Datasets:
Upload build_dataset.py
Browse files- build_dataset.py +14 -58
build_dataset.py
CHANGED
@@ -25,63 +25,36 @@ def get_file_list():
|
|
25 |
file_list = json.load(f)
|
26 |
return file_list
|
27 |
|
28 |
-
|
29 |
_CITATION = """\
|
30 |
@InProceedings{huggingface:dataset,
|
31 |
title = {Ember2018},
|
32 |
-
author=
|
33 |
},
|
34 |
year={2023}
|
35 |
}
|
36 |
"""
|
37 |
|
38 |
-
# TODO: Add description of the dataset here
|
39 |
-
# You can copy an official description
|
40 |
_DESCRIPTION = """\
|
41 |
-
This
|
42 |
"""
|
43 |
-
|
44 |
-
# TODO: Add a link to an official homepage for the dataset here
|
45 |
_HOMEPAGE = "https://github.com/elastic/ember"
|
46 |
-
|
47 |
-
# TODO: Add the licence for the dataset here if you can find it
|
48 |
_LICENSE = ""
|
49 |
-
|
50 |
-
# TODO: Add link to the official dataset URLs here
|
51 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
52 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
53 |
_URLS = {
|
54 |
-
"
|
55 |
}
|
56 |
|
57 |
|
58 |
-
|
59 |
-
class NewDataset(datasets.GeneratorBasedBuilder):
|
60 |
-
"""TODO: Short description of my dataset."""
|
61 |
-
|
62 |
VERSION = datasets.Version("1.1.0")
|
63 |
-
|
64 |
-
# This is an example of a dataset with multiple configurations.
|
65 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
66 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
67 |
-
|
68 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
69 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
70 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
71 |
-
|
72 |
-
# You will be able to load one or the other configurations in the following list with
|
73 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
74 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
75 |
BUILDER_CONFIGS = [
|
76 |
-
datasets.BuilderConfig(name="
|
77 |
-
datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
|
78 |
]
|
79 |
|
80 |
-
DEFAULT_CONFIG_NAME = "
|
81 |
|
82 |
def _info(self):
|
83 |
-
|
84 |
-
if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
85 |
features = datasets.Features(
|
86 |
{
|
87 |
"x": datasets.features.Sequence(
|
@@ -95,7 +68,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
95 |
"sha256": datasets.Value("string")
|
96 |
}
|
97 |
)
|
98 |
-
else:
|
99 |
features = datasets.Features(
|
100 |
{
|
101 |
"x": datasets.features.Sequence(
|
@@ -110,28 +83,14 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
110 |
}
|
111 |
)
|
112 |
return datasets.DatasetInfo(
|
113 |
-
# This is the description that will appear on the datasets page.
|
114 |
description=_DESCRIPTION,
|
115 |
-
|
116 |
-
features=features, # Here we define them above because they are different between the two configurations
|
117 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
118 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
119 |
-
# supervised_keys=("sentence", "label"),
|
120 |
-
# Homepage of the dataset for documentation
|
121 |
homepage=_HOMEPAGE,
|
122 |
-
# License for the dataset if available
|
123 |
license=_LICENSE,
|
124 |
-
# Citation for the dataset
|
125 |
citation=_CITATION,
|
126 |
)
|
127 |
|
128 |
def _split_generators(self, dl_manager):
|
129 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
130 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
131 |
-
|
132 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
133 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
134 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
135 |
urls = _URLS[self.config.name]
|
136 |
file_list = get_file_list()
|
137 |
file_urls = {
|
@@ -142,7 +101,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
142 |
return [
|
143 |
datasets.SplitGenerator(
|
144 |
name=datasets.Split.TRAIN,
|
145 |
-
# These kwargs will be passed to _generate_examples
|
146 |
gen_kwargs={
|
147 |
"filenames": file_list["train"],
|
148 |
"local_datafiles": data_dir["train"],
|
@@ -151,7 +109,6 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
