abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
44.4 kB
1
00:00:20,740 --> 00:00:25,580
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุนูˆุฏู‹ุง ุนู„ู‰ ุจุฏุกุŒ ุจูุฌูŠู†ุง ู†ุชุญุฏุซ
2
00:00:25,580 --> 00:00:29,820
ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุนู† ุงู„ู€ Diagonalization ู„ู€ Matrix
3
00:00:29,820 --> 00:00:34,300
ูˆุฎุฏู†ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃู…ุซู„ุฉุŒ ุจุฏู„ ุงู„ู…ุซุงู„ ุชู„ุงุชุฉ ุจูุฌูŠู†ุง
4
00:00:34,300 --> 00:00:38,400
ู†ุฌูŠุจ ุงู„ู€ Eigen Values ูˆ ุงู„ู€ Eigen Vectors ูˆ ู†ุซุจุช ู‡ู„
5
00:00:38,400 --> 00:00:42,040
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ Diagonalizable ูˆู„ุง ู„ุฃุŸ ุทุจุนู‹ุง
6
00:00:42,040 --> 00:00:46,280
ุนุฑูู†ุง ุฅู†ู‡ ู…ุนู†ุงู‡ ุฅูŠู‡ุŸ Similar to BุŒ ู…ุนู†ุงู‡ ุฅู†ู‡ ููŠ
7
00:00:46,280 --> 00:00:51,970
Diagonalization ู„ู€ ู„ู„ู…ุตููˆูุฉ AุŒ ุงู„ู…ุซุงู„ ุงู„ุฑุงุจุน ุจูŠู‚ูˆู„
8
00:00:51,970 --> 00:00:56,110
ุงูุชุฑุถ ุงู„ู…ุตููˆูุฉ A ู‡ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุง
9
00:00:56,110 --> 00:01:00,090
ุจุทุงู„ุจ ุชู„ุช ู…ุทุงู„ูŠุจุŒ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู‚ุงู„ ู„ูŠ: ู‡ุงุช ุงู„ู€
10
00:01:00,090 --> 00:01:05,850
EigenvectorsุŒ ุดุบู„ุฉ ุฑูˆุชูŠู†ูŠุฉ ูŠุง ู…ุง ุฃูˆุฌุฏู†ุงู‡ุง ููŠ
11
00:01:05,850 --> 00:01:09,370
ุงู„ุณูŠูƒุดู† ู‡ุฐุง ุฃูˆ ุงู„ุณูŠูƒุดู† ุงู„ู„ูŠ ุฌุงุจู‡ุŒ ุฃุฑุจุนุฉ ูˆุงุญุฏ
12
00:01:09,370 --> 00:01:13,230
ุงู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ ุจูŠู‚ูˆู„: Find a the Dimension of the
13
00:01:13,230 --> 00:01:18,070
Eigenvector SpaceุŒ ูˆุจุฑุถู‡ ุฃูˆุฌุฏู†ุงู‡ุง ู‚ุจู„ ุฐู„ูƒุŒ ุงู„ุฃู…ุฑ
14
00:01:18,070 --> 00:01:21,230
ุงู„ุซุงู„ุซ ุจูŠู‚ูˆู„ ู„ูŠ: ู‡ู„ ุงู„ู€ Matrix is Similar to a
15
00:01:21,230 --> 00:01:25,390
Diagonal Matrix ูˆู„ุง ู„ุฃุŸ ูŠุนู†ูŠ ุฅูŠุด ู‚ุตุฏ ูŠู‚ูˆู„ ู„ูŠู‡ุŸ ู‚ุงู„
16
00:01:25,390 --> 00:01:29,750
ู„ูŠ: ู‡ู„ ุงู„ู…ุตููˆูุฉ is Diagonalizable ูˆู„ุง ู„ุฃุŸ ู‡ูŠ ุงู„ุณุคุงู„
17
00:01:29,750 --> 00:01:35,710
ุงู„ุณุคุงู„ ุงู„ู„ูŠ ู‚ุงู„ ู„ูŠ: ุดูˆู ู„ูŠ ู‡ู„ ุงู„ู€ A is Similar to a
18
00:01:35,710 --> 00:01:39,430
Diagonal Matrix ูŠุนู†ูŠ ูƒุงู†ูˆุง ุจูŠุณุฃู„ูˆุง ู„ูŠู‡: ู‡ู„ ุงู„ู…ุตููˆูุฉ
19
00:01:39,430 --> 00:01:44,620
is Diagonalizable ูˆู„ุง ู„ุฃุŸ ุจู‚ูˆู„ ู†ูุณูู‡ ุฅู† ูƒุงู† ุงู„ุฃู…ุฑ
20
00:01:44,620 --> 00:01:49,760
ูƒุฐู„ูƒ: Find a Matrix KุŒ ู…ู† ุงู„ู€ Matrix K and Diagonal
21
00:01:49,760 --> 00:01:54,040
ุงู„ู€ Matrix DุŒ ุจุญูŠุซ ุฅู† ุงู„ู€ K inverse A K ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ู…ู†ุŸ
22
00:01:54,040 --> 00:01:58,340
ุจุฏู‘ู‡ ูŠุณุงูˆูŠ DุŒ ู…ุด ู‡ุชุนุฑูŠู ุงู„ู€ SimilarุŒ ูŠุจู‚ู‰ Similar
23
00:01:58,340 --> 00:02:01,380
ูˆุงู„ู„ู‡ Diagonalize ู‡ู… ุงู„ุงุชู†ูŠู† are the SameุŒ ู†ูุณ
24
00:02:01,380 --> 00:02:05,660
ุงู„ู…ูู‡ูˆู… ุจุงู„ุถุจุทุŒ ุชู…ุงู…ุŒ ุทูŠุจ ู†ูŠุฌูŠ ู†ุญู„ ู‡ุฐุง ุงู„ุณุคุงู„ุŒ ูŠุจู‚ู‰
25
00:02:05,660 --> 00:02:09,940
ุฃูˆู„ ู†ู‚ุทุฉ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฌูŠุจ ุงู„ู€ EigenุŒ ุงู„ู€ Eigen
26
00:02:09,940 --> 00:02:13,740
Values ู„ู…ูŠู†ุŸ ู„ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฅูŠู‡ุŸ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุจุฏุฃ
27
00:02:13,740 --> 00:02:19,680
ุจู…ูŠู†ุŸ ุจุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุณุงุณูŠุฉ ุงู„ู„ูŠ ู‡ูŠ: Lambda I ู†ุงู‚ุต A
28
00:02:19,680 --> 00:02:27,580
ุชุณุงูˆูŠ I Lambda 00 Lambda 00 Lambda ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
29
00:02:27,580 --> 00:02:34,270
ุนู†ุฏู†ุง ู‡ุฐุงุŒ ุชู…ุงู…ุŸ ููŠ ู†ุงู‚ุต ุงู„ู…ุตููˆูุฉ AุŒ ุจู†ุฒู„ ุงู„ู…ุตููˆูุฉ
30
00:02:34,270 --> 00:02:41,370
ูƒู…ุง ู‡ูŠุŒ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉุŒ ุณุงู„ุจ ูˆุงุญุฏ ุฃุฑุจุนุฉ ุชู„ุงุชุฉุŒ ูˆุงุญุฏ
31
00:02:41,370 --> 00:02:48,050
ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู…
32
00:02:48,050 --> 00:02:54,910
ุจุฏู‘ู‡ ูŠุณุงูˆูŠ: Lambda ู†ุงู‚ุต ูˆุงุญุฏุŒ Lambda ู†ุงู‚ุต ูˆุงุญุฏุŒ ู†ุงู‚ุต ุงุชู†ูŠู†
33
00:02:54,910 --> 00:03:03,070
ู†ุงู‚ุต ุชู„ุงุชุฉ ู‡ู†ุงุŒ ูˆุงุญุฏ ู‡ู†ุงุŒ Lambda ู†ุงู‚ุต ุฃุฑุจุนุฉ ูˆู‡ู†ุง ู†ุงู‚ุต
34
00:03:03,070 --> 00:03:10,790
ุชู„ุงุชุฉุŒ ูˆู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ู†ุง ุงุชู†ูŠู† ูˆู‡ู†ุง Lambda ุฒุงุฆุฏ
35
00:03:10,790 --> 00:03:15,290
ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ุจุนุฏ ุฐู„ูƒ ู„ูƒูŠ ุงุญุตู„ ุนู„ู‰ ุงู„ู€
36
00:03:15,290 --> 00:03:20,930
Eigenvalues ุฃู†ุง ุจุงุฎุฏ ุงู„ู…ุญุฏุฏ ู„ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉุŒ ุฅุฐุง ุฃู†ุง
37
00:03:20,930 --> 00:03:28,550
ุจุงุฎุฏ ุงู„ู€ Determinant ู„ู…ูŠู†ุŸ ู„ู„ู€ Lambda I ู†ุงู‚ุต ุงู„ู€ AุŒ ูˆู‡ูˆ
38
00:03:28,550 --> 00:03:35,530
ุงู„ู…ุญุฏุฏ Lambda minus oneุŒ ุณุงู„ุจ ุงุชู†ูŠู†ุŒ ุณุงู„ุจ ุชู„ุงุชุฉุŒ ูˆู‡ู†ุง
39
00:03:35,530 --> 00:03:40,650
one ูˆู‡ู†ุง Lambda minus four ูˆู‡ู†ุง minus threeุŒ minus
40
00:03:40,650 --> 00:03:49,350
oneุŒ to Lambda plus oneุŒ ู‡ุฐุง ุงู„ู…ุญุฏุฏุŒ ุจุฏูŠ ุฃุญุณุจ ู‚ูŠู…ุฉ ู‡ุฐุง
41
00:03:49,350 --> 00:03:53,950
ุงู„ู…ุญุฏุฏุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุฃููƒ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุงุณุชุฎุฏุงู…
42
00:03:53,950 --> 00:03:59,890
ู…ุซู„ู‹ุง ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุฃูˆู„ุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู…
43
00:03:59,890 --> 00:04:07,040
ุจุฏู‘ู‡ ูŠุณุงูˆูŠ Lambda minus oneุŒ ูŠุจู‚ู‰ Lambda minus one ููŠ
44
00:04:07,040 --> 00:04:14,200
ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู‡ุŒ ุงู„ู€ Lambda minus four ู…ุถุฑูˆุจุฉ
45
00:04:14,200 --> 00:04:20,400
ููŠ Lambda plus oneุŒ minus ู…ุน minus ุจุตูŠุฑ ุฒุงุฆุฏ ุณุชุฉ
46
00:04:21,170 --> 00:04:25,650
ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ุจุนุฏู‡ุŒ ุญุณุจ ู‚ุทุน ุงู„ุฅุดุงุฑุงุชุŒ ุดุฑุทุฉ ู…ูˆุฌุจุฉ ูŠุจู‚ู‰
47
00:04:25,650 --> 00:04:32,590
ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠุŒ ู†ุดุท ุจุตูู‡ ูˆุนู…ูˆุฏู‡ ูŠุจู‚ู‰ Lambda plus
48
00:04:32,590 --> 00:04:38,910
one minus threeุŒ ูŠุจู‚ู‰ Lambda plus one minus three
49
00:04:38,910 --> 00:04:44,830
ุงู„ู„ูŠ ุจุนุฏู‡ุŒ minus threeุŒ ููŠู‡ ู†ุดุท ุจุตูู‡ ูˆุนู…ูˆุฏู‡ ูŠุจู‚ู‰
50
00:04:44,830 --> 00:04:50,590
