ID
int64
0
2.65k
Language
stringclasses
1 value
Repository Name
stringclasses
14 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
411
31.4k
Unit Test - (Ground Truth)
stringlengths
40
32.1k
2,000
cpp
tensorflow/tensorflow
spmd_partitioner_util
third_party/xla/xla/service/spmd/spmd_partitioner_util.cc
third_party/xla/xla/service/spmd/spmd_partitioner_util_test.cc
#ifndef XLA_SERVICE_SPMD_SPMD_PARTITIONER_UTIL_H_ #define XLA_SERVICE_SPMD_SPMD_PARTITIONER_UTIL_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <initializer_list> #include <limits> #include <memory> #include <optional> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/strings/str_replace.h" #include "absl/utility/utility.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/spmd/spmd_partitioner.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { template <typename T> using IsCompOrCompBuilder = typename std::enable_if_t<std::is_same<HloComputation, T>::value || std::is_same<HloComputation::Builder, T>::value || std::is_same<SpmdBuilder, T>::value>; struct GatherScatterParallelDimSharding { HloSharding indices_sharding; HloSharding operand_sharding; }; bool HasReplicatedSharding(const HloSharding& sharding); template <typename T, typename = IsCompOrCompBuilder<T>> HloInstruction* CreateConstantBase(const Shape& shape, Literal value, T* b, Literal (*literal_creator)(Literal, PrimitiveType)) { if (shape.IsTuple()) { std::vector<HloInstruction*> elements; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { elements.push_back( CreateConstantBase(ShapeUtil::GetTupleElementShape(shape, i), value.Clone(), b, literal_creator)); } return b->AddInstruction(HloInstruction::CreateTuple(elements)); } if (shape.IsToken()) { return b->AddInstruction(HloInstruction::CreateToken()); } auto c = b->AddInstruction(HloInstruction::CreateConstant( literal_creator(std::move(value), shape.element_type()))); if (shape.rank() == 0) { return c; } return b->AddInstruction(HloInstruction::CreateBroadcast(shape, c, {})); } template <typename T, typename = IsCompOrCompBuilder<T>> HloInstruction* CreateConstant(const Shape& shape, Literal value, T* b) { auto identity = [](Literal value, PrimitiveType primitive_type) { CHECK(ShapeUtil::IsScalarWithElementType(value.shape(), primitive_type)); return value; }; return CreateConstantBase(shape, std::move(value), b, identity); } template <typename T, typename = IsCompOrCompBuilder<T>> HloInstruction* CreateZero(const Shape& shape, T* b) { auto zero = [](Literal , PrimitiveType primitive_type) { return LiteralUtil::Zero(primitive_type); }; return CreateConstantBase(shape, Literal(), b, zero); } template <typename T, typename = IsCompOrCompBuilder<T>> HloInstruction* CreateOne(const Shape& shape, T* b) { auto one = [](Literal , PrimitiveType primitive_type) { return LiteralUtil::One(primitive_type); }; return CreateConstantBase(shape, Literal(), b, one); } template <typename NativeT, typename T, typename = IsCompOrCompBuilder<T>> HloInstruction* CreateR0WithType(PrimitiveType type, NativeT value, T* b) { auto literal = LiteralUtil::CreateR0(value) .ConvertToShape(ShapeUtil::MakeShape(type, {})) .value(); return b->AddInstruction(HloInstruction::CreateConstant(std::move(literal))); } template <typename T, typename = IsCompOrCompBuilder<T>> inline HloInstruction* CreateFirstWithType(PrimitiveType type, T* b) { if (type == F32) { auto float_pad_value = std::numeric_limits<float>::quiet_NaN(); return CreateR0WithType(type, -float_pad_value, b); } auto literal = LiteralUtil::MinValue(type); return b->AddInstruction(HloInstruction::CreateConstant(std::move(literal))); } template <typename T, typename = IsCompOrCompBuilder<T>> inline HloInstruction* CreateLastWithType(PrimitiveType type, T* b) { if (type == F32) { auto float_pad_value = std::numeric_limits<float>::quiet_NaN(); return CreateR0WithType(type, float_pad_value, b); } auto literal = LiteralUtil::MaxValue(type); return b->AddInstruction(HloInstruction::CreateConstant(std::move(literal))); } HloComputation* MakeBinaryAdd(PrimitiveType type, HloModule* module); bool EvenlyPartitions(const Shape& shape, const HloSharding& sharding); Shape MakePartitionedShape(const Shape& shape, const HloSharding& sharding); int64_t ShapeSizeInBytes(const Shape& shape); template <typename NativeT> HloInstruction* TableLookup(absl::Span<const NativeT> table, PrimitiveType type, HloInstruction* ordinal, SpmdBuilder* b) { HloInstruction* table_hlo = b->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<NativeT>(table))); HloInstruction* value = b->AddInstruction(HloInstruction::CreateDynamicSlice( ShapeUtil::MakeShape(type, {1}), table_hlo, {ordinal}, {1})); return b->AddInstruction( HloInstruction::CreateReshape(ShapeUtil::MakeShape(type, {}), value)); } Shape MakeNonPaddedShapeForGivenPartition(const Shape& shape, const HloSharding& sharding, int64_t partition_id); std::vector<HloInstruction*> MakePartitionOffsets( const Shape& shape, const HloSharding& sharding, HloInstruction* partition_id, SpmdBuilder* b, absl::Span<const int64_t> dims = {}); std::vector<HloInstruction*> MakeTiledPartitionOrdinals( const HloSharding& sharding, HloInstruction* partition_id, SpmdBuilder* b); template <typename T, typename = IsCompOrCompBuilder<T>> HloInstruction* PadToShape(HloInstruction* hlo, const Shape& padded_shape, T* b, std::optional<Literal> value = std::nullopt) { if (ShapeUtil::Compatible(hlo->shape(), padded_shape)) { return hlo; } PaddingConfig padding_config; for (int64_t i = 0; i < padded_shape.rank(); ++i) { auto padding_config_dim = padding_config.add_dimensions(); padding_config_dim->set_edge_padding_low(0); padding_config_dim->set_interior_padding(0); padding_config_dim->set_edge_padding_high(padded_shape.dimensions(i) - hlo->shape().dimensions(i)); } const Shape padding_shape = ShapeUtil::MakeScalarShape(hlo->shape().element_type()); HloInstruction* padding = value.has_value() ? CreateConstant(padding_shape, std::move(*value), b) : CreateZero(padding_shape, b); return b->AddInstruction( HloInstruction::CreatePad(padded_shape, hlo, padding, padding_config)); } Shape GetPaddedShapeForUnevenPartitioning(const Shape& base_shape, const HloSharding& sharding); template <typename T, typename = IsCompOrCompBuilder<T>> HloInstruction* PadBaseShapeBeforeUnevenTiledSharding( HloInstruction* hlo, const HloSharding& sharding, T* b, std::optional<Literal> value = std::nullopt) { auto padded_base_shape = GetPaddedShapeForUnevenPartitioning(hlo->shape(), sharding); if (ShapeUtil::Compatible(padded_base_shape, hlo->shape())) { return hlo; } return PadToShape(hlo, padded_base_shape, b, std::move(value)); } std::optional<int64_t> UniqueTiledDim(const HloSharding& sharding); class OffsetCalculation; class MultiplyAddDivideOffsetCalculation { public: MultiplyAddDivideOffsetCalculation() : multiplier_(0), offset_(0), divisor_(1) {} MultiplyAddDivideOffsetCalculation(int64_t multiplier, int64_t offset, int64_t divisor); OffsetCalculation operator-( const MultiplyAddDivideOffsetCalculation& other) const; OffsetCalculation operator+( const MultiplyAddDivideOffsetCalculation& other) const; bool operator==(const MultiplyAddDivideOffsetCalculation& other) const { return multiplier_ == other.multiplier_ && offset_ == other.offset_ && divisor_ == other.divisor_; } bool IsConstant() const { return multiplier_ == 0; } void Simplify(); int64_t Calculate(int64_t shard_ordinal) const; HloInstruction* Calculate(HloInstruction* shard_ordinal, SpmdBuilder* b) const; int64_t MaxInRange(int64_t start_ordinal, int64_t limit_ordinal) const; private: int64_t multiplier_; int64_t offset_; int64_t divisor_; }; class OffsetCalculation { public: OffsetCalculation() : opcode_(HloOpcode::kCopy), copy_from_() {} explicit OffsetCalculation( const MultiplyAddDivideOffsetCalculation& copy_from) : opcode_(HloOpcode::kCopy), copy_from_(copy_from) {} OffsetCalculation(const OffsetCalculation& copy_from) { *this = copy_from; } OffsetCalculation(HloOpcode opcode, const MultiplyAddDivideOffsetCalculation& lhs, const MultiplyAddDivideOffsetCalculation& rhs) : opcode_(opcode), lhs_(std::make_unique<OffsetCalculation>(lhs)), rhs_(std::make_unique<OffsetCalculation>(rhs)) {} OffsetCalculation(HloOpcode opcode, const OffsetCalculation& lhs, const OffsetCalculation& rhs) : opcode_(opcode), lhs_(std::make_unique<OffsetCalculation>(lhs)), rhs_(std::make_unique<OffsetCalculation>(rhs)) {} OffsetCalculation& operator=(const OffsetCalculation& other); bool IsConstant() const; OffsetCalculation operator-(const OffsetCalculation& other) const; OffsetCalculation operator+(const OffsetCalculation& other) const; bool operator==(const OffsetCalculation& other) const; int64_t Calculate(int64_t shard_ordinal) const; HloInstruction* Calculate(HloInstruction* shard_ordinal, SpmdBuilder* b) const; int64_t MaxInRange(int64_t start_ordinal, int64_t limit_ordinal) const; private: HloOpcode opcode_; std::unique_ptr<OffsetCalculation> lhs_; std::unique_ptr<OffsetCalculation> rhs_; MultiplyAddDivideOffsetCalculation copy_from_; }; std::optional<HloInstruction*> ExchangeHalo( HloInstruction* hlo, const OffsetCalculation& left_halo_size_function, const OffsetCalculation& right_halo_size_function, int64_t dim, const HloSharding& target, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, SpmdBuilder* b); std::optional<HloInstruction*> ExchangeHalo( HloInstruction* hlo, std::vector<OffsetCalculation> left_halo_size_functions, std::vector<OffsetCalculation> right_halo_size_functions, const HloSharding& target, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, SpmdBuilder* b); HloInstruction* ExchangeHaloCompact( HloInstruction* hlo, const Shape& base_shape, const OffsetCalculation& left_halo_size_function, const OffsetCalculation& right_halo_size_function, HloInstruction* pad_value, int64_t dim, const HloSharding& sharding, HloInstruction* shard_ordinal, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, SpmdBuilder* b); std::optional<HloInstruction*> ExchangeHaloAndGetValidData( HloInstruction* hlo, const Shape& base_shape, const OffsetCalculation& left_halo_size_function, const OffsetCalculation& right_halo_size_function, int64_t explicit_left_padding_on_full_shape, int64_t padded_full_shape_size, int64_t shard_size_with_halo, int64_t dim, const HloSharding& target, HloInstruction* offset_on_padded_shape, HloInstruction* pad_value, HloInstruction* partition_ordinal, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, SpmdBuilder* b, bool mask_invalid_region = true, bool force_mask_in_compact = false); HloInstruction* HaloExchangeToPadOnLeft(PartitionedHlo& original, absl::Span<const int64_t> dims); bool IsNanSafeGt(HloComputation* computation); std::optional<int64_t> GetKValueInTopKWhenPartitionSortDim(HloInstruction* hlo); HloInstruction* SliceFirstK(HloInstruction* hlo, SpmdBuilder* builder, int64_t slice_dim, int64_t k); int64_t ShardCountAtDim(const HloSharding& sharding, int64_t dim); std::optional<std::vector<std::pair<int64_t, int64_t>>> GetReshardAllToAllSourceTargetDims(const HloSharding& source, const HloSharding& target); bool CanReshardWithCollectivePermute(const HloSharding& source, const HloSharding& target); hlo_sharding_util::GroupedSharding AlignGroupsWith( hlo_sharding_util::GroupedSharding grouped_sharding, const hlo_sharding_util::GroupedSharding& reference, bool ignore_group_order = false); HloSharding AlignShardingOnDims(const HloSharding& sharding, absl::Span<const int64_t> sharding_dims, const HloSharding& reference, absl::Span<const int64_t> reference_dims); std::optional<hlo_sharding_util::GroupedSharding> AlignGroupsWithIfCompatible( hlo_sharding_util::GroupedSharding grouped_sharding, const hlo_sharding_util::GroupedSharding& reference); Shape GetPerGroupBaseShape( const hlo_sharding_util::GroupedSharding& grouped_sharding, const Shape& original_base_shape); HloInstruction* GetInGroupPartitionId( HloInstruction* partition_id, const std::vector<std::vector<int64_t>>& device_groups, SpmdBuilder* b); PartitionedHlo::PartitioningState CreatePerGroupPartitioningState( const PartitionedHlo::PartitioningState& state, const std::vector<std::vector<int64_t>>& device_groups, SpmdBuilder* b); HloInstruction* PerGroupSliceFromReplicated( HloInstruction* replicated, HloInstruction* partition_id, const std::vector<std::vector<int64_t>>& device_groups, absl::Span<const int64_t> group_dims, absl::Span<const int64_t> group_dim_sizes, SpmdBuilder* b); std::optional<HloInstruction*> PadFromPartialReplicateShape( HloInstruction* hlo, const Shape& base_shape, const HloSharding& src_sharding, const HloSharding& dst_sharding, const std::vector<int64_t>& expand_tile_dims, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, HloInstruction* partition_id, SpmdBuilder* b); std::optional<HloSharding> PartialReplicateReshardCompatibleSharding( const HloSharding& partial_sharding, const HloSharding& target_sharding); std::optional<HloInstruction*> TileToPartialReplicateHaloExchange( HloInstruction* hlo, const Shape& base_shape, const HloSharding& src_sharding, const HloSharding& dst_sharding, const std::vector<int64_t>& replicate_dims, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, HloInstruction* partition_id, SpmdBuilder* b); std::optional<std::vector<int64_t>> FindMatchingPartitionedDimsForGrouping( const HloSharding& sharding, const std::vector<std::vector<int64_t>>& device_groups); HloSharding CreateMatchingShardingOnDims(const Shape& target_shape, const HloSharding& source_sharding, absl::Span<const int64_t> target_dims, absl::Span<const