File size: 7,742 Bytes
a2c2ee7 f82bbf7 a2c2ee7 c4c06ef a2c2ee7 ed267f2 a2c2ee7 040862e a2c2ee7 ed267f2 a2c2ee7 c4c06ef f82bbf7 a2c2ee7 ed267f2 a2c2ee7 ed267f2 c4c06ef ed267f2 a2c2ee7 ed267f2 a2c2ee7 ed267f2 a2c2ee7 ed267f2 040862e ed267f2 a2c2ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import json
import gzip
import os
from pathlib import Path
import datasets
import numpy as np
from tqdm import tqdm
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Libriheavy is a labeled version of Librilight.
This (unofficial) huggingface dataset contains the medium (4500 hours) split of the Libriheavy dataset with alignments and mel spectrograms.
"""
_URL = """\
https://github.com/k2-fsa/libriheavy
"""
_CITATION = """\
@article{kang2023libriheavy,
title={Libriheavy: a 50,000 hours asr corpus with punctuation casing and context},
author={Kang, Wei and Yang, Xiaoyu and Yao, Zengwei and Kuang, Fangjun and Yang, Yifan and Guo, Liyong and Lin, Long and Povey, Daniel},
journal={arXiv preprint arXiv:2309.08105},
year={2023}
}
"""
PATH = "./medium_data"
class LibriheavyConfig(datasets.BuilderConfig):
"""BuilderConfig for Libriheavy."""
def __init__(self, **kwargs):
"""BuilderConfig for Libriheavy.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LibriheavyConfig, self).__init__(**kwargs)
class Libriheavy(datasets.GeneratorBasedBuilder):
"""Libriheavy dataset."""
BUILDER_CONFIGS = [
LibriheavyConfig(name="libriheavy", version=datasets.Version("1.0.0"), description="Libriheavy dataset."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"audio": datasets.Value("string"),
"text": datasets.Value("string"),
"word_segments": datasets.Sequence(
{
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"word": datasets.Value("string"),
}
),
"phone_segments": datasets.Sequence(
{
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"phone": datasets.Value("string"),
}
),
"mel_spectrogram": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# first, we load speaker_list.json
speaker_list = f"{PATH}/speaker_list.json"
speaker_list = dl_manager.download_and_extract(speaker_list)
with open(speaker_list, "r") as f:
speaker_list = json.load(f)
# now we load the individual speaker metadata
speaker_metadata = {}
for speaker_id, metadata_path in tqdm(speaker_list.items()):
hf_home = os.environ.get("HF_HOME", "~/.cache/huggingface")
metadata_cache = f"hf_home/libriheavy_metadata"
# we always cache the speaker metadata, as it is small
if os.path.exists(f"{metadata_cache}/{speaker_id}.json"):
with open(f"{metadata_cache}/{speaker_id}.json", "r") as f:
speaker_metadata[speaker_id] = json.load(f)
else:
Path(metadata_cache).mkdir(parents=True, exist_ok=True)
metadata_path = f"{PATH}/{speaker_id}/{metadata_path}"
metadata_path = dl_manager.download_and_extract(metadata_path)
with open(metadata_path, "r") as f:
speaker_metadata[speaker_id] = json.load(f)
with open(f"{metadata_cache}/{speaker_id}.json", "w") as f:
json.dump(speaker_metadata[speaker_id], f)
speaker_chunks = []
even_speaker_chunks = []
odd_speaker_chunks = []
for speaker_id, metadata in speaker_metadata.items():
for chunk_id, chunk in metadata["chunks"].items():
chunk_dict = {
"speaker_id": speaker_id,
"id": f"{speaker_id}_{chunk_id}",
"audio": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['npz'].replace('.gz', '')}"),
"text": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['json']}"),
}
speaker_chunks.append(chunk_dict)
if int(chunk_id) % 2 == 0:
even_speaker_chunks.append(chunk_dict)
else:
odd_speaker_chunks.append(chunk_dict)
# shuffle the chunks
np.random.seed(42)
np.random.shuffle(speaker_chunks)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "train"}
),
datasets.SplitGenerator(
name="validation",
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "validation"}
),
datasets.SplitGenerator(
name="even",
gen_kwargs={"speaker_chunks": even_speaker_chunks, "split": "even"}
),
datasets.SplitGenerator(
name="odd",
gen_kwargs={"speaker_chunks": odd_speaker_chunks, "split": "odd"}
),
]
def _generate_examples(self, speaker_chunks, split):
"""Yields examples."""
for chunk in speaker_chunks:
npz = dict(np.load(chunk["audio"], allow_pickle=True))
utterances = npz.keys()
with gzip.open(chunk["text"], "rt") as f:
text = json.load(f)
if split in ["train", "even", "odd"]:
for utterance_id, utterance in text.items():
# skip the last utterance
if utterance_id == sorted(list(text.keys()))[-1]:
continue
result = {
"id": chunk["speaker_id"] + "_" + utterance_id,
"speaker_id": chunk["speaker_id"],
"audio": chunk["audio"],
"text": chunk["text"],
"word_segments": [
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"]
],
"phone_segments": [
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["phone_segments"]
],
"mel_spectrogram": npz[str(utterance_id)].item()["mel"][0][0],
}
yield chunk["speaker_id"] + "_" + utterance_id, result
else:
# only use the last utterance
utterance_id = sorted(list(text.keys()))[-1]
utterance = text[utterance_id]
result = {
"id": chunk["speaker_id"] + "_" + utterance_id,
"speaker_id": chunk["speaker_id"],
"audio": chunk["audio"],
"text": chunk["text"],
"word_segments": [
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"]
],
"mel_spectrogram": npz[str(utterance_id)].item()["mel"][0][0],
}
yield chunk["speaker_id"] + "_" + utterance_id, result |