ุงุชู†ูŠู†ุŒ minus ู…ุน minus ุจุตูŠุฑ ุฒุงุฆุฏ Lambda minus four
51
00:04:50,920 --> 00:04:56,460
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ู„ูˆ ุฌูŠุชู‡ ุงุฎุชุตุฑุชู‡ุŒ ุจุฏู‘ู‡
52
00:04:56,460 --> 00:05:01,520
ูŠุตูŠุฑ ูƒุชุงู„ูŠุŒ Lambda minus one ู‡ุฐุง ุจุฏู‘ู‡ ูŠููƒู‘ู‡ ูŠุง ุจู†ุงุช
53
00:05:01,520 --> 00:05:09,300
ูŠุจู‚ู‰ Lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ Lambda ูˆู‡ู†ุง ุฒุงุฆุฏ ุงุชู†ูŠู†
54
00:05:09,940 --> 00:05:15,480
ุงู„ู„ูŠ ุจุนุฏู‡ุŒ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ Lambda minus ุงุชู†ูŠู†ุŒ ุงู„ู„ูŠ
55
00:05:15,480 --> 00:05:20,360
ุจุนุฏู‡ุŒ ู†ุงู‚ุต ุชู„ุงุชุฉ ููŠ Lambda minus ุงุชู†ูŠู†ุŒ ูƒู„ ู‡ุฐุง
56
00:05:20,360 --> 00:05:25,460
ุงู„ูƒู„ุงู…ุŒ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุฌุฏุงุดุŸ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ZeroุŒ ุฃูˆ ู…ู…ูƒู† ุฃู‚ูˆู„
57
00:05:25,460 --> 00:05:30,410
ู‡ุฐุง ุงู„ูƒู„ุงู… Lambda minus ุงู„ู€ oneุŒ ู‡ุฐู‡ ุงู„ู…ู†ุงุทู‚ ุจู‚ุฏุฑ
58
00:05:30,410 --> 00:05:37,330
ุฃุญู„ู„ู‡ุงุŒ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ Lambda ุฌูˆุฒ ูˆุฌูˆุฒ ุชุงู†ูŠ Lambda
59
00:05:37,330 --> 00:05:42,570
ูˆู‡ูŠ ุงู„ุฌูˆุฒุŒ ู‡ู†ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ูˆุงุญุฏ ูˆู‡ู†ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„
60
00:05:42,570 --> 00:05:49,530
ุงุชู†ูŠู†ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุงู„ู†ุงู‚ุต ูˆู‡ุฐู‡ ุจุงู„ู†ู‚ุตุŒ ู‡ุฐุง ุงู„ู€ Term
61
00:05:49,530 --> 00:05:54,370
ุงู„ุฃูˆู„ ุทู„ุน ู„ูŠ ู„ู„ู€ Term ู‡ุฐุงุŒ ู‡ุฐุง ุงู„ู€ Term ุงุชู†ูŠู† ุจุงู„ู…ูˆุฌุจ
62
00:05:54,370 --> 00:05:58,910
ูˆ ุชู„ุงุชุฉ ุจุงู„ุณู„ุจ ู„ู†ูุณ ุงู„ู…ู‚ุฏุงุฑุŒ ูŠุจู‚ู‰ ูˆูุถู„ Term ูˆุงุญุฏ
63
00:05:58,910 --> 00:06:06,150
ุจู…ูŠู†ุŸ ุจุงู„ู…ูˆุฌุจุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฒุงุฆุฏ Lambda minus
64
00:06:06,150 --> 00:06:12,210
ุงุชู†ูŠู† ูู‚ุท ู„ุง ุบูŠุฑุŒ ู†ุงู‚ุต Lambda ู†ุงู‚ุต ุงุชู†ูŠู†ุŒ ูˆูŠู† ู‡ู†ุงุŸ
65
00:06:13,530 --> 00:06:23,490
ู‡ุฐู‡ ู†ู‚ุต
66
00:06:23,490 --> 00:06:29,830
ูˆุงุญุฏุŒ ูŠุนู†ูŠ ูˆุงุญุฏุŒ ุขู‡ ุญุงุทูŠู† ุณุงู„ุจุŒ ุขู‡ ู‡ุฐู‡ ุจุงู„ุณุงู„ุจ ุงู„ุตุญูŠุฉ
67
00:06:30,540 --> 00:06:36,220
100% ุฅุตุงุจุฉ ุงู…ุฑุฃุฉ ูˆุฃุฎุชู‡ุง ุนู…ุฑุŒ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจุฏูˆ ูŠุณุงูˆูŠ
68
00:06:36,220 --> 00:06:43,160
ุงู„ู„ูŠ ู‡ูˆ Lambda minus twoุŒ ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ุŒ ุจูŠุธู„
69
00:06:43,160 --> 00:06:50,900
ู…ูŠู† ู‡ู†ุงุŸ ู‡ู†ุง ุจูŠุธู„ Lambda ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ูƒู„ ุชุฑุจูŠุนุŒ ู†ู‚ุต
70
00:06:50,900 --> 00:06:55,860
ูˆุงุญุฏุŒ ุจุงู„ุดูƒู„ุŒ ู„ุฃู† ู‡ุฐุง ุจุฏูŠ ุฃุณุงูˆูŠู‡ 100ุŒ ุจุฏูŠ ุฃุณุงูˆูŠู‡ 0ุŒ ุฃูˆ
71
00:06:55,860 --> 00:07:01,140
ุจู‚ุฏุฑ ุฃู‚ูˆู„ Lambda minus twoุŒ ููŠู‡ุŒ ุจุฏูŠ ุฃููƒ ุงู„ุฌุซุฉ ุฏุงูŠู…ู‹ุง
72
00:07:01,140 --> 00:07:07,420
ุจุตูŠุฑ Lambda ุชุฑุจูŠุน ู†ู‚ุต ุงุชู†ูŠู† Lambda ูˆุฒุงุฆุฏ ูˆุงุญุฏ ูˆู†ู‚ุต
73
00:07:07,420 --> 00:07:13,280
ูˆุงุญุฏุŒ ู…ุน ุงู„ุณู„ุงู…ุฉุŒ ุฅุฐุง ู…ู…ูƒู† ุฃุฎุฏ Lambda ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู†
74
00:07:13,280 --> 00:07:20,540
ู‡ุฐุง ุงู„ุฌูˆุฒ ุงู„ุซุงู†ูŠุŒ ูŠุจู‚ู‰ Lambda minus two ููŠ Lambda ููŠ
75
00:07:20,540 --> 00:07:26,080
Lambda minus two ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zeroุŒ ูŠุจู‚ู‰ Lambda ููŠ Lambda
76
00:07:26,080 --> 00:07:30,780
minus two ู„ูƒู„ ุชุฑุจูŠุน ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุฌุฏุงุดุŸ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zero
77
00:07:31,450 --> 00:07:37,290
ุฅุฐุง ุทู„ุน ุนู†ุฏูŠ ู‚ูŠู…ุชูŠู† ูู‚ุท ู„ู„ู€ Lambda ูˆู„ูŠุณ ุชู„ุงุช ู‚ูŠู…ุŒ ูˆุทู„ุน
78
00:07:37,290 --> 00:07:44,110
ุงู„ู‚ูŠู…ุชูŠู†ุŒ ูˆุงู„ู‚ูŠู…ุชูŠู† ู…ุชุณุงูˆูŠุงุชุŒ ุฃูˆ ุงู„ู€ Lambda ุทู„ุนุช ู…ูƒุฑุฑุฉ
79
00:07:44,110 --> 00:07:52,010
ูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ู‰ ุฅู† ุนู„ูŠุŒ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง: The Eigenvalues
80
00:07:52,010 --> 00:07:59,880
are ุงู„ู„ูŠ ู‡ูˆ Lambda ุชุณุงูˆูŠ zero ูˆ Lambda ุชุณุงูˆูŠ ุงุชู†ูŠู†
81
00:07:59,880 --> 00:08:06,300
ูู‚ุท ู„ุง ุบูŠุฑุŒ ูˆ ู‡ุฐู‡ ุงู„ู€ Lambda ู…ูƒุฑุฑุฉ ูƒุฏู‡ุด ู…ุฑุชูŠู† ูŠุจู‚ู‰ ูˆ
82
00:08:06,300 --> 00:08:11,980
ุจู‚ูˆู„: Of Multiplicity twoุŒ ูŠุนู†ูŠ ู…ูƒุฑุฑุฉ ู…ุฑุชูŠู†ุŒ ุฃูˆ ุจู‚ุฏุฑ
83
00:08:11,980 --> 00:08:16,220
ุฃู‚ูˆู„ Lambda ุงุชู†ูŠู† ุชุณุงูˆูŠ ุงุชู†ูŠู† ูˆ Lambda ุชู„ุงุชุฉ ุชุณุงูˆูŠ
84
00:08:16,220 --> 00:08:23,140
ุงุชู†ูŠู†ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ Lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† is of Multi
85
00:08:28,120 --> 00:08:32,700
Lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† ู…ูƒุฑุฑุฉ ู…ุฑุชูŠู†ุŒ ุฅุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู†
86
00:08:32,700 --> 00:08:36,480
ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‚ุงู„ ู„ูŠ ุนู†ู‡ ู…ู† ุนู†ุฏ ู…ุง ุจุฏุฃู†ุง ู‡ู†ุง
87
00:08:36,480 --> 00:08:40,140
ูˆูƒู„ ูˆุงุญู†ุง ุจู†ุญุงูˆู„ ู†ุญุตู„ ุนู„ู‰ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ
88
00:08:40,140 --> 00:08:44,320
ุงู„ู€ Eigen ValuesุŒ ู‚ุงู„ ู„ูŠ ุจุนุฏ ู‡ูŠูƒ ุฃุชู‡ุช ู„ูŠ ุงู„ู€ Dimension
89
00:08:44,320 --> 00:08:49,900
ู„ู…ูŠู†ุŸ ู„ู„ู€ Eigen Vector SpacesุŒ ูŠุจู‚ู‰ ุจุฏุฃ ุฃุฎุฏ Lambda
90
00:08:49,900 --> 00:08:52,660
ุชุณุงูˆูŠ ุฒูŠุฑูˆุŒ ุจุนุฏ ู‡ูŠูƒ Lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† ูˆุฃุดูˆู ุฅูŠุด
91
00:08:52,660 --> 00:08:59,700
ุงู„ู„ูŠ ุจูŠุญุตู„ ู…ุนุงู†ุงุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง: If Lambda ุชุณุงูˆูŠ
92
00:08:59,700 --> 00:09:05,160
zero thenุŒ ุจุฏูŠ ุฃุฎุฏ Lambda ุงู„ุฃูˆู„ู‰ุŒ ุจุฏูŠ ุฃุฑุฌุน ู„ู…ูŠู†ุŸ
93
00:09:05,160 --> 00:09:10,440
ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ุŒ ุชู…ุงู…ุŒ ูˆุจุฏูŠ ุฃุฎุฏ
94
00:09:10,440 --> 00:09:17,120
ุงู„ู…ุนุงุฏู„ุฉ ูƒุซูŠุฑุฉุŒ then Lambda I ู†ู‚ุต ุงู„ู€ A ููŠ ุงู„ู€ X ูŠุณุงูˆูŠ
95
00:09:17,120 --> 00:09:22,020
Zero implies ู‡ูŠ ุงู„ู…ุตู…ู…ุฉุŒ ุจุฏูŠ ุฃุดูŠู„ Lambda ูˆุฃุญุท
96
00:09:22,020 --> 00:09:28,070
ู…ูƒุงู†ู‡ุง ZeroุŒ ุจุธู„ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ
97
00:09:28,070 --> 00:09:34,850
