abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
46.6 kB
1
00:00:20,890 --> 00:00:25,630
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุนูˆุฏุฉ ุนู„ู‰ ุจุฏุก ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช
2
00:00:25,630 --> 00:00:29,790
ุจุฏุฃู†ุง ุจุงู„ linear transformation ูˆุจุนุฏ ุฐู„ูƒ ุฃุฎุฐู†ุง
3
00:00:29,790 --> 00:00:34,910
ุนุฏุฉ ุชู…ุซูŠู„ุงุช ุนู„ูŠู‡ุง ุซู… ุฃุฎุฐู†ุง ุจุนุถ ุงู„ู†ุธุฑูŠุงุช ุฃุซุจุชู†ุง ุฃู†
4
00:00:34,910 --> 00:00:39,010
kernel linear transformation is a subspace ูˆ
5
00:00:39,010 --> 00:00:43,330
ุฃุซุจุชู†ุง ุฃู† ุงู„ range ู„ู„ linear transformation is a
6
00:00:43,330 --> 00:00:49,020
subspace ูˆ ุฃุฎุฐู†ุง ุนู„ู‰ ุฐู„ูƒ ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ุŒ ุทุจุนุง ุฃุนุทูŠู†ุง
7
00:00:49,020 --> 00:00:54,920
function ู…ุนุฑูุฉ ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ T of A ุจุชุณุงูˆูŠ A ุฒุงุฆุฏ A
8
00:00:54,920 --> 00:01:00,840
Transpose ุชู…ุงู…ุŸ ูˆู‚ู„ู†ุง ู‡ุงุชูŠู†ุง ุงู„ range ุชุจุน ู…ู†
9
00:01:00,840 --> 00:01:05,380
ุงู„ู€ T ูˆุงู„ kernel ุทุจุนุง ูˆุฌุฏู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูˆู‚ู„ู†ุง
10
00:01:05,380 --> 00:01:10,820
the set of all skew symmetric matrices ู‡ุฐุง ุขุฎุฑ ู…ุง
11
00:01:10,820 --> 00:01:15,280
ุฃุฎุฐู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉุŒ ุชู…ุงู…ุŸ ุฅุฐุง ูู†ุญู† ุฌุฆู†ุง ู†ูƒู…ู„
12
00:01:15,280 --> 00:01:19,750
ุญุฏูŠุซู†ุงุŒ ูˆุจุฏู†ุง ู†ูˆุฌุฏ ู…ู† ุงู„ R of T
13
00:01:24,660 --> 00:01:31,440
ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ูƒู„ ุงู„ุนู†ุงุตุฑ Y ุฃูˆ ุงุญู†ุง ูƒุงู†ุช T
14
00:01:31,440 --> 00:01:40,880
ู…ู† ูƒู„ ุงู„ุนู†ุงุตุฑ ุฅูŠุด ุจุฌูŠู†ุง ู†ู‚ูˆู„ ู‡ูŠ T ู…ู† A ุฅู„ู‰ ุฃูˆ T
15
00:01:40,880 --> 00:01:45,660
ูƒุงู†ุช ู…ู† ูˆูŠู† ุฅู„ู‰ ูˆูŠู†ุŸ ู…ู† ู…ุตู…ู…ุฉ M22 ุฅู„ู‰ M22 ู…ุด ู‡ูŠูƒุŸ
16
00:01:45,660 --> 00:01:54,760
ู…ู† M22 ุฅู„ู‰ M22ุŒ ุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ูƒู„ ุงู„ู…ุตููˆูุงุช B ุงู„ู„ูŠ
17
00:01:54,760 --> 00:02:04,580
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ M22 such that ุงู„ู€ B ุชุณุงูˆูŠ T of A for
18
00:02:04,580 --> 00:02:09,200
some A
19
00:02:09,200 --> 00:02:16,080
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ M22ุŒ ู…ุด ู‡ูŠูƒุŸ ุนุงุฑู ุงู„ู€ rangeุŸ ูŠุจู‚ู‰ ูƒู„
20
00:02:16,080 --> 00:02:21,260
ุงู„ู…ุตููˆูุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ู…ุฌู…ูˆุนุฉ ุงู„ู…ุตููˆูุงุช M22
21
00:02:21,260 --> 00:02:27,120
ูˆุงู„ู„ูŠ ุตูˆุฑุชู‡ุง ุชูƒูˆู† T of A ุจุญูŠุซ ุงู„ู€ A some
22
00:02:27,120 --> 00:02:32,980
element ู…ูˆุฌูˆุฏ ููŠ M22ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุชุนุฑูŠู ุงู„ุนุงู… ู„ู…ูŠู†ุŸ
23
00:02:32,980 --> 00:02:37,200
ู„ู„ู€ range ุชุจุนุชูŠุŒ ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุทุจู‚ ู‡ุฐุง ุงู„ุชุนุฑูŠู ูˆู†ุดูˆู
24
00:02:37,200 --> 00:02:42,000
ุจุฏูŠ ุฃูˆุตู„ู†ูŠ ุฅู„ู‰ ูˆูŠู†ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„
25
00:02:42,000 --> 00:02:48,420
ุงู„ู…ุตููˆูุงุช B ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ M22 such that ุฃู† ุงู„ู€ B
26
00:02:48,420 --> 00:02:55,380
ุชุณุงูˆูŠ T of A ุญุณุจ ุงู„ุชุนุฑูŠู ู‡ูŠู‡ุง ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ A ุฒุงุฆุฏ A
27
00:02:55,380 --> 00:03:02,720
transpose for some A ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ M22
28
00:03:04,900 --> 00:03:10,560
ุทูŠุจ ุจุฏูŠ ุฃุนุฑู ู…ูŠู† ู‡ูŠ ุงู„ู€ B ู‡ุฐู‡ุŒ ุทูŠุจ
29
00:03:10,560 --> 00:03:15,800
ุฅูŠุด ุฑุงูŠูƒ ู„ูˆ ุฃุฎุฏุช transpose ู„ู„ุทุฑููŠู†ุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏุฃุช
30
00:03:15,800 --> 00:03:21,200
ุชุณุงูˆูŠ ูƒู„ ุงู„ู…ุตููˆูุงุช B ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ M22 such
31
00:03:21,200 --> 00:03:28,420
that B transpose ุจุฏู‡ ูŠุณุงูˆูŠ A ุฒุงุฆุฏ A transpose ู„ูƒู„
32
00:03:28,420 --> 00:03:34,320
ุงู„ู€ transposeุŒ ูŠุจู‚ู‰ for some A ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ M22
33
00:03:34,980 --> 00:03:39,520
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„ ุงู„ู…ุตููˆูุงุช B ุงู„ู„ูŠ
34
00:03:39,520 --> 00:03:46,400
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ M22 such that ุงู„ู€ BT ุชุณุงูˆูŠ ู„ุชุฑุงู†ุณุจูˆุฒ
35
00:03:46,400 --> 00:03:50,900
ุจุชุฌูŠ ุชุฑุงู†ุณุจูˆุฒ ุนู„ู‰ ุงู„ุฃูˆู„ู‰ ุฒุงุฆุฏ ุชุฑุงู†ุณุจูˆุฒ ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰
36
00:03:50,900 --> 00:03:57,060
ุงู„ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ู€ A transpose ุฒุงุฆุฏ ู‡ุฐู‡ A ุชุฑุงู†ุณุจูˆุฒ
37
00:03:57,060 --> 00:04:01,560
ุชุฑุงู†ุณุจูˆุฒ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุงู„ู€ A itself ูŠุจู‚ู‰ ุงู„ู€
38
00:04:01,560 --> 00:04:07,940
A itselfุŒ ุทูŠุจ ู‡ุฐู‡ ุงู„ู€ A ุฒูŠ A ุชุฑุงู†ุณุจูˆุฒ ู…ุด ู‡ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ
39
00:04:07,940 --> 00:04:14,050
ููˆู‚ุŸ ูŠุจู‚ู‰ ูƒุฃู†ู‡ ุจูŠ ุชุฑุงู†ุณููˆุณ ุจุฏู‡ ุชุณุงูˆูŠ ู…ู† BุŒ ูŠุจู‚ู‰
40
00:04:14,050 --> 00:04:19,130
ู…ุนู†ุงุชู‡ ูƒู„ ู…ุฌู…ูˆุนุฉ ุงู„ symmetric matricesุŒ ูŠุจู‚ู‰ ุงู„ู€
41
00:04:19,130 --> 00:04:24,250
kernel ู‡ูˆ ุงู„ skew symmetric matrices ูˆุงู„ range
42
00:04:24,250 --> 00:04:29,610
ู‡ูˆ ุงู„ symmetric matricesุŒ ูŠุจู‚ู‰ for some A ุงู„ู„ูŠ
43
00:04:29,610 --> 00:04:37,240
ู…ูˆุฌูˆุฏุฉ ููŠ M22ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ the set of all
44
00:04:37,240 --> 00:04:41,740
symmetric
45
00:04:41,740 --> 00:04:53,260
matrices in M22ุŒ ูŠุจู‚ู‰ ู…ุฌู…ูˆุนุฉ ุงู„ู€ symmetric matrices
46
00:04:53,260 --> 00:04:58,460
ููŠ M22ุŒ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ุŒ ุจุฏู†ุง ู†ุฑูˆุญ ุงู„ุขู†
47
00:04:58,460 --> 00:05:03,140
ู„ู„ู…ุซุงู„ ุงู„ุซุงู†ูŠุŒ ูŠุจู‚ู‰ ุจุงู„ุฏุงุฎู„ example 2
48
00:05:07,440 --> 00:05:19,080
ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ุจูŠู‚ูˆู„ let ุงู„ู€ A be an m ููŠ n matrix
49
00:05:19,080 --> 00:05:23,040
define
50
00:05:23,040 --> 00:05:32,300
ุนุฑููˆู†ุง ุงูŠู‡ mappingุŒ define
51
00:05:32,300 --> 00:05:33,280
ุงูŠู‡ mapping
52
00:05:36,620 --> 00:05:46,920
ู…ู† RN ุฅู„ู‰ RM by T
53
00:05:46,920 --> 00:05:57,420
of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ AXุŒ where ุงู„ู€ X ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
54
00:05:57,420 --> 00:06:05,400
column matrix X1 X2 ูˆู†ุถู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ู€ XN
55
00:06:07,700 --> 00:06:20,100
