|
1 |
|
00:00:20,890 --> 00:00:25,630 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุนูุฏุฉ ุนูู ุจุฏุก ุงูู
ุฑุฉ ุงููู ูุงุชุช |
|
|
|
2 |
|
00:00:25,630 --> 00:00:29,790 |
|
ุจุฏุฃูุง ุจุงู linear transformation ูุจุนุฏ ุฐูู ุฃุฎุฐูุง |
|
|
|
3 |
|
00:00:29,790 --> 00:00:34,910 |
|
ุนุฏุฉ ุชู
ุซููุงุช ุนูููุง ุซู
ุฃุฎุฐูุง ุจุนุถ ุงููุธุฑูุงุช ุฃุซุจุชูุง ุฃู |
|
|
|
4 |
|
00:00:34,910 --> 00:00:39,010 |
|
kernel linear transformation is a subspace ู |
|
|
|
5 |
|
00:00:39,010 --> 00:00:43,330 |
|
ุฃุซุจุชูุง ุฃู ุงู range ูู linear transformation is a |
|
|
|
6 |
|
00:00:43,330 --> 00:00:49,020 |
|
subspace ู ุฃุฎุฐูุง ุนูู ุฐูู ุงูู
ุซุงู ุงูุฃููุ ุทุจุนุง ุฃุนุทููุง |
|
|
|
7 |
|
00:00:49,020 --> 00:00:54,920 |
|
function ู
ุนุฑูุฉ ุจุงูุดูู ุงูุชุงูู T of A ุจุชุณุงูู A ุฒุงุฆุฏ A |
|
|
|
8 |
|
00:00:54,920 --> 00:01:00,840 |
|
Transpose ุชู
ุงู
ุ ููููุง ูุงุชููุง ุงู range ุชุจุน ู
ู |
|
|
|
9 |
|
00:01:00,840 --> 00:01:05,380 |
|
ุงูู T ูุงู kernel ุทุจุนุง ูุฌุฏูุงู ุงูู
ุฑุฉ ุงููู ูุงุชุช ููููุง |
|
|
|
10 |
|
00:01:05,380 --> 00:01:10,820 |
|
the set of all skew symmetric matrices ูุฐุง ุขุฎุฑ ู
ุง |
|
|
|
11 |
|
00:01:10,820 --> 00:01:15,280 |
|
ุฃุฎุฐูุงู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉุ ุชู
ุงู
ุ ุฅุฐุง ููุญู ุฌุฆูุง ููู
ู |
|
|
|
12 |
|
00:01:15,280 --> 00:01:19,750 |
|
ุญุฏูุซูุงุ ูุจุฏูุง ููุฌุฏ ู
ู ุงู R of T |
|
|
|
13 |
|
00:01:24,660 --> 00:01:31,440 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ููุ ูู ุงูุนูุงุตุฑ Y ุฃู ุงุญูุง ูุงูุช T |
|
|
|
14 |
|
00:01:31,440 --> 00:01:40,880 |
|
ู
ู ูู ุงูุนูุงุตุฑ ุฅูุด ุจุฌููุง ูููู ูู T ู
ู A ุฅูู ุฃู T |
|
|
|
15 |
|
00:01:40,880 --> 00:01:45,660 |
|
ูุงูุช ู
ู ููู ุฅูู ูููุ ู
ู ู
ุตู
ู
ุฉ M22 ุฅูู M22 ู
ุด ูููุ |
|
|
|
16 |
|
00:01:45,660 --> 00:01:54,760 |
|
ู
ู M22 ุฅูู M22ุ ุจูู ุจุงุฌู ุจููู ูู ุงูู
ุตูููุงุช B ุงููู |
|
|
|
17 |
|
00:01:54,760 --> 00:02:04,580 |
|
ู
ูุฌูุฏุฉ ูู ุงูู M22 such that ุงูู B ุชุณุงูู T of A for |
|
|
|
18 |
|
00:02:04,580 --> 00:02:09,200 |
|
some A |
|
|
|
19 |
|
00:02:09,200 --> 00:02:16,080 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงูู M22ุ ู
ุด ูููุ ุนุงุฑู ุงูู rangeุ ูุจูู ูู |
|
|
|
20 |
|
00:02:16,080 --> 00:02:21,260 |
|
ุงูู
ุตูููุงุช ุงููู ู
ูุฌูุฏุฉ ูู ู
ุฌู
ูุนุฉ ุงูู
ุตูููุงุช M22 |
|
|
|
21 |
|
00:02:21,260 --> 00:02:27,120 |
|
ูุงููู ุตูุฑุชูุง ุชููู T of A ุจุญูุซ ุงูู A some |
|
|
|
22 |
|
00:02:27,120 --> 00:02:32,980 |
|
element ู
ูุฌูุฏ ูู M22ุ ูุจูู ูุฐุง ุงูุชุนุฑูู ุงูุนุงู
ูู
ููุ |
|
|
|
23 |
|
00:02:32,980 --> 00:02:37,200 |
|
ููู range ุชุจุนุชูุ ุจุฏูุง ููุฌู ูุทุจู ูุฐุง ุงูุชุนุฑูู ููุดูู |
|
|
|
24 |
|
00:02:37,200 --> 00:02:42,000 |
|
ุจุฏู ุฃูุตููู ุฅูู ูููุ ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูู |
|
|
|
25 |
|
00:02:42,000 --> 00:02:48,420 |
|
ุงูู
ุตูููุงุช B ุงููู ู
ูุฌูุฏุฉ ูู ุงูู M22 such that ุฃู ุงูู B |
|
|
|
26 |
|
00:02:48,420 --> 00:02:55,380 |
|
ุชุณุงูู T of A ุญุณุจ ุงูุชุนุฑูู ูููุง ููู ุงููู ูู A ุฒุงุฆุฏ A |
|
|
|
27 |
|
00:02:55,380 --> 00:03:02,720 |
|
transpose for some A ุงููู ู
ูุฌูุฏุฉ ูู ุงูู M22 |
|
|
|
28 |
|
00:03:04,900 --> 00:03:10,560 |
|
ุทูุจ ุจุฏู ุฃุนุฑู ู
ูู ูู ุงูู B ูุฐูุ ุทูุจ |
|
|
|
29 |
|
00:03:10,560 --> 00:03:15,800 |
|
ุฅูุด ุฑุงูู ูู ุฃุฎุฏุช transpose ููุทุฑูููุ ูุจูู ูุฐู ุจุฏุฃุช |
|
|
|
30 |
|
00:03:15,800 --> 00:03:21,200 |
|
ุชุณุงูู ูู ุงูู
ุตูููุงุช B ุงููู ู
ูุฌูุฏุฉ ูู ุงูู M22 such |
|
|
|
31 |
|
00:03:21,200 --> 00:03:28,420 |
|
that B transpose ุจุฏู ูุณุงูู A ุฒุงุฆุฏ A transpose ููู |
|
|
|
32 |
|
00:03:28,420 --> 00:03:34,320 |
|
ุงูู transposeุ ูุจูู for some A ุงููู ู
ูุฌูุฏุฉ ูู ุงูู M22 |
|
|
|
33 |
|
00:03:34,980 --> 00:03:39,520 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูู ุงูู
ุตูููุงุช B ุงููู |
|
|
|
34 |
|
00:03:39,520 --> 00:03:46,400 |
|
ู
ูุฌูุฏุฉ ูู ุงูู M22 such that ุงูู BT ุชุณุงูู ูุชุฑุงูุณุจูุฒ |
|
|
|
35 |
|
00:03:46,400 --> 00:03:50,900 |
|
ุจุชุฌู ุชุฑุงูุณุจูุฒ ุนูู ุงูุฃููู ุฒุงุฆุฏ ุชุฑุงูุณุจูุฒ ุนูู ู
ูุ ุนูู |
|
|
|
36 |
|
00:03:50,900 --> 00:03:57,060 |
|
ุงูุชุงููุฉ ูุจูู ุงูู A transpose ุฒุงุฆุฏ ูุฐู A ุชุฑุงูุณุจูุฒ |
|
|
|
37 |
|
00:03:57,060 --> 00:04:01,560 |
|
ุชุฑุงูุณุจูุฒ ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ููุ ุงูู A itself ูุจูู ุงูู |
|
|
|
38 |
|
00:04:01,560 --> 00:04:07,940 |
|
A itselfุ ุทูุจ ูุฐู ุงูู A ุฒู A ุชุฑุงูุณุจูุฒ ู
ุด ูู ูุฐู ุงููู |
|
|
|
39 |
|
00:04:07,940 --> 00:04:14,050 |
|
ูููุ ูุจูู ูุฃูู ุจู ุชุฑุงูุณููุณ ุจุฏู ุชุณุงูู ู
ู Bุ ูุจูู |
|
|
|
40 |
|
00:04:14,050 --> 00:04:19,130 |
|
ู
ุนูุงุชู ูู ู
ุฌู
ูุนุฉ ุงู symmetric matricesุ ูุจูู ุงูู |
|
|
|
41 |
|
00:04:19,130 --> 00:04:24,250 |
|
kernel ูู ุงู skew symmetric matrices ูุงู range |
|
|
|
42 |
|
00:04:24,250 --> 00:04:29,610 |
|
ูู ุงู symmetric matricesุ ูุจูู for some A ุงููู |
|
|
|
43 |
|
00:04:29,610 --> 00:04:37,240 |
|
ู
ูุฌูุฏุฉ ูู M22ุ ูุจูู ูุฐุง ุจุฏู ูุณุงูู the set of all |
|
|
|
44 |
|
00:04:37,240 --> 00:04:41,740 |
|
symmetric |
|
|
|
45 |
|
00:04:41,740 --> 00:04:53,260 |
|
matrices in M22ุ ูุจูู ู
ุฌู
ูุนุฉ ุงูู symmetric matrices |
|
|
|
46 |
|
00:04:53,260 --> 00:04:58,460 |
|
ูู M22ุ ุงูุชูููุง ู
ู ุงูู
ุซุงู ุงูุฃููุ ุจุฏูุง ูุฑูุญ ุงูุขู |
|
|
|
47 |
|
00:04:58,460 --> 00:05:03,140 |
|
ููู
ุซุงู ุงูุซุงููุ ูุจูู ุจุงูุฏุงุฎู example 2 |
|
|
|
48 |
|
00:05:07,440 --> 00:05:19,080 |
|
ุงูู
ุซุงู ุงูุซุงูู ุจูููู let ุงูู A be an m ูู n matrix |
|
|
|
49 |
|
00:05:19,080 --> 00:05:23,040 |
|
define |
|
|
|
50 |
|
00:05:23,040 --> 00:05:32,300 |
|
ุนุฑูููุง ุงูู mappingุ define |
|
|
|
51 |
|
00:05:32,300 --> 00:05:33,280 |
|
ุงูู mapping |
|
|
|
52 |
|
00:05:36,620 --> 00:05:46,920 |
|
ู
ู RN ุฅูู RM by T |
|
|
|
53 |
|
00:05:46,920 --> 00:05:57,420 |
|
of X ุจุฏู ูุณุงูู ุงููู ูู ุงู AXุ where ุงูู X ุงููู ูู ุงูู |
|
|
|
54 |
|
00:05:57,420 --> 00:06:05,400 |
|
column matrix X1 X2 ููุถู ู
ุงุดููู ูุบุงูุฉ ุงูู XN |
|
|
|
55 |
|
00:06:07,700 --> 00:06:20,100 |
|
is a column vectorุ ุงูู
ุทููุจ |
|
|
|
