Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,076 Bytes
6d1ce12
20ac86e
f1389f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48300bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcfb83
 
 
 
 
6d1ce12
c14929e
f1389f8
 
 
 
e677ed6
 
f1389f8
 
e3a855b
f1389f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2da4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1389f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Fact Completion Benchmark for Text Models
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
task_ids:
- fact-checking
dataset_info:
  features:
  - name: dataset_id
    dtype: string
  - name: stem
    dtype: string
  - name: 'true'
    dtype: string
  - name: 'false'
    dtype: string
  - name: relation
    dtype: string
  - name: subject
    dtype: string
  - name: object
    dtype: string
  splits:
  - name: English
    num_bytes: 3474255
    num_examples: 26254
  - name: Ukrainian
    num_bytes: 9973
    num_examples: 58
  download_size: 1882690
  dataset_size: 3484228
---

# Dataset Card for Fact_Completion

## Dataset Description

- **Homepage:** https://bit.ly/ischool-berkeley-capstone
- **Repository:** https://github.com/daniel-furman/Capstone
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** daniel_[email protected]

### Dataset Summary

This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@misc{calibragpt,
  author = {Shreshta Bhat and Daniel Furman and Tim Schott},
  title = {CalibraGPT: The Search for (Mis)Information in Large Language Models},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
```

```
@misc{dong2022calibrating,
      doi = {10.48550/arXiv.2210.03329},
      title={Calibrating Factual Knowledge in Pretrained Language Models}, 
      author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
      year={2022},
      eprint={2210.03329},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@misc{meng2022massediting,
      doi = {10.48550/arXiv.2210.07229},
      title={Mass-Editing Memory in a Transformer}, 
      author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
      year={2022},
      eprint={2210.07229},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@inproceedings{elsahar-etal-2018-rex,
    title = "{T}-{RE}x: A Large Scale Alignment of Natural Language with Knowledge Base Triples",
    author = "Elsahar, Hady  and
      Vougiouklis, Pavlos  and
      Remaci, Arslen  and
      Gravier, Christophe  and
      Hare, Jonathon  and
      Laforest, Frederique  and
      Simperl, Elena",
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L18-1544",
}

```

### Contributions

[More Information Needed]