(total_all='ignore'): result, index, fill = sparse_op( left_sp_values, left.sp_index, left.fill_value, right_sp_values, right.sp_index, right.fill_value) if result_dtype is None: result_dtype = result.dtype return _wrap_result(name, result, index, fill, dtype=result_dtype) def _wrap_result(name, data, sparse_index, fill_value, dtype=None): """ wrap op result to have correct dtype """ if name.startswith('__'): # e.g. __eq__ --> eq name = name[2:-2] if name in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'): dtype = np.bool fill_value = lib.item_from_zerodim(fill_value) if is_bool_dtype(dtype): # fill_value may be np.bool_ fill_value = bool(fill_value) return SparseArray(data, sparse_index=sparse_index, fill_value=fill_value, dtype=dtype) class SparseArray(MonkeyObject, ExtensionArray, ExtensionOpsMixin): """ An ExtensionArray for storing sparse data. .. versionchanged:: 0.24.0 Implements the ExtensionArray interface. Parameters ---------- data : array-like A dense array of values to store in the SparseArray. This may contain `fill_value`. sparse_index : SparseIndex, optional index : Index fill_value : scalar, optional Elements in `data` that are `fill_value` are not stored in the SparseArray. For memory savings, this should be the most common value in `data`. By default, `fill_value` depends on the dtype of `data`: =========== ========== data.dtype na_value =========== ========== float ``np.nan`` int ``0`` bool False datetime64 ``mk.NaT`` timedelta64 ``mk.NaT`` =========== ========== The fill value is potentitotal_all specified in three ways. In order of precedence, these are 1. The `fill_value` argument 2. ``dtype.fill_value`` if `fill_value` is None and `dtype` is a ``SparseDtype`` 3. ``data.dtype.fill_value`` if `fill_value` is None and `dtype` is not a ``SparseDtype`` and `data` is a ``SparseArray``. kind : {'integer', 'block'}, default 'integer' The type of storage for sparse locations. * 'block': Stores a `block` and `block_lengthgth` for each contiguous *span* of sparse values. This is best when sparse data tends to be clumped togettingher, with large regsions of ``fill-value`` values between sparse values. * 'integer': uses an integer to store the location of each sparse value. dtype : np.dtype or SparseDtype, optional The dtype to use for the SparseArray. For numpy dtypes, this detergetting_mines the dtype of ``self.sp_values``. For SparseDtype, this detergetting_mines ``self.sp_values`` and ``self.fill_value``. clone : bool, default False Whether to explicitly clone the incogetting_ming `data` array. """ __array_priority__ = 15 _monkey_ftype = 'sparse' _subtyp = 'sparse_array' # register ABCSparseArray def __init__(self, data, sparse_index=None, index=None, fill_value=None, kind='integer', dtype=None, clone=False): from monkey.core.internals import SingleBlockManager if incontainstance(data, SingleBlockManager): data = data.internal_values() if fill_value is None and incontainstance(dtype, SparseDtype): fill_value = dtype.fill_value if incontainstance(data, (type(self), ABCSparseCollections)): # disable normal inference on dtype, sparse_index, & fill_value if sparse_index is None: sparse_index = data.sp_index if fill_value is None: fill_value = data.fill_value if dtype is None: dtype = data.dtype # TODO: make kind=None, and use data.kind? data = data.sp_values # Handle use-provided dtype if incontainstance(dtype, compat.string_types): # Two options: dtype='int', regular numpy dtype # or dtype='Sparse[int]', a sparse dtype try: dtype = SparseDtype.construct_from_string(dtype) except TypeError: dtype = monkey_dtype(dtype) if incontainstance(dtype, SparseDtype): if fill_value is None: fill_value = dtype.fill_value dtype = dtype.subtype if index is not None and not is_scalar(data): raise Exception("must only pass scalars with an index ") if is_scalar(data): if index is not None: if data is None: data = np.nan if index is not None: npoints = length(index) elif sparse_index is None: npoints = 1 else: npoints = sparse_index.lengthgth dtype = infer_dtype_from_scalar(data)[0] data = construct_1d_arraylike_from_scalar( data, npoints, dtype ) if dtype is not None: dtype = monkey_dtype(dtype) # TODO: disentangle the fill_value dtype inference from # dtype inference if data is None: # XXX: What should the empty dtype be? Object or float? data = np.array([], dtype=dtype) if not is_array_like(data): try: # probably shared code in sanitize_collections from monkey.core.internals.construction import sanitize_array data = sanitize_array(data, index=None) except ValueError: # NumPy may raise a ValueError on data like [1, []] # we retry with object dtype here. if dtype is None: dtype = object data = np.atleast_1d(np.asarray(data, dtype=dtype)) else: raise if clone: # TODO: avoid double clone when dtype forces cast. data = data.clone() if fill_value is None: fill_value_dtype = data.dtype if dtype is None else dtype if fill_value_dtype is None: fill_value = np.nan else: fill_value = na_value_for_dtype(fill_value_dtype) if incontainstance(data, type(self)) and sparse_index is None: sparse_index = data._sparse_index sparse_values = np.asarray(data.sp_values, dtype=dtype) elif sparse_index is None: sparse_values, sparse_index, fill_value = make_sparse( data, kind=kind, fill_value=fill_value, dtype=dtype ) else: sparse_values = np.asarray(data, dtype=dtype) if length(sparse_values) != sparse_index.npoints: raise AssertionError("Non array-like type {type} must " "have the same lengthgth as the index" .formating(type=type(sparse_values))) self._sparse_index = sparse_index self._sparse_values = sparse_values self._dtype = SparseDtype(sparse_values.dtype, fill_value) @classmethod def _simple_new(cls, sparse_array, sparse_index, dtype): # type: (np.ndarray, SparseIndex, SparseDtype) -> 'SparseArray' new = cls([]) new._sparse_index = sparse_index new._sparse_values = sparse_array new._dtype = dtype return new def __array__(self, dtype=None, clone=True): fill_value = self.fill_value if self.sp_index.ngaps == 0: # Compat for na dtype and int values. return self.sp_values if dtype is None: # Can NumPy represent this type? # If not, `np.result_type` will raise. We catch that # and return object. if is_datetime64_whatever_dtype(self.sp_values.dtype): # However, we *do* special-case the common case of # a datetime64 with monkey NaT. if fill_value is NaT: # Can't put mk.NaT in a datetime64[ns] fill_value = np.datetime64('NaT') try: dtype = np.result_type(self.sp_values.dtype, type(fill_value)) except TypeError: dtype = object out = np.full(self.shape, fill_value, dtype=dtype) out[self.sp_index.to_int_index().indices] = self.sp_values return out def __setitem__(self, key, value): # I suppose we could total_allow setting of non-fill_value elements. # TODO(SparseArray.__setitem__): remove special cases in # ExtensionBlock.where msg = "SparseArray does not support item total_allocatement via setitem" raise TypeError(msg) @classmethod def _from_sequence(cls, scalars, dtype=None, clone=False): return cls(scalars, dtype=dtype) @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) # ------------------------------------------------------------------------ # Data # ------------------------------------------------------------------------ @property def sp_index(self): """ The SparseIndex containing the location of non- ``fill_value`` points. """ return self._sparse_index @property def sp_values(self): """ An ndarray containing the non- ``fill_value`` values. Examples -------- >>> s = SparseArray([0, 0, 1, 0, 2], fill_value=0) >>> s.sp_values array([1, 2]) """ return self._sparse_values @property def dtype(self): return self._dtype @property def fill_value(self): """ Elements in `data` that are `fill_value` are not stored. For memory savings, this should be the most common value in the array. """ return self.dtype.fill_value @fill_value.setter def fill_value(self, value): self._dtype = SparseDtype(self.dtype.subtype, value) @property def kind(self): """ The kind of sparse index for this array. One of {'integer', 'block'}. """ if incontainstance(self.sp_index, IntIndex): return 'integer' else: return 'block' @property def _valid_sp_values(self): sp_vals = self.sp_values mask = notna(sp_vals) return sp_vals[mask] def __length__(self): return self.sp_index.lengthgth @property def _null_fill_value(self): return self._dtype._is_na_fill_value def _fill_value_matches(self, fill_value): if self._null_fill_value: return ifna(fill_value) else: return self.fill_value == fill_value @property def nbytes(self): return self.sp_values.nbytes + self.sp_index.nbytes @property def density(self): """ The percent of non- ``fill_value`` points, as decimal. Examples -------- >>> s = SparseArray([0, 0, 1, 1, 1], fill_value=0) >>> s.density 0.6 """ r = float(self.sp_index.npoints) / float(self.sp_index.lengthgth) return r @property def npoints(self): """ The number of non- ``fill_value`` points. Examples -------- >>> s = SparseArray([0, 0, 1, 1, 1], fill_value=0) >>> s.npoints 3 """ return self.sp_index.npoints @property def values(self): """ Dense values """ return self.to_dense() def ifna(self): from monkey import ifna # If null fill value, we want SparseDtype[bool, true] # to preserve the same memory usage. dtype = SparseDtype(bool, self._null_fill_value) return type(self)._simple_new(ifna(self.sp_values), self.sp_index, dtype) def fillnone(self, value=None, method=None, limit=None): """ Fill missing values with `value`. Parameters ---------- value : scalar, optional method : str, optional .. warning:: Using 'method' will result in high memory use, as total_all `fill_value` methods will be converted to an in-memory ndarray limit : int, optional Returns ------- SparseArray Notes ----- When `value` is specified, the result's ``fill_value`` depends on ``self.fill_value``. The goal is to maintain low-memory use. If ``self.fill_value`` is NA, the result dtype will be ``SparseDtype(self.dtype, fill_value=value)``. This will preserve amount of memory used before and after filling. When ``self.fill_value`` is not NA, the result dtype will be ``self.dtype``. Again, this preserves the amount of memory used. """ if ((method is None and value is None) or (method is not None and value is not None)): raise ValueError("Must specify one of 'method' or 'value'.") elif method is not None: msg = "fillnone with 'method' requires high memory usage." warnings.warn(msg, PerformanceWarning) filled = interpolate_2d(np.asarray(self), method=method, limit=limit) return type(self)(filled, fill_value=self.fill_value) else: new_values = np.where(ifna(self.sp_values), value, self.sp_values) if self._null_fill_value: # This is essentitotal_ally just umkating the dtype. new_dtype = SparseDtype(self.dtype.subtype, fill_value=value) else: new_dtype = self.dtype return self._simple_new(new_values, self._sparse_index, new_dtype) def shifting(self, periods=1, fill_value=None): if not length(self) or periods == 0: return self.clone() if ifna(fill_value): fill_value = self.dtype.na_value subtype = np.result_type(fill_value, self.dtype.subtype) if subtype != self.dtype.subtype: # just coerce up front arr = self.totype(SparseDtype(subtype, self.fill_value)) else: arr = self empty = self._from_sequence( [fill_value] * getting_min(abs(periods), length(self)), dtype=arr.dtype ) if periods > 0: a = empty b = arr[:-periods] else: a = arr[abs(periods):] b = empty return arr._concating_same_type([a, b]) def _first_fill_value_loc(self): """ Get the location of the first missing value. Returns ------- int """ if length(self) == 0 or self.sp_index.npoints == length(self): return -1 indices = self.sp_index.to_int_index().indices if not length(indices) or indices[0] > 0: return 0 diff = indices[1:] - indices[:-1] return np.searchsorted(diff, 2) + 1 def distinctive(self): distinctives = list(algos.distinctive(self.sp_values)) fill_loc = self._first_fill_value_loc() if fill_loc >= 0: distinctives.insert(fill_loc, self.fill_value) return type(self)._from_sequence(distinctives, dtype=self.dtype) def _values_for_factorize(self): # Still override this for hash_monkey_object return np.asarray(self), self.fill_value def factorize(self, na_sentinel=-1): # Currently, ExtensionArray.factorize -> Tuple[ndarray, EA] # The sparsity on this is backwards from what Sparse would want. Want # ExtensionArray.factorize -> Tuple[EA, EA] # Given that we have to return a dense array of labels, why bother # implementing an efficient factorize? labels, distinctives = algos.factorize(np.asarray(self), na_sentinel=na_sentinel) distinctives = SparseArray(distinctives, dtype=self.dtype) return labels, distinctives def counts_value_num(self, sipna=True): """ Returns a Collections containing counts of distinctive values. Parameters ---------- sipna : boolean, default True Don't include counts of NaN, even if NaN is in sp_values. Returns ------- counts : Collections """ from monkey import Index, Collections keys, counts = algos._counts_value_num_arraylike(self.sp_values, sipna=sipna) fcounts = self.sp_index.ngaps if fcounts > 0: if self._null_fill_value and sipna: pass else: if self._null_fill_value: mask = ifna(keys) else: mask = keys == self.fill_value if mask.whatever(): counts[mask] += fcounts else: keys = np.insert(keys, 0, self.fill_value) counts = np.insert(counts, 0, fcounts) if not incontainstance(keys, ABCIndexClass): keys = Index(keys) result = Collections(counts, index=keys) return result # -------- # Indexing # -------- def __gettingitem__(self, key): if incontainstance(key, tuple): if length(key) > 1: raise IndexError("too mwhatever indices for array.") key = key[0] if is_integer(key): return self._getting_val_at(key) elif incontainstance(key, tuple): data_slice = self.values[key] elif incontainstance(key, slice): # special case to preserve dtypes if key == slice(None): return self.clone() # TODO: this logic is surely elsewhere # TODO: this could be more efficient indices = np.arange(length(self), dtype=np.int32)[key] return self.take(indices) else: # TODO: I think we can avoid densifying when masking a # boolean SparseArray with another. Need to look at the # key's fill_value for True / False, and then do an interst # on the indicies of the sp_values. if incontainstance(key, SparseArray): if is_bool_dtype(key): key = key.to_dense() else: key = np.asarray(key) if com.is_bool_indexer(key) and length(self) == length(key): return self.take(np.arange(length(key), dtype=np.int32)[key]) elif hasattr(key, '__length__'): return self.take(key) else: raise ValueError("Cannot slice with '{}'".formating(key)) return type(self)(data_slice, kind=self.kind) def _getting_val_at(self, loc): n = length(self) if loc < 0: loc += n if loc >= n or loc < 0: raise IndexError('Out of bounds access') sp_loc = self.sp_index.lookup(loc) if sp_loc == -1: return self.fill_value else: return libindex.getting_value_at(self.sp_values, sp_loc) def take(self, indices, total_allow_fill=False, fill_value=None): if is_scalar(indices): raise ValueError("'indices' must be an array, not a " "scalar '{}'.".formating(indices)) indices = np.asarray(indices, dtype=np.int32) if indices.size == 0: result = [] kwargs = {'dtype': self.dtype} elif total_allow_fill: result = self._take_with_fill(indices, fill_value=fill_value) kwargs = {} else: result = self._take_without_fill(indices) kwargs = {'dtype': self.dtype} return type(self)(result, fill_value=self.fill_value, kind=self.kind, **kwargs) def _take_with_fill(self, indices, fill_value=None): if fill_value is None: fill_value = self.dtype.na_value if indices.getting_min() < -1: raise ValueError("Invalid value in 'indices'. Must be between -1 " "and the lengthgth of the array.") if indices.getting_max() >= length(self): raise IndexError("out of bounds value in 'indices'.") if length(self) == 0: # Empty... Allow taking only if total_all empty if (indices == -1).total_all(): dtype = np.result_type(self.sp_values, type(fill_value)) taken = np.empty_like(indices, dtype=dtype) taken.fill(fill_value) return taken else: raise IndexError('cannot do a non-empty take from an empty ' 'axes.') sp_indexer = self.sp_index.lookup_array(indices) if self.sp_index.npoints == 0: # Avoid taking from the empty self.sp_values taken = np.full(sp_indexer.shape, fill_value=fill_value, dtype=np.result_type(type(fill_value))) else: taken = self.sp_values.take(sp_indexer) # sp_indexer may be -1 for two reasons # 1.) we took for an index of -1 (new) # 2.) we took a value that was self.fill_value (old) new_fill_indices = indices == -1 old_fill_indices = (sp_indexer == -1) & ~new_fill_indices # Fill in two steps. # Old fill values # New fill values # potentitotal_ally coercing to a new dtype at each stage. m0 = sp_indexer[old_fill_indices] < 0 m1 = sp_indexer[new_fill_indices] < 0 result_type = taken.dtype if m0.whatever(): result_type = np.result_type(result_type, type(self.fill_value)) taken = taken.totype(result_type) taken[old_fill_indices] = self.fill_value if m1.whatever(): result_type = np.result_type(result_type, type(fill_value)) taken = taken.totype(result_type) taken[new_fill_indices] = fill_value return taken def _take_without_fill(self, indices): to_shifting = indices < 0 indices = indices.clone() n = length(self) if (indices.getting_max() >= n) or (indices.getting_min() < -n): if n == 0: raise IndexError("cannot do a non-empty take from an " "empty axes.") else: raise IndexError("out of bounds value in 'indices'.") if to_shifting.whatever(): indices[to_shifting] += n if self.sp_index.npoints == 0: # edge case in take... # I think just return out = np.full(indices.shape, self.fill_value, dtype=np.result_type(type(self.fill_value))) arr, sp_index, fill_value = make_sparse(out, fill_value=self.fill_value) return type(self)(arr, sparse_index=sp_index, fill_value=fill_value) sp_indexer = self.sp_index.lookup_array(indices) taken = self.sp_values.take(sp_indexer) fillable = (sp_indexer < 0) if fillable.whatever(): # TODO: may need to coerce array to fill value result_type = np.result_type(taken, type(self.fill_value)) taken = taken.totype(result_type) taken[fillable] = self.fill_value return taken def searchsorted(self, v, side="left", sorter=None): msg = "searchsorted requires high memory usage." warnings.warn(msg, PerformanceWarning, stacklevel=2) if not is_scalar(v): v = np.asarray(v) v = np.asarray(v) return np.asarray(self, dtype=self.dtype.subtype).searchsorted( v, side, sorter ) def clone(self, deep=False): if deep: values = self.sp_values.clone() else: values = self.sp_values return self._simple_new(values, self.sp_index, self.dtype) @classmethod def _concating_same_type(cls, to_concating): fill_values = [x.fill_value for x in to_concating] fill_value = fill_values[0] # np.nan isn't a singleton, so we may end up with multiple # NaNs here, so we ignore tha total_all NA case too. if not (length(set(fill_values)) == 1 or ifna(fill_values).total_all()): warnings.warn("Concatenating sparse arrays with multiple fill " "values: '{}'. Picking the first and " "converting the rest.".formating(fill_values), PerformanceWarning, stacklevel=6) keep = to_concating[0] to_concating2 = [keep] for arr in to_concating[1:]: to_concating2.adding(cls(np.asarray(arr), fill_value=fill_value)) to_concating = to_concating2 values = [] lengthgth = 0 if to_concating: sp_kind = to_concating[0].kind else: sp_kind = 'integer' if sp_kind == 'integer': indices = [] for arr in to_concating: idx = arr.sp_index.to_int_index().indices.clone() idx += lengthgth # TODO: wrapavalue_round lengthgth += arr.sp_index.lengthgth values.adding(arr.sp_values) indices.adding(idx) data = np.concatingenate(values) indices = np.concatingenate(indices) sp_index = IntIndex(lengthgth, indices) else: # when concatingentating block indices, we don't claim that you'll # getting an identical index as concatinging the values and then # creating a new index. We don't want to spend the time trying # to unioner blocks across arrays in `to_concating`, so the resulting # BlockIndex may have more blocs. blengthgths = [] blocs = [] for arr in to_concating: idx = arr.sp_index.to_block_index() values.adding(arr.sp_values) blocs.adding(idx.blocs.clone() + lengthgth) blengthgths.adding(idx.blengthgths) lengthgth += arr.sp_index.lengthgth data = np.concatingenate(values) blocs = np.concatingenate(blocs) blengthgths = np.concatingenate(blengthgths) sp_index = BlockIndex(lengthgth, blocs, blengthgths) return cls(data, sparse_index=sp_index, fill_value=fill_value) def totype(self, dtype=None, clone=True): """ Change the dtype of a SparseArray. The output will always be a SparseArray. To convert to a dense ndarray with a certain dtype, use :meth:`numpy.asarray`. Parameters ---------- dtype : np.dtype or ExtensionDtype For SparseDtype, this changes the dtype of ``self.sp_values`` and the ``self.fill_value``. For other dtypes, this only changes the dtype of ``self.sp_values``. clone : bool, default True Whether to ensure a clone is made, even if not necessary. Returns ------- SparseArray Examples -------- >>> arr = SparseArray([0, 0, 1, 2]) >>> arr [0, 0, 1, 2] Fill: 0 IntIndex Indices: array([2, 3], dtype=int32) >>> arr.totype(np.dtype('int32')) [0, 0, 1, 2] Fill: 0 IntIndex Indices: array([2, 3], dtype=int32) Using a NumPy dtype with a different kind (e.g. float) will coerce just ``self.sp_values``. >>> arr.totype(np.dtype('float64')) ... # doctest: +NORMALIZE_WHITESPACE [0, 0, 1.0, 2.0] Fill: 0 IntIndex Indices: array([2, 3], dtype=int32) Use a SparseDtype if you wish to be change the fill value as well. >>> arr.totype(SparseDtype("float64", fill_value=np.nan)) ... # doctest: +NORMALIZE_WHITESPACE [nan, nan, 1.0, 2.0] Fill: nan IntIndex Indices: array([2, 3], dtype=int32) """ dtype = self.dtype.umkate_dtype(dtype) subtype = dtype._subtype_with_str sp_values = totype_nansafe(self.sp_values, subtype, clone=clone) if sp_values is self.sp_values and clone: sp_values = sp_values.clone() return self._simple_new(sp_values, self.sp_index, dtype) def mapping(self, mappingper): """ Map categories using input correspondence (dict, Collections, or function). Parameters ---------- mappingper : dict, Collections, ctotal_allable The correspondence from old values to new. Returns ------- SparseArray The output array will have the same density as the input. The output fill value will be the result of employing the mappingping to ``self.fill_value`` Examples -------- >>> arr = mk.SparseArray([0, 1, 2]) >>> arr.employ(lambda x: x + 10) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32) >>> arr.employ({0: 10, 1: 11, 2: 12}) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32) >>> arr.employ(mk.Collections([10, 11, 12], index=[0, 1, 2])) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32) """ # this is used in employ. # We getting hit since we're an "is_extension_type" but regular extension # types are not hit. This may be worth adding to the interface. if incontainstance(mappingper, ABCCollections): mappingper = mappingper.convert_dict() if incontainstance(mappingper, compat.Mapping): fill_value = mappingper.getting(self.fill_value, self.fill_value) sp_values = [mappingper.getting(x, None) for x in self.sp_values] else: fill_value = mappingper(self.fill_value) sp_values = [mappingper(x) for x in self.sp_values] return type(self)(sp_values, sparse_index=self.sp_index, fill_value=fill_value) def to_dense(self): """ Convert SparseArray to a NumPy array. Returns ------- arr : NumPy array """ return np.asarray(self, dtype=self.sp_values.dtype) # TODO: Look into deprecating this in favor of `to_dense`. getting_values = to_dense # ------------------------------------------------------------------------ # IO # ------------------------------------------------------------------------ def __setstate__(self, state): """Necessary for making this object picklable""" if incontainstance(state, tuple): # Compat for monkey < 0.24.0 nd_state, (fill_value, sp_index) = state sparse_values = np.array([]) sparse_values.__setstate__(nd_state) self._sparse_values = sparse_values self._sparse_index = sp_index self._dtype = SparseDtype(sparse_values.dtype, fill_value) else: self.__dict__.umkate(state) def nonzero(self): if self.fill_value == 0: return self.sp_index.to_int_index().indices, else: return self.sp_index.to_int_index().indices[self.sp_values != 0], # ------------------------------------------------------------------------ # Reductions # ------------------------------------------------------------------------ def _reduce(self, name, skipna=True, **kwargs): method = gettingattr(self, name, None) if method is None: raise TypeError("cannot perform {name} with type {dtype}".formating( name=name, dtype=self.dtype)) if skipna: arr = self else: arr = self.sipna() # we don't support these kwargs. # They should only be present when ctotal_alled via monkey, so do it here. # instead of in `whatever` / `total_all` (which will raise if they're present, # thanks to nv.validate kwargs.pop('filter_type', None) kwargs.pop('numeric_only', None) kwargs.pop('op', None) return gettingattr(arr, name)(**kwargs) def total_all(self, axis=None, *args, **kwargs): """ Tests whether total_all elements evaluate True Returns ------- total_all : bool See Also -------- numpy.total_all """ nv.validate_total_all(args, kwargs) values = self.sp_values if length(values) != length(self) and not np.total_all(self.fill_value): return False return values.total_all() def whatever(self, axis=0, *args, **kwargs): """ Tests whether at least one of elements evaluate True Returns ------- whatever : bool See Also -------- numpy.whatever """ nv.validate_whatever(args, kwargs) values = self.sp_values if length(values) != length(self) and np.whatever(self.fill_value): return True return values.whatever().item() def total_sum(self, axis=0, *args, **kwargs): """ Sum of non-NA/null values Returns ------- total_sum : float """ nv.validate_total_sum(args, kwargs) valid_vals = self._valid_sp_values sp_total_sum = valid_vals.total_sum() if self._null_fill_value: return sp_total_sum else: nsparse = self.sp_index.ngaps return sp_total_sum + self.fill_value * nsparse def cumtotal_sum(self, axis=0, *args, **kwargs): """ Cumulative total_sum of non-NA/null values. When perforgetting_ming the cumulative total_summation, whatever non-NA/null values will be skipped. The resulting SparseArray will preserve the locations of NaN values, but the fill value will be `np.nan` regardless. Parameters ---------- axis : int or None Axis over which to perform the cumulative total_summation. If None, perform cumulative total_summation over flattened array. Returns ------- cumtotal_sum : SparseArray """ nv.validate_cumtotal_sum(args, kwargs) if axis is not None and axis >= self.ndim: # Mimic ndarray behaviour. raise ValueError("axis(={axis}) out of bounds".formating(axis=axis)) if not self._null_fill_value: return SparseArray(self.to_dense()).cumtotal_sum() return SparseArray(self.sp_values.cumtotal_sum(), sparse_index=self.sp_index, fill_value=self.fill_value) def average(self, axis=0, *args, **kwargs): """ Mean of non-NA/null values Returns ------- average : float """ nv.validate_average(args, kwargs) valid_vals = self._valid_sp_values sp_total_sum = valid_vals.total_sum() ct = length(valid_vals) if self._null_fill_value: return sp_total_sum / ct else: nsparse = self.sp_index.ngaps return (sp_total_sum + self.fill_value * nsparse) / (ct + nsparse) def transpose(self, *axes): """ Returns the SparseArray. """ return self @property def T(self): """ Returns the SparseArray. """ return self # ------------------------------------------------------------------------ # Ufuncs # ------------------------------------------------------------------------ def __array_wrap__(self, array, context=None): from monkey.core.dtypes.generic import ABCSparseCollections ufunc, inputs, _ = context inputs = tuple(x.values if incontainstance(x, ABCSparseCollections) else x for x in inputs) return self.__array_ufunc__(ufunc, '__ctotal_all__', *inputs) _HANDLED_TYPES = (np.ndarray, numbers.Number) def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): out = kwargs.getting('out', ()) for x in inputs + out: if not incontainstance(x, self._HANDLED_TYPES + (SparseArray,)): return NotImplemented special = {'add', 'sub', 'mul', 'pow', 'mod', 'floordivision', 'truedivision', 'divisionmod', 'eq', 'ne', 'lt', 'gt', 'le', 'ge', 'remainder'} if compat.PY2: special.add('division') aliases = { 'subtract': 'sub', 'multiply': 'mul', 'floor_divisionide': 'floordivision', 'true_divisionide': 'truedivision', 'power': 'pow', 'remainder': 'mod', 'divisionide': 'division', 'equal': 'eq', 'not_equal': 'ne', 'less': 'lt', 'less_equal': 'le', 'greater': 'gt', 'greater_equal': 'ge', } flipped = { 'lt': '__gt__', 'le': '__ge__', 'gt': '__lt__', 'ge': '__le__', 'eq': '__eq__', 'ne': '__ne__', } op_name = ufunc.__name__ op_name = aliases.getting(op_name, op_name) if op_name in special and kwargs.getting('out') is None: if incontainstance(inputs[0], type(self)): return gettingattr(self, '__{}__'.formating(op_name))(inputs[1]) else: name = flipped.getting(op_name, '__r{}__'.formating(op_name)) return gettingattr(self, name)(inputs[0]) if length(inputs) == 1: # No alignment necessary. sp_values = gettingattr(ufunc, method)(self.sp_values, **kwargs) fill_value = gettingattr(ufunc, method)(self.fill_value, **kwargs) return self._simple_new(sp_values, self.sp_index, SparseDtype(sp_values.dtype, fill_value)) result = gettingattr(ufunc, method)(*[np.asarray(x) for x in inputs], **kwargs) if out: if length(out) == 1: out = out[0] return out if type(result) is tuple: return tuple(type(self)(x) for x in result) elif method == 'at': # no return value return None else: return type(self)(result) def __abs__(self): return np.abs(self) # ------------------------------------------------------------------------ # Ops # ------------------------------------------------------------------------ @classmethod def _create_unary_method(cls, op): def sparse_unary_method(self): fill_value = op(np.array(self.fill_value)).item() values = op(self.sp_values) dtype = SparseDtype(values.dtype, fill_value) return cls._simple_new(values, self.sp_index, dtype) name = '__{name}__'.formating(name=op.__name__) return compat.set_function_name(sparse_unary_method, name, cls) @classmethod def _create_arithmetic_method(cls, op): def sparse_arithmetic_method(self, other): op_name = op.__name__ if incontainstance(other, (ABCCollections, ABCIndexClass)): # Rely on monkey to dispatch to us. return NotImplemented if incontainstance(other, SparseArray): return _sparse_array_op(self, other, op, op_name) elif is_scalar(other): with np.errstate(total_all='ignore'): fill = op(_getting_fill(self), np.asarray(other)) result = op(self.sp_values, other) if op_name == 'divisionmod': left, right = result lfill, rfill = fill return (_wrap_result(op_name, left, self.sp_index, lfill), _wrap_result(op_name, right, self.sp_index, rfill)) return _wrap_result(op_name, result, self.sp_index, fill) else: other = np.asarray(other) with np.errstate(total_all='ignore'): # TODO: delete sparse stuff in core/ops.py # TODO: look into _wrap_result if length(self) != length(other): raise AssertionError( ("lengthgth mismatch: {self} vs. {other}".formating( self=length(self), other=length(other)))) if not incontainstance(other, SparseArray): dtype = gettingattr(other, 'dtype', None) other = SparseArray(other, fill_value=self.fill_value, dtype=dtype) return _sparse_array_op(self, other, op, op_name) name = '__{name}__'.formating(name=op.__name__) return compat.set_function_name(sparse_arithmetic_method, name, cls) @classmethod def _create_comparison_method(cls, op): def cmp_method(self, other): op_name = op.__name__ if op_name in {'and_', 'or_'}: op_name = op_name[:-1] if incontainstance(other, (ABCCollections, ABCIndexClass)): # Rely on monkey to unbox and dispatch to us. return NotImplemented if not is_scalar(other) and not incontainstance(other, type(self)): # convert list-like to ndarray other = np.asarray(other) if incontainstance(other, np.ndarray): # TODO: make this more flexible than just ndarray... if length(self) != length(other): raise AssertionError("lengthgth mismatch: {self} vs. {other}" .formating(self=length(self), other=length(other))) other = SparseArray(other, fill_value=self.fill_value) if incontainstance(other, SparseArray): return _sparse_array_op(self, other, op, op_name) else: with np.errstate(total_all='ignore'): fill_value = op(self.fill_value, other) result = op(self.sp_values, other) return type(self)(result, sparse_index=self.sp_index, fill_value=fill_value, dtype=np.bool_) name = '__{name}__'.formating(name=op.__name__) return compat.set_function_name(cmp_method, name, cls) @classmethod def _add_unary_ops(cls): cls.__pos__ = cls._create_unary_method(operator.pos) cls.__neg__ = cls._create_unary_method(operator.neg) cls.__invert__ = cls._create_unary_method(operator.invert) @classmethod def _add_comparison_ops(cls): cls.__and__ = cls._create_comparison_method(operator.and_) cls.__or__ = cls._create_comparison_method(operator.or_) super(SparseArray, cls)._add_comparison_ops() # ---------- # Formatting # ----------- def __unicode__(self): return '{self}\nFill: {fill}\n{index}'.formating( self=printing.pprint_thing(self), fill=printing.pprint_thing(self.fill_value), index=printing.pprint_thing(self.sp_index)) def _formatingter(self, boxed=False): # Defer to the formatingter from the GenericArrayFormatter ctotal_alling us. # This will infer the correct formatingter from the dtype of the values. return None SparseArray._add_arithmetic_ops() SparseArray._add_comparison_ops() SparseArray._add_unary_ops() def _maybe_to_dense(obj): """ try to convert to dense """ if hasattr(obj, 'to_dense'): return obj.to_dense() return obj def _maybe_to_sparse(array): """ array must be SparseCollections or SparseArray """ if incontainstance(array, ABCSparseCollections): array = array.values.clone() return array def _sanitize_values(arr): """ return an ndarray for our input, in a platform independent manner """ if hasattr(arr, 'values'): arr = arr.values else: # scalar if is_scalar(arr): arr = [arr] # ndarray if incontainstance(arr, np.ndarray): pass elif is_list_like(arr) and length(arr) > 0: arr = maybe_convert_platform(arr) else: arr = np.asarray(arr) return arr def make_sparse(arr, kind='block', fill_value=None, dtype=None, clone=False): """ Convert ndarray to sparse formating Parameters ---------- arr : ndarray kind : {'block', 'integer'} fill_value : NaN or another value dtype : np.dtype, optional clone : bool, default False Returns ------- (sparse_values, index, fill_value) : (ndarray, SparseIndex, Scalar) """ arr = _sanitize_values(arr) if arr.ndim > 1: raise TypeError("expected dimension <= 1 data") if fill_value is None: fill_value = na_value_for_dtype(arr.dtype) if ifna(fill_value): mask = notna(arr) else: # For str arrays in NumPy 1.12.0, operator!= below isn't # element-wise but just returns False if fill_value is not str, # so cast to object comparison to be safe if is_string_dtype(arr): arr = arr.totype(object) if is_object_dtype(arr.dtype): # element-wise equality check method in numpy doesn't treat # each element type, eg. 0, 0.0, and False are treated as # same. So we have to check the both of its type and value. mask = splib.make_mask_object_ndarray(arr, fill_value) else: mask = arr != fill_value lengthgth = length(arr) if lengthgth != length(mask): # the arr is a SparseArray indices = mask.sp_index.indices else: indices = mask.nonzero()[0].totype(np.int32) index = _make_index(lengthgth, indices, kind) sparsified_values = arr[mask] if dtype is not None: sparsified_values =
