script
Browse files- libriheavy.py +122 -0
libriheavy.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import gzip
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
logger = datasets.logging.get_logger(__name__)
|
8 |
+
|
9 |
+
_DESCRIPTION = """\
|
10 |
+
Libriheavy is a labeled version of Librilight.
|
11 |
+
This (unofficial) huggingface dataset contains the medium (4500 hours) split of the Libriheavy dataset with alignments and mel spectrograms.
|
12 |
+
"""
|
13 |
+
|
14 |
+
_URL = """\
|
15 |
+
https://github.com/k2-fsa/libriheavy
|
16 |
+
"""
|
17 |
+
|
18 |
+
_CITATION = """\
|
19 |
+
@article{kang2023libriheavy,
|
20 |
+
title={Libriheavy: a 50,000 hours asr corpus with punctuation casing and context},
|
21 |
+
author={Kang, Wei and Yang, Xiaoyu and Yao, Zengwei and Kuang, Fangjun and Yang, Yifan and Guo, Liyong and Lin, Long and Povey, Daniel},
|
22 |
+
journal={arXiv preprint arXiv:2309.08105},
|
23 |
+
year={2023}
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
class LibriheavyConfig(datasets.BuilderConfig):
|
28 |
+
"""BuilderConfig for Libriheavy."""
|
29 |
+
|
30 |
+
def __init__(self, **kwargs):
|
31 |
+
"""BuilderConfig for Libriheavy.
|
32 |
+
Args:
|
33 |
+
**kwargs: keyword arguments forwarded to super.
|
34 |
+
"""
|
35 |
+
super(LibriheavyConfig, self).__init__(**kwargs)
|
36 |
+
|
37 |
+
|
38 |
+
class Libriheavy(datasets.GeneratorBasedBuilder):
|
39 |
+
"""Libriheavy dataset."""
|
40 |
+
|
41 |
+
BUILDER_CONFIGS = [
|
42 |
+
LibriheavyConfig(name="libriheavy", version=datasets.Version("1.0.0"), description="Libriheavy dataset."),
|
43 |
+
]
|
44 |
+
|
45 |
+
def _info(self):
|
46 |
+
return datasets.DatasetInfo(
|
47 |
+
description=_DESCRIPTION,
|
48 |
+
features=datasets.Features(
|
49 |
+
{
|
50 |
+
"id": datasets.Value("string"),
|
51 |
+
"speaker_id": datasets.Value("string"),
|
52 |
+
"audio": datasets.Value("string"),
|
53 |
+
"text": datasets.Value("string"),
|
54 |
+
"word_segments": datasets.Sequence(
|
55 |
+
{
|
56 |
+
"start": datasets.Value("int32"),
|
57 |
+
"end": datasets.Value("int32"),
|
58 |
+
"word": datasets.Value("string"),
|
59 |
+
}
|
60 |
+
),
|
61 |
+
"mel_spectrogram": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
62 |
+
}
|
63 |
+
),
|
64 |
+
supervised_keys=None,
|
65 |
+
homepage=_URL,
|
66 |
+
citation=_CITATION,
|
67 |
+
)
|
68 |
+
|
69 |
+
def _split_generators(self, dl_manager):
|
70 |
+
"""Returns SplitGenerators."""
|
71 |
+
# first, we load speaker_list.json
|
72 |
+
speaker_list = "medium_data/speaker_list.json"
|
73 |
+
speaker_list = dl_manager.download_and_extract(speaker_list)
|
74 |
+
with open(speaker_list, "r") as f:
|
75 |
+
speaker_list = json.load(f)
|
76 |
+
# now we load the individual speaker metadata
|
77 |
+
speaker_metadata = {}
|
78 |
+
for speaker_id, metadata_path in speaker_list.items():
|
79 |
+
metadata_path = f"medium_data/{metadata_path}"
|
80 |
+
metadata_path = dl_manager.download_and_extract(metadata_path)
|
81 |
+
with open(metadata_path, "r") as f:
|
82 |
+
speaker_metadata[speaker_id] = json.load(f)
|
83 |
+
speaker_chunks = []
|
84 |
+
for speaker_id, metadata in speaker_metadata.items():
|
85 |
+
for chunk_id, chunk in metadata["chunks"].items():
|
86 |
+
speaker_chunks.append(
|
87 |
+
{
|
88 |
+
"speaker_id": speaker_id,
|
89 |
+
"id": f"{speaker_id}_{chunk_id}",
|
90 |
+
"audio": dl_manager.download(f"medium_data/{chunk['npz'].replace('.gz', '')}"),
|
91 |
+
"text": dl_manager.download(f"medium_data/{chunk['json']}"),
|
92 |
+
}
|
93 |
+
)
|
94 |
+
# shuffle the chunks
|
95 |
+
np.random.seed(42)
|
96 |
+
np.random.shuffle(speaker_chunks)
|
97 |
+
return [
|
98 |
+
datasets.SplitGenerator(
|
99 |
+
name=datasets.Split.TRAIN,
|
100 |
+
gen_kwargs={"speaker_chunks": speaker_chunks},
|
101 |
+
)
|
102 |
+
]
|
103 |
+
|
104 |
+
def _generate_examples(self, speaker_chunks):
|
105 |
+
"""Yields examples."""
|
106 |
+
for chunk in speaker_chunks:
|
107 |
+
npz = dict(np.load(chunk["audio"], allow_pickle=True))
|
108 |
+
utterances = npz.keys()
|
109 |
+
with gzip.open(chunk["text"], "rt") as f:
|
110 |
+
text = json.load(f)
|
111 |
+
for utterance_id, utterance in text.items():
|
112 |
+
result = {
|
113 |
+
"id": chunk["speaker_id"] + "_" + utterance_id,
|
114 |
+
"speaker_id": chunk["speaker_id"],
|
115 |
+
"audio": chunk["audio"],
|
116 |
+
"text": chunk["text"],
|
117 |
+
"word_segments": [
|
118 |
+
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"]
|
119 |
+
],
|
120 |
+
"mel_spectrogram": npz[str(utterance_id)].item()["mel"][0][0],
|
121 |
+
}
|
122 |
+
yield chunk["speaker_id"] + "_" + utterance_id, result
|