56 |
|
00:06:20,100 --> 00:06:31,360 |
|
ูู
ุฑุฉ Aุ show that ุจูููู ุฃู ุงูู T is a linear |
|
|
|
57 |
|
00:06:31,360 --> 00:06:45,120 |
|
transformationุ ูู
ุฑุฉ Bุ Find ุงูู kernel ููู Tุ ูู
ุฑุฉ |
|
|
|
58 |
|
00:06:45,120 --> 00:06:50,620 |
|
Cุ Find |
|
|
|
59 |
|
00:06:50,620 --> 00:06:54,240 |
|
the |
|
|
|
60 |
|
00:06:54,240 --> 00:07:06,000 |
|
range of T ุงููู ูู R of Tุ ูู
ุฑุฉ |
|
|
|
61 |
|
00:07:06,000 --> 00:07:15,580 |
|
Dุ show that ุฃู |
|
|
|
62 |
|
00:07:15,580 --> 00:07:23,860 |
|
ุงูู T of X ุจุฏู ูุณุงูู ุงู AX ู |
|
|
|
63 |
|
00:07:23,860 --> 00:07:35,620 |
|
ุงูููุ define a linear transformation from R |
|
|
|
64 |
|
00:07:35,620 --> 00:07:36,200 |
|
N |
|
|
|
65 |
|
00:08:01,390 --> 00:08:10,350 |
|
RMุ ุณุคุงู ู
ุฑุฉ ุซุงููุฉุ ุจูููู ุงูุชุฑุถ ุฃู T ู
ู Rn ุฅูู Rm |
|
|
|
66 |
|
00:08:10,350 --> 00:08:16,350 |
|
ุนุฑููุงูุงุ ุฃูู ุดูุก ุงูู A be an m by n matrixุ ูุจูู ุฃุฎุฐูุง ู
ุตููุฉ |
|
|
|
67 |
|
00:08:16,350 --> 00:08:22,490 |
|
ูุธุงู
ูุง M ูู Nุ define a mappingุ ุนุฑููุง function ู
ู |
|
|
|
68 |
|
00:08:22,490 --> 00:08:27,970 |
|
ุงูู vector space Rn ุฅูู ุงูู vector space Rm by T of |
|
|
|
69 |
|
00:08:27,970 --> 00:08:33,970 |
|
capital X ุจุฏู ูุณุงูู Axุ ุงูุดูู ููุง ูุนูู ุญุงุตู ุถุฑุจ |
|
|
|
70 |
|
00:08:34,480 --> 00:08:39,860 |
|
ุงูู
ุตูููุฉ ุงููู ูุธุงู
ูุง M ูู N ูู ุงูู
ุตููุฉ ุงูุนู
ูุฏูุฉ |
|
|
|
71 |
|
00:08:39,860 --> 00:08:45,060 |
|
ุงููู ูู Xุ ูู ุงูู
ุตููุฉ ุงูุนู
ูุฏูุฉุ ู
ุตููุฉ ู
ูููุฉ ู
ู N ู
ู |
|
|
|
72 |
|
00:08:45,060 --> 00:08:50,340 |
|
ุงูุตููู ูุนู
ูุฏ ูุงุญุฏุ ูุจูู ููุง ูููุง ุงูู X ุฏู is a |
|
|
|
73 |
|
00:08:50,340 --> 00:08:55,080 |
|
column vectorุ ูุจูู ู
ุชุฌู ุนู
ูุฏูุ ูุนูู ู
ุตููุฉ ู
ูููุฉ ู
ู |
|
|
|
74 |
|
00:08:55,080 --> 00:09:00,230 |
|
ุนู
ูุฏ ูุงุญุฏ ููููุง ู
ุฌู
ูุนุฉ ู
ู ุงูุตูููุ ุจูุงุก ุนูู ูุฐุง |
|
|
|
75 |
|
00:09:00,230 --> 00:09:03,790 |
|
ุงูุชุนุฑููุ ุจุฏู ุฃุซุจุช ุฃู T ูู linear transformation |
|
|
|
76 |
|
00:09:03,790 --> 00:09:08,270 |
|
ูุนูู ุฅูุด ุจุฏู ุฃุญููุ ุงูุดุฑุทูู ุชุจุนุงุช ุงูู linear |
|
|
|
77 |
|
00:09:08,270 --> 00:09:12,530 |
|
transformationุ ุฃู
ุฑ ุซุงููุ ุจุฏู ุฃุฌูุจูุง ูู kernelุ ุจุฏู |
|
|
|
78 |
|
00:09:12,530 --> 00:09:16,770 |
|
ุฃุนุฑู ูุฏุงุดุ ุงูุฃู
ุฑ ุงูุซุงูุซุ ุจุฏู ุฃุนุฑู ูุฏุงุด ุงูู range ุชุจุน |
|
|
|
79 |
|
00:09:16,770 --> 00:09:22,260 |
|
T ุงููู ุจูุฌู ูุฑู
ุฒ ูู R of Tุ ุชูุงุชุฉุ ุจุชุจูู Any Linear |
|
|
|
80 |
|
00:09:22,260 --> 00:09:29,000 |
|
Transformation ู
ู ุงูู RN ุฅูู ุงู RMุ ู
ู ุงูู RN ุฅูู ุงูู |
|
|
|
81 |
|
00:09:29,000 --> 00:09:34,100 |
|
RM ูู ุนูู ุงูุดูู ุงููู ุนูุฏูุง ุฏุงุฆู
ุงุ ุฃู ุจุฏุงูุฉ T of X ุจุฏู |
|
|
|
82 |
|
00:09:34,100 --> 00:09:40,700 |
|
ุฃุณุงูู ุญุงุตู ุถุฑุจ ุงูู
ุตููุฉ A ูู ุงูู
ุตููุฉ ุงูุนู
ูุฏูุฉ Xุ ูุจูู |
|
|
|
83 |
|
00:09:40,700 --> 00:09:44,820 |
|
ุนูุฏูุง ุฃุฑุจุนุฉ ู
ุทุงููุจุ ุจุฏูุง ูุจุฏุฃ ูุญุณุจ ูู ู
ุทููุจ ู
ู ูุฐู |
|
|
|
84 |
|
00:09:44,820 --> 00:09:51,110 |
|
ุงูู
ุทุงููุจ ุงูุฃุฑุจุนุฉุ ุจูุฌู ููู
ุทููุจ ุงูุฃูู ุงููู ูู ุจุฏู |
|
|
|
85 |
|
00:09:51,110 --> 00:09:56,430 |
|
ุฃุซุจุช ุฃู T ุนุจุงุฑุฉ ุนู Linear Transformation |
|
|
|
86 |
|
00:10:05,420 --> 00:10:08,340 |
|
ูุจูู ุจุฏู ุฃุซุจุช ุฃูู ุดูุก ุฃู ูุงุฏ ุงูู T Linear |
|
|
|
87 |
|
00:10:08,340 --> 00:10:12,340 |
|
Transformationุ ูุจูู ุจุฏู ุงุฎุฐ element ู
ู ุงูู set of |
|
|
|
88 |
|
00:10:12,340 --> 00:10:15,980 |
|
real numbersุ ุงูู scalar ูุนููุ ู element ู
ู ุงูู |
|
|
|
89 |
|
00:10:15,980 --> 00:10:21,680 |
|
vector ุงููู ูู ู
ู RN ูุฃุดูู ุญุงุตู ุถุฑุจู ู
ุนุงู ููู |
|
|
|
90 |
|
00:10:21,680 --> 00:10:29,040 |
|
ุจุฏู ููุฏูููุ ูุจูู ุจุงุฌู ุจููู ููุง Fุ ุงูู C ู
ูุฌูุฏุฉ ูู ุงูู |
|
|
|
91 |
|
00:10:29,040 --> 00:10:39,260 |
|
R and ุนูู ุณุจูู ุงูู
ุซุงู ุงูู X ู
ูุฌูุฏุฉ ูู ุงูู RNุ ุงูู X |
|
|
|
92 |
|
00:10:39,260 --> 00:10:48,280 |
|
ูุฐุง ุจูุฏุฑ ุงูุชุจู ุนูู ุดูู X1 ู X2 ููุบุงูุฉ XNุ ุฃู ุจูุฏุฑ |
|
|
|
93 |
|
00:10:48,280 --> 00:10:56,000 |
|
ุงูุชุจู ุนูู ุดูู ู
ุตูููุฉ ุนู
ูุฏูุฉ X1 X2 ูุบุงูุฉ XN ุจุงูุดูู |
|
|
|
94 |
|
00:10:56,000 --> 00:11:05,790 |
|
ุงููู ุนูุฏูุง ููุงุ ุทูุจ ุฃูุง ุจุฏู ุงุฎุฐ T of CX ุจุฏู ุฃุญุงูู |
|
|
|
95 |
|
00:11:05,790 --> 00:11:13,010 |
|
ุฃุซุจุช ุฃู ูุฐุง ุจุฏู ูุณุงูู C ูู T of Xุ ุจุฑุฌุน ููุชุนุฑูู ุงููู |
|
|
|
96 |
|
00:11:13,010 --> 00:11:17,850 |
|
ุฃูุง ูุงููุงูุ ูุจูู ุทุจูุง ููุฐุง ุงูุชุนุฑูู ูุฐุง ุจุฏู ูุณุงูู |
|
|
|
97 |
|
00:11:17,850 --> 00:11:26,600 |
|
ุงูู
ุตูููุฉ A ูู C of Xุ ูุฃู C ูุฐุง scalar ุฅุฐุง ุจูุฏุฑ ุฃุทูุนู |
|
|
|
98 |
|
00:11:26,600 --> 00:11:32,980 |
|
ุจุฑุง ุงู T ุฃู ุจูุฏุฑ ุฃุทูุนู ุจุฑุง ุญุงุตู ุถุฑุจ ุงูู
ุตููููุ ูุจูู |
|
|
|
99 |
|
00:11:32,980 --> 00:11:39,290 |
|
ูุฐุง C ูู ุงู AX ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุ ูุจูู ูุฐุง |
|
|
|
100 |
|
00:11:39,290 --> 00:11:44,390 |
|
ุงูููุงู
ุจุฏู ูุณุงูู Cุ ุงู AX ุนุจุงุฑุฉ ุนู ู
ูู ุญุณุจ ุงูู |
|
|
|
101 |
|
00:11:44,390 --> 00:11:50,290 |
|
definition ุงููู ุนูุฏู T of Xุ ูุจูู C ูู T of X |
|
|
|
102 |
|
00:11:54,650 --> 00:11:59,950 |
|
ูุจูู T of Xุ ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ T ูู C of X ูุณุงูู |
|
|
|
103 |
|
00:11:59,950 --> 00:12:03,910 |
|
C ูู T of Xุ ุฅุฐุง ุชุญูู ุงู condition ุงูุฃูู ุฃู |
|
|
|
104 |
|
00:12:03,910 --> 00:12:08,090 |
|
ุงูุฎุงุตูุฉ ุงูุฃููู ู
ู ุฎุงุตุฉ Linear Transformationุ ูุจูู |
|
|
|
105 |
|
00:12:08,090 --> 00:12:12,350 |
|
ูุฐู ู
ู ูุฐู ุงูุฎุงุตูุฉ ุงูุฃูููุ ุจุฏุฃุฌู ููุฎุงุตูุฉ ุงูุซุงููุฉุ |
|
|
|
106 |
|
00:12:12,350 --> 00:12:17,630 |
|
ุจุฏุฃ ุขุฎุฐ two vectorsุ ูุจูู ุจุฏุฃุฌู ุฃููู ูู let X ู Y |
|
|
|
107 |
|
00:12:17,630 --> 00:12:23,830 |
|
ู
ูุฌูุฏุฉ ูู ุงูู vector space RN |
|
|
|
108 |
|
00:12:25,570 --> 00:12:32,460 |
|
ุจุชุงุฎุฏ T of X ุฒุงุฆุฏ Y ูุณุงููุ ุจูุงุก ุนูู ุงูู definition |
|
|
|
109 |
|
00:12:32,460 --> 00:12:37,080 |
|
ุชุงุจุนูุงูุงุ ูุฐุง ุจูููู ุงูู
ุตูููุฉ a ูู ุงูู vector x ุฒุงุฆุฏ |
|
|
|
110 |
|
00:12:37,080 --> 00:12:45,220 |
|
yุ ูุจูู a ูู ุงูู vector x ุฒุงุฆุฏ yุ ูุฐุง ุญุณุจ ุฎูุงุต ุนู