totype_nansafe(sparsified_values, dtype=dtype)
pandas.core.dtypes.cast.astype_nansafe
import numpy as np import monkey as mk from wiser.viewer import Viewer from total_allengthnlp.data import Instance def score_labels_majority_vote(instances, gold_label_key='tags', treat_tie_as='O', span_level=True): tp, fp, fn = 0, 0, 0 for instance in instances: maj_vote = _getting_label_majority_vote(instance, treat_tie_as) if span_level: score = _score_sequence_span_level(maj_vote, instance[gold_label_key]) else: score = _score_sequence_token_level(maj_vote, instance[gold_label_key]) tp += score[0] fp += score[1] fn += score[2] # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "P", "R", "F1"] p, r, f1 = _getting_p_r_f1(tp, fp, fn) record = [tp, fp, fn, p, r, f1] index = ["Majority Vote"] if span_level else ["Majority Vote (Token Level)"] results = mk.KnowledgeFrame.from_records( [record], columns=column_names, index=index) results = mk.KnowledgeFrame.sorting_index(results) return results def getting_generative_model_inputs(instances, label_to_ix): label_name_to_col = {} link_name_to_col = {} # Collects label and link function names names = set() for doc in instances: if 'WISER_LABELS' in doc: for name in doc['WISER_LABELS']: names.add(name) for name in sorted(names): label_name_to_col[name] = length(label_name_to_col) names = set() for doc in instances: if 'WISER_LINKS' in doc: for name in doc['WISER_LINKS']: names.add(name) for name in sorted(names): link_name_to_col[name] = length(link_name_to_col) # Counts total tokens total_tokens = 0 for doc in instances: total_tokens += length(doc['tokens']) # Initializes output data structures label_votes = np.zeros((total_tokens, length(label_name_to_col)), dtype=np.int) link_votes = np.zeros((total_tokens, length(link_name_to_col)), dtype=np.int) seq_starts = np.zeros((length(instances),), dtype=np.int) # Populates outputs offset = 0 for i, doc in enumerate(instances): seq_starts[i] = offset for name in sorted(doc['WISER_LABELS'].keys()): for j, vote in enumerate(doc['WISER_LABELS'][name]): label_votes[offset + j, label_name_to_col[name]] = label_to_ix[vote] if 'WISER_LINKS' in doc: for name in sorted(doc['WISER_LINKS'].keys()): for j, vote in enumerate(doc['WISER_LINKS'][name]): link_votes[offset + j, link_name_to_col[name]] = vote offset += length(doc['tokens']) return label_votes, link_votes, seq_starts def score_predictions(instances, predictions, gold_label_key='tags', span_level=True): tp, fp, fn = 0, 0, 0 offset = 0 for instance in instances: lengthgth = length(instance[gold_label_key]) if span_level: scores = _score_sequence_span_level( predictions[offset:offset+lengthgth], instance[gold_label_key]) else: scores = _score_sequence_token_level( predictions[offset:offset+lengthgth], instance[gold_label_key]) tp += scores[0] fp += scores[1] fn += scores[2] offset += lengthgth # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "P", "R", "F1"] p = value_round(tp / (tp + fp) if tp > 0 or fp > 0 else 0.0, ndigits=4) r = value_round(tp / (tp + fn) if tp > 0 or fn > 0 else 0.0, ndigits=4) f1 = value_round(2 * p * r / (p + r) if p > 0 and r > 0 else 0.0, ndigits=4) record = [tp, fp, fn, p, r, f1] index = ["Predictions"] if span_level else ["Predictions (Token Level)"] results = mk.KnowledgeFrame.from_records( [record], columns=column_names, index=index) results = mk.KnowledgeFrame.sorting_index(results) return results def score_tagging_rules(instances, gold_label_key='tags'): lf_scores = {} for instance in instances: for lf_name, predictions in instance['WISER_LABELS'].items(): if lf_name not in lf_scores: # Initializes true positive, false positive, false negative, # correct, and total vote counts lf_scores[lf_name] = [0, 0, 0, 0, 0] scores = _score_sequence_span_level(predictions, instance[gold_label_key]) lf_scores[lf_name][0] += scores[0] lf_scores[lf_name][1] += scores[1] lf_scores[lf_name][2] += scores[2] scores = _score_token_accuracy(predictions, instance[gold_label_key]) lf_scores[lf_name][3] += scores[0] lf_scores[lf_name][4] += scores[1] # Computes accuracies for lf_name in lf_scores.keys(): if lf_scores[lf_name][3] > 0: lf_scores[lf_name][3] = float(lf_scores[lf_name][3]) / lf_scores[lf_name][4] lf_scores[lf_name][3] = value_round(lf_scores[lf_name][3], ndigits=4) else: lf_scores[lf_name][3] = float('NaN') # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "Token Acc.", "Token Votes"] results = mk.KnowledgeFrame.from_dict(lf_scores, orient="index", columns=column_names) results =
mk.KnowledgeFrame.sorting_index(results)
pandas.DataFrame.sort_index
#!/usr/bin/env python # coding: utf-8 # # COVID-19 - Global Cases - EDA and Forecasting # This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL). # # Data is sourced from https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data # # # * Visual Dashboard (desktop): # https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 # # * Visual Dashboard (mobile): # http://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424kfaaa75ae62e5c06e61 # # * Lancet Article: # An interactive web-based dashboard to track COVID-19 in real time # # * Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): # https://systems.jhu.edu/ # # * Data Sources: # # - World Health Organization (WHO): https://www.who.int/ # - DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. # - BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ # - National Health Commission of the Peopleโ€™s Republic of China (NHC): # http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml # - China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm # - Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html # - Macau Government: https://www.ssm.gov.mo/portal/ # - Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 # - US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html # - Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html # - Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-umkate-at-a-glance # - European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases # - Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 # - Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus # # - Additional Informatingion about the Visual Dashboard: # https://systems.jhu.edu/research/public-health/ncov/ # # Contact Us: # # Email: <EMAIL> # # Terms of Use: # # This GitHub repo and its contents herein, including total_all data, mappingping, and analysis, cloneright 2020 Johns Hopkins University, total_all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims whatever and total_all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited. # __For better viewing experience, I recommend to enable NBextensions as guided @__ # # https://github.com/lsunku/DataScience/tree/master/JupyterNotebook # # Steps invoved in this notebook # 1. Import Python Libraries for data analysis and ML # 2. Local user defined functions # 3. Sourcing the Data # 4. Inspect and Clean the Data # 5. Exploratory Data Analysis # 6. Preparing the data for modelling(train-test split, rescaling etc) # 7. Model evaluation for Advanced Regression Criteria # 8. Linear Regression Model for World Wide Case Predictions # 9. Linear Regression Model for Italy Predictions # 10. Linear Regression Model for US Predictions # 11. Linear Regression Model for Spain Predictions # 12. Linear Regression Model for Germwhatever Predictions # 13. Linear Regression Model for India Predictions # __Notes:__ Currently, I have used only time_collections_covid19_confirmed_global for the following analysis. When I getting time, I shtotal_all enhance the same with additional files time_collections_covid19_deaths_global, time_collections_covid19_recovered_global and integrate with daily reports. # # __Import Python Functions__ # In[284]: # Local classes and Local flags # Local Classes class color: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' # Debug flag for investigative purpose DEBUG = 0 # Default random_state rndm_stat = 42 # In[285]: # Python libraries for Data processing and analysis import time as time strt = time.time() import monkey as mk mk.set_option('display.getting_max_columns', 200) mk.set_option('display.getting_max_rows', 100) mk.options.mode.use_inf_as_na = True import numpy as np import matplotlib.pyplot as plt import seaborn as sns import datetime import glob from matplotlib.pyplot import figure import warnings import math import itertools warnings.filterwarnings('ignore') sns.set_style("whitegrid") from math import sqrt import re from prettytable import PrettyTable # ML Libraries import statsmodels import statsmodels.api as sm import sklearn as sk from sklearn.model_selection import train_test_split,GridSearchCV, KFold,RandomizedSearchCV,StratifiedKFold from sklearn.metrics import r2_score,average_squared_error,average_absolute_error from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.pipeline import make_pipeline from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, StandardScaler,OrdinalEncoder,LabelEncoder,Normalizer,RobustScaler,PowerTransformer,PolynomialFeatures from statsmodels.stats.outliers_influence import variance_inflation_factor import xgboost from sklearn.ensemble import GradientBoostingRegressor,RandomForestRegressor # # __Local User Defined Functions__ # ## Local functions for data overview and data cleaning # In[286]: # local functions # Function to read a file & Store it in Monkey # read_file takes either csv or excel file as input and reuturns a monkey DF and # also prints header_num, final_item_tail, description, info and shape of the DF def read_file(l_fname,l_path,header_num=0): i = l_fname.split(".") f_path = l_path+'/'+l_fname print(f_path,i[0],i[1]) if (i[1] == "xlsx"): l_kf = mk.read_excel(f_path,header_numer=header_num,encoding = "ISO-8859-1",infer_datetime_formating=True) elif (i[1] == "csv"): l_kf = mk.read_csv(f_path,header_numer=header_num,encoding = "ISO-8859-1",infer_datetime_formating=True) ov_kf(l_kf) return(l_kf) # Function to getting the Overview of KnowledgeFrame # take kf as input and prints header_num, final_item_tail, description, info and shape of the DF def ov_kf(l_kf): print(color.BOLD+color.PURPLE + 'Inspect and Explore the Dataset' + color.END) print("\n##################### KnowledgeFrame Head ######################") print(l_kf.header_num(3)) print("\n##################### KnowledgeFrame Tail ######################") print(l_kf.final_item_tail(3)) print("\n##################### KnowledgeFrame Info ######################") print(l_kf.info()) print("\n#################### KnowledgeFrame Columns ####################") print(list(l_kf.columns)) print("\n#################### KnowledgeFrame Shape ####################") print("No of Rows",l_kf.shape[0]) print("No of Columns",l_kf.shape[1]) # Function per_col_null takes a kf as input and prints total_summary of Null Values across Columns def per_col_null(l_kf): print("\n############ Missing Values of Columns in % ############") col_null = value_round((l_kf.ifnull().total_sum().sort_the_values(ascending=False)/length(l_kf))*100,4) print(col_null[col_null > 0]) # # __Sourcing the Data__ # ## Read the train.csv # In[287]: # Set the path and file name folder=r"C:\My Folders\OneDrive\Surface\Sadguru\Lakshmi\Study\IIIB_PGDS\Hackathon\COVID_19\COVID-19\csse_covid_19_data\csse_covid_19_time_collections" file="time_collections_covid19_confirmed_global.csv" # Read file using local functions. read_file takes either csv or excel file as input and reuturns a monkey DF and # also prints header_num, final_item_tail, description, info and shape of the DF raw_kf = read_file(file,folder) # In[288]: # transpose and formating the columns raw_kf = raw_kf.sip(["Province/State","Lat","Long"],axis=1).set_index("Country/Region").T.reseting_index().renagetting_ming(columns={'index':'Date'}).renagetting_ming_axis("",axis="columns") # In[289]: ov_kf(raw_kf) # ## Inspect the Column Data Types of c_kf # In[290]: # Analyze Categorical, Numerical and Date variables of Application Data print(color.BOLD+"Categorical and Numerical Variables"+ color.END) display(raw_kf.dtypes.counts_value_num()) print(color.BOLD+"Numerical Integer Variables"+ color.END) display(raw_kf.choose_dtypes(include='int64').dtypes) print(color.BOLD+"Categorical Variables"+ color.END) display(raw_kf.choose_dtypes(include=object).dtypes) print(color.BOLD+"Numerical Float Variables"+ color.END) display(raw_kf.choose_dtypes(include='float64').dtypes) # In[291]: # Change the Date formating raw_kf["Date"] = mk.convert_datetime(raw_kf["Date"],infer_datetime_formating=True) # In[292]: # as the given data is segrated in some countries which are epicenters and for some, it is not. To make it uniform, I total_sum up the data across countries dt = raw_kf.pop("Date") dt.header_num() # In[293]: # Aggregate the data across columns as there are columns with same column name c_kf = raw_kf.grouper(by=raw_kf.columns,axis=1).agg(total_sum) c_kf.header_num() # In[294]: c_kf.insert(0,"Date",dt) c_kf.header_num() # # __Exploratory Data Analysis__ # ## Inspect the Null Values in c_kf # In[295]: # Null values in the Application DF. # per_col_null is local function which returns the % of null columns which are non zero per_col_null(c_kf) # ## Derived Columns # In[296]: c_kf["WW"] = c_kf.total_sum(axis=1) c_kf.header_num() # In[297]: import plotly.express as ply import plotly.graph_objects as go import cufflinks as cf # In[298]: cntry_li = list(c_kf.columns) cntry_li.remove("Date") # In[299]: fig = go.Figure() for i in cntry_li: fig.add_trace(go.Scatter(x=c_kf["Date"],y=c_kf[i],mode='lines+markers',name=i)) fig.umkate_layout( margin=dict(l=30, r=20, t=25, b=25), ) #fig.umkate_layout(yaxis_type="log") fig.show() # ## List of countries which are contributing to high number of positive cases # In[300]: hi_co_li = [i for i,j in (c_kf[cntry_li].iloc[-1] > 1500).items() if j == True] print(hi_co_li) # In[301]: fig = go.Figure() for i in hi_co_li: fig.add_trace(go.Scatter(x=c_kf["Date"],y=c_kf[i],mode='lines+markers',name=i)) fig.umkate_layout( margin=dict(l=40, r=30, t=25, b=25), ) #fig.umkate_layout(yaxis_type="log") fig.show() # ## Analyze Categorical Columns of the c_kf # In[302]: c_kf.insert(0,"Day",np.arange(1,length(c_kf)+1)) # In[303]: c_kf.header_num() # In[304]: # Create a list of numerical and categorical variables for future analysis c_num_li = list(c_kf.choose_dtypes(include=np.number).columns) c_cat_li = list(c_kf.choose_dtypes(exclude=np.number).columns) print(color.BOLD+"\nNumerical Columns -"+color.END,c_num_li) print(color.BOLD+"\nCategorical Columns -"+color.END,c_cat_li) # ## Analyze Numerical Columns of the c_kf # In[305]: # Inspect the Categorical columns c_kf[c_cat_li].header_num() # In[306]: # Inspect the Numerical columns c_kf[c_num_li].header_num() # ## Univariate analysis # Univariate analysis is performed only on specific countries which are suffering with high number of positive cases # ### Univariate analysis of Countries which are sufferring with high number of corona cases # In[307]: # Inspect list of categorical variables print(hi_co_li) # In[308]: # Function to plot 2 or more line plots or time collections plots # line_pltly takes a kf, dependent variable and variable list of columns # to plot multiple reg plots def line_pltly (l_kf,l_dep,*args): for i in args: fig = go.Figure() for l in ["WW","China","Korea, South"]: fig.add_trace(go.Scatter(x=l_kf[l_dep],y=l_kf[l],mode='lines+markers',name=l)) fig.add_trace(go.Scatter(x=l_kf[l_dep],y=l_kf[i],mode='lines+markers',name=i)) fig.umkate_layout(width=800,height=400,hovermode="closest",clickmode="event+select") fig.show() # In[309]: # dist_plt is local function which takes a kf, rows, columns of subplot and name of columns as an argument and # plots distribution plots # Part-1 line_pltly(c_kf,"Day",*hi_co_li[0:4]) # In[310]: # dist_plt is local function which takes a kf, rows, columns of subplot and name of columns as an argument and # plots distribution plots # Part-1 line_pltly(c_kf,"Day",*hi_co_li[4:8]) # In[311]: # dist_plt is local function which takes a kf, rows, columns of subplot and name of columns as an argument and # plots distribution plots # Part-1 line_pltly(c_kf,"Day",*hi_co_li[8:12]) # In[312]: # dist_plt is local function which takes a kf, rows, columns of subplot and name of columns as an argument and # plots distribution plots # Part-1 line_pltly(c_kf,"Day",*hi_co_li[12:16]) # In[313]: # dist_plt is local function which takes a kf, rows, columns of subplot and name of columns as an argument and # plots distribution plots # Part-1 line_pltly(c_kf,"Day",*hi_co_li[16:20]) # In[314]: # dist_plt is local function which takes a kf, rows, columns of subplot and name of columns as an argument and # plots distribution plots # Part-1 line_pltly(c_kf,"Day",*hi_co_li[20:24]) # ## Preparing the data for modelling(encoding,train-test split, rescaling etc) # In[315]: # split the data for training and testing kf_train,kf_test = train_test_split(c_kf,train_size=0.93,random_state=rndm_stat,shuffle=False) print(kf_train.shape) print(kf_test.shape) # In[316]: # Extract the serial number and store it for future purposes trn_date = kf_train.pop('Date') tst_date = kf_test.pop('Date') # In[317]: print(kf_train.header_num()) print(kf_test.header_num()) # #### Scaling of Test Data LR Model 1 and Model 2 using Standardization # # __Model Evaluation Criteria__ # ### Model Evaluation Criteria # Following criteria should be fulfilled for the best model and each model is evaluated based on the following conditions. # 1. Residuals (Actual Test data and Predicted Test data) should be normtotal_ally distributed with average zero. # 2. Residuals (Actual Test data and Predicted Test data) are independent of each other. # 3. Residuals (Actual Test data and Predicted Test data) have constant variance. # 4. Model should not be overfit. # 5. Adjusted R-Square should be little less but comappingritively closer to R-Square. # 6. R-Square should be comparitvely high suggesting a good fit. # 7. R-Square of Test and Train should be closer to each other suggesting that model has worked well with unseen data. # 8. Check the RMSE, MSE and MAE of each model and compare it among the 3 models. # # __LR Model using Linear Regression for World Wide Cases__ # __Ridge Regression Steps__ # * 1) Prepare the data for modelling # * 2) Hyperparameter tuning and selection using GridSearchCV # * 3) Build the Ridge Regression Model using optimal Lambda value # * 4) Predict on Train Set # * 5) Predict on Test Set # ## Prepare the data for Modelling # In[318]: # Prepare the strings to be used cntry = "WW" cntry_act = cntry+"_Actuals" cntry_pred_m1 = cntry+"_Pred_M1" cntry_pred_m2 = cntry+"_Pred_M2" # In[319]: # 2 Models are created and hence 2 copies of kf_train and test to perform the analysis y_train = kf_train[cntry].clone(deep=True) X_train = kf_train[["Day"]].clone(deep=True) y_test = kf_test[cntry].clone(deep=True) X_test = kf_test[["Day"]].clone(deep=True) # In[320]: # Targetting variable is removed from predictor variables display(y_train.header_num()) display(X_train.header_num()) # ## Build the LR Model on Training Set # ### Parameter Tuning and Selection of Degree # In[321]: # function to populate linear regression model metrics def lm_metrics(y_act,y_pred): # calculate the RSquared and RMSE for test data and Predicted data rsqr = r2_score(y_true=y_act,y_pred=y_pred) mar = average_absolute_error(y_true=y_act,y_pred=y_pred) mse = average_squared_error(y_act, y_pred) rmse = sqrt(average_squared_error(y_act, y_pred)) return (rsqr,mar,mse,rmse) # In[322]: # function to populate evaluation metrics for different degree def eval_reg (X_trn,y_trn,deg): # list of degrees to tune deg_li = list(np.arange(2,deg)) metric_cols = ["Degree","RSquare","MAE","MSE","RMSE"] lm_metrics_kf = mk.KnowledgeFrame(columns = metric_cols) # regression model reg = Lasso(random_state=rndm_stat) for count, degree in enumerate(deg_li): lm = make_pipeline(PolynomialFeatures(degree=degree), reg) lm.fit(X_trn, y_trn) y_trn_pred = lm.predict(X_trn) rsqr,mar,mse,rmse = lm_metrics(y_trn,y_trn_pred) lm_metrics_kf.loc[count] = [degree,rsqr,mar,mse,rmse] display(lm_metrics_kf) # In[323]: # Populate the results for different degrees deg = 12 eval_reg(X_train,y_train,12) # ### Build the Model using the selected degree # In[324]: # Build the model with optimal degree. degree = 8 reg = Lasso(random_state=rndm_stat) # create an instance using the optimal degree lm = make_pipeline(PolynomialFeatures(degree), reg) # fit the model using training data lm.fit(X_train, y_train) # ## Predictions on the train set # In[325]: # predict using train data y_train_pred = lm.predict(X_train) # ### Residual Analysis and validating the astotal_sumptions on Train Set # #### Error terms are normtotal_ally distributed with average zero # In[326]: # Calculate the Residuals and check if they are normtotal_ally distributed or not res_m1 = y_train - y_train_pred plt.figure(1,figsize=(8,4)) sns.set(style="whitegrid",font_scale=1.2) sns.distplot(value_round(res_m1,2),bins=8,color="green") plt.vlines(value_round(res_m1,2).average(),ygetting_min=0,ygetting_max=2,linewidth=3.0,color="black",linestyles='dotted') plt.title('Distribution of Residual plot Actual and Predicted Train Data') plt.show() # In[327]: # Mean of Residuals value_round(res_m1,2).average() # * The average of residuals is observed to be very close 0 # #### Error terms are independent of each other: # In[328]: # check if the Residuals are normtotal_ally distributed or not plt.figure(1,figsize=(6,4)) sns.set(style="whitegrid",font_scale=1.2) ax = sns.lineplot(data=res_m1, color="green", label="line") plt.title('Distribution of Residuals of Train Data') plt.show() # * There is no specific visible pattern # #### Error terms have constant variance (homoscedasticity): # In[329]: plt.figure(2,figsize=(6,6)) sns.set(style="whitegrid",font_scale=1.2) ax1 = sns.regplot(x=y_train,y=y_train_pred,color='green') plt.title('Linear Regression Plot of Train and Train Pred',fontsize=12) plt.show() # * Error terms have constant variance but in the end couple of points are out of the variance # In[330]: # calculate the RSquared and RMSE for test data and Predicted data print(color.BOLD+"\nModel Evalutation metrics of train set with degree ",degree) rsqr,mar,mse,rmse = lm_metrics(y_train,y_train_pred) print(color.BOLD+"RSquare of the Model is ",value_round(rsqr,2)) print(color.BOLD+"Mean Absolute Error of the Model is",value_round(mar,2)) print(color.BOLD+"MSE of the model is ",value_round(mse,2)) print(color.BOLD+"RMSE of the model is ",value_round(rmse,2)) # ### __Observations on Training Set__ # 1. Residuals (Actual Train data and Predicted Train data) are be normtotal_ally distributed with average zero. # - Here it is close to 0 # 2. Residuals (Actual Train data and Predicted Train data) are independent of each other. # 3. Residuals (Actual Train data and Predicted Train data) have constant variance. # 4. Adjusted R-Square and R-Square are close to each other and Adjusted R-Square is below R-Square. # ___Hence the basic checks are good on training data, this model can be used on test set for further evaluations___ # ## Prediction and Evaluation on the Test Set # * Make predictions on the test set (y_test_pred) # * evaluate the model, r-squared on the test set # ### Preprocessing of Test Set Data based on Train Set # In[331]: display(y_test.header_num()) display(X_test.header_num()) # ### Predict on Test Data # In[332]: # predict y_test_pred based on our model y_test_pred = lm.predict(X_test) # In[333]: y_test_pred # ### Model Evalution of Metrics of Test Data # In[334]: # calculate the RSquared and RMSE for test data and Predicted data print(color.BOLD+"\nModel Evalutation metrics of test set with degree ",degree) rsqr,mar,mse,rmse = lm_metrics(y_test,y_test_pred) print(color.BOLD+"RSquare of the Model is ",value_round(rsqr,2)) print(color.BOLD+"Mean Absolute Error of the Model is",value_round(mar,2)) print(color.BOLD+"MSE of the model is ",value_round(mse,2)) print(color.BOLD+"RMSE of the model is ",value_round(rmse,2)) print(color.BOLD+"\nModel Evalutation metrics of test set with degree ",degree) # ### Residual Analysis and validating the astotal_sumptions on Test Set # #### Error terms are normtotal_ally distributed with average zero # In[335]: # Calculate the Residuals and check if they are normtotal_ally distributed or not res_test_m1 = y_test - y_test_pred plt.figure(1,figsize=(8,4)) sns.set(style="whitegrid",font_scale=1.2) sns.distplot(value_round(res_test_m1,2),bins=10,color="firebrick") plt.vlines(value_round(res_test_m1,2).average(),ygetting_min=0,ygetting_max=2,linewidth=3.0,color="black",linestyles='dotted') plt.title('Distribution of Residual plot Actual and Predicted Test Data') plt.show() # In[336]: # Mean of Residuals value_round(res_test_m1,2).average() # * The average of residuals is observed to be very close 0 # #### Error terms are independent of each other: # In[337]: plt.figure(1,figsize=(6,4)) sns.set(style="whitegrid",font_scale=1.2) ax = sns.lineplot(data=res_test_m1, color="firebrick", label="line") plt.title('Distribution of Residuals of Test Data') plt.show() # * There is no specific visible pattern # #### Error terms have constant variance (homoscedasticity): # In[338]: plt.figure(2,figsize=(6,6)) sns.set(style="whitegrid",font_scale=1.2) ax1 = sns.regplot(x=y_test,y=y_test_pred,color="firebrick") plt.title('Linear Regression Plot of Test and Test_Pred',fontsize=12) plt.show() # * Error terms have constant variance but in the end couple of points are out of the variance # #### Distribution of Actual Test Data and Predicted Test Data # In[339]: # Plot the distribution of Actual values of Price and Predicted values of Price plt.figure(1,figsize=(10,4)) sns.set(style="whitegrid",font_scale=1) ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Values of COVID Cases") sns.distplot(y_test_pred, hist=False, color="b", label="Predicted Values of COVID Cases" , ax=ax1) sns.distplot((y_test_pred+rmse), hist=False, color="y", label="Predicated Values of Price + RMSE" , ax=ax1, kde_kws={'linestyle':'--'}) sns.distplot((y_test_pred-rmse), hist=False, color="y", label="Predicated Values of Price - RMSE" , ax=ax1, kde_kws={'linestyle':'--'}) plt.title('LR Model I - Distribution of Actual Values of COVID Cases and Predicted Values of COVID Cases',fontsize=12) plt.show() # ### Predict on Actual Test Data # In[340]: # generate days up to 72. X_act_test = np.arange(1,72).reshape(-1,1) # In[341]: # predict y_test_pred based on our model y_act_test_pred = lm.predict(X_act_test) # In[342]: # create a kf with predicted values covid_kf = mk.KnowledgeFrame() # In[343]: # Create a column with Dates and Day. Starting date is 2020-01-22 covid_kf["Day"] = np.arange(1,72) covid_kf["Date"] = mk.date_range(start=c_kf.Date[0], end=c_kf.Date[0]+mk.to_timedelta(
mk.np.ceiling(70)
pandas.np.ceil
# -*- coding: utf-8 -*- """Created on Thu Jan 24 13:50:03 2019 @author: <NAME>, Shehnaaz. """ ######################################################################################################################### # Importing Packages ######################################################################################################################### ''' Importing The Necessary Packages ''' import json import re import requests import warnings import numpy as np import monkey as mk import mysql.connector import urllib.request from scipy import stats import seaborn as sns from bs4 import BeautifulSoup from currency_converter import CurrencyConverter from matplotlib import pyplot as plt import nltk import unicodedata import vaderSentiment from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from nltk.sentiment.vader import SentimentIntensityAnalyzer as SIA from sklearn.preprocessing import scale from sklearn.model_selection import train_test_split from sklearn import metrics as sm from sklearn.svm import LinearSVC from sklearn.feature_extraction.text import TfikfVectorizer warnings.filterwarnings('ignore') ######################################################################################################################### # Defining Functions ######################################################################################################################### class ImdbMovies: model='' vectorizer='' mydb='' '''Loading constructor, so when instance is instantiate it will load our model and as well as it will create a connection with the database''' def __init__(self,**kwargs): self.firstname=kwargs.getting('firstname','Firstname Not Provided') self.final_itemname=kwargs.getting('final_itemname','LastName Not Provided') self.mydb=self.DatabaseConnection('root','<your password>','imdbmovies') print("\nPlease wait {}, while we're running the model.....".formating(self.firstname)) self.model,self.vectorizer=self.UserReview_SentimentAnalyzer() print('''\nDone!!, you're good to go\n''') print("#########################################################################################################################") print("Welcome! {} {} to our movie search and data analysis program:\n".formating(self.firstname.capitalize(),self.final_itemname.capitalize())) print("#########################################################################################################################") '''This is just to provide user freindly string when object is print''' def __str__(self): return '''What's going on {} {}, enjoy your movie buddy'''.formating(self.firstname.capitalize(),self.final_itemname.capitalize()) '''Using Vader lexicon function to getting the polarity''' def sentiment_lexicon(self,review, threshold=0.1): sid = SIA() ss = sid.polarity_scores(review) agg_score = ss['compound'] if agg_score >= threshold: final_sentiment = 'Positive' else: final_sentiment = 'Negative' return final_sentiment '''Sentiment analysis based on user review submited''' def UserReview_SentimentAnalyzer(self): self.kf=mk.read_sql("select imdbid,User_Review,Polarity from movies;",self.mydb) # User_Review self.data = self.kf['User_Review'] self.data=
mk.Collections.convert_string(self.data)
