|
1 |
|
00:00:20,740 --> 00:00:25,580 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุนูุฏูุง ุนูู ุจุฏุกุ ุจูุฌููุง ูุชุญุฏุซ |
|
|
|
2 |
|
00:00:25,580 --> 00:00:29,820 |
|
ุงูู
ุฑุฉ ุงููู ูุงุชุช ุนู ุงูู Diagonalization ูู Matrix |
|
|
|
3 |
|
00:00:29,820 --> 00:00:34,300 |
|
ูุฎุฏูุง ู
ุฌู
ูุนุฉ ู
ู ุงูุฃู
ุซูุฉุ ุจุฏู ุงูู
ุซุงู ุชูุงุชุฉ ุจูุฌููุง |
|
|
|
4 |
|
00:00:34,300 --> 00:00:38,400 |
|
ูุฌูุจ ุงูู Eigen Values ู ุงูู Eigen Vectors ู ูุซุจุช ูู |
|
|
|
5 |
|
00:00:38,400 --> 00:00:42,040 |
|
ุงูู
ุตูููุฉ ุงููู ุนูุฏู Diagonalizable ููุง ูุฃุ ุทุจุนูุง |
|
|
|
6 |
|
00:00:42,040 --> 00:00:46,280 |
|
ุนุฑููุง ุฅูู ู
ุนูุงู ุฅููุ Similar to Bุ ู
ุนูุงู ุฅูู ูู |
|
|
|
7 |
|
00:00:46,280 --> 00:00:51,970 |
|
Diagonalization ูู ููู
ุตูููุฉ Aุ ุงูู
ุซุงู ุงูุฑุงุจุน ุจูููู |
|
|
|
8 |
|
00:00:51,970 --> 00:00:56,110 |
|
ุงูุชุฑุถ ุงูู
ุตูููุฉ A ูู ุนูู ุงูุดูู ุงููู ูุฏุงู
ูุง ูุฐุง |
|
|
|
9 |
|
00:00:56,110 --> 00:01:00,090 |
|
ุจุทุงูุจ ุชูุช ู
ุทุงููุจุ ุงูู
ุทููุจ ุงูุฃูู ูุงู ูู: ูุงุช ุงูู |
|
|
|
10 |
|
00:01:00,090 --> 00:01:05,850 |
|
Eigenvectorsุ ุดุบูุฉ ุฑูุชูููุฉ ูุง ู
ุง ุฃูุฌุฏูุงูุง ูู |
|
|
|
11 |
|
00:01:05,850 --> 00:01:09,370 |
|
ุงูุณููุดู ูุฐุง ุฃู ุงูุณููุดู ุงููู ุฌุงุจูุ ุฃุฑุจุนุฉ ูุงุญุฏ |
|
|
|
12 |
|
00:01:09,370 --> 00:01:13,230 |
|
ุงูู
ุทููุจ ุงูุซุงูู ุจูููู: Find a the Dimension of the |
|
|
|
13 |
|
00:01:13,230 --> 00:01:18,070 |
|
Eigenvector Spaceุ ูุจุฑุถู ุฃูุฌุฏูุงูุง ูุจู ุฐููุ ุงูุฃู
ุฑ |
|
|
|
14 |
|
00:01:18,070 --> 00:01:21,230 |
|
ุงูุซุงูุซ ุจูููู ูู: ูู ุงูู Matrix is Similar to a |
|
|
|
15 |
|
00:01:21,230 --> 00:01:25,390 |
|
Diagonal Matrix ููุง ูุฃุ ูุนูู ุฅูุด ูุตุฏ ูููู ูููุ ูุงู |
|
|
|
16 |
|
00:01:25,390 --> 00:01:29,750 |
|
ูู: ูู ุงูู
ุตูููุฉ is Diagonalizable ููุง ูุฃุ ูู ุงูุณุคุงู |
|
|
|
17 |
|
00:01:29,750 --> 00:01:35,710 |
|
ุงูุณุคุงู ุงููู ูุงู ูู: ุดูู ูู ูู ุงูู A is Similar to a |
|
|
|
18 |
|
00:01:35,710 --> 00:01:39,430 |
|
Diagonal Matrix ูุนูู ูุงููุง ุจูุณุฃููุง ููู: ูู ุงูู
ุตูููุฉ |
|
|
|
19 |
|
00:01:39,430 --> 00:01:44,620 |
|
is Diagonalizable ููุง ูุฃุ ุจููู ููุณูู ุฅู ูุงู ุงูุฃู
ุฑ |
|
|
|
20 |
|
00:01:44,620 --> 00:01:49,760 |
|
ูุฐูู: Find a Matrix Kุ ู
ู ุงูู Matrix K and Diagonal |
|
|
|
21 |
|
00:01:49,760 --> 00:01:54,040 |
|
ุงูู Matrix Dุ ุจุญูุซ ุฅู ุงูู K inverse A K ุจุฏูู ูุณุงูู ู
ูุ |
|
|
|
22 |
|
00:01:54,040 --> 00:01:58,340 |
|
ุจุฏูู ูุณุงูู Dุ ู
ุด ูุชุนุฑูู ุงูู Similarุ ูุจูู Similar |
|
|
|
23 |
|
00:01:58,340 --> 00:02:01,380 |
|
ูุงููู Diagonalize ูู
ุงูุงุชููู are the Sameุ ููุณ |
|
|
|
24 |
|
00:02:01,380 --> 00:02:05,660 |
|
ุงูู
ูููู
ุจุงูุถุจุทุ ุชู
ุงู
ุ ุทูุจ ููุฌู ูุญู ูุฐุง ุงูุณุคุงูุ ูุจูู |
|
|
|
25 |
|
00:02:05,660 --> 00:02:09,940 |
|
ุฃูู ููุทุฉ ุจุฏู ุฃุฑูุญ ุฃุฌูุจ ุงูู Eigenุ ุงูู Eigen |
|
|
|
26 |
|
00:02:09,940 --> 00:02:13,740 |
|
Values ูู
ููุ ููู
ุตูููุฉ ุงููู ุนูุฏูุง ุฅููุ ูุจูู ุจุฏู ุฃุจุฏุฃ |
|
|
|
27 |
|
00:02:13,740 --> 00:02:19,680 |
|
ุจู
ููุ ุจุงูู
ุนุงุฏูุฉ ุงูุฃุณุงุณูุฉ ุงููู ูู: Lambda I ูุงูุต A |
|
|
|
28 |
|
00:02:19,680 --> 00:02:27,580 |
|
ุชุณุงูู I Lambda 00 Lambda 00 Lambda ุจุงูุดูู ุงููู |
|
|
|
29 |
|
00:02:27,580 --> 00:02:34,270 |
|
ุนูุฏูุง ูุฐุงุ ุชู
ุงู
ุ ูู ูุงูุต ุงูู
ุตูููุฉ Aุ ุจูุฒู ุงูู
ุตูููุฉ |
|
|
|
30 |
|
00:02:34,270 --> 00:02:41,370 |
|
ูู
ุง ููุ ูุงุญุฏ ุงุชููู ุชูุงุชุฉุ ุณุงูุจ ูุงุญุฏ ุฃุฑุจุนุฉ ุชูุงุชุฉุ ูุงุญุฏ |
|
|
|
31 |
|
00:02:41,370 --> 00:02:48,050 |
|
ุณุงูุจ ุงุชููู ุณุงูุจ ูุงุญุฏ ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุงูููุงู
|
|
|
|
32 |
|
00:02:48,050 --> 00:02:54,910 |
|
ุจุฏูู ูุณุงูู: Lambda ูุงูุต ูุงุญุฏุ Lambda ูุงูุต ูุงุญุฏุ ูุงูุต ุงุชููู |
|
|
|
33 |
|
00:02:54,910 --> 00:03:03,070 |
|
ูุงูุต ุชูุงุชุฉ ููุงุ ูุงุญุฏ ููุงุ Lambda ูุงูุต ุฃุฑุจุนุฉ ูููุง ูุงูุต |
|
|
|
34 |
|
00:03:03,070 --> 00:03:10,790 |
|
ุชูุงุชุฉุ ูููุง ูุงูุต ูุงุญุฏ ูููุง ุงุชููู ูููุง Lambda ุฒุงุฆุฏ |
|
|
|
35 |
|
00:03:10,790 --> 00:03:15,290 |
|
ูุงุญุฏ ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุ ุจุนุฏ ุฐูู ููู ุงุญุตู ุนูู ุงูู |
|
|
|
36 |
|
00:03:15,290 --> 00:03:20,930 |
|
Eigenvalues ุฃูุง ุจุงุฎุฏ ุงูู
ุญุฏุฏ ููุฐู ุงูู
ุตูููุฉุ ุฅุฐุง ุฃูุง |
|
|
|
37 |
|
00:03:20,930 --> 00:03:28,550 |
|
ุจุงุฎุฏ ุงูู Determinant ูู
ููุ ููู Lambda I ูุงูุต ุงูู Aุ ููู |
|
|
|
38 |
|
00:03:28,550 --> 00:03:35,530 |
|
ุงูู
ุญุฏุฏ Lambda minus oneุ ุณุงูุจ ุงุชูููุ ุณุงูุจ ุชูุงุชุฉุ ูููุง |
|
|
|
39 |
|
00:03:35,530 --> 00:03:40,650 |
|
one ูููุง Lambda minus four ูููุง minus threeุ minus |
|
|
|
40 |
|
00:03:40,650 --> 00:03:49,350 |
|
oneุ to Lambda plus oneุ ูุฐุง ุงูู
ุญุฏุฏุ ุจุฏู ุฃุญุณุจ ููู
ุฉ ูุฐุง |
|
|
|
41 |
|
00:03:49,350 --> 00:03:53,950 |
|
ุงูู
ุญุฏุฏุ ูุจูู ุจุฏู ุฃูู ุงูู
ุญุฏุฏ ุงููู ุนูุฏูุง ุจุงุณุชุฎุฏุงู
|
|
|
|
42 |
|
00:03:53,950 --> 00:03:59,890 |
|
ู
ุซููุง ุนูุงุตุฑ ุงูุตู ุงูุฃููุ ูุจูู ุจุงุฌู ุจููู ูุฐุง ุงูููุงู
|
|
|
|
43 |
|
00:03:59,890 --> 00:04:07,040 |
|
ุจุฏูู ูุณุงูู Lambda minus oneุ ูุจูู Lambda minus one ูู |
|
|
|
44 |
|
00:04:07,040 --> 00:04:14,200 |
|
ุงูู
ุญุฏุฏ ุงูุฃุตุบุฑ ุงูู
ูุงุธุฑ ููุ ุงูู Lambda minus four ู
ุถุฑูุจุฉ |
|
|
|
45 |
|
00:04:14,200 --> 00:04:20,400 |
|
ูู Lambda plus oneุ minus ู
ุน minus ุจุตูุฑ ุฒุงุฆุฏ ุณุชุฉ |
|
|
|
46 |
|
00:04:21,170 --> 00:04:25,650 |
|
ุงูุนูุตุฑ ุงููู ุจุนุฏูุ ุญุณุจ ูุทุน ุงูุฅุดุงุฑุงุชุ ุดุฑุทุฉ ู
ูุฌุจุฉ ูุจูู |
|
|
|
47 |
|
00:04:25,650 --> 00:04:32,590 |
|
ุฒุงุฆุฏ ุงุชููู ููุ ูุดุท ุจุตูู ูุนู
ูุฏู ูุจูู Lambda plus |
|
|
|
48 |
|
00:04:32,590 --> 00:04:38,910 |
|
one minus threeุ ูุจูู Lambda plus one minus three |
|
|
|
49 |
|
00:04:38,910 --> 00:04:44,830 |
|
ุงููู ุจุนุฏูุ minus threeุ ููู ูุดุท ุจุตูู ูุนู