ููุฉ |
|
|
|
111 |
|
00:12:45,220 --> 00:12:52,720 |
|
ุงูุชูุฒูุน ุนูู ุงูู
ุตูููุงุชุ ูุจูู ูุฐุง ุจูููู ax ุฒุงุฆุฏ ay |
|
|
|
112 |
|
00:12:52,720 --> 00:13:00,820 |
|
ูุฐุง ุชุนุฑูู ู
ู ุงูู T of x ููุฐุง ุชุนุฑูู ุงูู T of yุ ูุจูู |
|
|
|
113 |
|
00:13:00,820 --> 00:13:05,420 |
|
ุชุญูู ุงู condition ุงูุซุงูู ููุง ูุงุ ูุจูู ุจูุงุก ุนููู so |
|
|
|
114 |
|
00:13:05,420 --> 00:13:12,940 |
|
T is a linear transformationุ ุฅุฐุง ุงูุชูููุง ู
ู ุงูู
ุทููุจ |
|
|
|
115 |
|
00:13:12,940 --> 00:13:17,780 |
|
ุงูุฃูู ุงููู ูู ูู
ุฑุง Aุ ูู
ุฑุง B ูุงู ูุงุชู ุงูู kernel |
|
|
|
116 |
|
00:13:17,780 --> 00:13:24,300 |
|
ุงูุชูุ ุจุงุฌู ุจููู ูู ุงูู kernel ุงูุชู ุญุณุจ ุงูู definition |
|
|
|
117 |
|
00:13:24,300 --> 00:13:30,020 |
|
ูู ู
ููุ ูู ูู ุงูู X ุงููู ู
ูุฌูุฏุฉ ูู ุงูู vector space |
|
|
|
118 |
|
00:13:30,020 --> 00:13:37,820 |
|
RN ุจุญูุซ ุฃู T of X ุจุฏู ุชุณุงูู 00ุ ุงูู 0ุ 0 ุชุจุน ู
ููุ |
|
|
|
119 |
|
00:13:39,260 --> 00:13:45,800 |
|
ุชุจุน RM ู
ุด ูููุ ุนุฑููุง ุงูู kernel ูู ุงูู vectors ุงููู |
|
|
|
120 |
|
00:13:45,800 --> 00:13:49,240 |
|
ูู ุงูู vector space ุงูุฃูู ูุงููู ุตูุฑุชูู
ุจูููู ุงูู |
|
|
|
121 |
|
00:13:49,240 --> 00:13:54,920 |
|
zero ุชุจุน ุงูู vector space ุงูุซุงููุ ุชู
ุงู
ุ ูุจูู ููุง ูู |
|
|
|
122 |
|
00:13:54,920 --> 00:13:59,940 |
|
ุงูู X ุงููู ู
ูุฌูุฏุฉ ูู RN ุจุญูุซ ุฃู T of X ุจุฏู ูุณุงูู |
|
|
|
123 |
|
00:13:59,940 --> 00:14:05,510 |
|
zeroุ ูุจูู ูุฐุง ุจุฏู ูุณุงูู ูู ุงูู X ุงููู ู
ูุฌูุฏุฉ ูู RN |
|
|
|
124 |
|
00:14:05,510 --> 00:14:09,730 |
|
such that |
|
|
|
125 |
|
00:14:09,730 --> 00:14:15,570 |
|
ุงูู T of X ุญุณุจ ุงูู definition ู
ููุ ุงูู AX ุจุฏู ูุณุงูู |
|
|
|
126 |
|
00:14:15,570 --> 00:14:19,570 |
|
Zero ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุ ูุจูู ูุฐุง ุฅูุด ู
ุนูุงู ูุง |
|
|
|
127 |
|
00:14:19,570 --> 00:14:29,800 |
|
ุจูุงุชุ ูู ุงูู X ุงููู ู
ูุฌูุฏุฉ ูู RN ูุนูู column vectors |
|
|
|
128 |
|
00:14:29,800 --> 00:14:34,740 |
|
ู
ุง ููู
ุจุญูุซ ุงูู X ูุณุงูู Zeroุ ูุนูู ูุฐุง ุจูุนุทููุง ู
ููุ |
|
|
|
129 |
|
00:14:34,740 --> 00:14:41,020 |
|
ู
ุฌู
ูุนุฉ ุงูุญููู ุงูู homogenous systemุ ู
ุธุจูุทุ ูุจูู ูุฐุง |
|
|
|
130 |
|
00:14:41,020 --> 00:14:52,500 |
|
ู
ุนูุงู ุงููู ูู the set of all solutions of the |
|
|
|
131 |
|
00:14:54,210 --> 00:15:04,170 |
|
homogeneous systemุ ุงูู AX ุจุฏู ูุณุงูู ู
ู Zeroุ ุดู ุดูููู
ุ |
|
|
|
132 |
|
00:15:04,170 --> 00:15:09,510 |
|
ุฅูุด ู
ุง ูููู ููููุ ูุจูู ู
ุฌู
ูุนุฉ ูู ุงูุญููู ููููู
ูุฌูููุง |
|
|
|
133 |
|
00:15:09,510 --> 00:15:15,170 |
|
ุณูุณุชู
ุ ูู
ุญู ููููู
ูุฌูููุง ุณูุณุชู
ุ ุฃู
ุง ุญู ูุงุญุฏ ูู |
|
|
|
134 |
|
00:15:15,170 --> 00:15:20,370 |
|
ุงูุญู ุงูุตูุฑู ุฃู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญูููุ ููุฐุง ุงูุนุฏุฏ |
|
|
|
135 |
|
00:15:20,370 --> 00:15:24,550 |
|
ุงูููุงุฆู ูุฌุชู
ุน ุนุงูู
ูุง ุนูู ุงูุญู ุงูุตูุฑู ููุณูุ ุทูุจ ู
ุง |
|
|
|
136 |
|
00:15:24,550 --> 00:15:29,470 |
|
ุนูููุงุ ูุจูู ุญุณุจูุง ูู ููุฑููุ ูุจูู ููุฑูู ุชุจุน ูุฐู ุงูู |
|
|
|
137 |
|
00:15:29,470 --> 00:15:35,710 |
|
function ูู ูู ุงูุญููู ููู homogenous systemุ X ุจุฏู |
|
|
|
138 |
|
00:15:35,710 --> 00:15:42,480 |
|
ูุณุงูู ู
ุงูุ ุจุฏู ูุณุงูู Zeroุ ุทูุจ ูู
ุฑุฉ ุงูู Cุ ูู
ุฑุง ุณูุฌุง |
|
|
|
139 |
|
00:15:42,480 --> 00:15:46,460 |
|
ุงููู ูุชูุงูู ุงูู range ุชุจุน ุงูู Tุ ุจุงุฌู ุจููู ูู ุงูู range |
|
|
|
140 |
|
00:15:46,460 --> 00:15:55,530 |
|
ุชุจุน ุงูู T ูู ู
ููุ ูู ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูู ุงูู RM |
|
|
|
141 |
|
00:15:55,530 --> 00:16:02,990 |
|
ูุจูู ูู ุงูู vectors Y ุงููู ู
ูุฌูุฏุฉ ูู ุงูู RM ุจุญูุซ ุฃู |
|
|
|
142 |
|
00:16:02,990 --> 00:16:12,250 |
|
ุงูู Y ูุฐู ุจุฏูุง ุชุณุงูู T of X for some X ุงููู ู
ูุฌูุฏุฉ |
|
|
|
143 |
|
00:16:12,250 --> 00:16:19,660 |
|
ูู ุงูู RN ู
ุด ูููุ ุชุนุฑูู ุงูู rangeุ ู
ุธุจูุทุ ูู ุงูุนูุงุตุฑ |
|
|
|
144 |
|
00:16:19,660 --> 00:16:27,220 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงูู domain RM ูุงููู ุฅููุง ุฃุตู ูู ุงูู |
|
|
|
145 |
|
00:16:27,220 --> 00:16:33,980 |
|
domain RMุ ุทูุจ ุชู
ุงู
ุชู
ุงู
ุ ูุจูู ูุฐู ุจุฏู ุฃุนูุฏ ุตูุงุบุชูุง |
|
|
|
146 |
|
00:16:33,980 --> 00:16:40,080 |
|
ู
ุฑุฉ ุซุงููุฉ ูุจููู ูู ุงูู Y ุงููู ู
ูุฌูุฏุฉ ูู RM such |
|
|
|
147 |
|
00:16:40,080 --> 00:16:44,680 |
|
that ุงูู Y ุจุฏู ูุณุงูู T of X ุญุณุจ ุงูู definition ุจุฏู |
|
|
|
148 |
|
00:16:44,680 --> 00:16:55,850 |
|
ูุณุงูู ู
ููุ ุงูู AXุ ูู |
|
|
|
149 |
|
00:16:55,850 --> 00:17:03,470 |
|
ููู
ูุ for some X |
|
|
|
150 |
|
00:17:03,470 --> 00:17:10,830 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงูู RNุ ุฅุฐุงู ูู ุงูู Y ุงููู ู
ูุฌูุฏุฉ ูู |
|
|
|
151 |
|
00:17:10,830 --> 00:17:16,610 |
|
ุงูู RM ุจุญูุซ ุงูู Y ุนูู ุงูุดูู A of X for some X ุงููู |
|
|
|
152 |
|
00:17:16,610 --> 00:17:23,220 |
|
ู
ูุฌูุฏุฉ ูู ุงูู RNุ ูุนูู ุฅูุด ูุตุฏู ููููุ ูุจูู ูู ุงูููู
|
|
|
|
153 |
|
00:17:23,220 --> 00:17:28,840 |
|
ุงููู ูู Y ุจุญูุซ ุงูู non homogeneous system has a |
|
|
|
154 |
|
00:17:28,840 --> 00:17:35,440 |
|
solutionุ ู
ุงููุชุด ุญููู ูุฐุง ุงู system ูุฃุ ูุจูู ุจุงุฌู |
|
|
|
155 |
|
00:17:35,440 --> 00:17:43,740 |
|
ุจููู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู the set of all elements |
|
|
|
156 |
|
00:17:45,790 --> 00:17:58,650 |
|
Y ุงูู
ูุฌูุฏุฉ ูู ุงูู RM such that ุจุญูุซ ุฃู ุงูู system |
|
|
|
157 |
|
00:17:58,650 --> 00:18:05,290 |
|
AX ูุณุงูู Y has a solution |
|
|
|
158 |
|
00:18:12,620 --> 00:18:17,080 |
|
ูุนูู ุงูู
ูุตูุฏ ุจูุฐุง ุงูุญู ุงูู Y's ููุง ุงูู X'sุ |
|
|
|
159 |
|
00:18:17,080 --> 00:18:23,820 |
|
ุงูุฅุฌุงุจุฉ ุงูู Y'sุ ูุฃู ูุฐุง ุงูู non homogeneous system |
|
|
|
160 |
|
00:18:23,820 --> 00:18:27,720 |
|
ูุฏ ูููู ูู ุญู ููุฏ ูุง ูููู ูู ุญูุ ู
ุด ูููุ ุฏู ุงููู |
|
|
|
161 |
|
00:18:27,720 --> 00:18:31,320 |
|
ุฃุฎุฐูุงู ูุจู ูุฏู ุฃู ุงูู non homogeneous system ู
ู
ูู |
|
|
|
162 |
|
00:18:31,320 --> 00:18:36,320 |
|
ูููู ู
ุงููุด ุญููู ูู
ู
ูู ูููู ุญู ูุญูุฏ ูู
ู
ูู ูููู |
|
|
|
163 |
|
