presto / README.md
ajsbsd's picture
Update README.md
5bc8dd3
metadata
license: cc-by-4.0
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
dataset_info:
  features:
    - name: inputs
      dtype: string
    - name: targets
      dtype: string
    - name: metadata
      struct:
        - name: locale
          dtype: string
        - name: example_id
          dtype: string
        - name: seeded_lists
          list:
            - name: name
              dtype: string
            - name: items
              sequence: string
        - name: seeded_notes
          list:
            - name: name
              dtype: string
            - name: content
              dtype: string
        - name: seeded_contacts
          sequence: string
        - name: previous_turns
          list:
            - name: user_query
              dtype: string
            - name: response_text
              dtype: string
        - name: linguistic_phenomena
          dtype: string
        - name: split
          dtype: string
        - name: context
          dtype: string
  splits:
    - name: train
      num_bytes: 24777921
      num_examples: 33577
  download_size: 6999588
  dataset_size: 24777921
language:
  - en

Code to test on Colab

!pip install -q transformers[torch] tokenizers datasets evaluate rouge_score sentencepiece huggingface_hub --upgrade

from huggingface_hub import notebook_login

notebook_login()

import nltk from datasets import load_dataset import evaluate import numpy as np from transformers import T5Tokenizer, DataCollatorForSeq2Seq from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer

Load and split the dataset

dataset = load_dataset("ajsbsd/presto") dataset = dataset["train"].train_test_split(test_size=0.2) #dataset = load_dataset("csv", data_files="./JEOPARDY_CSV.csv") #dataset = dataset["train"].train_test_split(test_size=0.2)

Load the tokenizer, model, and data collator

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small") data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)

We prefix our tasks with "answer the question"

prefix = "answer the question: "

Define our preprocessing function

def preprocess_function(examples): """Add prefix to the sentences, tokenize the text, and set the labels""" # The "inputs" are the tokenized answer: inputs = [prefix + doc for doc in examples["inputs"]] model_inputs = tokenizer(inputs, max_length=128, truncation=True)

# The "labels" are the tokenized outputs:
labels = tokenizer(text_target=examples["targets"], max_length=512, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs

Map the preprocessing function across our dataset

tokenized_dataset = dataset.map(preprocess_function, batched=True)

Set up Rouge score for evaluation

nltk.download("punkt", quiet=True) metric = evaluate.load("rouge")

def compute_metrics(eval_preds): preds, labels = eval_preds

# decode preds and labels
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

# rougeLSum expects newline after each sentence
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]

result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
return result

Set up training arguments

training_args = Seq2SeqTrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=3e-4, per_device_train_batch_size=8, per_device_eval_batch_size=4, weight_decay=0.01, save_total_limit=3, num_train_epochs=2, predict_with_generate=True, push_to_hub=False )

Set up trainer

trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics )

Train the model

trainer.train()

Push to HF :)

trainer.push_to_hub()