|
--- |
|
license: mit |
|
dataset_info: |
|
- config_name: classification |
|
features: |
|
- name: img_path |
|
dtype: string |
|
- name: bowel |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": injury |
|
- name: extravasation |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": injury |
|
- name: kidney |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": low |
|
"2": high |
|
- name: liver |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": low |
|
"2": high |
|
- name: spleen |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": low |
|
"2": high |
|
- name: any_injury |
|
dtype: bool |
|
- name: metadata |
|
struct: |
|
- name: series_id |
|
dtype: int32 |
|
- name: patient_id |
|
dtype: int32 |
|
- name: incomplete_organ |
|
dtype: bool |
|
- name: aortic_hu |
|
dtype: float32 |
|
- name: pixel_representation |
|
dtype: int32 |
|
- name: bits_allocated |
|
dtype: int32 |
|
- name: bits_stored |
|
dtype: int32 |
|
splits: |
|
- name: train |
|
num_bytes: 802231 |
|
num_examples: 4239 |
|
- name: test |
|
num_bytes: 89326 |
|
num_examples: 472 |
|
download_size: 96729254048 |
|
dataset_size: 891557 |
|
- config_name: classification-with-mask |
|
features: |
|
- name: img_path |
|
dtype: string |
|
- name: seg_path |
|
dtype: string |
|
- name: bowel |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": injury |
|
- name: extravasation |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": injury |
|
- name: kidney |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": low |
|
"2": high |
|
- name: liver |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": low |
|
"2": high |
|
- name: spleen |
|
dtype: |
|
class_label: |
|
names: |
|
"0": healthy |
|
"1": low |
|
"2": high |
|
- name: any_injury |
|
dtype: bool |
|
- name: metadata |
|
struct: |
|
- name: series_id |
|
dtype: int32 |
|
- name: patient_id |
|
dtype: int32 |
|
- name: incomplete_organ |
|
dtype: bool |
|
- name: aortic_hu |
|
dtype: float32 |
|
- name: pixel_representation |
|
dtype: int32 |
|
- name: bits_allocated |
|
dtype: int32 |
|
- name: bits_stored |
|
dtype: int32 |
|
splits: |
|
- name: train |
|
num_bytes: 58138 |
|
num_examples: 185 |
|
- name: test |
|
num_bytes: 6600 |
|
num_examples: 21 |
|
download_size: 4196738529 |
|
dataset_size: 64738 |
|
- config_name: segmentation |
|
features: |
|
- name: img_path |
|
dtype: string |
|
- name: seg_path |
|
dtype: string |
|
- name: metadata |
|
struct: |
|
- name: series_id |
|
dtype: int32 |
|
- name: patient_id |
|
dtype: int32 |
|
- name: incomplete_organ |
|
dtype: bool |
|
- name: aortic_hu |
|
dtype: float32 |
|
- name: pixel_representation |
|
dtype: int32 |
|
- name: bits_allocated |
|
dtype: int32 |
|
- name: bits_stored |
|
dtype: int32 |
|
splits: |
|
- name: train |
|
num_bytes: 50714 |
|
num_examples: 185 |
|
- name: test |
|
num_bytes: 5757 |
|
num_examples: 21 |
|
download_size: 4196631843 |
|
dataset_size: 56471 |
|
task_categories: |
|
- image-classification |
|
- image-segmentation |
|
pretty_name: RSNA 2023 Abdominal Trauma Detection (Preprocessed) |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# Dataset Card for RSNA 2023 Abdominal Trauma Detection (Preprocessed) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection](https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection) |
|
- **Source:** [https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data) |
|
|
|
### Dataset Summary |
|
|
|
This dataset is the preprocessed version of the dataset from [RSNA 2023 Abdominal Trauma Detection Kaggle Competition](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data). |
|
|
|
It is tailored for segmentation and classification tasks. It contains 3 different configs as described below: |
|
|
|
- **classification**: |
|
- 4711 instances where each instance includes a CT scan in NIfTI format, target labels, and its relevant metadata. |
|
- **segmentation**: |
|
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata. |
|
- **classification-with-mask**: |
|
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels, and its relevant metadata. |
|
|
|
All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size. |
|
|
|
### Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Classification dataset |
|
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=True) # "classification" is the default configuration |
|
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True) # download dataset on-demand and in-memory (no caching) |
|
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=False) # download dataset and cache locally (~90.09 GiB) |
|
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True, test_size=0.05, random_state=42) # specify split size for train-test split |
|
|
|
# Classification dataset with segmentation masks |
|
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=True) # download dataset on-demand and in-memory (no caching) |
|
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False) # download dataset and cache locally (~3.91 GiB) |
