--- license: cc-by-4.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: metadata struct: - name: locale dtype: string - name: example_id dtype: string - name: seeded_lists list: - name: name dtype: string - name: items sequence: string - name: seeded_notes list: - name: name dtype: string - name: content dtype: string - name: seeded_contacts sequence: string - name: previous_turns list: - name: user_query dtype: string - name: response_text dtype: string - name: linguistic_phenomena dtype: string - name: split dtype: string - name: context dtype: string splits: - name: train num_bytes: 24777921 num_examples: 33577 download_size: 6999588 dataset_size: 24777921 language: - en --- Code to test on Colab !pip install -q transformers[torch] tokenizers datasets evaluate rouge_score sentencepiece huggingface_hub --upgrade from huggingface_hub import notebook_login notebook_login() import nltk from datasets import load_dataset import evaluate import numpy as np from transformers import T5Tokenizer, DataCollatorForSeq2Seq from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer # Load and split the dataset dataset = load_dataset("ajsbsd/presto") dataset = dataset["train"].train_test_split(test_size=0.2) #dataset = load_dataset("csv", data_files="./JEOPARDY_CSV.csv") #dataset = dataset["train"].train_test_split(test_size=0.2) # Load the tokenizer, model, and data collator tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small") data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model) # We prefix our tasks with "answer the question" prefix = "answer the question: " # Define our preprocessing function def preprocess_function(examples): """Add prefix to the sentences, tokenize the text, and set the labels""" # The "inputs" are the tokenized answer: inputs = [prefix + doc for doc in examples["inputs"]] model_inputs = tokenizer(inputs, max_length=128, truncation=True) # The "labels" are the tokenized outputs: labels = tokenizer(text_target=examples["targets"], max_length=512, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs # Map the preprocessing function across our dataset tokenized_dataset = dataset.map(preprocess_function, batched=True) # Set up Rouge score for evaluation nltk.download("punkt", quiet=True) metric = evaluate.load("rouge") def compute_metrics(eval_preds): preds, labels = eval_preds # decode preds and labels labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # rougeLSum expects newline after each sentence decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds] decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels] result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) return result # Set up training arguments training_args = Seq2SeqTrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=3e-4, per_device_train_batch_size=8, per_device_eval_batch_size=4, weight_decay=0.01, save_total_limit=3, num_train_epochs=2, predict_with_generate=True, push_to_hub=False ) # Set up trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics ) # Train the model trainer.train() # Push to HF :) trainer.push_to_hub()