ูุฏู ูุจูู |
|
|
|
50 |
|
00:04:44,830 --> 00:04:50,590 |
|
ุงุชูููุ minus ู
ุน minus ุจุตูุฑ ุฒุงุฆุฏ Lambda minus four |
|
|
|
51 |
|
00:04:50,920 --> 00:04:56,460 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุ ูุจูู ูุฐุง ูู ุฌูุชู ุงุฎุชุตุฑุชูุ ุจุฏูู |
|
|
|
52 |
|
00:04:56,460 --> 00:05:01,520 |
|
ูุตูุฑ ูุชุงููุ Lambda minus one ูุฐุง ุจุฏูู ููููู ูุง ุจูุงุช |
|
|
|
53 |
|
00:05:01,520 --> 00:05:09,300 |
|
ูุจูู Lambda ุชุฑุจูุน ูุงูุต ุชูุงุชุฉ Lambda ูููุง ุฒุงุฆุฏ ุงุชููู |
|
|
|
54 |
|
00:05:09,940 --> 00:05:15,480 |
|
ุงููู ุจุนุฏูุ ุฒุงุฆุฏ ุงุชููู ูู Lambda minus ุงุชูููุ ุงููู |
|
|
|
55 |
|
00:05:15,480 --> 00:05:20,360 |
|
ุจุนุฏูุ ูุงูุต ุชูุงุชุฉ ูู Lambda minus ุงุชูููุ ูู ูุฐุง |
|
|
|
56 |
|
00:05:20,360 --> 00:05:25,460 |
|
ุงูููุงู
ุ ุจุฏูู ูุณุงูู ุฌุฏุงุดุ ุจุฏูู ูุณุงูู Zeroุ ุฃู ู
ู
ูู ุฃููู |
|
|
|
57 |
|
00:05:25,460 --> 00:05:30,410 |
|
ูุฐุง ุงูููุงู
Lambda minus ุงูู oneุ ูุฐู ุงูู
ูุงุทู ุจูุฏุฑ |
|
|
|
58 |
|
00:05:30,410 --> 00:05:37,330 |
|
ุฃุญูููุงุ ุงููู ูู ู
ููุ Lambda ุฌูุฒ ูุฌูุฒ ุชุงูู Lambda |
|
|
|
59 |
|
00:05:37,330 --> 00:05:42,570 |
|
ููู ุงูุฌูุฒุ ููุง ุจูุฏุฑ ุฃููู ูุงุญุฏ ูููุง ุจูุฏุฑ ุฃููู |
|
|
|
60 |
|
00:05:42,570 --> 00:05:49,530 |
|
ุงุชูููุ ูุจูู ูุฐู ุจุงููุงูุต ููุฐู ุจุงูููุตุ ูุฐุง ุงูู Term |
|
|
|
61 |
|
00:05:49,530 --> 00:05:54,370 |
|
ุงูุฃูู ุทูุน ูู ููู Term ูุฐุงุ ูุฐุง ุงูู Term ุงุชููู ุจุงูู
ูุฌุจ |
|
|
|
62 |
|
00:05:54,370 --> 00:05:58,910 |
|
ู ุชูุงุชุฉ ุจุงูุณูุจ ูููุณ ุงูู
ูุฏุงุฑุ ูุจูู ููุถู Term ูุงุญุฏ |
|
|
|
63 |
|
00:05:58,910 --> 00:06:06,150 |
|
ุจู
ููุ ุจุงูู
ูุฌุจุ ูุจูู ูุฐุง ุงูููุงู
ุฒุงุฆุฏ Lambda minus |
|
|
|
64 |
|
00:06:06,150 --> 00:06:12,210 |
|
ุงุชููู ููุท ูุง ุบูุฑุ ูุงูุต Lambda ูุงูุต ุงุชูููุ ููู ููุงุ |
|
|
|
65 |
|
00:06:13,530 --> 00:06:23,490 |
|
ูุฐู ููุต |
|
|
|
66 |
|
00:06:23,490 --> 00:06:29,830 |
|
ูุงุญุฏุ ูุนูู ูุงุญุฏุ ุขู ุญุงุทูู ุณุงูุจุ ุขู ูุฐู ุจุงูุณุงูุจ ุงูุตุญูุฉ |
|
|
|
67 |
|
00:06:30,540 --> 00:06:36,220 |
|
100% ุฅุตุงุจุฉ ุงู
ุฑุฃุฉ ูุฃุฎุชูุง ุนู
ุฑุ ูุฐุง ุงูููุงู
ูุจุฏู ูุณุงูู |
|
|
|
68 |
|
00:06:36,220 --> 00:06:43,160 |
|
ุงููู ูู Lambda minus twoุ ุนุงู
ู ู
ุดุชุฑู ู
ู ุงูููุ ุจูุธู |
|
|
|
69 |
|
00:06:43,160 --> 00:06:50,900 |
|
ู
ูู ููุงุ ููุง ุจูุธู Lambda ูุงูุต ูุงุญุฏ ุงููู ุชุฑุจูุนุ ููุต |
|
|
|
70 |
|
00:06:50,900 --> 00:06:55,860 |
|
ูุงุญุฏุ ุจุงูุดููุ ูุฃู ูุฐุง ุจุฏู ุฃุณุงููู 100ุ ุจุฏู ุฃุณุงููู 0ุ ุฃู |
|
|
|
71 |
|
00:06:55,860 --> 00:07:01,140 |
|
ุจูุฏุฑ ุฃููู Lambda minus twoุ ูููุ ุจุฏู ุฃูู ุงูุฌุซุฉ ุฏุงูู
ูุง |
|
|
|
72 |
|
00:07:01,140 --> 00:07:07,420 |
|
ุจุตูุฑ Lambda ุชุฑุจูุน ููุต ุงุชููู Lambda ูุฒุงุฆุฏ ูุงุญุฏ ูููุต |
|
|
|
73 |
|
00:07:07,420 --> 00:07:13,280 |
|
ูุงุญุฏุ ู
ุน ุงูุณูุงู
ุฉุ ุฅุฐุง ู
ู
ูู ุฃุฎุฏ Lambda ุนุงู
ู ู
ุดุชุฑู ู
ู |
|
|
|
74 |
|
00:07:13,280 --> 00:07:20,540 |
|
ูุฐุง ุงูุฌูุฒ ุงูุซุงููุ ูุจูู Lambda minus two ูู Lambda ูู |
|
|
|
75 |
|
00:07:20,540 --> 00:07:26,080 |
|
Lambda minus two ุจุฏูู ูุณุงูู zeroุ ูุจูู Lambda ูู Lambda |
|
|
|
76 |
|
00:07:26,080 --> 00:07:30,780 |
|
minus two ููู ุชุฑุจูุน ุจุฏูู ูุณุงูู ุฌุฏุงุดุ ุจุฏูู ูุณุงูู zero |
|
|
|
77 |
|
00:07:31,450 --> 00:07:37,290 |
|
ุฅุฐุง ุทูุน ุนูุฏู ููู
ุชูู ููุท ููู Lambda ูููุณ ุชูุงุช ููู
ุ ูุทูุน |
|
|
|
78 |
|
00:07:37,290 --> 00:07:44,110 |
|
ุงูููู
ุชููุ ูุงูููู
ุชูู ู
ุชุณุงููุงุชุ ุฃู ุงูู Lambda ุทูุนุช ู
ูุฑุฑุฉ |
|
|
|
79 |
|
00:07:44,110 --> 00:07:52,010 |
|
ูุจูู ุจูุงุกู ุนูู ุฅู ุนููุ ุจุฑูุญ ุจูููู ููุง: The Eigenvalues |
|
|
|
80 |
|
00:07:52,010 --> 00:07:59,880 |
|
are ุงููู ูู Lambda ุชุณุงูู zero ู Lambda ุชุณุงูู ุงุชููู |
|
|
|
81 |
|
00:07:59,880 --> 00:08:06,300 |
|
ููุท ูุง ุบูุฑุ ู ูุฐู ุงูู Lambda ู
ูุฑุฑุฉ ูุฏูุด ู
ุฑุชูู ูุจูู ู |
|
|
|
82 |
|
00:08:06,300 --> 00:08:11,980 |
|
ุจููู: Of Multiplicity twoุ ูุนูู ู
ูุฑุฑุฉ ู
ุฑุชููุ ุฃู ุจูุฏุฑ |
|
|
|
83 |
|
00:08:11,980 --> 00:08:16,220 |
|
ุฃููู Lambda ุงุชููู ุชุณุงูู ุงุชููู ู Lambda ุชูุงุชุฉ ุชุณุงูู |
|
|
|
84 |
|
00:08:16,220 --> 00:08:23,140 |
|
ุงุชูููุ ูุจูู ูุฐู Lambda ุชุณุงูู ุงุชููู is of Multi |
|
|
|
85 |
|
00:08:28,120 --> 00:08:32,700 |
|
Lambda ุชุณุงูู ุงุชููู ู
ูุฑุฑุฉ ู
ุฑุชููุ ุฅุฐุง ุงูุชูููุง ู
ู |
|
|
|
86 |
|
00:08:32,700 --> 00:08:36,480 |
|
ุงูู
ุทููุจ ุงูุฃูู ุงููู ูุงู ูู ุนูู ู
ู ุนูุฏ ู
ุง ุจุฏุฃูุง ููุง |
|
|
|
87 |
|
00:08:36,480 --> 00:08:40,140 |
|
ููู ูุงุญูุง ุจูุญุงูู ูุญุตู ุนูู ุงูู
ุทููุจ ุงูุฃูู ุงููู ูู |
|
|
|
88 |
|
00:08:40,140 --> 00:08:44,320 |
|
ุงูู Eigen Valuesุ ูุงู ูู ุจุนุฏ ููู ุฃุชูุช ูู ุงูู Dimension |
|
|
|
89 |
|
00:08:44,320 --> 00:08:49,900 |
|
ูู
ููุ ููู Eigen Vector Spacesุ ูุจูู ุจุฏุฃ ุฃุฎุฏ Lambda |
|
|
|
90 |
|
00:08:49,900 --> 00:08:52,660 |
|
ุชุณุงูู ุฒูุฑูุ ุจุนุฏ ููู Lambda ุชุณุงูู ุงุชููู ูุฃุดูู ุฅูุด |
|
|
|
91 |
|
00:08:52,660 --> 00:08:59,700 |
|
ุงููู ุจูุญุตู ู
ุนุงูุงุ ูุจูู ุจุงุฌู ุจูููู ููุง: If Lambda ุชุณุงูู |
|
|
|
92 |
|
00:08:59,700 --> 00:09:05,160 |
|
zero thenุ ุจุฏู ุฃุฎุฏ Lambda ุงูุฃูููุ ุจุฏู ุฃุฑุฌุน ูู
ููุ |
|
|
|
93 |
|
00:09:05,160 --> 00:09:10,440 |
|
ููู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู ุนูุฏูุง ูุฐูุ ุชู
ุงู
ุ ูุจุฏู ุฃุฎุฏ |
|
|
|
94 |
|
00:09:10,440 --> 00:09:17,120 |
|
ุงูู
ุนุงุฏูุฉ ูุซูุฑุฉุ then Lambda I ููุต ุงูู A ูู ุงูู X ูุณุงูู |
|
|
|
95 |
|
00:09:17,120 --> 00:09:22,020 |
|
Zero implies ูู ุงูู
ุตู
ู
ุฉุ ุจุฏู ุฃุดูู Lambda ูุฃุญุท |
|
|
|
96 |
|
00:09:22,020 --> 00:09:28,070 |
|
ู
ูุงููุง Zeroุ ุจุธููุง ูุงูุต ูุงุญุฏ ูุงูุต ุงุชููู ูุงูุต ุชูุงุชุฉ |
|
|
|
97 |
|
00:09:28,070 --> 00:09:34,850 |
|
ูุงุญุฏ ูุงูุต ุฃุฑุจุนุฉ ูููุง ูุงูุต ุชูุงุชุฉ ูููุง ูุงูุต ูุงุญุฏ |
|
|
|
98 |
|
00:09:34,850 --> 00:09:40,730 |