00:18:36,320 --> 00:18:41,770 |
|
ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญูููุ ูุฐุง ู
ุง ุชููููุ ูู ุงูุนูุงุตุฑ Y |
|
|
|
164 |
|
00:18:41,770 --> 00:18:45,670 |
|
ุจุญูุซ ุงูู system ูุฐุง ูู ุญูููุ ูุจูู ูู ู
ุงููุด ุญููู |
|
|
|
165 |
|
00:18:45,670 --> 00:18:51,910 |
|
ู
ุง ููู
ู
ุณุชุจุนุฏุฉ ูููุงุ ูุจูู ุณูุงุก ูุงู ุญู ูุงุญุฏ ุฃู ุนุฏุฏ |
|
|
|
166 |
|
00:18:51,910 --> 00:18:55,510 |
|
ูุง ููุงุฆู ู
ู ุงูุญูููุ ุนูู ูู ุงูุฃู
ุฑูู ุงูุฃู
ุฑ ุงูุฌูุงุจู ูุฃู |
|
|
|
167 |
|
00:18:55,510 --> 00:19:02,630 |
|
ูุฐุง ู
ุงููุด ุฌูุงุจ ุตุญูุญุ ุฅุฐุง ุทูุน ุงููุฑู ู
ุง ุจูู A ู Bุ ุงูู B |
|
|
|
168 |
|
00:19:02,630 --> 00:19:10,830 |
|
ูุง ุชุฑู subset ู
ู RN ููุง RMุ ู
ู ู
ููุ ู
ู RNุ ูุฐุง ุงูู |
|
|
|
169 |
|
00:19:10,830 --> 00:19:16,530 |
|
kernelุ ุทูุจ ุงูู range subset ู
ู ู
ููุ ู
ู RMุ ูุฃู ุงูู |
|
|
|
170 |
|
00:19:16,530 --> 00:19:22,110 |
|
range ุงูู
ุฏู ุงูุตูุฑ ุชุจุนุช ุงูุนูุงุตุฑุ ูุจูู ูู ุงูู RM ูู |
|
|
|
171 |
|
00:19:22,110 --> 00:19:25,910 |
|
ุงูู solutions ุชุจุน ุงูู homogeneous systemุ ุงูู solution |
|
|
|
172 |
|
00:19:25,910 --> 00:19:30,750 |
|
ูุนูู ููู
Xุ ูุงูู X ูููุง ููู ู
ูุฌูุฏุฉุ ุจุงููุณุจุฉ ููู RM |
|
|
|
173 |
|
00:19:30,750 --> 00:19:34,810 |
|
ูุจูู ูุฐุง ูุชูู ูููู
ูุง ุชู
ุงู
ุงุ ุงูู range ูููุง ูู ุฌุฒุก |
|
|
|
174 |
|
00:19:34,810 --> 00:19:38,490 |
|
ู
ู ุงูู RMุ ูุฐูู ูููุง ุงูู range ูู ุงูุนูุงุตุฑ ุงููู |
|
|
|
175 |
|
00:19:38,490 --> 0 |
|
|
|
201 |
|
00:22:52,300 --> 00:22:59,260 |
|
ูุนูู ููู ู
ูุฌูุฏ ูู ูุงุญุฏ ูููู
ุ ูู ุงูู R M ูุนูู ูุฃูู |
|
|
|
202 |
|
00:22:59,260 --> 00:23:05,500 |
|
ุงูุด A1 ู A2 ู
ูุตุฏู ุงูู A1 ุจุฏู ูุณุงูู X1 ู X2 ูุบุงูุฉ X |
|
|
|
203 |
|
00:23:05,500 --> 00:23:11,640 |
|
M ุชู
ุงู
ูุนูู ู
ูุฌูุฏ ูู ุงูู R M ุชู
ุงู
ุงูุชู
ุงู
ุทูุจ ูููุณ |
|
|
|
204 |
|
00:23:11,640 --> 00:23:17,420 |
|
ุงุญูุง ุนุงูุฒูู ุงูุงู ููู ุฃูุง ู
ุด ุณุงู
ุน ููู ุญุทุช ููุง AN ู
ุด |
|
|
|
205 |
|
00:23:17,420 --> 00:23:24,320 |
|
M ูู ูุงุญุฏ ูู
ุงุฐุง ุงูู
ูุฌูุฏุฉ ูู ุงูู R M ูู element |
|
|
|
206 |
|
00:23:24,320 --> 00:23:30,000 |
|
ู
ููู ู
ู M ู
ู ุงูุนูุงุตุฑ ุจุฏู ู
ุง ูู ุงูุฑูู
ุงูุฃูู ูุงุตู |
|
|
|
207 |
|
00:23:30,000 --> 00:23:34,060 |
|
ุงูุฑูู
ุงููู ูุชุจุชู ุนูู ุดูู ุนู
ูุฏ ู
ููู ู
ู M ู
ู ุงูุตููู |
|
|
|
208 |
|
00:23:34,060 --> 00:23:43,060 |
|
ู ุนู
ูุฏ ูุงุญุฏ ููุท ูุจูู ุฃููู ุฅู ูู ุงูู A N ูููู
R M |
|
|
|
209 |
|
00:23:43,060 --> 00:23:44,800 |
|
ูู one matrices |
|
|
|
210 |
|
00:23:50,880 --> 00:23:57,880 |
|
belongs to R M ูุจูู ูููุง ู
ูุฌูุฏุฉ ูู ุงูู R M ุจุงูุดูู |
|
|
|
211 |
|
00:23:57,880 --> 00:24:04,180 |
|
ุงููู ุนูุฏูุง ููุง ุงูุด ุจูููู ููุ ุจูููู ูู ูุฐู ุงูู T ุงููู ุฃูุช |
|
|
|
212 |
|
00:24:04,180 --> 00:24:09,300 |
|
ุฃุฎุฐุชูุง ู
ู ุงูู R N ููู R M ุจุฏู ุฃุซุจุช ุฅูู ุฏุงุฆู
ุง ู ุฃุจุฏุง |
|
|
|
213 |
|
00:24:09,300 --> 00:24:12,440 |
|
ุจูุฏุฑ ุฃูุชุจูุง ุนูู ู
ููุ ุนูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
214 |
|
00:24:12,440 --> 00:24:18,120 |
|
ูู
ูููู ุฃู ุฃุฑูุญ ุฃุฎุฏ element X ู
ูุฌูุฏ ูู R N ู ุฃุดูู ุดู |
|
|
|
215 |
|
00:24:18,120 --> 00:24:23,600 |
|
ุจุฏู ุฃุณุงูู ุฃูุง ุฅุฐุง ูู ุฌูุช ููุช ุฎุฏ ูู ุงูู X ุงููู ูู ุจุฏู |
|
|
|
216 |
|
00:24:23,600 --> 00:24:31,340 |
|
ุฃุณุงูู ู
ู X1 ู X2 ู ูุบุงูุฉ XM ุงูุฅูุณุงู ู
ูุฌูุฏ ูู ูู |
|
|
|
217 |
|
00:24:31,340 --> 00:24:38,430 |
|
ู
ูุงู ุจุงูู R N ูุนูู T ุจููุฏุฑ ูุคุซุฑ ุนููู ุญุชู ุฃููู T of X |
|
|
|
218 |
|
00:24:38,430 --> 00:24:44,210 |
|
ุจุฏู ุฃุซุจุช ุฃูู ุจุฏู ูุณุงูู main X ุทูุจ ูุฐุง ู
ุด ูุณุงูู |
|
|
|
219 |
|
00:24:44,210 --> 00:24:52,030 |
|
ู
ุฌู
ูุนุฉ ู
ู ุงูู vector X 1 ู 0 ู 0 ูุบุงูุฉ ุงูู 0 ุฒุงุฆุฏ 0 |
|
|
|
220 |
|
00:24:52,030 --> 00:24:59,490 |
|
ู X 2 ู 0 ู 0 ุฒุงุฆุฏ ู ุชุจูู ู
ุงุดูุฉ ูุบุงูุฉ ู
ุง ุชูุตู ุฅูู |
|
|
|
221 |
|
00:24:59,490 --> 00:25:07,910 |
|
0 ู 0 ู XN ููุง ูุฃ ูุจูู ูุฐุง ุงูุนูุตุฑ ูุชุจุชู ุนูู ุดูู |
|
|
|
222 |
|
00:25:07,910 --> 00:25:13,970 |
|
ู
ุฌู
ูุนุฉ ู
ู ู
ููุ ู
ู ุงูุนูุงุตุฑ ูุจูู ูู ุฌูุช ุฃุฎุฏุช x1 ุนุงู
ู |
|
|
|
223 |
|
00:25:13,970 --> 00:25:24,070 |
|
ู
ุดุชุฑู ุจูุธู ูุฏูุ 100 ุฒูุฏ x2 0 ู 1 ู 0 ู 0 ุฒูุฏ ุงู |
|
|
|
224 |
|
00:25:24,070 --> 00:25:32,910 |
|
ุจูุธู ู
ุงุดููู xn 0 ู 0 ู 1 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุจูู |
|
|
|
225 |
|
00:25:32,910 --> 00:25:38,350 |
|
ูุงุญุฏ ูููุฌูููุง ู
ููุ ุงูุฌูุฒ ูุนููู
ุงูุขู ุฃุฏุฑูุชู
ู
ุง ูู |
|
|
|
226 |
|
00:25:38,350 --> 00:25:43,410 |
|
ุงูุณุฑ ุงููู ุฎูุงูู ุฃุจุฏุฃ ุจู
ููุ ุจุงููุฑุถูุฉ ุงููู ุนูุฏูุง ูุฐู |
|
|
|
227 |
|
00:25:43,410 --> 00:25:50,630 |
|
ุชู
ุงู
ุ ูุจูู ูุฐู ูุฅูู ุงูู ูุง ุดุจุงุจุ ูุฅูู X1E1 ููุฐู |
|
|
|
228 |
|
00:25:50,630 --> 00:26:00,820 |
|
X2E2 ูุถูุช ู
ุงุดู ุฅูู ุบุงูุฉ XNEN ูุฐุง ู
ููุ ุงูู X ูุจูู |
|
|
|
229 |
|
00:26:00,820 --> 00:26:06,600 |
|
ุงูู X ุงููู ุนูุฏู ูุฐุง ูุชุจุชู ุนูู ุดูู linear |
|
|
|
230 |
|
00:26:06,600 --> 00:26:12,100 |
|
combination ู
ู ุนูุงุตุฑ ุงูู bases ุชู
ุงู
ุงูุงู T linear |
|
|
|
231 |
|
00:26:12,100 --> 00:26:17,560 |
|
transformation ุจุฏู ุฃุฎูููุง ุชุฃุซุฑ ุนูู ู
ููุ ุนูู X ูุจูู |
|
|
|
232 |
|
00:26:17,560 --> 00:26:22,800 |
|
ุจุงูุฏุงุฌู ูุงุฎุฏ ูู T of X ุงููู ุฃูุง ุจุฏูุฑ ุนูููุง ูุจูู |
|
|
|
233 |
|
00:26:22,800 --> 00:26:28,780 |
|
ุจุชุซูู T ููู
ูุฏุงุฑ ูุฐุง ููู ู ูุธุฑุง ูุฃููุง T Linear |
|
|
|
234 |
|
00:26:28,780 --> 00:26:36,600 |
|
Transformation ูุจูู ุจุชุตูุฑ T of X1 E1 ุฒุงุฆุฏ T of X2 |
|
|
|
235 |
|
00:26:36,600 --> 00:26:46,120 |
|
E2 ุฒุงุฆุฏ ุฒุงุฆุฏ T of X N E N ููุด ุงูููุงู
ูุฐุงุ since ูุฃู |
|
|
|
236 |
|
00:26:46,120 --> 00:26:54,420 |
|
T is a linear transformation ุทูุจ ู
ู ุฎูุงุต ุงูู |
|
|
|
237 |
|
00:26:54,420 --> 00:26:59,240 |
|
linear transformation ุงูุงู ุงูู E1 vector ุทุจ ู ุงูู X1 |
|
|
|
238 |
|
00:26:59,240 --> 00:27:14,240 |
|
vector ููุง scalar ุฃูู ุฎุงุตูุฉ ูุจูู ููุง X1 ูู T of E1 |
|
|
|
239 |
|
00:27:14,240 --> 00:27:25,130 |
|
ุฒุงุฆุฏ X2 ูู T of E2 ุฒุงุฆุฏ ุฒุงุฆุฏ XN ูู T of EN ูุจูู ูุฐุง |
|
|
|
240 |
|
00:27:25,130 --> 00:27:33,850 |
|
