name
stringlengths 14
14
| formal_statement
stringlengths 114
355
| informal_statement
stringlengths 104
577
| tags
stringclasses 3
values | header
stringclasses 7
values | split
stringclasses 1
value |
---|---|---|---|---|---|
putnam_1985_b6 | theorem putnam_1985_b6
(n : β)
(npos : n > 0)
(G : Finset (Matrix (Fin n) (Fin n) β))
(groupG : (β g β G, β h β G, g * h β G) β§ 1 β G β§ (β g β G, β h β G, g * h = 1))
(hG : β M in G, Matrix.trace M = 0)
: (β M in G, M = 0) :=
sorry | Let $G$ be a finite set of real $n\times n$ matrices $\{M_i\}$, $1 \leq i \leq r$, which form a group under matrix
multiplication. Suppose that $\sum_{i=1}^r \mathrm{tr}(M_i)=0$, where $\mathrm{tr}(A)$ denotes the trace of the matrix $A$. Prove that $\sum_{i=1}^r M_i$ is the $n \times n$ zero matrix. | ['abstract_algebra', 'linear_algebra'] | valid |
|
putnam_2009_a5 | theorem putnam_2009_a5
: (β (G : Type*) (_ : CommGroup G) (_ : Fintype G), β g : G, orderOf g = 2^2009) β putnam_2009_a5_solution :=
sorry | Is there a finite abelian group $G$ such that the product of the orders of all its elements is 2^{2009}? | ['abstract_algebra'] | abbrev putnam_2009_a5_solution : Prop := sorry
-- False
| valid |
putnam_1969_b2 | theorem putnam_1969_b2
(G : Type*)
[Group G] [Finite G]
(h : β β Prop := fun n => β H : Fin n β Subgroup G, (β i : Fin n, (H i) < β€) β§ ((β€ : Set G) = β i : Fin n, (H i)))
: Β¬(h 2) β§ ((Β¬(h 3)) β putnam_1969_b2_solution) :=
sorry | Show that a finite group can not be the union of two of its proper subgroups. Does the statement remain true if 'two' is replaced by 'three'? | ['abstract_algebra'] | abbrev putnam_1969_b2_solution : Prop := sorry
-- False
| valid |
putnam_1977_b6 | theorem putnam_1977_b6
[Group G]
(H : Subgroup G)
(h : β := Nat.card H)
(a : G)
(ha : β x : H, (x*a)^3 = 1)
(P : Set G := {g : G | β xs : List H, (xs.length β₯ 1) β§ g = (List.map (fun h : H => h*a) xs).prod})
: (Finite P) β§ (P.ncard β€ 3*h^2) :=
sorry | Let $G$ be a group and $H$ be a subgroup of $G$ with $h$ elements. Suppose that $G$ contains some element $a$ such that $(xa)^3 = 1$ for all $x \in H$ (here $1$ represents the identity element of $G$). Let $P$ be the subset of $G$ containing all products of the form $x_1 a x_2 a \cdots x_n a$ with $n \ge 1$ and $x_i \in H$ for all $i \in \{1, 2, \dots, n\}$. Prove that $P$ is a finite set and contains no more than $3h^2$ elements. | ['abstract_algebra'] | valid |
|
putnam_2012_a2 | theorem putnam_2012_a2
(S : Type*) [CommSemigroup S]
(a b c : S)
(hS : β x y : S, β z : S, x * z = y)
(habc : a * c = b * c)
: a = b :=
sorry | Let $*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$. (This $z$ may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and $a*c=b*c$, then $a=b$. | ['abstract_algebra'] | valid |
|
putnam_1984_b3 | theorem putnam_1984_b3
: (β (F : Type*) (_ : Fintype F), Fintype.card F β₯ 2 β (β mul : F β F β F, β x y z : F, (mul x z = mul y z β x = y) β§ (mul x (mul y z) β mul (mul x y) z))) β putnam_1984_b3_solution :=
sorry | Prove or disprove the following statement: If $F$ is a finite set with two or more elements, then there exists a binary operation $*$ on F such that for all $x,y,z$ in $F$,
\begin{enumerate}
\item[(i)] $x*z=y*z$ implies $x=y$ (right cancellation holds), and
\item[(ii)] $x*(y*z) \neq (x*y)*z$ (\emph{no} case of associativity holds).