is a column vectorุŒ ุงู„ู…ุทู„ูˆุจ
56
00:06:20,100 --> 00:06:31,360
ู†ู…ุฑุฉ AุŒ show that ุจูŠู†ูˆู† ุฃู† ุงู„ู€ T is a linear
57
00:06:31,360 --> 00:06:45,120
transformationุŒ ู†ู…ุฑุฉ BุŒ Find ุงู„ู€ kernel ู„ู„ู€ TุŒ ู†ู…ุฑุฉ
58
00:06:45,120 --> 00:06:50,620
CุŒ Find
59
00:06:50,620 --> 00:06:54,240
the
60
00:06:54,240 --> 00:07:06,000
range of T ุงู„ู„ูŠ ู‡ูˆ R of TุŒ ู†ู…ุฑุฉ
61
00:07:06,000 --> 00:07:15,580
DุŒ show that ุฃู†
62
00:07:15,580 --> 00:07:23,860
ุงู„ู€ T of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ AX ูˆ
63
00:07:23,860 --> 00:07:35,620
ุงู„ู„ู‡ุŒ define a linear transformation from R
64
00:07:35,620 --> 00:07:36,200
N
65
00:08:01,390 --> 00:08:10,350
RMุŒ ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉุŒ ุจู†ู‚ูˆู„ ุงูุชุฑุถ ุฃู† T ู…ู† Rn ุฅู„ู‰ Rm
66
00:08:10,350 --> 00:08:16,350
ุนุฑูู†ุงู‡ุงุŒ ุฃูˆู„ ุดูŠุก ุงู„ู€ A be an m by n matrixุŒ ูŠุจู‚ู‰ ุฃุฎุฐู†ุง ู…ุตูˆูุฉ
67
00:08:16,350 --> 00:08:22,490
ู†ุธุงู…ู‡ุง M ููŠ NุŒ define a mappingุŒ ุนุฑูู†ุง function ู…ู†
68
00:08:22,490 --> 00:08:27,970
ุงู„ู€ vector space Rn ุฅู„ู‰ ุงู„ู€ vector space Rm by T of
69
00:08:27,970 --> 00:08:33,970
capital X ุจุฏู‡ ูŠุณุงูˆูŠ AxุŒ ุงู„ุดูƒู„ ู‡ู†ุง ูŠุนู†ูŠ ุญุงุตู„ ุถุฑุจ
70
00:08:34,480 --> 00:08:39,860
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู†ุธุงู…ู‡ุง M ููŠ N ููŠ ุงู„ู…ุตูˆูุฉ ุงู„ุนู…ูˆุฏูŠุฉ
71
00:08:39,860 --> 00:08:45,060
ุงู„ู„ูŠ ู‡ูŠ XุŒ ู‡ูŠ ุงู„ู…ุตูˆูุฉ ุงู„ุนู…ูˆุฏูŠุฉุŒ ู…ุตูˆูุฉ ู…ูƒูˆู†ุฉ ู…ู† N ู…ู†
72
00:08:45,060 --> 00:08:50,340
ุงู„ุตููˆู ูˆุนู…ูˆุฏ ูˆุงุญุฏุŒ ูŠุจู‚ู‰ ู‡ู†ุง ู‚ู„ู†ุง ุงู„ู€ X ุฏูŠ is a
73
00:08:50,340 --> 00:08:55,080
column vectorุŒ ูŠุจู‚ู‰ ู…ุชุฌู‡ ุนู…ูˆุฏูŠุŒ ูŠุนู†ูŠ ู…ุตูˆูุฉ ู…ูƒูˆู†ุฉ ู…ู†
74
00:08:55,080 --> 00:09:00,230
ุนู…ูˆุฏ ูˆุงุญุฏ ู„ูƒู†ู‡ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุตููˆูุŒ ุจู†ุงุก ุนู„ู‰ ู‡ุฐุง
75
00:09:00,230 --> 00:09:03,790
ุงู„ุชุนุฑูŠูุŒ ุจุฏูŠ ุฃุซุจุช ุฃู† T ู‡ูŠ linear transformation
76
00:09:03,790 --> 00:09:08,270
ูŠุนู†ูŠ ุฅูŠุด ุจุฏูŠ ุฃุญู‚ู‚ุŸ ุงู„ุดุฑุทูŠู† ุชุจุนุงุช ุงู„ู€ linear
77
00:09:08,270 --> 00:09:12,530
transformationุŒ ุฃู…ุฑ ุซุงู†ูŠุŒ ุจุฏูŠ ุฃุฌูŠุจู‡ุง ู„ู„ kernelุŒ ุจุฏูŠ
78
00:09:12,530 --> 00:09:16,770
ุฃุนุฑู ู‚ุฏุงุดุŒ ุงู„ุฃู…ุฑ ุงู„ุซุงู„ุซุŒ ุจุฏูŠ ุฃุนุฑู ู‚ุฏุงุด ุงู„ู€ range ุชุจุน
79
00:09:16,770 --> 00:09:22,260
T ุงู„ู„ูŠ ุจู†ุฌูŠ ู†ุฑู…ุฒ ู„ู‡ R of TุŒ ุชู„ุงุชุฉุŒ ุจุชุจูŠู† Any Linear
80
00:09:22,260 --> 00:09:29,000
Transformation ู…ู† ุงู„ู€ RN ุฅู„ู‰ ุงู„ RMุŒ ู…ู† ุงู„ู€ RN ุฅู„ู‰ ุงู„ู€
81
00:09:29,000 --> 00:09:34,100
RM ู‡ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฏุงุฆู…ุงุŒ ุฃูˆ ุจุฏุงูŠุฉ T of X ุจุฏูŠ
82
00:09:34,100 --> 00:09:40,700
ุฃุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ุงู„ู…ุตูˆูุฉ A ููŠ ุงู„ู…ุตูˆูุฉ ุงู„ุนู…ูˆุฏูŠุฉ XุŒ ูŠุจู‚ู‰
83
00:09:40,700 --> 00:09:44,820
ุนู†ุฏู†ุง ุฃุฑุจุนุฉ ู…ุทุงู„ูŠุจุŒ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุญุณุจ ูƒู„ ู…ุทู„ูˆุจ ู…ู† ู‡ุฐู‡
84
00:09:44,820 --> 00:09:51,110
ุงู„ู…ุทุงู„ูŠุจ ุงู„ุฃุฑุจุนุฉุŒ ุจู†ุฌูŠ ู„ู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ
85
00:09:51,110 --> 00:09:56,430
ุฃุซุจุช ุฃู† T ุนุจุงุฑุฉ ุนู† Linear Transformation
86
00:10:05,420 --> 00:10:08,340
ูŠุจู‚ู‰ ุจุฏูŠ ุฃุซุจุช ุฃูˆู„ ุดูŠุก ุฃู† ู‡ุงุฏ ุงู„ู€ T Linear
87
00:10:08,340 --> 00:10:12,340
TransformationุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุงุฎุฐ element ู…ู† ุงู„ู€ set of
88
00:10:12,340 --> 00:10:15,980
real numbersุŒ ุงู„ู€ scalar ูŠุนู†ูŠุŒ ูˆ element ู…ู† ุงู„ู€
89
00:10:15,980 --> 00:10:21,680
vector ุงู„ู„ูŠ ู‡ูˆ ู…ู† RN ูˆุฃุดูˆู ุญุงุตู„ ุถุฑุจู‡ ู…ุนุงู‡ ูˆูŠู†
90
00:10:21,680 --> 00:10:29,040
ุจุฏู‡ ูŠูˆุฏูŠู†ูŠุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง FุŒ ุงู„ู€ C ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€
91
00:10:29,040 --> 00:10:39,260
R and ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ุงู„ู€ X ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RNุŒ ุงู„ู€ X
92
00:10:39,260 --> 00:10:48,280
ู‡ุฐุง ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ X1 ูˆ X2 ูˆู„ุบุงูŠุฉ XNุŒ ุฃูˆ ุจู‚ุฏุฑ
93
00:10:48,280 --> 00:10:56,000
ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ ู…ุตููˆูุฉ ุนู…ูˆุฏูŠุฉ X1 X2 ู„ุบุงูŠุฉ XN ุจุงู„ุดูƒู„
94
00:10:56,000 --> 00:11:05,790
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุŒ ุทูŠุจ ุฃู†ุง ุจุฏูŠ ุงุฎุฐ T of CX ุจุฏูŠ ุฃุญุงูˆู„
95
00:11:05,790 --> 00:11:13,010
ุฃุซุจุช ุฃู† ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ C ููŠ T of XุŒ ุจุฑุฌุน ู„ู„ุชุนุฑูŠู ุงู„ู„ูŠ
96
00:11:13,010 --> 00:11:17,850
ุฃู†ุง ู‚ุงูŠู„ุงู‡ุŒ ูŠุจู‚ู‰ ุทุจู‚ุง ู„ู‡ุฐุง ุงู„ุชุนุฑูŠู ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ
97
00:11:17,850 --> 00:11:26,600
ุงู„ู…ุตููˆูุฉ A ููŠ C of XุŒ ู„ุฃู† C ู‡ุฐุง scalar ุฅุฐุง ุจู‚ุฏุฑ ุฃุทู„ุนู‡
98
00:11:26,600 --> 00:11:32,980
ุจุฑุง ุงู„ T ุฃูˆ ุจู‚ุฏุฑ ุฃุทู„ุนู‡ ุจุฑุง ุญุงุตู„ ุถุฑุจ ุงู„ู…ุตูˆููŠู†ุŒ ูŠุจู‚ู‰
99
00:11:32,980 --> 00:11:39,290
ู‡ุฐุง C ููŠ ุงู„ AX ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง
100
00:11:39,290 --> 00:11:44,390
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ CุŒ ุงู„ AX ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุญุณุจ ุงู„ู€
101
00:11:44,390 --> 00:11:50,290
definition ุงู„ู„ูŠ ุนู†ุฏูŠ T of XุŒ ูŠุจู‚ู‰ C ููŠ T of X
102
00:11:54,650 --> 00:11:59,950
ูŠุจู‚ู‰ T of XุŒ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ T ููŠ C of X ูŠุณุงูˆูŠ
103
00:11:59,950 --> 00:12:03,910
C ููŠ T of XุŒ ุฅุฐุง ุชุญู‚ู‚ ุงู„ condition ุงู„ุฃูˆู„ ุฃูˆ
104
00:12:03,910 --> 00:12:08,090
ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ู† ุฎุงุตุฉ Linear TransformationุŒ ูŠุจู‚ู‰
105
00:12:08,090 --> 00:12:12,350
ู‡ุฐู‡ ู…ู† ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ุŒ ุจุฏุฃุฌูŠ ู„ู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉุŒ
106
00:12:12,350 --> 00:12:17,630
ุจุฏุฃ ุขุฎุฐ two vectorsุŒ ูŠุจู‚ู‰ ุจุฏุฃุฌูŠ ุฃู‚ูˆู„ ู„ู‡ let X ูˆ Y
107
00:12:17,630 --> 00:12:23,830
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ vector space RN
108
00:12:25,570 --> 00:12:32,460
ุจุชุงุฎุฏ T of X ุฒุงุฆุฏ Y ูŠุณุงูˆูŠุŒ ุจู†ุงุก ุนู„ู‰ ุงู„ู€ definition
109
00:12:32,460 --> 00:12:37,080
ุชุงุจุนู†ุงู‡ุงุŒ ู‡ุฐุง ุจูŠูƒูˆู† ุงู„ู…ุตููˆูุฉ a ููŠ ุงู„ู€ vector x ุฒุงุฆุฏ
110
00:12:37,080 --> 00:12:45,220
