name
stringlengths 14
14
| formal_statement
stringlengths 114
355
| informal_statement
stringlengths 104
577
| tags
stringclasses 3
values | header
stringclasses 7
values | split
stringclasses 1
value |
---|---|---|---|---|---|
putnam_1985_b6 | theorem putnam_1985_b6
(n : β)
(npos : n > 0)
(G : Finset (Matrix (Fin n) (Fin n) β))
(groupG : (β g β G, β h β G, g * h β G) β§ 1 β G β§ (β g β G, β h β G, g * h = 1))
(hG : β M in G, Matrix.trace M = 0)
: (β M in G, M = 0) :=
sorry | Let $G$ be a finite set of real $n\times n$ matrices $\{M_i\}$, $1 \leq i \leq r$, which form a group under matrix
multiplication. Suppose that $\sum_{i=1}^r \mathrm{tr}(M_i)=0$, where $\mathrm{tr}(A)$ denotes the trace of the matrix $A$. Prove that $\sum_{i=1}^r M_i$ is the $n \times n$ zero matrix. | ['abstract_algebra', 'linear_algebra'] | valid |
|
putnam_2009_a5 | theorem putnam_2009_a5
: (β (G : Type*) (_ : CommGroup G) (_ : Fintype G), β g : G, orderOf g = 2^2009) β putnam_2009_a5_solution :=
sorry | Is there a finite abelian group $G$ such that the product of the orders of all its elements is 2^{2009}? | ['abstract_algebra'] | abbrev putnam_2009_a5_solution : Prop := sorry
-- False
| valid |
putnam_1969_b2 | theorem putnam_1969_b2
(G : Type*)
[Group G] [Finite G]
(h : β β Prop := fun n => β H : Fin n β Subgroup G, (β i : Fin n, (H i) < β€) β§ ((β€ : Set G) = β i : Fin n, (H i)))
: Β¬(h 2) β§ ((Β¬(h 3)) β putnam_1969_b2_solution) :=
sorry | Show that a finite group can not be the union of two of its proper subgroups. Does the statement remain true if 'two' is replaced by 'three'? | ['abstract_algebra'] | abbrev putnam_1969_b2_solution : Prop := sorry
-- False
| valid |
putnam_1977_b6 | theorem putnam_1977_b6
[Group G]
(H : Subgroup G)
(h : β := Nat.card H)
(a : G)
(ha : β x : H, (x*a)^3 = 1)
(P : Set G := {g : G | β xs : List H, (xs.length β₯ 1) β§ g = (List.map (fun h : H => h*a) xs).prod})
: (Finite P) β§ (P.ncard β€ 3*h^2) :=
sorry | Let $G$ be a group and $H$ be a subgroup of $G$ with $h$ elements. Suppose that $G$ contains some element $a$ such that $(xa)^3 = 1$ for all $x \in H$ (here $1$ represents the identity element of $G$). Let $P$ be the subset of $G$ containing all products of the form $x_1 a x_2 a \cdots x_n a$ with $n \ge 1$ and $x_i \in H$ for all $i \in \{1, 2, \dots, n\}$. Prove that $P$ is a finite set and contains no more than $3h^2$ elements. | ['abstract_algebra'] | valid |
|
putnam_2012_a2 | theorem putnam_2012_a2
(S : Type*) [CommSemigroup S]
(a b c : S)
(hS : β x y : S, β z : S, x * z = y)
(habc : a * c = b * c)
: a = b :=
sorry | Let $*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$. (This $z$ may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and $a*c=b*c$, then $a=b$. | ['abstract_algebra'] | valid |
|
putnam_1984_b3 | theorem putnam_1984_b3
: (β (F : Type*) (_ : Fintype F), Fintype.card F β₯ 2 β (β mul : F β F β F, β x y z : F, (mul x z = mul y z β x = y) β§ (mul x (mul y z) β mul (mul x y) z))) β putnam_1984_b3_solution :=
sorry | Prove or disprove the following statement: If $F$ is a finite set with two or more elements, then there exists a binary operation $*$ on F such that for all $x,y,z$ in $F$,
\begin{enumerate}
\item[(i)] $x*z=y*z$ implies $x=y$ (right cancellation holds), and
\item[(ii)] $x*(y*z) \neq (x*y)*z$ (\emph{no} case of associativity holds).