ุงูููุงู
ุจุฏู ูุณุงูู X1A1 ุฒู ุงูู X2A2 ุฒู ุงูู XNAN ุญุณุจ ู
ุง |
|
|
|
241 |
|
00:27:33,850 --> 00:27:39,110 |
|
ููุชุฑุถ ููู ุตุญูุญ ููุง ูุฃุ ุทูุจ ู ูููุง ุงูู A ูุงุช ู
ุงููู
|
|
|
|
242 |
|
00:27:39,110 --> 00:27:46,790 |
|
ูุฏููุ ู
ุตูููุงุช ูุจูู ูุฏูู ู
ุงููู
ู
ุตูููุงุช ุทูุจ ุณุคุงู ุฃููุณ |
|
|
|
243 |
|
00:27:46,790 --> 00:27:55,080 |
|
ูุฐุง ูู ุญุงุตู ุงูุถุฑุจ AXุ ุตุญ ููุง ูุฃุ ูุฃู ูุฐู ุงูู A |
|
|
|
244 |
|
00:27:55,080 --> 00:28:00,860 |
|
ู
ุตูููุงุช ุงููู ุนูุฏูุง ูุฐู ุชู
ุงู
ุ ูุฃูู ุงูุดุ ูุฃู ุงูู E1 |
|
|
|
245 |
|
00:28:00,860 --> 00:28:04,740 |
|
ู
ุตููุฉ ุนู
ูุฏ ุงูู A2 ู
ุตููุฉ ุนู
ูุฏ ุงูู A3 ู
ุตููุฉ ุนู
ูุฏ |
|
|
|
246 |
|
00:28:04,740 --> 00:28:05,160 |
|
ุงูู A4 ู
ุตููุฉ ุนู
ูุฏ ุงูู A5 ู
ุตููุฉ ุนู
ูุฏ ุงูู A6 ู
ุตููุฉ |
|
|
|
247 |
|
00:28:05,160 --> 00:28:05,180 |
|
ุนู
ูุฏ ุงูู A7 ู
ุตููุฉ ุนู
ูุฏ ุงูู A8 ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 |
|
|
|
248 |
|
00:28:05,180 --> 00:28:06,220 |
|
ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 ู
ุตููุฉ ุนู
ูุฏ |
|
|
|
249 |
|
00:28:06,220 --> 00:28:06,480 |
|
ุงูู A9 ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 ู
ุตููุฉ |
|
|
|
250 |
|
00:28:06,480 --> 00:28:09,080 |
|
ุนู
ูุฏ ุงูู A9 ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 |
|
|
|
251 |
|
00:28:09,080 --> 00:28:17,640 |
|
ู
ุตููุฉ ุนู
ูุฏ ุงูู A9 ู
ุธุจูุท ูุจูู ูุฐุง ุงูู AX where ุญูุซ ุงูู |
|
|
|
252 |
|
00:28:17,640 --> 00:28:25,440 |
|
A ูู ุงูู
ุตุญููุฉ ูุนู
ูุฏู a1 ู a2 ู ูุบุงูุฉ an ุจุงูุดูู |
|
|
|
253 |
|
00:28:25,440 --> 00:28:31,230 |
|
ุงููู ุนูุฏูุง ูุนูู ูู ูุงุญุฏ ู
ู A1 ู A2 ู AN ูู ุนู
ูุฏ |
|
|
|
254 |
|
00:28:31,230 --> 00:28:37,530 |
|
ูู
ูุ ููู
ุตูููุฉ A ูุจูู ู
ู ุงูุฃููุง ุณุงุนุฏูุง ุฃู Linear |
|
|
|
255 |
|
00:28:37,530 --> 00:28:41,930 |
|
transformation ู
ู ุงูู R N ุฅูู ุงูู R M ุชููู ุฏุงุฆู
ุง ู |
|
|
|
256 |
|
00:28:41,930 --> 00:28:48,150 |
|
ุฃุจุฏุง ุนูู ุงูุดูู T of X ุจูุณุงูู 100 ูุณุงูู AX ู ููุฐุง |
|
|
|
257 |
|
00:28:48,150 --> 00:28:54,340 |
|
ุญุฏ ูููู
ุจูุญุจ ูุณุฃู ุฃู ุณุคุงู ููุงุ ุทูุจ ุงูุชูููุง ู
ู |
|
|
|
258 |
|
00:28:54,340 --> 00:28:59,160 |
|
ุงูู
ุซุงู ุงูุซุงูู ุจุฏูุง ูุฑูุญ ููู
ุซุงู ุงูุซุงูุซ |
|
|
|
259 |
|
00:29:31,620 --> 00:29:39,580 |
|
Example 3 ุจูููู |
|
|
|
260 |
|
00:29:39,580 --> 00:29:52,620 |
|
Let T ู
ู R3 ูุบุงูุฉ R3 ุจู A linear transformation |
|
|
|
261 |
|
00:29:52,620 --> 00:30:05,450 |
|
defined by ู
ุนุฑูุฉ ุนูู ุงูุดูู ุงูุชุงูู T of X ูู ุนุจุงุฑุฉ |
|
|
|
262 |
|
00:30:05,450 --> 00:30:16,090 |
|
ุนู T R X1 ู X2 ู X3 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุจุฏู ูุณุงูู |
|
|
|
263 |
|
00:30:16,090 --> 00:30:25,630 |
|
ุญุงุตู ุถุฑุจ 101 112213 |
|
|
|
264 |
|
00:30:25,630 --> 00:30:36,400 |
|
ูู X1 X2 X3 ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุงูู
ุทููุจ ุงูุฃูู ูู
ุฑ |
|
|
|
265 |
|
00:30:36,400 --> 00:30:49,960 |
|
ุงูู find ุงูู Kernel ุงูุชู ู ุงูู dimension ููู Kernel |
|
|
|
266 |
|
00:30:49,960 --> 00:31:01,420 |
|
ุงูุชู ูู
ุฑ ุจูู find a basis |
|
|
|
267 |
|
00:31:07,180 --> 00:31:20,940 |
|
Find a basis for R of T ู ุงูู dimension ููู R of |
|
|
|
268 |
|
00:31:20,940 --> 00:31:24,660 |
|
T ูู
ุฑู |
|
|
|
269 |
|
00:31:24,660 --> 00:31:37,560 |
|
C Find T of ูุงุญุฏ ู ุงุชููู ู ุชูุงุชุฉ ูู
ุฑู D is the |
|
|
|
270 |
|
00:31:37,560 --> 00:31:44,220 |
|
element |
|
|
|
271 |
|
00:31:44,220 --> 00:31:53,860 |
|
ุงุชููู ู ุฎู
ุณุฉ ู ุณุจุนุฉ ู
ูุฌูุฏ ูู ุงูู R of T ุงู
ูุงุ |
|
|
|
272 |
|
00:32:14,190 --> 00:32:19,150 |
|
ุณุคุงู ู
ุฑุฉ ุซุงููุฉ ุทุจุนุง ุฒู ู
ุง ุฃูุชู
ุดุงูููู ู
ู ุณุคุงู ุฅูู |
|
|
|
273 |
|
00:32:19,150 --> 00:32:25,570 |
|
ุณุคุงู ุจุชุฎุชูู ุงูููุฑุฉ ุดููุฉ ุจูููู ุงูุชุฑุถ T ู
ู R3 ุฅูู R3 |
|
|
|
274 |
|
00:32:25,570 --> 00:32:31,130 |
|
ุจูู Linear Transformation ูุงุถุญ ู
ู R N ุฅูู R M ุงูุด |
|
|
|
275 |
|
00:32:31,130 --> 00:32:35,970 |
|
ุงุชูุงุฌูุง ุงููุตููู ุฏุงุฆู
ุง ู
ู T of X ุจุฏูู ูุณุงูู ู
ูุ ุจุฏูู |
|
|
|
276 |
|
00:32:35,970 --> 00:32:40,310 |
|
ูุณุงูู X ู
ู ุงูู
ุซุงู ุงููู ุฌุงุจ ูู ูุนูู ูุฃูู ุณุคุงููุง ูุฐุง ูู |
|
|
|
277 |
|
00:32:40,310 --> 00:32:45,150 |
|
ุชุทุจูู ุนู
ูู ุนูู ู
ูุ ุนูู ุงูู
ุซุงู ุงููู ุฌุงุจ ููุ ู
ุธุจูุทุ |
|
|
|
278 |
|
00:32:45,410 --> 00:32:49,930 |
|
ูุจูู ูุฃููุง ุจูุฃุฎุฐ ุฃู ู
ุซุงู ุนุฏุฏู ุชุทุจูู ุนูู ุงูู
ุซุงู |
|
|
|
279 |
|
00:32:49,930 --> 00:32:55,350 |
|
ุงููุธุฑู ุงููู ุฌุงุจ ูู ูุจูู ู
ุนุฑูุฉ ูุงูุชุงูู T of X ุงูู X |
|
|
|
280 |
|
00:32:55,350 --> 00:32:59,390 |
|
ูู ุงููู ู
ูุฌูุฏ ูู R3 ูุนูู T of X ูุงุญุฏ ู X ุงุชููู ู X |
|
|
|
281 |
|
00:32:59,390 --> 00:33:04,230 |
|
ุชูุงุชุฉ ุจุชูุชุจูู
ุนูู ุดูู ุนู
ูุฏ ูุจูู ูููู T of X ูุงุญุฏ X |
|
|
|
282 |
|
00:33:04,230 --> 00:33:10,470 |
|
ุงุชููู X ุชูุงุชุฉ ุจุฏู ูุณุงูู ุญุงุตู ุถุฑุจ ุงูู
ุตููุฉ A ุฃุฎุฐูุงูุง |
|
|
|
283 |
|
00:33:10,470 --> 00:33:14,430 |
|
ุจุงูุดูู ูุฐุง ูู X ุงููู ูู X ูุงุญุฏ ู X ุงุชููู ู X ุชูุงุชุฉ |
|
|
|
284 |
|
00:33:14,640 --> 00:33:17,780 |
|
ูุจูู ูุฐู ุงูู Linear Transformation ุงููู ุนูุฏูุง |
|
|
|
285 |
|
00:33:17,780 --> 00:33:21,580 |
|
ู
ุทููุจ ู
ู ูุฐู ุงูู Linear Transformation ูู ุชุจุฏุฃ ุงูู |
|
|
|
286 |
|
00:33:21,580 --> 00:33:25,730 |
|
Kernel ู ุจุฏู ุงูู dimension ููู Kernel ูุฃู Kernel ู
ุงูู |
|
|
|
287 |
|
00:33:25,730 --> 00:33:31,790 |
|
sub space ูุนูู Space ุจุฏู ุงูู dimension ูู ุฌุฏุงุด ุชููู |
|
|
|
288 |
|
00:33:31,790 --> 00:33:38,350 |
|
ุจุฏู basis ููู Range ุจุฏู ุงูู vectors ุงููู ุจููุฏููู ุงูู |
|
|
|
289 |
|
00:33:38,350 --> 00:33:42,650 |
|
Range ุชุจุน ู
ู ุงูู subspace R of T ู ุจุนุฏ ููู ุจุฏู ุงูู |
|
|
|
290 |
|
00:33:42,650 --> 00:33:47,570 |
|
dimension ูู
ุงู ููู R of T ูุนูู ูู ููุทุฉ ุฒู ู
ุง ุชูุงุญุธุช |
|
|
|
291 |
|
00:33:47,570 --> 00:33:50,730 |
|
ุจ main ุจู
ุทูุจูู ููู ุฅุฐุง ุฌุจุช ุงูู
ุทูุจ ุงูุฃูู ุจูุตูุฑ |
|
|
|
292 |
|
00:33:50,730 --> 00:33:55,160 |
|
ุงูู
ุทูุจ ุงูุชุงูู ุณูู ุชุญุตูู ุญุตู ุงูู
ุทููุจ ูู
ุฑู C ุจูููู |
|
|
|
293 |
|
00:33:55,160 --> 00:33:58,840 |
|
