MultiMed / README.md
leduckhai's picture
Update README.md
ae6bba9 verified
---
viewer: true
dataset_info:
- config_name: Chinese
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 182566135.142
num_examples: 1242
- name: eval
num_bytes: 12333509.0
num_examples: 91
- name: test
num_bytes: 33014034.0
num_examples: 225
download_size: 227567289
dataset_size: 227913678.142
- config_name: English
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 2789314997.152
num_examples: 25512
- name: eval
num_bytes: 299242087.632
num_examples: 2816
- name: test
num_bytes: 553873172.749
num_examples: 4751
download_size: 3627859275
dataset_size: 3642430257.533
- config_name: French
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 168642145.231
num_examples: 1403
- name: eval
num_bytes: 5164908.0
num_examples: 42
- name: test
num_bytes: 42780388.0
num_examples: 344
download_size: 216118671
dataset_size: 216587441.231
- config_name: German
features:
- name: audio
dtype: audio
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 181312217.029
num_examples: 1443
- name: test
num_bytes: 137762006.256
num_examples: 1091
- name: eval
num_bytes: 35475098.0
num_examples: 287
download_size: 354494147
dataset_size: 354549321.285
- config_name: Vietnamese
features:
- name: audio
dtype: audio
- name: text
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 56584901.453
num_examples: 2773
- name: test
num_bytes: 69598082.31
num_examples: 3437
- name: dev
num_bytes: 57617298.896
num_examples: 2912
download_size: 181789393
dataset_size: 183800282.659
configs:
- config_name: Chinese
data_files:
- split: train
path: Chinese/train-*
- split: eval
path: Chinese/eval-*
- split: test
path: Chinese/test-*
- config_name: English
data_files:
- split: train
path: English/train-*
- split: eval
path: English/eval-*
- split: test
path: English/test-*
- config_name: French
data_files:
- split: train
path: French/train-*
- split: eval
path: French/eval-*
- split: test
path: French/test-*
- config_name: German
data_files:
- split: train
path: German/train-*
- split: test
path: German/test-*
- split: eval
path: German/eval-*
- config_name: Vietnamese
data_files:
- split: train
path: Vietnamese/train-*
- split: test
path: Vietnamese/test-*
- split: dev
path: Vietnamese/dev-*
---
# MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder
## Description:
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants.
This technology enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics.
In this work, we introduce *MultiMed*, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset.
To our best knowledge, *MultiMed* stands as **the largest and the first multilingual medical ASR dataset**, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes.
Please cite this paper: [https://arxiv.org/abs/2409.14074](https://arxiv.org/abs/2409.14074)
@inproceedings{le2024multimed,
title={MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder},
author={Le-Duc, Khai and Phan, Phuc and Pham, Tan-Hanh and Tat, Bach Phan and Ngo, Minh-Huong and Hy, Truong-Son},
journal={arXiv preprint arXiv:2409.14074},
year={2024}
}
To load labeled data, please refer to our [HuggingFace](https://huggingface.co/datasets/leduckhai/MultiMed), [Paperswithcodes](https://paperswithcode.com/dataset/multimed).
## Contact:
If any links are broken, please contact me for fixing!
Thanks [Phan Phuc](https://www.linkedin.com/in/pphuc/) for dataset viewer <3
```
Le Duc Khai
University of Toronto, Canada
Email: [email protected]
GitHub: https://github.com/leduckhai
```