151 |
),
|
152 |
# datasets.SplitGenerator(
|
153 |
# name=datasets.Split.VALIDATION,
|
154 |
-
# # These kwargs will be passed to _generate_examples
|
155 |
# gen_kwargs={
|
156 |
# "filepath": [os.path.join(data_dir, f"data/{file}") for file in file_list["dev"]],
|
157 |
# "split": "dev",
|
@@ -159,16 +116,15 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
159 |
# ),
|
160 |
datasets.SplitGenerator(
|
161 |
name=datasets.Split.TEST,
|
162 |
-
# These kwargs will be passed to _generate_examples
|
163 |
gen_kwargs={
|
164 |
-
"filenames": file_list["
|
165 |
-
"local_datafiles": data_dir["
|
166 |
"split": "test"
|
167 |
},
|
168 |
),
|
169 |
]
|
170 |
|
171 |
-
|
172 |
def _generate_examples(self, filenames, local_datafiles):
|
173 |
key = 0
|
174 |
for id, path in enumerate(filenames):
|
@@ -180,7 +136,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
180 |
data_list = json.load(f)
|
181 |
for data in data_list["data"]:
|
182 |
key += 1
|
183 |
-
if self.config.name == "
|
184 |
# Yields examples as (key, example) tuples
|
185 |
yield key, {
|
186 |
"x": data["x"],
|
|
|
25 |
file_list = json.load(f)
|
26 |
return file_list
|
27 |
|
28 |
+
|
29 |
_CITATION = """\
|
30 |
@InProceedings{huggingface:dataset,
|
31 |
title = {Ember2018},
|
32 |
+
author=Christian Williams
|
33 |
},
|
34 |
year={2023}
|
35 |
}
|
36 |
"""
|
37 |
|
|
|
|
|
38 |
_DESCRIPTION = """\
|
39 |
+
This dataset is from the EMBER 2018 Malware Analysis dataset
|
40 |
"""
|
|
|
|
|
41 |
_HOMEPAGE = "https://github.com/elastic/ember"
|
|
|
|
|
42 |
_LICENSE = ""
|
|
|
|
|
|
|
|
|
43 |
_URLS = {
|
44 |
+
"text_classification": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/"
|
45 |
}
|
46 |
|
47 |
|
48 |
+
class EMBERConfig(datasets.GeneratorBasedBuilder):
|
|
|
|
|
|
|
49 |
VERSION = datasets.Version("1.1.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
BUILDER_CONFIGS = [
|
51 |
+
datasets.BuilderConfig(name="text_classification", version=VERSION, description="This part of my dataset covers a first domain")
|
|
|
52 |
]
|
53 |
|
54 |
+
DEFAULT_CONFIG_NAME = "text_classification"
|
55 |
|
56 |
def _info(self):
|
57 |
+
if self.config.name == "text_classification":
|
|
|
58 |
features = datasets.Features(
|
59 |
{
|
60 |
"x": datasets.features.Sequence(
|
|
|
68 |
"sha256": datasets.Value("string")
|
69 |
}
|
70 |
)
|
71 |
+
else:
|
72 |
features = datasets.Features(
|
73 |
{
|
74 |
"x": datasets.features.Sequence(
|
|
|
83 |
}
|
84 |
)
|
85 |
return datasets.DatasetInfo(
|
|
|
86 |
description=_DESCRIPTION,
|
87 |
+
features=features,
|
|
|
|
|
|
|
|
|
|
|
88 |
homepage=_HOMEPAGE,
|
|
|
89 |
license=_LICENSE,
|
|
|
90 |
citation=_CITATION,
|
91 |
)
|
92 |
|
93 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
urls = _URLS[self.config.name]
|
95 |
file_list = get_file_list()
|
96 |
file_urls = {
|
|
|
101 |
return [
|
102 |
datasets.SplitGenerator(
|
103 |
name=datasets.Split.TRAIN,
|
|
|
104 |
gen_kwargs={
|
105 |
"filenames": file_list["train"],
|
106 |
"local_datafiles": data_dir["train"],
|
|
|
109 |
),
|
110 |
# datasets.SplitGenerator(
|
111 |
# name=datasets.Split.VALIDATION,
|
|
|
112 |
# gen_kwargs={
|
113 |
# "filepath": [os.path.join(data_dir, f"data/{file}") for file in file_list["dev"]],
|
114 |
# "split": "dev",
|
|
|
116 |
# ),
|
117 |
datasets.SplitGenerator(
|
118 |
name=datasets.Split.TEST,
|
|
|
119 |
gen_kwargs={
|
120 |
+
"filenames": file_list["test"],
|
121 |
+
"local_datafiles": data_dir["test"],
|
122 |
"split": "test"
|
123 |
},
|
124 |
),
|
125 |
]
|
126 |
|
127 |
+
|
128 |
def _generate_examples(self, filenames, local_datafiles):
|
129 |
key = 0
|
130 |
for id, path in enumerate(filenames):
|
|
|
136 |
data_list = json.load(f)
|
137 |
for data in data_list["data"]:
|
138 |
key += 1
|
139 |
+
if self.config.name == "text_classification":
|
140 |
# Yields examples as (key, example) tuples
|
141 |
yield key, {
|
142 |
"x": data["x"],
|