yุŒ ูŠุจู‚ู‰ a ููŠ ุงู„ู€ vector x ุฒุงุฆุฏ yุŒ ู‡ุฐุง ุญุณุจ ุฎูˆุงุต ุนู…ู„ูŠุฉ
111
00:12:45,220 --> 00:12:52,720
ุงู„ุชูˆุฒูŠุน ุนู„ู‰ ุงู„ู…ุตููˆูุงุชุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠูƒูˆู† ax ุฒุงุฆุฏ ay
112
00:12:52,720 --> 00:13:00,820
ู‡ุฐุง ุชุนุฑูŠู ู…ู† ุงู„ู€ T of x ูˆู‡ุฐุง ุชุนุฑูŠู ุงู„ู€ T of yุŒ ูŠุจู‚ู‰
113
00:13:00,820 --> 00:13:05,420
ุชุญู‚ู‚ ุงู„ condition ุงู„ุซุงู†ูŠ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ so
114
00:13:05,420 --> 00:13:12,940
T is a linear transformationุŒ ุฅุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุทู„ูˆุจ
115
00:13:12,940 --> 00:13:17,780
ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ู†ู…ุฑุง AุŒ ู†ู…ุฑุง B ู‚ุงู„ ู‡ุงุชู„ ุงู„ู€ kernel
116
00:13:17,780 --> 00:13:24,300
ุงู„ุชูŠุŒ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ุงู„ู€ kernel ุงู„ุชูŠ ุญุณุจ ุงู„ู€ definition
117
00:13:24,300 --> 00:13:30,020
ู‡ูˆ ู…ูŠู†ุŸ ู‡ูˆ ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ vector space
118
00:13:30,020 --> 00:13:37,820
RN ุจุญูŠุซ ุฃู† T of X ุจุฏู‡ ุชุณุงูˆูŠ 00ุŒ ุงู„ู€ 0ุŒ 0 ุชุจุน ู…ูŠู†ุŸ
119
00:13:39,260 --> 00:13:45,800
ุชุจุน RM ู…ุด ู‡ูŠูƒุŸ ุนุฑูู†ุง ุงู„ู€ kernel ูƒู„ ุงู„ู€ vectors ุงู„ู„ูŠ
120
00:13:45,800 --> 00:13:49,240
ููŠ ุงู„ู€ vector space ุงู„ุฃูˆู„ ูˆุงู„ู„ูŠ ุตูˆุฑุชู‡ู… ุจูŠูƒูˆู† ุงู„ู€
121
00:13:49,240 --> 00:13:54,920
zero ุชุจุน ุงู„ู€ vector space ุงู„ุซุงู†ูŠุŒ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ู†ุง ูƒู„
122
00:13:54,920 --> 00:13:59,940
ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RN ุจุญูŠุซ ุฃู† T of X ุจุฏู‡ ูŠุณุงูˆูŠ
123
00:13:59,940 --> 00:14:05,510
zeroุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RN
124
00:14:05,510 --> 00:14:09,730
such that
125
00:14:09,730 --> 00:14:15,570
ุงู„ู€ T of X ุญุณุจ ุงู„ู€ definition ู…ูŠู†ุŸ ุงู„ู€ AX ุจุฏู‡ ูŠุณุงูˆูŠ
126
00:14:15,570 --> 00:14:19,570
Zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุฅูŠุด ู…ุนู†ุงู‡ ูŠุง
127
00:14:19,570 --> 00:14:29,800
ุจู†ุงุชุŸ ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RN ูŠุนู†ูŠ column vectors
128
00:14:29,800 --> 00:14:34,740
ู…ุง ู„ู‡ู… ุจุญูŠุซ ุงู„ู€ X ูŠุณุงูˆูŠ ZeroุŒ ูŠุนู†ูŠ ู‡ุฐุง ุจูŠุนุทูŠู†ุง ู…ูŠู†ุŸ
129
00:14:34,740 --> 00:14:41,020
ู…ุฌู…ูˆุนุฉ ุงู„ุญู„ูˆู„ ุงู„ู€ homogenous systemุŒ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู‡ุฐุง
130
00:14:41,020 --> 00:14:52,500
ู…ุนู†ุงู‡ ุงู„ู„ูŠ ู‡ูˆ the set of all solutions of the
131
00:14:54,210 --> 00:15:04,170
homogeneous systemุŒ ุงู„ู€ AX ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ZeroุŒ ุดูˆ ุดูƒู„ู‡ู…ุŸ
132
00:15:04,170 --> 00:15:09,510
ุฅูŠุด ู…ุง ูŠูƒูˆู† ูŠูƒูˆู†ุŒ ูŠุจู‚ู‰ ู…ุฌู…ูˆุนุฉ ูƒู„ ุงู„ุญู„ูˆู„ ู„ู„ู‡ูˆู…ูˆุฌูŠู†ูŠุง
133
00:15:09,510 --> 00:15:15,170
ุณูŠุณุชู…ุŒ ูƒู… ุญู„ ู„ู„ู‡ูˆู…ูˆุฌูŠู†ูŠุง ุณูŠุณุชู…ุŸ ุฃู…ุง ุญู„ ูˆุงุญุฏ ู‡ูˆ
134
00:15:15,170 --> 00:15:20,370
ุงู„ุญู„ ุงู„ุตูุฑูŠ ุฃูˆ ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ุŒ ูˆู‡ุฐุง ุงู„ุนุฏุฏ
135
00:15:20,370 --> 00:15:24,550
ุงู„ู†ู‡ุงุฆูŠ ูŠุฌุชู…ุน ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู†ูุณู‡ุŒ ุทูŠุจ ู…ุง
136
00:15:24,550 --> 00:15:29,470
ุนู„ูŠู†ุงุŒ ูŠุจู‚ู‰ ุญุณุจู†ุง ู„ู‡ ูƒูŠุฑู†ู„ุŒ ูŠุจู‚ู‰ ูƒูŠุฑู†ู„ ุชุจุน ู‡ุฐู‡ ุงู„ู€
137
00:15:29,470 --> 00:15:35,710
function ู‡ูˆ ูƒู„ ุงู„ุญู„ูˆู„ ู„ู„ู€ homogenous systemุŒ X ุจุฏู‡
138
00:15:35,710 --> 00:15:42,480
ูŠุณุงูˆูŠ ู…ุงู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ZeroุŒ ุทูŠุจ ู†ู…ุฑุฉ ุงู„ู€ CุŒ ู†ู…ุฑุง ุณูŠุฌุง
139
00:15:42,480 --> 00:15:46,460
ุงู„ู„ูŠ ู‡ุชู„ุงู‚ูŠ ุงู„ู€ range ุชุจุน ุงู„ู€ TุŒ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ุงู„ู€ range
140
00:15:46,460 --> 00:15:55,530
ุชุจุน ุงู„ู€ T ู‡ูˆ ู…ูŠู†ุŸ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RM
141
00:15:55,530 --> 00:16:02,990
ูŠุจู‚ู‰ ูƒู„ ุงู„ู€ vectors Y ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RM ุจุญูŠุซ ุฃู†
142
00:16:02,990 --> 00:16:12,250
ุงู„ู€ Y ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ T of X for some X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
143
00:16:12,250 --> 00:16:19,660
ููŠ ุงู„ู€ RN ู…ุด ู‡ูŠูƒุŸ ุชุนุฑูŠู ุงู„ู€ rangeุŒ ู…ุธุจูˆุทุŸ ูƒู„ ุงู„ุนู†ุงุตุฑ
144
00:16:19,660 --> 00:16:27,220
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ domain RM ูˆุงู„ู„ูŠ ุฅู„ู‡ุง ุฃุตู„ ููŠ ุงู„ู€
145
00:16:27,220 --> 00:16:33,980
domain RMุŒ ุทูŠุจ ุชู…ุงู… ุชู…ุงู…ุŒ ูŠุจู‚ู‰ ู‡ุฐูŠ ุจุฏูŠ ุฃุนูŠุฏ ุตูŠุงุบุชู‡ุง
146
00:16:33,980 --> 00:16:40,080
ู…ุฑุฉ ุซุงู†ูŠุฉ ูุจู‚ูˆู„ ูƒู„ ุงู„ู€ Y ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RM such
147
00:16:40,080 --> 00:16:44,680
that ุงู„ู€ Y ุจุฏู‡ ูŠุณุงูˆูŠ T of X ุญุณุจ ุงู„ู€ definition ุจุฏู‡
148
00:16:44,680 --> 00:16:55,850
ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ู€ AXุŒ ู‡ูŠ
149
00:16:55,850 --> 00:17:03,470
ู†ูƒู…ู„ุŒ for some X
150
00:17:03,470 --> 00:17:10,830
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RNุŒ ุฅุฐุงู‹ ูƒู„ ุงู„ู€ Y ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
151
00:17:10,830 --> 00:17:16,610
ุงู„ู€ RM ุจุญูŠุซ ุงู„ู€ Y ุนู„ู‰ ุงู„ุดูƒู„ A of X for some X ุงู„ู„ูŠ
152
00:17:16,610 --> 00:17:23,220
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RNุŒ ูŠุนู†ูŠ ุฅูŠุด ู‚ุตุฏูŠ ู†ู‚ูˆู„ุŸ ูŠุจู‚ู‰ ูƒู„ ุงู„ู‚ูŠู…
153
00:17:23,220 --> 00:17:28,840
ุงู„ู„ูŠ ู‡ูŠ Y ุจุญูŠุซ ุงู„ู€ non homogeneous system has a
154
00:17:28,840 --> 00:17:35,440
solutionุŒ ู…ุงู‚ู„ุชุด ุญู„ูˆู„ ู‡ุฐุง ุงู„ system ู„ุฃุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ
155
00:17:35,440 --> 00:17:43,740
ุจู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ the set of all elements
156
00:17:45,790 --> 00:17:58,650
Y ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RM such that ุจุญูŠุซ ุฃู† ุงู„ู€ system
157
00:17:58,650 --> 00:18:05,290
AX ูŠุณุงูˆูŠ Y has a solution
158
00:18:12,620 --> 00:18:17,080
ูŠุนู†ูŠ ุงู„ู…ู‚ุตูˆุฏ ุจู‡ุฐุง ุงู„ุญู„ ุงู„ู€ Y's ูˆู„ุง ุงู„ู€ X'sุŸ
159
00:18:17,080 --> 00:18:23,820
ุงู„ุฅุฌุงุจุฉ ุงู„ู€ Y'sุŒ ู„ุฃู† ู‡ุฐุง ุงู„ู€ non homogeneous system
160
00:18:23,820 --> 00:18:27,720
ู‚ุฏ ูŠูƒูˆู† ู„ู‡ ุญู„ ูˆู‚ุฏ ู„ุง ูŠูƒูˆู† ู„ู‡ ุญู„ุŒ ู…ุด ู‡ูŠูƒุŸ ุฏู‡ ุงู„ู„ูŠ
161
00:18:27,720 --> 00:18:31,320
ุฃุฎุฐู†ุงู‡ ู‚ุจู„ ูƒุฏู‡ ุฃู† ุงู„ู€ non homogeneous system ู…ู…ูƒู†
162
00:18:31,320 --> 00:18:36,320
ูŠูƒูˆู† ู…ุงู„ูˆุด ุญู„ูˆู„ ูˆู…ู…ูƒู† ูŠูƒูˆู† ุญู„ ูˆุญูŠุฏ ูˆู…ู…ูƒู† ูŠูƒูˆู†