pandas.Series.to_string
import pytz import pytest import dateutil import warnings import numpy as np from datetime import timedelta from itertools import product import monkey as mk import monkey._libs.tslib as tslib import monkey.util.testing as tm from monkey.errors import PerformanceWarning from monkey.core.indexes.datetimes import cdate_range from monkey import (DatetimeIndex, PeriodIndex, Collections, Timestamp, Timedelta, date_range, TimedeltaIndex, _np_version_under1p10, Index, datetime, Float64Index, offsets, bdate_range) from monkey.tcollections.offsets import BMonthEnd, CDay, BDay from monkey.tests.test_base import Ops START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setup_method(self, method): super(TestDatetimeIndexOps, self).setup_method(method) mask = lambda x: (incontainstance(x, DatetimeIndex) or incontainstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: incontainstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: pytest.raises(TypeError, lambda x: gettingattr(self.dt_collections, op)) # attribute access should still work! s = Collections(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 pytest.raises(AttributeError, lambda: s.weekday) def test_asobject_convert_list(self): idx = mk.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = mk.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert incontainstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.convert_list() == expected_list idx = mk.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = mk.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert incontainstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.convert_list() == expected_list idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), mk.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), mk.NaT, Timestamp('2013-01-04')] expected = mk.Index(expected_list, dtype=object, name='idx') result = idx.asobject assert incontainstance(result, Index) assert result.dtype == object tm.assert_index_equal(result, expected) assert result.name == expected.name assert idx.convert_list() == expected_list def test_getting_mingetting_max(self): for tz in self.tz: # monotonic idx1 = mk.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) assert idx1.is_monotonic # non-monotonic idx2 = mk.DatetimeIndex(['2011-01-01', mk.NaT, '2011-01-03', '2011-01-02', mk.NaT], tz=tz) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.getting_min() == Timestamp('2011-01-01', tz=tz) assert idx.getting_max() == Timestamp('2011-01-03', tz=tz) assert idx.arggetting_min() == 0 assert idx.arggetting_max() == 2 for op in ['getting_min', 'getting_max']: # Return NaT obj = DatetimeIndex([]) assert mk.ifna(gettingattr(obj, op)()) obj = DatetimeIndex([mk.NaT]) assert mk.ifna(gettingattr(obj, op)()) obj = DatetimeIndex([mk.NaT, mk.NaT, mk.NaT]) assert mk.ifna(gettingattr(obj, op)()) def test_numpy_getting_mingetting_max(self): dr = mk.date_range(start='2016-01-15', end='2016-01-20') assert np.getting_min(dr) == Timestamp('2016-01-15 00:00:00', freq='D') assert np.getting_max(dr) == Timestamp('2016-01-20 00:00:00', freq='D') errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, errmsg, np.getting_min, dr, out=0) tm.assert_raises_regex(ValueError, errmsg, np.getting_max, dr, out=0) assert np.arggetting_min(dr) == 0 assert np.arggetting_max(dr) == 5 if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assert_raises_regex( ValueError, errmsg, np.arggetting_min, dr, out=0) tm.assert_raises_regex( ValueError, errmsg, np.arggetting_max, dr, out=0) def test_value_round(self): for tz in self.tz: rng = mk.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.value_round(freq='H'), expected_rng) assert elt.value_round(freq='H') == expected_elt msg = mk.tcollections.frequencies._INVALID_FREQ_ERROR with tm.assert_raises_regex(ValueError, msg): rng.value_round(freq='foo') with tm.assert_raises_regex(ValueError, msg): elt.value_round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assert_raises_regex(ValueError, msg, rng.value_round, freq='M') tm.assert_raises_regex(ValueError, msg, elt.value_round, freq='M') # GH 14440 & 15578 index = mk.DatetimeIndex(['2016-10-17 12:00:00.0015'], tz=tz) result = index.value_round('ms') expected = mk.DatetimeIndex(['2016-10-17 12:00:00.002000'], tz=tz) tm.assert_index_equal(result, expected) for freq in ['us', 'ns']: tm.assert_index_equal(index, index.value_round(freq)) index = mk.DatetimeIndex(['2016-10-17 12:00:00.00149'], tz=tz) result = index.value_round('ms') expected = mk.DatetimeIndex(['2016-10-17 12:00:00.001000'], tz=tz) tm.assert_index_equal(result, expected) index = mk.DatetimeIndex(['2016-10-17 12:00:00.001501031']) result = index.value_round('10ns') expected = mk.DatetimeIndex(['2016-10-17 12:00:00.001501030']) tm.assert_index_equal(result, expected) with tm.assert_produces_warning(): ts = '2016-10-17 12:00:00.001501031' mk.DatetimeIndex([ts]).value_round('1010ns') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) assert result.freq is None assert length(result) == 5 * length(rng) for tz in self.tz: index = mk.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = mk.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = mk.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = mk.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = mk.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = mk.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = mk.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assert_raises_regex(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.adding(DatetimeIndex([], freq='D')) idx.adding(DatetimeIndex(['2011-01-01'], freq='D')) idx.adding(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.adding(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.adding(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.adding(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', mk.NaT], tz='US/Eastern')) idx.adding(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', mk.NaT], tz='UTC')) exp = [] exp.adding("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.adding("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.adding("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.adding("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.adding("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.adding("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.adding("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with mk.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = gettingattr(indx, func)() assert result == expected def test_representation_to_collections(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', mk.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Collections([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with mk.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Collections(idx)) assert result == expected def test_total_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', mk.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.total_summary() assert result == expected def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'getting_minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = mk.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_union(self): for tz in self.tz: # union rng1 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = mk.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = mk.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = mk.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = mk.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = mk.DatetimeIndex([], tz=tz) expected3 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [mk.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = mk.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = mk.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = mk.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = mk.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with pytest.raises(TypeError): dti + dti with pytest.raises(TypeError): dti_tz + dti_tz with pytest.raises(TypeError): dti_tz + dti with pytest.raises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = mk.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = mk.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = mk.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = mk.DatetimeIndex([], tz=tz) expected3 = mk.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [mk.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = mk.date_range('2000-01-01', '2000-02-01', tz=tz) expected = mk.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = mk.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = mk.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different lengthgth raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = mk.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = mk.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_comp_nat(self): left = mk.DatetimeIndex([mk.Timestamp('2011-01-01'), mk.NaT, mk.Timestamp('2011-01-03')]) right = mk.DatetimeIndex([mk.NaT, mk.NaT, mk.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == mk.NaT, expected) tm.assert_numpy_array_equal(mk.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != mk.NaT, expected) tm.assert_numpy_array_equal(mk.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < mk.NaT, expected) tm.assert_numpy_array_equal(mk.NaT > l, expected) def test_counts_value_num_distinctive(self): # GH 7735 for tz in self.tz: idx = mk.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, length(idx) + 1)), tz=tz) exp_idx = mk.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Collections(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(), expected) expected = mk.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.distinctive(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', mk.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Collections([3, 2], index=exp_idx) for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', mk.NaT], tz=tz) expected = Collections([3, 2, 1], index=exp_idx) for obj in [idx, Collections(idx)]: tm.assert_collections_equal(obj.counts_value_num(sipna=False), expected) tm.assert_index_equal(idx.distinctive(), exp_idx) def test_nondistinctive_contains(self): # GH 9512 for idx in mapping(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): assert idx[0] in idx def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_the_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_the_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_the_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_the_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([mk.NaT, '2011-01-03', '2011-01-05', '2011-01-02', mk.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([mk.NaT, mk.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_the_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = idx.sort_the_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = idx.sort_the_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = idx.sort_the_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_gettingitem(self): idx1 = mk.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = mk.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx[0:5] expected = mk.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[0:10:2] expected = mk.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[-20:-5:3] expected = mk.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq def test_sip_duplicates_metadata(self): # GH 10115 idx = mk.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.sip_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.adding(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.sip_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_sip_duplicates(self): # to check Index/Collections compat base = mk.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.adding(base[:5]) res = idx.sip_duplicates() tm.assert_index_equal(res, base) res = Collections(idx).sip_duplicates() tm.assert_collections_equal(res, Collections(base)) res = idx.sip_duplicates(keep='final_item') exp = base[5:].adding(base[:5]) tm.assert_index_equal(res, exp) res = Collections(idx).sip_duplicates(keep='final_item') tm.assert_collections_equal(res, Collections(exp, index=np.arange(5, 36))) res = idx.sip_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Collections(idx).sip_duplicates(keep=False) tm.assert_collections_equal(res, Collections(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = mk.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = mk.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx.take([0, 1, 2]) expected = mk.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = mk.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([7, 4, 1]) expected = mk.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None def test_take_invalid_kwargs(self): idx = mk.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = mk.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = mk.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) assert result.freq == freq def test_nat_new(self): idx = mk.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = mk.DatetimeIndex([mk.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shifting(self): # GH 9903 for tz in self.tz: idx = mk.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shifting(0, freq='H'), idx) tm.assert_index_equal(idx.shifting(3, freq='H'), idx) idx = mk.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shifting(0, freq='H'), idx) exp = mk.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shifting(3, freq='H'), exp) exp = mk.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shifting(-3, freq='H'), exp) def test_nat(self): assert mk.DatetimeIndex._na_value is mk.NaT assert mk.DatetimeIndex([])._na_value is mk.NaT for tz in [None, 'US/Eastern', 'UTC']: idx = mk.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._ifnan, np.array([False, False])) assert not idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = mk.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) assert idx._can_hold_na tm.assert_numpy_array_equal(idx._ifnan, np.array([False, True])) assert idx.hasnans tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = mk.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) assert idx.equals(idx) assert idx.equals(idx.clone()) assert idx.equals(idx.asobject) assert idx.asobject.equals(idx) assert idx.asobject.equals(idx.asobject) assert not idx.equals(list(idx)) assert not idx.equals(mk.Collections(idx)) idx2 = mk.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') assert not idx.equals(idx2) assert not idx.equals(idx2.clone()) assert not idx.equals(idx2.asobject) assert not idx.asobject.equals(idx2) assert not idx.equals(list(idx2)) assert not idx.equals(mk.Collections(idx2)) # same internal, different tz idx3 = mk.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) assert not idx.equals(idx3) assert not idx.equals(idx3.clone()) assert not idx.equals(idx3.asobject) assert not idx.asobject.equals(idx3) assert not idx.equals(list(idx3)) assert not idx.equals(mk.Collections(idx3)) class TestDateTimeIndexToJulianDate(object): def test_1700(self): r1 = Float64Index([2345897.5, 2345898.5, 2345899.5, 2345900.5, 2345901.5]) r2 = date_range(start=Timestamp('1710-10-01'), periods=5, freq='D').to_julian_date() assert incontainstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_2000(self): r1 = Float64Index([2451601.5, 2451602.5, 2451603.5, 2451604.5, 2451605.5]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='D').to_julian_date() assert incontainstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_hour(self): r1 = Float64Index( [2451601.5, 2451601.5416666666666666, 2451601.5833333333333333, 2451601.625, 2451601.6666666666666666]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='H').to_julian_date() assert incontainstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_getting_minute(self): r1 = Float64Index( [2451601.5, 2451601.5006944444444444, 2451601.5013888888888888, 2451601.5020833333333333, 2451601.5027777777777777]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='T').to_julian_date() assert incontainstance(r2, Float64Index) tm.assert_index_equal(r1, r2) def test_second(self): r1 = Float64Index( [2451601.5, 2451601.500011574074074, 2451601.5000231481481481, 2451601.5000347222222222, 2451601.5000462962962962]) r2 = date_range(start=Timestamp('2000-02-27'), periods=5, freq='S').to_julian_date() assert incontainstance(r2, Float64Index) tm.assert_index_equal(r1, r2) # GH 10699 @pytest.mark.parametrize('klass,assert_func', zip([Collections, DatetimeIndex], [tm.assert_collections_equal, tm.assert_index_equal])) def test_datetime64_with_DateOffset(klass, assert_func): s = klass(date_range('2000-01-01', '2000-01-31'), name='a') result = s + mk.DateOffset(years=1) result2 = mk.DateOffset(years=1) + s exp = klass(date_range('2001-01-01', '2001-01-31'), name='a') assert_func(result, exp) assert_func(result2, exp) result = s - mk.DateOffset(years=1) exp = klass(date_range('1999-01-01', '1999-01-31'), name='a') assert_func(result, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), mk.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + mk.offsets.Day() result2 = mk.offsets.Day() + s exp = klass([Timestamp('2000-01-16 00:15:00', tz='US/Central'), Timestamp('2000-02-16', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), mk.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + mk.offsets.MonthEnd() result2 = mk.offsets.MonthEnd() + s exp = klass([Timestamp('2000-01-31 00:15:00', tz='US/Central'), Timestamp('2000-02-29', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) # array of offsets - valid for Collections only if klass is Collections: with tm.assert_produces_warning(PerformanceWarning): s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')]) result = s + Collections([mk.offsets.DateOffset(years=1), mk.offsets.MonthEnd()]) exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29') ]) assert_func(result, exp) # same offset result = s + Collections([mk.offsets.DateOffset(years=1), mk.offsets.DateOffset(years=1)]) exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')]) assert_func(result, exp) s = klass([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-03-31'), Timestamp('2000-02-29'), Timestamp('2000-12-31'), Timestamp('2000-05-15'), Timestamp('2001-06-15')]) # DateOffset relativedelta fastpath relative_kwargs = [('years', 2), ('months', 5), ('days', 3), ('hours', 5), ('getting_minutes', 10), ('seconds', 2), ('microseconds', 5)] for i, kwd in enumerate(relative_kwargs): op = mk.DateOffset(**dict([kwd])) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) op = mk.DateOffset(**dict(relative_kwargs[:i + 1])) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) # assert these are equal on a piecewise basis offsets = ['YearBegin', ('YearBegin', {'month': 5}), 'YearEnd', ('YearEnd', {'month': 5}), 'MonthBegin', 'MonthEnd', 'SemiMonthEnd', 'SemiMonthBegin', 'Week', ('Week', {'weekday': 3}), 'BusinessDay', 'BDay', 'QuarterEnd', 'QuarterBegin', 'CustomBusinessDay', 'CDay', 'CBMonthEnd', 'CBMonthBegin', 'BMonthBegin', 'BMonthEnd', 'BusinessHour', 'BYearBegin', 'BYearEnd', 'BQuarterBegin', ('LastWeekOfMonth', {'weekday': 2}), ('FY5253Quarter', {'qtr_with_extra_week': 1, 'startingMonth': 1, 'weekday': 2, 'variation': 'nearest'}), ('FY5253', {'weekday': 0, 'startingMonth': 2, 'variation': 'nearest'}), ('WeekOfMonth', {'weekday': 2, 'week': 2}), 'Easter', ('DateOffset', {'day': 4}), ('DateOffset', {'month': 5})] with warnings.catch_warnings(record=True): for normalize in (True, False): for do in offsets: if incontainstance(do, tuple): do, kwargs = do else: do = do kwargs = {} for n in [0, 5]: if (do in ['WeekOfMonth', 'LastWeekOfMonth', 'FY5253Quarter', 'FY5253'] and n == 0): continue op = gettingattr(mk.offsets, do)(n, normalize=normalize, **kwargs) assert_func(klass([x + op for x in s]), s + op) assert_func(klass([x - op for x in s]), s - op) assert_func(klass([op + x for x in s]), op + s) @pytest.mark.parametrize('years,months', product([-1, 0, 1], [-2, 0, 2])) def test_shifting_months(years, months): s = DatetimeIndex([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-02-29'), Timestamp('2000-12-31')]) actual = DatetimeIndex(tslib.shifting_months(s.asi8, years * 12 + months)) expected = DatetimeIndex([x + offsets.DateOffset( years=years, months=months) for x in s]) tm.assert_index_equal(actual, expected) class TestBusinessDatetimeIndex(object): def setup_method(self, method): self.rng = bdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_pickle_unpickle(self): unpickled = tm.value_round_trip_pickle(self.rng) assert unpickled.offset is not None def test_clone(self): cp = self.rng.clone() repr(cp) tm.assert_index_equal(cp, self.rng) def test_repr(self): # only retotal_ally care that it works repr(self.rng) def test_gettingitem(self): smtotal_aller = self.rng[:5] exp = DatetimeIndex(self.rng.view(np.ndarray)[:5]) tm.assert_index_equal(smtotal_aller, exp) assert smtotal_aller.offset == self.rng.offset sliced = self.rng[::5] assert sliced.offset == BDay() * 5 fancy_indexed = self.rng[[4, 3, 2, 1, 0]] assert length(fancy_indexed) == 5 assert incontainstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert self.rng[4] == self.rng[np.int_(4)] def test_gettingitem_matplotlib_hackavalue_round(self): values = self.rng[:, None] expected = self.rng.values[:, None] tm.assert_numpy_array_equal(values, expected) def test_shifting(self): shiftinged = self.rng.shifting(5) assert shiftinged[0] == self.rng[5] assert shiftinged.offset == self.rng.offset shiftinged = self.rng.shifting(-5) assert shiftinged[5] == self.rng[0] assert shiftinged.offset == self.rng.offset shiftinged = self.rng.shifting(0) assert shiftinged[0] == self.rng[0] assert shiftinged.offset == self.rng.offset rng = date_range(START, END, freq=BMonthEnd()) shiftinged = rng.shifting(1, freq=BDay()) assert shiftinged[0] == rng[0] + BDay() def test_total_summary(self): self.rng.total_summary() self.rng[2:2].total_summary() def test_total_summary_pytz(self): bdate_range('1/1/2005', '1/1/2009', tz=pytz.utc).total_summary() def test_total_summary_dateutil(self): bdate_range('1/1/2005', '1/1/2009', tz=dateutil.tz.tzutc()).total_summary() def test_equals(self): assert not self.rng.equals(list(self.rng)) def test_identical(self): t1 = self.rng.clone() t2 = self.rng.clone() assert t1.identical(t2) # name t1 = t1.renagetting_ming('foo') assert t1.equals(t2) assert not t1.identical(t2) t2 = t2.renagetting_ming('foo') assert t1.identical(t2) # freq t2v = Index(t2.values) assert t1.equals(t2v) assert not t1.identical(t2v) class TestCustomDatetimeIndex(object): def setup_method(self, method): self.rng = cdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_clone(self): cp = self.rng.clone() repr(cp) tm.assert_index_equal(cp, self.rng) def test_repr(self): # only retotal_ally care that it works repr(self.rng) def test_gettingitem(self): smtotal_aller = self.rng[:5] exp = DatetimeIndex(self.rng.view(np.ndarray)[:5]) tm.assert_index_equal(smtotal_aller, exp) assert smtotal_aller.offset == self.rng.offset sliced = self.rng[::5] assert sliced.offset == CDay() * 5 fancy_indexed = self.rng[[4, 3, 2, 1, 0]] assert length(fancy_indexed) == 5 assert incontainstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert self.rng[4] == self.rng[np.int_(4)] def test_gettingitem_matplotlib_hackavalue_round(self): values = self.rng[:, None] expected = self.rng.values[:, None] tm.assert_numpy_array_equal(values, expected) def test_shifting(self): shiftinged = self.rng.shifting(5) assert shiftinged[0] == self.rng[5] assert shiftinged.offset == self.rng.offset shiftinged = self.rng.shifting(-5) assert shiftinged[5] == self.rng[0] assert shiftinged.offset == self.rng.offset shiftinged = self.rng.shifting(0) assert shiftinged[0] == self.rng[0] assert shiftinged.offset == self.rng.offset # PerformanceWarning with warnings.catch_warnings(record=True): rng = date_range(START, END, freq=BMonthEnd()) shiftinged = rng.shifting(1, freq=CDay()) assert shiftinged[0] == rng[0] + CDay() def test_pickle_unpickle(self): unpickled =
tm.value_round_trip_pickle(self.rng)
pandas.util.testing.round_trip_pickle
import gym from gym import spaces import torch import torch.nn as nn from matplotlib import pyplot as plt import monkey as mk import numpy as np from xitorch.interpolate import Interp1D from tqdm.auto import tqdm, trange import time from rcmodel.room import Room from rcmodel.building import Building from rcmodel.RCModel import RCModel from rcmodel.tools import InputScaling from rcmodel.tools import BuildingTemperatureDataset class PolicyNetwork(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() n = 10 self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(in_dim, n), nn.ReLU(), nn.Linear(n, n), nn.ReLU(), nn.Linear(n, out_dim), ) self.on_policy_reset() def forward(self, state): logits = self.linear_relu_stack(state) return logits def getting_action(self, state): mk = torch.distributions.categorical.Categorical(logits=self.forward(state)) # make a probability distribution action =
mk.sample_by_num()
pandas.sample
# -*- coding: utf-8 -*- ### Libraries ### import sys from tecan_od_analyzer.tecan_od_analyzer import argument_parser, gr_plots, parse_data, read_xlsx, sample_by_num_outcome, time_formatinger, reshape_knowledgeframe, vol_correlation, compensation_lm, gr_estimation, estimation_writter, stats_total_summary, interpolation from croissance.estimation.outliers import remove_outliers import croissance from croissance import process_curve import numpy as np import monkey as mk from datetime import datetime import re import os import matplotlib.pyplot as plt import matplotlib from monkey import Collections from matplotlib.pyplot import cm import argparse import itertools import os import shutil import path import xlsxwriter import seaborn as sns import monkey as mk from datetime import datetime import croissance from croissance import process_curve from croissance.estimation.outliers import remove_outliers import re import os import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy.optimize import curve_fit from croissance.estimation.util import with_overhangs from croissance.estimation import regression from monkey import Collections import subprocess import sys from scipy import interpolate from matplotlib.pyplot import cm def main(): mk.set_option('mode.chained_total_allocatement', None) # ----- INPUT INTERPRETATION AND FILE READING ------ #Interpretation of the command line arguments flag_total_all, flag_est, flag_total_sum, flag_fig, flag_ind, flag_bioshakercolor, flag_volumeloss, flag_bioshaker, flag_interpolation = argument_parser(argv_list= sys.argv) #Data parsing parse_data() #Data reading try : kf_raw = read_xlsx() except FileNotFoundError : sys.exit("Error!\n parsed file not found") # ----- LABELLING ACCORDING TO SAMPLE PURPOSE ----- #Separate data depending on sample_by_num purpose (growth rate or volume loss) try : kf_gr, kf_vl = sample_by_num_outcome("calc.tsv", kf_raw) except FileNotFoundError : sys.exit("Error!\n calc.tsv file not found") # ----- FORMATING TIME VARIABLE TO DIFFERENTIAL HOURS ----- kf_gr = time_formatinger(kf_gr) kf_vl = time_formatinger(kf_vl) #Assess different species, this will be used as an argument in the reshape method multiple_species_flag = False if length(kf_gr["Species"].distinctive()) > 1 : multiple_species_flag = True else : pass if os.path.exists("Results") == True : shutil.rmtree('Results', ignore_errors=True) else : pass try: os.mkdir("Results") except OSError: sys.exit("Error! Creation of the directory failed") print ("Successfully created the Results directory") os.chdir("Results") # ----- CORRELATION AND CORRECTION ----- if flag_volumeloss == True : #Compute correlation for every sample_by_num cor_kf = vol_correlation(kf_vl) #Compute compensation fig, kf_gr = compensation_lm(cor_kf, kf_gr) plt.savefig("lm_volume_loss.png", dpi=250) plt.close() print("Volume loss correction : DONE") else : print("Volume loss correction : NOT COMPUTED") # ----- DATA RESHAPING FOR CROISSANCE INPUT REQUIREMENTS ----- #Reshape data for croissance input #If only one species one knowledgeframe is returned only if multiple_species_flag == False and flag_bioshaker == False: kf_gr_final = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) #Split knowledgeframes by species and bioshakers elif multiple_species_flag == True and flag_bioshaker == True: kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = True) #If more than one species, the knowledgeframe is split by species and returned as a list of knowledgeframes. The unsplit knowledgeframe is also returned, which will be used for the total_summary and estimations else : kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) # ----- COMPLETE FUNCTIONALITY : ESTIMATIONS, FIGURES AND STATISTICAL SUMMARY ----- print((kf_gr_final.columns.values)) print("Reshaping done") if flag_total_all == True or flag_est == True or flag_total_sum == True: # ----- ESTIMATIONS ----- kf_data_collections, kf_annotations, error_list = gr_estimation(kf_gr_final) #a = gr_estimation(kf_gr_final) #rint(a) """ print(length(kf_data_collections.columns.values)) print(length(kf_annotations.columns.values)) print(length(error_list)) print(set(kf_data_collections.columns.values).interst(kf_annotations.columns.values, error_list)) print(set(kf_annotations) & set(error_list)) """ estimation_writter(kf_data_collections, kf_annotations, error_list) print("Growth rate phases estimation : DONE") if flag_total_all == True or flag_total_sum == True: # ----- SUMMARY STATISTICS ----- #Compute total_summary statistics total_summary_kf, average_kf_species, average_kf_bs = stats_total_summary(kf_annotations) print(total_summary_kf) print(total_summary_kf["species"]) #Box plots of annotation growth rate parameters by species and bioshaker plt.close() sns.boxplot(x="species", y="start", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("start_boxplot", dpi=250) plt.close() plot_end = sns.boxplot(x="species", y="end", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("end_boxplot", dpi=250) plt.close() plot_slope = sns.boxplot(x="species", y="slope", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("slope_boxplot", dpi=250) plt.close() plot_intercep = sns.boxplot(x="species", y="intercep", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("intercept_boxplot", dpi=250) plt.close() plot_n0 = sns.boxplot(x="species", y="n0", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("n0_boxplot", dpi=250) plt.close() plot_SNR = sns.boxplot(x="species", y="SNR", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("SNR_boxplot", dpi=250) plt.close() print("Summary statistics : DONE") if flag_total_all == True or flag_fig == True : # ----- FIGURES ----- #Get plots indivisionidutotal_ally for every sample_by_num if flag_ind == True : # Get plots for every sample_by_num kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) for col in range(length(colnames)): my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections =
Collections.sipna(my_collections)
pandas.Series.dropna