ูู ูุงุช ูู T of ูุงุญุฏ ู ุงุซููู ู ุชูุงุชุฉ ุจุชุนุฑู ูุฏุงุด ุตูุฑุฉ |
|
|
|
294 |
|
00:33:58,840 --> 00:34:03,340 |
|
ูุงุญุฏ ู ุงุซููู ู ุชูุงุชุฉ ุดู ุจุชุนุทููู ุงูุฃู
ุฑ ุงูุฑุงุจุน ุจูููู ูู |
|
|
|
295 |
|
00:34:03,340 --> 00:34:08,100 |
|
ูู ุงูุนูุตุฑ ูุฐุง ู
ูุฌูุฏ ูู ุงูู Range ุฃู
ูุงุ ุจูููู ูู |
|
|
|
296 |
|
00:34:08,100 --> 00:34:13,400 |
|
ุงููู ุฃุนูู
ูุจูู ุจุฏุฌู ููููุทุฉ ุงูุฃููู ุงููู ูู A ูุงู |
|
|
|
297 |
|
00:34:13,400 --> 00:34:18,280 |
|
ูู ูุงุช ูู ุงูู Kernel ุจูููู ูู ูุจู ุงูู Kernel ุฎูููู ุฃุญุท |
|
|
|
298 |
|
00:34:18,280 --> 00:34:24,740 |
|
ูุฐู ูู ุดูู ุฃูุทู ู
ู ููู ุดููุฉ ุจููููู ููู ุจููููู ููุชู |
|
|
|
299 |
|
00:34:24,740 --> 00:34:35,180 |
|
of X1 X2 X3 ูู
ุตูููุฉ ุงูุดูู ุงููู ุนูุฏูุง ุชู
ุงู
ุ ุจุฏู |
|
|
|
300 |
|
00:34:35,180 --> 00:34:41,490 |
|
ูุณุงูู ุญุงุตู ุถุฑุจ ูุฏูู ุทุจ ู
ุถุฑุจูู
ูู ุจุนุถ ู
ุงุดู ูุจูู ูู |
|
|
|
301 |
|
00:34:41,490 --> 00:34:45,690 |
|
ุฑูุญุช ุถุฑุจุชูู
ูู ุจุนุถ ุจูููู ูู
ูู ุงูุตู ุงูุฃูู ูู ุงูุนู
ูุฏ |
|
|
|
302 |
|
00:34:45,690 --> 00:34:54,690 |
|
ุงูุฃูู ูุจูู X1 ุฒุงุฆุฏ X3 ุงูุตู ุงูุซุงูู ูุจูู X1 ุฒุงุฆุฏ X2 |
|
|
|
303 |
|
00:34:54,690 --> 00:35:08,130 |
|
ุฒุงุฆุฏ 2X3 ุงูุตู ุงูุชุงูุช 2X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3X3 ูุงู |
|
|
|
304 |
|
00:35:08,130 --> 00:35:13,070 |
|
ุถุฑุจูุงูุง ูุจูู ูุฐุง ุงูู Linear transformation ุงูู
ุนุฑูุฉ ุนูู |
|
|
|
305 |
|
00:35:13,070 --> 00:35:21,360 |
|
ุฌุงูู ูุงุชู ุงูู Kernel ุจุงุฌู ุจูููู ุงู ุงูู Kernel ุงูุชู ูู ูู |
|
|
|
306 |
|
00:35:21,360 --> 00:35:26,880 |
|
ุงูู X's ุงููู ู
ูุฌูุฏุฉ ูู ุงูู R3 ุงููู ุนูุฏูุง ู ุงููู |
|
|
|
307 |
|
00:35:26,880 --> 00:35:33,580 |
|
ุตูุฑุชูุง T of X ุจุฏู ูุณุงูู ู
ููุ ุจุฏู ูุณุงูู Zero ูุจูู |
|
|
|
308 |
|
00:35:33,580 --> 00:35:39,660 |
|
ูุฐู ูู ุงูู X's ุงูู X ูุฐู ุงููู ูู ู
ููุ X ูุงุญุฏ ู X |
|
|
|
309 |
|
00:35:39,660 --> 00:35:45,650 |
|
ุงุชููู ู X ุชูุงุชุฉ ุงููู ู
ูุฌูุฏุฉ ูู ุงูู R3 ุตุชุด ุฏููู
ุง |
|
|
|
310 |
|
00:35:45,650 --> 00:35:49,810 |
|
ุฃููู ูุฐุง ุงูู T of X ูุณุงูู 0ุ ุงูู T of X ูุณุงูู ู
ููุ |
|
|
|
311 |
|
00:35:49,810 --> 00:35:54,170 |
|
ูุณุงูู ูุฐุง ูููุ ู
ุนูุงุชู ูุฐู ุจุฏูุง ุชุณุงูู ู
ููุ ุจุฏูุง |
|
|
|
312 |
|
00:35:54,170 --> 00:36:00,630 |
|
ุชุณุงูู ุงูู
ุตููุฉ ุงูุตูุฑูุฉ ูุจูู ุฏู such that ุงูู
ุตููุฉ ุฏู |
|
|
|
313 |
|
00:36:00,630 --> 00:36:12,850 |
|
X1 ุฒุงุฆุฏ X3 ู ููุง X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2 X3 ู ููุง 2 X1 ุฒุงุฆุฏ |
|
|
|
314 |
|
00:36:12,850 --> 00:36:20,570 |
|
X2 ุชูุงุชุฉ X3 ููู ุจูุณุงูู ุงูู
ุตูููุฉ ุงูุตูุฑูุฉ ุงููู ุนูุฏูุง |
|
|
|
315 |
|
00:36:20,570 --> 00:36:27,790 |
|
ุจุงูุดูู ูุฐุง ุชู
ุงู
ุ ุงุฐุง ุงูุง ุทุจูุช ุญุชู ุงูุงู ุชุนุฑูู ู
ู ุงูู |
|
|
|
316 |
|
00:36:27,790 --> 00:36:33,830 |
|
Kernel ูุฐุง ูุง ุจูุงุช ุจูููุฏูุง ุฅูู ูู
ู
ุนุงุฏูุฉุ ูุนูู ูู |
|
|
|
317 |
|
00:36:33,830 --> 00:36:38,630 |
|
homogeneous system ุตุญ ููุง ูุฃุ ูุจูู ูุฐุง ูููุฏูุง ุฅูู |
|
|
|
318 |
|
00:36:38,630 --> 00:36:48,330 |
|
ู
ุง ูุฃุชู ุงู X1 ุฒุงุฆุฏ X3 ูุณุงูู 0 ู X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2 |
|
|
|
319 |
|
00:36:48,330 --> 00:36:58,590 |
|
X3 ูุณุงูู 0 ู 2X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3X3 ูุณุงูู 0 ูุฐุง ุนุจุงุฑุฉ |
|
|
|
320 |
|
00:36:58,590 --> 00:37:03,230 |
|
ุนู ู
ุงุฐุงุ Homogeneous System ุจุญุงูู ูุญู ุงูู |
|
|
|
321 |
|
00:37:03,230 --> 00:37:07,270 |
|
Homogeneous System ุจุฃู ุทุฑููุฉ ู
ู ุงูุทุฑู ุงูุชู ุณุจูุช |
|
|
|
322 |
|
00:37:07,270 --> 00:37:11,870 |
|
ุฏุฑุงุณุชูุง ุทุจุนุง ุงูู Homogeneous ุฃุณูู ู
ู ุงูู Non |
|
|
|
323 |
|
00:37:11,870 --> 00:37:14,890 |
|
-Homogeneous ูู ุงูุญู ู ุจุงูุชุงูู ู
ู
ูู ูุฌูุจ ุงูุญู |
|
|
|
324 |
|
00:37:14,890 --> 00:37:19,930 |
|
ุจุณูููุฉ ุจุฏูู ู
ูุฌุฃ ูู Gaussian ููุง ูู Rho Epsilon |
|
|
|
325 |
|
00:37:19,930 --> 00:37:24,790 |
|
Form ุฅูู ุขุฎุฑู ูู
ุซูุง ูู ุฌูุช ููุช ููุง X ูุงุญุฏ ุชุชุณุงูู |
|
|
|
326 |
|
00:37:24,790 --> 00:37:32,000 |
|
ู
ูู ูุง ุจูุงุชุ ุจุฏู ูุณุงูู ุณุงูุจ X3 ู
ุธุจูุท ุทูุจ ุฅุฐุง ูู ุฌูุช |
|
|
|
327 |
|
00:37:32,000 --> 00:37:38,640 |
|
ุนูู ุงูู
ุนุงุฏูุฉ ุงูุซุงููุฉ ูุฐู ุงูุด ุจูุตูุฑุ ุณุงูุจ X3 ุฒุงุฆุฏ X2 |
|
|
|
328 |
|
00:37:38,640 --> 00:37:48,770 |
|
ุฒุงุฆุฏ 2 X3 ุจุฏู ูุณุงูู Zero ู ููุง ุณุงูุจ 2 X3 ุฒุงุฆุฏ X2 |
|
|
|
329 |
|
00:37:48,770 --> 00:37:51,710 |
|
ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
330 |
|
00:37:51,710 --> 00:37:52,070 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
331 |
|
00:37:52,070 --> 00:37:55,290 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
332 |
|
00:37:55,290 --> 00:37:58,550 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
333 |
|
00:37:58,550 --> 00:38:01,530 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
334 |
|
00:38:01,530 --> 00:38:11,710 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X |
|
|
|
335 |
|
00:38:11,740 --> 00:38:21,720 |
|
ุจุชุจูู X2 ุฒุงุฆุฏ X3 ูุณุงูู 0 ู ูุฐู ุจุชุนุทููู X2 ุฒุงุฆุฏ X3 |
|
|
|
336 |
|
00:38:21,720 --> 00:38:28,280 |
|
ูุณุงูู 0 ูุนูู ุจุชุนุทููู ู
ููุ ููุณ ุงูู
ุนุงุฏูุฉ ุฅุฐุง ู
ู |
|
|
|
337 |
|
00:38:28,280 --> 00:38:36,720 |
|
ุงูุงุซููู ูุฏูู ุจูุฏุฑ ุฃููู ุฅู X2 ุจุฏู ูุณุงูู ุณุงูุจ X3 ูุจูู |
|
|
|
338 |
|
00:38:36,720 --> 00:38:44,160 |
|
ุจูุงุก ุนููู ูู ูุงูุช X ุชูุงุชุฉ ุชุณุงูู A then X ูุงุญุฏ ูุฏู |
|
|
|
339 |
|
00:38:44,160 --> 00:38:52,920 |
|
ุจุฏู ูุณุงูู ู X2 ุจุฏู ูุณุงูู ูุฏูุ ุณุงูุจ A ูุจูู ุฃุตุจุญ ุงูู |
|
|
|
340 |
|
00:38:52,920 --> 00:38:59,340 |
|
Kernel ูู
ูุ ูู Linear Transformation T ูู ุนุจุงุฑุฉ ุนู |
|
|
|
341 |
|
00:38:59,340 --> 00:39:05,920 |
|
ู
ูุ The set of all elements X1 ุงููู ูุจูู ูุฏูุ ุณุงูุจ |
|
|
|
342 |
|
00:39:05,920 --> 00:39:15,850 |
|
A ู X2 ุงููู ูู ุณุงูุจ A ู X3 ุงู ู ูุฐุง ุงููู ุจูุฏุฑ ุฃูุชุจ |
|
|
|
343 |
|
00:39:15,850 --> 00:39:21,690 |
|
ุนููู ุงูุดูู ุงูุชุงูู ูู ุงูู
ุตูู ุงููู ุนูู ุดูู ูุงูุต ุงูู |
|
|
|
344 |
|
00:39:21,690 --> 00:39:27,870 |
|
ูุงูุต ุงูู ู ุงูู such that ุงู ู ูุฐุง ุงููู ุจุฏู ูุณุงูู |