ูˆุงุญุฏ ู†ุงู‚ุต ุฃุฑุจุนุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ุชู„ุงุชุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ
98
00:09:34,850 --> 00:09:40,730
ุงุชู†ูŠู† ูˆู‡ู†ุง ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ X ูˆุงุญุฏ X
99
00:09:40,730 --> 00:09:46,610
ุงุชู†ูŠู† X ุชู„ุงุชุฉุŒ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‘ู‡ ูŠุณุงูˆูŠ Zero ูˆ Zero ูˆ
100
00:09:46,610 --> 00:09:52,780
ZeroุŒ ุฅุฐุง ุชุฑุฌู…ุชูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุนุงู…ู„ูŠู‹ุง
101
00:09:52,780 --> 00:09:58,140
ุจุงู„ู‚ูŠู… ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุงุŒ ู†ุญุงูˆู„ ู†ุฌูŠุจ ู‚ูŠู… ูƒู„ู‡ุง ู…ู† X1
102
00:09:58,140 --> 00:10:04,980
ูˆ X2 ูˆ X3ุŒ ู„ุฅู† ู‡ุฐู‡ ุงู„ู€ X ุจุชุฌูŠุจ ู„ู…ูŠู†ุŸ ู„ู„ู€ Eigen Vectors
103
00:10:05,520 --> 00:10:10,720
ุฅุฐุง ุจุฏูŠ ุฃุฌู‡ุฒูŠ ูˆุฃู‚ูˆู„ ุจุฏูŠ ุฃุนุทูŠ ุงู„ู…ุนุงุฏู„ุฉ ุฏูุบุฑูŠ ูŠุจู‚ุงุด
104
00:10:10,720 --> 00:10:19,060
ุจุตูŠุฑ ุฃู†ุง ู„ุงุจู†ุช ู‡ู†ุงุŒ ู†ุงู‚ุต X1 ู†ุงู‚ุต 2 X2 ู†ุงู‚ุต 3 X3 ุจุฏู‘ู‡
105
00:10:19,060 --> 00:10:29,280
ูŠุณุงูˆูŠ 0 ูˆู‡ู†ุง X1 ู†ุงู‚ุต 4 X2 ู†ุงู‚ุต 3 X3 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ูƒู…ุงู†
106
00:10:29,280 --> 00:10:37,590
100ุŒ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ 0ุŒ ู†ุงู‚ุต X1 ูˆู‡ู†ุง ุฒุงุฆุฏ ุงุชู†ูŠู† X2 ูˆู‡ู†ุง
107
00:10:37,590 --> 00:10:42,830
ุฒุงุฆุฏ X3 ูŠุณุงูˆูŠ ZeroุŒ ูŠุจู‚ู‰ ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู€ Homogenous
108
00:10:42,830 --> 00:10:46,870
System ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุจู†ุญุงูˆู„ ู†ุญู„ ุงู„ู€ Homogenous System
109
00:10:46,870 --> 00:10:52,870
ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุงู„ุทุฑู‚ ุงู„ุชูŠ ุณุจู‚ุช ุฏุฑุงุณุชู‡ุงุŒ ูู…ุซู„ู‹ุง ู„ูˆ ุฌูŠุช
110
00:10:52,870 --> 00:10:57,370
ุฃุฎุฏุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุชุงู†ูŠุฉ ู‡ุฐู‡ ูŠุง ุจู†ุงุชุŒ ูˆุฌูŠุช
111
00:10:57,370 --> 00:11:02,750
ุฌู…ุงุนุฉ ุทุจุนู‹ุง ู‡ุชุฑูˆุญ ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ุŒ ู…ุธุจูˆุทุŸ ุจุถุน ุฅู†ู†ุง ู†ุงู‚ุต
112
00:11:02,750 --> 00:11:11,540
6X2 ูˆู†ุงู‚ุต 6X3 ุจุฏู„ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ZeroุŒ ุฃูˆ ู„ูˆ ุฌุณู…ุช ุนู„ู‰
113
00:11:11,540 --> 00:11:18,080
ุณุงู„ุจ ุณุชุฉุŒ ุจุตูŠุฑ X2 ุฒุงุฆุฏ X3 ูŠุณุงูˆูŠ ZeroุŒ ุฃูˆ ุจู‚ุฏุฑ ุฃู‚ูˆู„
114
00:11:18,080 --> 00:11:25,540
ุฅู† X2 ูŠุณุงูˆูŠ ุณุงู„ุจ X3ุŒ ู‡ุฐุง ู„ู…ุง ุฃุฎุฏ ุงู„ุฃูˆู„ู‰ ู…ุน ู…ูŠู†ุŸ ู…ุน
115
00:11:25,540 --> 00:11:32,230
ุงู„ุซุงู†ูŠุฉุŒ ุทุจ ู„ูˆ ุฃุฎุฏุช ุงู„ุชุงู†ูŠุฉ ู…ุน ู…ูŠู†ุŸ ู…ุน ุงู„ุชุงู„ุชุฉ ู‡ุฐู‡
116
00:11:32,230 --> 00:11:37,830
ุฎุฏ ู…ุน ู‡ุฐู‡ุŒ ุฃูˆ ุฃุฎุฏ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุชุงู„ุชุฉุŒ ู…ุซู„ู‹ุง ู„ูˆ ุฃุฎุฏุช
117
00:11:37,830 --> 00:11:43,170
ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุชุงู„ุชุฉุŒ ูŠุจู‚ู‰ ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต X ูˆุงุญุฏ ู†ุงู‚ุต
118
00:11:43,170 --> 00:11:48,470
ุงุชู†ูŠู† X ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ X ุชู„ุงุชุฉ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ zero
119
00:11:48,470 --> 00:11:55,370
ูˆู‡ู†ุง ุณุงู„ุจ X ูˆุงุญุฏุŒ ุงุชู†ูŠู† X ุงุชู†ูŠู† ุฒุงุฆุฏ X ุชู„ุงุชุฉ ุจุฏู‘ู‡
120
00:11:55,370 --> 00:12:00,490
ูŠุณุงูˆูŠ zeroุŒ ุทุจุนู‹ุง ู‡ุฐู‡ ู‡ุชุฑูˆุญ ู…ุน ู‡ุฐู‡ุŒ ุจุธู„ ู‡ู†ุง ุงู„ู€ main ุงู„ู„ูŠ
121
00:12:00,490 --> 00:12:08,410
ู‡ูˆ ู…ู† ุณุงู„ุจ ุงุชู†ูŠู† X1 ูˆู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู† X3 ุจุฏู‘ู‡ ูŠุณูˆูŠ
122
00:12:08,410 --> 00:12:15,650
ZeroุŒ ูŠุจู‚ู‰ X1 ุฒุงุฆุฏ X3 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ZeroุŒ ูŠุจู‚ู‰ X1 ูŠุณูˆูŠ
123
00:12:15,650 --> 00:12:23,510
ุณุงู„ุจ X3ุŒ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุนู†ุฏูŠ X1 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ X2
124
00:12:23,510 --> 00:12:34,890
ุจุฏู‘ู‡ ูŠุณุงูˆูŠ X3ุŒ ุฅุฐุง ู„ูˆ ุฃุฎุฏุช ุฅู† ุงู„ู€ X3 ุจุฏู‡ุง ุชุณุงูˆูŠ.. ู„ูˆ
125
00:12:34,890 --> 00:12:46,170
ุฃุฎุฏุช ุงู„ู€ X3 ู…ุซู„ู‹ุง ุชุณุงูˆูŠ A ุฃูˆ ุฃุฎุฏุช X1 ุชุณุงูˆูŠ X2 ุชุณุงูˆูŠ
126
00:12:46,170 --> 00:12:46,670
A
127
00:12:50,670 --> 00:12:56,790
ุซู… ุณุงู„ุจ X ุซุฑูŠ ุชุณุงูˆูŠ ุฅูŠู‡ุŸ ู‡ุฐุง ูŠุนุทูŠูƒ ุฅู† X ุซุฑูŠ
128
00:12:56,790 --> 00:13:03,570
ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุณุงู„ุจ AุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡: The Eigen
129
00:13:03,570 --> 00:13:14,010
Vectors corresponding to
130
00:13:14,010 --> 00:13:22,650
the Lambda ุชุณุงูˆูŠ zero are in the formุŒ ุนู„ู‰ ุงู„ุดูƒู„
131
00:13:22,650 --> 00:13:28,490
ุงู„ุชุงู„ูŠุŒ X1
132
00:13:28,490 --> 00:13:38,950
X2 X3ุŒ X1
133
00:13:38,950 --> 00:13:41,850
X2 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3
134
00:13:41,850 --> 00:13:45,530
X3 X3 X3 X3 X3 X3 X3 ุทุจ ุฅูŠุด ุจูŠู‚ูˆู„ ู„ูŠุŸ ู‚ุงู„ ู„ูŠ ู‡ุงุช ุงู„ู€
135
00:13:45,530 --> 00:13:51,890
Dimension ู„ู„ู€ Eigen Vector SpaceุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ Vector
136
00:13:51,890 --> 00:13:54,990
ุงู„ู„ูŠ
137
00:13:54,990 --> 00:14:05,670
ู‡ูˆ ู…ู† ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ is a basis for the Eigen
138
00:14:05,670 --> 00:14:10,310
Vector Space
139
00:14:11,660 --> 00:14:19,860
ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง ู…ูŠู†ุŸ ุฅู†ู‡ Its Dimension ุงู„ู„ูŠ
140
00:14:19,860 --> 00:14:23,020
ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง ูƒุฏู‡ุŸ ูˆุงุญุฏุฉ
141
00:14:26,410 --> 00:14:31,950
ูŠุจู‚ู‰ ุฃู†ุง ุฌุจุช ู„ู‡ ุงู„ู€ A ูˆุงู„ู€ B ู…ุฑุฉ ูˆุงุญุฏุฉุŒ ุชู…ุงู…ุŒ ุทูŠุจ ู‚ุงู„
142
00:14:31,950 --> 00:14:35,850
ู„ูŠ: Is the Matrix A SimilarุŒ ูŠุจู‚ู‰ ุงุณุชู†ู‰ ุดูˆูŠุฉุŒ ู„ุจุณู‡ุง
143
00:14:35,850 --> 00:14:39,330
ุณูŠู‡ ููŠู‡ุง ูƒู„ุงู… ุชุงู†ูŠ ุจุนุฏ ู‡ูŠูƒุŒ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฌูŠุจ Lambda
144
00:14:39,330 --> 00:14:49,070
ุชุณุงูˆูŠ ุงุชู†ูŠู†ุŒ ูŠุจู‚ู‰ If Lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† then Lambda I
145
00:14:49,070 --> 00:14:56,540
ู†ุงู‚ุต A ููŠ ุงู„ู€ X ุจุฏู‡ุง ุชุณุงูˆูŠ Zero implies ุนู† ุทุฑูŠู‚
146
00:14:56,540 --> 00:15:00,260
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ุŒ ุจุฏูŠ ุฃุดูŠู„ ูƒู„ Lambda ูˆุฃุญุท ู…ูƒุงู†
