Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Formats:
parquet
Sub-tasks:
semantic-segmentation
Languages:
English
Size:
10K - 100K
License:
File size: 3,137 Bytes
556fc16 7d63c97 4ca0aeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
language:
- en
license: cc0-1.0
license_name: cc0-1.0
license_link: https://creativecommons.org/publicdomain/zero/1.0/
tags:
- computer-vision
- autonomous-driving
- mars
- semantic-segmentation
- robotics
- space
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- found
language_details: en-US
pretty_name: AI4MARS - Terrain-Aware Autonomous Driving on Mars
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
paperswithcode_id: ai4mars
dataset_info:
features:
- name: image
dtype: image
- name: label_mask
dtype: image
- name: rover_mask
dtype: image
- name: range_mask
dtype: image
- name: has_masks
dtype: bool
- name: has_labels
dtype: bool
splits:
- name: train
num_bytes: 6187608143.0
num_examples: 18130
- name: test_min1
num_bytes: 109623610.0
num_examples: 322
- name: test_min2
num_bytes: 109462392.0
num_examples: 322
- name: test_min3
num_bytes: 109183059.0
num_examples: 322
download_size: 6465888396
dataset_size: 6515877204.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test_min1
path: data/test_min1-*
- split: test_min2
path: data/test_min2-*
- split: test_min3
path: data/test_min3-*
---
Taken from the kaggle repository [here](https://www.kaggle.com/datasets/yash92328/ai4mars-terrainaware-autonomous-driving-on-mars).
# AI4Mars Dataset
A dataset for terrain classification on Mars, specifically focused on Curiosity (MSL) rover data.
## Dataset Structure
The dataset contains high-resolution Mars surface images with corresponding semantic segmentation masks for terrain classification.
### Features
- **image**: Original EDR (Engineering Data Record) images from Mars
- **label_mask**: Semantic segmentation masks with terrain labels
- **rover_mask**: Binary masks (1 = rover visible)
- **range_mask**: Binary distance masks (1 = beyond 30m)
- **has_masks**: Boolean indicating presence of rover and range masks
- **has_labels**: Boolean indicating presence of segmentation labels
### Labels
Terrain classes are encoded as RGB values in the segmentation masks:
- `(0,0,0)`: Soil
- `(1,1,1)`: Bedrock
- `(2,2,2)`: Sand
- `(3,3,3)`: Big rock
- `(255,255,255)`: No label/null
### Data Splits
- **Train**: Crowdsourced labels with:
- Minimum 3 labeler agreement
- 2/3 agreement threshold per pixel
- 30m distance cutoff
- Rover regions masked out
- **Test**: Expert-validated labels with:
- 100% agreement requirement
- Three versions available based on labeler agreement thresholds
### Image Products
All image products share matching base names with different extensions:
1. **EDR Images** (.JPG): Raw Mars surface images
2. **MXY Files** (.png): Rover mask products
3. **RNG Files** (.png): 30-meter range mask products
## Notes
- Current version (0.1) only includes Curiosity (MSL) data
- MER (Mars Exploration Rover) data processing is work in progress
- Range masks are derived from PDS (Planetary Data System) products |