\end{enumerate} | ['abstract_algebra'] | abbrev putnam_1984_b3_solution : Prop := sorry
-- True
| valid |
putnam_2019_b6 | theorem putnam_2019_b6
(n : β)
(neighbors : (Fin n β β€) β (Fin n β β€) β Prop)
(hneighbors : β p q : Fin n β β€, neighbors p q = (β i : Fin n, abs (p i - q i) = 1 β§ β j β i, p j = q j))
: (n β₯ 1 β§ β S : Set (Fin n β β€), (β p β S, β q : Fin n β β€, neighbors p q β q β S) β§ (β p β S, {q β S | neighbors p q}.encard = 1)) β n β putnam_2019_b6_solution :=
sorry | Let \( \mathbb{Z}^n \) be the integer lattice in \( \mathbb{R}^n \). Two points in \( \mathbb{Z}^n \) are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers \( n \geq 1 \) does there exist a set of points \( S \subset \mathbb{Z}^n \) satisfying the following two conditions? \begin{enumerate} \item If \( p \) is in \( S \), then none of the neighbors of \( p \) is in \( S \). \item If \( p \in \mathbb{Z}^n \) is not in \( S \), then exactly one of the neighbors of \( p \) is in \( S \). \end{enumerate} | ['abstract_algebra'] | abbrev putnam_2019_b6_solution : Set β := sorry
-- Set.Ici 1
| valid |
putnam_1979_b3 | theorem putnam_1979_b3
(F : Type*) [Field F] [Fintype F]
(n : β := Fintype.card F)
(nodd : Odd n)
(b c : F)
(p : Polynomial F := X ^ 2 + (C b) * X + (C c))
(hp : Irreducible p)
: ({d : F | Irreducible (p + (C d))}.ncard = putnam_1979_b3_solution n) :=
sorry | Let $F$ be a finite field with $n$ elements, and assume $n$ is odd. Suppose $x^2 + bx + c$ is an irreducible polynomial over $F$. For how many elements $d \in F$ is $x^2 + bx + c + d$ irreducible? | ['abstract_algebra'] | abbrev putnam_1979_b3_solution : β β β€ := sorry
-- fun n β¦ (n - 1) / 2
| valid |
putnam_1972_a2 | theorem putnam_1972_a2
: (β (S : Type*) (_ : Mul S), (β x y : S, x * (x * y) = y β§ ((y * x) * x) = y) β (β x y : S, x * y = y * x)) β§ β (S : Type*) (_ : Mul S), (β x y : S, x * (x * y) = y β§ ((y * x) * x) = y) β§ Β¬(β x y z : S, x * (y * z) = (x * y) * z) :=
sorry | Let $S$ be a set and $\cdot$ be a binary operation on $S$ satisfying: (1) for all $x,y$ in $S$, $x \cdot (x \cdot y) = y$ (2) for all $x,y$ in $S$, $(y \cdot x) \cdot x = y$. Show that $\cdot$ is commutative but not necessarily associative. | ['abstract_algebra'] | valid |
|
putnam_2001_a1 | theorem putnam_2001_a1
(S : Type*)
[Mul S]
(hS : β a b : S, (a * b) * a = b)
: β a b : S, a * (b * a) = b :=
sorry | Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\in S$, $a*b\in S$. Assume $(a*b)*a=b$ for all $a,b\in S$. Prove that $a*(b*a)=b$ for all $a,b\in S$. | ['abstract_algebra'] | valid |
|
putnam_2018_a4 | theorem putnam_2018_a4
(m n : β)
(a : β β β€)
(G : Type*) [Group G]
(g h : G)
(mnpos : m > 0 β§ n > 0)
(mngcd : Nat.gcd m n = 1)
(ha : β k : Set.Icc 1 n, a k = Int.floor (m * k / (n : β)) - Int.floor (m * ((k : β€) - 1) / (n : β)))
(ghprod : ((List.Ico 1 (n + 1)).map (fun k : β => g * h ^ (a k))).prod = 1)
: g * h = h * g :=
sorry | Let $m$ and $n$ be positive integers with $\gcd(m,n)=1$, and let $a_k=\left\lfloor \frac{mk}{n} \right\rfloor - \left\lfloor \frac{m(k-1)}{n} \right\rfloor$ for $k=1,2,\dots,n$. Suppose that $g$ and $h$ are elements in a group $G$ and that $gh^{a_1}gh^{a_2} \cdots gh^{a_n}=e$, where $e$ is the identity element. Show that $gh=hg$. (As usual, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.) | ['abstract_algebra', 'number_theory'] | valid |