163
00:18:36,320 --> 00:18:41,770
ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ุŒ ู‡ุฐุง ู…ุง ุชู‚ูˆู„ู‡ุŸ ูƒู„ ุงู„ุนู†ุงุตุฑ Y
164
00:18:41,770 --> 00:18:45,670
ุจุญูŠุซ ุงู„ู€ system ู‡ุฐุง ู„ู‡ ุญู„ูˆู„ุŒ ูŠุจู‚ู‰ ู„ูˆ ู…ุงู„ูˆุด ุญู„ูˆู„
165
00:18:45,670 --> 00:18:51,910
ู…ุง ู„ู‡ู… ู…ุณุชุจุนุฏุฉ ูƒู„ูŠุงุŒ ูŠุจู‚ู‰ ุณูˆุงุก ูƒุงู† ุญู„ ูˆุงุญุฏ ุฃูˆ ุนุฏุฏ
166
00:18:51,910 --> 00:18:55,510
ู„ุง ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ุŒ ุนู„ู‰ ูƒู„ ุงู„ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฌูˆุงุจูŠ ู„ุฃู†
167
00:18:55,510 --> 00:19:02,630
ู‡ุฐุง ู…ุงู„ูˆุด ุฌูˆุงุจ ุตุญูŠุญุŒ ุฅุฐุง ุทู„ุน ุงู„ูุฑู‚ ู…ุง ุจูŠู† A ูˆ BุŒ ุงู„ู€ B
168
00:19:02,630 --> 00:19:10,830
ูŠุง ุชุฑู‰ subset ู…ู† RN ูˆู„ุง RMุŸ ู…ู† ู…ูŠู†ุŸ ู…ู† RNุŒ ู‡ุฐุง ุงู„ู€
169
00:19:10,830 --> 00:19:16,530
kernelุŒ ุทูŠุจ ุงู„ู€ range subset ู…ู† ู…ูŠู†ุŸ ู…ู† RMุŒ ู„ุฃู† ุงู„ู€
170
00:19:16,530 --> 00:19:22,110
range ุงู„ู…ุฏู‰ ุงู„ุตูˆุฑ ุชุจุนุช ุงู„ุนู†ุงุตุฑุŒ ูŠุจู‚ู‰ ููŠ ุงู„ู€ RM ูƒู„
171
00:19:22,110 --> 00:19:25,910
ุงู„ู€ solutions ุชุจุน ุงู„ู€ homogeneous systemุŒ ุงู„ู€ solution
172
00:19:25,910 --> 00:19:30,750
ูŠุนู†ูŠ ู‚ูŠู… XุŒ ูˆุงู„ู€ X ู‚ู„ู†ุง ูˆูŠู† ู…ูˆุฌูˆุฏุฉุŸ ุจุงู„ู†ุณุจุฉ ู„ู„ู€ RM
173
00:19:30,750 --> 00:19:34,810
ูŠุจู‚ู‰ ู‡ุฐุง ูŠุชูู‚ ูˆูƒู„ู…ู†ุง ุชู…ุงู…ุงุŒ ุงู„ู€ range ู‚ู„ู†ุง ู‡ูˆ ุฌุฒุก
174
00:19:34,810 --> 00:19:38,490
ู…ู† ุงู„ู€ RMุŒ ู„ุฐู„ูƒ ู‚ู„ู†ุง ุงู„ู€ range ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
175
00:19:38,490 --> 0
201
00:22:52,300 --> 00:22:59,260
ูŠุนู†ูŠ ูˆูŠู† ู…ูˆุฌูˆุฏ ูƒู„ ูˆุงุญุฏ ููŠู‡ู…ุŸ ููŠ ุงู„ู€ R M ูŠุนู†ูŠ ูƒุฃู†ู‡
202
00:22:59,260 --> 00:23:05,500
ุงูŠุด A1 ูˆ A2 ู…ู‚ุตุฏูŠ ุงู„ู€ A1 ุจุฏู‡ ูŠุณุงูˆูŠ X1 ูˆ X2 ู„ุบุงูŠุฉ X
203
00:23:05,500 --> 00:23:11,640
M ุชู…ุงู… ูŠุนู†ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ R M ุชู…ุงู… ุงู„ุชู…ุงู… ุทูŠุจ ูƒูˆูŠุณ
204
00:23:11,640 --> 00:23:17,420
ุงุญู†ุง ุนุงูŠุฒูŠู† ุงู„ุงู† ูƒูŠู ุฃู†ุง ู…ุด ุณุงู…ุน ู„ูŠู‡ ุญุทุช ู‡ู†ุง AN ู…ุด
205
00:23:17,420 --> 00:23:24,320
M ููŠ ูˆุงุญุฏ ู„ู…ุงุฐุง ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R M ูƒู„ element
206
00:23:24,320 --> 00:23:30,000
ู…ูƒูˆู† ู…ู† M ู…ู† ุงู„ุนู†ุงุตุฑ ุจุฏู„ ู…ุง ู‡ูˆ ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ูุงุตู„
207
00:23:30,000 --> 00:23:34,060
ุงู„ุฑู‚ู… ุงู„ู„ูŠ ูƒุชุจุชู‡ ุนู„ู‰ ุดูƒู„ ุนู…ูˆุฏ ู…ูƒูˆู† ู…ู† M ู…ู† ุงู„ุตููˆู
208
00:23:34,060 --> 00:23:43,060
ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ ูู‚ุท ูŠุจู‚ู‰ ุฃู‚ูˆู„ ุฅู† ูƒู„ ุงู„ู€ A N ูƒู„ู‡ู… R M
209
00:23:43,060 --> 00:23:44,800
ููŠ one matrices
210
00:23:50,880 --> 00:23:57,880
belongs to R M ูŠุจู‚ู‰ ูƒู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R M ุจุงู„ุดูƒู„
211
00:23:57,880 --> 00:24:04,180
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุงูŠุด ุจูŠู‚ูˆู„ ู„ูŠุŸ ุจูŠู‚ูˆู„ ู„ูŠ ู‡ุฐู‡ ุงู„ู€ T ุงู„ู„ูŠ ุฃู†ุช
212
00:24:04,180 --> 00:24:09,300
ุฃุฎุฐุชู‡ุง ู…ู† ุงู„ู€ R N ู„ู„ู€ R M ุจุฏูŠ ุฃุซุจุช ุฅู†ู‡ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง
213
00:24:09,300 --> 00:24:12,440
ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
214
00:24:12,440 --> 00:24:18,120
ูŠู…ูƒู†ู†ูŠ ุฃู† ุฃุฑูˆุญ ุฃุฎุฏ element X ู…ูˆุฌูˆุฏ ููŠ R N ูˆ ุฃุดูˆู ุดูˆ
215
00:24:18,120 --> 00:24:23,600
ุจุฏูŠ ุฃุณุงูˆูŠ ุฃู†ุง ุฅุฐุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ุฎุฏ ู„ูŠ ุงู„ู€ X ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ
216
00:24:23,600 --> 00:24:31,340
ุฃุณุงูˆูŠ ู…ู† X1 ูˆ X2 ูˆ ู„ุบุงูŠุฉ XM ุงู„ุฅู†ุณุงู† ู…ูˆุฌูˆุฏ ููŠ ูƒู„
217
00:24:31,340 --> 00:24:38,430
ู…ูƒุงู† ุจุงู„ู€ R N ูŠุนู†ูŠ T ุจูŠู‚ุฏุฑ ูŠุคุซุฑ ุนู„ูŠู‡ ุญุชู‰ ุฃู‚ูˆู„ T of X
218
00:24:38,430 --> 00:24:44,210
ุจุฏูŠ ุฃุซุจุช ุฃู†ู‡ ุจุฏูŠ ูŠุณุงูˆูŠ main X ุทูŠุจ ู‡ุฐุง ู…ุด ูŠุณุงูˆูŠ
219
00:24:44,210 --> 00:24:52,030
ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ vector X 1 ูˆ 0 ูˆ 0 ู„ุบุงูŠุฉ ุงู„ู€ 0 ุฒุงุฆุฏ 0
220
00:24:52,030 --> 00:24:59,490
ูˆ X 2 ูˆ 0 ูˆ 0 ุฒุงุฆุฏ ูˆ ุชุจู‚ู‰ ู…ุงุดูŠุฉ ู„ุบุงูŠุฉ ู…ุง ุชูˆุตู„ ุฅู„ู‰
221
00:24:59,490 --> 00:25:07,910
0 ูˆ 0 ูˆ XN ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนู†ุตุฑ ูƒุชุจุชู‡ ุนู„ู‰ ุดูƒู„
222
00:25:07,910 --> 00:25:13,970
ู…ุฌู…ูˆุนุฉ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ุนู†ุงุตุฑ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช x1 ุนุงู…ู„
223
00:25:13,970 --> 00:25:24,070
ู…ุดุชุฑูƒ ุจูŠุธู„ ูƒุฏู‡ุŸ 100 ุฒูŠุฏ x2 0 ูˆ 1 ูˆ 0 ูˆ 0 ุฒูŠุฏ ุงู†
224
00:25:24,070 --> 00:25:32,910
ุจูŠุธู„ ู…ุงุดูŠูŠู† xn 0 ูˆ 0 ูˆ 1 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰
225
00:25:32,910 --> 00:25:38,350
ูˆุงุญุฏ ูˆู‡ูŠุฌูู„ู†ุง ู…ูŠู†ุŸ ุงู„ุฌูˆุฒ ู„ุนู„ูƒู… ุงู„ุขู† ุฃุฏุฑูƒุชู… ู…ุง ู‡ูˆ
226
00:25:38,350 --> 00:25:43,410
ุงู„ุณุฑ ุงู„ู„ูŠ ุฎู„ุงู†ูŠ ุฃุจุฏุฃ ุจู…ูŠู†ุŸ ุจุงู„ูุฑุถูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
227
00:25:43,410 --> 00:25:50,630
ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ูƒุฅู†ู‡ ุงูŠู‡ ูŠุง ุดุจุงุจุŸ ูƒุฅู†ู‡ X1E1 ูˆู‡ุฐู‡
228
00:25:50,630 --> 00:26:00,820
X2E2 ูˆุถู„ุช ู…ุงุดูŠ ุฅู„ู‰ ุบุงูŠุฉ XNEN ู‡ุฐุง ู…ูŠู†ุŸ ุงู„ู€ X ูŠุจู‚ู‰
229
00:26:00,820 --> 00:26:06,600
ุงู„ู€ X ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง ูƒุชุจุชู‡ ุนู„ู‰ ุดูƒู„ linear
230
00:26:06,600 --> 00:26:12,100
combination ู…ู† ุนู†ุงุตุฑ ุงู„ู€ bases ุชู…ุงู… ุงู„ุงู† T linear
231
00:26:12,100 --> 00:26:17,560
transformation ุจุฏูŠ ุฃุฎู„ูŠู‡ุง ุชุฃุซุฑ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ X ูŠุจู‚ู‰
232
00:26:17,560 --> 00:26:22,800
ุจุงู„ุฏุงุฌูŠ ู‡ุงุฎุฏ ู„ู‡ T of X ุงู„ู„ูŠ ุฃู†ุง ุจุฏูˆุฑ ุนู„ูŠู‡ุง ูŠุจู‚ู‰
233
00:26:22,800 --> 00:26:28,780
ุจุชุซูˆูŠ T ู„ู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูƒู„ู‡ ูˆ ู†ุธุฑุง ู„ุฃู†ู‡ุง T Linear
234
00:26:28,780 --> 00:26:36,600
Transformation ูŠุจู‚ู‰ ุจุชุตูŠุฑ T of X1 E1 ุฒุงุฆุฏ T of X2
235
00:26:36,600 --> 00:26:46,120
E2 ุฒุงุฆุฏ ุฒุงุฆุฏ T of X N E N ู„ูŠุด ุงู„ูƒู„ุงู… ู‡ุฐุงุŸ since ู„ุฃู†
236
00:26:46,120 --> 00:26:54,420
T is a linear transformation ุทูŠุจ ู…ู† ุฎูˆุงุต ุงู„ู€
237
00:26:54,420 --> 00:26:59,240
linear transformation ุงู„ุงู† ุงู„ู€ E1 vector ุทุจ ูˆ ุงู„ู€ X1
238
00:26:59,240 --> 00:27:14,240
vector ูˆู„ุง scalar ุฃูˆู„ ุฎุงุตูŠุฉ ูŠุจู‚ู‰ ู‡ู†ุง X1 ููŠ T of E1
239
00:27:14,240 --> 00:27:25,130