|
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False, test_size=0.05, random_state=42) # specify split size for train-test split |
|
|
|
# Segmentation dataset |
|
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True) # download dataset on-demand and in-memory (no caching) |
|
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=False) # download dataset and cache locally (~3.91 GiB) |
|
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True, test_size=0.1, random_state=42) # specify split size for train-test split |
|
|
|
# Get the dataset splits |
|
train_rsna_cls_ds = rsna_cls_ds["train"]; test_rsna_cls_ds = rsna_cls_ds["test"] |
|
train_rsna_clsmask_ds = rsna_clsmask_ds["train"]; test_rsna_clsmask_ds = rsna_clsmask_ds["test"] |
|
train_rsna_seg_ds = rsna_seg_ds["train"]; test_rsna_seg_ds = rsna_seg_ds["test"] |
|
|
|
# Tip: Download speed up with multiprocessing |
|
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=False, num_proc=8) # num_proc: num of cpu core used for loading the dataset |
|
``` |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
#### Configuration 1: classification |
|
|
|
- **Size of downloaded dataset files:** 90.09 GiB |
|
|
|
An example of an instance in the 'classification' configuration looks as follows: |
|
|
|
```json |
|
{ |
|
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/25899/21872.nii.gz", |
|
"bowel": 0, |
|
"extravasation": 0, |
|
"kidney": 0, |
|
"liver": 0, |
|
"spleen": 0, |
|
"any_injury": false, |
|
"metadata": { |
|
"series_id": 21872, |
|
"patient_id": 25899, |
|
"incomplete_organ": false, |
|
"aortic_hu": 113.0, |
|
"pixel_representation": 0, |
|
"bits_allocated": 16, |
|
"bits_stored": 12 |
|
} |
|
} |
|
``` |
|
|
|
#### Configuration 2: segmentation |
|
|
|
- **Size of downloaded dataset files:** 3.91 GiB |
|
|
|
An example of an instance in the 'segmentation' configuration looks as follows: |
|
|
|
```json |
|
{ |
|
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz", |
|
"seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz", |
|
"metadata": { |
|
"series_id": 4622, |
|
"patient_id": 4791, |
|
"incomplete_organ": false, |
|
"aortic_hu": 223.0, |
|
"pixel_representation": 1, |
|
"bits_allocated": 16, |
|
"bits_stored": 16 |
|
} |
|
} |
|
``` |
|
|
|
#### Configuration 3: classification-with-mask |
|
|
|
- **Size of downloaded dataset files:** 3.91 GiB |
|
|
|
An example of an instance in the 'classification-with-mask' configuration looks as follows: |
|
|
|
```json |
|
{ |
|
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz", |
|
"seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz", |
|
"bowel": 0, |
|
"extravasation": 0, |
|
"kidney": 0, |
|
"liver": 1, |
|
"spleen": 1, |
|
"any_injury": true, |
|
"metadata": { |
|
"series_id": 4622, |
|
"patient_id": 4791, |
|
"incomplete_organ": false, |
|
"aortic_hu": 223.0, |
|
"pixel_representation": 1, |
|
"bits_allocated": 16, |
|
"bits_stored": 16 |
|
} |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
The data fields for all configurations are as follows: |
|
|
|
- `img_path`: a `string` feature representing the path to the CT scan in NIfTI format. |
|
- `seg_path`: a `string` feature representing the path to the segmentation mask in NIfTI format (only for 'segmentation' and 'classification-with-mask' configurations). |
|
- `bowel`, `extravasation`, `kidney`, `liver`, `spleen`: Class label features indicating the condition of respective organs. |
|
- `any_injury`: a `bool` feature indicating the presence of any injury. |
|
- `metadata`: a dictionary feature containing metadata information with the following fields: |
|
- `series_id`: an `int32` feature. |
|
- `patient_id`: an `int32` feature. |
|
- `incomplete_organ`: a `bool` feature. |
|
- `aortic_hu`: a `float32` feature. |
|
- `pixel_representation`: an `int32` feature. |
|
- `bits_allocated`: an `int32` feature. |
|
- `bits_stored`: an `int32` feature. |
|
|
|
### Data Splits |
|
|
|
Default split: |
|
|
|
- 0.9:0.1 with random_state = 42 |
|
|
|
| Configuration Name | Train (n_samples) | Test (n_samples) | |
|
| ------------------------ | ----------------: | ---------------: | |
|
| classification | 4239 | 472 | |
|
| segmentation | 185 | 21 | |
|
| classification-with-mask | 185 | 21 | |
|
|
|
Modify the split proportion: |
|
|
|
```python |
|
rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42) |
|
``` |
|
|
|
|
|
## Additional Information |
|
|
|
### Citation Information |
|
|
|
- Preprocessed dataset: |
|
|
|
``` |
|
@InProceedings{huggingface:dataset, |
|
title = {RSNA 2023 Abdominal Trauma Detection Dataset (Preprocessed)}, |
|
author={Hong Jia Herng}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
- Original dataset: |
|
|
|
``` |
|
@misc{rsna-2023-abdominal-trauma-detection, |
|
author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan}, |
|
title = {RSNA 2023 Abdominal Trauma Detection}, |
|
publisher = {Kaggle}, |
|
year = {2023}, |
|
url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection} |
|
} |
|
``` |
|
|