|
ุงุชููู ูููุง ูุงุญุฏ ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุ X ูุงุญุฏ X |
|
|
|
99 |
|
00:09:40,730 --> 00:09:46,610 |
|
ุงุชููู X ุชูุงุชุฉุ ูุฐุง ุงูููุงู
ุจุฏูู ูุณุงูู Zero ู Zero ู |
|
|
|
100 |
|
00:09:46,610 --> 00:09:52,780 |
|
Zeroุ ุฅุฐุง ุชุฑุฌู
ุชู ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏูุง ูุฐู ุนุงู
ูููุง |
|
|
|
101 |
|
00:09:52,780 --> 00:09:58,140 |
|
ุจุงูููู
ุงููู ู
ูุฌูุฏุฉ ุนูุฏูุงุ ูุญุงูู ูุฌูุจ ููู
ูููุง ู
ู X1 |
|
|
|
102 |
|
00:09:58,140 --> 00:10:04,980 |
|
ู X2 ู X3ุ ูุฅู ูุฐู ุงูู X ุจุชุฌูุจ ูู
ููุ ููู Eigen Vectors |
|
|
|
103 |
|
00:10:05,520 --> 00:10:10,720 |
|
ุฅุฐุง ุจุฏู ุฃุฌูุฒู ูุฃููู ุจุฏู ุฃุนุทู ุงูู
ุนุงุฏูุฉ ุฏูุบุฑู ูุจูุงุด |
|
|
|
104 |
|
00:10:10,720 --> 00:10:19,060 |
|
ุจุตูุฑ ุฃูุง ูุงุจูุช ููุงุ ูุงูุต X1 ูุงูุต 2 X2 ูุงูุต 3 X3 ุจุฏูู |
|
|
|
105 |
|
00:10:19,060 --> 00:10:29,280 |
|
ูุณุงูู 0 ูููุง X1 ูุงูุต 4 X2 ูุงูุต 3 X3 ุจุฏูู ูุณุงูู ูู
ุงู |
|
|
|
106 |
|
00:10:29,280 --> 00:10:37,590 |
|
100ุ ุจุฏูู ูุณุงูู 0ุ ูุงูุต X1 ูููุง ุฒุงุฆุฏ ุงุชููู X2 ูููุง |
|
|
|
107 |
|
00:10:37,590 --> 00:10:42,830 |
|
ุฒุงุฆุฏ X3 ูุณุงูู Zeroุ ูุจูู ุญุตููุง ุนูู ุงูู Homogenous |
|
|
|
108 |
|
00:10:42,830 --> 00:10:46,870 |
|
System ุงููู ุนูุฏูุงุ ุจูุญุงูู ูุญู ุงูู Homogenous System |
|
|
|
109 |
|
00:10:46,870 --> 00:10:52,870 |
|
ุจุฃู ุทุฑููุฉ ู
ู ุงูุทุฑู ุงูุชู ุณุจูุช ุฏุฑุงุณุชูุงุ ูู
ุซููุง ูู ุฌูุช |
|
|
|
110 |
|
00:10:52,870 --> 00:10:57,370 |
|
ุฃุฎุฏุช ุงูู
ุนุงุฏูุฉ ุงูุฃููู ูุงูุชุงููุฉ ูุฐู ูุง ุจูุงุชุ ูุฌูุช |
|
|
|
111 |
|
00:10:57,370 --> 00:11:02,750 |
|
ุฌู
ุงุนุฉ ุทุจุนูุง ูุชุฑูุญ ูุฐู ู
ุน ูุฐูุ ู
ุธุจูุทุ ุจุถุน ุฅููุง ูุงูุต |
|
|
|
112 |
|
00:11:02,750 --> 00:11:11,540 |
|
6X2 ููุงูุต 6X3 ุจุฏู ูุณุงูู ูุฏุงุดุ Zeroุ ุฃู ูู ุฌุณู
ุช ุนูู |
|
|
|
113 |
|
00:11:11,540 --> 00:11:18,080 |
|
ุณุงูุจ ุณุชุฉุ ุจุตูุฑ X2 ุฒุงุฆุฏ X3 ูุณุงูู Zeroุ ุฃู ุจูุฏุฑ ุฃููู |
|
|
|
114 |
|
00:11:18,080 --> 00:11:25,540 |
|
ุฅู X2 ูุณุงูู ุณุงูุจ X3ุ ูุฐุง ูู
ุง ุฃุฎุฏ ุงูุฃููู ู
ุน ู
ููุ ู
ุน |
|
|
|
115 |
|
00:11:25,540 --> 00:11:32,230 |
|
ุงูุซุงููุฉุ ุทุจ ูู ุฃุฎุฏุช ุงูุชุงููุฉ ู
ุน ู
ููุ ู
ุน ุงูุชุงูุชุฉ ูุฐู |
|
|
|
116 |
|
00:11:32,230 --> 00:11:37,830 |
|
ุฎุฏ ู
ุน ูุฐูุ ุฃู ุฃุฎุฏ ุงูุฃููู ู
ุน ุงูุชุงูุชุฉุ ู
ุซููุง ูู ุฃุฎุฏุช |
|
|
|
117 |
|
00:11:37,830 --> 00:11:43,170 |
|
ุงูุฃููู ู
ุน ุงูุชุงูุชุฉุ ูุจูู ุงูุฃููู ูุงูุต X ูุงุญุฏ ูุงูุต |
|
|
|
118 |
|
00:11:43,170 --> 00:11:48,470 |
|
ุงุชููู X ุงุชููู ูุงูุต ุชูุงุชุฉ X ุชูุงุชุฉ ุจุฏูู ูุณุงูู zero |
|
|
|
119 |
|
00:11:48,470 --> 00:11:55,370 |
|
ูููุง ุณุงูุจ X ูุงุญุฏุ ุงุชููู X ุงุชููู ุฒุงุฆุฏ X ุชูุงุชุฉ ุจุฏูู |
|
|
|
120 |
|
00:11:55,370 --> 00:12:00,490 |
|
ูุณุงูู zeroุ ุทุจุนูุง ูุฐู ูุชุฑูุญ ู
ุน ูุฐูุ ุจุธู ููุง ุงูู main ุงููู |
|
|
|
121 |
|
00:12:00,490 --> 00:12:08,410 |
|
ูู ู
ู ุณุงูุจ ุงุชููู X1 ูููุง ุณุงูุจ ุงุชููู X3 ุจุฏูู ูุณูู |
|
|
|
122 |
|
00:12:08,410 --> 00:12:15,650 |
|
Zeroุ ูุจูู X1 ุฒุงุฆุฏ X3 ุจุฏูู ูุณุงูู Zeroุ ูุจูู X1 ูุณูู |
|
|
|
123 |
|
00:12:15,650 --> 00:12:23,510 |
|
ุณุงูุจ X3ุ ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ ุนูุฏู X1 ุจุฏูู ูุณุงูู X2 |
|
|
|
124 |
|
00:12:23,510 --> 00:12:34,890 |
|
ุจุฏูู ูุณุงูู X3ุ ุฅุฐุง ูู ุฃุฎุฏุช ุฅู ุงูู X3 ุจุฏูุง ุชุณุงูู.. ูู |
|
|
|
125 |
|
00:12:34,890 --> 00:12:46,170 |
|
ุฃุฎุฏุช ุงูู X3 ู
ุซููุง ุชุณุงูู A ุฃู ุฃุฎุฏุช X1 ุชุณุงูู X2 ุชุณุงูู |
|
|
|
126 |
|
00:12:46,170 --> 00:12:46,670 |
|
A |
|
|
|
127 |
|
00:12:50,670 --> 00:12:56,790 |
|
ุซู
ุณุงูุจ X ุซุฑู ุชุณุงูู ุฅููุ ูุฐุง ูุนุทูู ุฅู X ุซุฑู |
|
|
|
128 |
|
00:12:56,790 --> 00:13:03,570 |
|
ูุณุงูู ูุฏุงุดุ ุณุงูุจ Aุ ูุจูู ุจุงุฌู ุจูููู: The Eigen |
|
|
|
129 |
|
00:13:03,570 --> 00:13:14,010 |
|
Vectors corresponding to |
|
|
|
130 |
|
00:13:14,010 --> 00:13:22,650 |
|
the Lambda ุชุณุงูู zero are in the formุ ุนูู ุงูุดูู |
|
|
|
131 |
|
00:13:22,650 --> 00:13:28,490 |
|
ุงูุชุงููุ X1 |
|
|
|
132 |
|
00:13:28,490 --> 00:13:38,950 |
|
X2 X3ุ X1 |
|
|
|
133 |
|
00:13:38,950 --> 00:13:41,850 |
|
X2 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 |
|
|
|
134 |
|
00:13:41,850 --> 00:13:45,530 |
|
X3 X3 X3 X3 X3 X3 X3 ุทุจ ุฅูุด ุจูููู ููุ ูุงู ูู ูุงุช ุงูู |
|
|
|
135 |
|
00:13:45,530 --> 00:13:51,890 |
|
Dimension ููู Eigen Vector Spaceุ ูุจูู ูุฐุง ุงูู Vector |
|
|
|
136 |
|
00:13:51,890 --> 00:13:54,990 |
|
ุงููู |
|
|
|
137 |
|
00:13:54,990 --> 00:14:05,670 |
|
ูู ู
ู ูุงุญุฏ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ is a basis for the Eigen |
|
|
|
138 |
|
00:14:05,670 --> 00:14:10,310 |
|
Vector Space |
|
|
|
139 |
|
00:14:11,660 --> 00:14:19,860 |
|
ูุจูู ูุฐุง ุจุฏูู ูุนุทููุง ู
ููุ ุฅูู Its Dimension ุงููู |
|
|
|
140 |
|
00:14:19,860 --> 00:14:23,020 |
|
ุจุฏูู ูุนุทููุง ูุฏูุ ูุงุญุฏุฉ |
|
|
|
141 |
|
00:14:26,410 --> 00:14:31,950 |
|
ูุจูู ุฃูุง ุฌุจุช ูู ุงูู A ูุงูู B ู
ุฑุฉ ูุงุญุฏุฉุ ุชู
ุงู
ุ ุทูุจ ูุงู |
|
|
|
142 |
|
00:14:31,950 --> 00:14:35,850 |
|
ูู: Is the Matrix A Similarุ ูุจูู ุงุณุชูู ุดููุฉุ ูุจุณูุง |
|
|
|
143 |
|
00:14:35,850 --> 00:14:39,330 |
|
ุณูู ูููุง ููุงู
ุชุงูู ุจุนุฏ ูููุ ุจุฏู ุฃุฑูุญ ุฃุฌูุจ Lambda |
|
|
|
144 |
|
00:14:39,330 --> 00:14:49,070 |
|
ุชุณุงูู ุงุชูููุ ูุจูู If Lambda ุชุณุงูู ุงุชููู then Lambda I |
|
|
|
145 |
|
00:14:49,070 --> 00:14:56,540 |
|
ูุงูุต A ูู ุงูู X ุจุฏูุง ุชุณุงูู Zero implies ุนู ุทุฑูู |
|
|
|
146 |
|
00:14:56,540 --> 00:15:00,260 |
|
ุงูู
ุตูููุฉ ุงููู ุนูุฏูุง ูุฐูุ ุจุฏู ุฃุดูู ูู Lambda ูุฃุญุท ู
ูุงู |
|
|
|
147 |
|
00:15:00,260 --> 00:15:05,940 |
|
ูุงูุฏุฑ ุฃุดูู ุงุชูููุ ุงุชููู ูุงูุต ูุงุญุฏุ ุจุฏู ุฅู ูุงูุฏุฑ ุฃุดูู ูุงุญุฏ |
|
|
|
148 |
|
00:15:05,940 --> 00:15:12,880 |
