File size: 12,061 Bytes
cd917e2
 
0dc5539
6031cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313c29d
6031cf5
 
313c29d
 
6031cf5
cd917e2
313c29d
 
 
74d07cc
 
 
 
 
313c29d
 
6031cf5
313c29d
 
6031cf5
313c29d
6031cf5
313c29d
6031cf5
313c29d
6031cf5
313c29d
 
 
7a6945d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313c29d
 
 
 
 
 
6031cf5
313c29d
 
6031cf5
313c29d
 
6031cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313c29d
 
 
 
 
6031cf5
313c29d
 
6031cf5
313c29d
 
6031cf5
 
 
 
 
 
 
 
 
 
 
313c29d
 
 
 
 
6031cf5
313c29d
 
6031cf5
313c29d
 
6031cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313c29d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6031cf5
 
313c29d
 
6031cf5
 
 
 
 
313c29d
 
6031cf5
313c29d
 
 
 
7a6945d
 
 
313c29d
 
 
6031cf5
 
313c29d
 
 
 
 
 
6031cf5
313c29d
6031cf5
 
313c29d
 
 
 
 
 
 
6031cf5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
---
license: mit
dataset_info:
  - config_name: classification
    features:
      - name: img_path
        dtype: string
      - name: bowel
        dtype:
          class_label:
            names:
              "0": healthy
              "1": injury
      - name: extravasation
        dtype:
          class_label:
            names:
              "0": healthy
              "1": injury
      - name: kidney
        dtype:
          class_label:
            names:
              "0": healthy
              "1": low
              "2": high
      - name: liver
        dtype:
          class_label:
            names:
              "0": healthy
              "1": low
              "2": high
      - name: spleen
        dtype:
          class_label:
            names:
              "0": healthy
              "1": low
              "2": high
      - name: any_injury
        dtype: bool
      - name: metadata
        struct:
          - name: series_id
            dtype: int32
          - name: patient_id
            dtype: int32
          - name: incomplete_organ
            dtype: bool
          - name: aortic_hu
            dtype: float32
          - name: pixel_representation
            dtype: int32
          - name: bits_allocated
            dtype: int32
          - name: bits_stored
            dtype: int32
    splits:
      - name: train
        num_bytes: 802231
        num_examples: 4239
      - name: test
        num_bytes: 89326
        num_examples: 472
    download_size: 96729254048
    dataset_size: 891557
  - config_name: classification-with-mask
    features:
      - name: img_path
        dtype: string
      - name: seg_path
        dtype: string
      - name: bowel
        dtype:
          class_label:
            names:
              "0": healthy
              "1": injury
      - name: extravasation
        dtype:
          class_label:
            names:
              "0": healthy
              "1": injury
      - name: kidney
        dtype:
          class_label:
            names:
              "0": healthy
              "1": low
              "2": high
      - name: liver
        dtype:
          class_label:
            names:
              "0": healthy
              "1": low
              "2": high
      - name: spleen
        dtype:
          class_label:
            names:
              "0": healthy
              "1": low
              "2": high
      - name: any_injury
        dtype: bool
      - name: metadata
        struct:
          - name: series_id
            dtype: int32
          - name: patient_id
            dtype: int32
          - name: incomplete_organ
            dtype: bool
          - name: aortic_hu
            dtype: float32
          - name: pixel_representation
            dtype: int32
          - name: bits_allocated
            dtype: int32
          - name: bits_stored
            dtype: int32
    splits:
      - name: train
        num_bytes: 58138
        num_examples: 185
      - name: test
        num_bytes: 6600
        num_examples: 21
    download_size: 4196738529
    dataset_size: 64738
  - config_name: segmentation
    features:
      - name: img_path
        dtype: string
      - name: seg_path
        dtype: string
      - name: metadata
        struct:
          - name: series_id
            dtype: int32
          - name: patient_id
            dtype: int32
          - name: incomplete_organ
            dtype: bool
          - name: aortic_hu
            dtype: float32
          - name: pixel_representation
            dtype: int32
          - name: bits_allocated
            dtype: int32
          - name: bits_stored
            dtype: int32
    splits:
      - name: train
        num_bytes: 50714
        num_examples: 185
      - name: test
        num_bytes: 5757
        num_examples: 21
    download_size: 4196631843
    dataset_size: 56471
task_categories:
  - image-classification
  - image-segmentation
pretty_name: RSNA 2023 Abdominal Trauma Detection (Preprocessed)
size_categories:
  - 1K<n<10K
---

# Dataset Card for RSNA 2023 Abdominal Trauma Detection (Preprocessed)

## Dataset Description

- **Homepage:** [https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection](https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection)
- **Source:** [https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data)

### Dataset Summary

This dataset is the preprocessed version of the dataset from [RSNA 2023 Abdominal Trauma Detection Kaggle Competition](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data).

