name
stringlengths
14
14
formal_statement
stringlengths
114
355
informal_statement
stringlengths
104
577
tags
stringclasses
3 values
header
stringclasses
7 values
split
stringclasses
1 value
putnam_1985_b6
theorem putnam_1985_b6 (n : β„•) (npos : n > 0) (G : Finset (Matrix (Fin n) (Fin n) ℝ)) (groupG : (βˆ€ g ∈ G, βˆ€ h ∈ G, g * h ∈ G) ∧ 1 ∈ G ∧ (βˆ€ g ∈ G, βˆƒ h ∈ G, g * h = 1)) (hG : βˆ‘ M in G, Matrix.trace M = 0) : (βˆ‘ M in G, M = 0) := sorry
Let $G$ be a finite set of real $n\times n$ matrices $\{M_i\}$, $1 \leq i \leq r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^r \mathrm{tr}(M_i)=0$, where $\mathrm{tr}(A)$ denotes the trace of the matrix $A$. Prove that $\sum_{i=1}^r M_i$ is the $n \times n$ zero matrix.
['abstract_algebra', 'linear_algebra']
valid
putnam_2009_a5
theorem putnam_2009_a5 : (βˆƒ (G : Type*) (_ : CommGroup G) (_ : Fintype G), ∏ g : G, orderOf g = 2^2009) ↔ putnam_2009_a5_solution := sorry
Is there a finite abelian group $G$ such that the product of the orders of all its elements is 2^{2009}?
['abstract_algebra']
abbrev putnam_2009_a5_solution : Prop := sorry -- False
valid
putnam_1969_b2
theorem putnam_1969_b2 (G : Type*) [Group G] [Finite G] (h : β„• β†’ Prop := fun n => βˆƒ H : Fin n β†’ Subgroup G, (βˆ€ i : Fin n, (H i) < ⊀) ∧ ((⊀ : Set G) = ⋃ i : Fin n, (H i))) : Β¬(h 2) ∧ ((Β¬(h 3)) ↔ putnam_1969_b2_solution) := sorry
Show that a finite group can not be the union of two of its proper subgroups. Does the statement remain true if 'two' is replaced by 'three'?
['abstract_algebra']
abbrev putnam_1969_b2_solution : Prop := sorry -- False
valid
putnam_1977_b6
theorem putnam_1977_b6 [Group G] (H : Subgroup G) (h : β„• := Nat.card H) (a : G) (ha : βˆ€ x : H, (x*a)^3 = 1) (P : Set G := {g : G | βˆƒ xs : List H, (xs.length β‰₯ 1) ∧ g = (List.map (fun h : H => h*a) xs).prod}) : (Finite P) ∧ (P.ncard ≀ 3*h^2) := sorry
Let $G$ be a group and $H$ be a subgroup of $G$ with $h$ elements. Suppose that $G$ contains some element $a$ such that $(xa)^3 = 1$ for all $x \in H$ (here $1$ represents the identity element of $G$). Let $P$ be the subset of $G$ containing all products of the form $x_1 a x_2 a \cdots x_n a$ with $n \ge 1$ and $x_i \in H$ for all $i \in \{1, 2, \dots, n\}$. Prove that $P$ is a finite set and contains no more than $3h^2$ elements.
['abstract_algebra']
valid
putnam_2012_a2
theorem putnam_2012_a2 (S : Type*) [CommSemigroup S] (a b c : S) (hS : βˆ€ x y : S, βˆƒ z : S, x * z = y) (habc : a * c = b * c) : a = b := sorry
Let $*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$. (This $z$ may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and $a*c=b*c$, then $a=b$.
['abstract_algebra']
valid
putnam_1984_b3
theorem putnam_1984_b3 : (βˆ€ (F : Type*) (_ : Fintype F), Fintype.card F β‰₯ 2 β†’ (βˆƒ mul : F β†’ F β†’ F, βˆ€ x y z : F, (mul x z = mul y z β†’ x = y) ∧ (mul x (mul y z) β‰  mul (mul x y) z))) ↔ putnam_1984_b3_solution := sorry
Prove or disprove the following statement: If $F$ is a finite set with two or more elements, then there exists a binary operation $*$ on F such that for all $x,y,z$ in $F$, \begin{enumerate} \item[(i)] $x*z=y*z$ implies $x=y$ (right cancellation holds), and \item[(ii)] $x*(y*z) \neq (x*y)*z$ (\emph{no} case of associativity holds). \end{enumerate}
['abstract_algebra']
abbrev putnam_1984_b3_solution : Prop := sorry -- True
valid
putnam_2019_b6
theorem putnam_2019_b6 (n : β„•) (neighbors : (Fin n β†’ β„€) β†’ (Fin n β†’ β„€) β†’ Prop) (hneighbors : βˆ€ p q : Fin n β†’ β„€, neighbors p q = (βˆƒ i : Fin n, abs (p i - q i) = 1 ∧ βˆ€ j β‰  i, p j = q j)) : (n β‰₯ 1 ∧ βˆƒ S : Set (Fin n β†’ β„€), (βˆ€ p ∈ S, βˆ€ q : Fin n β†’ β„€, neighbors p q β†’ q βˆ‰ S) ∧ (βˆ€ p βˆ‰ S, {q ∈ S | neighbors p q}.encard = 1)) ↔ n ∈ putnam_2019_b6_solution := sorry