|
ูุนูุฏูุง ููุง ูุงูุต ุงุชููู ูุงูุต ุชูุงุชุฉุ ุงูุตู ุงูุซุงูู ูุงุญุฏ |
|
|
|
149 |
|
00:15:12,880 --> 00:15:19,620 |
|
ูููุง ูุงูุต ุงุชููู ูููุง ูุงูุต ุชูุงุชุฉุ ุตูุฉ ุชุงูุช ูุงูุต |
|
|
|
150 |
|
00:15:19,620 --> 00:15:26,460 |
|
ูุงุญุฏ ุงุชููู ูููุง ุจุฏูุง ูุญุท ุงุชููู ุจูุตูุฑ ุชูุงุชุฉ ูู X |
|
|
|
151 |
|
00:15:26,460 --> 00:15:33,640 |
|
ูุงุญุฏ X ุงุชููู X ุชูุงุชุฉุ ุจุฏูู ูุณุงูู Zero ู Zero ู Zero |
|
|
|
152 |
|
00:15:35,940 --> 00:15:41,500 |
|
ูุฐู ุงูู
ุนุงุฏูุฉ ุจุชุฌูุจ ูู ุชูุงุช ู
ุนุงุฏูุงุชุ ููู ูู ุงูุญูููุฉ |
|
|
|
153 |
|
00:15:41,500 --> 00:15:47,620 |
|
ูู
ุง ุชูุงุช ู
ุนุงุฏูุงุช ููุง ุงุชููู ููุง ู
ุนุงุฏูุฉ ูุงุญุฏุฉุ ูุจูู |
|
|
|
154 |
|
00:15:47,620 --> 00:15:53,240 |
|
ูุฐู ุงูู
ุนุงุฏูุฉ ูุงุญุฏุฉ ููุท ูุง ุบูุฑุ ุงูุตู ูุฐุง ูู ุถุฑุจุช ูู |
|
|
|
155 |
|
00:15:53,240 --> 00:15:57,980 |
|
ุณุงูุจ ูุงุญุฏ ุจูุทูุน ุงูุตููู ุงููู ูููุ ุชู
ุงู
ุ ูุจูู ูุฐู ู
ุด |
|
|
|
156 |
|
00:15:57,980 --> 00:16:02,280 |
|
ู
ุนุงุฏูุฉ ูุงุญุฏุฉ ูุฅูู
ุงุ ุฃู ุงูุชูุงุช ู
ุนุงุฏูุงุช ุนุจุงุฑุฉ ุนู |
|
|
|
157 |
|
00:16:02,280 --> 00:16:07,680 |
|
ู
ุนุงุฏูุฉ ูุงุญุฏุฉ ููุท ูุง ุบูุฑุ ูุจูู ู
ุนูุงู ูุฐุง ุงูููุงู
ุฅู X |
|
|
|
158 |
|
00:16:07,680 --> 00:16:14,000 |
|
ูุงุญุฏ ูุงูุต ุงุชููู X ุงุชููู ูุงูุต ุชูุงุชุฉ X ุชูุงุชุฉ ุจูุณุงูู |
|
|
|
159 |
|
00:16:14,000 --> 00:16:22,030 |
|
ูุฏุฑ Zeroุ ุฃู ุฅู ุดุฆุชู
ูููููุง ุฅู X ูุงุญุฏ ูุณุงูู 2 X2 |
|
|
|
160 |
|
00:16:22,030 --> 00:16:29,970 |
|
ุฒุงุฆุฏ 3 X3ุ ูุจูู ูุฐู ุงูู
ุนุงุฏูุฉ ู
ุฌูููุฉ ุจุชูุงุช ู
ุฌููู |
|
|
|
161 |
|
00:16:29,970 --> 00:16:35,710 |
|
ุฅุฐุง ูุง ูู
ูู ุญู ูุฐู ุงูู
ุนุงุฏูุฉ ุฅูุง ุฅุฐุง ุฃุนุทููุง ููู
ุชูู |
|
|
|
162 |
|
00:16:35,710 --> 00:16:45,690 |
|
ูู
ุฌูููููุ ูุจูู ู
ู
ูู ุฃุญุท ู
ุซููุง X2 ุจู A ู X3 ุจู B ูุจุงูุชุงูู |
|
|
|
163 |
|
00:16:45,690 --> 00:16:53,400 |
|
ุจุฌูุจ X1 ุจุชูุงุช X2 ู X3ุ ูุจูู If ุงูู X2 ุจุฏูู ูุณุงูู ุงูู A |
|
|
|
164 |
|
00:16:53,400 --> 00:17:03,580 |
|
and X3 ุจุฏูู ูุณุงูู ุงูู Bุ then ุงูู X1 ุจุฏูู ูุณุงูู 2A ุฒุงุฆุฏ |
|
|
|
165 |
|
00:17:03,580 --> 00:17:09,080 |
|
3Bุ ุฃุธู ูุฐุง ููู ู
ุง ูู ูุฒูู
ุฉ ุงูุญูู |
|
|
|
166 |
|
00:17:25,020 --> 00:17:34,100 |
|
ุทูุจ ุจููุงุตู ุงูุญูุ ุงูุขู ุจุงุฌู ุจููู: The Eigenvectors |
|
|
|
16 |
|
|
|
201 |
|
00:21:26,410 --> 00:21:31,910 |
|
ุนูุฏูุง C C ุจูููู ู
ุงููุ ุจูููู ูู ุงู matrix A similar |
|
|
|
202 |
|
00:21:31,910 --> 00:21:37,350 |
|
to the diagonal matrix ุฃู
ูุงุ ุจู
ุนูู ุขุฎุฑ ูู ุงู A |
|
|
|
203 |
|
00:21:37,350 --> 00:21:43,570 |
|
ุฏูุงุฌููุงูู Z ุจุงูู ููุง ูุงุ ุดููู ุจู
ุฌุฑุฏ ุงููุธุฑ ุงูุขู |
|
|
|
204 |
|
00:21:43,570 --> 00:21:48,090 |
|
ุทูุนูุง ู
ููุ ูุฏุงุด ุงูู linearly independent elements |
|
|
|
205 |
|
00:21:48,090 --> 00:21:54,490 |
|
ุทูุจ ุงู ุงุณุชูู ุดููุฉ ุทูุน ูู ุงูุงุชููู ูุฏูู ูุงุทูุน ูู |
|
|
|
206 |
|
00:21:54,490 --> 00:22:00,650 |
|
ูู
ููุ ููุชุงูุช ุงููู ูู ุนูุฏูุง ูุฐุง ูู ุงูุชูุงุชุฉ ูุฏูู are |
|
|
|
207 |
|
00:22:00,650 --> 00:22:03,590 |
|
linearly dependent ุฃู linearly independentุ |
|
|
|
208 |
|
00:22:03,590 --> 00:22:09,010 |
|
ุจุชุนู
ูู ููู
ุงู check ูุจูู ููุง ุจุฏู ุชูููู ูู ู
ุง ูุฃุชู |
|
|
|
209 |
|
00:22:09,010 --> 00:22:12,570 |
|
ุจุฏู ุชุนู
ูู ูู ุงู check ุงูุชุงูู |
|
|
|
210 |
|
00:22:23,900 --> 00:22:31,240 |
|
Check that the vectors |
|
|
|
211 |
|
00:22:31,240 --> 00:22:39,170 |
|
ุงููู ูู
ู
ููุ ุงู vector ุงูุฃูู ูุนููุ ุงูุฐู ูู ูุงุญุฏ ูุงุญุฏ |
|
|
|
212 |
|
00:22:39,170 --> 00:22:44,630 |
|
ุณุงูุจ ูุงุญุฏุ ูุงูุซุงูู ุงููู ุทุงูุน ุนูุฏูุง ุงููู ูู ุงุซููู |
|
|
|
213 |
|
00:22:44,630 --> 00:22:54,190 |
|
ูุงุญุฏ ุตูุฑุ ูุงูุซุงูุซ ุงููู ูู ู
ู ุซูุงุซุฉ ุตูุฑ ูุงุญุฏ are |
|
|
|
214 |
|
00:22:54,190 --> 00:23:00,150 |
|
linearly independent ููู |
|
|
|
215 |
|
00:23:00,150 --> 00:23:04,940 |
|
ุจุฏู ุฃุณูููู
linearly independent ููู ุจุฏู ุฃุนู
ููู
ุจููุ |
|
|
|
216 |
|
00:23:04,940 --> 00:23:10,480 |
|
ูููู ุจุฏู ุฃุซุจุช ุฅููู
linearly independentุ ููุชุฑุถ C1 |
|
|
|
217 |
|
00:23:10,480 --> 00:23:15,900 |
|
ู C2 ู C3 ุชููู ุฃุตูุงู C ูู ุงูุฃูู ุฒู C ูู ุงูุซุงูู ุฒู C |
|
|
|
218 |
|
00:23:15,900 --> 00:23:20,520 |
|
ูู ุงูุชุงูู ูุณุงูู ุตูุฑ ูุฃุซุจุช ุฃู C1 ูุณุงูู C2 ูุณุงูู C3 |
|
|
|
219 |
|
00:23:20,520 --> 00:23:25,700 |
|
ูุณุงูู ุตูุฑ ูุฐู ุฅุญุฏู ุงูุทุฑู ุงูุทูููุฉุ ูู ุฃูุซุฑ ู
ููุง ุงูุด |
|
|
|
220 |
|
00:23:25,700 --> 00:23:32,810 |
|
ุงููู ุฃูุซุฑ ู
ููุงุ ูุนู
ู ู
ุญุฏุฏ ูููุณุช ู
ุตูููุฉุ ูุนู
ู ู
ุญุฏุฏ |
|
|
|
221 |
|
00:23:32,810 --> 00:23:38,970 |
|
ููุซุจุช ุฃู ุงูู
ุญุฏุฏ ูุง ูุณุงูู ุตูุฑุ ููุทูุน ุฐูู ูุจูู ุจูุตูุฑ |
|
|
|
222 |
|
00:23:38,970 --> 00:23:42,790 |
|
ุนูุฏู linearly independentุ ูุจูู ุทุฑููุฉ ุงูู
ุญุฏุฏ ุฃุณูู ู
ู |
|
|
|
223 |
|
00:23:42,790 --> 00:23:46,290 |
|
ุงูุฃูููุ ุงูุฃูููุฉ ุจุฏูุง ุดุบู ุดููุฉ ูุฃู ุจุฏู ุฃุนู
ู system |
|
|
|
224 |
|
00:23:46,290 --> 00:23:49,610 |
|
ู ุงู system ุจุชุฑูุญ ุนููู ุจุณ ุงู determinant ุฏู ุณูู |
|
|
|
225 |
|
00:23:49,610 --> 00:23:54,130 |
|
ุฌุฏุงูุ ูุนูู ูู ุฎุทูุฉ ูุงุญุฏุฉ ุจููู ุฌุจุชุ ุฌุจุช ุงููุชูุฌุฉ ู |
|
|
|
226 |
|
00:23:54,130 --> 00:23:59,010 |
|
ุฃุซุจุชุช ุฅู ูุฏูู linearly independentุ ุทูุจ ู
ุนูุงุชู |
|
|
|
227 |
|
00:23:59,010 --> 00:24:04,710 |
|
ุงูุซูุงุซุฉ ูุฏูู ุจููู
ููุง ูู ู
ู the complete set of |
|
|
|
228 |
|
00:24:04,710 --> 00:24:08,690 |
|
linearly independent elementsุ ุตุญูุญ ููุง ูุฃุ ูุนูู ูู |
|
|
|
229 |
|
00:24:08,690 --> 00:24:14,810 |
|
ุบูุฑูู
ุ ู
ุงููุด ุนูุฏู ุบูุฑูู
ุ ูุฏุงุด ุนุฏุฏูู
ุ ูุฏุงุด ูุธุงู
|
|
|
|
230 |
|
00:24:14,810 --> 00:24:20,800 |
|
ุงูุตูููุ ูุจูู ูุง ุดุจุงุจ ุงูู
ุตูููุฉ diagonalizable ุฃุตูุงู ุนู |
|
|
|
231 |
|
00:24:20,800 --> 00:24:25,780 |
|
ุงููู ู
