cw1521 commited on
Commit
f3bec73
1 Parent(s): 35170f1

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +3 -0
  2. build_dataset.py +196 -0
  3. data.zip +3 -0
  4. file_list.json +1 -0
README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # EMBER 2018 Malware Analysis Dataset<br>
2
+
3
+ Visit https://github.com/elastic/ember for more information on the dataset
build_dataset.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import json
17
+ import os
18
+
19
+ import datasets
20
+
21
+
22
+ def get_file_list():
23
+ file_list = []
24
+ with open("./file_list.json") as f:
25
+ file_list = json.load(f)
26
+ return file_list
27
+
28
+ # Find for instance the citation on arxiv or on the dataset repo/website
29
+ _CITATION = """\
30
+ @InProceedings{huggingface:dataset,
31
+ title = {Ember2018},
32
+ author={huggingface, Inc.
33
+ },
34
+ year={2023}
35
+ }
36
+ """
37
+
38
+ # TODO: Add description of the dataset here
39
+ # You can copy an official description
40
+ _DESCRIPTION = """\
41
+ This new dataset is from the EMBER 2018 dataset
42
+ """
43
+
44
+ # TODO: Add a link to an official homepage for the dataset here
45
+ _HOMEPAGE = "https://github.com/elastic/ember"
46
+
47
+ # TODO: Add the licence for the dataset here if you can find it
48
+ _LICENSE = ""
49
+
50
+ # TODO: Add link to the official dataset URLs here
51
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
+ _URLS = {
54
+ "first_domain": "./data.zip"
55
+ }
56
+
57
+
58
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
59
+ class NewDataset(datasets.GeneratorBasedBuilder):
60
+ """TODO: Short description of my dataset."""
61
+
62
+ VERSION = datasets.Version("1.1.0")
63
+
64
+ # This is an example of a dataset with multiple configurations.
65
+ # If you don't want/need to define several sub-sets in your dataset,
66
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
67
+
68
+ # If you need to make complex sub-parts in the datasets with configurable options
69
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
70
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
71
+
72
+ # You will be able to load one or the other configurations in the following list with
73
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
74
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
75
+ BUILDER_CONFIGS = [
76
+ datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
77
+ datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
78
+ ]
79
+
80
+ DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
81
+
82
+ def _info(self):
83
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
84
+ if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
85
+ features = datasets.Features(
86
+ {
87
+ "x": datasets.features.Sequence(
88
+ datasets.Value("float32")
89
+ ),
90
+ "y": datasets.Value("float32"),
91
+ "appeared": datasets.Value("string"),
92
+ "avclass": datasets.Value("string"),
93
+ "label": datasets.Value("string"),
94
+ "subset": datasets.Value("string"),
95
+ "sha256": datasets.Value("string")
96
+ }
97
+ )
98
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
99
+ features = datasets.Features(
100
+ {
101
+ "x": datasets.features.Sequence(
102
+ datasets.Value("float32")
103
+ ),
104
+ "y": datasets.Value("float32"),
105
+ "appeared": datasets.Value("string"),
106
+ "avclass": datasets.Value("string"),
107
+ "label": datasets.Value("string"),
108
+ "subset": datasets.Value("string"),
109
+ "sha256": datasets.Value("string")
110
+ }
111
+ )
112
+ return datasets.DatasetInfo(
113
+ # This is the description that will appear on the datasets page.
114
+ description=_DESCRIPTION,
115
+ # This defines the different columns of the dataset and their types
116
+ features=features, # Here we define them above because they are different between the two configurations
117
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
118
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
119
+ # supervised_keys=("sentence", "label"),
120
+ # Homepage of the dataset for documentation
121
+ homepage=_HOMEPAGE,
122
+ # License for the dataset if available
123
+ license=_LICENSE,
124
+ # Citation for the dataset
125
+ citation=_CITATION,
126
+ )
127
+
128
+ def _split_generators(self, dl_manager):
129
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
130
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
131
+
132
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
133
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
134
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
135
+ urls = _URLS[self.config.name]
136
+ data_dir = dl_manager.download_and_extract(urls)
137
+ file_list = get_file_list()
138
+ return [
139
+ datasets.SplitGenerator(
140
+ name=datasets.Split.TRAIN,
141
+ # These kwargs will be passed to _generate_examples