ุฒุงุฆุฏ X2 ููŠ T of E2 ุฒุงุฆุฏ ุฒุงุฆุฏ XN ููŠ T of EN ูŠุจู‚ู‰ ู‡ุฐุง
240
00:27:25,130 --> 00:27:33,850
ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ X1A1 ุฒูŠ ุงู„ู€ X2A2 ุฒูŠ ุงู„ู€ XNAN ุญุณุจ ู…ุง
241
00:27:33,850 --> 00:27:39,110
ู†ูุชุฑุถ ููˆู‚ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุทูŠุจ ูˆ ู‚ู„ู†ุง ุงู„ู€ A ู‡ุงุช ู…ุงู„ู‡ู…
242
00:27:39,110 --> 00:27:46,790
ู‡ุฏูˆู„ุŸ ู…ุตููˆูุงุช ูŠุจู‚ู‰ ู‡ุฏูˆู„ ู…ุงู„ู‡ู… ู…ุตููˆูุงุช ุทูŠุจ ุณุคุงู„ ุฃู„ูŠุณ
243
00:27:46,790 --> 00:27:55,080
ู‡ุฐุง ู‡ูˆ ุญุงุตู„ ุงู„ุถุฑุจ AXุŸ ุตุญ ูˆู„ุง ู„ุฃุŸ ู„ุฃู† ู‡ุฐู‡ ุงู„ู€ A
244
00:27:55,080 --> 00:28:00,860
ู…ุตููˆูุงุช ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชู…ุงู…ุŸ ูƒุฃู†ู‡ ุงูŠุดุŸ ูƒุฃู† ุงู„ู€ E1
245
00:28:00,860 --> 00:28:04,740
ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A2 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A3 ู…ุตูˆูุฉ ุนู…ูˆุฏ
246
00:28:04,740 --> 00:28:05,160
ุงู„ู€ A4 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A5 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A6 ู…ุตูˆูุฉ
247
00:28:05,160 --> 00:28:05,180
ุนู…ูˆุฏ ุงู„ู€ A7 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A8 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9
248
00:28:05,180 --> 00:28:06,220
ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9 ู…ุตูˆูุฉ ุนู…ูˆุฏ
249
00:28:06,220 --> 00:28:06,480
ุงู„ู€ A9 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9 ู…ุตูˆูุฉ
250
00:28:06,480 --> 00:28:09,080
ุนู…ูˆุฏ ุงู„ู€ A9 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9
251
00:28:09,080 --> 00:28:17,640
ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€ A9 ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ AX where ุญูŠุซ ุงู„ู€
252
00:28:17,640 --> 00:28:25,440
A ู‡ูŠ ุงู„ู…ุตุญูˆูุฉ ู„ุนู…ูˆุฏูŠ a1 ูˆ a2 ูˆ ู„ุบุงูŠุฉ an ุจุงู„ุดูƒู„
253
00:28:25,440 --> 00:28:31,230
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุนู†ูŠ ูƒู„ ูˆุงุญุฏ ู…ู† A1 ูˆ A2 ูˆ AN ู‡ูˆ ุนู…ูˆุฏ
254
00:28:31,230 --> 00:28:37,530
ู„ู…ู†ุŸ ู„ู„ู…ุตููˆูุฉ A ูŠุจู‚ู‰ ู…ู† ุงู„ุฃู†ูุง ุณุงุนุฏู†ุง ุฃูŠ Linear
255
00:28:37,530 --> 00:28:41,930
transformation ู…ู† ุงู„ู€ R N ุฅู„ู‰ ุงู„ู€ R M ุชูƒูˆู† ุฏุงุฆู…ุง ูˆ
256
00:28:41,930 --> 00:28:48,150
ุฃุจุฏุง ุนู„ู‰ ุงู„ุดูƒู„ T of X ุจูŠุณุงูˆูŠ 100 ูŠุณุงูˆูŠ AX ูˆ ู‡ูƒุฐุง
257
00:28:48,150 --> 00:28:54,340
ุญุฏ ููŠูƒู… ุจูŠุญุจ ูŠุณุฃู„ ุฃูŠ ุณุคุงู„ ู‡ู†ุงุŸ ุทูŠุจ ุงู†ุชู‡ูŠู†ุง ู…ู†
258
00:28:54,340 --> 00:28:59,160
ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู…ุซุงู„ ุงู„ุซุงู„ุซ
259
00:29:31,620 --> 00:29:39,580
Example 3 ุจูŠู‚ูˆู„
260
00:29:39,580 --> 00:29:52,620
Let T ู…ู† R3 ู„ุบุงูŠุฉ R3 ุจู€ A linear transformation
261
00:29:52,620 --> 00:30:05,450
defined by ู…ุนุฑูุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ T of X ู‡ูˆ ุนุจุงุฑุฉ
262
00:30:05,450 --> 00:30:16,090
ุนู† T R X1 ูˆ X2 ูˆ X3 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ
263
00:30:16,090 --> 00:30:25,630
ุญุงุตู„ ุถุฑุจ 101 112213
264
00:30:25,630 --> 00:30:36,400
ููŠ X1 X2 X3 ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู†ู…ุฑ
265
00:30:36,400 --> 00:30:49,960
ุงูŠู‡ find ุงู„ู€ Kernel ุงู„ุชูŠ ูˆ ุงู„ู€ dimension ู„ู„ู€ Kernel
266
00:30:49,960 --> 00:31:01,420
ุงู„ุชูŠ ู†ู…ุฑ ุจูŠู‡ find a basis
267
00:31:07,180 --> 00:31:20,940
Find a basis for R of T ูˆ ุงู„ู€ dimension ู„ู„ู€ R of
268
00:31:20,940 --> 00:31:24,660
T ู†ู…ุฑู‡
269
00:31:24,660 --> 00:31:37,560
C Find T of ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ู†ู…ุฑู‡ D is the
270
00:31:37,560 --> 00:31:44,220
element
271
00:31:44,220 --> 00:31:53,860
ุงุชู†ูŠู† ูˆ ุฎู…ุณุฉ ูˆ ุณุจุนุฉ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ R of T ุงู… ู„ุงุŸ
272
00:32:14,190 --> 00:32:19,150
ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุทุจุนุง ุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู† ู…ู† ุณุคุงู„ ุฅู„ู‰
273
00:32:19,150 --> 00:32:25,570
ุณุคุงู„ ุจุชุฎุชู„ู ุงู„ููƒุฑุฉ ุดูˆูŠุฉ ุจูŠู‚ูˆู„ ุงูุชุฑุถ T ู…ู† R3 ุฅู„ู‰ R3
274
00:32:25,570 --> 00:32:31,130
ุจูŠู‡ Linear Transformation ูˆุงุถุญ ู…ู† R N ุฅู„ู‰ R M ุงูŠุด
275
00:32:31,130 --> 00:32:35,970
ุงุชูุงุฌู†ุง ุงู„ู†ุตูŠู‚ู‡ ุฏุงุฆู…ุง ู…ู† T of X ุจุฏูŠู‡ ูŠุณุงูˆูŠ ู…ู†ุŸ ุจุฏูŠู‡
276
00:32:35,970 --> 00:32:40,310
ูŠุณุงูˆูŠ X ู…ู† ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุฌุงุจ ู„ู‡ ูŠุนู†ูŠ ูƒุฃู†ู‡ ุณุคุงู„ู†ุง ู‡ุฐุง ู‡ูˆ
277
00:32:40,310 --> 00:32:45,150
ุชุทุจูŠู‚ ุนู…ู„ูŠ ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุฌุงุจ ู„ู‡ุŒ ู…ุธุจูˆุทุŸ
278
00:32:45,410 --> 00:32:49,930
ูŠุจู‚ู‰ ูƒุฃู†ู†ุง ุจู†ุฃุฎุฐ ุฃู† ู…ุซุงู„ ุนุฏุฏูŠ ุชุทุจูŠู‚ ุนู„ู‰ ุงู„ู…ุซุงู„
279
00:32:49,930 --> 00:32:55,350
ุงู„ู†ุธุฑูŠ ุงู„ู„ูŠ ุฌุงุจ ู„ู‡ ูŠุจู‚ู‰ ู…ุนุฑูุฉ ูƒุงู„ุชุงู„ูŠ T of X ุงู„ู€ X
280
00:32:55,350 --> 00:32:59,390
ู‡ูˆ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ R3 ูŠุนู†ูŠ T of X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ูˆ X
281
00:32:59,390 --> 00:33:04,230
ุชู„ุงุชุฉ ุจุชูƒุชุจู‡ู… ุนู„ู‰ ุดูƒู„ ุนู…ูˆุฏ ูŠุจู‚ู‰ ูŠู‚ูˆู„ T of X ูˆุงุญุฏ X
282
00:33:04,230 --> 00:33:10,470
ุงุชู†ูŠู† X ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ุงู„ู…ุตูˆูุฉ A ุฃุฎุฐู†ุงู‡ุง
283
00:33:10,470 --> 00:33:14,430
ุจุงู„ุดูƒู„ ู‡ุฐุง ููŠ X ุงู„ู„ูŠ ู‡ูˆ X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ูˆ X ุชู„ุงุชุฉ
284
00:33:14,640 --> 00:33:17,780
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ Linear Transformation ุงู„ู„ูŠ ุนู†ุฏู†ุง
285
00:33:17,780 --> 00:33:21,580
ู…ุทู„ูˆุจ ู…ู† ู‡ุฐู‡ ุงู„ู€ Linear Transformation ู‡ูŠ ุชุจุฏุฃ ุงู„ู€
286
00:33:21,580 --> 00:33:25,730
Kernel ูˆ ุจุฏูŠ ุงู„ู€ dimension ู„ู„ู€ Kernel ู„ุฃู† Kernel ู…ุงู„ู‡
287
00:33:25,730 --> 00:33:31,790
sub space ูŠุนู†ูŠ Space ุจุฏูŠ ุงู„ู€ dimension ู„ู‡ ุฌุฏุงุด ุชู†ูŠู†
288
00:33:31,790 --> 00:33:38,350
ุจุฏูŠ basis ู„ู„ู€ Range ุจุฏูŠ ุงู„ู€ vectors ุงู„ู„ูŠ ุจูˆู„ุฏูˆู„ูŠ ุงู„ู€
289
00:33:38,350 --> 00:33:42,650
Range ุชุจุน ู…ู† ุงู„ู€ subspace R of T ูˆ ุจุนุฏ ู‡ูŠูƒ ุจุฏูŠ ุงู„ู€
290
00:33:42,650 --> 00:33:47,570
dimension ูƒู…ุงู† ู„ู„ู€ R of T ูŠุนู†ูŠ ูƒู„ ู†ู‚ุทุฉ ุฒูŠ ู…ุง ุชู„ุงุญุธุช
291
00:33:47,570 --> 00:33:50,730
ุจ main ุจู…ุทู„ุจูŠู† ู„ูƒู† ุฅุฐุง ุฌุจุช ุงู„ู…ุทู„ุจ ุงู„ุฃูˆู„ ุจูŠุตูŠุฑ
292
00:33:50,730 --> 00:33:55,160
ุงู„ู…ุทู„ุจ ุงู„ุชุงู†ูŠ ุณู‡ู„ ุชุญุตูŠู„ ุญุตู„ ุงู„ู…ุทู„ูˆุจ ู†ู…ุฑู‰ C ุจูŠู‚ูˆู„
293