ุฑุถูุ ุฃู similar to a diagonal matrix ุงูุตูุบุฉ |
|
|
|
232 |
|
00:24:25,780 --> 00:24:29,540 |
|
ูุฐูุ ูุงูุตูุบุฉ ูุฐู ุงูุงุซููู are the same ูุจูู ุจุงุฌู |
|
|
|
233 |
|
00:24:29,540 --> 00:24:34,860 |
|
ุจููู ูุฏูู ูููู
ูู linearly independent elementุ this |
|
|
|
234 |
|
00:24:34,860 --> 00:24:46,690 |
|
means that the setุ ุงูุชู ูู ู
ููุ ูุงุญุฏ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ |
|
|
|
235 |
|
00:24:46,690 --> 00:24:57,570 |
|
ุงุซููู ูุงุญุฏ ุตูุฑุ ุซูุงุซุฉ ุตูุฑ ูุงุญุฏ is the complete |
|
|
|
236 |
|
00:24:57,570 --> 00:25:05,050 |
|
set of eigen vectors |
|
|
|
237 |
|
00:25:11,120 --> 00:25:18,700 |
|
ูุจูู senseุ ุจู
ุง ุฃู number of |
|
|
|
238 |
|
00:25:18,700 --> 00:25:37,640 |
|
these vectors is three and the degree of the |
|
|
|
239 |
|
00:25:38,390 --> 00:25:52,170 |
|
matrix A is ุซูุงุซุฉุ ุงู A is diagonalizable |
|
|
|
240 |
|
00:25:52,170 --> 00:25:58,430 |
|
ุงูุด ูุนูู diagonalizableุ ูุนูู ุงู A is similar to a |
|
|
|
241 |
|
00:25:58,430 --> 00:26:04,190 |
|
diagonal matrixุ ูุฐุง ู
ุนูุงู ุฃู ุงู A is similar |
|
|
|
242 |
|
00:26:27,350 --> 00:26:35,370 |
|
ู
ุด ูุฐุง ู
ุนูุงู ูุง ุจูุงุชุ ุทูุจุ ุจุฏูุง ูุฌู ูุดูู ูุงูููุงู
|
|
|
|
243 |
|
00:26:35,370 --> 00:26:41,480 |
|
ูุฐุง ุงููู ุงุญูุง ุจูููููุ ูุฐุง ู
ุงุฐุง ูุงููุ ูุงู ููุณู ุฅู ูุงู |
|
|
|
244 |
|
00:26:41,480 --> 00:26:45,420 |
|
ุงูุฃู
ุฑ ูุฐุง ูู ูุงุชู ุงู matrix Kุ ูุฅุฐุง ูุฌูู ุงู |
|
|
|
245 |
|
00:26:45,420 --> 00:26:50,620 |
|
matrix ุฏู ููู ุชุจูู ุงูุนูุงูุฉ ูุฐู ู
ุงููุงุ ุตุญูุญุฉ ูุจูู |
|
|
|
246 |
|
00:26:50,620 --> 00:26:54,760 |
|
ุงุญูุง ุจุฏูุง ูุฌูุจ ูู K ููุฌูุจ ุงู K and ุจุณ ุงูุญูู |
|
|
|
247 |
|
00:26:54,760 --> 00:27:01,020 |
|
ุงูู K ูุง ุจูุงุช ูู ู
ูุ ูู ุงูู
ุตูููุฉ ุนูุงุตุฑูุง ู
ูุ ุนูุงุตุฑ |
|
|
|
248 |
|
00:27:01,020 --> 00:27:08,470 |
|
ุงูู eigenvectorsุ ูุจูู ูุงุญุฏ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุงุซููู ูุงุญุฏ |
|
|
|
249 |
|
00:27:08,470 --> 00:27:16,030 |
|
ุตูุฑ ุซูุงุซุฉ ุตูุฑ ูุงุญุฏุ ุจุฏูุง ูุฌูุจ ุงูู
ุนููุณ ุชุจุนูุง ู
ุดุงู |
|
|
|
250 |
|
00:27:16,030 --> 00:27:21,630 |
|
ูุฌูุจ ุงูู
ุนููุณุ ุจุฏูุง ูุฑูุญ ูุฌูุจ ู
ููุ ุงูู
ุญุฏุฏ ูุจูู ูุฐุง |
|
|
|
251 |
|
00:27:21,630 --> 00:27:29,360 |
|
ุจุฏู ูุนุทููุง ุงูู
ุญุฏุฏ ุชุจุน ุงูู
ุตูููุฉ ูุฐุงุ ุจุฏู ูุณุงููุ ุงููู ูู |
|
|
|
252 |
|
00:27:29,360 --> 00:27:35,380 |
|
mainุ ุงูู
ุญุฏุฏ ุชุจุน ูุงุญุฏ ุงุซููู ุซูุงุซุฉุ ูุงุญุฏ ูุงุญุฏ ุตูุฑุ |
|
|
|
253 |
|
00:27:35,380 --> 00:27:40,380 |
|
ุณุงูุจ ูุงุญุฏ ุตูุฑ ูุงุญุฏุ ููุณุงูู |
|
|
|
254 |
|
00:27:42,730 --> 00:27:47,770 |
|
ุจุชููุฑ ุงูุด ุฑุฃููู
ุจุงุณุชุฎุฏุงู
ุนูุงุตุฑ ุงูุตู ุงูุซุงูู ุฃู |
|
|
|
255 |
|
00:27:47,770 --> 00:27:51,550 |
|
ุงูุนู
ูุฏ ุงูุซุงูุซ ุฃู ุงูุนู
ูุฏ ุงูุซุงููุ ุณูุงุฏุฉุ ูุงุฎุฐ ุงูุนู
ูุฏ |
|
|
|
256 |
|
00:27:51,550 --> 00:27:58,930 |
|
ุงูุซุงูุซุ ูุจูู ูุงู ุซูุงุซุฉ ูููุง ูุดุทุฉ ุจุตูู ูุนู
ูุฏู ุชู
ุงู
|
|
|
|
257 |
|
00:27:58,930 --> 00:28:04,950 |
|
ุจูุตูุฑ ูุงุญุฏ ูุงูุต ุงุซูููุ ุงููู ุจุนุฏู ุญุณุจ ูุงุนุฏุฉ ุงูุฅุดุงุฑุงุช |
|
|
|
258 |
|
00:28:04,950 --> 00:28:09,370 |
|
ุจุตูุฑุ ูู ูุฏ ู
ุง ูููู ูููู ู
ุด ู
ุดููุฉ ุฒุงุฆุฏ ูุงุญุฏ ูู |
|
|
|
259 |
|
00:28:09,370 --> 00:28:18,160 |
|
ูุดุทุฉ ุจุตููุ ูุฃ ุงุณุชูู ุดููุฉุ ูุดุทุจ ุตูู ูุนู
ูุฏูุ ุตูู ูุนู
ูุฏู |
|
|
|
260 |
|
00:28:18,160 --> 00:28:20,460 |
|
ูุฌู ุจููุง ุตูุฑุ ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
261 |
|
00:28:22,770 --> 00:28:28,250 |
|
ุฒุงุฆุฏ ูุงุญุฏุ ุงููู ุจุนุฏ ูุงุญุฏุ ูุดุทุจ ุตู ูุนู
ูุฏุ ููุงุญุฏ ูุงูุต |
|
|
|
262 |
|
00:28:28,250 --> 00:28:36,110 |
|
ุงุซูููุ ูุงุญุฏ ูุงูุต ุงุซููู ูุจูู ุงููุชูุฌุฉ ุซูุงุซุฉ ูููุง ูุงูุต |
|
|
|
263 |
|
00:28:36,110 --> 00:28:43,810 |
|
ูุงุญุฏุ ููุณุงูู ูุฏูุ ููุณุงูู ุงุซูููุ ุชู
ุงู
ุจุฏู ุฃุฌูุจ ูู ุงูู K |
|
|
|
264 |
|
00:28:43,810 --> 00:28:50,450 |
|
inverseุ ูุจูู ุงูู K inverse ููุณุงูู ุงููู ูู ูุงุญุฏ |
|
|
|
265 |
|
00:28:50,450 --> 00:28:58,630 |
|
ุนูู ุงูู
ุญุฏุฏุ ูุงูู
ููุ ููู ุจุฏู ุฃุณุชุจุฏู ูุฐู ุงูู
ุตูููุฉ ูู |
|
|
|
266 |
|
00:28:58,630 --> 00:29:04,650 |
|
ุนูุตุฑ ูููุง ุจุงูู cofactor ุชุจุนู ู
ุธุจูุทุ ูุจูู ุจุฏู ุฃุฌูุจ |
|
|
|
267 |
|
00:29:04,650 --> 00:29:09,810 |
|
ูููุงุญุฏ ุจุฏู ุฃุดูู ุตูู ูุนู
ูุฏูุ ุจูุธู ูุงุญุฏ ูุฎุฒูู ููู |
|
|
|
268 |
|
00:29:09,810 --> 00:29:16,310 |
|
ุจูุงุญุฏ ูุญุณุจ ูุงุนุฏุฉ ุงูุฅุดุงุฑุงุช ุดุงุฑุทุฉ ุจุงูู
ูุฌุจุ ูุฌู ูุจุนุฏูุ |
|
|
|
269 |
|
00:29:16,310 --> 00:29:21,370 |
|
ูุงุซููู ุญุณุจ ูุงุนุฏุฉ ุงูุฅุดุงุฑุงุช ุดุงุฑุทุฉ ุจู
ููุ ุจุงูุณุงูุจุ ูุดุทุจ |
|
|
|
270 |
|
00:29:21,370 --> 00:29:29,780 |
|
ุตูู ูุนู
ูุฏูุ ุจูุตูุฑ ูุงุญุฏ ููุท ูุฐููุ ูุฌู ููู ุจุนุฏู ุญุณุจ |
|
|
|
271 |
|
00:29:29,780 --> 00:29:35,800 |
|
ุงููุงุนุฏุฉุ ุดุงุฑุทุฉ ุจุงูู
ูุฌุจุ ูุดุทุจ ุตูู ูุนู
ูุฏูุ ุจูุตูุฑ |
|
|
|
272 |
|
00:29:35,800 --> 00:29:42,380 |
|
ุตูุฑุ ุฒุงุฆุฏ ูุงุญุฏุ ุงููู ูู ุจูุงุญุฏุ ุจุนุฏ ููู ูุฌู ูุตูู |
|
|
|
273 |
|
00:29:42,380 --> 00:29:49,040 |
|
ุงูุซุงูู ุจุฏู ุฃุดูู ุงููู ุตูู ูุนู
ูุฏูุ ุจูุตูุฑ ุงุซููู ูุงูุต |
|
|
|
274 |
|
00:29:49,040 --> 00:29:55,720 |
|
ุซูุงุซุฉุ ุจูุฏุฑุดุ ุจุงุชูููุ ุจุฏู ุฃุฌู ูุนูุตุฑ ุงููู ุจุนุฏูุ ุทุจุนุง ูุฐุง |
|
|
|
275 |
|
00:29:55,720 --> 00:30:00,160 |
|
ุญุณุจ ูุงุนุฏุฉ ุงูุฅุดุงุฑุฉุ ุงูุดุฑุท ุงูุณุงูุจุ ุจูุจูู ุชู
ุงู
ุ ุงููู ุจูู |
|
|
|
276 |
|
00:30:00,160 --> 00:30:04,820 |
|
ุฏู ุงูุดุฑุท ู
ูุฌุจุ ูุจูู ุฏูุ ุดูู ุตูู ูุนู
ูุฏู ุจูุตูุฑ ูุงุญุฏ |
|
|
|
277 |
|
00:30:04,820 --> 00:30:12,370 |
|
ูุงูุต ุซูุงุซุฉ ูุนูู ุฒุงุฆุฏ ุซูุงุซุฉุ ุงููู ุจูู ูุฏูุ ุดููุง ุนูุดุงู |
|
|
|
278 |
|
00:30:12,370 --> 00:30:17,670 |
|
ูุดูู ูุฐุง ูุจูู ุดููุง ูุฐุงุ ูุจูู ูุงุญุฏ ุฒุงุฆุฏ ุซูุงุซุฉ ุงููู |
|
|
|
279 |
|
00:30:17,670 --> 00:30:22,130 |