|
|
|
345 |
|
00:39:27,870 --> 00:39:33,910 |
|
ูู
ุงู ุงููุ ูู ุฃุฎุฏุช ุนุงู
ู ู
ุดุชุฑู ุจุฏู ูููู ู
ููุ ูุงูุต ูุงุญุฏ |
|
|
|
346 |
|
00:39:33,910 --> 00:39:39,570 |
|
ูุงูุต ูุงุญุฏ ูุงุญุฏ such that ุงูู A ู
ูุฌูุฏุฉ ูู ุงูู set of |
|
|
|
347 |
|
00:39:39,570 --> 00:39:44,330 |
|
real numbers ูุนูู ู
ุง ุญุทูุชุด ุนูููุง ุฃู ูููุฏ ูุฃู ุนุฏุฏ |
|
|
|
348 |
|
00:39:44,330 --> 00:39:52,070 |
|
ุญูููู ู
ู ู
ูุงู ูููู ุชู
ุงู
ุ ุฅุฐุง ุฃุตุจุญ ุงูู Kernel ู
ู ููุ |
|
|
|
349 |
|
00:39:52,070 --> 00:39:58,590 |
|
ูู ูู ุงูู vectors ุงููู ุงูู
ุฑูุจุฉ ุงูุฃููู ุชุณุงูู ุงูู
ุฑูุจุฉ |
|
|
|
350 |
|
00:39:58,590 --> 00:40:03,070 |
|
ุงูุซุงููุฉ ู ุงูู
ุฑูุจุฉ ุงูุชุงูุชุฉ ุจุฃุณ ุชุณุงูููู
ููููุง ุชุฎุชูููู
|
|
|
|
351 |
|
00:40:03,070 --> 00:40:07,990 |
|
ูู ู
ูุ ุงูุฅุดุงุฑุฉ ูุจูู ุงูู vector ูุฐุง ู
ุงู ุฅูุด ุนูุงูุชู |
|
|
|
352 |
|
00:40:07,990 --> 00:40:17,040 |
|
ุจุงูู Kernelุ ุจุฌูุจ ุจุนุถ ุนูุงุตุฑ ุงูู Kernel ููุง ูููู
ุ ูุนูู |
|
|
|
353 |
|
00:40:17,040 --> 00:40:23,300 |
|
ุงูุด ุจูููุน ููููุ basis ูุฃููุง ู
ุณุชูู ุญุงูู ููููุงุฑู ู
ุด |
|
|
|
354 |
|
00:40:23,300 --> 00:40:28,720 |
|
ู
ุนุชู
ุฏ ุนูู ุบูุฑู ูุจูู ูุฐุง ููููุงุฑู independent ุงุซููู |
|
|
|
355 |
|
00:40:28,720 --> 00:40:33,780 |
|
ูู ุนูุตุฑ ูู ุงูู Kernel ุจูุฏุฑ ุฃูุชุจ ุฏูุชู ุญุทูุช ูููุฏ ุนูู |
|
|
|
356 |
|
00:40:33,780 --> 00:40:39,340 |
|
ุงูู ูุฃ ูุจูู ุญุท ุงูุฑูู
ุงููู ูุฌุจู ููุฐุง ุซุงุจุช ูุจูู ูุฐุง |
|
|
|
357 |
|
00:40:39,340 --> 00:40:43,800 |
|
ู
ุนูุงุชู ุงูู basis ููู Kernel ูู ู
ููุ ุงูู vector ุงููู |
|
|
|
358 |
|
00:40:43,800 --> 00:40:53,340 |
|
ุนูุฏูุง ูุฐุง ูุจูู ูุฐุง ู
ุนูุงู ุงูุดุ ู
ุนูุงู ุฐุง Vector ูุญุงูู |
|
|
|
359 |
|
00:40:53,340 --> 00:41:01,200 |
|
ุฃู the set ูุฐุง ู
ุนูุงู ุงูู vector |
|
|
|
360 |
|
00:41:01,200 --> 00:41:08,220 |
|
ุนูู ุงูุดูู ูุฐุง ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ูุฐุง is a basis |
|
|
|
361 |
|
00:41:08,220 --> 00:41:24,320 |
|
for ุงูู Kernel ุงูุชู ูุฐุง ู
ุนูุงู ุงู ุงูู dimension ููู |
|
|
|
362 |
|
00:41:24,320 --> 00:41:29,660 |
|
Kernel of T ูุณุงูู ุฌุฏุงุด ูุง ุจูุงุช ุฎูุตูุง ุงูู
ุทููุจ ุงูุฃูู |
|
|
|
363 |
|
00:41:30,630 --> 00:41:33,890 |
|
ูุงู ูู ูุงุช ูู ุงูู Kernel ู ูู ููุณ ุงูููุช ูุงุช ูู ุงูู |
|
|
|
364 |
|
00:41:33,890 --> 00:41:40,770 |
|
dimension ุชู
ุงู
ุ ุฅุฐุง ููุฌูุจ ูู ุงูู Kernel ู
ู ูู ูู |
|
|
|
365 |
|
|
|
401 |
|
00:45:41,010 --> 00:45:47,950 |
|
ุงูุชุงูู ูู ุทูุนูุง ูุฏูู linearly independent ุจูุตูุฑ ูู
|
|
|
|
402 |
|
00:45:47,950 --> 00:45:53,610 |
|
ุงูู bases ุทุจ ูู ุทูุนูุง linearly dependent ุจุฏู ุชุฏูุฑ |
|
|
|
403 |
|
00:45:53,610 --> 00:46:00,010 |
|
ุนูู ุงูู bases ุชุนุงููุง ูุทูุน ููู ูุฏูู ุงููุธุฑ ูู ุฌู
ุนุช ุงูู |
|
|
|
404 |
|
00:46:00,010 --> 00:46:07,150 |
|
two vectors ูุฏูู ูุฏ ุงูุด ุจูุนุทููู ุงูู ุงูุชุงูุช ุจูุนุทููู |
|
|
|
405 |
|
00:46:07,150 --> 00:46:13,280 |
|
ุงูุชุงูุช 1 ุฒู 0 ุจู 1 ู 1 ุจู 1 ุจู 2 ุจู 2 ุจู 1 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 |
|
|
|
406 |
|
00:46:13,280 --> 00:46:13,760 |
|
ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 |
|
|
|
407 |
|
00:46:13,760 --> 00:46:14,000 |
|
ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 |
|
|
|
408 |
|
00:46:14,000 --> 00:46:16,760 |
|
ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 |
|
|
|
409 |
|
00:46:16,760 --> 00:46:17,760 |
|
ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 |
|
|
|
410 |
|
00:46:17,760 --> 00:46:26,640 |
|
ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 ุจู 3 |
|
|
|
411 |
|
00:46:26,640 --> 00:46:33,340 |
|
ูุจุงูุชุงูู ุงูุงุชููู ูุฐูู ุจููุตููุง ุจููุตูููู ูุฌู
ูุน ุนูุงุตุฑ |
|
|
|
412 |
|
00:46:33,340 --> 00:46:37,740 |
|
ุงูู vector of space ุฃู ุงูู subspace R of T ุทุจ ู |
|
|
|
413 |
|
00:46:37,740 --> 00:46:40,480 |
|
ุงูุชุงูุช ู
ุด ุฌุฒุก ู ุงูุชุงูุช ู
ุง ูู linear combination ู
ู |
|
|
|
414 |
|
00:46:40,480 --> 00:46:44,100 |
|
ุงูุงุชููู ุตุญูุญ ููุง ูุนูู ุงูู ุจูุฏุฑ ุงุฎูู ูุฐุง ูู ุดุฌุฑุฉ ู |
|
|
|
415 |
|
00:46:44,100 --> 00:46:46,660 |
|
ุฃุถุฑุจู ูุฐูู ุนูู ุดุฌุฑุฉ ุซุงููุฉ ุณุงูู ุตูุฑ ู ุงุฎูููุง ุณุงูุจ |
|
|
|
416 |
|
00:46:46,660 --> 00:46:49,240 |
|
ุณุงูุจ ู ุงูุช ุงูู ุฑุฃูู ู
ููู
ูุจูู ุฏู ุงุณู
ู linearly |
|
|
|
417 |
|
00:46:49,240 --> 00:46:55,200 |
|
dependent ููู ุงุชููู ูุฐูู linearly independent ูุจูู |
|
|
|
418 |
|
00:46:55,200 --> 00:47:04,320 |
|
ุจุงุฌู ุจููู ููุง ุงูุขู ุงููุงุญุฏ ูุงููุงุญุฏ ูุงุซููู ุฒุงุฆุฏ ุตูุฑ |
|
|
|
419 |
|
00:47:04,320 --> 00:47:11,940 |
|
ูุงุญุฏ ูุงุญุฏ ุจุฏู ูุณุงูู ูุงุญุฏ ุงุซููู ุซูุงุซุฉ ุฅุฐุง ูุง ูู
ูู |
|
|
|
420 |
|
00:47:11,940 --> 00:47:17,460 |
|
ุฃููู ุงู ุงูุชูุงุชุฉ ุฏูู linearly independent ููู ูุง |
|
|
|
421 |
|
00:47:17,460 --> 00:47:25,480 |
|
ุจูุงุช ุจูุฏุฑ ุฃููู ููุง the vectors v1 ุงููู ูู ุจุฏู ูุณุงูู |
|
|
|
422 |
|
00:47:25,480 --> 00:47:33,560 |
|
1 1 2 ู v2 ุจุฏู ูุณุงูู 0 1 1 |
|
|
|
423 |
|
00:47:33,560 --> 00:47:44,700 |
|
ู
ุงููู
linearly independent ุงูุณุจุจ because anyone of |
|
|
|
424 |
|
00:47:44,700 --> 00:47:59,140 |
|
v1 and v2 is not multiple of the other ููุง ูุงุญุฏ |
|
|
|
425 |
|
00:47:59,140 --> 00:48:04,660 |
|
ูููู
ู
ุถุงุนูุงุช ุงูุซุงููุฉ ูุจูู ูุฏูู ุงูุด ุจูุดูููููุ |
|
|
|
426 |
|
00:48:04,660 --> 00:48:09,660 |
|
ุจุงููุณุจุฉ ูู R2 ุจูุจูู ููุง ุฃุณุงุณ |
|
|
|
427 |
|
00:48:17,300 --> 00:48:34,460 |
|
V1 V2 V3 |
|
|
|
428 |
|
00:48:34,460 --> 00:48:34,620 |
|
V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V12 V13 V12 V12 |
|
|
|
429 |
|
00:48:34,620 --> 00:48:35,020 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
430 |
|
00:48:35,020 --> 00:48:35,080 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
431 |
|
00:48:35,080 --> 00:48:35,180 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
432 |
|
00:48:35,180 --> 00:48:39,590 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 2 ุนุฏุฏ |
|
|
|
433 |
|
00:48:39,590 --> 00:48:44,570 |
|
ุงูุนูุงุตุฑ ูู ุงูู Basel ุฅุฐุง ุฎูุตูุง ู
ู ุงูู
ุทููุจ ุงูุซุงูู |
|
|