It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:

- **classification**:
  - 4711 instances where each instance includes a CT scan in NIfTI format, target labels, and its relevant metadata.
- **segmentation**:
  - 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata.
- **classification-with-mask**:
  - 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels, and its relevant metadata.

All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.

### Usage

```python
from datasets import load_dataset

# Classification dataset
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=True) # "classification" is the default configuration
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True) # download dataset on-demand and in-memory (no caching)
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=False) # download dataset and cache locally (~90.09 GiB)
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True, test_size=0.05, random_state=42) # specify split size for train-test split

# Classification dataset with segmentation masks
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=True) # download dataset on-demand and in-memory (no caching)
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False) # download dataset and cache locally (~3.91 GiB)
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False, test_size=0.05, random_state=42) # specify split size for train-test split

# Segmentation dataset
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True) # download dataset on-demand and in-memory (no caching)
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=False) # download dataset and cache locally (~3.91 GiB)
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True, test_size=0.1, random_state=42) # specify split size for train-test split

# Get the dataset splits
train_rsna_cls_ds = rsna_cls_ds["train"]; test_rsna_cls_ds = rsna_cls_ds["test"]
train_rsna_clsmask_ds = rsna_clsmask_ds["train"]; test_rsna_clsmask_ds = rsna_clsmask_ds["test"]
train_rsna_seg_ds = rsna_seg_ds["train"]; test_rsna_seg_ds = rsna_seg_ds["test"]

# Tip: Download speed up with multiprocessing
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=False, num_proc=8) # num_proc: num of cpu core used for loading the dataset
```

## Dataset Structure

### Data Instances

#### Configuration 1: classification

- **Size of downloaded dataset files:** 90.09 GiB

An example of an instance in the 'classification' configuration looks as follows:

```json
{
  "img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/25899/21872.nii.gz",
  "bowel": 0,
  "extravasation": 0,
  "kidney": 0,
  "liver": 0,
  "spleen": 0,
  "any_injury": false,
  "metadata": {
    "series_id": 21872,
    "patient_id": 25899,
    "incomplete_organ": false,
    "aortic_hu": 113.0,
    "pixel_representation": 0,
    "bits_allocated": 16,
    "bits_stored": 12
  }
}
```

#### Configuration 2: segmentation

- **Size of downloaded dataset files:** 3.91 GiB

An example of an instance in the 'segmentation' configuration looks as follows:

```json
{
  "img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
  "seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
  "metadata": {
    "series_id": 4622,
    "patient_id": 4791,
    "incomplete_organ": false,
    "aortic_hu": 223.0,
    "pixel_representation": 1,
    "bits_allocated": 16,
    "bits_stored": 16
  }
}
```

#### Configuration 3: classification-with-mask

- **Size of downloaded dataset files:** 3.91 GiB

An example of an instance in the 'classification-with-mask' configuration looks as follows:

```json
{
  "img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
  "seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
  "bowel": 0,
  "extravasation": 0,
  "kidney": 0,
  "liver": 1,
  "spleen": 1,
  "any_injury": true,
  "metadata": {
    "series_id": 4622,
    "patient_id": 4791,
    "incomplete_organ": false,
    "aortic_hu": 223.0,
    "pixel_representation": 1,
    "bits_allocated": 16,
    "bits_stored": 16
  }
}
```

### Data Fields

The data fields for all configurations are as follows:

- `img_path`: a `string` feature representing the path to the CT scan in NIfTI format.
- `seg_path`: a `string` feature representing the path to the segmentation mask in NIfTI format (only for 'segmentation' and 'classification-with-mask' configurations).
- `bowel`, `extravasation`, `kidney`, `liver`, `spleen`: Class label features indicating the condition of respective organs.
- `any_injury`: a `bool` feature indicating the presence of any injury.
- `metadata`: a dictionary feature containing metadata information with the following fields:
  - `series_id`: an `int32` feature.
  - `patient_id`: an `int32` feature.
  - `incomplete_organ`: a `bool` feature.
  - `aortic_hu`: a `float32` feature.
  - `pixel_representation`: an `int32` feature.
  - `bits_allocated`: an `int32` feature.
  - `bits_stored`: an `int32` feature.

### Data Splits

Default split:

- 0.9:0.1 with random_state = 42

| Configuration Name       | Train (n_samples) | Test (n_samples) |
| ------------------------ | ----------------: | ---------------: |
| classification           |              4239 |              472 |
| segmentation             |               185 |               21 |
| classification-with-mask |               185 |               21 |

Modify the split proportion:

```python
rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
```


## Additional Information

### Citation Information

- Preprocessed dataset:

```
@InProceedings{huggingface:dataset,
title = {RSNA 2023 Abdominal Trauma Detection Dataset (Preprocessed)},
author={Hong Jia Herng},
year={2023}
}
```

- Original dataset:

```
@misc{rsna-2023-abdominal-trauma-detection,
    author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
    title = {RSNA 2023 Abdominal Trauma Detection},
    publisher = {Kaggle},
    year = {2023},
    url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
}
```