147
00:15:00,260 --> 00:15:05,940
ู‡ุงู‚ุฏุฑ ุฃุดูŠู„ ุงุชู†ูŠู†ุŒ ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏุŒ ุจุฏู„ ุฅู† ู‡ุงู‚ุฏุฑ ุฃุดูŠู„ ูˆุงุญุฏ
148
00:15:05,940 --> 00:15:12,880
ูˆุนู†ุฏู†ุง ู‡ู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉุŒ ุงู„ุตู ุงู„ุซุงู†ูŠ ูˆุงุญุฏ
149
00:15:12,880 --> 00:15:19,620
ูˆู‡ู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† ูˆู‡ู†ุง ู†ุงู‚ุต ุชู„ุงุชุฉุŒ ุตูุฉ ุชุงู„ุช ู†ุงู‚ุต
150
00:15:19,620 --> 00:15:26,460
ูˆุงุญุฏ ุงุชู†ูŠู† ูˆู‡ู†ุง ุจุฏู†ุง ู†ุญุท ุงุชู†ูŠู† ุจูŠุตูŠุฑ ุชู„ุงุชุฉ ููŠ X
151
00:15:26,460 --> 00:15:33,640
ูˆุงุญุฏ X ุงุชู†ูŠู† X ุชู„ุงุชุฉุŒ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ Zero ูˆ Zero ูˆ Zero
152
00:15:35,940 --> 00:15:41,500
ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุจุชุฌูŠุจ ู„ูŠ ุชู„ุงุช ู…ุนุงุฏู„ุงุชุŒ ู„ูƒู† ููŠ ุงู„ุญู‚ูŠู‚ุฉ
153
00:15:41,500 --> 00:15:47,620
ู‡ู…ุง ุชู„ุงุช ู…ุนุงุฏู„ุงุช ูˆู„ุง ุงุชู†ูŠู† ูˆู„ุง ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉุŒ ูŠุจู‚ู‰
154
00:15:47,620 --> 00:15:53,240
ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ู„ุง ุบูŠุฑุŒ ุงู„ุตู ู‡ุฐุง ู„ูˆ ุถุฑุจุช ููŠ
155
00:15:53,240 --> 00:15:57,980
ุณุงู„ุจ ูˆุงุญุฏ ุจูŠุทู„ุน ุงู„ุตููŠู† ุงู„ู„ูŠ ููˆู‚ุŒ ุชู…ุงู…ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุด
156
00:15:57,980 --> 00:16:02,280
ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูˆุฅู†ู…ุงุŒ ุฃูˆ ุงู„ุชู„ุงุช ู…ุนุงุฏู„ุงุช ุนุจุงุฑุฉ ุนู†
157
00:16:02,280 --> 00:16:07,680
ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ู„ุง ุบูŠุฑุŒ ูŠุจู‚ู‰ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† X
158
00:16:07,680 --> 00:16:14,000
ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† X ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ X ุชู„ุงุชุฉ ุจูŠุณุงูˆูŠ
159
00:16:14,000 --> 00:16:22,030
ู‚ุฏุฑ ZeroุŒ ุฃูˆ ุฅู† ุดุฆุชู… ูู‚ูˆู„ูˆุง ุฅู† X ูˆุงุญุฏ ูŠุณุงูˆูŠ 2 X2
160
00:16:22,030 --> 00:16:29,970
ุฒุงุฆุฏ 3 X3ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู…ุฌู‡ูˆู„ุฉ ุจุชู„ุงุช ู…ุฌู‡ูˆู„
161
00:16:29,970 --> 00:16:35,710
ุฅุฐุง ู„ุง ูŠู…ูƒู† ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฅู„ุง ุฅุฐุง ุฃุนุทูŠู†ุง ู‚ูŠู…ุชูŠู†
162
00:16:35,710 --> 00:16:45,690
ู„ู…ุฌู‡ูˆู„ูŠู†ุŒ ูŠุจู‚ู‰ ู…ู…ูƒู† ุฃุญุท ู…ุซู„ู‹ุง X2 ุจู€ A ูˆ X3 ุจู€ B ูˆุจุงู„ุชุงู„ูŠ
163
00:16:45,690 --> 00:16:53,400
ุจุฌูŠุจ X1 ุจุชู„ุงุช X2 ูˆ X3ุŒ ูŠุจู‚ู‰ If ุงู„ู€ X2 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ A
164
00:16:53,400 --> 00:17:03,580
and X3 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€ BุŒ then ุงู„ู€ X1 ุจุฏู‘ู‡ ูŠุณุงูˆูŠ 2A ุฒุงุฆุฏ
165
00:17:03,580 --> 00:17:09,080
3BุŒ ุฃุธู† ู‡ุฐุง ูƒู„ู‡ ู…ุง ู„ู‡ ู„ุฒูˆู…ุฉ ุงู„ุญูŠู†
166
00:17:25,020 --> 00:17:34,100
ุทูŠุจ ุจู†ูˆุงุตู„ ุงู„ุญู„ุŒ ุงู„ุขู† ุจุงุฌูŠ ุจู‚ูˆู„: The Eigenvectors
16
201
00:21:26,410 --> 00:21:31,910
ุนู†ุฏู†ุง C C ุจูŠู‚ูˆู„ ู…ุงู†ูˆุŸ ุจูŠู‚ูˆู„ ู‡ู„ ุงู„ matrix A similar
202
00:21:31,910 --> 00:21:37,350
to the diagonal matrix ุฃู… ู„ุงุŸ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ู„ ุงู„ A
203
00:21:37,350 --> 00:21:43,570
ุฏูŠุงุฌูˆู†ุงู„ูŠ Z ุจุงู„ูˆ ูˆู„ุง ู„ุงุŸ ุดููˆูŠ ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑ ุงู„ุขู†
204
00:21:43,570 --> 00:21:48,090
ุทู„ุนู†ุง ู…ูŠู†ุŸ ู‚ุฏุงุด ุงู„ู€ linearly independent elements
205
00:21:48,090 --> 00:21:54,490
ุทูŠุจ ุงู‡ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุทู„ุน ู„ูŠ ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ูˆุงุทู„ุน ู„ูŠ
206
00:21:54,490 --> 00:22:00,650
ู„ู…ูŠู†ุŸ ู„ู„ุชุงู„ุช ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ู„ ุงู„ุชู„ุงุชุฉ ู‡ุฏูˆู„ are
207
00:22:00,650 --> 00:22:03,590
linearly dependent ุฃูˆ linearly independentุŸ
208
00:22:03,590 --> 00:22:09,010
ุจุชุนู…ู„ูŠ ู„ู‡ู… ุงู„ check ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏูƒ ุชู‚ูˆู„ูŠ ู„ูŠ ู…ุง ูŠุฃุชูŠ
209
00:22:09,010 --> 00:22:12,570
ุจุฏูƒ ุชุนู…ู„ูŠ ู„ูŠ ุงู„ check ุงู„ุชุงู„ูŠ
210
00:22:23,900 --> 00:22:31,240
Check that the vectors
211
00:22:31,240 --> 00:22:39,170
ุงู„ู„ูŠ ู‡ู… ู…ูŠู†ุŸ ุงู„ vector ุงู„ุฃูˆู„ ูŠุนู†ูŠุŒ ุงู„ุฐูŠ ู‡ูˆ ูˆุงุญุฏ ูˆุงุญุฏ
212
00:22:39,170 --> 00:22:44,630
ุณุงู„ุจ ูˆุงุญุฏุŒ ูˆุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ุทุงู„ุน ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงุซู†ูŠู†
213
00:22:44,630 --> 00:22:54,190
ูˆุงุญุฏ ุตูุฑุŒ ูˆุงู„ุซุงู„ุซ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุซู„ุงุซุฉ ุตูุฑ ูˆุงุญุฏ are
214
00:22:54,190 --> 00:23:00,150
linearly independent ูƒูŠู
215
00:23:00,150 --> 00:23:04,940
ุจุฏูŠ ุฃุณูˆูŠู‡ู… linearly independent ูƒูŠู ุจุฏูŠ ุฃุนู…ู„ู‡ู… ุจู‚ู‰ุŸ
216
00:23:04,940 --> 00:23:10,480
ูˆูƒูŠู ุจุฏูŠ ุฃุซุจุช ุฅู†ู‡ู… linearly independentุŸ ู†ูุชุฑุถ C1
217
00:23:10,480 --> 00:23:15,900
ูˆ C2 ูˆ C3 ุชูƒูˆู† ุฃุตู„ุงู‹ C ููŠ ุงู„ุฃูˆู„ ุฒูŠ C ููŠ ุงู„ุซุงู†ูŠ ุฒูŠ C
218
00:23:15,900 --> 00:23:20,520
ููŠ ุงู„ุชุงู„ูŠ ูŠุณุงูˆูŠ ุตูุฑ ูˆุฃุซุจุช ุฃู† C1 ูŠุณุงูˆูŠ C2 ูŠุณุงูˆูŠ C3
219
00:23:20,520 --> 00:23:25,700
ูŠุณุงูˆูŠ ุตูุฑ ู‡ุฐู‡ ุฅุญุฏู‰ ุงู„ุทุฑู‚ ุงู„ุทูˆูŠู„ุฉุŒ ููŠ ุฃูƒุซุฑ ู…ู†ู‡ุง ุงูŠุด
220
00:23:25,700 --> 00:23:32,810
ุงู„ู„ูŠ ุฃูƒุซุฑ ู…ู†ู‡ุงุŸ ู†ุนู…ู„ ู…ุญุฏุฏ ูˆู„ูŠุณุช ู…ุตููˆูุฉุŒ ู†ุนู…ู„ ู…ุญุฏุฏ
221
00:23:32,810 --> 00:23:38,970
ูˆู†ุซุจุช ุฃู† ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ ุตูุฑุŒ ูŠู†ุทู„ุน ุฐู„ูƒ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ
222
00:23:38,970 --> 00:23:42,790
ุนู†ุฏูŠ linearly independentุŒ ูŠุจู‚ู‰ ุทุฑูŠู‚ุฉ ุงู„ู…ุญุฏุฏ ุฃุณู‡ู„ ู…ู†
223
00:23:42,790 --> 00:23:46,290
ุงู„ุฃูˆู„ู‰ุŒ ุงู„ุฃูˆู„ูŠุฉ ุจุฏู‡ุง ุดุบู„ ุดูˆูŠุฉ ู„ุฃู† ุจุฏูŠ ุฃุนู…ู„ system
224
00:23:46,290 --> 00:23:49,610
ูˆ ุงู„ system ุจุชุฑูˆุญ ุนู„ูŠู‡ ุจุณ ุงู„ determinant ุฏู‡ ุณู‡ู„
225
00:23:49,610 --> 00:23:54,130
ุฌุฏุงู‹ุŒ ูŠุนู†ูŠ ููŠ ุฎุทูˆุฉ ูˆุงุญุฏุฉ ุจูƒูˆู† ุฌุจุชุŒ ุฌุจุช ุงู„ู†ุชูŠุฌุฉ ูˆ
226
00:23:54,130 --> 00:23:59,010
ุฃุซุจุชุช ุฅู† ู‡ุฏูˆู„ linearly independentุŒ ุทูŠุจ ู…ุนู†ุงุชู‡
227
00:23:59,010 --> 00:24:04,710
ุงู„ุซู„ุงุซุฉ ู‡ุฏูˆู„ ุจูŠูƒู…ู„ูˆุง ู„ูŠ ู…ู† the complete set of
228