|
434 |
|
00:48:44,570 --> 00:48:50,270 |
|
ูุงู ูู ูุงุช ูู Basel ููู R of T of 2 of T ุฌูุจูุง ูู ู |
|
|
|
435 |
|
00:48:50,270 --> 00:48:53,130 |
|
ูุงู ูู ูุงุช ูู ุงูู dimension ุฌูุจูุง ูู ุงูู dimension |
|
|
|
436 |
|
00:48:53,130 --> 00:48:58,810 |
|
ูุงู ูู ุจุนุฏูู ูุงุช ูู ุตูุฑุฉ ุงูุนูุตุฑ T of 1 ู 2 ู 3 ุฅุฐุง |
|
|
|
437 |
|
00:48:58,810 --> 00:49:02,850 |
|
ุจูุฏูุนู ููู
ุทููุจ ุงูุชุงูู |
|
|
|
438 |
|
00:49:15,200 --> 00:49:21,440 |
|
ุฅุฐุง ุงูู
ุทููุจ ุงูุซุงูุซ ูู
ุฑู ุงูู C ุจุฏูุง T of ูุงุญุฏ ู ุงุซููู |
|
|
|
439 |
|
00:49:21,440 --> 00:49:29,300 |
|
ูุซูุงุซุฉ ู
ู ููู ุจุฏู ุฃุฌูุจ ูู ูุฐุงุ |
|
|
|
440 |
|
00:49:29,300 --> 00:49:38,550 |
|
ู
ู ููู ุจุฏู ุฃุฌูุจ ููุ ููู ููุ ู
ุด ูุฐูุ ู
ุด T of element |
|
|
|
441 |
|
00:49:38,550 --> 00:49:42,250 |
|
ูุณุงูู ุฃู ุนูุตุฑ ูู ุงูู range ุนูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
442 |
|
00:49:42,250 --> 00:49:47,550 |
|
ูุจูู ุฏู ุจูููู X1 ุฒู X3 ูุฐุง ูุจูู ุจูุงุกู ุนูู ูุฐุง |
|
|
|
443 |
|
00:49:47,550 --> 00:49:54,210 |
|
ุงูููุงู
ุจุฏู ูุณุงูู ุจุฏู ูุณุงูู ู
ู X1 ุฒู X3 ูุจูู 1 ุฒู 3 |
|
|
|
444 |
|
00:49:56,030 --> 00:50:05,930 |
|
ุงูุนูุตุฑ ุงูุซุงูู X1 ุฒู X2 ุฒู 2X3 ูุจูู 1 ุฒู 2 ุฒู 3 |
|
|
|
445 |
|
00:50:11,050 --> 00:50:21,370 |
|
ูุจูู ูุฐุง ุงูุนูุตุฑ ุงูุซุงูุซ 2x1 ูุจูู 2 ูู 1 ุฒุงุฆุฏ 2 ุฒุงุฆุฏ |
|
|
|
446 |
|
00:50:21,370 --> 00:50:28,010 |
|
3 ูู 3 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุชู
ุงู
1 ุฒู 3 |
|
|
|
447 |
|
00:50:28,010 --> 00:50:33,010 |
|
ูุฏ ุงูุด 4 ููุง 2 ูู 3 ุจู 6 ู 3 ุจู 9 |
|
|
|
448 |
|
00:50:33,010 --> 00:50:38,850 |
|
9 ู 2 ุจู 11 ู 2 ุจู 13 ุงุฐุง ุตูุฑุฉ ุงูุนูุตุฑ |
|
|
|
449 |
|
00:50:38,850 --> 00:50:44,370 |
|
1 ู 2 ู 3 ูู 4 ู 9 ู 13 ุฃุธู |
|
|
|
450 |
|
00:50:44,370 --> 00:50:48,210 |
|
ูุงุถุญ ุงุฏู ููู ุฌุจูุงูุงุ ุฌุจูุงูุง ู
ู ุฎูุงู ุงูุชุนุฑูู ูู
ุง |
|
|
|
451 |
|
00:50:48,210 --> 00:50:51,430 |
|
ูููุง T of X ูุงุญุฏ ู X ุงุซููู ูู
ุง ุถุฑุจูุง ุงูู
ุตูููุฉ T |
|
|
|
452 |
|
00:50:51,430 --> 00:50:56,330 |
|
ุงูุงุซููู ูุฐูู ุทูุนุช ุนูู ุงูุดูู ุงููู ูุฏุงู
ูุง ูุฐุง ุทูุจ |
|
|
|
453 |
|
00:50:56,330 --> 00:51:00,550 |
|
ุจุณุฃู ูู
ุงู ุณุคุงู ุจููู ูู ูู ุงูุนูุตุฑ ูุฐุง ู
ูุฌูุฏ ูู ุงูู |
|
|
|
454 |
|
00:51:00,550 --> 00:51:05,450 |
|
range ุฃู
ูุงุ ุจููู ูู ุงููู ุฃุนูู
ุชุนุงููุง ูุดูู ูุนูู ูู |
|
|
|
455 |
|
00:51:05,450 --> 00:51:09,970 |
|
ุงูุนูุตุฑ 2 ู 5 ู 7 ู
ูุฌูุฏ ูู ุงูู range ุชุจุน |
|
|
|
456 |
|
00:51:09,970 --> 00:51:16,130 |
|
ุงูู T ุจุงุฌู ุจุณุฃู ู
ูู ูู ุงูู business ุชุจุน ุงูู Tุ ุฅุฐุง |
|
|
|
457 |
|
00:51:16,130 --> 00:51:20,610 |
|
ูุฏุฑูุง ููุชุจ ุงูุนูุตุฑ ูุฐุง ุนูู ุตูุฑุฉ linear combination |
|
|
|
458 |
|
00:51:20,610 --> 00:51:25,050 |
|
ู
ู ุงูุงุซููู ูุฐูู ุจุตูุฑ ู
ูุฌูุฏ ูู ุงูู range ุตุญ ููุง ูุฃ |
|
|
|
459 |
|
00:51:25,050 --> 00:51:30,580 |
|
ูุฅุฐุง ู
ุง ูุฏุฑูุงุด ูุจูู ู
ููู ุจุฑุฉ ุงูู range ุทุจุนุง ุฅุฐุง ุจุฏุงุฌู |
|
|
|
460 |
|
00:51:30,580 --> 00:51:35,540 |
|
ูู
ูุ ููู
ุฑุฏู ุจุฏุงุฌู ุฃุฎุฐ ุงูุนูุตุฑ ุงููู ูู 2 ู 5 |
|
|
|
461 |
|
00:51:35,540 --> 00:51:41,680 |
|
ู 7 ูุจูู 2 ู 5 ู 7 ุจูุฏุฑ ุงูุชุจู ุนูู ุดูู |
|
|
|
462 |
|
00:51:41,680 --> 00:51:48,080 |
|
ู
ุตูููุฉ 2 5 7 ู
ุด ููู ูููุง ูุฐุง if and ูููู |
|
|
|
463 |
|
00:51:48,080 --> 00:51:55,390 |
|
if ู ุจูุฏุฑ ุงูุชุจู ูููู ูู
ุงู ุทุจ ุงูุด ุฑุฃููุ ุงูุง ุจุฏู ุฃูุชุจ |
|
|
|
464 |
|
00:51:55,390 --> 00:51:59,970 |
|
ุนููู ุดูููุง ูุนูู ุจุฏู ุงูุฑูู
ุงูุฃูู ุฌุฏ ุงูุฑูู
ุงูุซุงูู |
|
|
|
465 |
|
00:51:59,970 --> 00:52:06,010 |
|
ุงูุฑูู
ุงูุฃูู ุนูุฏู ูุฏ ุงูุด 2 ูุงูุฑูู
ุงูุซุงูู ุจุฏู |
|
|
|
466 |
|
00:52:06,010 --> 00:52:13,250 |
|
ูููู ุฒูู 2 ูุงูุฑูู
ุงูุซุงูุซ ุจู 2 ูุจูู ุจุฏู ุงูุชุจ |
|
|
|
467 |
|
00:52:13,250 --> 00:52:16,170 |
|
4 ุฒุงุฆุฏ |
|
|
|
468 |
|
00:52:17,970 --> 00:52:22,250 |
|
ุงูุด ุจูุธู ุนูุฏูุ ุจุฏู ุงูุชุจู ุงูุญูู ู
ู 2 ุฃุฎุฏุช 2 |
|
|
|
469 |
|
00:52:22,250 --> 00:52:26,910 |
|
ุจูุธู ูุฏูุ 0 ู
ู 5 ุฃุฎุฏุช 2 ุจูุธู ูุฏูุ |
|
|
|
470 |
|
00:52:26,910 --> 00:52:32,170 |
|
3 ู
ู 7 ุฃุฎุฏุช 4 ุจูุธู ูุฏูุ 3 ูุจูู |
|
|
|
471 |
|
00:52:32,170 --> 00:52:36,670 |
|
ูุฐุง ุงูููุงู
.. ุจูุฏุฑ ุฃุฎุฏ 2 ุนุงู
ู ู
ุดุชุฑู ุงูุด ุจูุธู |
|
|
|
472 |
|
00:52:36,670 --> 00:52:41,890 |
|
ุนูุฏูุ 1 1 2 ุจูุฏุฑ ุฃุฎุฏ 3 ุนุงู
ู ู
ุดุชุฑู |
|
|
|
473 |
|
00:52:41,890 --> 00:52:46,910 |
|
0 1 1 linear combination ู
ู ุงูุงุซูููุ ูุจูู |
|
|
|
474 |
|
00:52:46,910 --> 00:52:50,950 |
|
ู
ูุฌูุฏ ูู ุงูู range ููุง ูุง ูุฅูู ูุจูู ูุชุจุช ูุฐุง ุงูู |
|
|
|
475 |
|
00:52:50,950 --> 00:52:56,390 |
|
element ุจูุงุณุท ุนูุงุตุฑ ุงูุจุฐู ูู ู
ุง ูุฏุฑุชูุด ูุจูู ุจูููู |
|
|
|
476 |
|
00:52:56,390 --> 00:53:00,930 |
|
ู
ุด ู
ูุฌูุฏ ุทุจุนุง ูุฐู ุทุฑููุฉ ุณููุฉ ุฌุฏุง ุจู
ุฌุฑุฏ ุงููุธุฑ ููู |
|
|
|
477 |
|
00:53:00,930 --> 00:53:04,590 |
|
ุงูุฃุตู ุงู ุฃููู 2 ู 5 ู 7 ูุณุงูู ูููู ุงุตูุง ูู |
|
|
|
478 |
|
00:53:04,590 --> 00:53:07,470 |
|
ุงูุฃูู ููููู ุงุตูุง ูู ุงูุซุงูู ู ุงุฑูุญ ุงุญู ุงูู non |
|
|
|
479 |
|
00:53:07,470 --> 00:53:15,710 |
|
homogeneous system ุชู
ุงู
ูุจูู ูุฐุง ู
ุนูุงู ูุฐุง ูุจูู |
|
|
|
480 |
|
00:53:16,490 --> 00:53:26,090 |
|
2 ู 5 ู 7 is a linear combination of the |
|
|
|
481 |
|
00:53:26,090 --> 00:53:41,660 |
|
elements of the bases of R of T Thus ู ููุฐุง 2 |
|
|
|
482 |
|
00:53:41,660 --> 00:53:53,540 |
|
5 7 ู ุนูุตุฑ ู
ูุฌูุฏ ูู R of T ู ูู ุงูู
ุทููุจ ุญุฏ |
|
|
|
483 |
|
00:53:53,540 --> 00:53:58,980 |
|
ูููู
ุจุชุญุจ ุชุณุฃู ุงู ุณุคุงู ููุง ูุง ู
ูุงูุ ุงู ุณุคุงูุ ุทุจ |
|
|
|
484 |
|
00:53:58,980 --> 00:54:03,480 |
|
ูุงุฒููุง ูู ููุณ ุงูู section ู ููุงู ุจุฏู ุงูู
ุซุงู 2 |
|
|
|
485 |
|
00:54:03,480 --> 00:54:07,880 |
|
ูุณู ูู
ุงู ูุฅู ุงูู
ูุถูุน ูุฐุง ููุช ููู
ูุฐุง ุงูู section |
|
|
|
486 |
|
00:54:07,880 --> 00:54:13,000 |
|
ุจุงูุฐุงุช very important ู ูุงุฒู
ูุฌู ุนููู ุณุคุงู ูู |
|
|
|
487 |
|
00:54:13,000 --> 00:54:17,720 |
|
ุงู
ุชุญุงู ุฃุนู
ุงู ุงููุตู ู ูุฐูู ุงูููุงูุฉ ูุถุน ุทุจูุนู ูุงุฒู
|
|
|
|
488 |
|
00:54:17,720 --> 00:54:19,620 |
|
ูููู ูุฐุง ูุนุทููู
ุงูุนูู |
|
|