int64_t> source_dims); std::optional<GatherScatterParallelDimSharding> GatherScatterOperandsShardedAcrossParallelDims( const HloInstruction& operand, const HloInstruction& indices, const hlo_sharding_util::GatherScatterParallelDims& parallel_dims); int64_t FindRotateRightPattern(const HloInstruction* concat, const HloInstruction* lhs, const HloInstruction* rhs); struct PadWithWrapPattern { int64_t lhs_slice_start; int64_t rhs_slice_start; std::vector<const HloInstruction*> lhs_modifiers; std::vector<const HloInstruction*> rhs_modifiers; }; std::optional<PadWithWrapPattern> FindPadWithWrapPattern( const HloInstruction* concat, const HloInstruction* lhs, const HloInstruction* mid, const HloInstruction* rhs); std::optional<PartitionedHlo::WindowedInputShardReturnValue> ReshardDataForSlicing(absl::Span<const int64_t> strides, absl::Span<const int64_t> starts, absl::Span<const int64_t> limits, PartitionedHlo to_reshard, const HloSharding& target_sharding, SpmdBuilder* b); HloInstruction* SliceDataFromWindowReshard( const PartitionedHlo::WindowedInputShardReturnValue& reshard_operand, absl::Span<const int64_t> strides, const Shape& base_shape, const HloSharding& target_sharding, SpmdBuilder* b); std::optional<PartitionedHlo::WindowedInputShardReturnValue> ReshardDataForPad( HloInstruction* pad_value, PaddingConfig pc, PartitionedHlo to_reshard, const HloSharding& target_sharding, SpmdBuilder* b); HloInstruction* PadDataFromWindowReshard( const PartitionedHlo::WindowedInputShardReturnValue& reshard_operand, HloInstruction* pad_value, SpmdBuilder* b); std::vector<std::vector<int64_t>> GetPartitionGroupsForReplication( const HloSharding& sharding, absl::Span<const int64_t> replication_dims); std::optional<IotaReplicaGroupList> GetIotaPartitionGroupsForReplication( const HloSharding& sharding, absl::Span<const int64_t> replication_dims, int64_t num_partitions); CollectiveDeviceList ExpandPartitionGroupListAcrossReplicas( IotaReplicaGroupList partition_group_list, int num_replicas, int num_partitions); namespace detail { template <typename T, typename = void> struct IsSpmdPartitioningVisitorPointerType : std::false_type {}; template <typename T> struct IsSpmdPartitioningVisitorPointerType< T, std::enable_if_t<std::is_same_v<std::remove_reference_t<T>, SpmdPartitioningVisitor*>>> : std::true_type {}; template <typename T> constexpr bool IsSpmdPartitioningVisitorPointerType_v = IsSpmdPartitioningVisitorPointerType<T>::value; template <typename T> using IsSpmdPartitioningVisitorPointer = std::enable_if_t<IsSpmdPartitioningVisitorPointerType_v<T>, int>; template <typename T> using IsNotSpmdPartitioningVisitorPointer = std::enable_if_t<!IsSpmdPartitioningVisitorPointerType_v<T>, int>; template <typename T, typename = void> struct IsSpmdBuilderPointerType : std::false_type {}; template <typename T> struct IsSpmdBuilderPointerType< T, std::enable_if_t<std::is_same_v<std::remove_reference_t<T>, SpmdBuilder*>>> : std::true_type {}; template <typename T> constexpr bool IsSpmdBuilderPointerType_v = IsSpmdBuilderPointerType<T>::value; template <typename T> using IsSpmdBuilderPointer = std::enable_if_t<IsSpmdBuilderPointerType_v<T>, int>; template <typename T> using IsNotSpmdBuilderPointer = std::enable_if_t<!IsSpmdBuilderPointerType_v<T>, int>; template <typename T, typename = void> struct IsHloModulePointerType : std::false_type {}; template <typename T> struct IsHloModulePointerType< T, std::enable_if_t<std::is_same_v<std::remove_reference_t<T>, HloModule*>>> : std::true_type {}; template <typename T> constexpr bool IsHloModulePointerType_v = IsHloModulePointerType<T>::value; template <typename T> using IsHloModulePointer = std::enable_if_t<IsHloModulePointerType_v<T>, int>; template <typename T> using IsNotHloModulePointer = std::enable_if_t<!IsHloModulePointerType_v<T>, int>; template <typename T, typename = void> struct IsPartitionedHloType : std::false_type {}; template <typename T> struct IsPartitionedHloType< T, std::enable_if_t<std::is_same_v<std::decay_t<T>, PartitionedHlo>>> : std::true_type {}; template <typename T> constexpr bool IsPartitionedHloType_v = IsPartitionedHloType<T>::value; template <typename T> using IsPartitionedHlo = std::enable_if_t<IsPartitionedHloType_v<T>, int>; template <typename T> using IsNotPartitionedHlo = std::enable_if_t<!IsPartitionedHloType_v<T>, int>; template <typename T, typename = void> struct is_iterable : std::false_type {}; template <typename T> struct is_iterable<T, std::void_t<decltype(std::declval<T>().begin()), decltype(std::declval<T>().end())>> : std::true_type {}; template <typename T> constexpr bool is_iterable_v = is_iterable<T>::value; template <typename T> using iterable_element_type = std::decay_t<decltype(*std::declval<T>().begin())>; template <typename T, typename = void> struct IsIterablePartitionedHloContainerType : std::false_type {}; template <typename T> struct IsIterablePartitionedHloContainerType< T, std::enable_if_t<is_iterable_v<T> && std::is_same_v<iterable_element_type<T>, PartitionedHlo>>> : std::true_type {}; template <typename T> constexpr bool IsIterablePartitionedHloContainerType_v = IsIterablePartitionedHloContainerType<T>::value; template <typename T> using IsIterablePartitionedHloContainer = std::enable_if_t<IsIterablePartitionedHloContainerType_v<T>, int>; template <typename T> using IsNotIterablePartitionedHloContainer = std::enable_if_t<!IsIterablePartitionedHloContainerType_v<T>, int>; template <typename Arg, IsPartitionedHlo<Arg> = 0> std::decay_t<Arg> FakePartitionedHlo(Arg&& phlo, HloModule* module, int* parameter_count, SpmdPartitioningVisitor* fake_visitor) { HloInstruction* param = fake_visitor->builder() ->AddParameter(HloInstruction::CreateParameter(
#include "xla/service/spmd/spmd_partitioner_util.h" #include <cstdint> #include <optional> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" namespace xla { namespace spmd { namespace { TEST(SPMDPartitionerUtilTest, PartialReplicateReshardCompatibleSharding1) { HloSharding partial_sharding = HloSharding::PartialTile(TileAssignment({1, 2, 2})); const std::vector<HloSharding> target_shardings = { HloSharding::IotaTile({2, 2}), HloSharding::IotaTile({2, 2}, {2, 2}, {1, 0})}; for (const auto& target_sharding : target_shardings) { auto result = PartialReplicateReshardCompatibleSharding(partial_sharding, target_sharding); EXPECT_EQ(result, target_shardings[1]); } partial_sharding = HloSharding::PartialTile(TileAssignment({1, 2, 2}, {2, 2}, {1, 0})); for (const auto& target_sharding : target_shardings) { auto result = PartialReplicateReshardCompatibleSharding(partial_sharding, target_sharding); EXPECT_EQ(result, target_shardings[0]); } } TEST(SPMDPartitionerUtilTest, PartialReplicateReshardCompatibleSharding2) { HloSharding partial_sharding = HloSharding::PartialTile(TileAssignment({2, 2, 8})); const std::vector<HloSharding> target_shardings = { HloSharding::PartialTile( TileAssignment({4, 4, 2}, {2, 2, 2, 2, 2}, {0, 2, 1, 3, 4})), HloSharding::PartialTile( TileAssignment({4, 4, 2}, {2, 2, 2, 2, 2}, {0, 2, 1, 4, 3})), HloSharding::PartialTile( TileAssignment({4, 4, 2}, {2, 2, 2, 2, 2}, {0, 3, 1, 2, 4})), HloSharding::PartialTile( TileAssignment({4, 4, 2}, {2, 2, 2, 2, 2}, {0, 3, 1, 4, 2})), HloSharding::PartialTile( TileAssignment({4, 4, 2}, {2, 2, 2, 2, 2}, {0, 4, 1, 2, 3})), HloSharding::PartialTile( TileAssignment({4, 4, 2}, {2, 2, 2, 2, 2}, {0, 4, 1, 3, 2}))}; for (const auto& target_sharding : target_shardings) { auto result = PartialReplicateReshardCompatibleSharding(partial_sharding, target_sharding); EXPECT_EQ(result, target_sharding); } } TEST(SPMDPartitionerUtilTest, GetPartitionGroupsForReplication) { HloSharding sharding = HloSharding::IotaTile({2, 2, 2}); std::vector<std::vector<int64_t>> actual_partition_groups = GetPartitionGroupsForReplication(sharding, {1}); std::vector<std::vector<int64_t>> expected_partition_groups = { {0, 2}, {1, 3}, {4, 6}, {5, 7}}; EXPECT_THAT(actual_partition_groups, testing::ContainerEq(expected_partition_groups)); } TEST(SPMDPartitionerUtilTest, GetPartitionGroupsForReplication2) { HloSharding sharding = HloSharding::IotaTile({2, 2, 2}, {2, 2, 2}, {0, 2, 1}); std::vector<std::vector<int64_t>> actual_partition_groups = GetPartitionGroupsForReplication(sharding, {0, 2}); std::vector<std::vector<int64_t>> expected_partition_groups = {{0, 2, 4, 6}, {1, 3, 5, 7}}; EXPECT_THAT(actual_partition_groups, testing::ContainerEq(expected_partition_groups)); } TEST(SPMDPartitionerUtilTest, GetIotaPartitionGroupsForReplication) { HloSharding sharding = HloSharding::IotaTile({2, 2, 2}); std::optional<IotaReplicaGroupList> actual_partition_group_list = GetIotaPartitionGroupsForReplication(sharding, {1}, 8); EXPECT_TRUE(actual_partition_group_list.has_value()); EXPECT_EQ(actual_partition_group_list->num_replica_groups(), 4); EXPECT_EQ(actual_partition_group_list->num_devices_per_group(), 2); EXPECT_THAT(actual_partition_group_list->reshape_dims(), testing::ElementsAre(2, 2, 2)); EXPECT_THAT(actual_partition_group_list->transpose_perm(), testing::ElementsAre(0, 2, 1)); } TEST(SPMDPartitionerUtilTest, GetIotaPartitionGroupsForReplication2) { HloSharding sharding = HloSharding::IotaTile({2, 2, 2}, {2, 2, 2}, {0, 2, 1}); std::optional<IotaReplicaGroupList> actual_partition_group_list = GetIotaPartitionGroupsForReplication(sharding, {0, 2}, 8); EXPECT_TRUE(actual_partition_group_list.has_value()); EXPECT_EQ(actual_partition_group_list->num_replica_groups(), 2); EXPECT_EQ(actual_partition_group_list->num_devices_per_group(), 4); EXPECT_THAT(actual_partition_group_list->reshape_dims(), testing::ElementsAre(4, 2)); EXPECT_THAT(actual_partition_group_list->transpose_perm(), testing::ElementsAre(1, 0)); } TEST(SPMDPartitionerUtilTest, GetIotaPartitionGroupsForReplicationSkipWhenNotUsingAllPartitions) { HloSharding simple_sharding = HloSharding::IotaTile({2, 2, 2}); std::optional<IotaReplicaGroupList> actual_partition_group_list = GetIotaPartitionGroupsForReplication(simple_sharding, {1}, 16); EXPECT_FALSE(actual_partition_group_list.has_value()); } TEST(SPMDPartitionerUtilTest, ExpandPartitionGroupListAcrossReplicas) { IotaReplicaGroupList partition_group_list = IotaReplicaGroupList(10, 5, {2, 5, 5}, {0, 2, 1}); IotaReplicaGroupList expanded_partition_group_list = ExpandPartitionGroupListAcrossReplicas(partition_group_list, 2, 50) .iota_replica_group_list() .value(); EXPECT_EQ(expanded_partition_group_list.num_replica_groups(), 20); EXPECT_EQ(expanded_partition_group_list.num_devices_per_group(), 5); EXPECT_THAT(expanded_partition_group_list.reshape_dims(), testing::ElementsAre(4, 5, 5)); EXPECT_THAT(expanded_partition_group_list.transpose_perm(), testing::ElementsAre(0, 2, 1)); } TEST(SPMDPartitionerUtilDeathTest, ExpandPartitionGroupListAcrossReplicas) { IotaReplicaGroupList partition_group_list = IotaReplicaGroupList(10, 5, {2, 5, 5}, {0, 2, 1}); ASSERT_DEATH( { auto expanded_partition_group_list = ExpandPartitionGroupListAcrossReplicas(partition_group_list, 2, 60); }, "Check failed: \\(partition_group_count \\* partition_group_size\\) == " "num_partitions \\(50 vs\\. 60\\)"); } } } }
2,001
cpp
tensorflow/tensorflow
spmd_prepare
third_party/xla/xla/service/spmd/spmd_prepare.cc
third_party/xla/xla/service/spmd/spmd_prepare_test.cc
#ifndef XLA_SERVICE_SPMD_SPMD_PREPARE_H_ #define XLA_SERVICE_SPMD_SPMD_PREPARE_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace spmd { class SpmdPrepare : public HloModulePass { public: explicit SpmdPrepare() = default; ~SpmdPrepare() override = default; absl::string_view name() const override { return "spmd-prepare"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/spmd/spmd_prepare.h" #include <memory> #include <optional> #include <vector> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/service/pattern_matcher.