00:24:04,710 --> 00:24:08,690
linearly independent elementsุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ูŠุนู†ูŠ ููŠ
229
00:24:08,690 --> 00:24:14,810
ุบูŠุฑู‡ู…ุŸ ู…ุงููŠุด ุนู†ุฏูŠ ุบูŠุฑู‡ู…ุŒ ู‚ุฏุงุด ุนุฏุฏู‡ู…ุŸ ู‚ุฏุงุด ู†ุธุงู…
230
00:24:14,810 --> 00:24:20,800
ุงู„ุตููˆูุŸ ูŠุจู‚ู‰ ูŠุง ุดุจุงุจ ุงู„ู…ุตููˆูุฉ diagonalizable ุฃุตู„ุงู‹ ุนู†
231
00:24:20,800 --> 00:24:25,780
ุงู„ู„ูŠ ู…ุฑุถูŠุŒ ุฃูˆ similar to a diagonal matrix ุงู„ุตูŠุบุฉ
232
00:24:25,780 --> 00:24:29,540
ู‡ุฐู‡ุŒ ูˆุงู„ุตูŠุบุฉ ู‡ุฐู‡ ุงู„ุงุซู†ูŠู† are the same ูŠุจู‚ู‰ ุจุงุฌูŠ
233
00:24:29,540 --> 00:24:34,860
ุจู‚ูˆู„ ู‡ุฏูˆู„ ูƒู„ู‡ู… ู„ูŠ linearly independent elementุŒ this
234
00:24:34,860 --> 00:24:46,690
means that the setุŒ ุงู„ุชูŠ ู‡ูŠ ู…ูŠู†ุŸ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ
235
00:24:46,690 --> 00:24:57,570
ุงุซู†ูŠู† ูˆุงุญุฏ ุตูุฑุŒ ุซู„ุงุซุฉ ุตูุฑ ูˆุงุญุฏ is the complete
236
00:24:57,570 --> 00:25:05,050
set of eigen vectors
237
00:25:11,120 --> 00:25:18,700
ูŠุจู‚ู‰ senseุŒ ุจู…ุง ุฃู† number of
238
00:25:18,700 --> 00:25:37,640
these vectors is three and the degree of the
239
00:25:38,390 --> 00:25:52,170
matrix A is ุซู„ุงุซุฉุŒ ุงู„ A is diagonalizable
240
00:25:52,170 --> 00:25:58,430
ุงูŠุด ูŠุนู†ูŠ diagonalizableุŸ ูŠุนู†ูŠ ุงู„ A is similar to a
241
00:25:58,430 --> 00:26:04,190
diagonal matrixุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ A is similar
242
00:26:27,350 --> 00:26:35,370
ู…ุด ู‡ุฐุง ู…ุนู†ุงู‡ ูŠุง ุจู†ุงุชุŸ ุทูŠุจุŒ ุจุฏู†ุง ู†ุฌูŠ ู†ุดูˆู ู‡ุงู„ูƒู„ุงู…
243
00:26:35,370 --> 00:26:41,480
ู‡ุฐุง ุงู„ู„ูŠ ุงุญู†ุง ุจู†ู‚ูˆู„ู‡ุŒ ู‡ุฐุง ู…ุงุฐุง ู‚ุงู„ู‡ุŸ ู‚ุงู„ ู†ูุณู‡ ุฅู† ูƒุงู†
244
00:26:41,480 --> 00:26:45,420
ุงู„ุฃู…ุฑ ูƒุฐุง ู„ูƒ ู‡ุงุชู„ ุงู„ matrix KุŒ ูˆุฅุฐุง ูŠุฌูˆู† ุงู„
245
00:26:45,420 --> 00:26:50,620
matrix ุฏูŠ ูู‡ูŠ ุชุจู‚ู‰ ุงู„ุนู„ุงู‚ุฉ ู‡ุฐู‡ ู…ุงู„ู‡ุงุŸ ุตุญูŠุญุฉ ูŠุจู‚ู‰
246
00:26:50,620 --> 00:26:54,760
ุงุญู†ุง ุจุฏู†ุง ู†ุฌูŠุจ ู„ู‡ K ูˆู†ุฌูŠุจ ุงู„ K and ุจุณ ุงู„ุญูŠู†
247
00:26:54,760 --> 00:27:01,020
ุงู„ู€ K ูŠุง ุจู†ุงุช ู‡ูŠ ู…ู†ุŸ ู‡ูŠ ุงู„ู…ุตููˆูุฉ ุนู†ุงุตุฑู‡ุง ู…ู†ุŸ ุนู†ุงุตุฑ
248
00:27:01,020 --> 00:27:08,470
ุงู„ู€ eigenvectorsุŒ ูŠุจู‚ู‰ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุงุซู†ูŠู† ูˆุงุญุฏ
249
00:27:08,470 --> 00:27:16,030
ุตูุฑ ุซู„ุงุซุฉ ุตูุฑ ูˆุงุญุฏุŒ ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ุง ู…ุดุงู†
250
00:27:16,030 --> 00:27:21,630
ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณุŒ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ู…ูŠู†ุŸ ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ ู‡ุฐุง
251
00:27:21,630 --> 00:27:29,360
ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู„ู…ุญุฏุฏ ุชุจุน ุงู„ู…ุตููˆูุฉ ูƒุฐุงุŒ ุจุฏู‡ ูŠุณุงูˆูŠุŒ ุงู„ู„ูŠ ู‡ูˆ
252
00:27:29,360 --> 00:27:35,380
mainุŒ ุงู„ู…ุญุฏุฏ ุชุจุน ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉุŒ ูˆุงุญุฏ ูˆุงุญุฏ ุตูุฑุŒ
253
00:27:35,380 --> 00:27:40,380
ุณุงู„ุจ ูˆุงุญุฏ ุตูุฑ ูˆุงุญุฏุŒ ูˆูŠุณุงูˆูŠ
254
00:27:42,730 --> 00:27:47,770
ุจุชููƒุฑ ุงูŠุด ุฑุฃูŠูƒู… ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุซุงู†ูŠ ุฃูˆ
255
00:27:47,770 --> 00:27:51,550
ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ุฃูˆ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠุŒ ุณูŠุงุฏุฉุŒ ู†ุงุฎุฐ ุงู„ุนู…ูˆุฏ
256
00:27:51,550 --> 00:27:58,930
ุงู„ุซุงู„ุซุŒ ูŠุจู‚ู‰ ู‡ุงูŠ ุซู„ุงุซุฉ ููŠู‡ุง ู†ุดุทุฉ ุจุตูู‡ ูˆุนู…ูˆุฏู‡ ุชู…ุงู…
257
00:27:58,930 --> 00:28:04,950
ุจูŠุตูŠุฑ ูˆุงุญุฏ ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช
258
00:28:04,950 --> 00:28:09,370
ุจุตูุฑุŒ ููŠ ู‚ุฏ ู…ุง ูŠูƒูˆู† ูŠูƒูˆู† ู…ุด ู…ุดูƒู„ุฉ ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ
259
00:28:09,370 --> 00:28:18,160
ู‚ุดุทุฉ ุจุตูู‡ุŒ ู„ุฃ ุงุณุชู†ู‰ ุดูˆูŠุฉุŒ ู†ุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุตูู‡ ูˆุนู…ูˆุฏู‡
260
00:28:18,160 --> 00:28:20,460
ูŠุฌูŠ ุจู‡ู†ุง ุตูุฑุŒ ุฒุงุฆุฏ ูˆุงุญุฏ
261
00:28:22,770 --> 00:28:28,250
ุฒุงุฆุฏ ูˆุงุญุฏุŒ ุงู„ู„ูŠ ุจุนุฏ ูˆุงุญุฏุŒ ู†ุดุทุจ ุตู ูˆุนู…ูˆุฏุŒ ู„ูˆุงุญุฏ ู†ุงู‚ุต
262
00:28:28,250 --> 00:28:36,110
ุงุซู†ูŠู†ุŒ ูˆุงุญุฏ ู†ุงู‚ุต ุงุซู†ูŠู† ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุซู„ุงุซุฉ ูˆู‡ู†ุง ู†ุงู‚ุต
263
00:28:36,110 --> 00:28:43,810
ูˆุงุญุฏุŒ ูˆูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ูˆูŠุณุงูˆูŠ ุงุซู†ูŠู†ุŒ ุชู…ุงู… ุจุฏูŠ ุฃุฌูŠุจ ู„ู‡ ุงู„ู€ K
264
00:28:43,810 --> 00:28:50,450
inverseุŒ ูŠุจู‚ู‰ ุงู„ู€ K inverse ูˆูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ
265
00:28:50,450 --> 00:28:58,630
ุนู„ู‰ ุงู„ู…ุญุฏุฏุŒ ูุงู‡ู…ูŠู†ุŸ ููŠู‡ ุจุฏูŠ ุฃุณุชุจุฏู„ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ูƒู„
266
00:28:58,630 --> 00:29:04,650
ุนู†ุตุฑ ููŠู‡ุง ุจุงู„ู€ cofactor ุชุจุนู‡ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠุจ
267
00:29:04,650 --> 00:29:09,810
ู„ู„ูˆุงุญุฏ ุจุฏูŠ ุฃุดูŠู„ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุจูŠุธู„ ูˆุงุญุฏ ู†ุฎุฒู†ู‡ ูƒู„ู‡
268
00:29:09,810 --> 00:29:16,310
ุจูˆุงุญุฏ ูˆุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ุดุงุฑุทุฉ ุจุงู„ู…ูˆุฌุจุŒ ู†ุฌูŠ ู„ุจุนุฏู‡ุŒ
269
00:29:16,310 --> 00:29:21,370
ู„ุงุซู†ูŠู† ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ุดุงุฑุทุฉ ุจู…ูŠู†ุŸ ุจุงู„ุณุงู„ุจุŒ ู†ุดุทุจ
270
00:29:21,370 --> 00:29:29,780
ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุจูŠุตูŠุฑ ูˆุงุญุฏ ูู‚ุท ูƒุฐู„ูƒุŒ ู†ุฌูŠ ู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ
271
00:29:29,780 --> 00:29:35,800
ุงู„ู‚ุงุนุฏุฉุŒ ุดุงุฑุทุฉ ุจุงู„ู…ูˆุฌุจุŒ ู†ุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุจูŠุตูŠุฑ
272
00:29:35,800 --> 00:29:42,380
ุตูุฑุŒ ุฒุงุฆุฏ ูˆุงุญุฏุŒ ุงู„ู„ูŠ ู‡ูˆ ุจูˆุงุญุฏุŒ ุจุนุฏ ู‡ูŠูƒ ู†ุฌูŠ ู„ุตูู‡
273
00:29:42,380 --> 00:29:49,040
ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุดูŠู„ ุงู„ู„ูŠ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุจูŠุตูŠุฑ ุงุซู†ูŠู† ู†ุงู‚ุต
274
00:29:49,040 --> 00:29:55,720
ุซู„ุงุซุฉุŒ ุจู‚ุฏุฑุดุŒ ุจุงุชู†ูŠู†ุŒ ุจุฏูŠ ุฃุฌูŠ ู„ุนู†ุตุฑ ุงู„ู„ูŠ ุจุนุฏู‡ุŒ ุทุจุนุง ู‡ุฐุง
275
00:29:55,720 --> 00:30:00,160
ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุฉุŒ ุงู„ุดุฑุท ุงู„ุณุงู„ุจุŒ ุจูŠุจู†ู‰ ุชู…ุงู…ุŒ ุงู„ู„ูŠ ุจู‚ู‰