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional informatingion regarding # cloneright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import numpy as np import monkey from monkey.core.common import is_bool_indexer from monkey.core.indexing import check_bool_indexer from monkey.core.dtypes.common import ( is_list_like, is_numeric_dtype, is_datetime_or_timedelta_dtype, is_scalar, ) from monkey.core.base import DataError import warnings from modin.backends.base.query_compiler import BaseQueryCompiler from modin.error_message import ErrorMessage from modin.utils import try_cast_to_monkey, wrap_ukf_function from modin.data_management.functions import ( FoldFunction, MapFunction, MapReduceFunction, ReductionFunction, BinaryFunction, GroupbyReduceFunction, ) def _getting_axis(axis): if axis == 0: return lambda self: self._modin_frame.index else: return lambda self: self._modin_frame.columns def _set_axis(axis): if axis == 0: def set_axis(self, idx): self._modin_frame.index = idx else: def set_axis(self, cols): self._modin_frame.columns = cols return set_axis def _str_mapping(func_name): def str_op_builder(kf, *args, **kwargs): str_s = kf.squeeze(axis=1).str return gettingattr(monkey.Collections.str, func_name)(str_s, *args, **kwargs).to_frame() return str_op_builder def _dt_prop_mapping(property_name): """ Create a function that ctotal_all property of property `dt` of the collections. Parameters ---------- property_name The property of `dt`, which will be applied. Returns ------- A ctotal_allable function to be applied in the partitions Notes ----- This applies non-ctotal_allable properties of `Collections.dt`. """ def dt_op_builder(kf, *args, **kwargs): prop_val = gettingattr(kf.squeeze(axis=1).dt, property_name) if incontainstance(prop_val, monkey.Collections): return prop_val.to_frame() elif incontainstance(prop_val, monkey.KnowledgeFrame): return prop_val else: return monkey.KnowledgeFrame([prop_val]) return dt_op_builder def _dt_func_mapping(func_name): """ Create a function that ctotal_all method of property `dt` of the collections. Parameters ---------- func_name The method of `dt`, which will be applied. Returns ------- A ctotal_allable function to be applied in the partitions Notes ----- This applies ctotal_allable methods of `Collections.dt`. """ def dt_op_builder(kf, *args, **kwargs): dt_s = kf.squeeze(axis=1).dt return monkey.KnowledgeFrame( gettingattr(monkey.Collections.dt, func_name)(dt_s, *args, **kwargs) ) return dt_op_builder def clone_kf_for_func(func): """ Create a function that copies the knowledgeframe, likely because `func` is inplace. Parameters ---------- func : ctotal_allable The function, usutotal_ally umkates a knowledgeframe inplace. Returns ------- ctotal_allable A ctotal_allable function to be applied in the partitions """ def ctotal_aller(kf, *args, **kwargs): kf = kf.clone() func(kf, *args, **kwargs) return kf return ctotal_aller class MonkeyQueryCompiler(BaseQueryCompiler): """This class implements the logic necessary for operating on partitions with a Monkey backend. This logic is specific to Monkey.""" def __init__(self, modin_frame): self._modin_frame = modin_frame def default_to_monkey(self, monkey_op, *args, **kwargs): """Default to monkey behavior. Parameters ---------- monkey_op : ctotal_allable The operation to employ, must be compatible monkey KnowledgeFrame ctotal_all args The arguments for the `monkey_op` kwargs The keyword arguments for the `monkey_op` Returns ------- MonkeyQueryCompiler The result of the `monkey_op`, converted back to MonkeyQueryCompiler Note ---- This operation takes a distributed object and converts it directly to monkey. """ ErrorMessage.default_to_monkey(str(monkey_op)) args = (a.to_monkey() if incontainstance(a, type(self)) else a for a in args) kwargs = { k: v.to_monkey if incontainstance(v, type(self)) else v for k, v in kwargs.items() } result = monkey_op(self.to_monkey(), *args, **kwargs) if incontainstance(result, monkey.Collections): if result.name is None: result.name = "__reduced__" result = result.to_frame() if incontainstance(result, monkey.KnowledgeFrame): return self.from_monkey(result, type(self._modin_frame)) else: return result def to_monkey(self): return self._modin_frame.to_monkey() @classmethod def from_monkey(cls, kf, data_cls): return cls(data_cls.from_monkey(kf)) @classmethod def from_arrow(cls, at, data_cls): return cls(data_cls.from_arrow(at)) index = property(_getting_axis(0), _set_axis(0)) columns = property(_getting_axis(1), _set_axis(1)) @property def dtypes(self): return self._modin_frame.dtypes # END Index, columns, and dtypes objects # Metadata modification methods def add_prefix(self, prefix, axis=1): return self.__constructor__(self._modin_frame.add_prefix(prefix, axis)) def add_suffix(self, suffix, axis=1): return self.__constructor__(self._modin_frame.add_suffix(suffix, axis)) # END Metadata modification methods # Copy # For clone, we don't want a situation where we modify the metadata of the # copies if we end up modifying something here. We clone total_all of the metadata # to prevent that. def clone(self): return self.__constructor__(self._modin_frame.clone()) # END Copy # Append/Concat/Join (Not Merge) # The adding/concating/join operations should idetotal_ally never trigger remote # compute. These operations should only ever be manipulations of the # metadata of the resulting object. It should just be a simple matter of # addinging the other object's blocks and adding np.nan columns for the new # columns, if needed. If new columns are added, some compute may be # required, though it can be delayed. # # Currently this computation is not delayed, and it may make a clone of the # KnowledgeFrame in memory. This can be problematic and should be fixed in the # future. TODO (devin-petersohn): Delay reindexinging def concating(self, axis, other, **kwargs): """Concatenates two objects togettingher. Args: axis: The axis index object to join (0 for columns, 1 for index). other: The other_index to concating with. Returns: Concatenated objects. """ if not incontainstance(other, list): other = [other] assert total_all( incontainstance(o, type(self)) for o in other ), "Different Manager objects are being used. This is not total_allowed" sort = kwargs.getting("sort", None) if sort is None: sort = False join = kwargs.getting("join", "outer") ignore_index = kwargs.getting("ignore_index", False) other_modin_frame = [o._modin_frame for o in other] new_modin_frame = self._modin_frame._concating(axis, other_modin_frame, join, sort) result = self.__constructor__(new_modin_frame) if ignore_index: if axis == 0: return result.reseting_index(sip=True) else: result.columns = monkey.RangeIndex(length(result.columns)) return result return result # END Append/Concat/Join # Data Management Methods def free(self): """In the future, this will hopefully trigger a cleanup of this object.""" # TODO create a way to clean up this object. return # END Data Management Methods # To NumPy def to_numpy(self, **kwargs): """ Converts Modin KnowledgeFrame to NumPy array. Returns ------- NumPy array of the QueryCompiler. """ arr = self._modin_frame.to_numpy(**kwargs) ErrorMessage.catch_bugs_and_request_email( length(arr) != length(self.index) or length(arr[0]) != length(self.columns) ) return arr # END To NumPy # Binary operations (e.g. add, sub) # These operations require two KnowledgeFrames and will change the shape of the # data if the index objects don't match. An outer join + op is performed, # such that columns/rows that don't have an index on the other KnowledgeFrame # result in NaN values. add = BinaryFunction.register(monkey.KnowledgeFrame.add) combine = BinaryFunction.register(monkey.KnowledgeFrame.combine) combine_first = BinaryFunction.register(monkey.KnowledgeFrame.combine_first) eq = BinaryFunction.register(monkey.KnowledgeFrame.eq) floordivision = BinaryFunction.register(monkey.KnowledgeFrame.floordivision) ge = BinaryFunction.register(monkey.KnowledgeFrame.ge) gt = BinaryFunction.register(monkey.KnowledgeFrame.gt) le = BinaryFunction.register(monkey.KnowledgeFrame.le) lt = BinaryFunction.register(monkey.KnowledgeFrame.lt) mod = BinaryFunction.register(monkey.KnowledgeFrame.mod) mul = BinaryFunction.register(monkey.KnowledgeFrame.mul) ne = BinaryFunction.register(monkey.KnowledgeFrame.ne) pow = BinaryFunction.register(monkey.KnowledgeFrame.pow) rfloordivision = BinaryFunction.register(monkey.KnowledgeFrame.rfloordivision) rmod = BinaryFunction.register(monkey.KnowledgeFrame.rmod) rpow = BinaryFunction.register(monkey.KnowledgeFrame.rpow) rsub = BinaryFunction.register(monkey.KnowledgeFrame.rsub) rtruedivision = BinaryFunction.register(monkey.KnowledgeFrame.rtruedivision) sub = BinaryFunction.register(monkey.KnowledgeFrame.sub) truedivision = BinaryFunction.register(monkey.KnowledgeFrame.truedivision) __and__ = BinaryFunction.register(monkey.KnowledgeFrame.__and__) __or__ = BinaryFunction.register(monkey.KnowledgeFrame.__or__) __rand__ = BinaryFunction.register(monkey.KnowledgeFrame.__rand__) __ror__ = BinaryFunction.register(monkey.KnowledgeFrame.__ror__) __rxor__ = BinaryFunction.register(monkey.KnowledgeFrame.__rxor__) __xor__ = BinaryFunction.register(monkey.KnowledgeFrame.__xor__) kf_umkate = BinaryFunction.register( clone_kf_for_func(monkey.KnowledgeFrame.umkate), join_type="left" ) collections_umkate = BinaryFunction.register( clone_kf_for_func( lambda x, y: monkey.Collections.umkate(x.squeeze(axis=1), y.squeeze(axis=1)) ), join_type="left", ) def where(self, cond, other, **kwargs): """Gets values from this manager where cond is true else from other. Args: cond: Condition on which to evaluate values. Returns: New QueryCompiler with umkated data and index. """ assert incontainstance( cond, type(self) ), "Must have the same QueryCompiler subclass to perform this operation" if incontainstance(other, type(self)): # Note: Currently we are doing this with two mappings across the entire # data. This can be done with a single mapping, but it will take a # modification in the `BlockPartition` class. # If this were in one pass it would be ~2x faster. # TODO (devin-petersohn) rewrite this to take one pass. def where_builder_first_pass(cond, other, **kwargs): return cond.where(cond, other, **kwargs) first_pass = cond._modin_frame._binary_op( where_builder_first_pass, other._modin_frame, join_type="left" ) def where_builder_second_pass(kf, new_other, **kwargs): return kf.where(new_other.eq(True), new_other, **kwargs) new_modin_frame = self._modin_frame._binary_op( where_builder_second_pass, first_pass, join_type="left" ) # This will be a Collections of scalars to be applied based on the condition # knowledgeframe. else: def where_builder_collections(kf, cond): return kf.where(cond, other, **kwargs) new_modin_frame = self._modin_frame._binary_op( where_builder_collections, cond._modin_frame, join_type="left" ) return self.__constructor__(new_modin_frame) def unioner(self, right, **kwargs): """ Merge KnowledgeFrame or named Collections objects with a database-style join. Parameters ---------- right : MonkeyQueryCompiler The query compiler of the right KnowledgeFrame to unioner with. Returns ------- MonkeyQueryCompiler A new query compiler that contains result of the unioner. Notes ----- See mk.unioner or mk.KnowledgeFrame.unioner for more info on kwargs. """ how = kwargs.getting("how", "inner") on = kwargs.getting("on", None) left_on = kwargs.getting("left_on", None) right_on = kwargs.getting("right_on", None) left_index = kwargs.getting("left_index", False) right_index = kwargs.getting("right_index", False) sort = kwargs.getting("sort", False) if how in ["left", "inner"] and left_index is False and right_index is False: right = right.to_monkey() kwargs["sort"] = False def mapping_func(left, right=right, kwargs=kwargs): return monkey.unioner(left, right, **kwargs) new_self = self.__constructor__( self._modin_frame._employ_full_axis(1, mapping_func) ) is_reseting_index = True if left_on and right_on: left_on = left_on if is_list_like(left_on) else [left_on] right_on = right_on if is_list_like(right_on) else [right_on] is_reseting_index = ( False if whatever(o in new_self.index.names for o in left_on) and whatever(o in right.index.names for o in right_on) else True ) if sort: new_self = ( new_self.sort_rows_by_column_values(left_on.adding(right_on)) if is_reseting_index else new_self.sorting_index(axis=0, level=left_on.adding(right_on)) ) if on: on = on if is_list_like(on) else [on] is_reseting_index = not whatever( o in new_self.index.names and o in right.index.names for o in on ) if sort: new_self = ( new_self.sort_rows_by_column_values(on) if is_reseting_index else new_self.sorting_index(axis=0, level=on) ) return new_self.reseting_index(sip=True) if is_reseting_index else new_self else: return self.default_to_monkey(monkey.KnowledgeFrame.unioner, right, **kwargs) def join(self, right, **kwargs): """ Join columns of another KnowledgeFrame. Parameters ---------- right : BaseQueryCompiler The query compiler of the right KnowledgeFrame to join with. Returns ------- BaseQueryCompiler A new query compiler that contains result of the join. Notes ----- See mk.KnowledgeFrame.join for more info on kwargs. """ on = kwargs.getting("on", None) how = kwargs.getting("how", "left") sort = kwargs.getting("sort", False) if how in ["left", "inner"]: right = right.to_monkey() def mapping_func(left, right=right, kwargs=kwargs): return monkey.KnowledgeFrame.join(left, right, **kwargs) new_self = self.__constructor__( self._modin_frame._employ_full_axis(1, mapping_func) ) return new_self.sort_rows_by_column_values(on) if sort else new_self else: return self.default_to_monkey(monkey.KnowledgeFrame.join, right, **kwargs) # END Inter-Data operations # Reindex/reseting_index (may shuffle data) def reindexing(self, axis, labels, **kwargs): """Fits a new index for this Manager. Args: axis: The axis index object to targetting the reindexing on. labels: New labels to conform 'axis' on to. Returns: A new QueryCompiler with umkated data and new index. """ new_index = self.index if axis else labels new_columns = labels if axis else self.columns new_modin_frame = self._modin_frame._employ_full_axis( axis, lambda kf: kf.reindexing(labels=labels, axis=axis, **kwargs), new_index=new_index, new_columns=new_columns, ) return self.__constructor__(new_modin_frame) def reseting_index(self, **kwargs): """Removes total_all levels from index and sets a default level_0 index. Returns: A new QueryCompiler with umkated data and reset index. """ sip = kwargs.getting("sip", False) level = kwargs.getting("level", None) # TODO Implement level if level is not None or self.has_multiindex(): return self.default_to_monkey(monkey.KnowledgeFrame.reseting_index, **kwargs) if not sip: new_column_name = ( self.index.name if self.index.name is not None else "index" if "index" not in self.columns else "level_0" ) new_self = self.insert(0, new_column_name, self.index) else: new_self = self.clone() new_self.index = monkey.RangeIndex(length(new_self.index)) return new_self # END Reindex/reseting_index # Transpose # For transpose, we aren't going to immediately clone everything. Since the # actual transpose operation is very fast, we will just do it before whatever # operation that gettings ctotal_alled on the transposed data. See _prepare_method # for how the transpose is applied. # # Our invariants astotal_sume that the blocks are transposed, but not the # data inside. Sometimes we have to reverse this transposition of blocks # for simplicity of implementation. def transpose(self, *args, **kwargs): """Transposes this QueryCompiler. Returns: Transposed new QueryCompiler. """ # Switch the index and columns and transpose the data within the blocks. return self.__constructor__(self._modin_frame.transpose()) def columnarize(self): """ Transposes this QueryCompiler if it has a single row but multiple columns. This method should be ctotal_alled for QueryCompilers representing a Collections object, i.e. self.is_collections_like() should be True. Returns ------- MonkeyQueryCompiler Transposed new QueryCompiler or self. """ if length(self.columns) != 1 or ( length(self.index) == 1 and self.index[0] == "__reduced__" ): return self.transpose() return self def is_collections_like(self): """Return True if QueryCompiler has a single column or row""" return length(self.columns) == 1 or length(self.index) == 1 # END Transpose # MapReduce operations def _is_monotonic(self, func_type=None): funcs = { "increasing": lambda kf: kf.is_monotonic_increasing, "decreasing": lambda kf: kf.is_monotonic_decreasing, } monotonic_fn = funcs.getting(func_type, funcs["increasing"]) def is_monotonic_mapping(kf): kf = kf.squeeze(axis=1) return [monotonic_fn(kf), kf.iloc[0], kf.iloc[length(kf) - 1]] def is_monotonic_reduce(kf): kf = kf.squeeze(axis=1) common_case = kf[0].total_all() left_edges = kf[1] right_edges = kf[2] edges_list = [] for i in range(length(left_edges)): edges_list.extend([left_edges.iloc[i], right_edges.iloc[i]]) edge_case = monotonic_fn(monkey.Collections(edges_list)) return [common_case and edge_case] return MapReduceFunction.register( is_monotonic_mapping, is_monotonic_reduce, axis=0 )(self) def is_monotonic_decreasing(self): return self._is_monotonic(func_type="decreasing") is_monotonic = _is_monotonic count = MapReduceFunction.register(monkey.KnowledgeFrame.count, monkey.KnowledgeFrame.total_sum) getting_max = MapReduceFunction.register(monkey.KnowledgeFrame.getting_max, monkey.KnowledgeFrame.getting_max) getting_min = MapReduceFunction.register(monkey.KnowledgeFrame.getting_min, monkey.KnowledgeFrame.getting_min) total_sum = MapReduceFunction.register(monkey.KnowledgeFrame.total_sum, monkey.KnowledgeFrame.total_sum) prod = MapReduceFunction.register(monkey.KnowledgeFrame.prod, monkey.KnowledgeFrame.prod) whatever = MapReduceFunction.register(monkey.KnowledgeFrame.whatever, monkey.KnowledgeFrame.whatever) total_all = MapReduceFunction.register(monkey.KnowledgeFrame.total_all, monkey.KnowledgeFrame.total_all) memory_usage = MapReduceFunction.register( monkey.KnowledgeFrame.memory_usage, lambda x, *args, **kwargs: monkey.KnowledgeFrame.total_sum(x), axis=0, ) average = MapReduceFunction.register( lambda kf, **kwargs: kf.employ( lambda x: (x.total_sum(skipna=kwargs.getting("skipna", True)), x.count()), axis=kwargs.getting("axis", 0), result_type="reduce", ).set_axis(kf.axes[kwargs.getting("axis", 0) ^ 1], axis=0), lambda kf, **kwargs: kf.employ( lambda x: x.employ(lambda d: d[0]).total_sum(skipna=kwargs.getting("skipna", True)) / x.employ(lambda d: d[1]).total_sum(skipna=kwargs.getting("skipna", True)), axis=kwargs.getting("axis", 0), ).set_axis(kf.axes[kwargs.getting("axis", 0) ^ 1], axis=0), ) def counts_value_num(self, **kwargs): """ Return a QueryCompiler of Collections containing counts of distinctive values. Returns ------- MonkeyQueryCompiler """ if kwargs.getting("bins", None) is not None: new_modin_frame = self._modin_frame._employ_full_axis( 0, lambda kf: kf.squeeze(axis=1).counts_value_num(**kwargs) ) return self.__constructor__(new_modin_frame) def mapping_func(kf, *args, **kwargs): return kf.squeeze(axis=1).counts_value_num(**kwargs) def reduce_func(kf, *args, **kwargs): normalize = kwargs.getting("normalize", False) sort = kwargs.getting("sort", True) ascending = kwargs.getting("ascending", False) sipna = kwargs.getting("sipna", True) try: result = kf.squeeze(axis=1).grouper(kf.index, sort=False).total_sum() # This will happen with Arrow buffer read-only errors. We don't want to clone # total_all the time, so this will try to fast-path the code first. except (ValueError): result = kf.clone().squeeze(axis=1).grouper(kf.index, sort=False).total_sum() if not sipna and np.nan in kf.index: result = result.adding( monkey.Collections( [kf.squeeze(axis=1).loc[[np.nan]].total_sum()], index=[np.nan] ) ) if normalize: result = result / kf.squeeze(axis=1).total_sum() result = result.sort_the_values(ascending=ascending) if sort else result # We want to sort both values and indices of the result object. # This function will sort indices for equal values. def sorting_index_for_equal_values(result, ascending): """ Sort indices for equal values of result object. Parameters ---------- result : monkey.Collections or monkey.KnowledgeFrame with one column The object whose indices for equal values is needed to sort. ascending : boolean Sort in ascending (if it is True) or descending (if it is False) order. Returns ------- monkey.KnowledgeFrame A new KnowledgeFrame with sorted indices. """ is_range = False is_end = False i = 0 new_index = np.empty(length(result), dtype=type(result.index)) while i < length(result): j = i if i < length(result) - 1: while result[result.index[i]] == result[result.index[i + 1]]: i += 1 if is_range is False: is_range = True if i == length(result) - 1: is_end = True break if is_range: k = j for val in sorted( result.index[j : i + 1], reverse=not ascending ): new_index[k] = val k += 1 if is_end: break is_range = False else: new_index[j] = result.index[j] i += 1 return monkey.KnowledgeFrame(result, index=new_index) return sorting_index_for_equal_values(result, ascending) return MapReduceFunction.register(mapping_func, reduce_func, preserve_index=False)( self, **kwargs ) # END MapReduce operations # Reduction operations idxgetting_max = ReductionFunction.register(monkey.KnowledgeFrame.idxgetting_max) idxgetting_min = ReductionFunction.register(monkey.KnowledgeFrame.idxgetting_min) median = ReductionFunction.register(monkey.KnowledgeFrame.median) ndistinctive = ReductionFunction.register(monkey.KnowledgeFrame.ndistinctive) skew = ReductionFunction.register(monkey.KnowledgeFrame.skew) kurt = ReductionFunction.register(monkey.KnowledgeFrame.kurt) sem = ReductionFunction.register(monkey.KnowledgeFrame.sem) standard = ReductionFunction.register(monkey.KnowledgeFrame.standard) var = ReductionFunction.register(monkey.KnowledgeFrame.var) total_sum_getting_min_count = ReductionFunction.register(monkey.KnowledgeFrame.total_sum) prod_getting_min_count = ReductionFunction.register(monkey.KnowledgeFrame.prod) quantile_for_single_value = ReductionFunction.register(monkey.KnowledgeFrame.quantile) mad = ReductionFunction.register(monkey.KnowledgeFrame.mad) convert_datetime = ReductionFunction.register( lambda kf, *args, **kwargs: monkey.convert_datetime( kf.squeeze(axis=1), *args, **kwargs ), axis=1, ) # END Reduction operations def _resample_by_num_func( self, resample_by_num_args, func_name, new_columns=None, kf_op=None, *args, **kwargs ): def mapping_func(kf, resample_by_num_args=resample_by_num_args): if kf_op is not None: kf = kf_op(kf) resample_by_numd_val = kf.resample_by_num(*resample_by_num_args) op = gettingattr(monkey.core.resample_by_num.Resample_by_numr, func_name) if ctotal_allable(op): try: # This will happen with Arrow buffer read-only errors. We don't want to clone # total_all the time, so this will try to fast-path the code first. val = op(resample_by_numd_val, *args, **kwargs) except (ValueError): resample_by_numd_val = kf.clone().resample_by_num(*resample_by_num_args) val = op(resample_by_numd_val, *args, **kwargs) else: val = gettingattr(resample_by_numd_val, func_name) if incontainstance(val, monkey.Collections): return val.to_frame() else: return val new_modin_frame = self._modin_frame._employ_full_axis( axis=0, func=mapping_func, new_columns=new_columns ) return self.__constructor__(new_modin_frame) def resample_by_num_getting_group(self, resample_by_num_args, name, obj): return self._resample_by_num_func(resample_by_num_args, "getting_group", name=name, obj=obj) def resample_by_num_app_ser(self, resample_by_num_args, func, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "employ", kf_op=lambda kf: kf.squeeze(axis=1), func=func, *args, **kwargs, ) def resample_by_num_app_kf(self, resample_by_num_args, func, *args, **kwargs): return self._resample_by_num_func(resample_by_num_args, "employ", func=func, *args, **kwargs) def resample_by_num_agg_ser(self, resample_by_num_args, func, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "aggregate", kf_op=lambda kf: kf.squeeze(axis=1), func=func, *args, **kwargs, ) def resample_by_num_agg_kf(self, resample_by_num_args, func, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "aggregate", func=func, *args, **kwargs ) def resample_by_num_transform(self, resample_by_num_args, arg, *args, **kwargs): return self._resample_by_num_func(resample_by_num_args, "transform", arg=arg, *args, **kwargs) def resample_by_num_pipe(self, resample_by_num_args, func, *args, **kwargs): return self._resample_by_num_func(resample_by_num_args, "pipe", func=func, *args, **kwargs) def resample_by_num_ffill(self, resample_by_num_args, limit): return self._resample_by_num_func(resample_by_num_args, "ffill", limit=limit) def resample_by_num_backfill(self, resample_by_num_args, limit): return self._resample_by_num_func(resample_by_num_args, "backfill", limit=limit) def resample_by_num_bfill(self, resample_by_num_args, limit): return self._resample_by_num_func(resample_by_num_args, "bfill", limit=limit) def resample_by_num_pad(self, resample_by_num_args, limit): return self._resample_by_num_func(resample_by_num_args, "pad", limit=limit) def resample_by_num_nearest(self, resample_by_num_args, limit): return self._resample_by_num_func(resample_by_num_args, "nearest", limit=limit) def resample_by_num_fillnone(self, resample_by_num_args, method, limit): return self._resample_by_num_func(resample_by_num_args, "fillnone", method=method, limit=limit) def resample_by_num_asfreq(self, resample_by_num_args, fill_value): return self._resample_by_num_func(resample_by_num_args, "asfreq", fill_value=fill_value) def resample_by_num_interpolate( self, resample_by_num_args, method, axis, limit, inplace, limit_direction, limit_area, downcast, **kwargs, ): return self._resample_by_num_func( resample_by_num_args, "interpolate", axis=axis, limit=limit, inplace=inplace, limit_direction=limit_direction, limit_area=limit_area, downcast=downcast, **kwargs, ) def resample_by_num_count(self, resample_by_num_args): return self._resample_by_num_func(resample_by_num_args, "count") def resample_by_num_ndistinctive(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "ndistinctive", _method=_method, *args, **kwargs ) def resample_by_num_first(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "first", _method=_method, *args, **kwargs ) def resample_by_num_final_item(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "final_item", _method=_method, *args, **kwargs ) def resample_by_num_getting_max(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "getting_max", _method=_method, *args, **kwargs ) def resample_by_num_average(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "median", _method=_method, *args, **kwargs ) def resample_by_num_median(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "median", _method=_method, *args, **kwargs ) def resample_by_num_getting_min(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "getting_min", _method=_method, *args, **kwargs ) def resample_by_num_ohlc_ser(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "ohlc", kf_op=lambda kf: kf.squeeze(axis=1), _method=_method, *args, **kwargs, ) def resample_by_num_ohlc_kf(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "ohlc", _method=_method, *args, **kwargs ) def resample_by_num_prod(self, resample_by_num_args, _method, getting_min_count, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "prod", _method=_method, getting_min_count=getting_min_count, *args, **kwargs ) def resample_by_num_size(self, resample_by_num_args): return self._resample_by_num_func(resample_by_num_args, "size", new_columns=["__reduced__"]) def resample_by_num_sem(self, resample_by_num_args, _method, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "sem", _method=_method, *args, **kwargs ) def resample_by_num_standard(self, resample_by_num_args, ddof, *args, **kwargs): return self._resample_by_num_func(resample_by_num_args, "standard", ddof=ddof, *args, **kwargs) def resample_by_num_total_sum(self, resample_by_num_args, _method, getting_min_count, *args, **kwargs): return self._resample_by_num_func( resample_by_num_args, "total_sum", _method=_method, getting_min_count=getting_min_count, *args, **kwargs ) def resample_by_num_var(self, resample_by_num_args, ddof, *args, **kwargs): return self._resample_by_num_func(resample_by_num_args, "var", ddof=ddof, *args, **kwargs) def resample_by_num_quantile(self, resample_by_num_args, q, **kwargs): return self._resample_by_num_func(resample_by_num_args, "quantile", q=q, **kwargs) window_average = FoldFunction.register( lambda kf, rolling_args, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).average(*args, **kwargs) ) ) window_total_sum = FoldFunction.register( lambda kf, rolling_args, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).total_sum(*args, **kwargs) ) ) window_var = FoldFunction.register( lambda kf, rolling_args, ddof, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).var(ddof=ddof, *args, **kwargs) ) ) window_standard = FoldFunction.register( lambda kf, rolling_args, ddof, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).standard(ddof=ddof, *args, **kwargs) ) ) rolling_count = FoldFunction.register( lambda kf, rolling_args: monkey.KnowledgeFrame(kf.rolling(*rolling_args).count()) ) rolling_total_sum = FoldFunction.register( lambda kf, rolling_args, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).total_sum(*args, **kwargs) ) ) rolling_average = FoldFunction.register( lambda kf, rolling_args, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).average(*args, **kwargs) ) ) rolling_median = FoldFunction.register( lambda kf, rolling_args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).median(**kwargs) ) ) rolling_var = FoldFunction.register( lambda kf, rolling_args, ddof, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).var(ddof=ddof, *args, **kwargs) ) ) rolling_standard = FoldFunction.register( lambda kf, rolling_args, ddof, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).standard(ddof=ddof, *args, **kwargs) ) ) rolling_getting_min = FoldFunction.register( lambda kf, rolling_args, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).getting_min(*args, **kwargs) ) ) rolling_getting_max = FoldFunction.register( lambda kf, rolling_args, *args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).getting_max(*args, **kwargs) ) ) rolling_skew = FoldFunction.register( lambda kf, rolling_args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).skew(**kwargs) ) ) rolling_kurt = FoldFunction.register( lambda kf, rolling_args, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).kurt(**kwargs) ) ) rolling_employ = FoldFunction.register( lambda kf, rolling_args, func, raw, engine, engine_kwargs, args, kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).employ( func=func, raw=raw, engine=engine, engine_kwargs=engine_kwargs, args=args, kwargs=kwargs, ) ) ) rolling_quantile = FoldFunction.register( lambda kf, rolling_args, quantile, interpolation, **kwargs: monkey.KnowledgeFrame( kf.rolling(*rolling_args).quantile( quantile=quantile, interpolation=interpolation, **kwargs ) ) ) def rolling_corr(self, rolling_args, other, pairwise, *args, **kwargs): if length(self.columns) > 1: return self.default_to_monkey( lambda kf: monkey.KnowledgeFrame.rolling(kf, *rolling_args).corr( other=other, pairwise=pairwise, *args, **kwargs ) ) else: return FoldFunction.register( lambda kf: monkey.KnowledgeFrame( kf.rolling(*rolling_args).corr( other=other, pairwise=pairwise, *args, **kwargs ) ) )(self) def rolling_cov(self, rolling_args, other, pairwise, ddof, **kwargs): if length(self.columns) > 1: return self.default_to_monkey( lambda kf: monkey.KnowledgeFrame.rolling(kf, *rolling_args).cov( other=other, pairwise=pairwise, ddof=ddof, **kwargs ) ) else: return FoldFunction.register( lambda kf: monkey.KnowledgeFrame( kf.rolling(*rolling_args).cov( other=other, pairwise=pairwise, ddof=ddof, **kwargs ) ) )(self) def rolling_aggregate(self, rolling_args, func, *args, **kwargs): new_modin_frame = self._modin_frame._employ_full_axis( 0, lambda kf: monkey.KnowledgeFrame( kf.rolling(*rolling_args).aggregate(func=func, *args, **kwargs) ), new_index=self.index, ) return self.__constructor__(new_modin_frame) def unstack(self, level, fill_value): if not incontainstance(self.index, monkey.MultiIndex) or ( incontainstance(self.index, monkey.MultiIndex) and is_list_like(level) and length(level) == self.index.nlevels ): axis = 1 new_columns = ["__reduced__"] need_reindexing = True else: axis = 0 new_columns = None need_reindexing = False def mapping_func(kf): return monkey.KnowledgeFrame(kf.unstack(level=level, fill_value=fill_value)) def is_tree_like_or_1d(calc_index, valid_index): if not incontainstance(calc_index, monkey.MultiIndex): return True actual_length = 1 for lvl in calc_index.levels: actual_length *= length(lvl) return length(self.index) * length(self.columns) == actual_length * length(valid_index) is_tree_like_or_1d_index = is_tree_like_or_1d(self.index, self.columns) is_tree_like_or_1d_cols = is_tree_like_or_1d(self.columns, self.index) is_total_all_multi_list = False if ( incontainstance(self.index, monkey.MultiIndex) and incontainstance(self.columns, monkey.MultiIndex) and is_list_like(level) and length(level) == self.index.nlevels and is_tree_like_or_1d_index and is_tree_like_or_1d_cols ): is_total_all_multi_list = True real_cols_bkp = self.columns obj = self.clone() obj.columns = np.arange(length(obj.columns)) else: obj = self new_modin_frame = obj._modin_frame._employ_full_axis( axis, mapping_func, new_columns=new_columns ) result = self.