Datasets:
File size: 5,386 Bytes
f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 018183b f3bec73 d5a13f8 f3bec73 018183b f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 018183b f3bec73 018183b f3bec73 018183b f3bec73 018183b f3bec73 018183b f3bec73 018183b f3bec73 d5a13f8 018183b f3bec73 018183b f3bec73 8bed3c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
def get_file_list():
file_list = []
with open("./file_list.json") as f:
file_list = json.load(f)
return file_list
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Ember2018},
author=Christian Williams
},
year={2023}
}
"""
_DESCRIPTION = """\
This dataset is from the EMBER 2018 Malware Analysis dataset
"""
_HOMEPAGE = "https://github.com/elastic/ember"
_LICENSE = ""
_URLS = {
"text_classification": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/",
"test": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/*_train_1.jsonl"
}
class EMBERConfig(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="text_classification", version=VERSION, description="This part of my dataset covers text classification"),
datasets.BuilderConfig(name="test", version=VERSION, description="This part of my dataset is for testing")
]
DEFAULT_CONFIG_NAME = "text_classification"
def _info(self):
if self.config.name == "text_classification":
features = datasets.Features(
{
"x": datasets.features.Sequence(
datasets.Value("float32")
),
"y": datasets.Value("float32"),
"appeared": datasets.Value("string"),
"avclass": datasets.Value("string"),
"label": datasets.Value("string"),
"subset": datasets.Value("string"),
"sha256": datasets.Value("string")
}
)
else:
features = datasets.Features(
{
"x": datasets.features.Sequence(
datasets.Value("float32")
),
"y": datasets.Value("float32"),
"appeared": datasets.Value("string"),
"avclass": datasets.Value("string"),
"label": datasets.Value("string"),
"subset": datasets.Value("string"),
"sha256": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
# "*_train_*.jsonl"
# "*_test_*.jsonl"
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": os.path.join(data_dir, "*_train_*.jsonl"),
"split": "train",
},
),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "filepaths": os.path.join(data_dir, "*_valid_*.jsonl"),
# "split": "valid",
# },
# ),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": os.path.join(data_dir, "*_test_*.jsonl"),
"split": "test"
},
)
]
def _generate_examples(self, filepaths, split):
key = 0
for id, filepath in enumerate(filepaths[split]):
with open(filepath[id], encoding="utf-8") as f:
data_list = json.load(f)
for data in data_list:
key += 1
if self.config.name == "text_classification":
yield key, {
"x": data["x"],
"y": data["y"],
"appeared": data["appeared"],
"avclass": data["avclass"],
"label": data["label"],
"subset": data["subset"],
"sha256": data["sha256"]
}
else:
yield key, {
"x": data["x"],
"y": data["y"],
"appeared": data["appeared"],
"avclass": data["avclass"],
"label": data["label"],
"subset": data["subset"],
"sha256": data["sha256"]
}
|