File size: 5,296 Bytes
f3bec73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a13f8
f3bec73
 
 
d5a13f8
f3bec73
 
 
 
 
 
d5a13f8
f3bec73
 
 
 
4a2c5b9
f3bec73
 
 
d5a13f8
f3bec73
 
4a2c5b9
 
 
 
f3bec73
 
d5a13f8
f3bec73
 
d5a13f8
f3bec73
 
ebb8f68
 
f3bec73
 
 
2259acc
f3bec73
 
 
 
 
 
d5a13f8
f3bec73
 
ebb8f68
 
f3bec73
 
 
2259acc
f3bec73
 
 
 
 
 
 
 
d5a13f8
f3bec73
 
 
 
d87e731
f3bec73
 
018183b
f3bec73
 
 
 
7f9f936
f3bec73
 
 
 
 
 
018183b
 
f3bec73
 
 
 
 
7f9f936
f3bec73
 
018183b
f3bec73
 
d5a13f8
018183b
f3bec73
018183b
2259acc
018183b
f3bec73
8bed3c2
 
2259acc
8bed3c2
ebb8f68
 
2259acc
 
 
 
 
 
8bed3c2
 
 
ebb8f68
 
8bed3c2
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os

import datasets



_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Ember2018},
author=Christian Williams
},
year={2023}
}
"""

_DESCRIPTION = """\
This dataset is from the EMBER 2018 Malware Analysis dataset
"""
_HOMEPAGE = "https://github.com/elastic/ember"
_LICENSE = ""
_URLS = {
    "text_classification": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/"
}


class EMBERConfig(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="text_classification", 
            version=VERSION, description="This part of my dataset covers text classification"
        )
    ]

    DEFAULT_CONFIG_NAME = "text_classification" 

    def _info(self):
        if self.config.name == "text_classification": 
            features = datasets.Features(
                {
                    "input": datasets.Value("string"),
                    "label": datasets.Value("string"),
                    "x": datasets.features.Sequence(
                            datasets.Value("float32")
                    ),
                    "y": datasets.Value("string"),
                    "appeared": datasets.Value("string"),
                    "avclass": datasets.Value("string"),
                    "subset": datasets.Value("string"),
                    "sha256": datasets.Value("string")
                }
            )
        else: 
            features = datasets.Features(
                {
                    "input": datasets.Value("string"),
                    "label": datasets.Value("string"),
                    "x": datasets.features.Sequence(
                            datasets.Value("float32")
                    ),
                    "y": datasets.Value("string"),
                    "appeared": datasets.Value("string"),
                    "avclass": datasets.Value("string"),
                    "subset": datasets.Value("string"),
                    "sha256": datasets.Value("string")
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features, 
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )
        
    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": os.path.join(data_dir, "ember2018_train_*.jsonl"),
                    "split": "train",
                },
            ),
            # datasets.SplitGenerator(
            #     name=datasets.Split.VALIDATION,
            #     gen_kwargs={
            #         "filepaths": os.path.join(data_dir, "*_valid_*.jsonl"),
            #         "split": "valid",
            #     },
            # ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepaths": os.path.join(data_dir, "ember2018_test_*.jsonl"),
                    "split": "test"
                },
            )
        ]


    def _generate_examples(self, filepaths, split):
        key = 0
        for id, filepath in enumerate(filepaths[split]): 
            key += 1
            with open(filepath[id], encoding="utf-8") as f:
                data_list = json.load(f)
                for data in data_list:
                    if self.config.name == "text_classification":
                        data.remove
                        yield key, {
                            "input": data["input"],
                            "label": data["label"],
                            # "x": data["x"],
                            # "y": data["y"],
                            # "appeared": data["appeared"],
                            # "avclass": data["avclass"],
                            # "subset": data["subset"],
                            # "sha256": data["sha256"]
                        }
                    else:
                        yield key, {
                            "input": data["input"],
                            "label": data["label"],
                            "x": data["x"],
                            "y": data["y"],
                            "appeared": data["appeared"],
                            "avclass": data["avclass"],
                            "subset": data["subset"],
                            "sha256": data["sha256"]
                        }