276
00:30:00,160 --> 00:30:04,820
ุฏู‡ ุงู„ุดุฑุท ู…ูˆุฌุจุŒ ูŠุจู‚ู‰ ุฏู‡ุŒ ุดูŠู„ ุตูู‡ ูˆุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ ูˆุงุญุฏ
277
00:30:04,820 --> 00:30:12,370
ู†ุงู‚ุต ุซู„ุงุซุฉ ูŠุนู†ูŠ ุฒุงุฆุฏ ุซู„ุงุซุฉุŒ ุงู„ู„ูŠ ุจู‚ู‰ ูƒุฏู‡ุŒ ุดู„ู†ุง ุนู„ุดุงู†
278
00:30:12,370 --> 00:30:17,670
ู†ุดูŠู„ ู‡ุฐุง ูŠุจู‚ู‰ ุดู„ู†ุง ู‡ุฐุงุŒ ูŠุจู‚ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ ุซู„ุงุซุฉ ุงู„ู„ูŠ
279
00:30:17,670 --> 00:30:22,130
ู‡ูˆ ุจู‚ุฏุงุดุŸ ุจุฃุฑุจุนุฉุŒ ู‡ุฐุง ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุชุŒ ุดุงุฑุทุฉ ุจูŠู†
280
00:30:22,130 --> 00:30:28,810
ุจุงู„ุณุงู„ุจุŒ ู†ุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ ูŠุจู‚ู‰ ุตูุฑุŒ ุฒุงุฆุฏ ุงุซู†ูŠู†
281
00:30:28,810 --> 00:30:32,950
ุงู„ู„ูŠ ู‡ูˆ ุจู‚ุฏุงุดุŸ ุจู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ู†ุฌูŠ ู„ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏุฉ
282
00:30:32,950 --> 00:30:38,050
ุงู„ุฅุดุงุฑุงุชุŒ ุดุงุฑุทุฉ ุจุงู„ู…ูˆุฌุจุŒ ู†ุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุตูุฑ ู†ุงู‚ุต
283
00:30:38,050 --> 00:30:45,400
ุซู„ุงุซุฉุŒ ู†ุฌูŠ ู„ู„ูŠ ุจุนุฏู‡ุŒ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช
284
00:30:45,400 --> 00:30:51,680
ุดุงุฑุทุฉ ุณุงู„ุจุŒ ูŠุจู‚ู‰ ุณุงู„ุจุŒ ู†ุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ูŠุจู‚ู‰ ุตูุฑ
285
00:30:51,680 --> 00:30:57,420
ู†ุงู‚ุต ุซู„ุงุซุฉ ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุซู„ุงุซุฉุŒ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏุฉ
286
00:30:57,420 --> 00:31:01,840
ุงู„ุฅุดุงุฑุงุชุŒ ุดุงุฑุทุฉ ู…ูˆุฌุจุฉุŒ ู†ุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุจูŠุตูŠุฑ ูˆุงุญุฏ
287
00:31:01,840 --> 00:31:06,300
ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุดุŸ ุจู†ุงู‚ุต ูˆุงุญุฏุŒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
288
00:31:06,300 --> 00:31:15,580
ุนู†ุฏู†ุงุŒ ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ู„ู‡ DุŒ ูŠุจู‚ู‰ D ุจุฏู‡ุง ุชุณุงูˆูŠ K inverse
289
00:31:15,580 --> 00:31:22,780
ููŠ KุŒ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู†ุตูุŒ ูˆู‡ู†ุง
290
00:31:22,780 --> 00:31:28,040
ูˆุงุญุฏุŒ ุณุงู„ุจ ูˆุงุญุฏุŒ ูˆุงุญุฏุŒ ุณุงู„ุจ ุงุซู†ูŠู†ุŒ ุฃุฑุจุนุฉุŒ ุณุงู„ุจ ุงุซู†ูŠู†
291
00:31:28,040 --> 00:31:33,480
ุณุงู„ุจ ุซู„ุงุซุฉุŒ ุซู„ุงุซุฉุŒ ุณุงู„ุจ ูˆุงุญุฏุŒ ููŠ ู…ูŠู†ุŸ ููŠ ุงูŠู‡ุŸ ุฑุฃุณ
292
00:31:33,480 --> 00:31:39,440
ุงู„ู…ุณุฃู„ุฉ ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉุŒ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุฃุฑุจุนุฉ
293
00:31:39,700 --> 00:31:47,760
ุซู„ุงุซุฉุŒ ูˆู‡ู†ุง ูˆุงุญุฏ ุณุงู„ุจ ุงุซู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏุŒ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„
294
00:31:47,760 --> 00:31:54,820
KุŒ ุงู„ K ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉุŒ ูˆุงุญุฏ ูˆุงุญุฏ ุตูุฑ
295
00:31:54,820 --> 00:32:01,570
ุณุงู„ุจ ูˆุงุญุฏ ุตูุฑ ูˆุงุญุฏุŒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงูƒุŒ ู‚ุฏุงุด
296
00:32:01,570 --> 00:32:09,730
ุชุชูˆู‚ุน ูŠูƒูˆู† ุงู„ู†ุชูŠุฌุฉุŸ ุตูุฑุŒ ุงุซู†ูŠู† ุงุซู†ูŠู† ูˆุงู„ุจุงู‚ูŠ ูŠุจู‚ู‰
297
00:32:09,730 --> 00:32:16,050
ุฃุณูู„ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ูŠูƒูˆู† ุงู„ู…ุตููˆูุฉ ุงู„ู‚ุทุฑูŠุฉ ุงู„ุชุงู„ูŠุฉุŒ ุตูุฑ ูˆ
298
00:32:16,050 --> 00:32:24,330
ู‡ู†ุง ุตูุฑ ุตูุฑ ุตูุฑุŒ ุงุซู†ูŠู† ุตูุฑ ุตูุฑุŒ ุงุซู†ูŠู†ุŒ ู„ูŠุณุช ู„ุงู†ุฏุง
299
00:32:24,330 --> 00:32:27,670
ุทู„ุนุช ู‡ู†ุง ุตูุฑ ูˆ ู„ุงู†ุฏุง ุทู„ุนุช ู‡ู†ุง ุงุซู†ูŠู† ูˆุงุซู†ูŠู†
300
00:32:27,670 --> 00:32:32,350
ูŠุจู‚ู‰ ู‡ุงูŠ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุงู„ู€ diagonal matrix ุงู„ู„ูŠ
301
00:32:32,350 --> 00:32:36,310
ูŠู‚ูˆู„ ู„ู†ุง ุนู„ูŠู‡ุง ุงู„ู€ diagonal ุฏูŠุŒ ูŠุจู‚ู‰ ุจุฑุงุญุชูƒ ุชุฑูˆุญ ุชุถุฑุจ
302
00:32:36,310 --> 00:32:40,730
ู‡ุฏูˆู„ ู…ุตููˆูุงุช ููŠ ุจุนุถ ููŠ ุจูŠุชูƒุŒ ูˆุงู„ู†ุงุชุฌ ู‡ูŠ ู…ุง ุฃุนุทูŠู†ูƒ
303
00:32:40,730 --> 00:32:44,410
ูŠุงู‡ุŒ ุฅุฐุง ุทู„ุน ุบู„ุท ูŠุจู‚ู‰ ุบู„ุท ุนู„ูŠู†ุง ู…ุด ุนู„ูŠูƒุŒ ุฃูˆ ุนู„ูŠูƒ
304
00:32:44,410 --> 00:32:48,630
ุฅุฐุง ุจุชุถุฑุจ ุบู„ุทุŒ ู„ูƒู† ุนู†ุฏู†ุง ุงุญู†ุง ู…ุง ุฃุนุทูŠู†ูƒ ุงู„ุฌูˆุงุจุŒ ุจุฏูƒ
305
00:32:48,630 --> 00:32:52,270
ุชุถุฑุจู‡ุŒ ูˆุงู„ู†ุงุชุฌ ู‡ูŠ ุนู†ุฏูƒุŒ ููŠ ูˆุงุญุฏุฉ ุฃุจู†ุงุก ู…ุง ุณุฌู„ุชุด
306
00:32:52,270 --> 00:32:52,930
ุงุณู…ู‡ุง ู‡ู†ุง
307
00:32:56,050 --> 00:33:04,170
ุทูŠุจุŒ ู†ู†ุชู‚ู„ ุฅู„ู‰ ู…ุซุงู„ ูŠุฎุชู„ู ุนู† ู‡ุฐุง ู†ูˆุนุงู‹ ู…ุงุŒ ู„ูƒู†ู‡ ู…ุฑุชุจุท
308
00:33:04,170 --> 00:33:11,030
ู…ุนู‡ ุงุฑุชุจุงุทุงู‹ุŒ ู‡ุฐุง ุงู„ู…ุซุงู„ ุฌุจุชู‡ ู†ุธุฑูŠ ู…ู† ุฎู„ุงู„ ุฃุณุฆู„ุฉ
309
00:33:11,030 --> 00:33:18,830
ุงู„ุชู…ุฑูŠู†ุŒ ูˆู‡ูˆ ุณุคุงู„ 16 ููŠ ุงู„ุชู…ุฑูŠู† ุชุจุน ุงู„ู€ section 4-3
310
00:33:18,830 --> 00:33:21,310
ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ
311
00:33:30,400 --> 00:33:39,760
ูŠุจู‚ู‰ example ุฎู…ุณุฉุŒ ู„ู‡ ุณุคุงู„ ุณุชุฉ ุนุดุฑ ู…ู† ุงู„ูƒุชุงุจ ุจูŠู‚ูˆู„
312
00:33:39,760 --> 00:33:53,260
If A and B are similar matrices
313
00:33:53,260 --> 00:34:11,520
matrices so thatุŒ ุจุญูŠุซ ุฃู† ุงู„ู€ B ุชุณุงูˆูŠ ุงู„ู€ K inverse A K
314
00:34:11,520 --> 00:34:16,420
show
315
00:34:16,420 --> 00:34:20,720
thatุŒ ุจูŠู‘ู† ู„ูŠ
316
00:34:20,720 --> 00:34:35,330
ุฃู† X is A is an eigen vector
317
00:34:35,330 --> 00:34:51,530
of A if and only if K inverse X is an eigen
318
00:34:51,530 --> 00:34:54,730
vector
319
00:34:56,190 --> 00:35:02,050
ู‡ูˆ eigen vector ู„ู€ B
320
00:35:41,120 --> 00:35:47,340
ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉุŒ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู†ุช A ูˆ B
321
00:35:47,340 --> 00:35:52,440
are similar matricesุŒ ุทุจุนุงู‹ ุงุญู†ุง ุฃุฎุฐู†ุง ุนู„ุงู‚ุฉ ุงู„ู…ุฑุฉ
322
00:35:52,440 --> 00:35:57,020
ู‚ุจู„ ุงู„ู…ุงุถูŠุฉุŒ ู„ูˆ ูƒุงู† A similar to B ูŠุจู‚ู‰ B similar to
323
00:35:57,020 --> 00:36:00,980
AุŒ ูˆุฃุซุจุชู†ุงู‡ุง ู…ุธุจูˆุทุŒ ูŠุจู‚ู‰ ุงู„ุขู† ุฌู„ุฏุชูŠู† ู‡ุฏูˆู„ are
324
00:36:00,980 --> 00:36:08,170
similarุŒ ูŠุนู†ูŠ ุงูŠู‡ุŸ ูŠุนู†ูŠ ุฃู† ุงู„ู€ B ุจุฏู‡ุง ุชุณุงูˆูŠ K inverse
325
00:36:08,170 --> 00:36:14,750