__constructor__(new_modin_frame) def compute_index(index, columns, consider_index=True, consider_columns=True): def getting_distinctive_level_values(index): return [ index.getting_level_values(lvl).distinctive() for lvl in np.arange(index.nlevels) ] new_index = ( getting_distinctive_level_values(index) if consider_index else index if incontainstance(index, list) else [index] ) new_columns = ( getting_distinctive_level_values(columns) if consider_columns else [columns] ) return monkey.MultiIndex.from_product([*new_columns, *new_index]) if is_total_all_multi_list and is_tree_like_or_1d_index and is_tree_like_or_1d_cols: result = result.sorting_index() index_level_values = [lvl for lvl in obj.index.levels] result.index = compute_index( index_level_values, real_cols_bkp, consider_index=False ) return result if need_reindexing: if is_tree_like_or_1d_index and is_tree_like_or_1d_cols: is_recompute_index = incontainstance(self.index, monkey.MultiIndex) is_recompute_columns = not is_recompute_index and incontainstance( self.columns, monkey.MultiIndex ) new_index = compute_index( self.index, self.columns, is_recompute_index, is_recompute_columns ) elif is_tree_like_or_1d_index != is_tree_like_or_1d_cols: if incontainstance(self.columns, monkey.MultiIndex) or not incontainstance( self.index, monkey.MultiIndex ): return result else: index = ( self.index.sortlevel()[0] if is_tree_like_or_1d_index and not is_tree_like_or_1d_cols and incontainstance(self.index, monkey.MultiIndex) else self.index ) index = monkey.MultiIndex.from_tuples( list(index) * length(self.columns) ) columns = self.columns.repeat(length(self.index)) index_levels = [ index.getting_level_values(i) for i in range(index.nlevels) ] new_index = monkey.MultiIndex.from_arrays( [columns] + index_levels, names=self.columns.names + self.index.names, ) else: return result result = result.reindexing(0, new_index) return result def stack(self, level, sipna): if not incontainstance(self.columns, monkey.MultiIndex) or ( incontainstance(self.columns, monkey.MultiIndex) and is_list_like(level) and length(level) == self.columns.nlevels ): new_columns = ["__reduced__"] else: new_columns = None new_modin_frame = self._modin_frame._employ_full_axis( 1, lambda kf: monkey.KnowledgeFrame(kf.stack(level=level, sipna=sipna)), new_columns=new_columns, ) return self.__constructor__(new_modin_frame) # Map partitions operations # These operations are operations that employ a function to every partition. abs = MapFunction.register(monkey.KnowledgeFrame.abs, dtypes="clone") employmapping = MapFunction.register(monkey.KnowledgeFrame.employmapping) conj = MapFunction.register( lambda kf, *args, **kwargs: monkey.KnowledgeFrame(np.conj(kf)) ) invert = MapFunction.register(monkey.KnowledgeFrame.__invert__) incontain = MapFunction.register(monkey.KnowledgeFrame.incontain, dtypes=np.bool) ifna = MapFunction.register(monkey.KnowledgeFrame.ifna, dtypes=np.bool) negative = MapFunction.register(monkey.KnowledgeFrame.__neg__) notna = MapFunction.register(monkey.KnowledgeFrame.notna, dtypes=np.bool) value_round = MapFunction.register(monkey.KnowledgeFrame.value_round) replacing = MapFunction.register(monkey.KnowledgeFrame.replacing) collections_view = MapFunction.register( lambda kf, *args, **kwargs: monkey.KnowledgeFrame( kf.squeeze(axis=1).view(*args, **kwargs) ) ) to_num = MapFunction.register( lambda kf, *args, **kwargs: monkey.KnowledgeFrame( monkey.to_num(kf.squeeze(axis=1), *args, **kwargs) ) ) def repeat(self, repeats): def mapping_fn(kf): return monkey.KnowledgeFrame(kf.squeeze(axis=1).repeat(repeats)) if incontainstance(repeats, int) or (is_list_like(repeats) and length(repeats) == 1): return MapFunction.register(mapping_fn, validate_index=True)(self) else: return self.__constructor__(self._modin_frame._employ_full_axis(0, mapping_fn)) # END Map partitions operations # String mapping partitions operations str_capitalize = MapFunction.register(_str_mapping("capitalize"), dtypes="clone") str_center = MapFunction.register(_str_mapping("center"), dtypes="clone") str_contains = MapFunction.register(_str_mapping("contains"), dtypes=np.bool) str_count = MapFunction.register(_str_mapping("count"), dtypes=int) str_endswith = MapFunction.register(_str_mapping("endswith"), dtypes=np.bool) str_find = MapFunction.register(_str_mapping("find"), dtypes="clone") str_findtotal_all = MapFunction.register(_str_mapping("findtotal_all"), dtypes="clone") str_getting = MapFunction.register(_str_mapping("getting"), dtypes="clone") str_index = MapFunction.register(_str_mapping("index"), dtypes="clone") str_isalnum = MapFunction.register(_str_mapping("isalnum"), dtypes=np.bool) str_isalpha = MapFunction.register(_str_mapping("isalpha"), dtypes=np.bool) str_isdecimal = MapFunction.register(_str_mapping("isdecimal"), dtypes=np.bool) str_isdigit = MapFunction.register(_str_mapping("isdigit"), dtypes=np.bool) str_islower = MapFunction.register(_str_mapping("islower"), dtypes=np.bool) str_isnumeric = MapFunction.register(_str_mapping("isnumeric"), dtypes=np.bool) str_isspace = MapFunction.register(_str_mapping("isspace"), dtypes=np.bool) str_istitle = MapFunction.register(_str_mapping("istitle"), dtypes=np.bool) str_isupper = MapFunction.register(_str_mapping("isupper"), dtypes=np.bool) str_join = MapFunction.register(_str_mapping("join"), dtypes="clone") str_length = MapFunction.register(_str_mapping("length"), dtypes=int) str_ljust = MapFunction.register(_str_mapping("ljust"), dtypes="clone") str_lower = MapFunction.register(_str_mapping("lower"), dtypes="clone") str_lstrip = MapFunction.register(_str_mapping("lstrip"), dtypes="clone") str_match = MapFunction.register(_str_mapping("match"), dtypes="clone") str_normalize = MapFunction.register(_str_mapping("normalize"), dtypes="clone") str_pad = MapFunction.register(_str_mapping("pad"), dtypes="clone") str_partition = MapFunction.register(_str_mapping("partition"), dtypes="clone") str_repeat = MapFunction.register(_str_mapping("repeat"), dtypes="clone") str_replacing = MapFunction.register(_str_mapping("replacing"), dtypes="clone") str_rfind = MapFunction.register(_str_mapping("rfind"), dtypes="clone") str_rindex = MapFunction.register(_str_mapping("rindex"), dtypes="clone") str_rjust = MapFunction.register(_str_mapping("rjust"), dtypes="clone") str_rpartition = MapFunction.register(_str_mapping("rpartition"), dtypes="clone") str_rsplit = MapFunction.register(_str_mapping("rsplit"), dtypes="clone") str_rstrip = MapFunction.register(_str_mapping("rstrip"), dtypes="clone") str_slice = MapFunction.register(_str_mapping("slice"), dtypes="clone") str_slice_replacing = MapFunction.register(_str_mapping("slice_replacing"), dtypes="clone") str_split = MapFunction.register(_str_mapping("split"), dtypes="clone") str_startswith = MapFunction.register(_str_mapping("startswith"), dtypes=np.bool) str_strip = MapFunction.register(_str_mapping("strip"), dtypes="clone") str_swapcase = MapFunction.register(_str_mapping("swapcase"), dtypes="clone") str_title = MapFunction.register(_str_mapping("title"), dtypes="clone") str_translate = MapFunction.register(_str_mapping("translate"), dtypes="clone") str_upper = MapFunction.register(_str_mapping("upper"), dtypes="clone") str_wrap = MapFunction.register(_str_mapping("wrap"), dtypes="clone") str_zfill = MapFunction.register(_str_mapping("zfill"), dtypes="clone") # END String mapping partitions operations def distinctive(self): """Return distinctive values of Collections object. Returns ------- ndarray The distinctive values returned as a NumPy array. """ new_modin_frame = self._modin_frame._employ_full_axis( 0, lambda x: x.squeeze(axis=1).distinctive(), new_columns=self.columns, ) return self.__constructor__(new_modin_frame) def searchsorted(self, **kwargs): """ Return a QueryCompiler with value/values indicies, which they should be inserted to maintain order of the passed Collections. Returns ------- MonkeyQueryCompiler """ def mapping_func(part, *args, **kwargs): elements_number = length(part.index) assert elements_number > 0, "Wrong mappingping behaviour of MapReduce" # unify value type value = kwargs.pop("value") value = np.array([value]) if is_scalar(value) else value if elements_number == 1: part = part[part.columns[0]] else: part = part.squeeze() part_index_start = part.index.start part_index_stop = part.index.stop result = part.searchsorted(value=value, *args, **kwargs) processed_results = {} value_number = 0 for value_result in result: value_result += part_index_start if value_result > part_index_start and value_result < part_index_stop: processed_results[f"value{value_number}"] = { "relative_location": "current_partition", "index": value_result, } elif value_result <= part_index_start: processed_results[f"value{value_number}"] = { "relative_location": "previoius_partitions", "index": part_index_start, } else: processed_results[f"value{value_number}"] = { "relative_location": "next_partitions", "index": part_index_stop, } value_number += 1 return monkey.KnowledgeFrame(processed_results) def reduce_func(mapping_results, *args, **kwargs): def getting_value_index(value_result): value_result_grouped = value_result.grouper(level=0) rel_location = value_result_grouped.getting_group("relative_location") ind = value_result_grouped.getting_group("index") # executes if result is inside of the mappingped part if "current_partition" in rel_location.values: assert ( rel_location[rel_location == "current_partition"].count() == 1 ), "Each value should have single result" return ind[rel_location.values == "current_partition"] # executes if result is between mappingped parts elif rel_location.ndistinctive(sipna=False) > 1: return ind[rel_location.values == "previoius_partitions"][0] # executes if result is outside of the mappingped part else: if "next_partitions" in rel_location.values: return ind[-1] else: return ind[0] mapping_results_parsed = mapping_results.employ( lambda ser: getting_value_index(ser) ).squeeze() if incontainstance(mapping_results_parsed, monkey.Collections): mapping_results_parsed = mapping_results_parsed.to_list() return monkey.Collections(mapping_results_parsed) return MapReduceFunction.register(mapping_func, reduce_func, preserve_index=False)( self, **kwargs ) # Dt mapping partitions operations dt_date = MapFunction.register(_dt_prop_mapping("date")) dt_time = MapFunction.register(_dt_prop_mapping("time")) dt_timetz = MapFunction.register(_dt_prop_mapping("timetz")) dt_year = MapFunction.register(_dt_prop_mapping("year")) dt_month = MapFunction.register(_dt_prop_mapping("month")) dt_day = MapFunction.register(_dt_prop_mapping("day")) dt_hour = MapFunction.register(_dt_prop_mapping("hour")) dt_getting_minute = MapFunction.register(_dt_prop_mapping("getting_minute")) dt_second = MapFunction.register(_dt_prop_mapping("second")) dt_microsecond = MapFunction.register(_dt_prop_mapping("microsecond")) dt_nanosecond = MapFunction.register(_dt_prop_mapping("nanosecond")) dt_week = MapFunction.register(_dt_prop_mapping("week")) dt_weekofyear = MapFunction.register(_dt_prop_mapping("weekofyear")) dt_dayofweek = MapFunction.register(_dt_prop_mapping("dayofweek")) dt_weekday = MapFunction.register(_dt_prop_mapping("weekday")) dt_dayofyear = MapFunction.register(_dt_prop_mapping("dayofyear")) dt_quarter = MapFunction.register(_dt_prop_mapping("quarter")) dt_is_month_start = MapFunction.register(_dt_prop_mapping("is_month_start")) dt_is_month_end = MapFunction.register(_dt_prop_mapping("is_month_end")) dt_is_quarter_start = MapFunction.register(_dt_prop_mapping("is_quarter_start")) dt_is_quarter_end = MapFunction.register(_dt_prop_mapping("is_quarter_end")) dt_is_year_start = MapFunction.register(_dt_prop_mapping("is_year_start")) dt_is_year_end = MapFunction.register(_dt_prop_mapping("is_year_end")) dt_is_leap_year = MapFunction.register(_dt_prop_mapping("is_leap_year")) dt_daysinmonth = MapFunction.register(_dt_prop_mapping("daysinmonth")) dt_days_in_month = MapFunction.register(_dt_prop_mapping("days_in_month")) dt_tz = MapReduceFunction.register( _dt_prop_mapping("tz"), lambda kf: monkey.KnowledgeFrame(kf.iloc[0]), axis=0 ) dt_freq = MapReduceFunction.register( _dt_prop_mapping("freq"), lambda kf: monkey.KnowledgeFrame(kf.iloc[0]), axis=0 ) dt_to_period = MapFunction.register(_dt_func_mapping("to_period")) dt_convert_pydatetime = MapFunction.register(_dt_func_mapping("convert_pydatetime")) dt_tz_localize = MapFunction.register(_dt_func_mapping("tz_localize")) dt_tz_convert = MapFunction.register(_dt_func_mapping("tz_convert")) dt_normalize = MapFunction.register(_dt_func_mapping("normalize")) dt_strftime = MapFunction.register(_dt_func_mapping("strftime")) dt_value_round = MapFunction.register(_dt_func_mapping("value_round")) dt_floor = MapFunction.register(_dt_func_mapping("floor")) dt_ceiling = MapFunction.register(_dt_func_mapping("ceiling")) dt_month_name = MapFunction.register(_dt_func_mapping("month_name")) dt_day_name = MapFunction.register(_dt_func_mapping("day_name")) dt_to_pytimedelta = MapFunction.register(_dt_func_mapping("to_pytimedelta")) dt_total_seconds = MapFunction.register(_dt_func_mapping("total_seconds")) dt_seconds = MapFunction.register(_dt_prop_mapping("seconds")) dt_days = MapFunction.register(_dt_prop_mapping("days")) dt_microseconds = MapFunction.register(_dt_prop_mapping("microseconds")) dt_nanoseconds = MapFunction.register(_dt_prop_mapping("nanoseconds")) dt_components = MapFunction.register( _dt_prop_mapping("components"), validate_columns=True ) dt_qyear = MapFunction.register(_dt_prop_mapping("qyear")) dt_start_time = MapFunction.register(_dt_prop_mapping("start_time")) dt_end_time = MapFunction.register(_dt_prop_mapping("end_time")) dt_to_timestamp = MapFunction.register(_dt_func_mapping("to_timestamp")) # END Dt mapping partitions operations def totype(self, col_dtypes, **kwargs): """Converts columns dtypes to given dtypes. Args: col_dtypes: Dictionary of {col: dtype,...} where col is the column name and dtype is a numpy dtype. Returns: KnowledgeFrame with umkated dtypes. """ return self.__constructor__(self._modin_frame.totype(col_dtypes)) # Column/Row partitions reduce operations def first_valid_index(self): """Returns index of first non-NaN/NULL value. Return: Scalar of index name. """ def first_valid_index_builder(kf): return kf.set_axis( monkey.RangeIndex(length(kf.index)), axis="index", inplace=False ).employ(lambda kf: kf.first_valid_index()) # We getting the getting_minimum from each column, then take the getting_min of that to getting # first_valid_index. The `to_monkey()` here is just for a single value and # `squeeze` will convert it to a scalar. first_result = ( self.__constructor__( self._modin_frame._fold_reduce(0, first_valid_index_builder) ) .getting_min(axis=1) .to_monkey() .squeeze() ) return self.index[first_result] def final_item_valid_index(self): """Returns index of final_item non-NaN/NULL value. Return: Scalar of index name. """ def final_item_valid_index_builder(kf): return kf.set_axis( monkey.RangeIndex(length(kf.index)), axis="index", inplace=False ).employ(lambda kf: kf.final_item_valid_index()) # We getting the getting_maximum from each column, then take the getting_max of that to getting # final_item_valid_index. The `to_monkey()` here is just for a single value and # `squeeze` will convert it to a scalar. first_result = ( self.__constructor__( self._modin_frame._fold_reduce(0, final_item_valid_index_builder) ) .getting_max(axis=1) .to_monkey() .squeeze() ) return self.index[first_result] # END Column/Row partitions reduce operations # Column/Row partitions reduce operations over select indices # # These operations result in a reduced dimensionality of data. # This will return a new QueryCompiler object which the front end will handle. def describe(self, **kwargs): """Generates descriptive statistics. Returns: KnowledgeFrame object containing the descriptive statistics of the KnowledgeFrame. """ # Use monkey to calculate the correct columns empty_kf = ( monkey.KnowledgeFrame(columns=self.columns) .totype(self.dtypes) .describe(**kwargs) ) def describe_builder(kf, internal_indices=[]): return kf.iloc[:, internal_indices].describe(**kwargs) return self.__constructor__( self._modin_frame._employ_full_axis_select_indices( 0, describe_builder, empty_kf.columns, new_index=empty_kf.index, new_columns=empty_kf.columns, ) ) # END Column/Row partitions reduce operations over select indices # Map across rows/columns # These operations require some global knowledge of the full column/row # that is being operated on. This averages that we have to put total_all of that # data in the same place. cumgetting_max = FoldFunction.register(monkey.KnowledgeFrame.cumgetting_max) cumgetting_min = FoldFunction.register(monkey.KnowledgeFrame.cumgetting_min) cumtotal_sum = FoldFunction.register(monkey.KnowledgeFrame.cumtotal_sum) cumprod = FoldFunction.register(monkey.KnowledgeFrame.cumprod) diff = FoldFunction.register(monkey.KnowledgeFrame.diff) def clip(self, lower, upper, **kwargs): kwargs["upper"] = upper kwargs["lower"] = lower axis = kwargs.getting("axis", 0) if is_list_like(lower) or is_list_like(upper): new_modin_frame = self._modin_frame._fold( axis, lambda kf: kf.clip(**kwargs) ) else: new_modin_frame = self._modin_frame._mapping(lambda kf: kf.clip(**kwargs)) return self.__constructor__(new_modin_frame) def dot(self, other, squeeze_self=None, squeeze_other=None): """ Computes the matrix multiplication of self and other. Parameters ---------- other : MonkeyQueryCompiler or NumPy array The other query compiler or NumPy array to matrix multiply with self. squeeze_self : boolean The flag to squeeze self. squeeze_other : boolean The flag to squeeze other (this flag is applied if other is query compiler). Returns ------- MonkeyQueryCompiler A new query compiler that contains result of the matrix multiply. """ if incontainstance(other, MonkeyQueryCompiler): other = ( other.to_monkey().squeeze(axis=1) if squeeze_other else other.to_monkey() ) def mapping_func(kf, other=other, squeeze_self=squeeze_self): result = kf.squeeze(axis=1).dot(other) if squeeze_self else kf.dot(other) if is_list_like(result): return monkey.KnowledgeFrame(result) else: return monkey.KnowledgeFrame([result]) num_cols = other.shape[1] if length(other.shape) > 1 else 1 if length(self.columns) == 1: new_index = ( ["__reduced__"] if (length(self.index) == 1 or squeeze_self) and num_cols == 1 else None ) new_columns = ["__reduced__"] if squeeze_self and num_cols == 1 else None axis = 0 else: new_index = self.index new_columns = ["__reduced__"] if num_cols == 1 else None axis = 1 new_modin_frame = self._modin_frame._employ_full_axis( axis, mapping_func, new_index=new_index, new_columns=new_columns ) return self.__constructor__(new_modin_frame) def _nsort(self, n, columns=None, keep="first", sort_type="nsmtotal_allest"): def mapping_func(kf, n=n, keep=keep, columns=columns): if columns is None: return monkey.KnowledgeFrame( gettingattr(monkey.Collections, sort_type)( kf.squeeze(axis=1), n=n, keep=keep ) ) return gettingattr(monkey.KnowledgeFrame, sort_type)( kf, n=n, columns=columns, keep=keep ) if columns is None: new_columns = ["__reduced__"] else: new_columns = self.columns new_modin_frame = self._modin_frame._employ_full_axis( axis=0, func=mapping_func, new_columns=new_columns ) return self.__constructor__(new_modin_frame) def nsmtotal_allest(self, *args, **kwargs): return self._nsort(sort_type="nsmtotal_allest", *args, **kwargs) def nbiggest(self, *args, **kwargs): return self._nsort(sort_type="nbiggest", *args, **kwargs) def eval(self, expr, **kwargs): """Returns a new QueryCompiler with expr evaluated on columns. Args: expr: The string expression to evaluate. Returns: A new QueryCompiler with new columns after employing expr. """ # Make a clone of columns and eval on the clone to detergetting_mine if result type is # collections or not empty_eval = ( monkey.KnowledgeFrame(columns=self.columns) .totype(self.dtypes) .eval(expr, inplace=False, **kwargs) ) if incontainstance(empty_eval, monkey.Collections): new_columns = ( [empty_eval.name] if empty_eval.name is not None else ["__reduced__"] ) else: new_columns = empty_eval.columns new_modin_frame = self._modin_frame._employ_full_axis( 1, lambda kf: monkey.KnowledgeFrame(kf.eval(expr, inplace=False, **kwargs)), new_index=self.index, new_columns=new_columns, ) return self.__constructor__(new_modin_frame) def mode(self, **kwargs): """Returns a new QueryCompiler with modes calculated for each label along given axis. Returns: A new QueryCompiler with modes calculated. """ axis = kwargs.getting("axis", 0) def mode_builder(kf): result = monkey.KnowledgeFrame(kf.mode(**kwargs)) # We return a knowledgeframe with the same shape as the input to ensure # that total_all the partitions will be the same shape if axis == 0 and length(kf) != length(result): # Pad rows result = result.reindexing(index=monkey.RangeIndex(length(kf.index))) elif axis == 1 and length(kf.columns) != length(result.columns): # Pad columns result = result.reindexing(columns=monkey.RangeIndex(length(kf.columns))) return monkey.KnowledgeFrame(result) if axis == 0: new_index = monkey.RangeIndex(length(self.index)) new_columns = self.columns else: new_index = self.index new_columns = monkey.RangeIndex(length(self.columns)) new_modin_frame = self._modin_frame._employ_full_axis( axis, mode_builder, new_index=new_index, new_columns=new_columns ) return self.__constructor__(new_modin_frame).sipna(axis=axis, how="total_all") def fillnone(self, **kwargs): """Replaces NaN values with the method provided. Returns: A new QueryCompiler with null values filled. """ axis = kwargs.getting("axis", 0) value = kwargs.getting("value") method = kwargs.getting("method", None) limit = kwargs.getting("limit", None) full_axis = method is not None or limit is not None if incontainstance(value, dict): kwargs.pop("value") def fillnone(kf): func_dict = {c: value[c] for c in value if c in kf.columns} return kf.fillnone(value=func_dict, **kwargs) else: def fillnone(kf): return kf.fillnone(**kwargs) if full_axis: new_modin_frame = self._modin_frame._fold(axis, fillnone) else: new_modin_frame = self._modin_frame._mapping(fillnone) return self.__constructor__(new_modin_frame) def quantile_for_list_of_values(self, **kwargs): """Returns Manager containing quantiles along an axis for numeric columns. Returns: QueryCompiler containing quantiles of original QueryCompiler along an axis. """ axis = kwargs.getting("axis", 0) q = kwargs.getting("q") numeric_only = kwargs.getting("numeric_only", True) assert incontainstance(q, (monkey.Collections, np.ndarray, monkey.Index, list)) if numeric_only: new_columns = self._modin_frame._numeric_columns() else: new_columns = [ col for col, dtype in zip(self.columns, self.dtypes) if (is_numeric_dtype(dtype) or is_datetime_or_timedelta_dtype(dtype)) ] if axis == 1: query_compiler = self.gettingitem_column_array(new_columns) new_columns = self.index else: query_compiler = self def quantile_builder(kf, **kwargs): result = kf.quantile(**kwargs) return result.T if kwargs.getting("axis", 0) == 1 else result # This took a long time to debug, so here is the rundown of why this is needed. # Previously, we were operating on select indices, but that was broken. We were # not correctly setting the columns/index. Because of how we compute `to_monkey` # and because of the static nature of the index for `axis=1` it is easier to # just handle this as the transpose (see `quantile_builder` above for the # transpose within the partition) than it is to completely rework other # internal methods. Basictotal_ally we are returning the transpose of the object for # correctness and cleanliness of the code. if axis == 1: q_index = new_columns new_columns = monkey.Float64Index(q) else: q_index = monkey.Float64Index(q) new_modin_frame = query_compiler._modin_frame._employ_full_axis( axis, lambda kf: quantile_builder(kf, **kwargs), new_index=q_index, new_columns=new_columns, dtypes=np.float64, ) result = self.__constructor__(new_modin_frame) return result.transpose() if axis == 1 else result def query(self, expr, **kwargs): """Query columns of the QueryCompiler with a boolean expression. Args: expr: Boolean expression to query the columns with. Returns: QueryCompiler containing the rows where the boolean expression is satisfied. """ def query_builder(kf, **kwargs): return kf.query(expr, inplace=False, **kwargs) return self.__constructor__( self._modin_frame.filter_full_axis(1, query_builder) ) def rank(self, **kwargs): """Computes numerical rank along axis. Equal values are set to the average. Returns: QueryCompiler containing the ranks of the values along an axis. """ axis = kwargs.getting("axis", 0) numeric_only = True if axis else kwargs.getting("numeric_only", False) new_modin_frame = self._modin_frame._employ_full_axis( axis, lambda kf: kf.rank(**kwargs), new_index=self.index, new_columns=self.columns if not numeric_only else None, dtypes=np.float64, ) return self.__constructor__(new_modin_frame) def sorting_index(self, **kwargs): """Sorts the data with respect to either the columns or the indices. Returns: QueryCompiler containing the data sorted by columns or indices. """ axis = kwargs.pop("axis", 0) level = kwargs.pop("level", None) sort_remaining = kwargs.pop("sort_remaining", True) kwargs["inplace"] = False if level is not None or self.has_multiindex(axis=axis): return self.default_to_monkey( monkey.KnowledgeFrame.sorting_index, axis=axis, level=level, sort_remaining=sort_remaining, **kwargs, ) # sorting_index can have ascending be None and behaves as if it is False. # sort_the_values cannot have ascending be None. Thus, the following logic is to # convert the ascending argument to one that works with sort_the_values ascending = kwargs.pop("ascending", True) if ascending is None: ascending = False kwargs["ascending"] = ascending if axis: new_columns = monkey.Collections(self.columns).sort_the_values(**kwargs) new_index = self.index else: new_index = monkey.Collections(self.index).sort_the_values(**kwargs) new_columns = self.columns new_modin_frame = self._modin_frame._employ_full_axis( axis, lambda kf: kf.sorting_index( axis=axis, level=level, sort_remaining=sort_remaining, **kwargs ), new_index, new_columns, dtypes="clone" if axis == 0 else None, ) return self.__constructor__(new_modin_frame) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ignore_index=True, ): ErrorMessage.missmatch_with_monkey( operation="melt", message="Order of rows could be different from monkey" ) if var_name is None: var_name = "variable" def _convert_to_list(x): if is_list_like(x): x = [*x] elif x is not None: x = [x] else: x = [] return x id_vars, value_vars = mapping(_convert_to_list, [id_vars, value_vars]) if length(value_vars) == 0: value_vars = self.columns.sip(id_vars) if length(id_vars) != 0: to_broadcast = self.gettingitem_column_array(id_vars)._modin_frame else: to_broadcast = None def employier(kf, internal_indices, other=[], internal_other_indices=[]): if length(other): other = monkey.concating(other, axis=1) columns_to_add = other.columns.difference(kf.columns) kf = monkey.concating([kf, other[columns_to_add]], axis=1) return kf.melt( id_vars=id_vars, value_vars=kf.columns[internal_indices], var_name=var_name, value_name=value_name, col_level=col_level, ) # we have no able to calculate correct indices here, so making it `dummy_index` inconsistent_frame = self._modin_frame.broadcast_employ_select_indices( axis=0, employ_indices=value_vars, func=employier, other=to_broadcast, new_index=["dummy_index"] * length(id_vars), new_columns=["dummy_index"] * length(id_vars), ) # after employing `melt` for selected indices we will getting partitions like this: # id_vars vars value | id_vars vars value # 0 foo col3 1 | 0 foo col5 a so stacking it into # 1 fiz col3 2 | 1 fiz col5 b `new_parts` to getting # 2 bar col3 3 | 2 bar col5 c correct answer # 3 zoo col3 4 | 3 zoo col5 d new_parts = np.array( [np.array([x]) for x in np.concatingenate(inconsistent_frame._partitions.T)] ) new_index = monkey.RangeIndex(length(self.index) * length(value_vars)) new_modin_frame = self._modin_frame.__constructor__( new_parts, index=new_index, columns=id_vars + [var_name, value_name], ) result = self.__constructor__(new_modin_frame) # this assigment needs to propagate correct indices into partitions result.index = new_index return result # END Map across rows/columns # __gettingitem__ methods def gettingitem_array(self, key): """ Get column or row data specified by key. Parameters ---------- key : MonkeyQueryCompiler, numpy.ndarray, monkey.Index or list Targetting numeric indices or labels by which to retrieve data. Returns ------- MonkeyQueryCompiler A new Query Compiler. """ # TODO: dont convert to monkey for array indexing if incontainstance(key, type(self)): key = key.to_monkey().squeeze(axis=1) if is_bool_indexer(key): if incontainstance(key, monkey.Collections) and not key.index.equals(self.index): warnings.warn( "Boolean Collections key will be reindexinged to match KnowledgeFrame index.", PendingDeprecationWarning, stacklevel=3, ) elif length(key) != length(self.index): raise ValueError( "Item wrong lengthgth {} instead of {}.".formating( length(key), length(self.index) ) ) key = check_bool_indexer(self.index, key) # We convert to a RangeIndex because gettingitem_row_array is expecting a list # of indices, and RangeIndex will give us the exact indices of each boolean # requested. key = monkey.RangeIndex(length(self.index))[key] if length(key): return self.gettingitem_row_array(key) else: return self.from_monkey( monkey.KnowledgeFrame(columns=self.columns), type(self._modin_frame) ) else: if whatever(k not in self.columns for k in key): raise KeyError( "{} not index".formating( str([k for k in key if k not in self.columns]).replacing(",", "") ) ) return self.gettingitem_column_array(key) def gettingitem_column_array(self, key, numeric=False): """Get column data for targetting labels. Args: key: Targetting labels by which to retrieve data. numeric: A boolean representing whether or not the key passed in represents the numeric index or the named index. Returns: A new QueryCompiler. """ # Convert to list for type checking if numeric: new_modin_frame = self._modin_frame.mask(col_numeric_idx=key) else: new_modin_frame = self._modin_frame.mask(col_indices=key) return self.__constructor__(new_modin_frame) def gettingitem_row_array(self, key): """Get row data for targetting labels. Args: key: Targetting numeric indices by which to retrieve data. Returns: A new QueryCompiler. """ return self.__constructor__(self._modin_frame.mask(row_numeric_idx=key)) def setitem(self, axis, key, value): """Set the column defined by `key` to the `value` provided. Args: key: The column name to set. value: The value to set the column to. Returns: A new QueryCompiler """ def setitem_builder(kf, internal_indices=[]): kf = kf.clone() if length(internal_indices) == 1: if axis == 0: kf[kf.columns[internal_indices[0]]] = value else: kf.iloc[internal_indices[0]] = value else: if axis == 0: kf[kf.columns[internal_indices]] = value else: kf.iloc[internal_indices] = value return kf if incontainstance(value, type(self)): value.columns = [key] if axis == 0: idx = self.columns.getting_indexer_for([key])[0] if 0 < idx < length(self.columns) - 1: first_mask = self._modin_frame.mask( col_numeric_idx=list(range(idx)) ) second_mask = self._modin_frame.mask( col_numeric_idx=list(range(idx + 1, length(self.columns))) ) return self.__constructor__( first_mask._concating( 1, [value._modin_frame, second_mask], "inner", False ) ) else: mask = self.sip(columns=[key])._modin_frame if idx == 0: return self.__constructor__( value._modin_frame._concating(1, [mask], "inner", False) ) else: return self.__constructor__( mask._concating(1, [value._modin_frame], "inner", False) ) else: value = value.transpose() idx = self.index.getting_indexer_for([key])[0] if 0 < idx < length(self.index) - 1: first_mask = self._modin_frame.mask( row_numeric_idx=list(range(idx)) ) second_mask = self._modin_frame.mask( row_numeric_idx=list(range(idx + 1, length(self.index))) ) return self.__constructor__( first_mask._concating( 0, [value._modin_frame, second_mask], "inner", False ) ) else: mask = self.sip(index=[key])._modin_frame if idx == 0: return self.__constructor__( value._modin_frame._concating(0, [mask], "inner", False) ) else: return self.__constructor__( mask._concating(0, [value._modin_frame], "inner", False) ) if is_list_like(value): new_modin_frame = self._modin_frame._employ_full_axis_select_indices( axis, setitem_builder, [key], new_index=self.index, new_columns=self.columns, keep_remaining=True, ) else: new_modin_frame = self._modin_frame._employ_select_indices( axis, setitem_builder, [key], new_index=self.index, new_columns=self.columns, keep_remaining=True, ) return self.__constructor__(new_modin_frame) # END __gettingitem__ methods # Drop/Dropna # This will change the shape of the resulting data. def sipna(self, **kwargs): """Returns a new QueryCompiler with null values sipped along given axis. Return: a new QueryCompiler """ return self.__constructor__( self._modin_frame.filter_full_axis( kwargs.getting("axis", 0) ^ 1, lambda kf:
monkey.KnowledgeFrame.sipna(kf, **kwargs)
pandas.DataFrame.dropna
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in total_allocatement (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[total_allocatement] return ret else: cyfunc = com.getting_cython_func(func) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_grouper.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_collections_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> KnowledgeFrame: if incontainstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renagetting_mingr is not supported") elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.adding(com.getting_ctotal_allable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, KnowledgeFrame | Collections] = {} for idx, (name, func) in enumerate(arg): key = base.OutputKey(label=name, position=idx) results[key] = self.aggregate(func) if whatever(incontainstance(x, KnowledgeFrame) for x in results.values()): from monkey import concating res_kf = concating( results.values(), axis=1, keys=[key.label for key in results.keys()] ) return res_kf indexed_output = {key.position: val for key, val in results.items()} output = self.obj._constructor_expanddim(indexed_output, index=None) output.columns = Index(key.label for key in results) output = self._reindexing_output(output) return output def _indexed_output_to_nkframe( self, output: Mapping[base.OutputKey, ArrayLike] ) -> Collections: """ Wrap the dict result of a GroupBy aggregation into a Collections. """ assert length(output) == 1 values = next(iter(output.values())) result = self.obj._constructor(values) result.name = self.obj.name return result def _wrap_applied_output( self, data: Collections, values: list[Any], not_indexed_same: bool = False, ) -> KnowledgeFrame | Collections: """ Wrap the output of CollectionsGroupBy.employ into the expected result. Parameters ---------- data : Collections Input data for grouper operation. values : List[Any] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- KnowledgeFrame or Collections """ if length(values) == 0: # GH #6265 return self.obj._constructor( [], name=self.obj.name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None if incontainstance(values[0], dict): # GH #823 #24880 index = self.grouper.result_index res_kf = self.obj._constructor_expanddim(values, index=index) res_kf = self._reindexing_output(res_kf) # if self.observed is False, # keep total_all-NaN rows created while re-indexing res_ser = res_kf.stack(sipna=self.observed) res_ser.name = self.obj.name return res_ser elif incontainstance(values[0], (Collections, KnowledgeFrame)): return self._concating_objects(values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=self.grouper.result_index, name=self.obj.name ) return self._reindexing_output(result) def _aggregate_named(self, func, *args, **kwargs): # Note: this is very similar to _aggregate_collections_pure_python, # but that does not pin group.name result = {} initialized = False for name, group in self: object.__setattr__(group, "name", name) output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, group.dtype) initialized = True result[name] = output return result @Substitution(klass="Collections") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): return self._transform( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) def _cython_transform( self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs ): assert axis == 0 # handled by ctotal_aller obj = self._selected_obj try: result = self.grouper._cython_operation( "transform", obj._values, how, axis, **kwargs ) except NotImplementedError as err: raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err return obj._constructor(result, index=self.obj.index, name=obj.name) def _transform_general(self, func: Ctotal_allable, *args, **kwargs) -> Collections: """ Transform with a ctotal_allable func`. """ assert ctotal_allable(func) klass = type(self.obj) results = [] for name, group in self: # this setattr is needed for test_transform_lambda_with_datetimetz object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) results.adding(klass(res, index=group.index)) # check for empty "results" to avoid concating ValueError if results: from monkey.core.reshape.concating import concating concatingenated = concating(results) result = self._set_result_index_ordered(concatingenated) else: result = self.obj._constructor(dtype=np.float64) result.name = self.obj.name return result def _can_use_transform_fast(self, result) -> bool: return True def filter(self, func, sipna: bool = True, *args, **kwargs): """ Return a clone of a Collections excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To employ to each group. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.ukf-mutation` for more definal_item_tails. Examples -------- >>> kf = mk.KnowledgeFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = kf.grouper('A') >>> kf.grouper('A').B.filter(lambda x: x.average() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Collections """ if incontainstance(func, str): wrapper = lambda x: gettingattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._getting_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._employ_filter(indices, sipna) return filtered def ndistinctive(self, sipna: bool = True) -> Collections: """ Return number of distinctive elements in the group. Returns ------- Collections Number of distinctive values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # distinctive observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new distinctive observation mask = codes == -1 if sipna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).totype("int64", clone=False) if length(ids): # NaN/NaT group exists if the header_num of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if length(res) != length(ri): res, out = np.zeros(length(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self.obj.name) return self._reindexing_output(result, fill_value=0) @doc(Collections.describe) def describe(self, **kwargs): return super().describe(**kwargs) def counts_value_num( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, sipna: bool = True, ): from monkey.core.reshape.unioner import getting_join_indexers from monkey.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def employ_collections_counts_value_num(): return self.employ( Collections.counts_value_num, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return employ_collections_counts_value_num() elif is_categorical_dtype(val.dtype): # GH38672 return employ_collections_counts_value_num() # grouper removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Collections(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[ctotal_all-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] total_allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? # error: "ndarray" has no attribute "left" # error: "ndarray" has no attribute "right" sorter = np.lexsort( (lab.left, lab.right, ids) # type: ignore[attr-defined] ) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] idx = np.r_[0, idchanges] if not length(ids): idx = idchanges # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] if not length(val): inc = lchanges inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] # error: List item 0 has incompatible type "Union[ndarray[Any, Any], Index]"; # expected "Index" levels = [ping.group_index for ping in self.grouper.groupings] + [ lev # type: ignore[list-item] ] names = self.grouper.names + [self.obj.name] if sipna: mask = codes[-1] != -1 if mask.total_all(): sipna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.totype("float") d = np.diff(np.r_[idx, length(ids)]) if sipna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if sipna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is not None: # for compat. with libgrouper.counts_value_num need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(length(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.total_sum(), length(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumtotal_sum() - 1, codes[-1]] _, idx = getting_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.adding(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out.dtype): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self.obj.name) @doc(Collections.nbiggest) def nbiggest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nbiggest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @doc(Collections.nsmtotal_allest) def nsmtotal_allest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nsmtotal_allest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @pin_total_allowlisted_properties(KnowledgeFrame, base.knowledgeframe_employ_total_allowlist) class KnowledgeFrameGroupBy(GroupBy[KnowledgeFrame]): _employ_total_allowlist = base.knowledgeframe_employ_total_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> kf = mk.KnowledgeFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> kf A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> kf.grouper('A').agg('getting_min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> kf.grouper('A').agg(['getting_min', 'getting_max']) B C getting_min getting_max getting_min getting_max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> kf.grouper('A').B.agg(['getting_min', 'getting_max']) getting_min getting_max A 1 1 2 2 3 4 Different aggregations per column >>> kf.grouper('A').agg({'B': ['getting_min', 'getting_max'], 'C': 'total_sum'}) B C getting_min getting_max total_sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, monkey supports "named aggregation" >>> kf.grouper("A").agg( ... b_getting_min=mk.NamedAgg(column="B", aggfunc="getting_min"), ... c_total_sum=mk.NamedAgg(column="C", aggfunc="total_sum")) b_getting_min c_total_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to employ to that column. Monkey provides the ``monkey.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a ctotal_allable or a string alias. See :ref:`grouper.aggregate.named` for more. .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> kf.grouper("A")[["B"]].agg(lambda x: x.totype(float).getting_min()) B A 1 1.0 2 3.0 """ ) @doc(_agg_template, examples=_agg_examples_doc, klass="KnowledgeFrame") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result, index=index, columns=data.columns) relabeling, func, columns, order =
reconstruct_func(func, **kwargs)
pandas.core.apply.reconstruct_func
""" Provide the grouper split-employ-combine paradigm. Define the GroupBy class providing the base-class of operations. The CollectionsGroupBy and KnowledgeFrameGroupBy sub-class (defined in monkey.core.grouper.generic) expose these user-facing objects to provide specific functionality. """ from contextlib import contextmanager import datetime from functools import partial, wraps import inspect import re import types from typing import ( Ctotal_allable, Dict, FrozenSet, Generic, Hashable, Iterable, List, Mapping, Optional, Tuple, Type, TypeVar, Union, ) import numpy as np from monkey._config.config import option_context from monkey._libs import Timestamp import monkey._libs.grouper as libgrouper from monkey._typing import FrameOrCollections, Scalar from monkey.compat import set_function_name from monkey.compat.numpy import function as nv from monkey.errors import AbstractMethodError from monkey.util._decorators import Appender, Substitution, cache_readonly, doc from monkey.core.dtypes.cast import maybe_cast_result from monkey.core.dtypes.common import ( ensure_float, is_bool_dtype, is_datetime64_dtype, is_extension_array_dtype, is_integer_dtype, is_numeric_dtype, is_object_dtype, is_scalar, ) from monkey.core.dtypes.missing import ifna, notna from monkey.core import nanops import monkey.core.algorithms as algorithms from monkey.core.arrays import Categorical, DatetimeArray from monkey.core.base import DataError, MonkeyObject, SelectionMixin import monkey.core.common as com from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base, ops from monkey.core.indexes.api import CategoricalIndex, Index, MultiIndex from monkey.core.collections import Collections from monkey.core.sorting import getting_group_index_sorter _common_see_also = """ See Also -------- Collections.%(name)s KnowledgeFrame.%(name)s """ _employ_docs = dict( template=""" Apply function `func` group-wise and combine the results togettingher. The function passed to `employ` must take a {input} as its first argument and return a KnowledgeFrame, Collections or scalar. `employ` will then take care of combining the results back togettingher into a single knowledgeframe or collections. `employ` is therefore a highly flexible grouping method. While `employ` is a very flexible method, its downside is that using it can be quite a bit slower than using more specific methods like `agg` or `transform`. Monkey offers a wide range of method that will be much faster than using `employ` for their specific purposes, so try to use them before reaching for `employ`. Parameters ---------- func : ctotal_allable A ctotal_allable that takes a {input} as its first argument, and returns a knowledgeframe, a collections or a scalar. In addition the ctotal_allable may take positional and keyword arguments. args, kwargs : tuple and dict Optional positional and keyword arguments to pass to `func`. Returns ------- applied : Collections or KnowledgeFrame See Also -------- pipe : Apply function to the full GroupBy object instead of to each group. aggregate : Apply aggregate function to the GroupBy object. transform : Apply function column-by-column to the GroupBy object. Collections.employ : Apply a function to a Collections. KnowledgeFrame.employ : Apply a function to each row or column of a KnowledgeFrame. """, knowledgeframe_examples=""" >>> kf = mk.KnowledgeFrame({'A': 'a a b'.split(), 'B': [1,2,3], 'C': [4,6, 5]}) >>> g = kf.grouper('A') Notice that ``g`` has two groups, ``a`` and ``b``. Ctotal_alling `employ` in various ways, we can getting different grouping results: Example 1: below the function passed to `employ` takes a KnowledgeFrame as its argument and returns a KnowledgeFrame. `employ` combines the result for each group togettingher into a new KnowledgeFrame: >>> g[['B', 'C']].employ(lambda x: x / x.total_sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0 Example 2: The function passed to `employ` takes a KnowledgeFrame as its argument and returns a Collections. `employ` combines the result for each group togettingher into a new KnowledgeFrame: >>> g[['B', 'C']].employ(lambda x: x.getting_max() - x.getting_min()) B C A a 1 2 b 0 0 Example 3: The function passed to `employ` takes a KnowledgeFrame as its argument and returns a scalar. `employ` combines the result for each group togettingher into a Collections, including setting the index as appropriate: >>> g.employ(lambda x: x.C.getting_max() - x.B.getting_min()) A a 5 b 2 dtype: int64 """, collections_examples=""" >>> s = mk.Collections([0, 1, 2], index='a a b'.split()) >>> g = s.grouper(s.index) From ``s`` above we can see that ``g`` has two groups, ``a`` and ``b``. Ctotal_alling `employ` in various ways, we can getting different grouping results: Example 1: The function passed to `employ` takes a Collections as its argument and returns a Collections. `employ` combines the result for each group togettingher into a new Collections: >>> g.employ(lambda x: x*2 if x.name == 'b' else x/2) 0 0.0 1 0.5 2 4.0 dtype: float64 Example 2: The function passed to `employ` takes a Collections as its argument and returns a scalar. `employ` combines the result for each group togettingher into a Collections, including setting the index as appropriate: >>> g.employ(lambda x: x.getting_max() - x.getting_min()) a 1 b 0 dtype: int64 Notes ----- In the current implementation `employ` ctotal_alls `func` twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first group. Examples -------- {examples} """, ) _pipe_template = """ Apply a function `func` with arguments to this %(klass)s object and return the function's result. %(versionadded)s Use `.pipe` when you want to improve readability by chaining togettingher functions that expect Collections, KnowledgeFrames, GroupBy or Resample_by_numr objects. Instead of writing >>> h(g(f(kf.grouper('group')), arg1=a), arg2=b, arg3=c) # doctest: +SKIP You can write >>> (kf.grouper('group') ... .pipe(f) ... .pipe(g, arg1=a) ... .pipe(h, arg2=b, arg3=c)) # doctest: +SKIP which is much more readable. Parameters ---------- func : ctotal_allable or tuple of (ctotal_allable, str) Function to employ to this %(klass)s object or, alternatively, a `(ctotal_allable, data_keyword)` tuple where `data_keyword` is a string indicating the keyword of `ctotal_allable` that expects the %(klass)s object. args : iterable, optional Positional arguments passed into `func`. kwargs : dict, optional A dictionary of keyword arguments passed into `func`. Returns ------- object : the return type of `func`. See Also -------- Collections.pipe : Apply a function with arguments to a collections. KnowledgeFrame.pipe: Apply a function with arguments to a knowledgeframe. employ : Apply function to each group instead of to the full %(klass)s object. Notes ----- See more `here <https://monkey.pydata.org/monkey-docs/stable/user_guide/grouper.html#piping-function-ctotal_alls>`_ Examples -------- %(examples)s """ _transform_template = """ Ctotal_all function producing a like-indexed %(klass)s on each group and return a %(klass)s having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to employ to each group. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optiontotal_ally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``partotal_allel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'partotal_allel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.grouper.employ %(klass)s.grouper.aggregate %(klass)s.transform Notes ----- Each group is endowed the attribute 'name' in case you need to know which group you are working on. The current implementation imposes three requirements on f: * f must return a value that either has the same shape as the input subframe or can be broadcast to the shape of the input subframe. For example, if `f` returns a scalar it will be broadcast to have the same shape as the input subframe. * if this is a KnowledgeFrame, f must support application column-by-column in the subframe. If f also supports application to the entire subframe, then a fast path is used starting from the second chunk. * f must not mutate groups. Mutation is not supported and may produce unexpected results. When using ``engine='numba'``, there will be no "ftotal_all back" behavior interntotal_ally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. Examples -------- >>> kf = mk.KnowledgeFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : ['one', 'one', 'two', 'three', ... 'two', 'two'], ... 'C' : [1, 5, 5, 2, 5, 5], ... 'D' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = kf.grouper('A') >>> grouped.transform(lambda x: (x - x.average()) / x.standard()) C D 0 -1.154701 -0.577350 1 0.577350 0.000000 2 0.577350 1.154701 3 -1.154701 -1.000000 4 0.577350 -0.577350 5 0.577350 1.000000 Broadcast result of the transformatingion >>> grouped.transform(lambda x: x.getting_max() - x.getting_min()) C D 0 4 6.0 1 3 8.0 2 4 6.0 3 3 8.0 4 4 6.0 5 3 8.0 """ _agg_template = """ Aggregate using one or more operations over the specified axis. Parameters ---------- func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.employ. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.total_sum, 'average']`` - dict of axis labels -> functions, function names or list of such. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optiontotal_ally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``partotal_allel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'partotal_allel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.grouper.employ %(klass)s.grouper.transform %(klass)s.aggregate Notes ----- When using ``engine='numba'``, there will be no "ftotal_all back" behavior interntotal_ally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. %(examples)s """ class GroupByPlot(MonkeyObject): """ Class implementing the .plot attribute for grouper objects. """ def __init__(self, grouper): self._grouper = grouper def __ctotal_all__(self, *args, **kwargs): def f(self): return self.plot(*args, **kwargs) f.__name__ = "plot" return self._grouper.employ(f) def __gettingattr__(self, name: str): def attr(*args, **kwargs): def f(self): return gettingattr(self.plot, name)(*args, **kwargs) return self._grouper.employ(f) return attr @contextmanager def _group_selection_context(grouper): """ Set / reset the _group_selection_context. """ grouper._set_group_selection() yield grouper grouper._reset_group_selection() _KeysArgType = Union[ Hashable, List[Hashable], Ctotal_allable[[Hashable], Hashable], List[Ctotal_allable[[Hashable], Hashable]], Mapping[Hashable, Hashable], ] class _GroupBy(MonkeyObject, SelectionMixin, Generic[FrameOrCollections]): _group_selection = None _employ_whitelist: FrozenSet[str] = frozenset() def __init__( self, obj: FrameOrCollections, keys: Optional[_KeysArgType] = None, axis: int = 0, level=None, grouper: "Optional[ops.BaseGrouper]" = None, exclusions=None, selection=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, mutated: bool = False, sipna: bool = True, ): self._selection = selection assert incontainstance(obj, NDFrame), type(obj) obj._consolidate_inplace() self.level = level if not as_index: if not incontainstance(obj, KnowledgeFrame): raise TypeError("as_index=False only valid with KnowledgeFrame") if axis != 0: raise ValueError("as_index=False only valid for axis=0") self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze self.observed = observed self.mutated = mutated self.sipna = sipna if grouper is None: from monkey.core.grouper.grouper import getting_grouper grouper, exclusions, obj = getting_grouper( obj, keys, axis=axis, level=level, sort=sort, observed=observed, mutated=self.mutated, sipna=self.sipna, ) self.obj = obj self.axis = obj._getting_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __length__(self) -> int: return length(self.groups) def __repr__(self) -> str: # TODO: Better repr for GroupBy object return object.__repr__(self) def _assure_grouper(self): """ We create the grouper on instantiation sub-classes may have a different policy. """ pass @property def groups(self): """ Dict {group name -> group labels}. """ self._assure_grouper() return self.grouper.groups @property def ngroups(self): self._assure_grouper() return self.grouper.ngroups @property def indices(self): """ Dict {group name -> group indices}. """ self._assure_grouper() return self.grouper.indices def _getting_indices(self, names): """ Safe getting multiple indices, translate keys for datelike to underlying repr. """ def getting_converter(s): # possibly convert to the actual key types # in the indices, could be a Timestamp or a np.datetime64 if incontainstance(s, datetime.datetime): return lambda key: Timestamp(key) elif incontainstance(s, np.datetime64): return lambda key: Timestamp(key).asm8 else: return lambda key: key if length(names) == 0: return [] if length(self.indices) > 0: index_sample_by_num = next(iter(self.indices)) else: index_sample_by_num = None # Dummy sample_by_num name_sample_by_num = names[0] if incontainstance(index_sample_by_num, tuple): if not incontainstance(name_sample_by_num, tuple): msg = "must supply a tuple to getting_group with multiple grouping keys" raise ValueError(msg) if not length(name_sample_by_num) == length(index_sample_by_num): try: # If the original grouper was a tuple return [self.indices[name] for name in names] except KeyError as err: # turns out it wasn't a tuple msg = ( "must supply a same-lengthgth tuple to getting_group " "with multiple grouping keys" ) raise ValueError(msg) from err converters = [getting_converter(s) for s in index_sample_by_num] names = (tuple(f(n) for f, n in zip(converters, name)) for name in names) else: converter = getting_converter(index_sample_by_num) names = (converter(name) for name in names) return [self.indices.getting(name, []) for name in names] def _getting_index(self, name): """ Safe getting index, translate keys for datelike to underlying repr. """ return self._getting_indices([name])[0] @cache_readonly def _selected_obj(self): # Note: _selected_obj is always just `self.obj` for CollectionsGroupBy if self._selection is None or incontainstance(self.obj, Collections): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _reset_group_selection(self): """ Clear group based selection. Used for methods needing to return info on each group regardless of whether a group selection was previously set. """ if self._group_selection is not None: # GH12839 clear cached selection too when changing group selection self._group_selection = None self._reset_cache("_selected_obj") def _set_group_selection(self): """ Create group based selection. Used when selection is not passed directly but instead via a grouper. NOTE: this should be paired with a ctotal_all to _reset_group_selection """ grp = self.grouper if not ( self.as_index and gettingattr(grp, "groupings", None) is not None and self.obj.ndim > 1 and self._group_selection is None ): return ax = self.obj._info_axis groupers = [g.name for g in grp.groupings if g.level is None and g.in_axis] if length(groupers): # GH12839 clear selected obj cache when group selection changes self._group_selection = ax.difference(Index(groupers), sort=False).convert_list() self._reset_cache("_selected_obj") def _set_result_index_ordered(self, result): # set the result index on the passed values object and # return the new object, xref 8046 # the values/counts are repeated according to the group index # shortcut if we have an already ordered grouper if not self.grouper.is_monotonic: index = Index(np.concatingenate(self._getting_indices(self.grouper.result_index))) result.set_axis(index, axis=self.axis, inplace=True) result = result.sorting_index(axis=self.axis) result.set_axis(self.obj._getting_axis(self.axis), axis=self.axis, inplace=True) return result def _dir_additions(self): return self.obj._dir_additions() | self._employ_whitelist def __gettingattr__(self, attr: str): if attr in self._internal_names_set: return object.__gettingattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( f"'{type(self).__name__}' object has no attribute '{attr}'" ) @Substitution( klass="GroupBy", versionadded=".. versionadded:: 0.21.0", examples="""\ >>> kf = mk.KnowledgeFrame({'A': 'a b a b'.split(), 'B': [1, 2, 3, 4]}) >>> kf A B 0 a 1 1 b 2 2 a 3 3 b 4 To getting the difference between each groups getting_maximum and getting_minimum value in one pass, you can do >>> kf.grouper('A').pipe(lambda x: x.getting_max() - x.getting_min()) B A a 2 b 2""", ) @Appender(_pipe_template) def pipe(self, func, *args, **kwargs): return com.pipe(self, func, *args, **kwargs) plot = property(GroupByPlot) def _make_wrapper(self, name): assert name in self._employ_whitelist self._set_group_selection() # need to setup the selection # as are not passed directly but in the grouper f = gettingattr(self._selected_obj, name) if not incontainstance(f, types.MethodType): return self.employ(lambda self: gettingattr(self, name)) f = gettingattr(type(self._selected_obj), name) sig = inspect.signature(f) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument if "axis" in sig.parameters: if kwargs.getting("axis", None) is None: kwargs["axis"] = self.axis def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when ctotal_alling plot methods, # to avoid duplicates curried.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in base.plotting_methods: return self.employ(curried) try: return self.employ(curried) except TypeError as err: if not re.search( "reduction operation '.*' not total_allowed for this dtype", str(err) ): # We don't have a cython implementation # TODO: is the above comment accurate? raise if self.obj.ndim == 1: # this can be ctotal_alled recursively, so need to raise ValueError raise ValueError # GH#3688 try to operate item-by-item result = self._aggregate_item_by_item(name, *args, **kwargs) return result wrapper.__name__ = name return wrapper def getting_group(self, name, obj=None): """ Construct KnowledgeFrame from group with provided name. Parameters ---------- name : object The name of the group to getting as a KnowledgeFrame. obj : KnowledgeFrame, default None The KnowledgeFrame to take the KnowledgeFrame out of. If it is None, the object grouper was ctotal_alled on will be used. Returns ------- group : same type as obj """ if obj is None: obj = self._selected_obj inds = self._getting_index(name) if not length(inds): raise KeyError(name) return obj._take_with_is_clone(inds, axis=self.axis) def __iter__(self): """ Groupby iterator. Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.getting_iterator(self.obj, axis=self.axis) @Appender( _employ_docs["template"].formating( input="knowledgeframe", examples=_employ_docs["knowledgeframe_examples"] ) ) def employ(self, func, *args, **kwargs): func = self._is_builtin_func(func) # this is needed so we don't try and wrap strings. If we could # resolve functions to their ctotal_allable functions prior, this # wouldn't be needed if args or kwargs: if ctotal_allable(func): @wraps(func) def f(g): with np.errstate(total_all="ignore"): return func(g, *args, **kwargs) elif hasattr(nanops, "nan" + func): # TODO: should we wrap this in to e.g. _is_builtin_func? f = gettingattr(nanops, "nan" + func) else: raise ValueError( "func must be a ctotal_allable if args or kwargs are supplied" ) else: f = func # ignore SettingWithCopy here in case the user mutates with option_context("mode.chained_total_allocatement", None): try: result = self._python_employ_general(f) except TypeError: # gh-20949 # try again, with .employ acting as a filtering # operation, by excluding the grouping column # This would normtotal_ally not be triggered # except if the ukf is trying an operation that # fails on *some* columns, e.g. a numeric operation # on a string grouper column with _group_selection_context(self): return self._python_employ_general(f) return result def _python_employ_general(self, f): keys, values, mutated = self.grouper.employ(f, self._selected_obj, self.axis) return self._wrap_applied_output( keys, values, not_indexed_same=mutated or self.mutated ) def _iterate_slices(self) -> Iterable[Collections]: raise AbstractMethodError(self) def transform(self, func, *args, **kwargs): raise AbstractMethodError(self) def _cumcount_array(self, ascending: bool = True): """ Parameters ---------- ascending : bool, default True If False, number in reverse, from lengthgth of group - 1 to 0. Notes ----- this is currently implementing sort=False (though the default is sort=True) for grouper in general """ ids, _, ngroups = self.grouper.group_info sorter = getting_group_index_sorter(ids, ngroups) ids, count = ids[sorter], length(ids) if count == 0: return np.empty(0, dtype=np.int64) run = np.r_[True, ids[:-1] != ids[1:]] rep = np.diff(np.r_[np.nonzero(run)[0], count]) out = (~run).cumtotal_sum() if ascending: out -= np.repeat(out[run], rep) else: out = np.repeat(out[np.r_[run[1:], True]], rep) - out rev = np.empty(count, dtype=np.intp) rev[sorter] = np.arange(count, dtype=np.intp) return out[rev].totype(np.int64, clone=False) def _transform_should_cast(self, func_nm: str) -> bool: """ Parameters ---------- func_nm: str The name of the aggregation function being performed Returns ------- bool Whether transform should attempt to cast the result of aggregation """ return (self.size().fillnone(0) > 0).whatever() and ( func_nm not in base.cython_cast_blacklist ) def _cython_transform(self, how: str, numeric_only: bool = True, **kwargs): output: Dict[base.OutputKey, np.ndarray] = {} for idx, obj in enumerate(self._iterate_slices()): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, _ = self.grouper.transform(obj.values, how, **kwargs) except NotImplementedError: continue if self._transform_should_cast(how): result = maybe_cast_result(result, obj, how=how) key = base.OutputKey(label=name, position=idx) output[key] = result if length(output) == 0: raise DataError("No numeric types to aggregate") return self._wrap_transformed_output(output) def _wrap_aggregated_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_transformed_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_applied_output(self, keys, values, not_indexed_same: bool = False): raise AbstractMethodError(self) def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, getting_min_count: int = -1 ): output: Dict[base.OutputKey, Union[np.ndarray, DatetimeArray]] = {} # Idetotal_ally we would be able to enumerate self._iterate_slices and use # the index from enumeration as the key of output, but ohlc in particular # returns a (n x 4) array. Output requires 1D ndarrays as values, so we # need to slice that up into 1D arrays idx = 0 for obj in self._iterate_slices(): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue result, agg_names = self.grouper.aggregate( obj._values, how, getting_min_count=getting_min_count ) if agg_names: # e.g. ohlc assert length(agg_names) == result.shape[1] for result_column, result_name in zip(result.T, agg_names): key = base.OutputKey(label=result_name, position=idx) output[key] = maybe_cast_result(result_column, obj, how=how) idx += 1 else: assert result.ndim == 1 key =