Let \( \mathbb{Z}^n \) be the integer lattice in \( \mathbb{R}^n \). Two points in \( \mathbb{Z}^n \) are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers \( n \geq 1 \) does there exist a set of points \( S \subset \mathbb{Z}^n \) satisfying the following two conditions? \begin{enumerate} \item If \( p \) is in \( S \), then none of the neighbors of \( p \) is in \( S \). \item If \( p \in \mathbb{Z}^n \) is not in \( S \), then exactly one of the neighbors of \( p \) is in \( S \). \end{enumerate}
['abstract_algebra']
abbrev putnam_2019_b6_solution : Set β„• := sorry -- Set.Ici 1
valid
putnam_1979_b3
theorem putnam_1979_b3 (F : Type*) [Field F] [Fintype F] (n : β„• := Fintype.card F) (nodd : Odd n) (b c : F) (p : Polynomial F := X ^ 2 + (C b) * X + (C c)) (hp : Irreducible p) : ({d : F | Irreducible (p + (C d))}.ncard = putnam_1979_b3_solution n) := sorry
Let $F$ be a finite field with $n$ elements, and assume $n$ is odd. Suppose $x^2 + bx + c$ is an irreducible polynomial over $F$. For how many elements $d \in F$ is $x^2 + bx + c + d$ irreducible?
['abstract_algebra']
abbrev putnam_1979_b3_solution : β„• β†’ β„€ := sorry -- fun n ↦ (n - 1) / 2
valid
putnam_1972_a2
theorem putnam_1972_a2 : (βˆ€ (S : Type*) (_ : Mul S), (βˆ€ x y : S, x * (x * y) = y ∧ ((y * x) * x) = y) β†’ (βˆ€ x y : S, x * y = y * x)) ∧ βˆƒ (S : Type*) (_ : Mul S), (βˆ€ x y : S, x * (x * y) = y ∧ ((y * x) * x) = y) ∧ Β¬(βˆ€ x y z : S, x * (y * z) = (x * y) * z) := sorry
Let $S$ be a set and $\cdot$ be a binary operation on $S$ satisfying: (1) for all $x,y$ in $S$, $x \cdot (x \cdot y) = y$ (2) for all $x,y$ in $S$, $(y \cdot x) \cdot x = y$. Show that $\cdot$ is commutative but not necessarily associative.
['abstract_algebra']
valid
putnam_2001_a1
theorem putnam_2001_a1 (S : Type*) [Mul S] (hS : βˆ€ a b : S, (a * b) * a = b) : βˆ€ a b : S, a * (b * a) = b := sorry
Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\in S$, $a*b\in S$. Assume $(a*b)*a=b$ for all $a,b\in S$. Prove that $a*(b*a)=b$ for all $a,b\in S$.
['abstract_algebra']
valid
putnam_2018_a4
theorem putnam_2018_a4 (m n : β„•) (a : β„• β†’ β„€) (G : Type*) [Group G] (g h : G) (mnpos : m > 0 ∧ n > 0) (mngcd : Nat.gcd m n = 1) (ha : βˆ€ k : Set.Icc 1 n, a k = Int.floor (m * k / (n : ℝ)) - Int.floor (m * ((k : β„€) - 1) / (n : ℝ))) (ghprod : ((List.Ico 1 (n + 1)).map (fun k : β„• => g * h ^ (a k))).prod = 1) : g * h = h * g := sorry
Let $m$ and $n$ be positive integers with $\gcd(m,n)=1$, and let $a_k=\left\lfloor \frac{mk}{n} \right\rfloor - \left\lfloor \frac{m(k-1)}{n} \right\rfloor$ for $k=1,2,\dots,n$. Suppose that $g$ and $h$ are elements in a group $G$ and that $gh^{a_1}gh^{a_2} \cdots gh^{a_n}=e$, where $e$ is the identity element. Show that $gh=hg$. (As usual, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.)
['abstract_algebra', 'number_theory']
valid
putnam_1990_b4
theorem putnam_1990_b4 : (βˆ€ (G : Type*) (_ : Fintype G) (_ : Group G) (n : β„•) (a b : G), (n = Fintype.card G ∧ a β‰  b ∧ G = Subgroup.closure {a, b}) β†’ (βˆƒ g : β„• β†’ G, (βˆ€ x : G, {i : Fin (2 * n) | g i = x}.encard = 2) ∧ (βˆ€ i : Fin (2 * n), (g ((i + 1) % (2 * n)) = g i * a) ∨ (g ((i + 1) % (2 * n)) = g i * b))) ↔ putnam_1990_b4_solution) := sorry
Let $G$ be a finite group of order $n$ generated by $a$ and $b$. Prove or disprove: there is a sequence $g_1,g_2,g_3,\dots,g_{2n}$ such that \begin{itemize} \item[(1)] every element of $G$ occurs exactly twice, and \item[(2)] $g_{i+1}$ equals $g_ia$ or $g_ib$ for $i=1,2,\dots,2n$. (Interpret $g_{2n+1}$ as $g_1$.) \end{itemize}
['abstract_algebra']
abbrev putnam_1990_b4_solution : Prop := sorry -- True
valid
putnam_1972_b3
theorem putnam_1972_b3 (G : Type*) [Group G] (A B : G) (hab : A * B * A = B * A^2 * B ∧ A^3 = 1 ∧ (βˆƒ n : β„€, n > 0 ∧ B^(2*n - 1) = 1)) : B = 1 := sorry
Let $A$ and $B$ be two elements in a group such that $ABA = BA^2B$, $A^3 = 1$, and $B^{2n-1} = 1$ for some positive integer $n$. Prove that $B = 1$.
['abstract_algebra']
valid