\end{enumerate} | ['abstract_algebra'] | abbrev putnam_1984_b3_solution : Prop := sorry
-- True
| valid |
putnam_2019_b6 | theorem putnam_2019_b6
(n : β)
(neighbors : (Fin n β β€) β (Fin n β β€) β Prop)
(hneighbors : β p q : Fin n β β€, neighbors p q = (β i : Fin n, abs (p i - q i) = 1 β§ β j β i, p j = q j))
: (n β₯ 1 β§ β S : Set (Fin n β β€), (β p β S, β q : Fin n β β€, neighbors p q β q β S) β§ (β p β S, {q β S | neighbors p q}.encard = 1)) β n β putnam_2019_b6_solution :=
sorry | Let \( \mathbb{Z}^n \) be the integer lattice in \( \mathbb{R}^n \). Two points in \( \mathbb{Z}^n \) are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers \( n \geq 1 \) does there exist a set of points \( S \subset \mathbb{Z}^n \) satisfying the following two conditions? \begin{enumerate} \item If \( p \) is in \( S \), then none of the neighbors of \( p \) is in \( S \). \item If \( p \in \mathbb{Z}^n \) is not in \( S \), then exactly one of the neighbors of \( p \) is in \( S \). \end{enumerate} | ['abstract_algebra'] | abbrev putnam_2019_b6_solution : Set β := sorry
-- Set.Ici 1
| valid |
putnam_1979_b3 | theorem putnam_1979_b3
(F : Type*) [Field F] [Fintype F]
(n : β := Fintype.card F)
(nodd : Odd n)
(b c : F)
(p : Polynomial F := X ^ 2 + (C b) * X + (C c))
(hp : Irreducible p)
: ({d : F | Irreducible (p + (C d))}.ncard = putnam_1979_b3_solution n) :=
sorry | Let $F$ be a finite field with $n$ elements, and assume $n$ is odd. Suppose $x^2 + bx + c$ is an irreducible polynomial over $F$. For how many elements $d \in F$ is $x^2 + bx + c + d$ irreducible? | ['abstract_algebra'] | abbrev putnam_1979_b3_solution : β β β€ := sorry
-- fun n β¦ (n - 1) / 2
| valid |
putnam_1972_a2 | theorem putnam_1972_a2
: (β (S : Type*) (_ : Mul S), (β x y : S, x * (x * y) = y β§ ((y * x) * x) = y) β (β x y : S, x * y = y * x)) β§ β (S : Type*) (_ : Mul S), (β x y : S, x * (x * y) = y β§ ((y * x) * x) = y) β§ Β¬(β x y z : S, x * (y * z) = (x * y) * z) :=
sorry | Let $S$ be a set and $\cdot$ be a binary operation on $S$ satisfying: (1) for all $x,y$ in $S$, $x \cdot (x \cdot y) = y$ (2) for all $x,y$ in $S$, $(y \cdot x) \cdot x = y$. Show that $\cdot$ is commutative but not necessarily associative. | ['abstract_algebra'] | valid |
|
putnam_2001_a1 | theorem putnam_2001_a1
(S : Type*)
[Mul S]
(hS : β a b : S, (a * b) * a = b)
: β a b : S, a * (b * a) = b :=
sorry | Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\in S$, $a*b\in S$. Assume $(a*b)*a=b$ for all $a,b\in S$. Prove that $a*(b*a)=b$ for all $a,b\in S$. | ['abstract_algebra'] | valid |
|
putnam_2018_a4 | theorem putnam_2018_a4
(m n : β)
(a : β β β€)
(G : Type*) [Group G]
(g h : G)
(mnpos : m > 0 β§ n > 0)
(mngcd : Nat.gcd m n = 1)
(ha : β k : Set.Icc 1 n, a k = Int.floor (m * k / (n : β)) - Int.floor (m * ((k : β€) - 1) / (n : β)))
(ghprod : ((List.Ico 1 (n + 1)).map (fun k : β => g * h ^ (a k))).prod = 1)
: g * h = h * g :=
sorry | Let $m$ and $n$ be positive integers with $\gcd(m,n)=1$, and let $a_k=\left\lfloor \frac{mk}{n} \right\rfloor - \left\lfloor \frac{m(k-1)}{n} \right\rfloor$ for $k=1,2,\dots,n$. Suppose that $g$ and $h$ are elements in a group $G$ and that $gh^{a_1}gh^{a_2} \cdots gh^{a_n}=e$, where $e$ is the identity element. Show that $gh=hg$. (As usual, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.) | ['abstract_algebra', 'number_theory'] | valid |
|
putnam_1990_b4 | theorem putnam_1990_b4
: (β (G : Type*) (_ : Fintype G) (_ : Group G) (n : β) (a b : G), (n = Fintype.card G β§ a β b β§ G = Subgroup.closure {a, b}) β (β g : β β G, (β x : G, {i : Fin (2 * n) | g i = x}.encard = 2)
β§ (β i : Fin (2 * n), (g ((i + 1) % (2 * n)) = g i * a) β¨ (g ((i + 1) % (2 * n)) = g i * b))) β putnam_1990_b4_solution) :=
sorry | Let $G$ be a finite group of order $n$ generated by $a$ and $b$. Prove or disprove: there is a sequence $g_1,g_2,g_3,\dots,g_{2n}$ such that
\begin{itemize}
\item[(1)] every element of $G$ occurs exactly twice, and
\item[(2)] $g_{i+1}$ equals $g_ia$ or $g_ib$ for $i=1,2,\dots,2n$. (Interpret $g_{2n+1}$ as $g_1$.)
\end{itemize} | ['abstract_algebra'] | abbrev putnam_1990_b4_solution : Prop := sorry
-- True
| valid |
putnam_1972_b3 | theorem putnam_1972_b3
(G : Type*) [Group G]
(A B : G)
(hab : A * B * A = B * A^2 * B β§ A^3 = 1 β§ (β n : β€, n > 0 β§ B^(2*n - 1) = 1))
: B = 1 :=
sorry | Let $A$ and $B$ be two elements in a group such that $ABA = BA^2B$, $A^3 = 1$, and $B^{2n-1} = 1$ for some positive integer $n$. Prove that $B = 1$. | ['abstract_algebra'] | valid |