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { absl::StatusOr<bool> ProcessScatter(HloInstruction* hlo, const CallGraph& call_graph) { if (hlo->opcode() != HloOpcode::kScatter) { return false; } HloScatterInstruction* scatter = Cast<HloScatterInstruction>(hlo); HloComputation* computation = hlo->parent(); if (scatter->scatter_operand_count() > 1) { return false; } ScatterDimensionNumbers scatt_dim = scatter->scatter_dimension_numbers(); HloInstruction* operand = scatter->scatter_operands()[0]; HloInstruction* indices = scatter->scatter_indices(); HloInstruction* updates = scatter->scatter_updates()[0]; if (operand->opcode() != HloOpcode::kAdd || indices->opcode() != HloOpcode::kConcatenate || indices->operand_count() != 2 || updates->opcode() != HloOpcode::kConcatenate || updates->operand_count() != 2 || !Match(scatter->to_apply()->root_instruction(), match::AddAnyOrder(match::Parameter(0), match::Parameter(1)))) { return false; } const auto& dnums = scatter->scatter_dimension_numbers(); auto get_parallel_dims_for_scatter = [&dnums, &call_graph]( const HloInstruction* operand, const HloInstruction* indices, const HloInstruction* updates) { std::vector<int64_t> slice_sizes = hlo_sharding_util::GetScatterSliceSize( operand->shape(), updates->shape(), dnums); int64_t index_vector_dim = dnums.index_vector_dim(); const auto& index_map = dnums.scatter_dims_to_operand_dims(); return hlo_sharding_util::GetGatherScatterBatchParallelDims( indices, slice_sizes, index_vector_dim, index_map, call_graph); }; if (get_parallel_dims_for_scatter(operand, indices, updates).has_value()) { return false; } HloInstruction* lhs_indices = indices->mutable_operand(0); HloInstruction* rhs_indices = indices->mutable_operand(1); HloInstruction* lhs_updates = updates->mutable_operand(0); HloInstruction* rhs_updates = updates->mutable_operand(1); std::optional<hlo_sharding_util::GatherScatterParallelDims> lhs_parallel_dims; std::optional<hlo_sharding_util::GatherScatterParallelDims> rhs_parallel_dims; lhs_parallel_dims = get_parallel_dims_for_scatter(operand, lhs_indices, lhs_updates); if (!lhs_parallel_dims.has_value()) { return false; } rhs_parallel_dims = get_parallel_dims_for_scatter(operand, rhs_indices, rhs_updates); if (!rhs_parallel_dims.has_value()) { return false; } if (lhs_parallel_dims->operand_parallel_dims != rhs_parallel_dims->operand_parallel_dims || lhs_parallel_dims->indices_parallel_dims != rhs_parallel_dims->indices_parallel_dims || lhs_parallel_dims->index_parallel_in_dim != rhs_parallel_dims->index_parallel_in_dim) { return false; } if (lhs_parallel_dims->operand_parallel_dims.size() != lhs_parallel_dims->indices_parallel_dims.size()) { return false; } HloInstruction* lhs_operand = operand->mutable_operand(0); HloInstruction* rhs_operand = operand->mutable_operand(1); bool any_sharded_parallel_dim = false; if (!lhs_operand->has_sharding() || !rhs_operand->has_sharding() || !lhs_indices->has_sharding() || !rhs_indices->has_sharding()) { return false; } for (int i = 0; i < lhs_parallel_dims->operand_parallel_dims.size(); ++i) { if (lhs_operand->sharding().IsTiled() && lhs_operand->sharding().tile_assignment().dim( lhs_parallel_dims->operand_parallel_dims[i]) != 1 && lhs_indices->sharding().tile_assignment().dim( lhs_parallel_dims->indices_parallel_dims[i]) != 1) { any_sharded_parallel_dim = true; break; } } if (!any_sharded_parallel_dim) { return false; } HloInstruction* scatter0 = computation->AddInstruction(HloInstruction::CreateScatter( scatter->shape(), operand, lhs_indices, lhs_updates, scatter->to_apply(), dnums, false, false)); scatter0->set_metadata(scatter->metadata()); scatter0->set_sharding(scatter->sharding()); HloInstruction* scatter1 = computation->AddInstruction(HloInstruction::CreateScatter( scatter->shape(), scatter0, rhs_indices, rhs_updates, scatter->to_apply(), dnums, false, false)); scatter1->set_metadata(scatter->metadata()); scatter1->set_sharding(scatter->sharding()); TF_RETURN_IF_ERROR(scatter->ReplaceAllUsesWith(scatter1)); return true; } absl::StatusOr<bool> RunOnComputation(HloComputation* computation, const CallGraph& call_graph) { bool changed = false; for (HloInstruction* hlo : computation->MakeInstructionPostOrder()) { if (!hlo->has_sharding()) { continue; } TF_ASSIGN_OR_RETURN(bool scatter_changed, ProcessScatter(hlo, call_graph)); if (scatter_changed) { changed = true; continue; } } return changed; } } absl::StatusOr<bool> SpmdPrepare::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); for (auto comp : module->computations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool comp_changed, RunOnComputation(comp, *call_graph)); changed |= comp_changed; } return changed; } } }
#include "xla/service/spmd/spmd_prepare.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace spmd { namespace { namespace op = xla::testing::opcode_matchers; class SpmdPrepareTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, int64_t distance_threshold = 100) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule( hlo_module, GetModuleConfigForTest())); HloPassPipeline pipeline("spmd-prepare"); pipeline.AddPass<SpmdPrepare>(); TF_RETURN_IF_ERROR(pipeline.Run(module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } }; TEST_F(SpmdPrepareTest, ScatterParallelIndexSplit) { absl::string_view hlo_string = R"( HloModule module region_157.5067 { Arg_0.5068 = f32[] parameter(0) Arg_1.5069 = f32[] parameter(1) ROOT add.5070 = f32[] add(Arg_0.5068, Arg_1.5069) } ENTRY entry { p0 = f32[16,1000,2000]{2,1,0} parameter(0), sharding={devices=[4,2,1]<=[8]} p1 = f32[16,1000,2000]{2,1,0} parameter(1), sharding={devices=[4,2,1]<=[8]} p2 = s32[16,1000,64,1]{3,2,1,0} parameter(2), sharding={devices=[4,2,1,1]<=[8]} p3 = f32[16,1000,64]{2,1,0} parameter(3), sharding={devices=[4,2,1]<=[8]} p4 = f32[16,1000,64]{2,1,0} parameter(4), sharding={devices=[4,2,1]<=[8]} iota.0 = s32[16,1000,64,1]{3,2,1,0} iota(), iota_dimension=0, sharding={devices=[4,2,1,1]<=[8]} iota.1 = s32[16,1000,64,1]{3,2,1,0} iota(), iota_dimension=1, sharding={devices=[4,2,1,1]<=[8]} iota.2 = s32[16,1000,64,1]{3,2,1,0} iota(), iota_dimension=0, sharding={devices=[4,2,1,1]<=[8]} iota.3 = s32[16,1000,64,1]{3,2,1,0} iota(), iota_dimension=1, sharding={devices=[4,2,1,1]<=[8]} concatenate.0 = s32[16,1000,64,3]{3,2,1,0} concatenate(iota.0, iota.1, p2), dimensions={3}, sharding={devices=[4,2,1,1]<=[8]} concatenate.1 = s32[16,1000,64,3]{3,2,1,0} concatenate(iota.2, iota.3, p2), dimensions={3}, sharding={devices=[4,2,1,1]<=[8]} concatenate.130 = s32[32,1000,64,3]{3,2,1,0} concatenate(concatenate.0, concatenate.1), dimensions={0}, sharding={devices=[4,2,1,1]<=[8]} concatenate.131 = f32[32,1000,64]{2,1,0} concatenate(p3, p4), dimensions={0}, sharding={devices=[4,2,1]<=[8]} add.190 = f32[16,1000,2000]{2,1,0} add(p0, p1), sharding={devices=[4,2,1]<=[8]} ROOT scatter.2 = f32[16,1000,2000]{2,1,0} scatter(add.190, concatenate.130, concatenate.131), update_window_dims={}, inserted_window_dims={0,1,2}, scatter_dims_to_operand_dims={0,1,2}, index_vector_dim=3, to_apply=region_157.5067, sharding={devices=[4,2,1]<=[8]} })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); HloInstruction* root = module->entry_computation()->root_instruction(); XLA_VLOG_LINES(1, module->ToString()); EXPECT_THAT( root, op::Scatter( op::Scatter(op::Add(), op::Concatenate(op::Iota(), op::Iota(), op::Parameter()), op::Parameter()), op::Concatenate(op::Iota(), op::Iota(), op::Parameter()), op::Parameter())); } } } }
2,002
cpp
tensorflow/tensorflow
stateful_rng_spmd_partitioner
third_party/xla/xla/service/spmd/stateful_rng_spmd_partitioner.cc
third_party/xla/xla/service/spmd/stateful_rng_spmd_partitioner_test.cc
#ifndef XLA_SERVICE_SPMD_STATEFUL_RNG_SPMD_PARTITIONER_H_ #define XLA_SERVICE_SPMD_STATEFUL_RNG_SPMD_PARTITIONER_H_ #include <utility> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/service/spmd/spmd_partitioner.h" namespace xla { namespace spmd { class StatefulRngSpmdPartitioningVisitor : public spmd::SpmdPartitioningVisitor { public: StatefulRngSpmdPartitioningVisitor( HloComputation* computation, int64_t num_partitions, int64_t num_replicas, const spmd::SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, spmd::SpmdLogger* logger, spmd::SpmdPartitionerOptions options, spmd::SpmdPartitioner* partitioner, const CallGraph& call_graph) : spmd::SpmdPartitioningVisitor(computation, num_partitions, num_replicas, collective_ops_creator, next_channel_id, logger, std::move(options), partitioner, call_graph) {} absl::Status HandleRngGetAndUpdateState(HloInstruction* hlo) override; }; class StatefulRngSpmdPartitioner : public spmd::SpmdPartitioner { public: StatefulRngSpmdPartitioner( int64_t num_partitions, int64_t num_replicas, int64_t threshold_for_windowed_einsum_mib = 100000, bool windowed_einsum_use_multiple_streams = false, bool skip_checking_windowed_einsum_users = false, bool disable_ag_rewrite_for_multiple_consumers = false) : spmd::SpmdPartitioner(num_partitions, num_replicas, GetSpmdPartitionerOptions( threshold_for_windowed_einsum_mib, windowed_einsum_use_multiple_streams, skip_checking_windowed_einsum_users, disable_ag_rewrite_for_multiple_consumers)) {} protected: std::unique_ptr<spmd::SpmdPartitioningVisitor> CreateVisitor( HloComputation* computation, int64_t num_partitions, int64_t num_replicas, const spmd::SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, spmd::SpmdLogger* logger, spmd::SpmdPartitionerOptions options, const CallGraph& call_graph) override; absl::Status PreprocessSharding( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; absl::Status HandleRotateRightWhilePreprocessing( HloComputation* computation) override; bool CanSideEffectingHaveReplicatedSharding( const HloInstruction* hlo) override; private: static spmd::SpmdPartitionerOptions GetSpmdPartitionerOptions( int64_t threshold_for_windowed_einsum_mib, bool windowed_einsum_use_multiple_streams = false, bool skip_checking_windowed_einsum_users = false, bool disable_ag_rewrite_for_multiple_consumers = false) { spmd::SpmdPartitionerOptions options; options.allow_module_signature_change = true; options.threshold_for_windowed_einsum_mib = threshold_for_windowed_einsum_mib; options.unroll_windowed_einsum = windowed_einsum_use_multiple_streams; options.skip_checking_windowed_einsum_users = skip_checking_windowed_einsum_users; options.disable_ag_rewrite_for_multiple_consumers = disable_ag_rewrite_for_multiple_consumers; return options; } }; } } #endif #include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include <memory> #include <utility> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" namespace xla { namespace spmd { absl::Status StatefulRngSpmdPartitioningVisitor::HandleRngGetAndUpdateState( HloInstruction* hlo) { if (hlo->sharding().HasUniqueDevice()) { return HandleSingleDevice(hlo); } TF_RET_CHECK(hlo->sharding().IsReplicated()); auto clone = builder()->AddInstruction(hlo->CloneWithNewOperands(hlo->shape(), {})); clone->set_sharding(hlo->sharding()); SetPartitionedHlo( hlo, spmd::PartitionedHlo(clone, hlo->shape(), MakePartitioningState()) .Reshard(hlo->sharding())); return absl::OkStatus(); } std::unique_ptr<spmd::SpmdPartitioningVisitor> StatefulRngSpmdPartitioner::CreateVisitor( HloComputation* computation, int64_t num_partitions, int64_t num_replicas, const spmd::SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, spmd::SpmdLogger* logger, spmd::SpmdPartitionerOptions options, const CallGraph& call_graph) { return std::make_unique<StatefulRngSpmdPartitioningVisitor>( computation, num_partitions, num_replicas, collective_ops_creator, next_channel_id, logger, std::move(options), this, call_graph); } absl::Status StatefulRngSpmdPartitioner::PreprocessSharding( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* hlo : computation->instructions()) { if (hlo->opcode() == HloOpcode::kRngGetAndUpdateState && !hlo->has_sharding()) { hlo->set_sharding(HloSharding::Replicate()); } } } return spmd::SpmdPartitioner::PreprocessSharding(module, execution_threads); } bool StatefulRngSpmdPartitioner::CanSideEffectingHaveReplicatedSharding( const HloInstruction* hlo) { if (hlo->opcode() == HloOpcode::kRngGetAndUpdateState) return true; return spmd::SpmdPartitioner::CanSideEffectingHaveReplicatedSharding(hlo); } absl::Status StatefulRngSpmdPartitioner::HandleRotateRightWhilePreprocessing( HloComputation* computation) { if (!computation->IsWhileBodyComputation()) { return absl::OkStatus(); } HloInstruction* while_loop = computation->WhileCallInstruction(); TF_RET_CHECK(while_loop); if (computation->parent() ->config() .debug_options() .xla_gpu_unsafe_pipelined_loop_annotator()) { xla::FrontendAttributes attributes; (*attributes.mutable_map())["is_pipelined_while_loop"] = "true"; while_loop->add_frontend_attributes(attributes); } return absl::OkStatus(); } } }
#include "xla/service/spmd/stateful_rng_spmd_partitioner.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/service/rng_expander.h" #include "xla/service/sharding_propagation.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace spmd { namespace { namespace op = xla::testing::opcode_matchers; int64_t CountInstructions(const HloComputation &computation, HloOpcode opcode) { int64_t count = 0; for (const auto &instruction : computation.instructions()) { if (instruction->opcode() == opcode) { count++; } } return count; } class StatefulRngSpmdPartitionerTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( absl::string_view hlo_module, int64_t num_partitions, DebugOptions debug_options, std::function<void(HloPassPipeline &pipeline)> add_passes = nullptr, bool skip_checking_windowed_einsum_users = false, bool disable_ag_rewrite_for_multiple_consumers = false) { HloModuleConfig config = GetModuleConfigForTest(1, num_partitions); config.set_use_spmd_partitioning(true); config.set_debug_options(debug_options); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); HloPassPipeline pass("partitioning"); pass.AddPass<HloVerifier>(false, false); if (add_passes) { add_passes(pass); } pass.AddPass<ShardingPropagation>(true); pass.AddPass<StatefulRngSpmdPartitioner>( num_partitions, 1, debug_options.xla_gpu_threshold_for_windowed_einsum_mib(), debug_options.xla_gpu_multi_streamed_windowed_einsum(), skip_checking_windowed_einsum_users, disable_ag_rewrite_for_multiple_consumers); pass.AddPass<HloVerifier>(false, false); TF_RETURN_IF_ERROR(pass.Run(module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } void VerifyNoAllReduce(HloModule *module) { for (HloComputation *computation : module->computations()) { for (HloInstruction *hlo : computation->instructions()) { EXPECT_NE(hlo->opcode(), HloOpcode::kAllReduce); } } } DebugOptions GetDefaultDebugOptions() { DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_threshold_for_windowed_einsum_mib(1000000); debug_options.set_xla_gpu_multi_streamed_windowed_einsum(false); debug_options.set_xla_gpu_unsafe_pipelined_loop_annotator(false); return debug_options; } }; TEST_F(StatefulRngSpmdPartitionerTest, RngReplicatedConsumer) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %p0 = f32[50,100] parameter(0), sharding={replicated} %mu = f32[] constant(0) %sigma = f32[] constant(1) %rng = f32[50,100] rng(f32[] %mu, f32[] %sigma), distribution=rng_uniform ROOT %add = f32[50,100] add(%rng, %p0), sharding={replicated} } )"; auto add_passes = [](HloPassPipeline &pipeline) { pipeline.AddPass<RngExpander>(); }; DebugOptions debug_options = GetDebugOptionsForTest(); TF_ASSERT_OK_AND_ASSIGN( auto module, PartitionComputation(hlo_string, 2, GetDefaultDebugOptions(), add_passes)); XLA_VLOG_LINES(1, module->ToString()); VerifyNoAllReduce(module.get()); } TEST_F(StatefulRngSpmdPartitionerTest, RngPartitionedConsumer) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %p0 = f32[50,100] parameter(0), sharding={replicated} %mu = f32[] constant(0) %sigma = f32[] constant(1) %rng = f32[50,100] rng(f32[] %mu, f32[] %sigma), distribution=rng_uniform ROOT %add = f32[50,100] add(%rng, %p0), sharding={devices=[2,1]0,1} } )"; auto add_passes = [](HloPassPipeline &pipeline) { pipeline.AddPass<RngExpander>(); }; TF_ASSERT_OK_AND_ASSIGN( auto module, PartitionComputation(hlo_string, 2, GetDefaultDebugOptions(), add_passes)); XLA_VLOG_LINES(1, module->ToString()); VerifyNoAllReduce(module.get()); } TEST_F(StatefulRngSpmdPartitionerTest, EinsumDisableRewriteForAgWithMultipleConsumers) { absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={(bf16[2,2048,24576]{2,1,0}, bf16[24576,98304]{1,0}, bf16[24576,98304]{1,0})->bf16[2,2048,98304]{2,1,0}}, num_partitions=4 ENTRY main { Arg_0.1 = bf16[2,2048,24576]{2,1,0} parameter(0), sharding={devices=[1,4,1]<=[4]} Arg_1.2 = bf16[24576,98304]{1,0} parameter(1), sharding={devices=[1,4]<=[4]} dot.5 = bf16[2,2048,98304]{2,1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={2}, rhs_contracting_dims={0}, sharding={devices=[1,1,4]<=[4]} Arg_2.3 = bf16[24576,98304]{1,0} parameter(2), sharding={devices=[1,4]<=[4]} dot.6 = bf16[2,2048,98304]{2,1,0} dot(Arg_0.1, Arg_2.3), lhs_contracting_dims={2}, rhs_contracting_dims={0}, sharding={devices=[1,1,4]<=[4]} ROOT add.8 = bf16[2,2048,98304]{2,1,0} add(dot.5, dot.6), sharding={devices=[1,1,4]<=[4]} } )"; DebugOptions debug_options = GetDefaultDebugOptions(); debug_options.set_xla_gpu_threshold_for_windowed_einsum_mib(0); debug_options.set_xla_gpu_multi_streamed_windowed_einsum(true); TF_ASSERT_OK_AND_ASSIGN( auto module, PartitionComputation(hlo_string, 4, debug_options, nullptr, true, true)); XLA_VLOG_LINES(1, module->ToString()); EXPECT_EQ(CountInstructions(*module->entry_computation(), HloOpcode::kWhile), 1); EXPECT_EQ(CountInstructions(*module->entry_computation(), HloOpcode::kDot), 1); EXPECT_EQ( CountInstructions(*module->entry_computation(), HloOpcode::kAllGather), 1); } TEST_F(StatefulRngSpmdPartitionerTest, VerifyThresholdSetCorrectly) { auto debug_options = HloTestBase::GetDebugOptionsForTest(); int64_t threshold = 400; debug_options.set_xla_gpu_threshold_for_windowed_einsum_mib(threshold); debug_options.set_xla_gpu_multi_streamed_windowed_einsum(true); StatefulRngSpmdPartitioner rng_spmd_partitioner( 2, 1, debug_options.xla_gpu_threshold_for_windowed_einsum_mib(), debug_options.xla_gpu_multi_streamed_windowed_einsum()); EXPECT_EQ(rng_spmd_partitioner.options().threshold_for_windowed_einsum_mib, threshold); EXPECT_EQ(rng_spmd_partitioner.options().unroll_windowed_einsum, true); } TEST_F(StatefulRngSpmdPartitionerTest, MergedSliceThenConcatRotateRightWhileOp) { absl::string_view hlo_string = R"( HloModule test %Body { %param = (f32[12], s32[]) parameter(0) %i = s32[] get-tuple-element(%param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %param0 = f32[12] get-tuple-element(%param), index=0, sharding={devices=[4]<=[4]} %slice0 = f32[2] slice(%param0), slice={[10:12]}, sharding={devices=[4]<=[4]} %slice1 = f32[10] slice(%param0), slice={[0:10]}, sharding={devices=[4]<=[4]} %concat = f32[12] concatenate(%slice0, %slice1), dimensions={0}, sharding={devices=[4]<=[4]} ROOT %tuple = (f32[12], s32[]) tuple(%concat, %i_plus_one) } %Cond { %param.1 = (f32[12], s32[]) parameter(0) %i.1 = s32[] get-tuple-element(%param.1), index=1 %trip_count = s32[] constant(11) ROOT %done = pred[] compare(%i.1, %trip_count), direction=LT } ENTRY %test { %i_start = f32[12] parameter(0) %p_start = s32[] constant(0) %initial_tuple = (f32[12], s32[]) tuple(%i_start, %p_start) ROOT %while = (f32[12], s32[]) while(%initial_tuple), condition=%Cond, body=%Body } )"; DebugOptions debug_options = GetDefaultDebugOptions(); debug_options.set_xla_gpu_unsafe_pipelined_loop_annotator(true); TF_ASSERT_OK_AND_ASSIGN( auto module, PartitionComputation(hlo_string, 4, debug_options)); const HloInstruction *whileOp = module->entry_computation()->root_instruction(); const HloInstruction *root = whileOp->while_body()->GetInstructionWithName("concatenate"); auto rotate = op::Concatenate(op::CollectivePermute(op::Slice()), op::Slice()); EXPECT_THAT(root, AllOf(rotate, op::Shape("f32[3]"))); EXPECT_TRUE( whileOp->frontend_attributes().map().contains("is_pipelined_while_loop")); debug_options.set_xla_gpu_unsafe_pipelined_loop_annotator(false); TF_ASSERT_OK_AND_ASSIGN( module, PartitionComputation(hlo_string, 4, debug_options)); whileOp = module->entry_computation()->root_instruction(); root = whileOp->while_body()->GetInstructionWithName("concatenate"); rotate = op::Concatenate(op::CollectivePermute(op::Slice()), op::Slice()); EXPECT_THAT(root, AllOf(rotate, op::Shape("f32[3]"))); } } } }
2,003
cpp
tensorflow/tensorflow
spmd_partitioner
third_party/xla/xla/service/spmd/spmd_partitioner.cc
third_party/xla/xla/service/spmd/spmd_partitioner_test.cc
#ifndef XLA_SERVICE_SPMD_SPMD_PARTITIONER_H_ #define XLA_SERVICE_SPMD_SPMD_PARTITIONER_H_ #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_map.h" #include "absl/functional/function_ref.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/service/call_graph.h" #include "xla/service/custom_call_sharding_helper.h" #include "xla/service/dot_as_convolution_util.h" #include "xla/service/hlo_pass_interface.h" #include "xla/xla_data.pb.h" namespace xla { namespace spmd { struct SpmdPartitionerOptions { bool conv_halo_exchange_always_on_lhs = true; int64_t report_instruction_count = 5; int64_t threshold_for_windowed_einsum_mib = 256; bool unroll_windowed_einsum = false; bool bidirectional_windowed_einsum = false; bool allow_module_signature_change = false; bool cache_all_gather = true; bool choose_faster_windowed_einsum_over_mem = false; bool bidirectional_decomposed_all_gather = false; bool skip_checking_windowed_einsum_users = false; bool enable_windowed_einsum_for_all_gather = true; bool enable_windowed_einsum_for_reduce_scatter = true; bool disable_ag_rewrite_for_multiple_consumers = false; }; class SpmdBuilder : public HloComputation::Builder { public: SpmdBuilder(const std::string& name, HloInstruction* hlo) : HloComputation::Builder(name) { visiting_hlo_ = hlo; } HloInstruction* AddInstruction( std::unique_ptr<HloInstruction> instruction) override; const std::vector<HloInstruction*>& derived_instructions( HloInstruction* hlo) { return instructions_.at(hlo); } void set_visiting_hlo(HloInstruction* hlo) { visiting_hlo_ = hlo; instructions_[hlo]; } HloInstruction* visiting_hlo() const { return visiting_hlo_; } std::optional<const absl::flat_hash_set<int64_t>*> BroadcastDimsForCreatedHlo( const HloInstruction* hlo) { auto it = broadcast_dims_.find(hlo); if (it == broadcast_dims_.end()) { return std::nullopt; } return &it->second; } private: HloInstruction* visiting_hlo_; HloInstructionMap<std::vector<HloInstruction*>> instructions_; absl::flat_hash_map<const HloInstruction*, absl::flat_hash_set<int64_t>> broadcast_dims_; }; struct SPMDCollectiveOpsCreator { std::function<HloInstruction*(SpmdBuilder*)> create_partition_id; std::function<HloInstruction*( SpmdBuilder*, HloInstruction* operand, HloComputation* reduction, const std::vector<std::vector<int64_t>>& partition_subgroups, int64_t channel_id)> create_cross_partition_all_reduce; std::function<HloInstruction*( SpmdBuilder*, HloInstruction* operand, HloComputation* reduction, const IotaReplicaGroupList& partition_group_list, int64_t channel_id)> create_cross_partition_all_reduce_with_iota_device_list; std::function<HloInstruction*( SpmdBuilder*, HloInstruction* operand, std::vector<std::pair<int64_t, int64_t>>& src_dst_pairs, int64_t next_channel_id)> create_cross_partition_collective_permute; std::function<HloInstruction*( SpmdBuilder*, absl::Span<HloInstruction* const> operands, const std::vector<std::vector<int64_t>>& partition_subgroups, int64_t channel_id, std::optional<int64_t> split_dimension)> create_cross_partition_all_to_all; std::function<HloInstruction*( SpmdBuilder*, HloInstruction* operand, const Shape& ag_shape, const std::vector<std::vector<int64_t>>& partition_subgroups, int64_t channel_id, int64_t all_gather_dimension)> create_cross_partition_all_gather; std::function<HloInstruction*( SpmdBuilder*, HloInstruction* operand, const Shape& ag_shape, const IotaReplicaGroupList& partition_group_list, int64_t channel_id, int64_t all_gather_dimension)> create_cross_partition_all_gather_with_iota_device_list; }; SPMDCollectiveOpsCreator GetDefaultCollectiveOpsCreator(int64_t num_partitions, int64_t num_replicas); class SpmdLogger { public: SpmdLogger(int64_t report_instruction_count, bool disabled) : report_instruction_count_(report_instruction_count), disabled_(disabled) {} static std::string ReportBeforePartition(const HloModule& module, int64_t report_instruction_count); static std::string ReportAfterPartition(const HloModule& module, int64_t report_instruction_count); void RegisterLogEntry(HloInstruction* hlo, const std::vector<HloInstruction*>& group); std::string MakeReport(); private: template <typename F> static std::string ReportMemoryUsage(const HloModule& module, const F& filter, int64_t report_instruction_count); std::vector<std::pair<int64_t, std::string>> entries_; int64_t report_instruction_count_; const bool disabled_; }; class SpmdPartitioningVisitor; class SpmdPartitioner : public HloModulePass { public: SpmdPartitioner(int64_t num_partitions, int64_t num_replicas, SpmdPartitionerOptions options); SpmdPartitioner(int64_t num_partitions, int64_t num_replicas, SpmdPartitionerOptions options, SPMDCollectiveOpsCreator collective_ops_creator) : num_partitions_(num_partitions), num_replicas_(num_replicas), options_(std::move(options)), collective_ops_creator_(std::move(collective_ops_creator)) {} absl::string_view name() const override { return "spmd-partitioning"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; absl::StatusOr<bool> PartitionComputation(HloComputation* computation, const HloSharding& root_sharding, int64_t* next_channel_id, SpmdLogger* logger, const CallGraph& call_graph); virtual HloInstruction* AllGatherShards( SpmdBuilder* b, HloInstruction* operand, const HloSharding& sharding, int64_t* next_channel_id, absl::Span<const int64_t> selected_dims, const SPMDCollectiveOpsCreator& collectives_creator); virtual HloInstruction* AllReduceAlongShardingDims( SpmdBuilder* b, HloInstruction* operand, const HloSharding& sharding, int64_t* next_channel_id, absl::Span<const int64_t> selected_dims, const SPMDCollectiveOpsCreator& collectives_creator, HloComputation* reduction); const SpmdPartitionerOptions& options() { return options_; } virtual std::unique_ptr<SpmdPartitioningVisitor> CreateVisitor( HloComputation* computation, int64_t num_partitions, int64_t num_replicas, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, SpmdLogger* logger, SpmdPartitionerOptions options, const CallGraph& call_graph); virtual int64_t MemoryCostInBytes(HloInstruction* hlo); virtual int64_t CommunicationCostInBytes(HloInstruction* hlo); const absl::flat_hash_set<absl::string_view>& execution_threads() const { return execution_threads_; } protected: std::pair<HloInstruction*, HloInstruction*> AllGatherShardsInternal( SpmdBuilder* b, HloInstruction* operand, const HloSharding& sharding, int64_t* next_channel_id, absl::Span<const int64_t> selected_dims, const SPMDCollectiveOpsCreator& collectives_creator, bool per_dim_ag); HloInstruction* AllReduceAlongShardingDimsInternal( SpmdBuilder* b, HloInstruction* operand, const HloSharding& sharding, int64_t* next_channel_id, absl::Span<const int64_t> selected_dims, const SPMDCollectiveOpsCreator& collectives_creator, HloComputation* reduction, bool per_dim_ar); virtual absl::Status PreprocessSharding( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); virtual bool CanSideEffectingHaveReplicatedSharding( const HloInstruction* hlo) { if (hlo->opcode() == HloOpcode::kCustomCall) { if (auto* partitioner = GetCustomCallPartitioner(hlo->custom_call_target())) { return partitioner->CanSideEffectingHaveReplicatedSharding(); } } return hlo->opcode() == HloOpcode::kInfeed || hlo->opcode() == HloOpcode::kOutfeed; } absl::Status PreprocessHlos( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads); virtual absl::Status HandleRotateRightWhilePreprocessing( HloComputation* computation) { return absl::OkStatus(); }; void set_execution_threads( const absl::flat_hash_set<absl::string_view>& execution_threads) { execution_threads_ = execution_threads; } const int64_t num_partitions_; const int64_t num_replicas_; SpmdPartitionerOptions options_; SPMDCollectiveOpsCreator collective_ops_creator_; std::vector<std::vector<int64_t>> device_groups_; absl::flat_hash_set<absl::string_view> execution_threads_; }; class PartitionedHlo { public: struct WindowedInputShardReturnValue { HloInstruction* sharded_input; Window shard_window; std::optional<std::vector<HloInstruction*>> dynamic_slice_index_on_output; }; struct ReshardCache { struct PerHloCache { absl::flat_hash_map<HloSharding, PartitionedHlo> reshard_cache; std::vector< std::tuple<HloSharding, Window, WindowedInputShardReturnValue>> window_reshard_cache; }; absl::node_hash_map<HloInstruction*, PerHloCache> per_hlo_cache; absl::flat_hash_map<std::string, std::unique_ptr<ReshardCache>> groupd_caches; }; struct