Datasets:
File size: 5,296 Bytes
f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 4a2c5b9 f3bec73 d5a13f8 f3bec73 4a2c5b9 f3bec73 d5a13f8 f3bec73 d5a13f8 f3bec73 ebb8f68 f3bec73 2259acc f3bec73 d5a13f8 f3bec73 ebb8f68 f3bec73 2259acc f3bec73 d5a13f8 f3bec73 d87e731 f3bec73 018183b f3bec73 7f9f936 f3bec73 018183b f3bec73 7f9f936 f3bec73 018183b f3bec73 d5a13f8 018183b f3bec73 018183b 2259acc 018183b f3bec73 8bed3c2 2259acc 8bed3c2 ebb8f68 2259acc 8bed3c2 ebb8f68 8bed3c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Ember2018},
author=Christian Williams
},
year={2023}
}
"""
_DESCRIPTION = """\
This dataset is from the EMBER 2018 Malware Analysis dataset
"""
_HOMEPAGE = "https://github.com/elastic/ember"
_LICENSE = ""
_URLS = {
"text_classification": "https://huggingface.co/datasets/cw1521/ember2018-malware/blob/main/data/"
}
class EMBERConfig(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="text_classification",
version=VERSION, description="This part of my dataset covers text classification"
)
]
DEFAULT_CONFIG_NAME = "text_classification"
def _info(self):
if self.config.name == "text_classification":
features = datasets.Features(
{
"input": datasets.Value("string"),
"label": datasets.Value("string"),
"x": datasets.features.Sequence(
datasets.Value("float32")
),
"y": datasets.Value("string"),
"appeared": datasets.Value("string"),
"avclass": datasets.Value("string"),
"subset": datasets.Value("string"),
"sha256": datasets.Value("string")
}
)
else:
features = datasets.Features(
{
"input": datasets.Value("string"),
"label": datasets.Value("string"),
"x": datasets.features.Sequence(
datasets.Value("float32")
),
"y": datasets.Value("string"),
"appeared": datasets.Value("string"),
"avclass": datasets.Value("string"),
"subset": datasets.Value("string"),
"sha256": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": os.path.join(data_dir, "ember2018_train_*.jsonl"),
"split": "train",
},
),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "filepaths": os.path.join(data_dir, "*_valid_*.jsonl"),
# "split": "valid",
# },
# ),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": os.path.join(data_dir, "ember2018_test_*.jsonl"),
"split": "test"
},
)
]
def _generate_examples(self, filepaths, split):
key = 0
for id, filepath in enumerate(filepaths[split]):
key += 1
with open(filepath[id], encoding="utf-8") as f:
data_list = json.load(f)
for data in data_list:
if self.config.name == "text_classification":
data.remove
yield key, {
"input": data["input"],
"label": data["label"],
# "x": data["x"],
# "y": data["y"],
# "appeared": data["appeared"],
# "avclass": data["avclass"],
# "subset": data["subset"],
# "sha256": data["sha256"]
}
else:
yield key, {
"input": data["input"],
"label": data["label"],
"x": data["x"],
"y": data["y"],
"appeared": data["appeared"],
"avclass": data["avclass"],
"subset": data["subset"],
"sha256": data["sha256"]
}
|