Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 3,021 Bytes
3feaf61
d2fedb2
8f53717
 
 
 
d2fedb2
 
 
3feaf61
d2fedb2
983baae
8f53717
d2fedb2
 
 
 
 
 
 
 
 
 
 
983baae
 
 
 
 
 
 
 
 
 
 
 
 
 
d2fedb2
 
 
983baae
d2fedb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983baae
d2fedb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983baae
d2fedb2
983baae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
license: mit
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
  data_files: data/*/*.parquet
---

This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).

## Dataset Description



- **Homepage:** https://www.nicklashansen.com/td-mpc/
- **Paper:** https://arxiv.org/abs/2203.04955
- **License:** mit

## Dataset Structure

[meta/info.json](meta/info.json):
```json
{
    "codebase_version": "v2.0",
    "robot_type": "unknown",
    "total_episodes": 800,
    "total_frames": 20000,
    "total_tasks": 1,
    "total_videos": 0,
    "total_chunks": 1,
    "chunks_size": 1000,
    "fps": 15,
    "splits": {
        "train": "0:800"
    },
    "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
    "video_path": null,
    "features": {
        "observation.image": {
            "dtype": "image",
            "shape": [
                84,
                84,
                3
            ],
            "names": [
                "height",
                "width",
                "channel"
            ]
        },
        "observation.state": {
            "dtype": "float32",
            "shape": [
                4
            ],
            "names": {
                "motors": [
                    "motor_0",
                    "motor_1",
                    "motor_2",
                    "motor_3"
                ]
            }
        },
        "action": {
            "dtype": "float32",
            "shape": [
                3
            ],
            "names": {
                "motors": [
                    "motor_0",
                    "motor_1",
                    "motor_2"
                ]
            }
        },
        "episode_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "frame_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "timestamp": {
            "dtype": "float32",
            "shape": [
                1
            ],
            "names": null
        },
        "next.reward": {
            "dtype": "float32",
            "shape": [
                1
            ],
            "names": null
        },
        "next.done": {
            "dtype": "bool",
            "shape": [
                1
            ],
            "names": null
        },
        "index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "task_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        }
    }
}
```


## Citation

**BibTeX:**

```bibtex

@inproceedings{Hansen2022tdmpc,
    title={Temporal Difference Learning for Model Predictive Control},
    author={Nicklas Hansen and Xiaolong Wang and Hao Su},
    booktitle={ICML},
    year={2022}
}

```