PartitioningState { SpmdBuilder* b; HloModule* module; int64_t num_replicas; HloInstruction* partition_id; SPMDCollectiveOpsCreator collective_ops_creator; int64_t* next_channel_id; ReshardCache* reshard_cache; SpmdPartitioner* partitioner; }; PartitionedHlo(HloInstruction* hlo, Shape base_shape, PartitioningState state) : hlo_(hlo), base_shape_(base_shape), state_(std::move(state)) { CHECK(hlo->has_sharding()) << "PartitionedHlo is missing sharding:" << hlo->ToString(); } PartitionedHlo CloneWithNewHlo(HloInstruction* hlo) const { PartitionedHlo new_phlo = *this; new_phlo.hlo_ = hlo; if (!hlo->has_sharding() && hlo_->has_sharding()) { hlo->copy_sharding(hlo_); } return new_phlo; } PartitionedHlo Reshard(const HloSharding& target, std::optional<Literal> pad_value = std::nullopt) const; PartitionedHlo PadWithValue( HloInstruction* pad_value, absl::Span<const int64_t> left_padded_dims = {}, absl::Span<const int64_t> skipped_dims = {}) const; HloInstruction* PadWithValueHlo( HloInstruction* pad_value, absl::Span<const int64_t> left_padded_dims = {}, absl::Span<const int64_t> skipped_dims = {}) const; PartitionedHlo PadWithZero(absl::Span<const int64_t> left_padded_dims = {}, absl::Span<const int64_t> skipped_dims = {}) const; HloInstruction* hlo() const { return hlo_; } const HloSharding& sharding() const { return hlo_->sharding(); } const int64_t rank() const { return base_shape_.rank(); } const Shape& base_shape() const { return base_shape_; } int64_t NewChannel() const { return (*state_.next_channel_id)++; } std::optional<WindowedInputShardReturnValue> ReshardAsWindowedInput( const Window& window, const HloSharding& target, HloInstruction* pad_value, bool mask_invalid_region = true, bool force_mask_in_compact = false); const PartitioningState& state() const { return state_; } PartitionedHlo Replicate() const; HloInstruction* ReplicatePartial(absl::Span<const int64_t> dims) const; void set_state(PartitioningState state) { state_ = std::move(state); } private: PartitionedHlo ReshardNoCache(const HloSharding& target, std::optional<Literal> pad_value = std::nullopt, bool allow_full_replication = true) const; PartitionedHlo Broadcast() const; std::optional<PartitionedHlo> TryComplexReshardHandling( const HloSharding& target) const; PartitionedHlo ReshardWithAllToAll( const HloSharding& target, absl::Span<const std::pair<int64_t, int64_t>> source_target_dims) const; PartitionedHlo ReshardWithCollectivePermute(const HloSharding& target) const; std::optional<PartitionedHlo> ReshardToPartialReplicateWithAllGather( const HloSharding& target) const; std::optional<PartitionedHlo> ReshardFromPartialReplicateWithDynamicSlice( const HloSharding& target) const; std::optional<PartitionedHlo> ReshardPartialReplicateWithAllToAll( const HloSharding& target) const; HloInstruction* hlo_; Shape base_shape_; PartitioningState state_; }; class SpmdPartitioningVisitor : public DfsHloVisitorWithDefault { public: SpmdPartitioningVisitor( HloComputation* computation, int64_t num_partitions, int64_t num_replicas, const SPMDCollectiveOpsCreator& collective_ops_creator, int64_t* next_channel_id, SpmdLogger* logger, SpmdPartitionerOptions options, SpmdPartitioner* partitioner, const CallGraph& call_graph); SpmdPartitioningVisitor(const SpmdPartitioningVisitor& src); absl::Status DefaultAction(HloInstruction* hlo) override; absl::Status HandleAllReduce(HloInstruction* hlo) override; absl::Status HandleBroadcast(HloInstruction* hlo) override; absl::Status HandleCall(HloInstruction* hlo) override; absl::Status HandleConstant(HloInstruction* hlo) override; absl::Status HandleCustomCall(HloInstruction* hlo) override; absl::Status HandleDot(HloInstruction* hlo) override; absl::Status HandleDynamicSlice(HloInstruction* hlo) override; absl::Status HandleDynamicUpdateSlice(HloInstruction* hlo) override; absl::Status HandleFft(HloInstruction* hlo) override; absl::Status HandleGather(HloInstruction* hlo) override; absl::Status HandleGetTupleElement(HloInstruction* hlo) override; absl::Status HandleInfeed(HloInstruction* hlo) override; absl::Status HandleOptimizationBarrier(HloInstruction* hlo) override; absl::Status HandleOutfeed(HloInstruction* hlo) override; absl::Status HandlePad(HloInstruction* hlo) override; absl::Status HandleParameter(HloInstruction* hlo) override; absl::Status HandleReduce(HloInstruction* hlo) override; absl::Status HandleReverse(HloInstruction* hlo) override; absl::Status HandleWhile(HloInstruction* hlo) override; absl::Status HandleConditional(HloInstruction* hlo) override; absl::Status HandleReduceWindow(HloInstruction* hlo) override; absl::Status HandleSelectAndScatter(HloInstruction* hlo) override; absl::Status HandleTuple(HloInstruction* hlo) override; absl::Status HandleRng(HloInstruction* hlo) override; absl::Status HandleConvolution(HloInstruction* hlo) override; absl::Status HandleConcatenate(HloInstruction* hlo) override; absl::Status HandleScatter(HloInstruction* hlo) override; absl::Status HandleSlice(HloInstruction* hlo) override; absl::Status HandleSort(HloInstruction* hlo) override; absl::Status HandleTranspose(HloInstruction* hlo) override; absl::Status HandleReshape(HloInstruction* hlo) override; absl::Status HandleIota(HloInstruction* hlo) override; absl::Status HandlePartitionId(HloInstruction* hlo) override; absl::Status HandleDotHelper( HloInstruction* hlo, const dot_as_convolution_util::DotConvolutionDimsInfo& dims_mapping, absl::FunctionRef<absl::StatusOr<HloInstruction*>( HloInstruction*, HloInstruction*, SpmdBuilder*, const Window& conv_window)> create_sharded_dot); absl::Status HandleElementwise(HloInstruction* hlo); absl::Status HandleSingleDevice(const HloInstruction* hlo); absl::Status HandleCustomCallTopK(HloInstruction* hlo); absl::Status HandleCustomCallSPMDInternal_RotateRight(HloInstruction* hlo); virtual std::unique_ptr<SpmdPartitioningVisitor> Clone() const; PartitionedHlo& GetPartitionedHlo(const HloInstruction* hlo) { CHECK_EQ(partitioned_instructions_.count(hlo), 1); return partitioned_instructions_.find(hlo)->second; } void SetPartitionedHlo(const HloInstruction* hlo, const PartitionedHlo& partitioned_hlo) { CHECK_EQ(partitioned_instructions_.count(hlo), 0); partitioned_instructions_.emplace(hlo, partitioned_hlo); changed_ = true; } void SetPartitionedHlo(const HloInstruction* hlo, absl::FunctionRef<HloInstruction*()> func) { HloInstruction* new_hlo = func(); new_hlo->set_sharding(hlo->sharding()); SetPartitionedHlo( hlo, PartitionedHlo(new_hlo, hlo->shape(), MakePartitioningState())); changed_ = true; } int64_t NewChannel() { return (*next_channel_id_)++; } PartitionedHlo::PartitioningState MakePartitioningState(); SpmdBuilder* builder() { return &b_; } virtual absl::StatusOr<bool> DoPartition( HloComputation* computation, const HloSharding& root_sharding, const SpmdPartitionerOptions& options); virtual double GetComputationTimeInMilliSec(HloInstruction* hlo) { return 0.0; } virtual double GetCommunicationTimeInMilliSec( int64_t bytes, absl::Span<const ReplicaGroup> device_groups) { return 0.0; } virtual int GetCommunicationMultiplier( absl::Span<const ReplicaGroup> device_groups) { return 1; } std::vector<ReplicaGroup> CreateReplicaGroups( std::vector<std::vector<int64_t>>& groups); const CallGraph& call_graph() { return call_graph_; } int64_t num_partitions() const { return num_partitions_; } int64_t num_replicas() const { return num_replicas_; } SpmdLogger* logger() { return logger_; } const SpmdLogger* logger() const { return logger_; } const SpmdPartitionerOptions& options() const { return options_; } SpmdPartitioner* partitioner() { return partitioner_; } const SpmdPartitioner* partitioner() const { return partitioner_; } SPMDCollectiveOpsCreator& collective_ops_creator() { return collective_ops_creator_; } const SPMDCollectiveOpsCreator& collective_ops_creator() const { return collective_ops_creator_; } HloModule* module() { return module_; } const HloModule* module() const { return module_; } void set_module(HloModule* module) { module_ = module; } struct WindowedDotGeneralLoop { HloInstruction* while_loop; int64_t windowed_operand; bool windowed_in_contracting_dims; bool windowed_in_batch_dims; bool operands_sharded_at_contracting_dims; int64_t num_partitions; std::vector<ReplicaGroup> loop_replica_groups; }; protected: absl::Status Preprocess(HloInstruction* hlo) override; absl::Status Postprocess(HloInstruction* hlo) override; absl::Status DoCodeMotionForWindowedDotGeneralLoops( HloComputation* computation, const SpmdPartitionerOptions& options); bool changed_; HloModule* module_; int64_t num_partitions_; int64_t num_replicas_; SPMDCollectiveOpsCreator collective_ops_creator_; int64_t* next_channel_id_; SpmdBuilder b_; std::vector<WindowedDotGeneralLoop> windowed_dot_general_loops_; HloInstruction* partition_id_; private: PartitionedHlo::ReshardCache reshard_cache_; ConstHloInstructionMap<PartitionedHlo> partitioned_instructions_; HloInstruction* visiting_hlo_; SpmdLogger* logger_; const SpmdPartitionerOptions options_; SpmdPartitioner* partitioner_; std::vector<HloSharding> visiting_hlo_operand_shardings_; std::optional<HloSharding> visiting_hlo_sharding_; std::optional<int64_t> visiting_num_partitions_; std::optional<SPMDCollectiveOpsCreator> visiting_collective_ops_creator_; std::optional<HloInstruction*> visiting_partition_id_; std::vector<PartitionedHlo::PartitioningState> visiting_state_; std::vector<std::vector<int64_t>> device_groups_; const CallGraph& call_graph_; }; } } #endif #include "xla/service/spmd/spmd_partitioner.h" #include <algorithm> #include <array> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/protobuf_util.h" #include "xla/service/call_graph.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/computation_layout.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/shape_inference.h" #include "xla/service/spmd/custom_call_handler.h" #include "xla/service/spmd/spmd_partitioner_util.h" #include "xla/ser
#include "xla/service/spmd/spmd_partitioner.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/hlo/utils/hlo_sharding_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/service/sharding_format_picker.h" #include "xla/service/spmd/spmd_prepare.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace spmd { namespace { using ::testing::_; using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; class SpmdPartitioningTest : public HloTestBase, public ::testing::WithParamInterface<ShardingFormatPicker::ShardingType> { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( absl::string_view hlo_module, int64_t num_devices, bool conv_halo_exchange_always_on_lhs = true, bool choose_faster_windowed_einsum = false, bool unroll_windowed_einsum = false, bool bidirectional_windowed_einsum = false, int64_t threshold_for_windowed_einsum_mib = -1) { SpmdPartitionerOptions options; options.conv_halo_exchange_always_on_lhs = conv_halo_exchange_always_on_lhs; options.allow_module_signature_change = true; options.choose_faster_windowed_einsum_over_mem = choose_faster_windowed_einsum; options.unroll_windowed_einsum = unroll_windowed_einsum; options.bidirectional_windowed_einsum = bidirectional_windowed_einsum; if (threshold_for_windowed_einsum_mib >= 0) { options.threshold_for_windowed_einsum_mib = threshold_for_windowed_einsum_mib; } auto collective_ops_creator = GetDefaultCollectiveOpsCreator(num_devices, 1); collective_ops_creator.create_cross_partition_all_gather = nullptr; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(num_devices); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); ShardingFormatPicker format_picker(GetParam()); TF_ASSIGN_OR_RETURN(bool changed, format_picker.Run(module.get())); if (changed) { VLOG(1) << "Sharding format changed: " << module->ToString(HloPrintOptions() .set_print_program_shape(false) .set_print_operand_shape(false)); } HloPassPipeline pass("spmd-partitioning"); pass.AddPass<HloVerifier>(false, false); pass.AddPass<SpmdPrepare>(); pass.AddPass<SpmdPartitioner>(num_devices, 1, options, collective_ops_creator); pass.AddPass<HloVerifier>(false, false); TF_RETURN_IF_ERROR(pass.Run(module.get()).status()); VerifyNoShardingOnCollectives(module.get()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } void VerifyNoShardingOnCollectives(HloModule* module) { for (const HloComputation* c : module->computations()) { for (const HloInstruction* inst : c->instructions()) { if (!absl::c_linear_search( std::vector<HloOpcode>{ HloOpcode::kAllToAll, HloOpcode::kAllReduce, HloOpcode::kAllGather, HloOpcode::kCollectivePermute, HloOpcode::kReduceScatter}, inst->opcode())) { continue; } EXPECT_FALSE(inst->has_sharding()); } } } }; std::string TestParamToString( const ::testing::TestParamInfo<ShardingFormatPicker::ShardingType>& data) { switch (data.param) { case ShardingFormatPicker::ShardingType::kV1: return "V1"; case ShardingFormatPicker::ShardingType::kBestEffortV2: return "BestEffortV2"; } } INSTANTIATE_TEST_SUITE_P( All, SpmdPartitioningTest, ::testing::Values(ShardingFormatPicker::ShardingType::kV1, ShardingFormatPicker::ShardingType::kBestEffortV2), TestParamToString); TEST_P(SpmdPartitioningTest, SingleDeviceToReplicated) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %constant = s32[2,3]{1,0} constant({{1,1,1},{1,1,1}}), sharding={maximal device=0} ROOT %copy = s32[2,3]{1,0} copy(%constant), sharding={replicated} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Copy(op::AllReduce( op::Select(op::Broadcast(op::Compare()), op::Constant(), op::Broadcast()))), op::Shape("s32[2,3]"))); } TEST_P(SpmdPartitioningTest, SingleDeviceCustomCall) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %constant = s32[2,3]{1,0} constant({{1,1,1},{1,1,1}}), sharding={maximal device=0} %cc = s32[2,3] custom-call(%constant), custom_call_target="SomeCustomCall", sharding={maximal device=0} ROOT %copy = s32[2,3]{1,0} copy(%cc), sharding={replicated} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* custom_call = FindInstruction(module.get(), "cc.1"); EXPECT_NE(custom_call, nullptr); EXPECT_NE(custom_call->parent(), module->entry_computation()); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Copy(op::AllReduce( op::Select(op::Broadcast(op::Compare()), op::Conditional(), op::Broadcast()))), op::Shape("s32[2,3]"))); } TEST_P(SpmdPartitioningTest, SingleDeviceToSingleDevice) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %constant = s32[2,3]{1,0} constant({{1,1,1},{1,1,1}}), sharding={maximal device=0} ROOT %copy = s32[2,3]{1,0} copy(%constant), sharding={maximal device=1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); HloInstruction* root = module->entry_computation()->root_instruction(); VLOG(1) << module->ToString(); EXPECT_THAT(root, op::Copy(AllOf(op::Copy(op::AllReduce(op::Select( op::Broadcast(op::Compare()), op::Constant(), op::Broadcast()))), op::Shape("s32[2,3]")))); } TEST_P(SpmdPartitioningTest, SingleDeviceToTiled) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %constant = s32[2,3]{1,0} constant({{1,1,1},{1,1,1}}), sharding={maximal device=0} ROOT %copy = s32[2,3]{1,0} copy(%constant), sharding={devices=[2,1]1,0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf( op::Copy(op::DynamicSlice( op::AllReduce(op::Select( op::Broadcast(op::Compare(op::PartitionId(), op::Constant())), op::Constant(), op::Broadcast())), op::Reshape(op::DynamicSlice(op::Constant(), op::PartitionId())), op::Constant())), op::Shape("s32[1,3]"))); } TEST_P(SpmdPartitioningTest, PartitionCall) { absl::string_view hlo_string = R"( HloModule jit_f g { Arg_0.6 = s32[8,2]{1,0} parameter(0), sharding={devices=[2,2]<=[4]} constant.0 = s32[] constant(2), sharding={replicated} broadcast.0 = s32[8,2]{1,0} broadcast(constant.0), dimensions={}, sharding={devices=[2,2]<=[4]} ROOT multiply.9 = s32[8,2]{1,0} multiply(Arg_0.6, broadcast.0), sharding={devices=[2,2]<=[4]} } ENTRY main { Arg_0.1 = s32[8,2]{1,0} parameter(0), sharding={devices=[2,2]<=[4]} constant.1 = s32[] constant(3), sharding={replicated} broadcast.1 = s32[8,2]{1,0} broadcast(constant.1), dimensions={}, sharding={devices=[2,2]<=[4]} multiply.4 = s32[8,2]{1,0} multiply(Arg_0.1, broadcast.1), sharding={devices=[2,2]<=[4]} ROOT call = s32[8,2]{1,0} call(multiply.4), to_apply=g, sharding={devices=[2,2]<=[4]}, backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_HOST","used_scoped_memory_configs":[]} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 4)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Call(), op::Shape("s32[4,1]"))); HloInstruction* call_comp_root = root->called_computations()[0]->root_instruction(); EXPECT_THAT(call_comp_root, AllOf(op::Multiply(op::Parameter(0), op::Broadcast(op::Constant())), op::Shape("s32[4,1]"))); } TEST_P(SpmdPartitioningTest, TiledToReplicated) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %constant = s32[2,3]{1,0} constant({{1,1,1},{1,1,1}}), sharding={devices=[2,1]0,1} ROOT %copy = s32[2,3]{1,0} copy(%constant), sharding={replicated} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, op::Copy(op::AllReduce(AllOf( op::DynamicUpdateSlice( op::Broadcast(), AllOf(op::Constant(), op::Shape("s32[1,3]")), op::Reshape(op::DynamicSlice(op::Constant(), op::PartitionId())), op::Constant()), op::Shape("s32[2,3]"))))); } TEST_P(SpmdPartitioningTest, TiledToReplicatedWhenV2ShardingGeneratesReplicaGroupV2) { if (GetParam() != ShardingFormatPicker::ShardingType::kBestEffortV2) { GTEST_SKIP() << "This test only runs when input sharding is in V2 format."; } absl::string_view hlo_string = R"( HloModule module ENTRY entry { %constant = s32[4,3]{1,0} constant({{1,1,1},{1,1,1},{1,1,1},{1,1,1}}), sharding={devices=[4,1]<=[4]} ROOT %copy = s32[4,3]{1,0} copy(%constant), sharding={replicated} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 4)); VLOG(1) << module->ToString(); auto all_reduce_instruction = std::find_if(module->entry_computation()->instructions().begin(), module->entry_computation()->instructions().end(), HloPredicateIsOp<HloOpcode::kAllReduce>); EXPECT_NE(all_reduce_instruction, module->entry_computation()->instructions().end()); EXPECT_TRUE((*all_reduce_instruction) ->device_list() .iota_replica_group_list() .has_value()); IotaReplicaGroupList list = (*all_reduce_instruction) ->device_list() .iota_replica_group_list() .value(); EXPECT_EQ(list.num_replica_groups(), 1); EXPECT_EQ(list.num_devices_per_group(), 4); EXPECT_THAT(list.reshape_dims(), ::testing::ElementsAre(4)); EXPECT_THAT(list.transpose_perm(), ::testing::ElementsAre(0)); } TEST_P(SpmdPartitioningTest, TiledToSingleDevice) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %constant = s32[2,3]{1,0} constant({{1,1,1},{1,1,1}}), sharding={devices=[2,1]0,1} ROOT %copy = s32[2,3]{1,0} copy(%constant), sharding={maximal device=0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, op::Copy(op::Copy(op::AllReduce(AllOf( op::DynamicUpdateSlice( op::Broadcast(), AllOf(op::Constant(), op::Shape("s32[1,3]")), op::Reshape(op::DynamicSlice(op::Constant(), op::PartitionId())), op::Constant()), op::Shape("s32[2,3]")))))); } TEST_P(SpmdPartitioningTest, TiledToTiledEven) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %param= s32[8,2]{1,0} parameter(0), sharding={devices=[2,1]0,1} ROOT %copy = s32[8,2]{1,0} copy(%param), sharding={devices=[1,2]0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Copy(op::Reshape(op::Transpose(op::AllToAll(AllOf( op::Reshape(op::Parameter()), op::Shape("s32[4,2,1]")))))), op::Shape("s32[8,1]"))); } TEST_P(SpmdPartitioningTest, TiledToTiledUneven) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %param= f32[7,31,128]{2,1,0} parameter(0), sharding={devices=[1,2,1]0,1} ROOT %copy = f32[7,31,128]{2,1,0} copy(%param), sharding={devices=[2,1,1]0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Copy(op::Slice(op::Reshape(AllOf(op::Transpose(op::AllToAll( op::Reshape(AllOf(op::Pad(), op::Shape("f32[8,16,128]"))))))))))); } TEST_P(SpmdPartitioningTest, GetTupleElementSwapDevice) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %param.0 = (f32[2,3]{1,0}, u32[]) parameter(0), sharding={{maximal device=1}, {maximal device=1}} %gte.0 = f32[2,3]{1,0} get-tuple-element(%param.0), index=0, sharding={maximal device=0} %gte.1 = u32[] get-tuple-element(%param.0), index=1, sharding={maximal device=0} ROOT %tuple = (f32[2,3]{1,0}, u32[]) tuple(%gte.0, %gte.1), sharding={{maximal device=0},{maximal device=0}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, op::Tuple()); EXPECT_THAT(root->operand(0), op::Copy(op::AllReduce(op::Select( op::Broadcast(op::Compare(op::PartitionId(), op::Constant())), op::GetTupleElement(op::Parameter()), op::Broadcast())))); EXPECT_THAT(root->operand(1), op::Copy(op::AllReduce(op::Select( op::Broadcast(op::Compare(op::PartitionId(), op::Constant())), op::GetTupleElement(op::Parameter()), op::Broadcast())))); } TEST_P(SpmdPartitioningTest, GetTupleElementTiled) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param.0 = (f32[2,3]{1,0}, u32[2,3]{1,0}) parameter(0), sharding={{replicated}, {replicated}} gte.0 = f32[2,3]{1,0} get-tuple-element(param.0), index=0, sharding={devices=[2,1]0,1} gte.1 = u32[2,3]{1,0} get-tuple-element(param.0), index=1, sharding={devices=[2,1]0,1} ROOT %tuple = (f32[2,3]{1,0}, u32[2,3]{1,0}) tuple(gte.0, gte.1), sharding={{devices=[2,1]0,1},{devices=[2,1]0,1}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, op::Tuple()); auto offset = op::Reshape(op::DynamicSlice(op::Constant(), op::PartitionId())); EXPECT_THAT(root->operand(0), op::DynamicSlice(op::GetTupleElement(op::Parameter()), offset, op::Constant())); EXPECT_THAT(root->operand(1), op::DynamicSlice(op::GetTupleElement(op::Parameter()), offset, op::Constant())); } TEST_P(SpmdPartitioningTest, TiledInfeed) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { token0 = token[] after-all(), sharding={maximal device=0} infeed = (f32[8,2]{1,0}, token[]) infeed(token0), sharding={{devices=[2,1]0,1}, {maximal device=0}} ROOT infeed.data = f32[8,2]{1,0} get-tuple-element(infeed), index=0, sharding={maximal device=0} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, op::Copy(op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(), op::GetTupleElement( AllOf(op::Infeed(), op::Shape("(f32[4,2]{1,0}, token[])"))), op::Reshape(op::DynamicSlice(op::Constant(), op::PartitionId())), op::Constant())))); } TEST_P(SpmdPartitioningTest, UnevenTiledInfeed) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { token0 = token[] after-all(), sharding={maximal device=0} infeed = (f32[9,2]{1,0}, token[]) infeed(token0), sharding={{devices=[2,1]0,1}, {maximal device=0}} ROOT infeed.data = f32[9,2]{1,0} get-tuple-element(infeed), index=0, sharding={devices=[2,1]0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Shape("f32[5,2]"), op::GetTupleElement(op::Conditional( op::Convert(op::PartitionId()), op::AfterAll(), op::AfterAll())))); EXPECT_THAT( root->operand(0)->called_computations()[0]->root_instruction(), AllOf(op::Shape("(f32[5,2], token[])"), op::Infeed(op::Parameter()))); auto second_infeed = AllOf(op::Shape("(f32[4,2], token[])"), op::Infeed(op::Parameter())); EXPECT_THAT(root->operand(0)->called_computations()[1]->root_instruction(), AllOf(op::Shape("(f32[5,2], token[])"), op::Tuple(op::Pad(op::GetTupleElement(second_infeed), op::Constant()), op::GetTupleElement(second_infeed)))); } TEST_P(SpmdPartitioningTest, UnevenTiledTupleInfeed) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { token0 = token[] after-all(), sharding={maximal device=0} infeed = ((f32[9,2]{1,0}, f32[2]{0}), token[]) infeed(token0), sharding={{devices=[2,1]0,1}, {replicated}, {maximal device=0}} ROOT infeed.data = (f32[9,2]{1,0}, f32[2]{0}) get-tuple-element(infeed), index=0, sharding={{devices=[2,1]0,1}, {replicated}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Shape("(f32[5,2], f32[2])"), op::GetTupleElement(op::Conditional( op::Convert(op::PartitionId()), op::AfterAll(), op::AfterAll())))); EXPECT_THAT(root->operand(0)->called_computations()[0]->root_instruction(), AllOf(op::Shape("((f32[5,2], f32[2]), token[])"), op::Infeed(op::Parameter()))); auto second_infeed = AllOf(op::Shape("((f32[4,2], f32[2]), token[])"), op::Infeed(op::Parameter())); EXPECT_THAT( root->operand(0)->called_computations()[1]->root_instruction(), AllOf(op::Shape("((f32[5,2], f32[2]), token[])"), op::Tuple(op::Tuple(op::Pad(op::GetTupleElement( op::GetTupleElement(second_infeed)), op::Constant()), op::GetTupleElement( op::GetTupleElement(second_infeed))), op::GetTupleElement(second_infeed)))); } TEST_P(SpmdPartitioningTest, MixedTupleInfeed) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { token0 = token[] after-all(), sharding={maximal device=0} infeed = ((f32[9,2]{1,0}, f32[2]{0}), token[]) infeed(token0), sharding={{maximal device=0}, {maximal device=1}, {maximal device=0}} ROOT infeed.data = (f32[9,2]{1,0}, f32[2]{0}) get-tuple-element(infeed), index=0, sharding={{maximal device=0}, {maximal device=1}} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Shape("(f32[9,2], f32[2])"), op::GetTupleElement(op::Conditional( op::Convert(op::PartitionId()), op::AfterAll(), op::AfterAll())))); auto first_infeed = AllOf(op::Shape("((f32[9,2], ()), token[])"), op::Infeed(op::Parameter())); EXPECT_THAT(root->operand(0)->called_computations()[0]->root_instruction(), AllOf(op::Shape("((f32[9,2], f32[2]), token[])"), op::Tuple(op::Tuple(op::GetTupleElement( op::GetTupleElement(first_infeed)), op::Broadcast(op::Constant())), op::GetTupleElement(first_infeed)))); auto second_infeed = AllOf(op::Shape("(((), f32[2]), token[])"), op::Infeed(op::Parameter())); EXPECT_THAT(root->operand(0)->called_computations()[1]->root_instruction(), AllOf(op::Shape("((f32[9,2], f32[2]), token[])"), op::Tuple(op::Tuple(op::Broadcast(op::Constant()), op::GetTupleElement(op::GetTupleElement( second_infeed))), op::GetTupleElement(second_infeed)))); } TEST_P(SpmdPartitioningTest, TiledToReplicatedReduce) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add = f32[] add(a, b) } ENTRY entry { constant = f32[3,3]{1,0} constant({{1,1,1},{1,1,1},{1,1,1}}), sharding={devices=[2,1]0,1} constant.1 = f32[] constant(0), sharding={replicated} ROOT reduce = f32[] reduce(constant, constant.1), dimensions={0,1}, to_apply=sum, sharding={replicated} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, op::AllReduce(op::Reduce( op::Select( op::Compare(op::Add(op::Iota(), op::Broadcast(op::Reshape())), op::Broadcast(op::Constant())), AllOf(op::Shape("f32[2,3]{1,0}"), op::DynamicSlice(op::Pad(op::Constant(), op::Constant()), op::Reshape(), op::Constant())), op::Broadcast(op::Constant())), op::Constant()))); } TEST_P(SpmdPartitioningTest, TiledElementwise) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { constant = f32[3,3]{1,0} constant({{1,1,1},{1,1,1},{1,1,1}}), sharding={devices=[2,1]0,1} constant.1 = f32[3,3]{1,0} constant({{2,2,2},{2,2,2},{2,2,2}}), sharding={replicated} multiply = f32[3,3]{1,0} multiply(constant, constant.1), sharding={devices=[2,1]0,1} ROOT add = f32[3,3]{1,0} add(multiply, constant.1), sharding={devices=[2,1]0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf( op::Shape("f32[2,3]{1,0}"), op::Add(op::Multiply( op::DynamicSlice(op::Pad(op::Constant(), op::Constant()), op::Reshape(), op::Constant()), op::DynamicSlice(op::Pad(op::Constant(), op::Constant()), op::Reshape(), op::Constant())), op::DynamicSlice(op::Pad(op::Constant(), op::Constant()), op::Reshape(), op::Constant())))); } TEST_P(SpmdPartitioningTest, TiledAllReduce) { absl::string_view hlo_string = R"( HloModule module sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add = f32[] add(a, b) } ENTRY entry { parameter = f32[3,3]{1,0} parameter(0), sharding={devices=[2,1]0,1} ROOT all-reduce = f32[3,3]{1,0} all-reduce(parameter), to_apply=sum, replica_groups={}, sharding={devices=[2,1]0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Shape("f32[2,3]{1,0}"), op::AllReduce(op::Parameter(0)))); } TEST_P(SpmdPartitioningTest, BroadcastOnlyNewDimsSharded) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { constant = f32[4,3]{1,0} constant({{1,1,1},{1,1,1},{1,1,1},{1,1,1}}), sharding={replicated} ROOT broadcast = f32[3,4,3]{2,1,0} broadcast(constant), dimensions={1,2}, sharding={devices=[2,1,1]0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Shape("f32[2,4,3]{2,1,0}"), op::Broadcast(op::Constant()))); } TEST_P(SpmdPartitioningTest, BroadcastOnlyOldDimsSharded) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { constant = f32[4,3]{1,0} constant({{1,1,1},{1,1,1},{1,1,1},{1,1,1}}), sharding={replicated} ROOT broadcast = f32[4,4,3]{2,1,0} broadcast(constant), dimensions={1,2}, sharding={devices=[1,2,1]0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 2)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, AllOf(op::Shape("f32[4,2,3]{2,1,0}"), op::Broadcast(op::DynamicSlice( op::Constant(), op::Reshape(), op::Constant())))); } TEST_P(SpmdPartitioningTest, BroadcastBothOldAndNewDimsSharded) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { constant = f32[4,3]{1,0} constant({{1,1,1},{1,1,1},{1,1,1},{1,1,1}}), sharding={replicated} ROOT broadcast = f32[4,4,3]{2,1,0} broadcast(constant), dimensions={1,2}, sharding={devices=[2,2,1]<=[4]} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 4)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Shape("f32[2,2,3]{2,1,0}"), op::Broadcast(AllOf(op::Shape("f32[2,3]{1,0}"), op::DynamicSlice(op::Constant(), op::Reshape(), op::Constant()))))); } TEST_P(SpmdPartitioningTest, BroadcastBothOldAndNewDimsShardedPartiallySharded) { absl::string_view hlo_string = R"( HloModule module ENTRY %entry { %param = f32[4,3]{1,0} parameter(0), sharding={devices=[1,2,4]<=[2,2,2]T(1,0,2) last_tile_dim_replicate} ROOT %broadcast = f32[4,4,3]{2,1,0} broadcast(%param), dimensions={1,2}, sharding={devices=[2,1,2,2]<=[8] last_tile_dim_replicate} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 8)); VLOG(1) << module->ToString(); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, AllOf(op::Shape("f32[2,4,2]"), op::Broadcast(AllOf(op::Shape("f32[4,2]"), op::Parameter(0))))); } TEST_P(SpmdPartitioningTest, ConvWithParallelDimAndNonParallelSpatialDimPartitioned) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { %lhs = f32[32,12,12,24,32] parameter(0) %lhs.copy = f32[32,12,12,24,32] copy(%lhs), sharding={devices=[2,2,1,1,1]<=[4]} %rhs = f32[32,6,6,16,32] parameter(1) %rhs.copy = f32[32,6,6,16,32] copy(%rhs), sharding={devices=[2,2,1,1,1]<=[4]} ROOT %conv = f32[32,7,7,24,16] convolution(%lhs.copy, %rhs.copy), dim_labels=012bf_012oi->012bf, window={size=32x6x6 stride=31x1x1 lhs_dilate=32x1x1}, sharding={devices=[2,2,1,1,1]<=[4]} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, PartitionComputation(hlo_string, 4)); VLOG(1) << module->ToString(); const auto root = module->entry_computation()->root_instruction(); const auto lhs = AllOf(op::Copy(op::DynamicSlice( op::Parameter(), op::Reshape(), op::Reshape(), op::Constant(), op::Constant(), op::Constant())), op::Shape("f32[16,6,12,24,32]")); const auto rhs = AllOf(op::Copy(op::DynamicSlice( op::Parameter(), op::Reshape(), op::Reshape(), op::Constant(), op::Constant(), op::Constant())), op::Shape("f32[16,3,6,16,32]")); auto resharded_rhs = AllOf(op::Shape("f32[16,6,6,16,32]"), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(), rhs, op::Constant(), op::Reshape(), op::Constant(), op::Constant(), op::Constant()))); auto left_halo = AllOf(op::CollectivePermute(op::Slice(lhs)), op::Shape("f32[16,2,12,24,32]")); auto right_halo = AllOf(op::CollectivePermute(op::Slice(lhs)), op::Shape("f32[16,3,12,24,32]")); EXPECT_THAT( root, AllOf(op::Convolution( op::Select(op::Compare(), op::DynamicSlice( op::Concatenate(left_halo, lhs, right_halo), op::Constant(), op::Add(), op::Constant(),
2,004
cpp
tensorflow/tensorflow
canonicalize_all_gather_for_cse
third_party/xla/xla/service/spmd/canonicalize_all_gather_for_cse.cc
third_party/xla/xla/service/spmd/canonicalize_all_gather_for_cse_test.cc
#ifndef XLA_SERVICE_SPMD_CANONICALIZE_ALL_GATHER_FOR_CSE_H_ #define XLA_SERVICE_SPMD_CANONICALIZE_ALL_GATHER_FOR_CSE_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class CanonicalizeAllGatherForCSE : public HloModulePass { public: CanonicalizeAllGatherForCSE() : next_channel_id_(0) {} ~CanonicalizeAllGatherForCSE() override = default; absl::string_view name() const override { return "canon-all-gather-for-cse"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> RunOnComputation(HloComputation* comp); int64_t NextChannelId() { return next_channel_id_++; } int64_t next_channel_id_; }; } #endif #include "xla/service/spmd/canonicalize_all_gather_for_cse.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/utils/hlo_query.h" namespace xla { absl::StatusOr<bool> CanonicalizeAllGatherForCSE::RunOnComputation( HloComputation* comp) { bool changed = false; std::vector<HloInstruction*> ordered_hlos = comp->MakeInstructionPostOrder(); for (HloInstruction* hlo : ordered_hlos) { HloAllGatherInstruction* ag = DynCast<HloAllGatherInstruction>(hlo); if (!ag || ag->operand_count() > 1) { continue; } HloInstruction* real_data = ag->mutable_operand(0); while (real_data->ReshapeMerelyInsertsOrDeletes1SizedDimensions() .has_value()) { real_data = real_data->mutable_operand(0); } if (real_data == ag->operand(0)) { continue; } const int64_t ag_dim = ag->all_gather_dimension(); int64_t new_ag_dim; if (auto dims = ShapeUtil::ReshapeLeavesDimensionsUnmodified( ag->operand(0)->shape(), real_data->shape(), {ag_dim})) { new_ag_dim = dims->at(0); } else { int64_t major_elements = Product(absl::MakeConstSpan(ag->operand(0)->shape().dimensions()) .subspan(0, ag_dim)); new_ag_dim = 0; while (major_elements > 1) { major_elements /= real_data->shape().dimensions(new_ag_dim++); } } if (new_ag_dim == real_data->shape().rank()) { continue; } const int64_t all_gather_participants = ShapeUtil::ElementsIn(ag->shape()) / ShapeUtil::ElementsIn(ag->operand(0)->shape()); Shape new_ag_shape = real_data->shape(); new_ag_shape.set_dimensions( new_ag_dim, all_gather_participants * new_ag_shape.dimensions(new_ag_dim)); std::optional<int64_t> new_channel_id = ag->channel_id() ? std::make_optional(this->NextChannelId()) : std::nullopt; HloInstruction* new_ag = comp->AddInstruction(HloInstruction::CreateAllGather( new_ag_shape, {real_data}, new_ag_dim, ag->device_list(), ag->constrain_layout(), new_channel_id, ag->use_global_device_ids())); ag->SetupDerivedInstruction(new_ag); HloInstruction* new_formatting = comp->AddInstruction( HloInstruction::CreateReshape(ag->shape(), new_ag)); TF_RETURN_IF_ERROR(comp->ReplaceInstruction(ag, new_formatting)); changed = true; } return changed; } absl::StatusOr<bool> CanonicalizeAllGatherForCSE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; next_channel_id_ = hlo_query::NextChannelId(*module); for (HloComputation* comp : module->computations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool comp_changed, RunOnComputation(comp)); changed |= comp_changed; } return changed; } }
#include "xla/service/spmd/canonicalize_all_gather_for_cse.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace spmd { namespace { using ::testing::_; using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; class AllGatherCanonicalizeTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule( hlo_module, GetModuleConfigForTest())); HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<CanonicalizeAllGatherForCSE>(); TF_RETURN_IF_ERROR(pipeline.Run(module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } absl::Status RunPassOnModule(HloModule* module, int64_t distance_threshold = 100) { HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<CanonicalizeAllGatherForCSE>(); TF_RETURN_IF_ERROR(pipeline.Run(module).status()); return absl::OkStatus(); } }; TEST_F(AllGatherCanonicalizeTest, SimpleReshape) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[1,8]{1,0} reshape(param0) ROOT ag = s32[2,8]{1,0} all-gather(resh), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, AllOf(op::Reshape(op::AllGather(_)), op::Shape("s32[2,8]"))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapes) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[1,8]{1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[2,8,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapes2) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[2,8,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, MultipleDegenerateReshapesNoDim0) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,8,1,1]{3,2,1,0} reshape(resh) ROOT ag = s32[1,16,1,1]{3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={1}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, op::Reshape(op::AllGather(op::Parameter()))); } TEST_F(AllGatherCanonicalizeTest, NonDegenerateReshape) { absl::string_view hlo_string = R"( HloModule module ENTRY entry { param0 = s32[8]{0} parameter(0) resh = s32[8,1,1]{2,1,0} reshape(param0) resh2 = s32[1,4,2,1,1]{4,3,2,1,0} reshape(resh) ROOT ag = s32[2,4,2,1,1]{4,3,2,1,0} all-gather(resh2), replica_groups={{0,1}}, dimensions={0}, channel_id=0, use_global_device_ids=true })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); const HloInstruction* const reshape = module->entry_computation()->root_instruction(); EXPECT_THAT(reshape, AllOf(op::AllGather(op::Reshape(op::Reshape(_))), op::Shape("s32[2,4,2,1,1]"))); } } } }
2,005
cpp
tensorflow/tensorflow
partition_assignment
third_party/xla/xla/service/spmd/partition_assignment.cc
third_party/xla/xla/service/spmd/partition_assignment_test.cc
#ifndef XLA_SERVICE_SPMD_PARTITION_ASSIGNMENT_H_ #define XLA_SERVICE_SPMD_PARTITION_ASSIGNMENT_H_ #include <cstdint> #include <memory> #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class PartitioningAlgorithm { public: enum class AlgorithmKind { kNoop, kExp0, kExp1, kExp2, }; PartitioningAlgorithm() = delete; PartitioningAlgorithm(const PartitioningAlgorithm&) = delete; PartitioningAlgorithm& operator=(const PartitioningAlgorithm&) = delete; virtual ~PartitioningAlgorithm() = default; static std::unique_ptr<PartitioningAlgorithm> CreateNoopPartitioning( int64_t num_partitions); const AlgorithmKind& kind() const; absl::string_view name() const; int64_t num_partitions() const; virtual absl::StatusOr<bool> Run(HloModule* module) const = 0; protected: explicit PartitioningAlgorithm(AlgorithmKind kind, int64_t num_partitions); private: AlgorithmKind kind_ = AlgorithmKind::kNoop; int64_t num_partitions_; }; class NoopPartitioning : public PartitioningAlgorithm { public: explicit NoopPartitioning(int64_t num_partitions); absl::StatusOr<bool> Run(HloModule* module) const override; }; class PartitionAssignment : public HloModulePass { public: explicit PartitionAssignment(int64_t num_partitions); absl::string_view name() const override; virtual std::unique_ptr<PartitioningAlgorithm> ChoosePartitioningAlgorithm( const HloModule& module) const; using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; const PartitioningAlgorithm* algorithm(); int64_t num_partitions() const; private: std::unique_ptr<PartitioningAlgorithm> algorithm_ = nullptr; int64_t num_partitions_; }; } #endif #include "xla/service/spmd/partition_assignment.h" #include <cstdint> #include <memory> namespace xla { PartitioningAlgorithm::PartitioningAlgorithm(AlgorithmKind kind, int64_t num_partitions) { kind_ = kind; CHECK_GT(num_partitions, 1) << "Number of partitions must be at least two."; num_partitions_ = num_partitions; } absl::string_view PartitioningAlgorithm::name() const { switch (kind_) { case AlgorithmKind::kNoop: default: return "Noop"; } } const PartitioningAlgorithm::AlgorithmKind& PartitioningAlgorithm::kind() const { return kind_; } int64_t PartitioningAlgorithm::num_partitions() const { return num_partitions_; } std::unique_ptr<PartitioningAlgorithm> PartitioningAlgorithm::CreateNoopPartitioning(int64_t num_partitions) { return std::make_unique<NoopPartitioning>(num_partitions); } NoopPartitioning::NoopPartitioning(int64_t num_partitions) : PartitioningAlgorithm(AlgorithmKind::kNoop, num_partitions) { VLOG(2) << "Created a no-op algorithm with the number of partitions: " << num_partitions; } absl::StatusOr<bool> NoopPartitioning::Run(HloModule* module) const { VLOG(2) << "No-op algorithm was called to partition module: " << module->name(); return false; } PartitionAssignment::PartitionAssignment(int64_t num_partitions) { CHECK_GT(num_partitions, 1) << "Number of partitions must be at least two."; num_partitions_ = num_partitions; } absl::string_view PartitionAssignment::name() const { return "partitioning-assignment"; } const PartitioningAlgorithm* PartitionAssignment::algorithm() { return algorithm_.get(); } int64_t PartitionAssignment::num_partitions() const { return num_partitions_; } std::unique_ptr<PartitioningAlgorithm> PartitionAssignment::ChoosePartitioningAlgorithm( const HloModule& module) const { auto algo = module.config().debug_options().xla_partitioning_algorithm(); CHECK_EQ(algo, DebugOptions::PARTITIONING_ALGORITHM_NOOP); return PartitioningAlgorithm::CreateNoopPartitioning(num_partitions()); } absl::StatusOr<bool> PartitionAssignment::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Running partition assignment on module " << module->name(); algorithm_ = ChoosePartitioningAlgorithm(*module); return algorithm()->Run(module); } }
