metadata
license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Fact Completion Benchmark for Text Models
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
task_ids:
- fact-checking
dataset_info:
features:
- name: dataset_id
dtype: string
- name: stem
dtype: string
- name: 'true'
dtype: string
- name: 'false'
dtype: string
- name: relation
dtype: string
- name: subject
dtype: string
- name: object
dtype: string
splits:
- name: English
num_bytes: 3474255
num_examples: 26254
- name: Ukrainian
num_bytes: 9973
num_examples: 58
download_size: 1882690
dataset_size: 3484228
Dataset Card for Fact_Completion
Dataset Description
- Homepage: https://bit.ly/ischool-berkeley-capstone
- Repository: https://github.com/daniel-furman/Capstone
- Paper:
- Leaderboard:
- Point of Contact: [email protected]
Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@misc{calibragpt,
author = {Shreshta Bhat and Daniel Furman and Tim Schott},
title = {CalibraGPT: The Search for (Mis)Information in Large Language Models},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
@misc{dong2022calibrating,
doi = {10.48550/arXiv.2210.03329},
title={Calibrating Factual Knowledge in Pretrained Language Models},
author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
year={2022},
eprint={2210.03329},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{meng2022massediting,
doi = {10.48550/arXiv.2210.07229},
title={Mass-Editing Memory in a Transformer},
author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
year={2022},
eprint={2210.07229},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{elsahar-etal-2018-rex,
title = "{T}-{RE}x: A Large Scale Alignment of Natural Language with Knowledge Base Triples",
author = "Elsahar, Hady and
Vougiouklis, Pavlos and
Remaci, Arslen and
Gravier, Christophe and
Hare, Jonathon and
Laforest, Frederique and
Simperl, Elena",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1544",
}
Contributions
[More Information Needed]