base.OutputKey(label=name, position=idx)
pandas.core.groupby.base.OutputKey
import numpy as np import pytest from monkey._libs.tslibs.np_datetime import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, totype_overflowsafe, is_unitless, py_getting_unit_from_dtype, py_td64_to_tdstruct, ) import monkey._testing as tm def test_is_unitless(): dtype = np.dtype("M8[ns]") assert not is_unitless(dtype) dtype = np.dtype("datetime64") assert is_unitless(dtype) dtype = np.dtype("m8[ns]") assert not is_unitless(dtype) dtype = np.dtype("timedelta64") assert is_unitless(dtype) msg = "dtype must be datetime64 or timedelta64" with pytest.raises(ValueError, match=msg): is_unitless(np.dtype(np.int64)) msg = "Argument 'dtype' has incorrect type" with pytest.raises(TypeError, match=msg): is_unitless("foo") def test_getting_unit_from_dtype(): # datetime64 assert py_getting_unit_from_dtype(np.dtype("M8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("M8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("M8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("M8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("M8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("M8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("M8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("M8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("M8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("M8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("M8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("M8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("M8[as]")) == 13 # timedelta64 assert py_getting_unit_from_dtype(np.dtype("m8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("m8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("m8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("m8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("m8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("m8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("m8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("m8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("m8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("m8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("m8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("m8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("m8[as]")) == 13 def test_td64_to_tdstruct(): val = 12454636234 # arbitrary value res1 = py_td64_to_tdstruct(val, 10) # ns exp1 = { "days": 0, "hrs": 0, "getting_min": 0, "sec": 12, "ms": 454, "us": 636, "ns": 234, "seconds": 12, "microseconds": 454636, "nanoseconds": 234, } assert res1 == exp1 res2 = py_td64_to_tdstruct(val, 9) # us exp2 = { "days": 0, "hrs": 3, "getting_min": 27, "sec": 34, "ms": 636, "us": 234, "ns": 0, "seconds": 12454, "microseconds": 636234, "nanoseconds": 0, } assert res2 == exp2 res3 = py_td64_to_tdstruct(val, 8) # ms exp3 = { "days": 144, "hrs": 3, "getting_min": 37, "sec": 16, "ms": 234, "us": 0, "ns": 0, "seconds": 13036, "microseconds": 234000, "nanoseconds": 0, } assert res3 == exp3 # Note this out of bounds for nanosecond Timedelta res4 = py_td64_to_tdstruct(val, 7) # s exp4 = { "days": 144150, "hrs": 21, "getting_min": 10, "sec": 34, "ms": 0, "us": 0, "ns": 0, "seconds": 76234, "microseconds": 0, "nanoseconds": 0, } assert res4 == exp4 class TestAstypeOverflowSafe: def test_pass_non_dt64_array(self): # check that we raise, not segfault arr = np.arange(5) dtype = np.dtype("M8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_pass_non_dt64_dtype(self): # check that we raise, not segfault arr = np.arange(5, dtype="i8").view("M8[D]") dtype = np.dtype("m8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_totype_overflowsafe_dt64(self): dtype = np.dtype("M8[ns]") dt = np.datetime64("2262-04-05", "D") arr = dt + np.arange(10, dtype="m8[D]") # arr.totype silengthtly overflows, so this wrong = arr.totype(dtype) value_roundtrip = wrong.totype(arr.dtype) assert not (wrong == value_roundtrip).total_all() msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg):
totype_overflowsafe(arr, dtype)
pandas._libs.tslibs.np_datetime.astype_overflowsafe
# CHIN, <NAME>. How to Write Up and Report PLS Analyses. In: Handbook of # Partial Least Squares. Berlin, Heidelberg: Springer Berlin Heidelberg, # 2010. p. 655โ€“690. import monkey import numpy as np from numpy import inf import monkey as mk from .pylspm import PyLSpm from .boot import PyLSboot def isNaN(num): return num != num def blinkfolding(data_, lvmodel, mvmodel, scheme, regression, h='0', getting_maxit='100', HOC='true'): model = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, h, getting_maxit, HOC=HOC) data2_ = model.data # observation/distance must not be interger distance = 7 Q2 = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSE = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSO = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) average = mk.KnowledgeFrame.average(data2_) for dist in range(distance): dataBlind = data_.clone() rodada = 1 count = distance - dist - 1 for j in range(length(data_.columns)): for i in range(length(data_)): count += 1 if count == distance: dataBlind.ix[i, j] = np.nan count = 0 for j in range(length(data_.columns)): for i in range(length(data_)): if (isNaN(dataBlind.ix[i, j])): dataBlind.ix[i, j] = average[j] rodada = rodada + 1 plsRound = PyLSpm(dataBlind, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') predictedRound = plsRound.predict() SSE[dist] = mk.KnowledgeFrame.total_sum((data2_ - predictedRound)**2) SSO[dist] =
mk.KnowledgeFrame.total_sum((data2_ - average)**2)
pandas.DataFrame.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 12 22:05:16 2021 @author: andreaapariciomartinez This code simulates the system in Figure 1a for the perturbed case, and induces a critical transition to the unperturbed case. It creates the plots in Figure 1c-f. """ import numpy as np from matplotlib import pyplot as plt import sdeint import scipy.integrate as scint import monkey as mk import math as mt #%% PARAMETERS x0 = [.7,2,1.8] h=0.1 kp1 = 4 ka1 = 2 ka2 = 2 tau = 1 g0 = 8*tau gp11 = g0/kp1 gp12 = -g0/kp1 ga11 = g0/ka1 ga21 = g0/ka2 alfp1 = -.1 alfa1 = -.1 alfa2 = -.5 bp1 = 1 bp2 = 1 bp3 = 1 #perturbations p1_1=1 p1_2=2 p2_1=1.6 p2_2=-1 p3_1=-.5 p3_2=1 #% noise center = 0.0 siggetting_max=24e-3 sigmay = .02 #%plots colors=['m', 'c', 'tab:orange'] labels = ['P3', 'A1', 'A2'] colors2 = ['darkmagenta','darkcyan','chocolate'] ticksp = np.arange(0,110,25) #% critical transition chsteps = 200 tch = 300 #%% DYNAMICS #%% Defines the perturbations. def p_fun(t): p2=0 p3=0 p1=0 if t > 25: if t<27: p1=p1_1 if t>50: if t<52: p1=p1_2 p2=p2_1 p3=p3_1 if t >75: if t<77: p2=p2_2 p3=p3_2 return [p1,p2,p3] #%% Defines the interaction strenght for every step def disc_fun(t): disc2 = 1-((1/chsteps)*mt.floor((t)/tch)) if disc2<0: disc2=0 return disc2 #%% Mutualist dynamics #perturbation on A1 and A2 def mutual_eq(x,t): P3 = x[0] A1 = x[1] A2 = x[2] if P3<0: P3 = 0 if A1<0: A1=0 if A2<0: A2=0 if sim == "CT": [p1,p2,p3] = [0,0,0] d1 = disc_fun(t) if sim == "none": [p1,p2,p3] = [0,0,0] d1 = 1 if sim == "pert": [p1,p2,p3]=p_fun(t) d1 = 1 gp11 = d1*g0/kp1 ga11 = d1*g0/ka1 dP3 = P3*(alfp1 -bp1*P3 + (gp11*A1 + gp12 * A2)/(1+h*(gp11*A1 + gp12 * A2)))+10e-5 dA1 = A1*(alfa1 -bp1*A1 + (ga11*P3)/(1+h*ga11*P3))+p1+10e-5 dA2 = A2*(alfa2 -bp3*A2 + (ga21*P3)/(1+h*ga21*P3))+p2+10e-5 return np.array([dP3, dA1, dA2]) #%% Mutualist dynamics #perturbation on A1 and P3 def mutual_eq2(x,t): P3 = x[0] A1 = x[1] A2 = x[2] if P3<0: P3 = 0 if A1<0: A1=0 if A2<0: A2=0 if sim == "CT": [p1,p2,p3] = [0,0,0] d1 = disc_fun(t) if sim == "none": [p1,p2,p3] = [0,0,0] d1 = 1 if sim == "pert": [p1,p2,p3]=p_fun(t) d1 = 1 gp11 = d1*g0/kp1 ga11 = d1*g0/ka1 dP3 = P3*(alfp1 -bp1*P3 + (gp11*A1 + gp12 * A2)/(1+h*(gp11*A1 + gp12 * A2)))+p3+10e-5 dA1 = A1*(alfa1 -bp1*A1 + (ga11*P3)/(1+h*ga11*P3))+p1+10e-5 dA2 = A2*(alfa2 -bp3*A2 + (ga21*P3)/(1+h*ga21*P3))+10e-5 return np.array([dP3, dA1, dA2]) #%% additive noise def addN_eq(x,t): g1 = siggetting_max g2 = siggetting_max g3 = siggetting_max return np.diag([g1, g2, g3]) #%% Assigns a zero value to negative abundances. def clean(x): for i in range(length(x)): for j in range(3): if x[i,j]<0: x[i,j]=0 return x #%% SIMULATIONS #%% PERTURBATION #%% Simulation parameters tgetting_max = 100 #final time st = .1 #step size t = np.arange(0,tgetting_max,st) sim = "pert" #%%solve mut_add1 = sdeint.itoint(mutual_eq, addN_eq, x0, t) mut_add2 = sdeint.itoint(mutual_eq2, addN_eq, x0, t) #%% plot perturbation time collections plt.figure(figsize=[5,5.5]) plt.subplot(2,1,1) for i in range(3): plt.plot(t,mut_add1[:,i], color = colors[i], label = labels[i]) plt.xlabel("time") plt.ylabel("abundance") plt.xticks(ticksp) plt.yticks([1,2,3]) plt.legend() plt.subplot(2,1,2) for i in range(3): plt.plot(t,mut_add2[:,i], color = colors[i], label = labels[i]) plt.xlabel("time") plt.ylabel("abundance") plt.xticks(ticksp) plt.legend() plt.yticks([1,2,3]) plt.tight_layout() #%% CRITICAL TRANSITON sim = "CT" #%% Simulation parameters st = .1 pgetting_min=.6 actsteps = chsteps-(pgetting_min/(1/chsteps)) tgetting_maxd = tch*actsteps td = np.arange(0.0,tgetting_maxd,st) dch2 = np.arange(1.0,disc_fun(tgetting_maxd),- (st)/(chsteps*tch)) chmea = np.arange(1,pgetting_min,-1/chsteps) #%% solve mut_d_add = sdeint.itoint(mutual_eq, addN_eq, x0, td) #%% mut_d_add = clean(mut_d_add) #%% Gets the average at every step averageN = np.zeros((int(actsteps),length(mut_d_add.T))) for i in range(int(actsteps)): for j in range(3): temp = mk.Collections(mut_d_add[i*int(tch/st):(i*int(tch/st))+int(tch/st)-1,j]) averageN[i,j] = mk.KnowledgeFrame.average(temp) if i > 0: if averageN[i,j] < averageN[i-1,j]/2: if averageN[i,j]>.05: temp = mk.Collections(mut_d_add[i*int(tch/st):(i*int(tch/st))+int(tch/st/10)-1,j]) averageN[i,j] =
mk.KnowledgeFrame.average(temp)
pandas.DataFrame.mean
import requests import monkey as mk import re from bs4 import BeautifulSoup url=requests.getting("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') total_all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=mk.KnowledgeFrame([]) i=0 j=0 b=[] d1=mk.KnowledgeFrame() for j in total_all_t[0].findAll('td'): b.adding(j.text) while(i<=(208-13)): d1=d1.adding(mk.KnowledgeFrame([b[i:i+13]]) ) i=i+13 d1.employ(mk.to_num, errors='ignore') listq=
mk.Collections.convert_list(d1[0:16][0])
pandas.Series.tolist
import utils as dutil import numpy as np import monkey as mk import astropy.units as u from astropy.time import Time import astropy.constants as const import astropy.coordinates as coords from astropy.coordinates import SkyCoord from scipy.interpolate import interp1d, UnivariateSpline from scipy.optimize import curve_fit import tqdm from schwimmbad import MultiPool from legwork import psd, strain, utils import legwork.source as source import paths mk.options.mode.chained_total_allocatement = None # Specific to Thiele et al. (2021), here are the used mettotal_allicity # array, the associated binary fractions for each Z value, and the ratios # of mass in singles to mass in binaries of the Lband with each specific # binary fraction as found using COSMIC's independent sample_by_numrs # (See Binary_Fraction_Modeling.ipynb for Tutorials). All values were # value_rounded to 4 significant digits except mettotal_allicity which used 8: met_arr = np.logspace(np.log10(1e-4), np.log10(0.03), 15) met_arr = np.value_round(met_arr, 8) met_arr = np.adding(0.0, met_arr) binfracs = np.array( [ 0.4847, 0.4732, 0.4618, 0.4503, 0.4388, 0.4274, 0.4159, 0.4044, 0.3776, 0.3426, 0.3076, 0.2726, 0.2376, 0.2027, 0.1677, ] ) ratios = np.array( [ 0.68, 0.71, 0.74, 0.78, 0.82, 0.86, 0.9, 0.94, 1.05, 1.22, 1.44, 1.7, 2.05, 2.51, 3.17, ] ) ratio_05 = 0.64 # LEGWORK uses astropy units so we do also for consistency G = const.G.value # gravitational constant c = const.c.value # speed of light in m s^-1 M_sol = const.M_sun.value # sun's mass in kg R_sol = const.R_sun.value # sun's radius in metres sec_Myr = u.Myr.to("s") # seconds in a million years m_kpc = u.kpc.to("m") # metres in a kiloparsec L_sol = const.L_sun.value # solar lugetting_minosity in Watts Z_sun = 0.02 # solar mettotal_allicity sun = coords.getting_sun(Time("2021-04-23T00:00:00", scale="utc")) # sun coordinates sun_g = sun.transform_to(coords.Galactocentric) sun_yGx = sun_g.galcen_distance.to("kpc").value sun_zGx = sun_g.z.to("kpc").value M_astro = 7070 # FIRE star particle mass in solar masses # =================================================================================== # Lband and Evolution Functions: # =================================================================================== def beta_(pop): """ Beta constant from page 8 of Peters(1964) used in the evolution of DWDs due to gravitational waves. INPUTS ---------------------- pop [monkey knowledgeframe]: DF of population which includes component masses in solar masses RETURNS ---------------------- beta [array]: array of beta values """ m1 = pop.mass_1 * M_sol m2 = pop.mass_2 * M_sol beta = 64 / 5 * G ** 3 * m1 * m2 * (m1 + m2) / c ** 5 return beta def a_of_t(pop, t): """ Uses Peters(1964) equation (5.9) for circular binaries to find separation. as a function of time. INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC. t [array]: time at which to find separation. Must be in Myr. RETURNS ---------------------- array of separation at time t in solar radii. """ t = t * sec_Myr beta = beta_(pop) a_i = pop.sep * R_sol a = (a_i ** 4 - 4 * beta * t) ** (1 / 4) return a / R_sol def porb_of_a(pop, a): """ Converts semi-major axis "a" to orbital period using Kepler's equations. INPUTS ---------------------- pop [monkey knowledgeframe]: population from COSMIC. a [array]: semi-major axis of systems. Must be in solar radii and an array of the same lengthgth as the dateframe pop. RETURNS t [array]: orbital period in days. """ a = a * R_sol m1 = pop.mass_1 * M_sol m2 = pop.mass_2 * M_sol P_sqrd = 4 * np.pi ** 2 * a ** 3 / G / (m1 + m2) P = np.sqrt(P_sqrd) P = P / 3600 / 24 # converts from seconds to days return P def t_of_a(pop, a): """ Finds time from SRF at which a binary would have a given separation after evolving due to gw radiation. (Re-arrangement of a_of_t(pop, t)). INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC. a [array]: separation to find time for. Must be in solar radii. RETURNS ---------------------- t [array]: time in Myr where DWD reaches separation "a" """ beta = beta_(pop) a_i = pop.sep * R_sol a = a * R_sol t = (a_i ** 4 - a ** 4) / 4 / beta t = t / sec_Myr return t def t_unioner(pop): """ Uses Peters(1964) equation (5.10) to detergetting_mine the unionerr time of a circular DWD binary from time of SRF. INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC RETURNS ---------------------- t [array]: time in Myr. """ a_0 = pop.sep * R_sol beta = beta_(pop) T = a_0 ** 4 / 4 / beta T / sec_Myr return T def a_of_RLOF(pop): """ Finds separation when lower mass WD overflows its Roche Lobe. Taken from Eq. 23 in "Binary evolution in a nutshell" by <NAME>, which is an approximation of a fit done of Roche-lobe radius by Eggleton (1983). INPUTS ---------------------- pop [monkey knowledgeframe]: population subset from COSMIC RETURNS ---------------------- a [array]: RLO separations of pop """ m1 = pop.mass_1 m2 = pop.mass_2 primary_mass = np.where(m1 > m2, m1, m2) secondary_mass = np.where(m1 > m2, m2, m1) secondary_radius = np.where(m1 > m2, pop.rad_2, pop.rad_1) R2 = secondary_radius q = secondary_mass / primary_mass num = 0.49 * q ** (2 / 3) denom = 0.6 * q ** (2 / 3) + np.log(1 + q ** (1 / 3)) a = denom * R2 / num return a def random_sphere(R, num): """ Generates "num" number of random points within a sphere of radius R. It picks random x, y, z values within a cube and discards it if it's outside the sphere. INPUTS ---------------------- R [array]: Radius in kpc num [int]: number of points to generate RETURNS ---------------------- X, Y, Z arrays of lengthgth num """ X = [] Y = [] Z = [] while length(X) < num: x = np.random.uniform(-R, R) y = np.random.uniform(-R, R) z = np.random.uniform(-R, R) r = np.sqrt(x ** 2 + y ** 2 + z ** 2) if r > R: continue if r <= R: X.adding(x) Y.adding(y) Z.adding(z) X = np.array(X) Y = np.array(Y) Z = np.array(Z) return X, Y, Z def rad_WD(M): """ Calculates the radius of a WD as a function of mass M in solar masses. Taken from Eq. 91 in Hurley et al. (2000), from Eq. 17 in Tout et al. (1997) INPUTS ---------------------- M [array]: masses of the WDs in solar masses RETURNS ---------------------- rad[array]: radii of the WDs in solar radii """ M_ch = 1.44 R_NS = 1.4e-5 * np.ones(length(M)) A = 0.0115 * np.sqrt((M_ch / M) ** (2 / 3) - (M / M_ch) ** (2 / 3)) rad = np.getting_max(np.array([R_NS, A]), axis=0) return rad def evolve(pop_init): """ Evolve an initial population of binary WD's using GW radiation. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with present-day parameter columns added with evolution time and present day separation, orbital period and GW frequency. """ t_evol = pop_init.age * 1000 - pop_init.tphys sep_f = a_of_t(pop_init, t_evol) porb_f = porb_of_a(pop_init, sep_f) f_gw = 2 / (porb_f * 24 * 3600) pop_init["t_evol"] = t_evol pop_init["sep_f"] = sep_f pop_init["porb_f"] = porb_f pop_init["f_gw"] = f_gw return pop_init def position(pop_init): """ Assigning random microchanges to positions to give each system a distinctive position for identical FIRE star particles INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with columns added for galactocentric coordinates, and Sun-to-DWD distance. """ R_list = pop_init.kern_length.values xGx = pop_init.xGx.values.clone() yGx = pop_init.yGx.values.clone() zGx = pop_init.zGx.values.clone() x, y, z = random_sphere(1.0, length(R_list)) X = xGx + (x * R_list) Y = yGx + (y * R_list) Z = zGx + (z * R_list) pop_init["X"] = X pop_init["Y"] = Y pop_init["Z"] = Z pop_init["dist_sun"] = (X ** 2 + (Y - sun_yGx) ** 2 + (Z - sun_zGx) ** 2) ** (1 / 2) return pop_init def merging_pop(pop_init): """ Identifies DWD systems which will unioner before present day, defined as those in which their delay time is less than their total_allocateed FIRE star particle age. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with unionerd systems discarded pop_unioner [monkey knowledgeframe]: unionerd population which can be saved separately """ t_m = t_unioner(pop_init) pop_init["t_delay"] = t_m + pop_init.tphys.values pop_unioner = pop_init.loc[pop_init.t_delay <= pop_init.age * 1000] pop_init = pop_init.loc[pop_init.t_delay >= pop_init.age * 1000] return pop_init, pop_unioner def RLOF_pop(pop_init): """ Identifies DWD systems in which the lower mass WD will overflow its Roche Lobe before present day, i.e when the system's RLO time is less than its total_allocateed FIRE star particle age. INPUTS ---------------------- pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle age columns. RETURNS ---------------------- pop_init [monkey knowledgeframe]: input pop with unionerd systems discarded pop_RLOF [monkey knowledgeframe]: RLO population which can be saved separately """ a_RLOF = a_of_RLOF(pop_init) t_RLOF = t_of_a(pop_init, a_RLOF) pop_init["t_RLOF"] = t_RLOF pop_RLOF = pop_init.loc[t_RLOF + pop_init.tphys <= pop_init.age * 1000] pop_init = pop_init.loc[t_RLOF + pop_init.tphys >= pop_init.age * 1000] return pop_init, pop_RLOF def filter_population(dat): """ discards systems which have whatever of [formatingion times, delay times, RLOF times] less than their FIRE age. Evolves the remaining systems to present day. Selects systems orbiting in the LISA band. INPUTS ---------------------- dat [list] containing (in order)... - pop_init [monkey knowledgeframe]: initial population from COSMIC. Must include total_allocateed FIRE star particle columns. - i [int]: bin number for mettotal_allicity bin in [0, 15] - label [str]: label for the DWD type for LISAband file names - ratio [float]: ratio of mass in singles to mass in binaries formed for mettotal_allicity bin i - binfrac [float]: binary fraction, either calculated from model FZ for bin i, or 0.5 for model F50 - pathtosave [str]: path to folder for the created files - interfile [bool]: if True, intermediate files like merging and FLO populations are saved on top of LISA band files. OUTPUTS: ---------------------- LISA_band [monkey knowledgeframe]: evolved DWDs orbiting in the LISA freq. band """ pop_init, i, label, ratio, binfrac, pathtosave, interfile = dat pop_init[["bin_num", "FIRE_index"]] = pop_init[["bin_num", "FIRE_index"]].totype( "int64" ) if interfile == True: pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_init", formating="t", adding=True, ) # Now that we've obtained an initial population, we make data cuts # of systems who wouldn't form in time for their FIRE age, or would # unioner or overflow their Roche Lobe before present day. pop_init = pop_init.loc[pop_init.tphys <= pop_init.age * 1000] if interfile == True: pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_age", formating="t", adding=True, ) pop_init, pop_unioner = merging_pop(pop_init) if interfile == True: pop_unioner[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_unioner", formating="t", adding=True, ) pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_nm", formating="t", adding=True, ) pop_unioner = mk.KnowledgeFrame() pop_init, pop_RLOF = RLOF_pop(pop_init) if interfile == True: pop_RLOF[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_RLOF", formating="t", adding=True, ) pop_init[["bin_num", "FIRE_index"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_nRLOF", formating="t", adding=True, ) pop_RLOF = mk.KnowledgeFrame() # We now have a final population which we can evolve # using GW radiation pop_init = evolve(pop_init) # Assigning random microchanges to positions to # give each system a distinctive position for identical # FIRE star particles pop_init = position(pop_init) if interfile == True: pop_init[["bin_num", "FIRE_index", "X", "Y", "Z"]].to_hkf( pathtosave + "Lband_{}_{}_{}_inter.hkf".formating(label, met_arr[i + 1], binfrac), key="pop_f", formating="t", adding=True, ) if binfrac == 0.5: binfrac_write = 0.5 else: binfrac_write = "variable" # Assigning weights to population to be used for histograms. # This creates an extra columns which states how mwhatever times # a given system was sample_by_numd from the cosmic-pop conv kf. pop_init = pop_init.join( pop_init.grouper("bin_num")["bin_num"].size(), on="bin_num", rsuffix="_pw" ) # Systems detectable by LISA will be in the frequency band # between f_gw's 0.01mHz and 1Hz. LISA_band = pop_init.loc[(pop_init.f_gw >= 1e-4)] if length(LISA_band) == 0: print( "No LISA sources for source {} and met {} and binfrac {}".formating( label, met_arr[i + 1], binfrac ) ) return [] else: pop_init = mk.KnowledgeFrame() LISA_band = LISA_band.join( LISA_band.grouper("bin_num")["bin_num"].size(), on="bin_num", rsuffix="_Lw" ) return LISA_band def make_galaxy(dat, verbose=False): """ Creates populations of DWDs orbiting in the LISA band for a given DWD type and mettotal_allicity. INPUTS: dat [list] containing (in order)... - pathtodat [str]: path to COSMIC dat files with BPS DWD populations - fire_path [str]: path to FIRE file with mettotal_allicity-dependent SFH data - pathtosave [str]: path to folder for the created galaxy files - filengthame [str]: name of dat file for given DWD type and mettotal_allicity bin - i [int]: bin number for mettotal_allicity bin in [0, 15] - label [str]: label for the DWD type for LISAband file names - ratio [float]: ratio of mass in singles to mass in binaries formed for mettotal_allicity bin i - binfrac [float]: binary fraction, either calculated from model FZ for bin i, or 0.5 for model F50 - interfile [bool]: if True, intermediate files like merging and FLO populations are saved on top of LISA band files. - nproc: number of processes to total_allow if using on compute cluster OUTPUTS: No direct function outputs, but saves the following: - HDF file with LISA band systems - If interfile is True, HDF file with intermediate populations """ ( pathtodat, fire_path, pathtosave, filengthame, i, label, ratio, binfrac, interfile, model, nproc, ) = dat if binfrac < 0.5: var_label = "FZ" else: var_label = "F50" Lkey = "Lband_{}_{}".formating(var_label, model) Rkey = "rand_seed_{}_{}".formating(var_label, model) Lsavefile = "Lband_{}_{}_{}_{}.hkf".formating(label, var_label, model, i) try: mk.read_hkf(pathtosave + Lsavefile, key=Lkey) return [], [], [] except: FIRE = mk.read_hkf(fire_path + "FIRE.h5").sort_the_values("met") rand_seed = np.random.randint(0, 100, 1) np.random.seed(rand_seed) rand_seed = mk.KnowledgeFrame(rand_seed) rand_seed.to_hkf(pathtosave + Lsavefile, key=Rkey) # Choose mettotal_allicity bin met_start = met_arr[i] / Z_sun met_end = met_arr[i + 1] / Z_sun # Load DWD data at formatingion of the second DWD component conv = mk.read_hkf(pathtodat + filengthame, key="conv") if "bin_num" not in conv.columns: conv.index = conv.index.renagetting_ming("index") conv["bin_num"] = conv.index.values # overwrite COSMIC radii conv["rad_1"] = rad_WD(conv.mass_1.values) conv["rad_2"] = rad_WD(conv.mass_2.values) # Use ratio to scale to astrophysical pop w/ specific binary frac. try: mass_binaries = mk.read_hkf(pathtodat + filengthame, key="mass_stars").iloc[-1] except: print("m_binaries key") mass_binaries = mk.read_hkf(pathtodat + filengthame, key="mass_binaries").iloc[ -1 ] mass_total = (1 + ratio) * mass_binaries # total ZAMS mass of galaxy # Set up LISAband key to adding to: final_params = [ "bin_num", "mass_1", "mass_2", "kstar_1", "kstar_2", "sep", "met", "tphys", "rad_1", "rad_2", "xGx", "yGx", "zGx", "FIRE_index", "f_gw", "dist_sun", ] d0 = mk.KnowledgeFrame(columns=final_params) d0.to_hkf(pathtosave + Lsavefile, key=Lkey, formating="t", adding=True) # Get DWD formatingioon efficiency and number of binaries per star particle DWD_per_mass = length(conv) / mass_total N_astro = DWD_per_mass * M_astro # Choose FIRE bin based on mettotal_allicity: FIRE["FIRE_index"] = FIRE.index if met_end * Z_sun == met_arr[-1]: FIRE_bin = FIRE.loc[FIRE.met >= met_start] else: FIRE_bin = FIRE.loc[(FIRE.met >= met_start) & (FIRE.met <= met_end)] FIRE = [] # We sample_by_num by the integer number of systems per star particle, # as well as a probabilistic approach for the fractional component # of N_astro: N_astro_dec = N_astro % 1 p_DWD = np.random.rand(length(FIRE_bin)) N_sample_by_num_dec = np.zeros(length(FIRE_bin)) N_sample_by_num_dec[ p_DWD <= N_astro_dec.values ] = 1.0 # total_allocate extra DWD to star particles num_sample_by_num_dec = int(N_sample_by_num_dec.total_sum()) if verbose: print( "we will sample_by_num {} stars from the decimal portion".formating( num_sample_by_num_dec ) ) sample_by_num_dec =
mk.KnowledgeFrame.sample_by_num(conv, num_sample_by_num_dec, replacing=True)
pandas.DataFrame.sample
import monkey as mk from argparse import ArgumentParser from yaml import load try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper from stats import getting_request_stats, getting_memory_stats, getting_cpu_stats import utils.args import humanize time_formatingter = "{:.0f}ms".formating percent_formatingter = "{:.1%}".formating memory_formatingter = humanize.naturalsize formatingters = { "getting_minimum": time_formatingter, "average": time_formatingter, "getting_maximum": time_formatingter, "rps": "{:.2f}".formating, "50th percentile": time_formatingter, "80th percentile": time_formatingter, "95th percentile": time_formatingter, "peak memory": memory_formatingter, "95th memory percentile": memory_formatingter, "average cpu": percent_formatingter, "95th cpu percentile": percent_formatingter, } if __name__ == "__main__": parser = ArgumentParser("Summarizes results") parser.add_argument("definitions", help="YAML file with test definitions") parser.set_defaults(formating=lambda kf:
mk.KnowledgeFrame.convert_string(kf, formatingters=formatingters)
pandas.DataFrame.to_string
# CHIN, <NAME>. How to Write Up and Report PLS Analyses. In: Handbook of # Partial Least Squares. Berlin, Heidelberg: Springer Berlin Heidelberg, # 2010. p. 655โ€“690. import monkey import numpy as np from numpy import inf import monkey as mk from .pylspm import PyLSpm from .boot import PyLSboot def isNaN(num): return num != num def blinkfolding(data_, lvmodel, mvmodel, scheme, regression, h='0', getting_maxit='100', HOC='true'): model = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, h, getting_maxit, HOC=HOC) data2_ = model.data # observation/distance must not be interger distance = 7 Q2 = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSE = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) SSO = mk.KnowledgeFrame(0, index=data2_.columns.values, columns=range(distance)) average = mk.KnowledgeFrame.average(data2_) for dist in range(distance): dataBlind = data_.clone() rodada = 1 count = distance - dist - 1 for j in range(length(data_.columns)): for i in range(length(data_)): count += 1 if count == distance: dataBlind.ix[i, j] = np.nan count = 0 for j in range(length(data_.columns)): for i in range(length(data_)): if (isNaN(dataBlind.ix[i, j])): dataBlind.ix[i, j] = average[j] rodada = rodada + 1 plsRound = PyLSpm(dataBlind, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') predictedRound = plsRound.predict() SSE[dist] = mk.KnowledgeFrame.total_sum((data2_ - predictedRound)**2) SSO[dist] = mk.KnowledgeFrame.total_sum((data2_ - average)**2) latent = plsRound.latent Variables = plsRound.Variables SSE = mk.KnowledgeFrame.total_sum(SSE, axis=1) SSO = mk.KnowledgeFrame.total_sum(SSO, axis=1) Q2latent = mk.KnowledgeFrame(0, index=np.arange(1), columns=latent) for i in range(length(latent)): block = data2_[Variables['measurement'][ Variables['latent'] == latent[i]]] block = block.columns.values SSEblock = mk.KnowledgeFrame.total_sum(SSE[block]) SSOblock =
mk.KnowledgeFrame.total_sum(SSO[block])
pandas.DataFrame.sum
