add train, validation, even and odd splits
Browse files- libriheavy.py +53 -15
libriheavy.py
CHANGED
@@ -24,6 +24,8 @@ _CITATION = """\
|
|
24 |
}
|
25 |
"""
|
26 |
|
|
|
|
|
27 |
class LibriheavyConfig(datasets.BuilderConfig):
|
28 |
"""BuilderConfig for Libriheavy."""
|
29 |
|
@@ -69,46 +71,82 @@ class Libriheavy(datasets.GeneratorBasedBuilder):
|
|
69 |
def _split_generators(self, dl_manager):
|
70 |
"""Returns SplitGenerators."""
|
71 |
# first, we load speaker_list.json
|
72 |
-
speaker_list = "
|
73 |
speaker_list = dl_manager.download_and_extract(speaker_list)
|
74 |
with open(speaker_list, "r") as f:
|
75 |
speaker_list = json.load(f)
|
76 |
# now we load the individual speaker metadata
|
77 |
speaker_metadata = {}
|
78 |
for speaker_id, metadata_path in speaker_list.items():
|
79 |
-
metadata_path = f"
|
80 |
metadata_path = dl_manager.download_and_extract(metadata_path)
|
81 |
with open(metadata_path, "r") as f:
|
82 |
speaker_metadata[speaker_id] = json.load(f)
|
83 |
speaker_chunks = []
|
|
|
|
|
84 |
for speaker_id, metadata in speaker_metadata.items():
|
85 |
for chunk_id, chunk in metadata["chunks"].items():
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
)
|
|
|
|
|
|
|
94 |
# shuffle the chunks
|
95 |
np.random.seed(42)
|
96 |
np.random.shuffle(speaker_chunks)
|
97 |
return [
|
98 |
datasets.SplitGenerator(
|
99 |
-
name=
|
100 |
-
gen_kwargs={"speaker_chunks": speaker_chunks}
|
101 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
]
|
103 |
|
104 |
-
def _generate_examples(self, speaker_chunks):
|
105 |
"""Yields examples."""
|
106 |
for chunk in speaker_chunks:
|
107 |
npz = dict(np.load(chunk["audio"], allow_pickle=True))
|
108 |
utterances = npz.keys()
|
109 |
with gzip.open(chunk["text"], "rt") as f:
|
110 |
text = json.load(f)
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
result = {
|
113 |
"id": chunk["speaker_id"] + "_" + utterance_id,
|
114 |
"speaker_id": chunk["speaker_id"],
|
|
|
24 |
}
|
25 |
"""
|
26 |
|
27 |
+
PATH = "./medium_data"
|
28 |
+
|
29 |
class LibriheavyConfig(datasets.BuilderConfig):
|
30 |
"""BuilderConfig for Libriheavy."""
|
31 |
|
|
|
71 |
def _split_generators(self, dl_manager):
|
72 |
"""Returns SplitGenerators."""
|
73 |
# first, we load speaker_list.json
|
74 |
+
speaker_list = f"{PATH}/speaker_list.json"
|
75 |
speaker_list = dl_manager.download_and_extract(speaker_list)
|
76 |
with open(speaker_list, "r") as f:
|
77 |
speaker_list = json.load(f)
|
78 |
# now we load the individual speaker metadata
|
79 |
speaker_metadata = {}
|
80 |
for speaker_id, metadata_path in speaker_list.items():
|
81 |
+
metadata_path = f"{PATH}/{speaker_id}/{metadata_path}"
|
82 |
metadata_path = dl_manager.download_and_extract(metadata_path)
|
83 |
with open(metadata_path, "r") as f:
|
84 |
speaker_metadata[speaker_id] = json.load(f)
|
85 |
speaker_chunks = []
|
86 |
+
even_speaker_chunks = []
|
87 |
+
odd_speaker_chunks = []
|
88 |
for speaker_id, metadata in speaker_metadata.items():
|
89 |
for chunk_id, chunk in metadata["chunks"].items():
|
90 |
+
chunk_dict = {
|
91 |
+
"speaker_id": speaker_id,
|
92 |
+
"id": f"{speaker_id}_{chunk_id}",
|
93 |
+
"audio": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['npz'].replace('.gz', '')}"),
|
94 |
+
"text": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['json']}"),
|
95 |
+
}
|
96 |
+
speaker_chunks.append(chunk_dict)
|
97 |
+
if int(chunk_id) % 2 == 0:
|
98 |
+
even_speaker_chunks.append(chunk_dict)
|
99 |
+
else:
|
100 |
+
odd_speaker_chunks.append(chunk_dict)
|
101 |
# shuffle the chunks
|
102 |
np.random.seed(42)
|
103 |
np.random.shuffle(speaker_chunks)
|
104 |
return [
|
105 |
datasets.SplitGenerator(
|
106 |
+
name="train",
|
107 |
+
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "train"}
|
108 |
+
),
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name="validation",
|
111 |
+
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "validation"}
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name="even",
|
115 |
+
gen_kwargs={"speaker_chunks": even_speaker_chunks, "split": "even"}
|
116 |
+
),
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name="odd",
|
119 |
+
gen_kwargs={"speaker_chunks": odd_speaker_chunks, "split": "odd"}
|
120 |
+
),
|
121 |
]
|
122 |
|
123 |
+
def _generate_examples(self, speaker_chunks, split):
|
124 |
"""Yields examples."""
|
125 |
for chunk in speaker_chunks:
|
126 |
npz = dict(np.load(chunk["audio"], allow_pickle=True))
|
127 |
utterances = npz.keys()
|
128 |
with gzip.open(chunk["text"], "rt") as f:
|
129 |
text = json.load(f)
|
130 |
+
if split in ["train", "even", "odd"]:
|
131 |
+
for utterance_id, utterance in text.items():
|
132 |
+
# skip the last utterance
|
133 |
+
if utterance_id == sorted(list(text.keys()))[-1]:
|
134 |
+
continue
|
135 |
+
result = {
|
136 |
+
"id": chunk["speaker_id"] + "_" + utterance_id,
|
137 |
+
"speaker_id": chunk["speaker_id"],
|
138 |
+
"audio": chunk["audio"],
|
139 |
+
"text": chunk["text"],
|
140 |
+
"word_segments": [
|
141 |
+
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"]
|
142 |
+
],
|
143 |
+
"mel_spectrogram": npz[str(utterance_id)].item()["mel"][0][0],
|
144 |
+
}
|
145 |
+
yield chunk["speaker_id"] + "_" + utterance_id, result
|
146 |
+
else:
|
147 |
+
# only use the last utterance
|
148 |
+
utterance_id = sorted(list(text.keys()))[-1]
|
149 |
+
utterance = text[utterance_id]
|
150 |
result = {
|
151 |
"id": chunk["speaker_id"] + "_" + utterance_id,
|
152 |
"speaker_id": chunk["speaker_id"],
|