MultiMed / README.md
leduckhai's picture
Update README.md
ae6bba9 verified
metadata
viewer: true
dataset_info:
  - config_name: Chinese
    features:
      - name: audio
        dtype:
          audio:
            sampling_rate: 16000
      - name: text
        dtype: string
      - name: duration
        dtype: float64
    splits:
      - name: train
        num_bytes: 182566135.142
        num_examples: 1242
      - name: eval
        num_bytes: 12333509
        num_examples: 91
      - name: test
        num_bytes: 33014034
        num_examples: 225
    download_size: 227567289
    dataset_size: 227913678.142
  - config_name: English
    features:
      - name: audio
        dtype:
          audio:
            sampling_rate: 16000
      - name: text
        dtype: string
      - name: duration
        dtype: float64
    splits:
      - name: train
        num_bytes: 2789314997.152
        num_examples: 25512
      - name: eval
        num_bytes: 299242087.632
        num_examples: 2816
      - name: test
        num_bytes: 553873172.749
        num_examples: 4751
    download_size: 3627859275
    dataset_size: 3642430257.533
  - config_name: French
    features:
      - name: audio
        dtype:
          audio:
            sampling_rate: 16000
      - name: text
        dtype: string
      - name: duration
        dtype: float64
    splits:
      - name: train
        num_bytes: 168642145.231
        num_examples: 1403
      - name: eval
        num_bytes: 5164908
        num_examples: 42
      - name: test
        num_bytes: 42780388
        num_examples: 344
    download_size: 216118671
    dataset_size: 216587441.231
  - config_name: German
    features:
      - name: audio
        dtype: audio
      - name: text
        dtype: string
      - name: duration
        dtype: float64
    splits:
      - name: train
        num_bytes: 181312217.029
        num_examples: 1443
      - name: test
        num_bytes: 137762006.256
        num_examples: 1091
      - name: eval
        num_bytes: 35475098
        num_examples: 287
    download_size: 354494147
    dataset_size: 354549321.285
  - config_name: Vietnamese
    features:
      - name: audio
        dtype: audio
      - name: text
        dtype: string
      - name: duration
        dtype: float64
    splits:
      - name: train
        num_bytes: 56584901.453
        num_examples: 2773
      - name: test
        num_bytes: 69598082.31
        num_examples: 3437
      - name: dev
        num_bytes: 57617298.896
        num_examples: 2912
    download_size: 181789393
    dataset_size: 183800282.659
configs:
  - config_name: Chinese
    data_files:
      - split: train
        path: Chinese/train-*
      - split: eval
        path: Chinese/eval-*
      - split: test
        path: Chinese/test-*
  - config_name: English
    data_files:
      - split: train
        path: English/train-*
      - split: eval
        path: English/eval-*
      - split: test
        path: English/test-*
  - config_name: French
    data_files:
      - split: train
        path: French/train-*
      - split: eval
        path: French/eval-*
      - split: test
        path: French/test-*
  - config_name: German
    data_files:
      - split: train
        path: German/train-*
      - split: test
        path: German/test-*
      - split: eval
        path: German/eval-*
  - config_name: Vietnamese
    data_files:
      - split: train
        path: Vietnamese/train-*
      - split: test
        path: Vietnamese/test-*
      - split: dev
        path: Vietnamese/dev-*

MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder

Description:

Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset. To our best knowledge, MultiMed stands as the largest and the first multilingual medical ASR dataset, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes.

Please cite this paper: https://arxiv.org/abs/2409.14074

@inproceedings{le2024multimed,
  title={MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder},
  author={Le-Duc, Khai and Phan, Phuc and Pham, Tan-Hanh and Tat, Bach Phan and Ngo, Minh-Huong and Hy, Truong-Son},
  journal={arXiv preprint arXiv:2409.14074},
  year={2024}
}

To load labeled data, please refer to our HuggingFace, Paperswithcodes.

Contact:

If any links are broken, please contact me for fixing!

Thanks Phan Phuc for dataset viewer <3

Le Duc Khai
University of Toronto, Canada
Email: [email protected]
GitHub: https://github.com/leduckhai