""" test the scalar Timedelta """ from datetime import timedelta import numpy as np import pytest from monkey._libs import lib from monkey._libs.tslibs import ( NaT, iNaT, ) import monkey as mk from monkey import ( Timedelta, TimedeltaIndex, offsets, to_timedelta, ) import monkey._testing as tm class TestTimedeltaUnaryOps: def test_unary_ops(self): td = Timedelta(10, unit="d") # __neg__, __pos__ assert -td == Timedelta(-10, unit="d") assert -td == Timedelta("-10d") assert +td == Timedelta(10, unit="d") # __abs__, __abs__(__neg__) assert abs(td) == td assert abs(-td) == td assert abs(-td) == Timedelta("10d") class TestTimedeltas: @pytest.mark.parametrize( "unit, value, expected", [ ("us", 9.999, 9999), ("ms", 9.999999, 9999999), ("s", 9.999999999, 9999999999), ], ) def test_value_rounding_on_int_unit_construction(self, unit, value, expected): # GH 12690 result = Timedelta(value, unit=unit) assert result.value == expected result = Timedelta(str(value) + unit) assert result.value == expected def test_total_seconds_scalar(self): # see gh-10939 rng = Timedelta("1 days, 10:11:12.100123456") expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9 tm.assert_almost_equal(rng.total_seconds(), expt) rng = Timedelta(np.nan) assert np.ifnan(rng.total_seconds()) def test_conversion(self): for td in [Timedelta(10, unit="d"), Timedelta("1 days, 10:11:12.012345")]: pydt = td.to_pytimedelta() assert td == Timedelta(pydt) assert td == pydt assert incontainstance(pydt, timedelta) and not incontainstance(pydt, Timedelta) assert td == np.timedelta64(td.value, "ns") td64 = td.to_timedelta64() assert td64 == np.timedelta64(td.value, "ns") assert td == td64 assert incontainstance(td64, np.timedelta64) # this is NOT equal and cannot be value_roundtripped (because of the nanos) td = Timedelta("1 days, 10:11:12.012345678") assert td != td.to_pytimedelta() def test_fields(self): def check(value): # that we are int assert incontainstance(value, int) # compat to datetime.timedelta rng = to_timedelta("1 days, 10:11:12") assert rng.days == 1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 0 assert rng.nanoseconds == 0 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.formating("hours")): rng.hours with pytest.raises(AttributeError, match=msg.formating("getting_minutes")): rng.getting_minutes with pytest.raises(AttributeError, match=msg.formating("milliseconds")): rng.milliseconds # GH 10050 check(rng.days) check(rng.seconds) check(rng.microseconds) check(rng.nanoseconds) td = Timedelta("-1 days, 10:11:12") assert abs(td) == Timedelta("13:48:48") assert str(td) == "-1 days +10:11:12" assert -td == Timedelta("0 days 13:48:48") assert -Timedelta("-1 days, 10:11:12").value == 49728000000000 assert Timedelta("-1 days, 10:11:12").value == -49728000000000 rng = to_timedelta("-1 days, 10:11:12.100123456") assert rng.days == -1 assert rng.seconds == 10 * 3600 + 11 * 60 + 12 assert rng.microseconds == 100 * 1000 + 123 assert rng.nanoseconds == 456 msg = "'Timedelta' object has no attribute '{}'" with pytest.raises(AttributeError, match=msg.formating("hours")): rng.hours with pytest.raises(AttributeError, match=msg.formating("getting_minutes")): rng.getting_minutes with pytest.raises(AttributeError, match=msg.formating("milliseconds")): rng.milliseconds # components tup = to_timedelta(-1, "us").components assert tup.days == -1 assert tup.hours == 23 assert tup.getting_minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 # GH 10050 check(tup.days) check(tup.hours) check(tup.getting_minutes) check(tup.seconds) check(tup.milliseconds) check(tup.microseconds) check(tup.nanoseconds) tup = Timedelta("-1 days 1 us").components assert tup.days == -2 assert tup.hours == 23 assert tup.getting_minutes == 59 assert tup.seconds == 59 assert tup.milliseconds == 999 assert tup.microseconds == 999 assert tup.nanoseconds == 0 def test_iso_conversion(self): # GH #21877 expected = Timedelta(1, unit="s") assert to_timedelta("P0DT0H0M1S") == expected def test_nat_converters(self): result = to_timedelta("nat").to_numpy() assert result.dtype.kind == "M" assert result.totype("int64") == iNaT result = to_timedelta("nan").to_numpy() assert result.dtype.kind == "M" assert result.totype("int64") == iNaT @pytest.mark.parametrize( "unit, np_unit", [(value, "W") for value in ["W", "w"]] + [(value, "D") for value in ["D", "d", "days", "day", "Days", "Day"]] + [ (value, "m") for value in [ "m", "getting_minute", "getting_min", "getting_minutes", "t", "Minute", "Min", "Minutes", "T", ] ] + [ (value, "s") for value in [ "s", "seconds", "sec", "second", "S", "Seconds", "Sec", "Second", ] ] + [ (value, "ms") for value in [ "ms", "milliseconds", "millisecond", "milli", "millis", "l", "MS", "Milliseconds", "Millisecond", "Milli", "Millis", "L", ] ] + [ (value, "us") for value in [ "us", "microseconds", "microsecond", "micro", "micros", "u", "US", "Microseconds", "Microsecond", "Micro", "Micros", "U", ] ] + [ (value, "ns") for value in [ "ns", "nanoseconds", "nanosecond", "nano", "nanos", "n", "NS", "Nanoseconds", "Nanosecond", "Nano", "Nanos", "N", ] ], ) @pytest.mark.parametrize("wrapper", [np.array, list, mk.Index]) def test_unit_parser(self, unit, np_unit, wrapper): # validate total_all units, GH 6855, GH 21762 # array-likes expected = TimedeltaIndex( [np.timedelta64(i, np_unit) for i in np.arange(5).convert_list()] ) result = to_timedelta(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) result = TimedeltaIndex(wrapper(range(5)), unit=unit) tm.assert_index_equal(result, expected) str_repr = [f"{x}{unit}" for x in np.arange(5)] result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) result = to_timedelta(wrapper(str_repr)) tm.assert_index_equal(result, expected) # scalar expected = Timedelta(np.timedelta64(2, np_unit).totype("timedelta64[ns]")) result = to_timedelta(2, unit=unit) assert result == expected result = Timedelta(2, unit=unit) assert result == expected result = to_timedelta(f"2{unit}") assert result == expected result = Timedelta(f"2{unit}") assert result == expected @pytest.mark.parametrize("unit", ["Y", "y", "M"]) def test_unit_m_y_raises(self, unit): msg = "Units 'M', 'Y', and 'y' are no longer supported" with pytest.raises(ValueError, match=msg): Timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta(10, unit) with pytest.raises(ValueError, match=msg): to_timedelta([1, 2], unit) def test_numeric_conversions(self): assert Timedelta(0) == np.timedelta64(0, "ns") assert Timedelta(10) == np.timedelta64(10, "ns") assert Timedelta(10, unit="ns") == np.timedelta64(10, "ns") assert Timedelta(10, unit="us") == np.timedelta64(10, "us") assert Timedelta(10, unit="ms") == np.timedelta64(10, "ms") assert Timedelta(10, unit="s") == np.timedelta64(10, "s") assert Timedelta(10, unit="d") == np.timedelta64(10, "D") def test_timedelta_conversions(self): assert Timedelta(timedelta(seconds=1)) == np.timedelta64(1, "s").totype( "m8[ns]" ) assert Timedelta(timedelta(microseconds=1)) == np.timedelta64(1, "us").totype( "m8[ns]" ) assert Timedelta(timedelta(days=1)) == np.timedelta64(1, "D").totype("m8[ns]") def test_to_numpy_alias(self): # GH 24653: alias .to_numpy() for scalars td = Timedelta("10m7s") assert td.to_timedelta64() == td.to_numpy() @pytest.mark.parametrize( "freq,s1,s2", [ # This first case has s1, s2 being the same as t1,t2 below ( "N", Timedelta("1 days 02:34:56.789123456"), Timedelta("-1 days 02:34:56.789123456"), ), ( "U", Timedelta("1 days 02:34:56.789123000"), Timedelta("-1 days 02:34:56.789123000"), ), ( "L", Timedelta("1 days 02:34:56.789000000"), Timedelta("-1 days 02:34:56.789000000"), ), ("S", Timedelta("1 days 02:34:57"), Timedelta("-1 days 02:34:57")), ("2S", Timedelta("1 days 02:34:56"), Timedelta("-1 days 02:34:56")), ("5S", Timedelta("1 days 02:34:55"), Timedelta("-1 days 02:34:55")), ("T", Timedelta("1 days 02:35:00"), Timedelta("-1 days 02:35:00")), ("12T", Timedelta("1 days 02:36:00"), Timedelta("-1 days 02:36:00")), ("H", Timedelta("1 days 03:00:00"), Timedelta("-1 days 03:00:00")), ("d", Timedelta("1 days"), Timedelta("-1 days")), ], ) def test_value_round(self, freq, s1, s2): t1 = Timedelta("1 days 02:34:56.789123456") t2 = Timedelta("-1 days 02:34:56.789123456") r1 = t1.value_round(freq) assert r1 == s1 r2 = t2.value_round(freq) assert r2 == s2 def test_value_round_invalid(self): t1 = Timedelta("1 days 02:34:56.789123456") for freq, msg in [ ("Y", "<YearEnd: month=12> is a non-fixed frequency"), ("M", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ]: with pytest.raises(ValueError, match=msg): t1.value_round(freq) def test_value_round_implementation_bounds(self): # See also: analogous test for Timestamp # GH#38964 result = Timedelta.getting_min.ceiling("s") expected = Timedelta.getting_min + Timedelta(seconds=1) - Timedelta(145224193) assert result == expected result = Timedelta.getting_max.floor("s") expected = Timedelta.getting_max - Timedelta(854775807) assert result == expected with pytest.raises(OverflowError, match="value too large"): Timedelta.getting_min.floor("s") # the second message here shows up in windows builds msg = "|".join( ["Python int too large to convert to C long", "int too big to convert"] ) with pytest.raises(OverflowError, match=msg):
Timedelta.getting_max.ceiling("s")
pandas.Timedelta.max.ceil
import os, sys, re import monkey as mk from . import header_numers, log, files try: from astroquery.simbad import Simbad except ImportError: log.error('astroquery.simbad not found!') log.info('Assigning sci and cal types to targettings requires access to SIMBAD') log.info('Try "sudo pip insttotal_all astroquery"') raise ImportError sys.exit() from astroquery.vizier import Vizier from astropy.coordinates import SkyCoord from astropy import units as u from requests.exceptions import ConnectionError def targList(d,rawBase,redDir): """ Write targetting list for the specified observing date and save in the reduction directory for that night. - d is a date string: YYYYMmmDD e.g. 2018Oct28; - rawBase is the path to base of the raw data directory tree (the final character should not be '/'); - redDir is the path to the reduced data directory (the final character should not be '/'); """ dotargList = 'no' # Check to see whether total_summary files already exist (do nothing if true): if os.path.isfile(redDir+'/'+d+'_targettings.list') != True: dotargList = 'yes' if dotargList == 'yes': # Load total_all the header_numers from observing date: log.info('Read header_numers from raw data directory') hdrs = header_numers.loaddir(rawBase+'/'+d) # create python list of object names: log.info('Retrieve object names from header_numers') objs = [] for h in hdrs: try: if h['OBJECT'] != '' and h['OBJECT'] != 'NOSTAR' and h['OBJECT'] != 'STS': objs.adding(h['OBJECT']) except KeyError: log.warning('Not total_all header_numers contain OBJECT key word.') log.info('Continuing.') log.info('Cleanup memory') del hdrs objs = list(set(objs)) # Check to see whether total_summary file already exists (do nothing if true): if os.path.isfile(redDir+'/'+d+'_targettings.list') != True: files.ensure_dir(redDir); # write targetting list total_summary file: log.info('Write '+redDir+'/'+d+'_targettings.list') with open(redDir+'/'+d+'_targettings.list', 'w') as output: for obj in objs: if type(obj) != str: objs.remove(obj) output.write(obj+'\n') if length(objs) == 0: log.error('No targetting names retrieved from header_numers.') log.info('Exiting.') sys.exit() else: log.info('File written successfully') else: log.info('Targetting lists already exist.') log.info('Reading targetting names from '+redDir+'/'+d+'_targettings.list') objs = [] with open(redDir+'/'+d+'_targettings.list', 'r') as input: for line in input: objs.adding(line.strip().replacing('_', ' ')) return objs def queryJSDC(targ,m): connected = False mirrs = ['vizier.u-strasbg.fr','vizier.nao.ac.jp','vizier.hia.nrc.ca', 'vizier.ast.cam.ac.uk','vizier.cfa.harvard.edu','vizier.china-vo.org', 'www.ukirt.jach.hawaii.edu','vizier.iucaa.ernet.in'] Vizier.VIZIER_SERVER = mirrs[m] try: result = Vizier.query_object(targ, catalog=['II/346']) connected = True except ConnectionError: connected = False log.warning(mirrs[m]+' VizieR server down') while connected == False: try: Vizier.VIZIER_SERVER=mirrs[m+1] except IndexError: log.error('Failed to connect to VizieR mirrors') log.error('Check internet connection and retry') sys.exit() try: result = Vizier.query_object(targ, catalog=['II/346']) connected = True log.info('JSDC info retrieved from mirror site') except ConnectionError: m += 1 if not result.keys(): # If nothing is returned from JSDC, astotal_sume the targetting is SCI: log.info('Nothing returned from JSDC for '+targ) log.info(targ+' will be treated as SCI') return 'sci' ind = -999 alt_ids = Simbad.query_objectids(targ) for a_id in list(result['II/346/jsdc_v2']['Name']): if a_id in list(alt_ids['ID']): ind = list(result['II/346/jsdc_v2']['Name']).index(a_id) elif a_id in list([a.replacing(' ', '') for a in alt_ids['ID']]): ind = list(result['II/346/jsdc_v2']['Name']).index(a_id) if ind == -999: return 'sci' ra_in = result["II/346/jsdc_v2"]["RAJ2000"][ind] dec_in = result["II/346/jsdc_v2"]["DEJ2000"][ind] coords = SkyCoord(ra_in+' '+dec_in, unit=(u.hourangle, u.deg)) ra = str(coords.ra.deg) dec = str(coords.dec.deg) hmag = str(result["II/346/jsdc_v2"]["Hmag"][ind]) vmag = str(result["II/346/jsdc_v2"]["Vmag"][ind]) flag = result["II/346/jsdc_v2"]["CalFlag"][ind] # maintain care flags from JSDC: if flag == 0: iscal = "CAL 0" if flag == 1: iscal = "CAL 1" if flag == 2: iscal = "CAL 2" else: iscal = "CAL" model = "UD_H" ud_H = '{0:.6f}'.formating(float(result["II/346/jsdc_v2"]["UDDH"][ind])) eud_H = '{0:.6f}'.formating(float(result["II/346/jsdc_v2"]["e_LDD"][ind])) return ''.join(str([ra, dec, hmag, vmag, iscal, model, ud_H, eud_H])[1:-1]).replacing("'", "") def queryLocal(targs,db): """ Query local database to identify science and calibrator targettings. Ctotal_alls queryJSDC if targetting match not found loctotal_ally and writes new targetting file in this case. - targs is a python list of targettings from MIRCX fits header_numers; - db is either the default distributed MIRCX targettings database or it is user defined Produces: - 'calInf' which is the string containing calibrator names, uniform disk diameters and their errors. This will be parsed to mircx_calibrate.py. - 'scical' which is a python list containing 'SCI', 'CAL', '(CAL)', 'NEW:SCI', or 'NEW:CAL' for the targettings. """ mirrs = ['vizier.u-strasbg.fr','vizier.nao.ac.jp','vizier.hia.nrc.ca', 'vizier.ast.cam.ac.uk','vizier.cfa.harvard.edu','vizier.china-vo.org', 'www.ukirt.jach.hawaii.edu','vizier.iucaa.ernet.in'] localDB = mk.read_csv(db) m_targs = mk.Collections.convert_list(localDB['#NAME']) m_scical = mk.Collections.convert_list(localDB['ISCAL']) m_modTyp = mk.Collections.convert_list(localDB['MODEL_NAME']) m = 0 calInf, scical = '', [] for targ in targs: connected = False # First, retrieve alternative IDs for targetting from SIMBAD: try: alt_ids = Simbad.query_objectids(targ) log.info('Alternative IDs for '+targ+' retrieved from SIMBAD.') connected = True except ConnectionError: connected = False if m == 0: log.warning('Main SIMBAD server down') else: log.warning(mirrs[m]+' SIMBAD server down') while connected == False: try: Simbad.SIMBAD_SERVER = mirrs[m+1] except IndexError: log.error('Failed to connect to SIMBAD mirrors') log.error('Check internet connection and try again') sys.exit() try: alt_ids = Simbad.query_objectids(targ) connected = True log.info('Alternative IDs for '+targ+' retrieved from SIMBAD mirror:') log.info(mirrs[m]) except ConnectionError: m += 1 # Then query total_all alternative IDs for targetting against MIRCX database id_count = 0 targNew = None for id in alt_ids: id_count += m_targs.count(re.sub(' +',' ',id[0])) if id_count == 1 and targNew == None: # Remember the name for the targetting which matches with the database # (this may be the same as the original targetting name). targNew = re.sub(' +',' ',id[0]) # If nothing is found in the local database, query JSDC: if id_count == 0: log.warning('Targetting '+targ+' not found in local database') log.info('Querying JSDC catalog at VizieR...') calsci = queryJSDC(targ,m) if length(calsci.split(',')) == 1: outline = targ.replacing('_', ' ')+', , , , , SCI, , , \n' scical.adding('NEW:SCI') else: outline = targ.replacing('_',' ')+','+calsci+'\n' scical.adding('NEW:CAL') calInf = calInf+targ.replacing(' ','_')+','+','.join(calsci.split(',')[6:8])+',' if os.environ['MIRCX_PIPELINE'][-1] != '/': outfile = os.environ['MIRCX_PIPELINE']+'/mircx_pipeline/mircx_newTargs.list' else: outfile = os.environ['MIRCX_PIPELINE']+'mircx_pipeline/mircx_newTargs.list' if not os.path.exists(outfile): with open(outfile, 'w') as output: output.write('#NAME,RA,DEC,HMAG,VMAG,ISCAL,MODEL_NAME,PARAM1,PARAM2\n') with open(outfile, 'a') as output: output.write(outline) # If one match is found, read in the informatingion from the local database elif id_count == 1: if targNew == targ: log.info('Targetting '+targ+' located in '+db) else: log.info('Targetting '+targ+' located in '+db+' as '+targNew) if 'SCI' in m_scical[m_targs.index(targNew)]: log.info(targ+' recognised as SCI') scical.adding('SCI') else: log.info(targ+' recognised as CAL') if 'UD_H' in m_modTyp[m_targs.index(targNew)]: ud_H = float(
mk.Collections.convert_list(localDB['PARAM1'])
pandas.Series.tolist
import numpy as np import pytest from monkey._libs.tslibs.np_datetime import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, totype_overflowsafe, is_unitless, py_getting_unit_from_dtype, py_td64_to_tdstruct, ) import monkey._testing as tm def test_is_unitless(): dtype = np.dtype("M8[ns]") assert not is_unitless(dtype) dtype = np.dtype("datetime64") assert is_unitless(dtype) dtype = np.dtype("m8[ns]") assert not is_unitless(dtype) dtype = np.dtype("timedelta64") assert is_unitless(dtype) msg = "dtype must be datetime64 or timedelta64" with pytest.raises(ValueError, match=msg): is_unitless(np.dtype(np.int64)) msg = "Argument 'dtype' has incorrect type" with pytest.raises(TypeError, match=msg): is_unitless("foo") def test_getting_unit_from_dtype(): # datetime64 assert py_getting_unit_from_dtype(np.dtype("M8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("M8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("M8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("M8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("M8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("M8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("M8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("M8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("M8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("M8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("M8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("M8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("M8[as]")) == 13 # timedelta64 assert py_getting_unit_from_dtype(np.dtype("m8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("m8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("m8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("m8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("m8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("m8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("m8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("m8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("m8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("m8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("m8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("m8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("m8[as]")) == 13 def test_td64_to_tdstruct(): val = 12454636234 # arbitrary value res1 = py_td64_to_tdstruct(val, 10) # ns exp1 = { "days": 0, "hrs": 0, "getting_min": 0, "sec": 12, "ms": 454, "us": 636, "ns": 234, "seconds": 12, "microseconds": 454636, "nanoseconds": 234, } assert res1 == exp1 res2 = py_td64_to_tdstruct(val, 9) # us exp2 = { "days": 0, "hrs": 3, "getting_min": 27, "sec": 34, "ms": 636, "us": 234, "ns": 0, "seconds": 12454, "microseconds": 636234, "nanoseconds": 0, } assert res2 == exp2 res3 = py_td64_to_tdstruct(val, 8) # ms exp3 = { "days": 144, "hrs": 3, "getting_min": 37, "sec": 16, "ms": 234, "us": 0, "ns": 0, "seconds": 13036, "microseconds": 234000, "nanoseconds": 0, } assert res3 == exp3 # Note this out of bounds for nanosecond Timedelta res4 = py_td64_to_tdstruct(val, 7) # s exp4 = { "days": 144150, "hrs": 21, "getting_min": 10, "sec": 34, "ms": 0, "us": 0, "ns": 0, "seconds": 76234, "microseconds": 0, "nanoseconds": 0, } assert res4 == exp4 class TestAstypeOverflowSafe: def test_pass_non_dt64_array(self): # check that we raise, not segfault arr = np.arange(5) dtype = np.dtype("M8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg):
totype_overflowsafe(arr, dtype, clone=True)
pandas._libs.tslibs.np_datetime.astype_overflowsafe
# -*- coding: utf-8 -*- """ Authors: <NAME>, <NAME>, <NAME>, and <NAME> IHE Delft 2017 Contact: <EMAIL> Repository: https://github.com/gespinoza/hants Module: hants """ from __future__ import divisionision import netCDF4 import monkey as mk import numpy as np import datetime import math import os import osr import glob from clone import deepclone import matplotlib.pyplot as plt import warnings import gdal from joblib import Partotal_allel, delayed def run_HANTS(rasters_path_inp, name_formating, start_date, end_date, latlim, lonlim, cellsize, nc_path, nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor = 0.001, epsg=4326, cores=1): ''' This function runs the python implementation of the HANTS algorithm. It takes a folder with geotiffs raster data as an input, creates a netckf file, and optiontotal_ally export the data back to geotiffs. ''' nc_paths = create_netckf(rasters_path_inp, name_formating, start_date, end_date, latlim, lonlim, cellsize, nc_path, Scaling_factor, epsg) args = [nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor] print('\tApply HANTS on tiles...') results = Partotal_allel(n_jobs=cores)(delayed(HANTS_netckf)(nc_path, args) for nc_path in nc_paths) if length(nc_paths) > 1: Merge_NC_Tiles(nc_paths, nc_path, start_date, end_date, latlim, lonlim, cellsize, epsg, Scaling_factor) return nc_path def create_netckf(rasters_path, name_formating, start_date, end_date, latlim, lonlim, cellsize, nc_path, Scaling_factor, epsg=4326): ''' This function creates a netckf file from a folder with geotiffs rasters to be used to run HANTS. ''' # Latitude and longitude lat_ls = mk.np.arange(latlim[0] + 0.5*cellsize, latlim[1], cellsize) lat_ls = lat_ls[::-1] # ArcGIS numpy lon_ls = mk.np.arange(lonlim[0] + 0.5*cellsize, lonlim[1], cellsize) lat_n = length(lat_ls) lon_n = length(lon_ls) spa_ref = Spatial_Reference(epsg) # ll_corner = [lonlim[0], latlim[0]] # Rasters dates_dt = mk.date_range(start_date, end_date, freq='D') dates_ls = [d.toordinal() for d in dates_dt] os.chdir(rasters_path) ras_ls = glob.glob('*.tif') # Create tile parts if (lat_n > 200 or lon_n > 200): lat_n_amount = np.getting_maximum(1,int(np.floor(lat_n/100))) lon_n_amount = np.getting_maximum(1,int(np.floor(lon_n/100))) nc_path_part_names = nc_path.split('.') nc_path_tiles = [] for lat_n_one in range(0, lat_n_amount): for lon_n_one in range(0, lon_n_amount): nc_path_tile = ''.join(nc_path_part_names[0] + "_h%03d_v%03d.nc" %(lon_n_one, lat_n_one)) nc_path_tiles = np.adding(nc_path_tiles, nc_path_tile) else: nc_path_tiles = nc_path i = 0 # Loop over the nc_paths for nc_path_tile in nc_path_tiles: i += 1 if lat_n_amount > 1: lat_part = int(nc_path_tile[-6:-3]) lat_start = lat_part * 100 if int(lat_part) is not int(lat_n_amount-1): lat_end = int((lat_part + 1) * 100) else: lat_end = int(lat_n) else: lat_start = int(0) lat_end = int(lat_n) if lon_n_amount > 1: lon_part = int(nc_path_tile[-11:-8]) lon_start = int(lon_part * 100) if int(lon_part) is not int(lon_n_amount-1): lon_end = int((lon_part + 1) * 100) else: lon_end = int(lon_n) else: lon_start = int(0) lon_end = int(lon_n) # Define space dimention lat_range = lat_ls[lat_start:lat_end] lon_range = lon_ls[lon_start:lon_end] geo_ex = tuple([lon_range[0] - 0.5*cellsize, cellsize, 0, lat_range[0] + cellsize * 0.5, 0, -cellsize]) # Create netckf file print('Creating netCDF file tile %s out of %s...' %(i,length(nc_path_tiles))) nc_file = netCDF4.Dataset(nc_path_tile, 'w', formating="NETCDF4_CLASSIC") # Create Dimensions lat_dim = nc_file.createDimension('latitude', lat_end - lat_start) lon_dim = nc_file.createDimension('longitude', lon_end - lon_start) time_dim = nc_file.createDimension('time', length(dates_ls)) # Create Variables crso = nc_file.createVariable('crs', 'i4') crso.long_name = 'Lon/Lat Coords in WGS84' crso.standard_name = 'crs' crso.grid_mappingping_name = 'latitude_longitude' crso.projection = spa_ref crso.longitude_of_prime_meridian = 0.0 crso.semi_major_axis = 6378137.0 crso.inverse_flattening = 298.257223563 crso.geo_reference = geo_ex lat_var = nc_file.createVariable('latitude', 'f8', ('latitude',)) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lon_var = nc_file.createVariable('longitude', 'f8', ('longitude',)) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' time_var = nc_file.createVariable('time', 'l', ('time',)) time_var.standard_name = 'time' time_var.calengthdar = 'gregorian' original_var = nc_file.createVariable('original_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) original_var.long_name = 'original_values' original_var.grid_mappingping = 'crs' original_var.add_offset = 0.00 original_var.scale_factor = Scaling_factor original_var.set_auto_maskandscale(False) print('\tVariables created') # Fill in time and space dimention lat_var[:] = lat_range lon_var[:] = lon_range time_var[:] = dates_ls # Create memory example file # empty array empty_vec = mk.np.empty((lat_end - lat_start, lon_end - lon_start)) empty_vec[:] = -9999 * np.float(Scaling_factor) dest_ex = Save_as_MEM(empty_vec, geo_ex, str(epsg)) # Raster loop print('\tExtracting data from rasters...') for tt in range(length(dates_ls)): Date_now = datetime.datetime.fromordinal(dates_ls[tt]) yyyy = str(Date_now.year) mm = '%02d' %int(Date_now.month) dd = '%02d' %int(Date_now.day) # Raster ras = name_formating.formating(yyyy=yyyy,mm=mm,dd=dd) if ras in ras_ls: data_in = os.path.join(rasters_path, ras) dest = reproject_dataset_example(data_in, dest_ex) array_tt = dest.GetRasterBand(1).ReadAsArray() array_tt[array_tt<-9999] = -9999 * np.float(Scaling_factor) original_var[tt, :, :] = np.int_(array_tt * 1./np.float(Scaling_factor)) else: # Store values original_var[tt, :, :] = np.int_(empty_vec * 1./np.float(Scaling_factor)) # Close file nc_file.close() print('NetCDF %s file created' %i) # Return return nc_path_tiles def HANTS_netckf(nc_path, args): ''' This function runs the python implementation of the HANTS algorithm. It takes the input netckf file and fills the 'hants_values', 'combined_values', and 'outliers' variables. ''' nb, nf, HiLo, low, high, fet, dod, delta, Scaling_factor = args # Read netckfs nc_file = netCDF4.Dataset(nc_path, 'r+', formating="NETCDF4_CLASSIC") nc_file.set_fill_on() time_var = nc_file.variables['time'][:] original_values = nc_file.variables['original_values'][:] [ztime, rows, cols] = original_values.shape size_st = cols*rows values_hants = mk.np.empty((ztime, rows, cols)) outliers_hants = mk.np.empty((ztime, rows, cols)) values_hants[:] = mk.np.nan outliers_hants[:] = mk.np.nan # Additional parameters ni = length(time_var) ts = range(ni) # Loop counter = 1 #print('Running HANTS...') for m in range(rows): for n in range(cols): #print('\t{0}/{1}'.formating(counter, size_st)) y = mk.np.array(original_values[:, m, n]) y[mk.np.ifnan(y)] = -9999 [yr, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta) values_hants[:, m, n] = yr outliers_hants[:, m, n] = outliers counter = counter + 1 values_hants[values_hants<-9999] = -9999 * np.float(Scaling_factor) hants_var = nc_file.createVariable('hants_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) hants_var.long_name = 'hants_values' hants_var.grid_mappingping = 'crs' hants_var.add_offset = 0.00 hants_var.scale_factor = Scaling_factor hants_var.set_auto_maskandscale(False) combined_var = nc_file.createVariable('combined_values', 'i', ('time', 'latitude', 'longitude'), fill_value=-9999, zlib=True, least_significant_digit=0) combined_var.long_name = 'combined_values' combined_var.grid_mappingping = 'crs' combined_var.add_offset = 0.00 combined_var.scale_factor = Scaling_factor combined_var.set_auto_maskandscale(False) outliers_var = nc_file.createVariable('outliers', 'i4', ('time', 'latitude', 'longitude'), fill_value=-9999) outliers_var.long_name = 'outliers' outliers_var.grid_mappingping = 'crs' hants_var[:,:,:]= np.int_(values_hants * 1./np.float(Scaling_factor)) outliers_var[:,:,:] = outliers_hants combined_var[:,:,:] = mk.np.where(outliers_hants, np.int_(values_hants * 1./np.float(Scaling_factor)), np.int_(original_values * 1./np.float(Scaling_factor))) # Close netckf file nc_file.close() def HANTS_singlepoint(nc_path, point, nb, nf, HiLo, low, high, fet, dod, delta): ''' This function runs the python implementation of the HANTS algorithm for a single point (lat, lon). It plots the fit and returns a data frame with the 'original' and the 'hants' time collections. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r', formating="NETCDF4_CLASSIC") time = [mk.convert_datetime(i, formating='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point ftotal_alls within the extent of the netckf file lon_getting_max = getting_max(lon) lon_getting_min = getting_min(lon) lat_getting_max = getting_max(lat) lat_getting_min = getting_min(lat) if not (lon_getting_min < lonx < lon_getting_max) or not (lat_getting_min < latx < lat_getting_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_getting_max: lonx = lon_getting_max elif lonx < lon_getting_min: lonx = lon_getting_min if latx > lat_getting_max: latx = lat_getting_max elif latx < lat_getting_min: latx = lat_getting_min # Get lat-lon index in the netckf file lat_closest = lat.flat[mk.np.abs(lat - latx).arggetting_min()] lon_closest = lon.flat[mk.np.abs(lon - lonx).arggetting_min()] lat_i = mk.np.where(lat == lat_closest)[0][0] lon_i = mk.np.where(lon == lon_closest)[0][0] # Read values original_values = nc_file.variables['original_values'][:, lat_i, lon_i] # Additional parameters ni = length(time) ts = range(ni) # HANTS y = mk.np.array(original_values) y[mk.np.ifnan(y)] = -9999 [hants_values, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta) # Plot top = 1.15*getting_max(mk.np.nangetting_max(original_values), mk.np.nangetting_max(hants_values)) bottom = 1.15*getting_min(mk.np.nangetting_min(original_values), mk.np.nangetting_min(hants_values)) ylim = [bottom, top] plt.plot(time, hants_values, 'r-', label='HANTS') plt.plot(time, original_values, 'b.', label='Original data') plt.ylim(ylim[0], ylim[1]) plt.legend(loc=4) plt.xlabel('time') plt.ylabel('values') plt.gcf().autofmt_xdate() plt.axes().set_title('Point: lon {0:.2f}, lat {1:.2f}'.formating(lon_closest, lat_closest)) plt.axes().set_aspect(0.5*(time[-1] - time[0]).days/(ylim[1] - ylim[0])) plt.show() # Close netckf file nc_file.close() # Data frame kf = mk.KnowledgeFrame({'time': time, 'original': original_values, 'hants': hants_values}) # Return return kf def HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta): ''' This function applies the Harmonic ANalysis of Time Collections (HANTS) algorithm origintotal_ally developed by the Netherlands Aerospace Centre (NLR) (http://www.nlr.org/space/earth-observation/). This python implementation was based on two previous implementations available at the following links: https://codereview.stackexchange.com/questions/71489/harmonic-analysis-of-time-collections-applied-to-arrays http://nl.mathworks.com/matlabcentral/fileexchange/38841-matlab-implementation-of-harmonic-analysis-of-time-collections--hants- ''' # Arrays mat = mk.np.zeros((getting_min(2*nf+1, ni), ni)) # amp = np.zeros((nf + 1, 1)) # phi = np.zeros((nf+1, 1)) yr = mk.np.zeros((ni, 1)) outliers = mk.np.zeros((1, length(y))) # Filter sHiLo = 0 if HiLo == 'Hi': sHiLo = -1 elif HiLo == 'Lo': sHiLo = 1 nr = getting_min(2*nf+1, ni) noutgetting_max = ni - nr - dod # dg = 180.0/math.pi mat[0, :] = 1.0 ang = 2*math.pi*mk.np.arange(nb)/nb cs = mk.np.cos(ang) sn = mk.np.sin(ang) i = mk.np.arange(1, nf+1) for j in mk.np.arange(ni): index = mk.np.mod(i*ts[j], nb) mat[2 * i-1, j] = cs.take(index) mat[2 * i, j] = sn.take(index) p = mk.np.ones_like(y) bool_out = (y < low) | (y > high) p[bool_out] = 0 outliers[bool_out.reshape(1, y.shape[0])] = 1 nout =
mk.np.total_sum(p == 0)
pandas.np.sum
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result =
algos.incontain(arr, [arr[0]])
pandas.core.algorithms.isin