Abstract Algebra Autoformalization Dataset

Dataset Summary

This dataset consists of abstract algebra problems, with informal (natural language) statements and the corresponding formal statements written in Lean 4. It is designed for autoformalization tasks in the domain of abstract algebra. The dataset is a subset of the benchmark Putnam Bench.

Dataset Structure

The final dataset includes 25 abstract algebra problems from PutnamBench with a balanced test/validation split (50/50).

Data Fields

  1. name: A unique identifier for the problem.
  2. formal_statement: The formal statement of the mathematical problem written in Lean 4.
  3. informal_statement: The informal, natural language description of the problem, usually expressed in LaTeX.
  4. tags: A list of tags related to the problem, which typically includes mathematical areas or subfields (e.g., "number theory", "algebra").
  5. header: Contextual metadata necessary for type-checking the formal statements. The header contains information such as packages to import or additional definitions required for the formalization to be complete. Without the header, the formal statement may not "type-check" correctly.
  6. split: Indicates whether the problem belongs to the test or valid set.

Dataset Splits

Split Number of Problems
Test 12
Valid 13
Total 25

Data Example

Here’s an example of a problem from the dataset:

{
  "name":"putnam_2001_a1",
  "formal_statement":"theorem putnam_2001_a1\n(S : Type*)\n[Mul S]\n(hS : \u2200 a b : S, (a * b) * a = b)\n: \u2200 a b : S, a * (b * a) = b :=\nsorry",
  "informal_statement":"Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\\in S$, $a*b\\in S$.  Assume $(a*b)*a=b$ for all $a,b\\in S$.  Prove that $a*(b*a)=b$ for all $a,b\\in S$.",
  "tags":"['abstract_algebra']",
  "header":"",
  "split":"valid"
}

Usage

The dataset can be used directly in your code as follows:

Loading the Dataset

You can load the dataset using the datasets library from Hugging Face:

from datasets import load_dataset

# Load the entire dataset
dataset = load_dataset('agatha-duzan/advanced_algebra_af')

# Load a specific split (test or validation)
test_set = dataset['test']
valid_set = dataset['valid']
Downloads last month
8