A KุŒ ุทูŠุจ ุฃุตุจุญุช ู‡ุฐู‡ ู…ุนู„ูˆู…ุฉ ุนู†ุฏู†ุงุŒ ุจูŠู‚ูˆู„ ุดูˆูŠุฉ ุจูŠู‡ ู„ุฅู†
326
00:36:14,750 --> 00:36:19,790
ุงู„ู€ X is an eigen vector ู„ู€ AุŒ ุงูŠู‡ุŸ ูู†ุฏู‚ูˆู„ ุฅุฐุง K
327
00:36:19,790 --> 00:36:25,730
inverse X is an eigen vector ู„ู€ AุŒ ุงูŠู‡ุŸ ูู†ุฏู‚ูˆู„ ุฅุฐุง K
328
00:36:25,730 --> 00:36:30,450
inverse X is an eigen vector ู„ู…ูŠู†ุŸ ู„ู€ BุŒ ูŠุจู‚ู‰ ู‡ุฐุง
329
00:36:30,450 --> 00:36:34,960
ุณุคุงู„ ูˆุงู„ู„ู‡ ุณุคุงู„ูŠู†ุŒ ุณุคุงู„ูŠู†ุŒ ุจุฏูŠ ุงู…ุณูƒ ูˆุงุญุฏ ุฃูˆุตู„ู‡ ู„ู…ูŠู†ุŸ
330
00:36:34,960 --> 00:36:39,240
ู„ุซุงู†ูŠุŒ ูˆุจุนุฏูŠู† ุงู…ุณูƒ ุงู„ุซุงู†ูŠ ุฃูˆุตู„ู‡ ู„ู…ูŠู†ุŸ ู„ู„ุฃูˆู„ุŒ ุงู„ุณุจุจ
331
00:36:39,240 --> 00:36:44,560
ูƒู„ู…ุฉ if and only ifุŒ ุฏู‡ ูŠุจู‚ู‰ ุงู„ุขู† ุจุฏู†ุง ู†ุฌูŠ ุจุงู„ุฎุทูˆุฉ
332
00:36:44,560 --> 00:36:58,390
ุงู„ุฃูˆู„ู‰ุŒ let A be similar to B thenุŒ There exists a
333
00:36:58,390 --> 00:37:11,750
non-zero matrix K such thatุŒ ุจุญูŠุซ ุฃู† ุงู„ู€ B ุจุฏู‡ุง
334
00:37:11,750 --> 00:37:20,410
ุชุณุงูˆูŠ ุงู„ู€ K inverse A KุŒ ุงู„ู…ุนุทู‰ุŒ ูŠุจู‚ู‰ ุญุชู‰ ุงู„ุขู† ุฃู†ุง ุจุณ
335
00:37:20,410 --> 00:37:27,450
ุงุชุฌู…ุฏุŒ ุงู„ุดูŠุก ุงู„ู…ู‚ุทุน ุนู†ุฏูŠุŒ ุฎุทูˆุฉ ุซุงู†ูŠุฉ ุจุฏูŠ ุงูุชุฑุถ ุงู† X
336
00:37:27,450 --> 00:37:33,910
ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนู† Eigen vector ู„ู…ูŠู†ุŸ ู„ู„ู…ุตููˆูุฉ AุŒ ูŠุจู‚ู‰
337
00:37:33,910 --> 00:37:43,590
assume thatุŒ ุฃู† X is an eigen vector
338
00:37:47,640 --> 00:38:00,920
for the matrixุŒ for the matrix AุŒ thenุŒ ุงูŠุด ูุฑุถู†ุง ุฃู†
339
00:38:00,920 --> 00:38:08,220
ุงู„ู€ X ู‡ูŠ eigen vector ู„ู…ูŠู†ุŸ ู„ู‡ุฐู‡ุŒ ุงูŠุด ูŠุนู†ูŠ ู…ุนู†ุงู‡ุงุŸ ุงูŠุด
340
00:38:08,220 --> 00:38:12,800
ูŠุนู†ูŠ ู…ุนู†ุงู‡ุงุŸ ุฃู† X ู‡ูŠ eigen vector ู„ู€ AุŒ ูŠุนู†ูŠ ู„ูˆ
341
00:38:12,800 --> 00:38:15,240
ุถุฑุจุช ุงู„ู€ A ููŠ ุงู„ู€ XุŒ ุงูŠุด ุจุฏูŠ ูŠุทู„ุน ู„ูŠุŸ
342
00:38:19,660 --> 00:38:24,580
ุชุนุฑูŠู ุงู„ู€ eigen vector ูˆุงู„ู€ eigen valueุŒ Chapter
343
00:38:24,580 --> 00:38:32,700
Section 4-1ุŒ ุฃูˆู„ ุชุนุฑูŠู ุฃุฎุฐู†ุงู‡ุŒ ุงูŠุด ูŠุนู†ูŠุŸ ูŠุนู†ูŠ ู‡ู„ุงู‚ูŠ
344
00:38:32,700 --> 00:38:38,360
ุนุฏุฏ scalar ู„ุฃู† ุฏู‡ ู…ุถุฑูˆุจ ููŠ xุŒ ุจุฏู‡ุง ุชุณุงูˆูŠ x ุงู„ุดุฑูƒุฉ
345
00:38:38,360 --> 00:38:43,690
ุฃุฎุฐู†ุง ุงู„ุชุนุฑูŠูุŸ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ x is an eigen vector
346
00:38:43,690 --> 00:38:56,190
thenุŒ ุงู„ู€ AX ุจุฏู‡ุง ุชุณุงูˆูŠ lambda xุŒ for some real lambda
347
00:38:56,190 --> 00:38:58,770
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ set of real numbers
348
00:39:01,740 --> 00:39:05,920
ูŠุจู‚ู‰ ู‡ู„ุงู‚ูŠ ู…ุงุฏุงู… ู‡ุฐุง eigenvector ู‡ูˆ ุจูŠุฌูŠุด ุงู„ู€
349
00:39:05,920 --> 00:39:09,340
eigenvector ุฅู„ุง ุฅุฐุง ูƒุงู† ุนู†ุฏูŠ eigenvalueุŒ ุตุญูŠุญ ูˆู„ุง
350
00:39:09,340 --> 00:39:12,800
ู„ุฃุŸ ุทูŠุจุŒ ู…ุงุฏุงู… ุนู†ุฏูŠ eigenvalueุŒ ู…ุงุฏุงู… ุนู†ุฏูŠ
351
00:39:12,800 --> 00:39:15,380
eigenvectorุŒ ุงูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃุตู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ eigenvalue
352
00:39:15,380 --> 00:39:22,120
ุงู„ู„ูŠ ู‡ูˆ lambda xุŒ ู…ุด lambda IุŒ lambda x ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
353
00:39:22,120 --> 00:39:26,460
ุนู†ุฏู†ุงุŒ ูŠุจู‚ู‰ ุงู„ู€ AX ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ุง ุชุณุงูˆูŠ lambda x
354
00:39:26,460 --> 00:39:32,880
for some realุŒ ุงู„ู„ูŠ ู‡ูˆ lambda ุฃูˆุŒ for some ุจู„ุงุด ูƒู„ู…ุฉ
355
00:39:32,880 --> 00:39:38,540
realุŒ ู„ุฃู†ู‡ู… ูƒุฑุฑูˆุง ู…ุฑุชูŠู†ุŒ ุจุงู„ุตุฑูŠุญุฉ xุŒ for some lambda
356
00:39:38,540 --> 00:39:44,280
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ set of real numbersุŒ ูŠุจู‚ู‰ ู‡ุฐู‡
357
00:39:44,280 --> 00:39:49,460
ุงู„ู…ุนู„ูˆู…ุฉ ุฃุฎุฐุชู‡ุง ู…ู† ุงู„ูุฑุถุŒ ุทุจ ุจุฏูŠ ุฃุดูˆู ุงูŠุด ุงู„ู„ูŠ ุจุฏูŠ
358
00:39:49,460 --> 00:39:54,140
ูŠุงู‡ุŸ ุงูŠุด ุจูŠู‚ูˆู„ ู„ูŠุŸ ุจูŠู‚ูˆู„ ู„ูŠ ุฃุซุจุช ู„ูŠ ุฅู† ู‡ุฐุง ู‡ูˆ
359
00:39:54,140 --> 00:40:00,760
eigenvector ู„ู…ูŠู†ุŸ ู„ู€ BุŒ ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุฅู† ุญุตู„ ุถุฑุจ ู‡ุฐุง
360
00:40:00,760 --> 00:40:07,540
ููŠ BุŒ ุจุฏู‡ุง ุชุณุงูˆูŠ scalar ููŠ ุงู„ู€ XุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุทูŠุจุŒ
361
00:40:07,540 --> 00:40:09,880
ุจุฏู†ุง ู†ุฌูŠ ู†ู‚ูˆู„ ู„ู‡ ุงู„ุขู† consider
362
00:40:13,970 --> 00:40:19,370
ุฎูุฐ ู„ูŠ ุจุฏูŠ ุฃุซุจุช ุฅู† ู‡ุฐุง is an eigenvector ูŠุจู‚ู‰ ุจุฏูŠ
363
00:40:19,370 --> 00:40:25,110
ุขุฎุฐ ู„ู…ูŠู†ุŸ ู„ู€ BุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฐ B ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ K
364
00:40:25,110 --> 00:40:26,670
inverse X
365
00:40:30,270 --> 00:40:36,190
ู‡ู‡ุŒ ู…ุด ู‡ุฐู‡ ู‡ู†ุง AXุŒ ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ู€ B ููŠ ุงู„ู€ K inverse
366
00:40:36,190 --> 00:40:42,510
X ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ุฑู‚ู… ู…ุถุฑูˆุจ ููŠ xุŒ ูŠู†ุทู„ุน ู‡ุฐุง ุงู„ุฑู‚ู… ุจูŠุตูŠุฑ
367
00:40:42,510 --> 00:40:47,750
ู‡ุฐุง ู‡ูˆ eigen vectorุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุทูŠุจ ู…ุงุดูŠ ุงู„ุญุงู„
368
00:40:47,750 --> 00:40:53,970
ูŠุจู‚ู‰ ุจุงุฌูŠ ุงู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠุŒ ุทู„ุน ู„ูŠ ู‡ู†ุง ู‡ุฐู‡ุŒ
369
00:40:55,360 --> 00:41:01,500
ุฃู†ุง ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ BุŒ ุจุฏู‡ุง ุชุณุงูˆูŠ K inverse A KุŒ ุฅุฐุง
370
00:41:01,500 --> 00:41:08,500
ุจู‚ุฏุฑ ุฃุดูŠู„ ุงู„ู€ B ูˆุฃูƒุชุจ ุจุฏู„ู‡ุง K inverse A K
401
00:44:45,140 --> 00:44:48,780
ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ ูŠุณู…ู‰ alpha ุฃูŠ ุฑู‚ู… ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ ูŠุณู…ู‰
402
00:44:48,780 --> 00:44:51,780
ุงู„ู†ุงู…ุจุฑ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ
403
00:44:51,780 --> 00:44:52,760
ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
404
00:44:52,760 --> 00:44:53,860
ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
405
00:44:53,860 --> 00:44:57,280
ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
406
00:44:57,280 --> 00:44:58,160
ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
407
00:44:58,160 --> 00:44:58,180
ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
408
00:44:58,180 --> 00:44:58,600
ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
409
00:44:58,600 --> 00:45:01,940
ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
410
00:45:01,940 --> 00:45:13,000
ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ููŠ ุงู„ู€ K inverse X ุจุฏู‡
411
00:45:13,000 --> 00:45:21,490
ูŠุณุงูˆูŠ Lambda 1 ุจุงู„ู€ X ู‡ุงูŠ ุทุจู‚ุช ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุฃู†ุง ุฅูŠุด
412
00:45:21,490 --> 00:45:27,710
ุจู‚ูˆู„ู‡ ู‡ูˆ ุจู‚ูˆู„ ู„ูŠ ุฃุซุจุช ุฅู†ู‡ X ู‡ูˆ Eigen vector ู„ู…ู†ุŸ
413
00:45:27,710 --> 00:45:34,330
ู„ู„ู…ุตููˆูุฉ A ูŠุนู†ูŠ ุจุฏู‡ ุฃุฑูˆุญ ุฃุซุจุช ุฅู†ู‡ AX ุจุฏู‡ ูŠุณุงูˆูŠ
414
00:45:34,330 --> 00:45:41,390
scalar ููŠ ู…ู†ุŸ ููŠ X ุฅุฐุง ู…ุฏู‘ุงุฌูŠ ุฃู‚ูˆู„ู‡ consider ุฎุฏ ู„ูŠ
415
00:45:41,390 --> 00:45:47,250
ุงู„ู€ A ููŠ ุงู„ู€ X ุทูŠุจ
416
00:45:48,040 --> 00:45:52,180
ุจุฏุฃ ุฃุฌูŠ ู„ู…ู†ุŸ ู„ู…ุนู„ูˆู…ุฉ ุนู†ุฏูŠุŒ ู‡ูŠ ุงู„ู…ุนู„ูˆู…ุฉ ุนู†ุฏูŠ ู‡ูŠ
417
00:45:52,180 --> 00:45:59,620
ู‡ุฐู‡ ุฃูˆ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุฌูŠุจ ุงู„ู€ a ุจุฏู„ุงู„ุฉ ุงู„ู€ b ูˆ ุงู„ู€ k ูˆ ุงู„ู€
418
00:45:59,620 --> 00:46:11,240
k inverse ุจู‚ูˆู„ู‡ ุฎู„ูŠ ู„ูŠ ู‡ุฐู‡ since ุจู…ุง ุฃู† ุงู„ู€ b ุจุฏู‡
419
00:46:11,240 --> 00:46:20,220
ุชุณุงูˆูŠ ุงู„ู€ k inverse a k we have ุจุชุฎู„ู‘ูŠ A ู„ุญุงู„ู‡ุง ูŠุง
420
00:46:20,220 --> 00:46:26,100
ุจู†ุงุช ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ ู…ูŠู†ุŸ ููŠ K ูˆู‡ู†ุง
421
00:46:26,100 --> 00:46:31,720
ุจูŠู‡ ูˆู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ K inverse ุจุฏูŠ
422
00:46:31,720 --> 00:46:39,880
ุฃุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูŠ ุฃุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ A ูƒูˆูŠุณ then ุจุฏูŠ ุฃุฎุฏ
423
00:46:39,880 --> 00:46:49,800
ุงู„ู€ X ูŠุณุงูˆูŠ ุงู„ู€ A ุจุฏูŠ ุฃุดูŠู„ู‡ุง ูˆ ุฃูƒุชุจ ุจุฏุงู„ู‡ุง K ุจูƒ ุงู†ูุฑุณ
424
00:46:49,800 --> 00:46:58,230
ูˆู‡ู†ุง ู‡ูŠ ุงู„ู€ X ู‡ูŠ ุฃุฎุฐุชู‡ ุดูŠู„ุช ุงู„ู€ a ูˆ ุญุทูŠุช ู‚ูŠู…ุชู‡ุง ุชู…ุงู…
425
00:46:58,230 --> 00:47:05,390
ุทูŠุจ ุฃู†ุง ุนู†ุฏูŠ ุจูŠ ูƒูŠ ุงู†ูุฑุณ X ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ุจู‚ุฏุฑ
426
00:47:05,390 --> 00:47:09,870
ุฃุดูŠู„ู‡ุง ูˆ ุฃูƒุชุจู‡ุง ู„ู‚ุฏุงุด ู„ุงู†ุฏุง ูˆุงู† X ูŠุจู‚ู‰ ู‡ุฐุง
427
00:47:09,870 --> 00:47:17,870
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ K ู„ุญุงู„ู‡ุง ูˆู‡ู†ุง ุจูŠ ูƒูŠ ุงู†ูุฑุณ X ูˆ
428
00:47:17,870 --> 00:47:25,270
ูŠุณุงูˆูŠ K ููŠ ุงู„ู€ BK inverse X ุจุฏูŠ ุฃุดูŠู„ ูˆ ุฃูƒุชุจ ุจุฏุงู„ู‡ุง
429
00:47:25,270 --> 00:47:27,510
Landau 1 X
430
00:47:30,890 --> 00:47:37,090
ุทูŠุจ Lambda ูˆู† ู‡ุฐุง ุจู‚ุฏุฑ ุฃุทู„ุน ูˆูŠู†ุŸ ุฃุทู„ุน ุจุฑุง ุฅุฐุง ู‡ุฐุง
431
00:47:37,090 --> 00:47:43,410
ุงู„ูƒู„ุงู… ู„ุฃ ุจูŠ ุงู‡ Lambda ูˆู† X ุจูŠ ูƒ ุงู†ูุฑุณุช X ูƒุชุจ ู„ู‡ุง
432
00:47:43,410 --> 00:47:51,630
Lambda ูˆู† X ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุทูŠุจ ุฃู†ุง ูุงุฑุถ
433
00:47:52,970 --> 00:48:00,990
ุงุณุชู†ู‰ ุดูˆูŠุฉ ู‡ูŠ AX ุดูŠู„ุช ุงู„ู€ A ุญุงุทุจู‡ุง K ุจูƒ inverse X
434
00:48:00,990 --> 00:48:11,130
ู…ุธุจูˆุท ูˆุฌูŠุช ุนู„ู‰ ู‡ุฐู‡ ูƒุชุจุช K ุจุฑุง ูˆ ุจูƒ inverse X ู…ุธุจูˆุท
435
00:48:11,130 --> 00:48:18,170
ุจูƒ inverse X ู‡ูŠ lambda one X ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
436
00:48:18,170 --> 00:48:33,230
ูŠุณุงูˆูŠ Lambda ูˆู† ุจุฑุง ููŠ ู…ูŠู†ุŸ ููŠ K X ุชู…ุงู…ุŸ ุฃูŠูˆุฉ ุนู„ูŠ
437
00:48:33,230 --> 00:48:37,450
ุตูˆุชูƒ ุดูˆูŠุฉ ู‡ุงุฏูŠ
438
00:48:37,450 --> 00:48:38,230
ุจูŠุจู‚ู‰ ูŠุณุงูˆูŠ
439
00:48:44,890 --> 00:48:52,330
ู„ุฃ ุงู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุฑู‚ู… ููŠ K ุงู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุฑู‚ู… ููŠ K
440
00:48:52,330 --> 00:48:57,410
inverse X ุตุญูŠุญ ู‡ุฐู‡ ุงู„ุฎุทุฃ ู‡ู†ุง ุตุญูŠุญ ู‡ุฐู‡ ูŠุง ุจู†ุงุช
441
00:48:57,410 --> 00:49:07,420
ุงู„ูŠ Lambda ููŠ K inverse X ู…ุธุจูˆุท ุดูˆ ุงุณู…ูƒ ุฃู†ุชุŸ ุณู…ุญ
442
00:49:07,420 --> 00:49:12,380
ุฃุตุงุจุฉ ุงู…ุฑุฃุฉ ูˆุฃุฎุชู‡ุง ุนู…ุฑ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ูŠุจู‚ู‰ ู‡ุฐู‡ Lambda
443
00:49:12,380 --> 00:49:19,240
inverse X ุฅุฐุง ุจุฏูŠ ุฃุดูŠู„ ู‡ุฐู‡ ูŠุง ุจู†ุงุช ูƒุงู„ุชุงู„ูŠ ูˆ ุฃูƒุชุจ
444
00:49:19,240 --> 00:49:24,840
ุจุฏุงู„ู‡ุง ู…ุง ูŠู„ูŠ ูŠุจู‚ู‰ ู‡ุงูŠ ุนู…ู„ุช ุงู„ู€ associativity ุชุจุน
445
00:49:24,840 --> 00:49:32,720
ุงู„ู…ุตููˆูุงุช ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ุฃุณุงูˆูŠ K ููŠ ุจูƒ ุงู†ูุฑุณ X
446
00:49:32,720 --> 00:49:42,030
ุจุฏูŠ ุฃุดูŠู„ู‡ ูˆ ุฃูƒุชุจ ุจุฏุงู„ู‡ Lambda ูˆู† K ุงู†ูุฑุณ X ู„ุฃู†
447
00:49:42,030 --> 00:49:46,970
Lambda ูˆู† ูƒูˆู†ุณุชุงู†ุช ุจู‚ุฏุฑ ุฃู‚ูˆู„ู‡ ุดุฑูู†ุง ุจุฑุง ูŠุจู‚ู‰ ู‡ุงูŠ
448
00:49:46,970 --> 00:49:54,070
Lambda ูˆู† ุจุฑุง ุตุงุฑ K ููŠ K inverse ููŠ ู…ู†ุŸ ููŠ ุงู„ู€ X
449
00:49:54,070 --> 00:50:00,690
ูŠุจู‚ู‰ ู‡ุฐุง Lambda ูˆู† ู‡ุฐู‡ ู…ุตููˆูุฉ ู…ู†ุŸ ุงู„ูˆุญุฏุฉ ููŠ ุฃูŠ
450
00:50:00,690 --> 00:50:06,980
ู…ุตููˆูุฉ ุชุนุทูŠู†ูŠ ู†ูุณ ุงู„ู…ุตููˆูุฉ ูŠุจู‚ู‰ ุตุงุฑ ุนู†ุฏู†ุง ู‡ู†ุง ู…ูŠู†
451
00:50:06,980 --> 00:50:13,420
Lambda ูˆู† ุฃู† ุงู„ู€ AX ูŠุณุงูˆูŠ Lambda ูˆู† X ุฅูŠุด ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
452
00:50:13,420 --> 00:50:20,500
ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ X ุนุจุงุฑุฉ ุนู† Eigen vector ู„ู…ู†ุŸ ู„ู„ู…ุตููˆูุฉ A
453
00:50:20,500 --> 00:50:32,760
ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ X is an eigen vector for the
454
00:50:39,610 --> 00:50:45,990
ู„ุญุฏ ู‡ู†ุง stop ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ู€ section ูˆุฅู„ู‰ ูŠูƒูˆู† ุฃุฑู‚ุงู…
455
00:50:45,990 --> 00:50:53,090
ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ Exercises ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ
456
00:50:53,090 --> 00:51:02,570
ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ุนุดุฑุฉ ูˆู…ู† ุชู„ุชุงุด ู„ุบุงูŠุฉ ุณุชุงุด ุงู„ุดูƒู„ ุงู„ู„ูŠ
457
00:51:02,570 --> 00:51:05,810
ุนู†ุฏู†ุง ู‡ุฐู‡ ุงู„ู…ุฑุฉ ุฌุงุก ุฅู† ุดุงุก ุงู„ู„ู‡ ุจู†ุจุฏุฃ ููŠ ุงู„ู…ุนุงุฏู„ุงุช
458
00:51:05,810 --> 00:51:10,470
ุงู„ุชูุงุถู„ูŠุฉ ุฎู„ุตู†ุง ุงู„ุฌุจุฑ ุงู„ุฎุทูŠ ุงู„ุขู† ุจู†ุฑุฌุน ุถุงูŠู„ ุนู„ูŠู†ุง
459
00:51:10,470 --> 00:51:13,630
two chapters ููŠ ุงู„ู€ ordinary differential