|
ูู ุจูุฏุงุดุ ุจุฃุฑุจุนุฉุ ูุฐุง ุญุณุจ ูุงุนุฏุฉ ุงูุฅุดุงุฑุงุชุ ุดุงุฑุทุฉ ุจูู |
|
|
|
280 |
|
00:30:22,130 --> 00:30:28,810 |
|
ุจุงูุณุงูุจุ ูุดุทุจ ุตูู ูุนู
ูุฏู ูุจูู ุตูุฑุ ุฒุงุฆุฏ ุงุซููู |
|
|
|
281 |
|
00:30:28,810 --> 00:30:32,950 |
|
ุงููู ูู ุจูุฏุงุดุ ุจูุงูุต ุงุซูููุ ูุฌู ูุจุนุฏู ุญุณุจ ูุงุนุฏุฉ |
|
|
|
282 |
|
00:30:32,950 --> 00:30:38,050 |
|
ุงูุฅุดุงุฑุงุชุ ุดุงุฑุทุฉ ุจุงูู
ูุฌุจุ ูุดุทุจ ุตูู ูุนู
ูุฏูุ ุตูุฑ ูุงูุต |
|
|
|
283 |
|
00:30:38,050 --> 00:30:45,400 |
|
ุซูุงุซุฉุ ูุฌู ููู ุจุนุฏูุ ุงููู ุจุนุฏู ุญุณุจ ูุงุนุฏุฉ ุงูุฅุดุงุฑุงุช |
|
|
|
284 |
|
00:30:45,400 --> 00:30:51,680 |
|
ุดุงุฑุทุฉ ุณุงูุจุ ูุจูู ุณุงูุจุ ูุดุทุจ ุตูู ูุนู
ูุฏูุ ูุจูู ุตูุฑ |
|
|
|
285 |
|
00:30:51,680 --> 00:30:57,420 |
|
ูุงูุต ุซูุงุซุฉ ุจูุตูุฑ ุฒุงุฆุฏ ุซูุงุซุฉุ ุงููู ุจุนุฏู ุญุณุจ ูุงุนุฏุฉ |
|
|
|
286 |
|
00:30:57,420 --> 00:31:01,840 |
|
ุงูุฅุดุงุฑุงุชุ ุดุงุฑุทุฉ ู
ูุฌุจุฉุ ูุดุทุจ ุตูู ูุนู
ูุฏูุ ุจูุตูุฑ ูุงุญุฏ |
|
|
|
287 |
|
00:31:01,840 --> 00:31:06,300 |
|
ูุงูุต ุงุซูููุ ุงููู ูู ูุฏุงุดุ ุจูุงูุต ูุงุญุฏุ ุจุงูุดูู ุงููู |
|
|
|
288 |
|
00:31:06,300 --> 00:31:15,580 |
|
ุนูุฏูุงุ ุฃูุง ุจุฏู ุฃุฌูุจ ูู Dุ ูุจูู D ุจุฏูุง ุชุณุงูู K inverse |
|
|
|
289 |
|
00:31:15,580 --> 00:31:22,780 |
|
ูู Kุ ุชู
ุงู
ุ ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุงููุตูุ ูููุง |
|
|
|
290 |
|
00:31:22,780 --> 00:31:28,040 |
|
ูุงุญุฏุ ุณุงูุจ ูุงุญุฏุ ูุงุญุฏุ ุณุงูุจ ุงุซูููุ ุฃุฑุจุนุฉุ ุณุงูุจ ุงุซููู |
|
|
|
291 |
|
00:31:28,040 --> 00:31:33,480 |
|
ุณุงูุจ ุซูุงุซุฉุ ุซูุงุซุฉุ ุณุงูุจ ูุงุญุฏุ ูู ู
ููุ ูู ุงููุ ุฑุฃุณ |
|
|
|
292 |
|
00:31:33,480 --> 00:31:39,440 |
|
ุงูู
ุณุฃูุฉ ูุงุญุฏ ุงุซููู ุซูุงุซุฉุ ูููุง ุณุงูุจ ูุงุญุฏ ุฃุฑุจุนุฉ |
|
|
|
293 |
|
00:31:39,700 --> 00:31:47,760 |
|
ุซูุงุซุฉุ ูููุง ูุงุญุฏ ุณุงูุจ ุงุซููู ุณุงูุจ ูุงุญุฏุ ูู ู
ููุ ูู ุงู |
|
|
|
294 |
|
00:31:47,760 --> 00:31:54,820 |
|
Kุ ุงู K ุงููู ูู ูุงุญุฏ ุงุซููู ุซูุงุซุฉุ ูุงุญุฏ ูุงุญุฏ ุตูุฑ |
|
|
|
295 |
|
00:31:54,820 --> 00:32:01,570 |
|
ุณุงูุจ ูุงุญุฏ ุตูุฑ ูุงุญุฏุ ุจุงูุดูู ุงููู ุนูุฏูุง ููุงูุ ูุฏุงุด |
|
|
|
296 |
|
00:32:01,570 --> 00:32:09,730 |
|
ุชุชููุน ูููู ุงููุชูุฌุฉุ ุตูุฑุ ุงุซููู ุงุซููู ูุงูุจุงูู ูุจูู |
|
|
|
297 |
|
00:32:09,730 --> 00:32:16,050 |
|
ุฃุณููุ ูุจูู ูุฐุง ูููู ุงูู
ุตูููุฉ ุงููุทุฑูุฉ ุงูุชุงููุฉุ ุตูุฑ ู |
|
|
|
298 |
|
00:32:16,050 --> 00:32:24,330 |
|
ููุง ุตูุฑ ุตูุฑ ุตูุฑุ ุงุซููู ุตูุฑ ุตูุฑุ ุงุซูููุ ููุณุช ูุงูุฏุง |
|
|
|
299 |
|
00:32:24,330 --> 00:32:27,670 |
|
ุทูุนุช ููุง ุตูุฑ ู ูุงูุฏุง ุทูุนุช ููุง ุงุซููู ูุงุซููู |
|
|
|
300 |
|
00:32:27,670 --> 00:32:32,350 |
|
ูุจูู ูุงู ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ุงูู diagonal matrix ุงููู |
|
|
|
301 |
|
00:32:32,350 --> 00:32:36,310 |
|
ูููู ููุง ุนูููุง ุงูู diagonal ุฏูุ ูุจูู ุจุฑุงุญุชู ุชุฑูุญ ุชุถุฑุจ |
|
|
|
302 |
|
00:32:36,310 --> 00:32:40,730 |
|
ูุฏูู ู
ุตูููุงุช ูู ุจุนุถ ูู ุจูุชูุ ูุงููุงุชุฌ ูู ู
ุง ุฃุนุทููู |
|
|
|
303 |
|
00:32:40,730 --> 00:32:44,410 |
|
ูุงูุ ุฅุฐุง ุทูุน ุบูุท ูุจูู ุบูุท ุนูููุง ู
ุด ุนูููุ ุฃู ุนููู |
|
|
|
304 |
|
00:32:44,410 --> 00:32:48,630 |
|
ุฅุฐุง ุจุชุถุฑุจ ุบูุทุ ููู ุนูุฏูุง ุงุญูุง ู
ุง ุฃุนุทููู ุงูุฌูุงุจุ ุจุฏู |
|
|
|
305 |
|
00:32:48,630 --> 00:32:52,270 |
|
ุชุถุฑุจูุ ูุงููุงุชุฌ ูู ุนูุฏูุ ูู ูุงุญุฏุฉ ุฃุจูุงุก ู
ุง ุณุฌูุชุด |
|
|
|
306 |
|
00:32:52,270 --> 00:32:52,930 |
|
ุงุณู
ูุง ููุง |
|
|
|
307 |
|
00:32:56,050 --> 00:33:04,170 |
|
ุทูุจุ ููุชูู ุฅูู ู
ุซุงู ูุฎุชูู ุนู ูุฐุง ููุนุงู ู
ุงุ ูููู ู
ุฑุชุจุท |
|
|
|
308 |
|
00:33:04,170 --> 00:33:11,030 |
|
ู
ุนู ุงุฑุชุจุงุทุงูุ ูุฐุง ุงูู
ุซุงู ุฌุจุชู ูุธุฑู ู
ู ุฎูุงู ุฃุณุฆูุฉ |
|
|
|
309 |
|
00:33:11,030 --> 00:33:18,830 |
|
ุงูุชู
ุฑููุ ููู ุณุคุงู 16 ูู ุงูุชู
ุฑูู ุชุจุน ุงูู section 4-3 |
|
|
|
310 |
|
00:33:18,830 --> 00:33:21,310 |
|
ุงูุณุคุงู ุจูููู ู
ุง ูุฃุชู |
|
|
|
311 |
|
00:33:30,400 --> 00:33:39,760 |
|
ูุจูู example ุฎู
ุณุฉุ ูู ุณุคุงู ุณุชุฉ ุนุดุฑ ู
ู ุงููุชุงุจ ุจูููู |
|
|
|
312 |
|
00:33:39,760 --> 00:33:53,260 |
|
If A and B are similar matrices |
|
|
|
313 |
|
00:33:53,260 --> 00:34:11,520 |
|
matrices so thatุ ุจุญูุซ ุฃู ุงูู B ุชุณุงูู ุงูู K inverse A K |
|
|
|
314 |
|
00:34:11,520 --> 00:34:16,420 |
|
show |
|
|
|
315 |
|
00:34:16,420 --> 00:34:20,720 |
|
thatุ ุจููู ูู |
|
|
|
316 |
|
00:34:20,720 --> 00:34:35,330 |
|
ุฃู X is A is an eigen vector |
|
|
|
317 |
|
00:34:35,330 --> 00:34:51,530 |
|
of A if and only if K inverse X is an eigen |
|
|
|
318 |
|
00:34:51,530 --> 00:34:54,730 |
|
vector |
|
|
|
319 |
|
00:34:56,190 --> 00:35:02,050 |
|
ูู eigen vector ูู B |
|
|
|
320 |
|
00:35:41,120 --> 00:35:47,340 |
|
ุณุคุงู ู
ุฑุฉ ุซุงููุฉุ ุงูุณุคุงู ุจูููู ูู ูุงูุช A ู B |
|
|
|
321 |
|
00:35:47,340 --> 00:35:52,440 |
|
are similar matricesุ ุทุจุนุงู ุงุญูุง ุฃุฎุฐูุง ุนูุงูุฉ ุงูู
ุฑุฉ |
|
|
|
322 |
|
00:35:52,440 --> 00:35:57,020 |
|
ูุจู ุงูู
ุงุถูุฉุ ูู ูุงู A similar to B ูุจูู B similar to |
|
|
|
323 |
|
00:35:57,020 --> 00:36:00,980 |
|
Aุ ูุฃุซุจุชูุงูุง ู
ุธุจูุทุ ูุจูู ุงูุขู ุฌูุฏุชูู ูุฏูู are |
|
|
|
324 |
|
00:36:00,980 --> 00:36:08,170 |
|
similarุ ูุนูู ุงููุ ูุนูู ุฃู ุงูู B ุจุฏูุง ุชุณุงูู K inverse |
|
|
|
325 |
|
00:36:08,170 --> 00:36:14,750 |
|
A Kุ ุทูุจ ุฃุตุจุญุช ูุฐู ู
ุนููู
ุฉ ุนูุฏูุงุ ุจูููู ุดููุฉ ุจูู ูุฅู |
|
|
|
326 |
|
00:36:14,750 --> 00:36:19,790 |
|
ุงูู X is an eigen vector ูู Aุ ุงููุ ููุฏููู ุฅุฐุง K |
|
|
|
327 |
|
00:36:19,790 --> 00:36:25,730 |
|
inverse X is an eigen vector ูู Aุ ุงููุ ููุฏููู ุฅุฐุง K |
|
|
|
328 |
|
00:36:25,730 --> 00:36:30,450 |
|
inverse X is an eigen vector ูู
ููุ ูู Bุ ูุจูู ูุฐุง |
|
|
|
329 |
|
00:36:30,450 --> 00:36:34,960 |
|