|
putnam_1990_b4 | theorem putnam_1990_b4
: (β (G : Type*) (_ : Fintype G) (_ : Group G) (n : β) (a b : G), (n = Fintype.card G β§ a β b β§ G = Subgroup.closure {a, b}) β (β g : β β G, (β x : G, {i : Fin (2 * n) | g i = x}.encard = 2)
β§ (β i : Fin (2 * n), (g ((i + 1) % (2 * n)) = g i * a) β¨ (g ((i + 1) % (2 * n)) = g i * b))) β putnam_1990_b4_solution) :=
sorry | Let $G$ be a finite group of order $n$ generated by $a$ and $b$. Prove or disprove: there is a sequence $g_1,g_2,g_3,\dots,g_{2n}$ such that
\begin{itemize}
\item[(1)] every element of $G$ occurs exactly twice, and
\item[(2)] $g_{i+1}$ equals $g_ia$ or $g_ib$ for $i=1,2,\dots,2n$. (Interpret $g_{2n+1}$ as $g_1$.)
\end{itemize} | ['abstract_algebra'] | abbrev putnam_1990_b4_solution : Prop := sorry
-- True
| valid |
putnam_1972_b3 | theorem putnam_1972_b3
(G : Type*) [Group G]
(A B : G)
(hab : A * B * A = B * A^2 * B β§ A^3 = 1 β§ (β n : β€, n > 0 β§ B^(2*n - 1) = 1))
: B = 1 :=
sorry | Let $A$ and $B$ be two elements in a group such that $ABA = BA^2B$, $A^3 = 1$, and $B^{2n-1} = 1$ for some positive integer $n$. Prove that $B = 1$. | ['abstract_algebra'] | valid |
Abstract Algebra Autoformalization Dataset
Dataset Summary
This dataset consists of abstract algebra problems, with informal (natural language) statements and the corresponding formal statements written in Lean 4. It is designed for autoformalization tasks in the domain of abstract algebra. The dataset is a subset of the benchmark Putnam Bench.
Dataset Structure
The final dataset includes 25 abstract algebra problems from PutnamBench with a balanced test/validation split (50/50).
Data Fields
- name: A unique identifier for the problem.
- formal_statement: The formal statement of the mathematical problem written in Lean 4.
- informal_statement: The informal, natural language description of the problem, usually expressed in LaTeX.
- tags: A list of tags related to the problem, which typically includes mathematical areas or subfields (e.g., "number theory", "algebra").
- header: Contextual metadata necessary for type-checking the formal statements. The
header
contains information such as packages to import or additional definitions required for the formalization to be complete. Without theheader
, the formal statement may not "type-check" correctly. - split: Indicates whether the problem belongs to the
test
orvalid
set.
Dataset Splits
Split | Number of Problems |
---|---|
Test | 12 |
Valid | 13 |
Total | 25 |
Data Example
Hereβs an example of a problem from the dataset:
{
"name":"putnam_2001_a1",
"formal_statement":"theorem putnam_2001_a1\n(S : Type*)\n[Mul S]\n(hS : \u2200 a b : S, (a * b) * a = b)\n: \u2200 a b : S, a * (b * a) = b :=\nsorry",
"informal_statement":"Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\\in S$, $a*b\\in S$. Assume $(a*b)*a=b$ for all $a,b\\in S$. Prove that $a*(b*a)=b$ for all $a,b\\in S$.",
"tags":"['abstract_algebra']",
"header":"",
"split":"valid"
}
Usage
The dataset can be used directly in your code as follows:
Loading the Dataset
You can load the dataset using the datasets
library from Hugging Face:
from datasets import load_dataset
# Load the entire dataset
dataset = load_dataset('agatha-duzan/advanced_algebra_af')
# Load a specific split (test or validation)
test_set = dataset['test']
valid_set = dataset['valid']
- Downloads last month
- 8