Datasets:
license: cc-by-4.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: inputs
dtype: string
- name: targets
dtype: string
- name: metadata
struct:
- name: locale
dtype: string
- name: example_id
dtype: string
- name: seeded_lists
list:
- name: name
dtype: string
- name: items
sequence: string
- name: seeded_notes
list:
- name: name
dtype: string
- name: content
dtype: string
- name: seeded_contacts
sequence: string
- name: previous_turns
list:
- name: user_query
dtype: string
- name: response_text
dtype: string
- name: linguistic_phenomena
dtype: string
- name: split
dtype: string
- name: context
dtype: string
splits:
- name: train
num_bytes: 24777921
num_examples: 33577
download_size: 6999588
dataset_size: 24777921
language:
- en
Code to test on Colab
!pip install -q transformers[torch] tokenizers datasets evaluate rouge_score sentencepiece huggingface_hub --upgrade
from huggingface_hub import notebook_login
notebook_login()
import nltk from datasets import load_dataset import evaluate import numpy as np from transformers import T5Tokenizer, DataCollatorForSeq2Seq from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer
Load and split the dataset
dataset = load_dataset("ajsbsd/presto") dataset = dataset["train"].train_test_split(test_size=0.2) #dataset = load_dataset("csv", data_files="./JEOPARDY_CSV.csv") #dataset = dataset["train"].train_test_split(test_size=0.2)
Load the tokenizer, model, and data collator
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small") data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
We prefix our tasks with "answer the question"
prefix = "answer the question: "
Define our preprocessing function
def preprocess_function(examples): """Add prefix to the sentences, tokenize the text, and set the labels""" # The "inputs" are the tokenized answer: inputs = [prefix + doc for doc in examples["inputs"]] model_inputs = tokenizer(inputs, max_length=128, truncation=True)
# The "labels" are the tokenized outputs:
labels = tokenizer(text_target=examples["targets"], max_length=512, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
Map the preprocessing function across our dataset
tokenized_dataset = dataset.map(preprocess_function, batched=True)
Set up Rouge score for evaluation
nltk.download("punkt", quiet=True) metric = evaluate.load("rouge")
def compute_metrics(eval_preds): preds, labels = eval_preds
# decode preds and labels
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# rougeLSum expects newline after each sentence
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
return result
Set up training arguments
training_args = Seq2SeqTrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=3e-4, per_device_train_batch_size=8, per_device_eval_batch_size=4, weight_decay=0.01, save_total_limit=3, num_train_epochs=2, predict_with_generate=True, push_to_hub=False )
Set up trainer
trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics )
Train the model
trainer.train()
Push to HF :)
trainer.push_to_hub()