00:33:55,160 --> 00:33:58,840
ู„ูŠ ู‡ุงุช ู„ูŠ T of ูˆุงุญุฏ ูˆ ุงุซู†ูŠู† ูˆ ุชู„ุงุชุฉ ุจุชุนุฑู ู‚ุฏุงุด ุตูˆุฑุฉ
294
00:33:58,840 --> 00:34:03,340
ูˆุงุญุฏ ูˆ ุงุซู†ูŠู† ูˆ ุชู„ุงุชุฉ ุดูˆ ุจุชุนุทูŠู†ูŠ ุงู„ุฃู…ุฑ ุงู„ุฑุงุจุน ุจูŠู‚ูˆู„ ู„ูŠ
295
00:34:03,340 --> 00:34:08,100
ู‡ู„ ุงู„ุนู†ุตุฑ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Range ุฃู… ู„ุงุŸ ุจูŠู‚ูˆู„ ู„ู‡
296
00:34:08,100 --> 00:34:13,400
ุงู„ู„ู‡ ุฃุนู„ู… ูŠุจู‚ู‰ ุจุฏุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ A ู‚ุงู„
297
00:34:13,400 --> 00:34:18,280
ู„ูŠ ู‡ุงุช ู„ูŠ ุงู„ู€ Kernel ุจูŠู‚ูˆู„ ู„ู‡ ู‚ุจู„ ุงู„ู€ Kernel ุฎู„ูŠู†ูŠ ุฃุญุท
298
00:34:18,280 --> 00:34:24,740
ู‡ุฐู‡ ููŠ ุดูƒู„ ุฃู„ุทู ู…ู† ู‡ูŠูƒ ุดูˆูŠุฉ ุจูŠู‚ูˆู„ู‡ ูƒูŠู ุจูŠู‚ูˆู„ู‡ ู‡ูŠุชูŠ
299
00:34:24,740 --> 00:34:35,180
of X1 X2 X3 ูƒู…ุตููˆูุฉ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุชู…ุงู…ุŸ ุจุฏู‡
300
00:34:35,180 --> 00:34:41,490
ูŠุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ู‡ุฏูˆู„ ุทุจ ู…ุถุฑุจู‡ู… ููŠ ุจุนุถ ู…ุงุดูŠ ูŠุจู‚ู‰ ู„ูˆ
301
00:34:41,490 --> 00:34:45,690
ุฑูˆุญุช ุถุฑุจุชู‡ู… ููŠ ุจุนุถ ุจูŠู‚ูˆู„ ู„ู…ูŠู† ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ
302
00:34:45,690 --> 00:34:54,690
ุงู„ุฃูˆู„ ูŠุจู‚ู‰ X1 ุฒุงุฆุฏ X3 ุงู„ุตู ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ X1 ุฒุงุฆุฏ X2
303
00:34:54,690 --> 00:35:08,130
ุฒุงุฆุฏ 2X3 ุงู„ุตู ุงู„ุชุงู„ุช 2X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3X3 ู‡ุงูŠ
304
00:35:08,130 --> 00:35:13,070
ุถุฑุจู†ุงู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ Linear transformation ุงู„ู…ุนุฑูุฉ ุนู†ู‡
305
00:35:13,070 --> 00:35:21,360
ุฌุงู„ูŠ ู‡ุงุชู„ ุงู„ู€ Kernel ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู‡ ุงู„ู€ Kernel ุงู„ุชูŠ ู‡ูˆ ูƒู„
306
00:35:21,360 --> 00:35:26,880
ุงู„ู€ X's ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R3 ุงู„ู„ูŠ ุนู†ุฏู‡ุง ูˆ ุงู„ู„ูŠ
307
00:35:26,880 --> 00:35:33,580
ุตูˆุฑุชู‡ุง T of X ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰
308
00:35:33,580 --> 00:35:39,660
ู‡ุฐู‡ ูƒู„ ุงู„ู€ X's ุงู„ู€ X ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ X ูˆุงุญุฏ ูˆ X
309
00:35:39,660 --> 00:35:45,650
ุงุชู†ูŠู† ูˆ X ุชู„ุงุชุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R3 ุตุชุด ุฏู‡ู„ู…ุง
310
00:35:45,650 --> 00:35:49,810
ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ู€ T of X ูŠุณุงูˆูŠ 0ุŒ ุงู„ู€ T of X ูŠุณุงูˆูŠ ู…ูŠู†ุŸ
311
00:35:49,810 --> 00:35:54,170
ูŠุณุงูˆูŠ ู‡ุฐุง ูƒู„ู‡ุŒ ู…ุนู†ุงุชู‡ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ุง
312
00:35:54,170 --> 00:36:00,630
ุชุณุงูˆูŠ ุงู„ู…ุตูˆูุฉ ุงู„ุตูุฑูŠุฉ ูŠุจู‚ู‰ ุฏู‡ such that ุงู„ู…ุตูˆูุฉ ุฏูŠ
313
00:36:00,630 --> 00:36:12,850
X1 ุฒุงุฆุฏ X3 ูˆ ู‡ู†ุง X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2 X3 ูˆ ู‡ู†ุง 2 X1 ุฒุงุฆุฏ
314
00:36:12,850 --> 00:36:20,570
X2 ุชู„ุงุชุฉ X3 ูƒู„ู‡ ุจูŠุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ ุงู„ุตูุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง
315
00:36:20,570 --> 00:36:27,790
ุจุงู„ุดูƒู„ ู‡ุฐุง ุชู…ุงู…ุŸ ุงุฐุง ุงู†ุง ุทุจู‚ุช ุญุชู‰ ุงู„ุงู† ุชุนุฑูŠู ู…ู† ุงู„ู€
316
00:36:27,790 --> 00:36:33,830
Kernel ู‡ุฐุง ูŠุง ุจู†ุงุช ุจูŠู‚ูˆุฏู†ุง ุฅู„ู‰ ูƒู… ู…ุนุงุฏู„ุฉุŸ ูŠุนู†ูŠ ู‡ูˆ
317
00:36:33,830 --> 00:36:38,630
homogeneous system ุตุญ ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ ู‡ุฐุง ูŠู‚ูˆุฏู†ุง ุฅู„ู‰
318
00:36:38,630 --> 00:36:48,330
ู…ุง ูŠุฃุชูŠ ุงู† X1 ุฒุงุฆุฏ X3 ูŠุณุงูˆูŠ 0 ูˆ X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2
319
00:36:48,330 --> 00:36:58,590
X3 ูŠุณุงูˆูŠ 0 ูˆ 2X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3X3 ูŠุณุงูˆูŠ 0 ู‡ุฐุง ุนุจุงุฑุฉ
320
00:36:58,590 --> 00:37:03,230
ุนู† ู…ุงุฐุงุŸ Homogeneous System ุจุญุงูˆู„ ู†ุญู„ ุงู„ู€
321
00:37:03,230 --> 00:37:07,270
Homogeneous System ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุงู„ุทุฑู‚ ุงู„ุชูŠ ุณุจู‚ุช
322
00:37:07,270 --> 00:37:11,870
ุฏุฑุงุณุชู‡ุง ุทุจุนุง ุงู„ู€ Homogeneous ุฃุณู‡ู„ ู…ู† ุงู„ู€ Non
323
00:37:11,870 --> 00:37:14,890
-Homogeneous ููŠ ุงู„ุญู„ ูˆ ุจุงู„ุชุงู„ูŠ ู…ู…ูƒู† ู†ุฌูŠุจ ุงู„ุญู„
324
00:37:14,890 --> 00:37:19,930
ุจุณู‡ูˆู„ุฉ ุจุฏูˆู† ู…ู„ุฌุฃ ู„ู€ Gaussian ูˆู„ุง ู„ู€ Rho Epsilon
325
00:37:19,930 --> 00:37:24,790
Form ุฅู„ู‰ ุขุฎุฑู‰ ูู…ุซู„ุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ู‡ู†ุง X ูˆุงุญุฏ ุชุชุณุงูˆูŠ
326
00:37:24,790 --> 00:37:32,000
ู…ูŠู† ูŠุง ุจู†ุงุชุŸ ุจุฏูŠ ูŠุณุงูˆูŠ ุณุงู„ุจ X3 ู…ุธุจูˆุท ุทูŠุจ ุฅุฐุง ู„ูˆ ุฌูŠุช
327
00:37:32,000 --> 00:37:38,640
ุนู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ู‡ุฐู‡ ุงูŠุด ุจูŠุตูŠุฑุŸ ุณุงู„ุจ X3 ุฒุงุฆุฏ X2
328
00:37:38,640 --> 00:37:48,770
ุฒุงุฆุฏ 2 X3 ุจุฏูŠ ูŠุณุงูˆูŠ Zero ูˆ ู‡ู†ุง ุณุงู„ุจ 2 X3 ุฒุงุฆุฏ X2
329
00:37:48,770 --> 00:37:51,710
ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
330
00:37:51,710 --> 00:37:52,070
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
331
00:37:52,070 --> 00:37:55,290
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
332
00:37:55,290 --> 00:37:58,550
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
333
00:37:58,550 --> 00:38:01,530
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
334
00:38:01,530 --> 00:38:11,710
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X
335
00:38:11,740 --> 00:38:21,720
ุจุชุจู‚ู‰ X2 ุฒุงุฆุฏ X3 ูŠุณุงูˆูŠ 0 ูˆ ู‡ุฐู‡ ุจุชุนุทูŠู†ูŠ X2 ุฒุงุฆุฏ X3
336
00:38:21,720 --> 00:38:28,280
ูŠุณุงูˆูŠ 0 ูŠุนู†ูŠ ุจุชุนุทูŠู†ูŠ ู…ูŠู†ุŸ ู†ูุณ ุงู„ู…ุนุงุฏู„ุฉ ุฅุฐุง ู…ู†
337
00:38:28,280 --> 00:38:36,720
ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุฅู† X2 ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ X3 ูŠุจู‚ู‰
338
00:38:36,720 --> 00:38:44,160
ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ ูƒุงู†ุช X ุชู„ุงุชุฉ ุชุณุงูˆูŠ A then X ูˆุงุญุฏ ูƒุฏู‡
339
00:38:44,160 --> 00:38:52,920
ุจุฏู‡ ูŠุณุงูˆูŠ ูˆ X2 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุณุงู„ุจ A ูŠุจู‚ู‰ ุฃุตุจุญ ุงู„ู€
340
00:38:52,920 --> 00:38:59,340
Kernel ู„ู…ู†ุŸ ู„ู€ Linear Transformation T ู‡ูˆ ุนุจุงุฑุฉ ุนู†
341
00:38:59,340 --> 00:39:05,920
ู…ู†ุŸ The set of all elements X1 ุงู„ู„ูŠ ูŠุจู‚ู‰ ูƒุฏู‡ุŸ ุณุงู„ุจ
342
00:39:05,920 --> 00:39:15,850
A ูˆ X2 ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ A ูˆ X3 ุงู‡ ูˆ ู‡ุฐุง ุงู„ู„ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจ
343