142
+ gen_kwargs={
143
+ "filepaths": [os.path.join(data_dir, f"data/{file}") for file in file_list["train"]],
144
+ "split": "train",
145
+ },
146
+ ),
147
+ # datasets.SplitGenerator(
148
+ # name=datasets.Split.VALIDATION,
149
+ # # These kwargs will be passed to _generate_examples
150
+ # gen_kwargs={
151
+ # "filepath": [os.path.join(data_dir, f"data/{file}") for file in file_list["dev"]],
152
+ # "split": "dev",
153
+ # },
154
+ # ),
155
+ datasets.SplitGenerator(
156
+ name=datasets.Split.TEST,
157
+ # These kwargs will be passed to _generate_examples
158
+ # [os.path.join(data_dir, file) for file in file_list["test"]],
159
+ gen_kwargs={
160
+ "filepaths": [os.path.join(data_dir, f"data/{file}") for file in file_list["test"]],
161
+ "split": "test"
162
+ },
163
+ ),
164
+ ]
165
+
166
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
167
+ def _generate_examples(self, filepaths, split):
168
+ key = 0
169
+ for path in filepaths:
170
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
171
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
172
+ with open(path, encoding="utf-8") as f:
173
+ data_list = json.load(f)
174
+ for data in data_list["data"]:
175
+ key += 1
176
+ if self.config.name == "first_domain":
177
+ # Yields examples as (key, example) tuples
178
+ yield key, {
179
+ "x": data["x"],
180
+ "y": data["y"],
181
+ "appeared": data["appeared"],
182
+ "avclass": data["avclass"],
183
+ "label": data["label"],
184
+ "subset": data["subset"],
185
+ "sha256": data["sha256"]
186
+ }
187
+ else:
188
+ yield key, {
189
+ "x": data["x"],
190
+ "y": data["y"],
191
+ "appeared": data["appeared"],
192
+ "avclass": data["avclass"],
193
+ "label": data["label"],
194
+ "subset": data["subset"],
195
+ "sha256": data["sha256"]
196
+ }
data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bd4647626eaa106715150ccf876ed428fd311a7ac9f9bdd19c22da1bf2b9170
3
+ size 4855764817
file_list.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"train": ["ember2018_train_1.jsonl", "ember2018_train_2.jsonl", "ember2018_train_3.jsonl", "ember2018_train_4.jsonl", "ember2018_train_5.jsonl", "ember2018_train_6.jsonl", "ember2018_train_7.jsonl", "ember2018_train_8.jsonl", "ember2018_train_9.jsonl", "ember2018_train_10.jsonl", "ember2018_train_11.jsonl", "ember2018_train_12.jsonl", "ember2018_train_13.jsonl", "ember2018_train_14.jsonl", "ember2018_train_15.jsonl", "ember2018_train_16.jsonl", "ember2018_train_17.jsonl", "ember2018_train_18.jsonl", "ember2018_train_19.jsonl", "ember2018_train_20.jsonl", "ember2018_train_21.jsonl", "ember2018_train_22.jsonl", "ember2018_train_23.jsonl", "ember2018_train_24.jsonl", "ember2018_train_25.jsonl", "ember2018_train_26.jsonl", "ember2018_train_27.jsonl", "ember2018_train_28.jsonl", "ember2018_train_29.jsonl", "ember2018_train_30.jsonl", "ember2018_train_31.jsonl", "ember2018_train_32.jsonl", "ember2018_train_33.jsonl", "ember2018_train_34.jsonl", "ember2018_train_35.jsonl", "ember2018_train_36.jsonl", "ember2018_train_37.jsonl", "ember2018_train_38.jsonl", "ember2018_train_39.jsonl", "ember2018_train_40.jsonl", "ember2018_train_41.jsonl", "ember2018_train_42.jsonl", "ember2018_train_43.jsonl", "ember2018_train_44.jsonl", "ember2018_train_45.jsonl", "ember2018_train_46.jsonl", "ember2018_train_47.jsonl", "ember2018_train_48.jsonl", "ember2018_train_49.jsonl", "ember2018_train_50.jsonl", "ember2018_train_51.jsonl", "ember2018_train_52.jsonl", "ember2018_train_53.jsonl", "ember2018_train_54.jsonl", "ember2018_train_55.jsonl", "ember2018_train_56.jsonl", "ember2018_train_57.jsonl", "ember2018_train_58.jsonl", "ember2018_train_59.jsonl", "ember2018_train_60.jsonl", "ember2018_train_61.jsonl", "ember2018_train_62.jsonl", "ember2018_train_63.jsonl", "ember2018_train_64.jsonl", "ember2018_train_65.jsonl", "ember2018_train_66.jsonl", "ember2018_train_67.jsonl", "ember2018_train_68.jsonl", "ember2018_train_69.jsonl", "ember2018_train_70.jsonl", "ember2018_train_71.jsonl", "ember2018_train_72.jsonl", "ember2018_train_73.jsonl", "ember2018_train_74.jsonl", "ember2018_train_75.jsonl", "ember2018_train_76.jsonl", "ember2018_train_77.jsonl", "ember2018_train_78.jsonl", "ember2018_train_79.jsonl", "ember2018_train_80.jsonl"], "test": ["ember2018_test_1.jsonl", "ember2018_test_2.jsonl", "ember2018_test_3.jsonl", "ember2018_test_4.jsonl", "ember2018_test_5.jsonl", "ember2018_test_6.jsonl", "ember2018_test_7.jsonl", "ember2018_test_8.jsonl", "ember2018_test_9.jsonl", "ember2018_test_10.jsonl", "ember2018_test_11.jsonl", "ember2018_test_12.jsonl", "ember2018_test_13.jsonl", "ember2018_test_14.jsonl", "ember2018_test_15.jsonl", "ember2018_test_16.jsonl", "ember2018_test_17.jsonl", "ember2018_test_18.jsonl", "ember2018_test_19.jsonl", "ember2018_test_20.jsonl"]}