ุณุคุงู ูุงููู ุณุคุงูููุ ุณุคุงูููุ ุจุฏู ุงู
ุณู ูุงุญุฏ ุฃูุตูู ูู
ููุ |
|
|
|
330 |
|
00:36:34,960 --> 00:36:39,240 |
|
ูุซุงููุ ูุจุนุฏูู ุงู
ุณู ุงูุซุงูู ุฃูุตูู ูู
ููุ ููุฃููุ ุงูุณุจุจ |
|
|
|
331 |
|
00:36:39,240 --> 00:36:44,560 |
|
ููู
ุฉ if and only ifุ ุฏู ูุจูู ุงูุขู ุจุฏูุง ูุฌู ุจุงูุฎุทูุฉ |
|
|
|
332 |
|
00:36:44,560 --> 00:36:58,390 |
|
ุงูุฃูููุ let A be similar to B thenุ There exists a |
|
|
|
333 |
|
00:36:58,390 --> 00:37:11,750 |
|
non-zero matrix K such thatุ ุจุญูุซ ุฃู ุงูู B ุจุฏูุง |
|
|
|
334 |
|
00:37:11,750 --> 00:37:20,410 |
|
ุชุณุงูู ุงูู K inverse A Kุ ุงูู
ุนุทูุ ูุจูู ุญุชู ุงูุขู ุฃูุง ุจุณ |
|
|
|
335 |
|
00:37:20,410 --> 00:37:27,450 |
|
ุงุชุฌู
ุฏุ ุงูุดูุก ุงูู
ูุทุน ุนูุฏูุ ุฎุทูุฉ ุซุงููุฉ ุจุฏู ุงูุชุฑุถ ุงู X |
|
|
|
336 |
|
00:37:27,450 --> 00:37:33,910 |
|
ุนุจุงุฑุฉ ุนู ู
ููุ ุนู Eigen vector ูู
ููุ ููู
ุตูููุฉ Aุ ูุจูู |
|
|
|
337 |
|
00:37:33,910 --> 00:37:43,590 |
|
assume thatุ ุฃู X is an eigen vector |
|
|
|
338 |
|
00:37:47,640 --> 00:38:00,920 |
|
for the matrixุ for the matrix Aุ thenุ ุงูุด ูุฑุถูุง ุฃู |
|
|
|
339 |
|
00:38:00,920 --> 00:38:08,220 |
|
ุงูู X ูู eigen vector ูู
ููุ ููุฐูุ ุงูุด ูุนูู ู
ุนูุงูุงุ ุงูุด |
|
|
|
340 |
|
00:38:08,220 --> 00:38:12,800 |
|
ูุนูู ู
ุนูุงูุงุ ุฃู X ูู eigen vector ูู Aุ ูุนูู ูู |
|
|
|
341 |
|
00:38:12,800 --> 00:38:15,240 |
|
ุถุฑุจุช ุงูู A ูู ุงูู Xุ ุงูุด ุจุฏู ูุทูุน ููุ |
|
|
|
342 |
|
00:38:19,660 --> 00:38:24,580 |
|
ุชุนุฑูู ุงูู eigen vector ูุงูู eigen valueุ Chapter |
|
|
|
343 |
|
00:38:24,580 --> 00:38:32,700 |
|
Section 4-1ุ ุฃูู ุชุนุฑูู ุฃุฎุฐูุงูุ ุงูุด ูุนููุ ูุนูู ููุงูู |
|
|
|
344 |
|
00:38:32,700 --> 00:38:38,360 |
|
ุนุฏุฏ scalar ูุฃู ุฏู ู
ุถุฑูุจ ูู xุ ุจุฏูุง ุชุณุงูู x ุงูุดุฑูุฉ |
|
|
|
345 |
|
00:38:38,360 --> 00:38:43,690 |
|
ุฃุฎุฐูุง ุงูุชุนุฑููุ ูุจูู ูุฐุง ู
ุนูุงู x is an eigen vector |
|
|
|
346 |
|
00:38:43,690 --> 00:38:56,190 |
|
thenุ ุงูู AX ุจุฏูุง ุชุณุงูู lambda xุ for some real lambda |
|
|
|
347 |
|
00:38:56,190 --> 00:38:58,770 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงูู set of real numbers |
|
|
|
348 |
|
00:39:01,740 --> 00:39:05,920 |
|
ูุจูู ููุงูู ู
ุงุฏุงู
ูุฐุง eigenvector ูู ุจูุฌูุด ุงูู |
|
|
|
349 |
|
00:39:05,920 --> 00:39:09,340 |
|
eigenvector ุฅูุง ุฅุฐุง ูุงู ุนูุฏู eigenvalueุ ุตุญูุญ ููุง |
|
|
|
350 |
|
00:39:09,340 --> 00:39:12,800 |
|
ูุฃุ ุทูุจุ ู
ุงุฏุงู
ุนูุฏู eigenvalueุ ู
ุงุฏุงู
ุนูุฏู |
|
|
|
351 |
|
00:39:12,800 --> 00:39:15,380 |
|
eigenvectorุ ุงูู ุงููู ูู ุงูุฃุตูู ุงููู ูู ุงูู eigenvalue |
|
|
|
352 |
|
00:39:15,380 --> 00:39:22,120 |
|
ุงููู ูู lambda xุ ู
ุด lambda Iุ lambda x ุจุงูุดูู ุงููู |
|
|
|
353 |
|
00:39:22,120 --> 00:39:26,460 |
|
ุนูุฏูุงุ ูุจูู ุงูู AX ุจุฏูุง ุชุณุงูู ู
ููุ ุจุฏูุง ุชุณุงูู lambda x |
|
|
|
354 |
|
00:39:26,460 --> 00:39:32,880 |
|
for some realุ ุงููู ูู lambda ุฃูุ for some ุจูุงุด ููู
ุฉ |
|
|
|
355 |
|
00:39:32,880 --> 00:39:38,540 |
|
realุ ูุฃููู
ูุฑุฑูุง ู
ุฑุชููุ ุจุงูุตุฑูุญุฉ xุ for some lambda |
|
|
|
356 |
|
00:39:38,540 --> 00:39:44,280 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงูู set of real numbersุ ูุจูู ูุฐู |
|
|
|
357 |
|
00:39:44,280 --> 00:39:49,460 |
|
ุงูู
ุนููู
ุฉ ุฃุฎุฐุชูุง ู
ู ุงููุฑุถุ ุทุจ ุจุฏู ุฃุดูู ุงูุด ุงููู ุจุฏู |
|
|
|
358 |
|
00:39:49,460 --> 00:39:54,140 |
|
ูุงูุ ุงูุด ุจูููู ููุ ุจูููู ูู ุฃุซุจุช ูู ุฅู ูุฐุง ูู |
|
|
|
359 |
|
00:39:54,140 --> 00:40:00,760 |
|
eigenvector ูู
ููุ ูู Bุ ูุนูู ุจุฏู ุฃุซุจุช ุฅู ุญุตู ุถุฑุจ ูุฐุง |
|
|
|
360 |
|
00:40:00,760 --> 00:40:07,540 |
|
ูู Bุ ุจุฏูุง ุชุณุงูู scalar ูู ุงูู Xุ ุตุญูุญ ููุง ูุฃุ ุทูุจุ |
|
|
|
361 |
|
00:40:07,540 --> 00:40:09,880 |
|
ุจุฏูุง ูุฌู ูููู ูู ุงูุขู consider |
|
|
|
362 |
|
00:40:13,970 --> 00:40:19,370 |
|
ุฎูุฐ ูู ุจุฏู ุฃุซุจุช ุฅู ูุฐุง is an eigenvector ูุจูู ุจุฏู |
|
|
|
363 |
|
00:40:19,370 --> 00:40:25,110 |
|
ุขุฎุฐ ูู
ููุ ูู Bุ ูุจูู ุจุฏู ุฃุฎุฐ B ูู ู
ููุ ูู ุงูู K |
|
|
|
364 |
|
00:40:25,110 --> 00:40:26,670 |
|
inverse X |
|
|
|
365 |
|
00:40:30,270 --> 00:40:36,190 |
|
ููุ ู
ุด ูุฐู ููุง AXุ ุจุฏู ุฃุซุจุช ุฅู ุงูู B ูู ุงูู K inverse |
|
|
|
366 |
|
00:40:36,190 --> 00:40:42,510 |
|
X ุจุฏูุง ุชุณุงูู ุงูุฑูู
ู
ุถุฑูุจ ูู xุ ููุทูุน ูุฐุง ุงูุฑูู
ุจูุตูุฑ |
|
|
|
367 |
|
00:40:42,510 --> 00:40:47,750 |
|
ูุฐุง ูู eigen vectorุ ุตุญูุญ ููุง ูุฃุ ุทูุจ ู
ุงุดู ุงูุญุงู |
|
|
|
368 |
|
00:40:47,750 --> 00:40:53,970 |
|
ูุจูู ุจุงุฌู ุงููู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงููุ ุทูุน ูู ููุง ูุฐูุ |
|
|
|
369 |
|
00:40:55,360 --> 00:41:01,500 |
|
ุฃูุง ุนูุฏ ู
ููุ ุนูุฏ Bุ ุจุฏูุง ุชุณุงูู K inverse A Kุ ุฅุฐุง |
|
|
|
370 |
|
00:41:01,500 --> 00:41:08,500 |
|
ุจูุฏุฑ ุฃุดูู ุงูู B ูุฃูุชุจ ุจุฏููุง K inverse A K |
|
|
|
401 |
|
00:44:45,140 --> 00:44:48,780 |
|
ุงููู ุจุฏู ุฅูุงู ูุณู
ู alpha ุฃู ุฑูู
ุงููู ุจุฏู ุฅูุงู ูุณู
ู |
|
|
|
402 |
|
00:44:48,780 --> 00:44:51,780 |
|
ุงููุงู
ุจุฑ ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู |
|
|
|
403 |
|
00:44:51,780 --> 00:44:52,760 |
|
ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช |
|
|
|
404 |
|
00:44:52,760 --> 00:44:53,860 |
|
ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช |
|
|
|
405 |
|
00:44:53,860 --> 00:44:57,280 |
|
ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช |
|
|
|
406 |
|
00:44:57,280 --> 00:44:58,160 |
|
ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช |
|
|
|
407 |
|
00:44:58,160 --> 00:44:58,180 |
|
ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช |
|
|
|
408 |
|
00:44:58,180 --> 00:44:58,600 |
|
ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช |
|
|
|
409 |
|
00:44:58,600 --> 00:45:01,940 |
|
ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช |
|
|
|
410 |
|
00:45:01,940 --> 00:45:13,000 |
|
ุงููุงุญุฏ ูู ุงูุณุช ุงููุงุญุฏ ูู ุงูุณุช ูู ุงูู K inverse X ุจุฏู |
|
|
|
411 |
|
00:45:13,000 --> 00:45:21,490 |
|
ูุณุงูู Lambda 1 ุจุงูู X ูุงู ุทุจูุช ุงูุชุนุฑูู ุงููู ุฃูุง ุฅูุด |
|
|
|
412 |
|
00:45:21,490 --> 00:45:27,710 |
|
ุจูููู ูู ุจููู ูู ุฃุซุจุช ุฅูู X ูู Eigen vector ูู
ูุ |
|
|
|
413 |
|
00:45:27,710 --> 00:45:34,330 |
|
ููู
ุตูููุฉ A ูุนูู ุจุฏู ุฃุฑูุญ ุฃุซุจุช ุฅูู AX ุจุฏู ูุณุงูู |
|
|
|
414 |
|
00:45:34,330 --> 00:45:41,390 |
|
scalar ูู ู
ูุ ูู X ุฅุฐุง ู
ุฏูุงุฌู ุฃูููู consider ุฎุฏ ูู |
|
|
|
415 |
|
00:45:41,390 --> 00:45:47,250 |
|
ุงูู A ูู ุงูู X ุทูุจ |
|
|
|
416 |
|
00:45:48,040 --> 00:45:52,180 |
|
ุจุฏุฃ ุฃุฌู ูู
ูุ ูู
ุนููู
ุฉ ุนูุฏูุ ูู ุงูู
ุนููู
ุฉ ุนูุฏู ูู |
|
|
|
417 |
|
00:45:52,180 --> 00:45:59,620 |
|
ูุฐู ุฃู ูุฐู ุจูุฏุฑ ุฃุฌูุจ ุงูู a ุจุฏูุงูุฉ ุงูู b ู ุงูู k ู ุงูู |
|
|
|
418 |
|
00:45:59,620 --> 00:46:11,240 |
|
k inverse ุจูููู ุฎูู ูู ูุฐู since ุจู
ุง ุฃู ุงูู b ุจุฏู |
|
|
|
419 |
|
00:46:11,240 --> 00:46:20,220 |
|
ุชุณุงูู ุงูู k inverse a k we have ุจุชุฎููู A ูุญุงููุง ูุง |
|
|
|
420 |
|
00:46:20,220 --> 00:46:26,100 |
|
ุจูุงุช ูุจูู ุจุฏู ุฃุถุฑุจ ู
ู ุฌูุฉ ุงูุดู
ุงู ูู ู
ููุ ูู K ูููุง |
|
|
|
421 |
|
00:46:26,100 --> 00:46:31,720 |
|
ุจูู ูู
ู ุฌูุฉ ุงููู
ูู ูู ู
ููุ ูู ุงูู K inverse ุจุฏู |
|
|
|
422 |
|
00:46:31,720 --> 00:46:39,880 |
|
ุฃุณุงูู ู
ููุ ุจุฏู ุฃุณุงูู ุงูู
ุตูููุฉ A ูููุณ then ุจุฏู ุฃุฎุฏ |
|
|
|
423 |
|
00:46:39,880 --> 00:46:49,800 |
|
ุงูู X ูุณุงูู ุงูู A ุจุฏู ุฃุดูููุง ู ุฃูุชุจ ุจุฏุงููุง K ุจู ุงููุฑุณ |
|
|
|
424 |
|
00:46:49,800 --> 00:46:58,230 |
|
ูููุง ูู ุงูู X ูู ุฃุฎุฐุชู ุดููุช ุงูู a ู ุญุทูุช ููู
ุชูุง ุชู
ุงู
|
|
|
|
425 |
|
00:46:58,230 --> 00:47:05,390 |
|
ุทูุจ ุฃูุง ุนูุฏู ุจู ูู ุงููุฑุณ X ูุฐู ู
ูุฌูุฏุฉ ุจูุฏุฑ |
|
|
|
426 |
|
00:47:05,390 --> 00:47:09,870 |
|
ุฃุดูููุง ู ุฃูุชุจูุง ููุฏุงุด ูุงูุฏุง ูุงู X ูุจูู ูุฐุง |
|
|
|
427 |
|
00:47:09,870 --> 00:47:17,870 |
|
ุงูููุงู
ุจุฏู ูุณุงูู K ูุญุงููุง ูููุง ุจู ูู ุงููุฑุณ X ู |
|
|
|
428 |
|
00:47:17,870 --> 00:47:25,270 |
|
ูุณุงูู K ูู ุงูู BK inverse X ุจุฏู ุฃุดูู ู ุฃูุชุจ ุจุฏุงููุง |
|
|
|
429 |
|
00:47:25,270 --> 00:47:27,510 |
|
Landau 1 X |
|
|
|
430 |
|
00:47:30,890 --> 00:47:37,090 |
|
ุทูุจ Lambda ูู ูุฐุง ุจูุฏุฑ ุฃุทูุน ูููุ ุฃุทูุน ุจุฑุง ุฅุฐุง ูุฐุง |
|
|
|
431 |
|
00:47:37,090 --> 00:47:43,410 |
|
ุงูููุงู
ูุฃ ุจู ุงู Lambda ูู X ุจู ู ุงููุฑุณุช X ูุชุจ ููุง |
|
|
|
432 |
|
00:47:43,410 --> 00:47:51,630 |
|
Lambda ูู X ุทูุจ ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุทูุจ ุฃูุง ูุงุฑุถ |
|
|
|
433 |
|
00:47:52,970 --> 00:48:00,990 |
|
ุงุณุชูู ุดููุฉ ูู AX ุดููุช ุงูู A ุญุงุทุจูุง K ุจู inverse X |
|
|
|
434 |
|
00:48:00,990 --> 00:48:11,130 |
|
ู
ุธุจูุท ูุฌูุช ุนูู ูุฐู ูุชุจุช K ุจุฑุง ู ุจู inverse X ู
ุธุจูุท |
|
|
|
435 |
|
00:48:11,130 --> 00:48:18,170 |
|
ุจู inverse X ูู lambda one X ูุจูู ูุฐุง ุงูููุงู
ุจุฏู |
|
|
|
436 |
|
00:48:18,170 --> 00:48:33,230 |
|
ูุณุงูู Lambda ูู ุจุฑุง ูู ู
ููุ ูู K X ุชู
ุงู
ุ ุฃููุฉ ุนูู |
|
|
|
437 |
|
00:48:33,230 --> 00:48:37,450 |
|
ุตูุชู ุดููุฉ ูุงุฏู |
|
|
|
438 |
|
00:48:37,450 --> 00:48:38,230 |
|
ุจูุจูู ูุณุงูู |
|
|
|
439 |
|
00:48:44,890 --> 00:48:52,330 |
|
ูุฃ ุงู ุจุฏู ูุณุงูู ุงูุฑูู
ูู K ุงู ุจุฏู ูุณุงูู ุงูุฑูู
ูู K |
|
|
|
440 |
|
00:48:52,330 --> 00:48:57,410 |
|
inverse X ุตุญูุญ ูุฐู ุงูุฎุทุฃ ููุง ุตุญูุญ ูุฐู ูุง ุจูุงุช |
|
|
|
441 |
|
00:48:57,410 --> 00:49:07,420 |
|
ุงูู Lambda ูู K inverse X ู
ุธุจูุท ุดู ุงุณู
ู ุฃูุชุ ุณู
ุญ |
|
|
|
442 |
|
00:49:07,420 --> 00:49:12,380 |
|
ุฃุตุงุจุฉ ุงู
ุฑุฃุฉ ูุฃุฎุชูุง ุนู
ุฑ ุนูู ุทูู ุงูุฎุท ูุจูู ูุฐู Lambda |
|
|
|
443 |
|
00:49:12,380 --> 00:49:19,240 |
|
inverse X ุฅุฐุง ุจุฏู ุฃุดูู ูุฐู ูุง ุจูุงุช ูุงูุชุงูู ู ุฃูุชุจ |
|
|
|
444 |
|
00:49:19,240 --> 00:49:24,840 |
|
ุจุฏุงููุง ู
ุง ููู ูุจูู ูุงู ุนู
ูุช ุงูู associativity ุชุจุน |
|
|
|
445 |
|
00:49:24,840 --> 00:49:32,720 |
|
ุงูู
ุตูููุงุช ูุฐุง ุงูููุงู
ุจุฏู ุฃุณุงูู K ูู ุจู ุงููุฑุณ X |
|
|
|
446 |
|
00:49:32,720 --> 00:49:42,030 |
|
ุจุฏู ุฃุดููู ู ุฃูุชุจ ุจุฏุงูู Lambda ูู K ุงููุฑุณ X ูุฃู |
|
|
|
447 |
|
00:49:42,030 --> 00:49:46,970 |
|
Lambda ูู ูููุณุชุงูุช ุจูุฏุฑ ุฃูููู ุดุฑููุง ุจุฑุง ูุจูู ูุงู |
|
|
|
448 |
|
00:49:46,970 --> 00:49:54,070 |
|
Lambda ูู ุจุฑุง ุตุงุฑ K ูู K inverse ูู ู
ูุ ูู ุงูู X |
|
|
|
449 |
|
00:49:54,070 --> 00:50:00,690 |
|
ูุจูู ูุฐุง Lambda ูู ูุฐู ู
ุตูููุฉ ู
ูุ ุงููุญุฏุฉ ูู ุฃู |
|
|
|
450 |
|
00:50:00,690 --> 00:50:06,980 |
|
ู
ุตูููุฉ ุชุนุทููู ููุณ ุงูู
ุตูููุฉ ูุจูู ุตุงุฑ ุนูุฏูุง ููุง ู
ูู |
|
|
|
451 |
|
00:50:06,980 --> 00:50:13,420 |
|
Lambda ูู ุฃู ุงูู AX ูุณุงูู Lambda ูู X ุฅูุด ู
ุนูู ูุฐุง ุงูููุงู
|
|
|
|
452 |
|
00:50:13,420 --> 00:50:20,500 |
|
ู
ุนูุงู ุฃู ุงูู X ุนุจุงุฑุฉ ุนู Eigen vector ูู
ูุ ููู
ุตูููุฉ A |
|
|
|
453 |
|
00:50:20,500 --> 00:50:32,760 |
|
ูุจูู ููุง ุงูู X is an eigen vector for the |
|
|
|
454 |
|
00:50:39,610 --> 00:50:45,990 |
|
ูุญุฏ ููุง stop ุงูุชูู ูุฐุง ุงูู section ูุฅูู ูููู ุฃุฑูุงู
|
|
|
|
455 |
|
00:50:45,990 --> 00:50:53,090 |
|
ุงูู
ุณุงุฆู ูุจูู Exercises ุฃุฑุจุนุฉ ุชูุงุชุฉ ุงูู
ุณุงุฆู ุงูุชุงููุฉ |
|
|
|
456 |
|
00:50:53,090 --> 00:51:02,570 |
|
ู
ู ูุงุญุฏ ุฅูู ุนุดุฑุฉ ูู
ู ุชูุชุงุด ูุบุงูุฉ ุณุชุงุด ุงูุดูู ุงููู |
|
|
|
457 |
|
00:51:02,570 --> 00:51:05,810 |
|
ุนูุฏูุง ูุฐู ุงูู
ุฑุฉ ุฌุงุก ุฅู ุดุงุก ุงููู ุจูุจุฏุฃ ูู ุงูู
ุนุงุฏูุงุช |
|
|
|
458 |
|
00:51:05,810 --> 00:51:10,470 |
|
ุงูุชูุงุถููุฉ ุฎูุตูุง ุงูุฌุจุฑ ุงูุฎุทู ุงูุขู ุจูุฑุฌุน ุถุงูู ุนูููุง |
|
|
|
459 |
|
00:51:10,470 --> 00:51:13,630 |
|
two chapters ูู ุงูู ordinary differential |
|
|