00:39:15,850 --> 00:39:21,690
ุนู„ูŠู‡ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูƒู„ ุงู„ู…ุตูˆู ุงู„ู„ูŠ ุนู„ู‰ ุดูƒู„ ู†ุงู‚ุต ุงูŠู‡
344
00:39:21,690 --> 00:39:27,870
ู†ุงู‚ุต ุงูŠู‡ ูˆ ุงูŠู‡ such that ุงู‡ ูˆ ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ
345
00:39:27,870 --> 00:39:33,910
ูƒู…ุงู† ุงูŠู‡ุŸ ู„ูˆ ุฃุฎุฏุช ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุฏู‡ ูŠูƒูˆู† ู…ูŠู†ุŸ ู†ุงู‚ุต ูˆุงุญุฏ
346
00:39:33,910 --> 00:39:39,570
ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุญุฏ such that ุงู„ู€ A ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ set of
347
00:39:39,570 --> 00:39:44,330
real numbers ูŠุนู†ูŠ ู…ุง ุญุทูŠุชุด ุนู„ูŠู‡ุง ุฃูŠ ู‚ูŠูˆุฏ ู„ุฃูŠ ุนุฏุฏ
348
00:39:44,330 --> 00:39:52,070
ุญู‚ูŠู‚ูŠ ู…ู† ู…ูƒุงู† ูŠูƒูˆู† ุชู…ุงู…ุŸ ุฅุฐุง ุฃุตุจุญ ุงู„ู€ Kernel ู…ู† ู‡ูˆุŸ
349
00:39:52,070 --> 00:39:58,590
ู‡ูˆ ูƒู„ ุงู„ู€ vectors ุงู„ู„ูŠ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ุชุณุงูˆูŠ ุงู„ู…ุฑูƒุจุฉ
350
00:39:58,590 --> 00:40:03,070
ุงู„ุซุงู†ูŠุฉ ูˆ ุงู„ู…ุฑูƒุจุฉ ุงู„ุชุงู„ุชุฉ ุจุฃุณ ุชุณุงูˆูŠู‡ู… ู„ูƒู†ู‡ุง ุชุฎุชู„ูู‡ู…
351
00:40:03,070 --> 00:40:07,990
ููŠ ู…ู†ุŸ ุงู„ุฅุดุงุฑุฉ ูŠุจู‚ู‰ ุงู„ู€ vector ู‡ุฐุง ู…ุงู„ ุฅูŠุด ุนู„ุงู‚ุชู‡
352
00:40:07,990 --> 00:40:17,040
ุจุงู„ู€ KernelุŸ ุจุฌูŠุจ ุจุนุถ ุนู†ุงุตุฑ ุงู„ู€ Kernel ูˆู„ุง ูƒู„ู‡ู…ุŸ ูŠุนู†ูŠ
353
00:40:17,040 --> 00:40:23,300
ุงูŠุด ุจูŠู†ูุน ูŠูƒูˆู†ุŸ basis ู„ุฃู†ู‡ุง ู…ุณุชู‚ู„ ุญุงู„ู‡ ู„ูŠู†ูŠุงุฑูŠ ู…ุด
354
00:40:23,300 --> 00:40:28,720
ู…ุนุชู…ุฏ ุนู„ู‰ ุบูŠุฑู‡ ูŠุจู‚ู‰ ู‡ุฐุง ู„ูŠู†ูŠุงุฑูŠ independent ุงุซู†ูŠู†
355
00:40:28,720 --> 00:40:33,780
ูƒู„ ุนู†ุตุฑ ููŠ ุงู„ู€ Kernel ุจู‚ุฏุฑ ุฃูƒุชุจ ุฏู„ุชู‡ ุญุทูŠุช ู‚ูŠูˆุฏ ุนู„ู‰
356
00:40:33,780 --> 00:40:39,340
ุงูŠู‡ ู„ุฃ ูŠุจู‚ู‰ ุญุท ุงู„ุฑู‚ู… ุงู„ู„ูŠ ูŠุฌุจูƒ ูˆู‡ุฐุง ุซุงุจุช ูŠุจู‚ู‰ ู‡ุฐุง
357
00:40:39,340 --> 00:40:43,800
ู…ุนู†ุงุชู‡ ุงู„ู€ basis ู„ู„ู€ Kernel ู‡ูˆ ู…ูŠู†ุŸ ุงู„ู€ vector ุงู„ู„ูŠ
358
00:40:43,800 --> 00:40:53,340
ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงูŠุดุŸ ู…ุนู†ุงู‡ ุฐุง Vector ู„ุญุงู„ู‡
359
00:40:53,340 --> 00:41:01,200
ุฃูˆ the set ู‡ุฐุง ู…ุนู†ุงู‡ ุงู„ู€ vector
360
00:41:01,200 --> 00:41:08,220
ุนู„ู‰ ุงู„ุดูƒู„ ู‡ุฐุง ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ู‡ุฐุง is a basis
361
00:41:08,220 --> 00:41:24,320
for ุงู„ู€ Kernel ุงู„ุชูŠ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ู€ dimension ู„ู„ู€
362
00:41:24,320 --> 00:41:29,660
Kernel of T ูŠุณุงูˆูŠ ุฌุฏุงุด ูŠุง ุจู†ุงุช ุฎู„ุตู†ุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
363
00:41:30,630 --> 00:41:33,890
ู‚ุงู„ ู„ูŠ ู‡ุงุช ู„ูŠ ุงู„ู€ Kernel ูˆ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ู‡ุงุช ู„ูŠ ุงู„ู€
364
00:41:33,890 --> 00:41:40,770
dimension ุชู…ุงู…ุŸ ุฅุฐุง ู‡ู†ุฌูŠุจ ู„ู‡ ุงู„ู€ Kernel ู…ู† ู‡ูˆ ูƒู„
365
401
00:45:41,010 --> 00:45:47,950
ุงู„ุชุงู„ู‰ ู„ูˆ ุทู„ุนูˆุง ู‡ุฏูˆู„ linearly independent ุจูŠุตูŠุฑ ู‡ู…
402
00:45:47,950 --> 00:45:53,610
ุงู„ู€ bases ุทุจ ู„ูˆ ุทู„ุนูˆุง linearly dependent ุจุฏูƒ ุชุฏูˆุฑ
403
00:45:53,610 --> 00:46:00,010
ุนู„ู‰ ุงู„ู€ bases ุชุนุงู„ูˆุง ู†ุทู„ุน ู‡ูŠูƒ ู†ุฏู‚ู‚ ุงู„ู†ุธุฑ ู„ูˆ ุฌู…ุนุช ุงู„ู€
404
00:46:00,010 --> 00:46:07,150
two vectors ู‡ุฏูˆู„ ู‚ุฏ ุงูŠุด ุจูŠุนุทูŠู†ูŠ ุงูŠู‡ ุงู„ุชุงู„ุช ุจูŠุนุทูŠู†ูŠ
405
00:46:07,150 --> 00:46:13,280
ุงู„ุชุงู„ุช 1 ุฒูŠ 0 ุจู€ 1 ูˆ 1 ุจู€ 1 ุจู€ 2 ุจู€ 2 ุจู€ 1 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3
406
00:46:13,280 --> 00:46:13,760
ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3
407
00:46:13,760 --> 00:46:14,000
ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3
408
00:46:14,000 --> 00:46:16,760
ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3
409
00:46:16,760 --> 00:46:17,760
ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3
410
00:46:17,760 --> 00:46:26,640
ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3 ุจู€ 3
411
00:46:26,640 --> 00:46:33,340
ูˆุจุงู„ุชุงู„ูŠ ุงู„ุงุชู†ูŠู† ู‡ุฐูˆู„ ุจูŠูˆุตู„ูˆุง ุจูŠูˆุตู„ูˆู†ูŠ ู„ุฌู…ูŠุน ุนู†ุงุตุฑ
412
00:46:33,340 --> 00:46:37,740
ุงู„ู€ vector of space ุฃูˆ ุงู„ู€ subspace R of T ุทุจ ูˆ
413
00:46:37,740 --> 00:46:40,480
ุงู„ุชุงู„ุช ู…ุด ุฌุฒุก ูˆ ุงู„ุชุงู„ุช ู…ุง ู‡ูˆ linear combination ู…ู†
414
00:46:40,480 --> 00:46:44,100
ุงู„ุงุชู†ูŠู† ุตุญูŠุญ ูˆู„ุง ูŠุนู†ูŠ ุงูŠู‡ ุจู‚ุฏุฑ ุงุฎู„ูŠ ู‡ุฐุง ููŠ ุดุฌุฑุฉ ูˆ
415
00:46:44,100 --> 00:46:46,660
ุฃุถุฑุจู‡ ู‡ุฐูˆู„ ุนู„ู‰ ุดุฌุฑุฉ ุซุงู†ูŠุฉ ุณุงูˆู‰ ุตูุฑ ูˆ ุงุฎู„ูŠู‡ุง ุณุงู„ุจ
416
00:46:46,660 --> 00:46:49,240
ุณุงู„ุจ ูˆ ุงู†ุช ุงูŠู‡ ุฑุฃูŠูƒ ู…ู†ู‡ู… ูŠุจู‚ู‰ ุฏู‡ ุงุณู…ู‡ linearly
417
00:46:49,240 --> 00:46:55,200
dependent ู„ูƒู† ุงุชู†ูŠู† ู‡ุฐูˆู„ linearly independent ูŠุจู‚ู‰
418
00:46:55,200 --> 00:47:04,320
ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง ุงู„ุขู† ุงู„ูˆุงุญุฏ ูˆุงู„ูˆุงุญุฏ ูˆุงุซู†ูŠู† ุฒุงุฆุฏ ุตูุฑ
419
00:47:04,320 --> 00:47:11,940
ูˆุงุญุฏ ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฅุฐุง ู„ุง ูŠู…ูƒู†
420
00:47:11,940 --> 00:47:17,460
ุฃู‚ูˆู„ ุงู† ุงู„ุชู„ุงุชุฉ ุฏูˆู„ linearly independent ู„ูƒู† ูŠุง
421
00:47:17,460 --> 00:47:25,480
ุจู†ุงุช ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ู†ุง the vectors v1 ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุณุงูˆูŠ
422
00:47:25,480 --> 00:47:33,560
1 1 2 ูˆ v2 ุจุฏู‡ ูŠุณุงูˆูŠ 0 1 1
423
00:47:33,560 --> 00:47:44,700
ู…ุงู„ู‡ู… linearly independent ุงู„ุณุจุจ because anyone of
424
00:47:44,700 --> 00:47:59,140
v1 and v2 is not multiple of the other ูˆู„ุง ูˆุงุญุฏ
425
00:47:59,140 --> 00:48:04,660
ููŠู‡ู… ู…ุถุงุนูุงุช ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงูŠุด ุจูŠุดูƒู„ูˆู„ูŠุŸ
426
00:48:04,660 --> 00:48:09,660
ุจุงู„ู†ุณุจุฉ ู„ู€ R2 ุจูŠุจู‚ู‰ ู‡ู†ุง ุฃุณุงุณ
427
00:48:17,300 --> 00:48:34,460
V1 V2 V3
428
00:48:34,460 --> 00:48:34,620
V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V12 V13 V12 V12
429
00:48:34,620 --> 00:48:35,020
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
430
00:48:35,020 --> 00:48:35,080
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
431
00:48:35,080 --> 00:48:35,180
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
432
00:48:35,180 --> 00:48:39,590
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 2 ุนุฏุฏ
433
00:48:39,590 --> 00:48:44,570
ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ู€ Basel ุฅุฐุง ุฎู„ุตู†ุง ู…ู† ุงู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ
434
00:48:44,570 --> 00:48:50,270
ู‚ุงู„ ู„ูŠ ู‡ุงุช ู„ูŠ Basel ู„ู„ู€ R of T of 2 of T ุฌูŠุจู†ุง ู„ู‡ ูˆ
435
00:48:50,270 --> 00:48:53,130
ู‚ุงู„ ู„ูŠ ู‡ุงุช ู„ูŠ ุงู„ู€ dimension ุฌูŠุจู†ุง ู„ู‡ ุงู„ู€ dimension
436
00:48:53,130 --> 00:48:58,810
ู‚ุงู„ ู„ูŠ ุจุนุฏูŠู† ู‡ุงุช ู„ูŠ ุตูˆุฑุฉ ุงู„ุนู†ุตุฑ T of 1 ูˆ 2 ูˆ 3 ุฅุฐุง
437
00:48:58,810 --> 00:49:02,850
ุจูŠุฏู‘ุนูŠ ู„ู„ู…ุทู„ูˆุจ ุงู„ุชุงู„ูŠ
438
00:49:15,200 --> 00:49:21,440
ุฅุฐุง ุงู„ู…ุทู„ูˆุจ ุงู„ุซุงู„ุซ ู†ู…ุฑู‰ ุงู„ู€ C ุจุฏู†ุง T of ูˆุงุญุฏ ูˆ ุงุซู†ูŠู†
439
00:49:21,440 --> 00:49:29,300
ูˆุซู„ุงุซุฉ ู…ู† ูˆูŠู† ุจุฏู‡ ุฃุฌูŠุจ ู„ู‡ ู‡ุฐุงุŸ
440
00:49:29,300 --> 00:49:38,550
ู…ู† ูˆูŠู† ุจุฏู‡ ุฃุฌูŠุจ ู„ู‡ุŸ ูˆูŠู† ู‡ูŠุŸ ู…ุด ู‡ุฐู‡ุŸ ู…ุด T of element
441
00:49:38,550 --> 00:49:42,250
ูŠุณุงูˆูŠ ุฃูŠ ุนู†ุตุฑ ููŠ ุงู„ู€ range ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
442
00:49:42,250 --> 00:49:47,550
ูŠุจู‚ู‰ ุฏู‡ ุจูŠู‚ูˆู„ X1 ุฒูŠ X3 ูƒุฐุง ูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ู‰ ู‡ุฐุง
443
00:49:47,550 --> 00:49:54,210
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† X1 ุฒูŠ X3 ูŠุจู‚ู‰ 1 ุฒูŠ 3
444
00:49:56,030 --> 00:50:05,930
ุงู„ุนู†ุตุฑ ุงู„ุซุงู†ูŠ X1 ุฒูŠ X2 ุฒูŠ 2X3 ูŠุจู‚ู‰ 1 ุฒูŠ 2 ุฒูŠ 3
445
00:50:11,050 --> 00:50:21,370
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนู†ุตุฑ ุงู„ุซุงู„ุซ 2x1 ูŠุจู‚ู‰ 2 ููŠ 1 ุฒุงุฆุฏ 2 ุฒุงุฆุฏ
446
00:50:21,370 --> 00:50:28,010
3 ููŠ 3 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุชู…ุงู… 1 ุฒูŠ 3
447
00:50:28,010 --> 00:50:33,010
ู‚ุฏ ุงูŠุด 4 ู‡ู†ุง 2 ููŠ 3 ุจู€ 6 ูˆ 3 ุจู€ 9
448
00:50:33,010 --> 00:50:38,850
9 ูˆ 2 ุจู€ 11 ูˆ 2 ุจู€ 13 ุงุฐุง ุตูˆุฑุฉ ุงู„ุนู†ุตุฑ
449
00:50:38,850 --> 00:50:44,370
1 ูˆ 2 ูˆ 3 ู‡ูŠ 4 ูˆ 9 ูˆ 13 ุฃุธู†
450
00:50:44,370 --> 00:50:48,210
ูˆุงุถุญ ุงุฏู‰ ูƒูŠู ุฌุจู†ุงู‡ุงุŸ ุฌุจู†ุงู‡ุง ู…ู† ุฎู„ุงู„ ุงู„ุชุนุฑูŠู ู„ู…ุง
451
00:50:48,210 --> 00:50:51,430
ู‚ู„ู†ุง T of X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ู„ู…ุง ุถุฑุจู†ุง ุงู„ู…ุตููˆูุฉ T
452
00:50:51,430 --> 00:50:56,330
ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ ุทู„ุนุช ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุง ุทูŠุจ
453
00:50:56,330 --> 00:51:00,550
ุจุณุฃู„ ูƒู…ุงู† ุณุคุงู„ ุจู‚ูˆู„ ู„ู‡ ู‡ู„ ุงู„ุนู†ุตุฑ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€
454
00:51:00,550 --> 00:51:05,450
range ุฃู… ู„ุงุŸ ุจู‚ูˆู„ ู„ู‡ ุงู„ู„ู‡ ุฃุนู„ู… ุชุนุงู„ูˆุง ู†ุดูˆู ูŠุนู†ูŠ ู‡ู„
455
00:51:05,450 --> 00:51:09,970
ุงู„ุนู†ุตุฑ 2 ูˆ 5 ูˆ 7 ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ range ุชุจุน
456
00:51:09,970 --> 00:51:16,130
ุงู„ู€ T ุจุงุฌูŠ ุจุณุฃู„ ู…ูŠู† ู‡ูˆ ุงู„ู€ business ุชุจุน ุงู„ู€ TุŸ ุฅุฐุง
457
00:51:16,130 --> 00:51:20,610
ู‚ุฏุฑู†ุง ู†ูƒุชุจ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุนู„ู‰ ุตูˆุฑุฉ linear combination
458
00:51:20,610 --> 00:51:25,050
ู…ู† ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ ุจุตูŠุฑ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ range ุตุญ ูˆู„ุง ู„ุฃ
459
00:51:25,050 --> 00:51:30,580
ูˆุฅุฐุง ู…ุง ู‚ุฏุฑู†ุงุด ูŠุจู‚ู‰ ู…ูƒูˆู† ุจุฑุฉ ุงู„ู€ range ุทุจุนุง ุฅุฐุง ุจุฏุงุฌูŠ
460
00:51:30,580 --> 00:51:35,540
ู„ู…ู†ุŸ ู„ู†ู…ุฑุฏูŠ ุจุฏุงุฌูŠ ุฃุฎุฐ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ 2 ูˆ 5
461
00:51:35,540 --> 00:51:41,680
ูˆ 7 ูŠุจู‚ู‰ 2 ูˆ 5 ูˆ 7 ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„
462
00:51:41,680 --> 00:51:48,080
ู…ุตููˆูุฉ 2 5 7 ู…ุด ู‡ูŠูƒ ู‚ู„ู†ุง ู‡ุฐุง if and ู‚ูˆู„ูŠ
463
00:51:48,080 --> 00:51:55,390
if ูˆ ุจู‚ุฏุฑ ุงูƒุชุจู‡ ููˆู‚ูŠ ูƒู…ุงู† ุทุจ ุงูŠุด ุฑุฃูŠูƒุŸ ุงู†ุง ุจุฏูŠ ุฃูƒุชุจ
464
00:51:55,390 --> 00:51:59,970
ุนู„ูŠู‡ ุดูƒู„ู‹ุง ูŠุนู†ูŠ ุจุฏูŠ ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ุฌุฏ ุงู„ุฑู‚ู… ุงู„ุซุงู†ูŠ
465
00:51:59,970 --> 00:52:06,010
ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ุนู†ุฏูŠ ู‚ุฏ ุงูŠุด 2 ูˆุงู„ุฑู‚ู… ุงู„ุซุงู†ูŠ ุจุฏูŠ
466
00:52:06,010 --> 00:52:13,250
ูŠูƒูˆู† ุฒูŠู‡ 2 ูˆุงู„ุฑู‚ู… ุงู„ุซุงู„ุซ ุจู€ 2 ูŠุจู‚ู‰ ุจุฏูŠ ุงูƒุชุจ
467
00:52:13,250 --> 00:52:16,170
4 ุฒุงุฆุฏ
468
00:52:17,970 --> 00:52:22,250
ุงูŠุด ุจูŠุธู„ ุนู†ุฏูŠุŸ ุจุฏูŠ ุงูƒุชุจู‡ ุงู„ุญูŠู† ู…ู† 2 ุฃุฎุฏุช 2
469
00:52:22,250 --> 00:52:26,910
ุจูŠุธู„ ูƒุฏู‡ุŸ 0 ู…ู† 5 ุฃุฎุฏุช 2 ุจูŠุธู„ ูƒุฏู‡ุŸ
470
00:52:26,910 --> 00:52:32,170
3 ู…ู† 7 ุฃุฎุฏุช 4 ุจูŠุธู„ ูƒุฏู‡ุŸ 3 ูŠุจู‚ู‰
471
00:52:32,170 --> 00:52:36,670
ู‡ุฐุง ุงู„ูƒู„ุงู… .. ุจู‚ุฏุฑ ุฃุฎุฏ 2 ุนุงู…ู„ ู…ุดุชุฑูƒ ุงูŠุด ุจูŠุธู„
472
00:52:36,670 --> 00:52:41,890
ุนู†ุฏูŠุŸ 1 1 2 ุจู‚ุฏุฑ ุฃุฎุฏ 3 ุนุงู…ู„ ู…ุดุชุฑูƒ
473
00:52:41,890 --> 00:52:46,910
0 1 1 linear combination ู…ู† ุงู„ุงุซู†ูŠู†ุŸ ูŠุจู‚ู‰
474
00:52:46,910 --> 00:52:50,950
ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ range ูˆู„ุง ู„ุง ู„ุฅู†ู‡ ูŠุจู‚ู‰ ูƒุชุจุช ู‡ุฐุง ุงู„ู€
475
00:52:50,950 --> 00:52:56,390
element ุจูˆุงุณุท ุนู†ุงุตุฑ ุงู„ุจุฐู„ ู„ูˆ ู…ุง ู‚ุฏุฑุชู‘ุด ูŠุจู‚ู‰ ุจู†ู‚ูˆู„
476
00:52:56,390 --> 00:53:00,930
ู…ุด ู…ูˆุฌูˆุฏ ุทุจุนุง ู‡ุฐู‡ ุทุฑูŠู‚ุฉ ุณู‡ู„ุฉ ุฌุฏุง ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑ ู„ูƒู†
477
00:53:00,930 --> 00:53:04,590
ุงู„ุฃุตู„ ุงู† ุฃู‚ูˆู„ 2 ูˆ 5 ูˆ 7 ูŠุณุงูˆูŠ ูŠูƒูˆู† ุงุตู„ุง ููŠ
478
00:53:04,590 --> 00:53:07,470
ุงู„ุฃูˆู„ ูˆูŠูƒูˆู† ุงุตู„ุง ููŠ ุงู„ุซุงู†ูŠ ูˆ ุงุฑูˆุญ ุงุญู„ ุงู„ู€ non
479
00:53:07,470 --> 00:53:15,710
homogeneous system ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ู‡ุฐุง ูŠุจู‚ู‰
480
00:53:16,490 --> 00:53:26,090
2 ูˆ 5 ูˆ 7 is a linear combination of the
481
00:53:26,090 --> 00:53:41,660
elements of the bases of R of T Thus ูˆ ู‡ูƒุฐุง 2
482
00:53:41,660 --> 00:53:53,540
5 7 ูˆ ุนู†ุตุฑ ู…ูˆุฌูˆุฏ ููŠ R of T ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุญุฏ
483
00:53:53,540 --> 00:53:58,980
ููŠูƒู… ุจุชุญุจ ุชุณุฃู„ ุงูŠ ุณุคุงู„ ู‡ู†ุง ูŠุง ู…ู†ุงู„ุŸ ุงูŠ ุณุคุงู„ุŸ ุทุจ
484
00:53:58,980 --> 00:54:03,480
ู„ุงุฒู„ู†ุง ููŠ ู†ูุณ ุงู„ู€ section ูˆ ู‡ู†ุงูƒ ุจุฏู„ ุงู„ู…ุซุงู„ 2
485
00:54:03,480 --> 00:54:07,880
ู„ุณู‡ ูƒู…ุงู† ู„ุฅู† ุงู„ู…ูˆุถูˆุน ู‡ุฐุง ู‚ู„ุช ู„ูƒู… ู‡ุฐุง ุงู„ู€ section
486
00:54:07,880 --> 00:54:13,000
ุจุงู„ุฐุงุช very important ูˆ ู„ุงุฒู… ูŠุฌูŠ ุนู„ูŠู‡ ุณุคุงู„ ููŠ
487
00:54:13,000 --> 00:54:17,720
ุงู…ุชุญุงู† ุฃุนู…ุงู„ ุงู„ูุตู„ ูˆ ูƒุฐู„ูƒ ุงู„ู†ู‡ุงูŠุฉ ูˆุถุน ุทุจูŠุนูŠ ู„ุงุฒู…
488
00:54:17,720 --> 00:54:19,620
ูŠูƒูˆู† ู‡ุฐุง ูŠุนุทูŠูƒู… ุงู„ุนููˆ