#include "xla/service/spmd/partition_assignment.h" #include <memory> #include "xla/tests/hlo_test_base.h" #include "xla/xla.pb.h" namespace xla { namespace { using PartitionAssignmentTest = HloTestBase; TEST_F(PartitionAssignmentTest, NoopAlg) { absl::string_view hlo_string = R"( HloModule module ENTRY %elementwise { %param0 = f32[16,16]{1,0} parameter(0) ROOT %copy = f32[16,16]{1,0} copy(%param0) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_partitioning_algorithm( DebugOptions::PARTITIONING_ALGORITHM_NOOP); PartitionAssignment partition_assignment(16); EXPECT_EQ(partition_assignment.algorithm(), nullptr); TF_ASSERT_OK_AND_ASSIGN(bool changed, partition_assignment.Run(module.get())); EXPECT_FALSE(changed); EXPECT_NE(partition_assignment.algorithm(), nullptr); EXPECT_EQ(partition_assignment.algorithm()->kind(), PartitioningAlgorithm::AlgorithmKind::kNoop); } } }
2,006
cpp
tensorflow/tensorflow
whole_graph_manual_pass
third_party/xla/xla/service/spmd/whole_graph_manual_pass.cc
third_party/xla/xla/service/spmd/whole_graph_manual_pass_test.cc
#ifndef XLA_SERVICE_SPMD_WHOLE_GRAPH_MANUAL_PASS_H_ #define XLA_SERVICE_SPMD_WHOLE_GRAPH_MANUAL_PASS_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class WholeGraphManualPass : public HloModulePass { public: WholeGraphManualPass() : HloModulePass() {} absl::string_view name() const override { return "whole-graph-manual-pass"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/spmd/whole_graph_manual_pass.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" namespace xla { namespace { bool ShouldClearInstruction(HloInstruction* inst) { return inst->opcode() != HloOpcode::kParameter && inst != inst->parent()->root_instruction() && inst->opcode() != HloOpcode::kPartitionId && DynCast<HloCollectiveInstruction>(inst) == nullptr && !inst->HasSideEffectNoRecurse(); } absl::StatusOr<bool> RunOnComputation(HloComputation* computation) { bool changed = false; for (HloInstruction* inst : computation->instructions()) { if (ShouldClearInstruction(inst)) { inst->clear_sharding(); changed = true; continue; } if (inst->shape().IsTuple()) { inst->set_sharding( HloSharding::SingleTuple(inst->shape(), HloSharding::Manual())); changed = true; } else { inst->set_sharding(HloSharding::Manual()); changed = true; } } return changed; } } absl::StatusOr<bool> WholeGraphManualPass::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto* comp : module->computations()) { TF_ASSIGN_OR_RETURN(bool comp_changed, RunOnComputation(comp)); changed |= comp_changed; } return changed; } }
#include "xla/service/spmd/whole_graph_manual_pass.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace spmd { namespace { using ::testing::_; using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; class WholeGraphManualPassTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module) { TF_ASSIGN_OR_RETURN( auto module, ParseAndReturnVerifiedModule( hlo_module, GetModuleConfigForTest(1, 4))); HloPassPipeline pipeline("whole-graph-manual-pass"); pipeline.AddPass<WholeGraphManualPass>(); TF_RETURN_IF_ERROR(pipeline.Run(module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } absl::Status RunPassOnModule(HloModule* module, int64_t distance_threshold = 100) { HloPassPipeline pipeline("all-gather-cse"); pipeline.AddPass<WholeGraphManualPass>(); TF_RETURN_IF_ERROR(pipeline.Run(module).status()); return absl::OkStatus(); } }; TEST_F(WholeGraphManualPassTest, SimpleRewrite) { absl::string_view hlo_string = R"( HloModule module body { p_body = (f32[2], f32[2], f32[2], s32[]) parameter(0) val.0 = f32[2] get-tuple-element(p_body), index=0 val.1 = f32[2] get-tuple-element(p_body), index=1 add = f32[2] add(val.0, val.1) const = s32[] constant(-1) ROOT root = (f32[2], f32[2], f32[2], s32[]) tuple(val.0, val.1, add, const) } condition { p_cond = (f32[2], f32[2], f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=3 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param0 = (s32[8]{0}, s32[8]{0}) parameter(0) g1 = s32[8]{0} get-tuple-element(param0), index=0 g2 = s32[8]{0} get-tuple-element(param0), index=1 resh1 = s32[1,8]{1,0} reshape(g1) resh2 = s32[1,8]{1,0} reshape(g2) param1 = f32[2] parameter(1) param2 = s32[] parameter(2) while_init = (f32[2], f32[2], f32[2], s32[]) tuple(param1, param1, param1, param2) while = (f32[2], f32[2], f32[2], s32[]) while(while_init), condition=condition, body=body g3 = f32[2] get-tuple-element(while), index=0 ROOT t = (s32[1,8]{1,0}, s32[1,8]{1,0}, f32[2]) tuple(resh1, resh2, g3), sharding={{devices=[1,4]0,1,2,3}, {devices=[1,4]0,1,2,3}, {replicated}} })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); for (auto* i : module->entry_computation()->instructions()) { if (module->entry_computation()->root_instruction() == i) { EXPECT_THAT(i, op::Sharding("{{manual}, " "{manual}, {manual}}")); } else if (i->opcode() == HloOpcode::kParameter) { EXPECT_THAT(i, AnyOf(op::Sharding("{manual}"), op::Sharding("{{manual},{manual}}"))); } } } TEST_F(WholeGraphManualPassTest, SimplePartitionIdCollectives) { absl::string_view hlo_string = R"( HloModule module body { p_body = (f32[2], f32[2], f32[2], s32[]) parameter(0) val.0 = f32[2] get-tuple-element(p_body), index=0 val.1 = f32[2] get-tuple-element(p_body), index=1 t = token[] after-all() p = u32[] partition-id() ag = f32[8] all-gather(val.1), dimensions={0}, replica_groups={{0,1,2,3}}, use_global_device_ids=true, channel_id=1 s = (f32[8], s32[], token[]) send(ag, t), channel_id=2 sd = token[] send-done(s), channel_id=2 add = f32[2] add(val.0, val.1) const = s32[] constant(-1) ROOT root = (f32[2], f32[2], f32[2], s32[]) tuple(val.0, val.1, add, const) } condition { p_cond = (f32[2], f32[2], f32[2], s32[]) parameter(0) gte = s32[] get-tuple-element(p_cond), index=3 const = s32[] constant(42) ROOT result = pred[] compare(gte, const), direction=EQ } ENTRY entry { param0 = (s32[8]{0}, s32[8]{0}) parameter(0) g1 = s32[8]{0} get-tuple-element(param0), index=0 g2 = s32[8]{0} get-tuple-element(param0), index=1 resh1 = s32[1,8]{1,0} reshape(g1) resh2 = s32[1,8]{1,0} reshape(g2) param1 = f32[2] parameter(1) param2 = s32[] parameter(2) while_init = (f32[2], f32[2], f32[2], s32[]) tuple(param1, param1, param1, param2) while = (f32[2], f32[2], f32[2], s32[]) while(while_init), condition=condition, body=body g3 = f32[2] get-tuple-element(while), index=0 ROOT t = (s32[1,8]{1,0}, s32[1,8]{1,0}, f32[2]) tuple(resh1, resh2, g3), sharding={{devices=[1,4]0,1,2,3}, {devices=[1,4]0,1,2,3}, {replicated}} })"; auto module_status = RunPass(hlo_string); EXPECT_TRUE(module_status.status().ok()); auto module = std::move(module_status).value(); for (auto* c : module->computations()) { for (auto* i : c->instructions()) { if (c->root_instruction() == i) { EXPECT_THAT( i, AnyOf(op::Sharding("{manual}"), op::Sharding("{{manual},{manual},{manual}}"), op::Sharding("{{manual}, {manual}, {manual}, {manual}}"))); } else if (i->opcode() == HloOpcode::kParameter) { EXPECT_THAT( i, AnyOf(op::Sharding("{manual}"), op::Sharding("{{manual},{manual}}"), op::Sharding("{{manual},{manual},{manual},{manual}}"))); } else if (i->opcode() == HloOpcode::kPartitionId || i->opcode() == HloOpcode::kAllGather || i->opcode() == HloOpcode::kSendDone) { EXPECT_THAT(i, op::Sharding("{manual}")); } else if (i->opcode() == HloOpcode::kSend) { EXPECT_THAT(i, op::Sharding("{{manual},{manual},{manual}}")); } else { EXPECT_FALSE(i->has_sharding()); } } } } } } }
2,007
cpp
tensorflow/tensorflow
collective_permute_motion
third_party/xla/xla/service/spmd/collective_permute_motion.cc
third_party/xla/xla/service/spmd/collective_permute_motion_test.cc
#ifndef XLA_SERVICE_SPMD_COLLECTIVE_PERMUTE_MOTION_H_ #define XLA_SERVICE_SPMD_COLLECTIVE_PERMUTE_MOTION_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class CollectivePermuteMotion : public HloModulePass { public: CollectivePermuteMotion() = default; absl::string_view name() const override { return "collective-permute-motion"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/spmd/collective_permute_motion.h" #include <cstdint> #include <deque> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/while_loop_analysis.h" #include "xla/shape_util.h" namespace xla { absl::flat_hash_set<HloInstruction*> FindLoopConsts(HloComputation* body) { HloInstruction* root = body->root_instruction(); CHECK_EQ(root->opcode(), HloOpcode::kTuple); absl::flat_hash_set<HloInstruction*> loop_consts; for (int64_t i = 0; i < root->operand_count(); ++i) { HloInstruction* output = root->mutable_operand(i); while (output->opcode() == HloOpcode::kReshape || output->opcode() == HloOpcode::kCopy) { output = output->mutable_operand(0); } if (output->opcode() == HloOpcode::kGetTupleElement && output->tuple_index() == i && output->operand(0) == body->parameter_instruction(0)) { loop_consts.insert(output); } } for (HloInstruction* inst : body->MakeInstructionPostOrder()) { if (inst->IsConstant() || inst->opcode() == HloOpcode::kIota || inst->opcode() == HloOpcode::kReplicaId || inst->opcode() == HloOpcode::kPartitionId) { loop_consts.insert(inst); continue; } if (!inst->IsElementwise() && inst->opcode() != HloOpcode::kBroadcast && inst->opcode() != HloOpcode::kReduce && inst->opcode() != HloOpcode::kReshape && inst->opcode() != HloOpcode::kDynamicSlice && inst->opcode() != HloOpcode::kTranspose) { continue; } if (inst->HasSideEffectNoRecurse()) { continue; } if (absl::c_all_of(inst->operands(), [&](const HloInstruction* operand) { return loop_consts.contains(operand); })) { loop_consts.insert(inst); } } return loop_consts; } constexpr int64_t kMaxMovableClusterSize = 8; struct MovableCluster { int64_t root_tuple_index; std::vector<HloInstruction*> reverse_order_instructions; HloInstruction* collective_permute = nullptr; }; std::optional<MovableCluster> FindMovableClusterAtBodyRoot( HloComputation* body, int64_t root_tuple_index, const absl::flat_hash_set<HloInstruction*>& loop_consts) { HloInstruction* root = body->root_instruction(); CHECK_EQ(root->opcode(), HloOpcode::kTuple); MovableCluster cluster; cluster.root_tuple_index = root_tuple_index; std::deque<HloInstruction*> queue; queue.push_back(root->mutable_operand(root_tuple_index)); while (!queue.empty()) { HloInstruction* visiting = queue.front(); queue.pop_front(); if (cluster.reverse_order_instructions.size() >= kMaxMovableClusterSize) { VLOG(2) << "Cannot move: too many instructions to move"; return std::nullopt; } if (visiting->user_count() > 1) { VLOG(2) << "Cannot move: " << visiting->name() << " used multiple times"; return std::nullopt; } cluster.reverse_order_instructions.push_back(visiting); if (visiting->opcode() == HloOpcode::kCollectivePermute) { if (cluster.collective_permute != nullptr) { VLOG(2) << "Cannot move: " << visiting->name() << " multiple collective permutes"; return std::nullopt; } cluster.collective_permute = visiting; continue; } if (!visiting->IsElementwise() || visiting->HasSideEffectNoRecurse()) { VLOG(2) << "Cannot move: " << visiting->name() << " unsupported op"; return std::nullopt; } for (HloInstruction* operand : visiting->mutable_operands()) { if (!loop_consts.contains(operand)) { queue.push_back(operand); } } } if (cluster.collective_permute == nullptr) { return std::nullopt; } return cluster; } absl::flat_hash_set<int64_t> FindIndicesUnusedAfterLoop(HloInstruction* loop) { absl::flat_hash_set<int64_t> indices; int64_t count = loop->shape().tuple_shapes_size(); for (int64_t i = 0; i < count; ++i) { indices.insert(i); } for (HloInstruction* user : loop->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { indices.clear(); break; } indices.erase(user->tuple_index()); } return indices; } absl::StatusOr<bool> MoveCollectivePermutes(HloComputation* computation, HloInstruction* loop) { HloComputation* body = loop->while_body(); HloInstruction* root = body->root_instruction(); if (root->opcode() != HloOpcode::kTuple || loop->operand(0)->opcode() != HloOpcode::kTuple) { return false; } auto maybe_induction_var_idx = GetLoopInductionVarTupleIdx(loop); if (!maybe_induction_var_idx.has_value()) { VLOG(2) << "Skip " << loop->name() << ", no induction var"; return false; } absl::flat_hash_map<const HloInstruction*, int64_t> output_appear_counts; for (const HloInstruction* operand : root->operands()) { auto res = output_appear_counts.emplace(operand, 1); if (!res.second) { res.first->second++; } } absl::flat_hash_set<int64_t> unused_indices_after_loop = FindIndicesUnusedAfterLoop(loop); const absl::flat_hash_set<HloInstruction*> loop_consts = FindLoopConsts(body); int64_t induction_var_idx = *maybe_induction_var_idx; std::vector<HloInstruction*> input_gtes(root->operand_count(), nullptr); absl::flat_hash_set<int64_t> multi_use_indices; for (HloInstruction* user : body->parameter_instruction(0)->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { VLOG(2) << "Skip " << loop->name() << ", non-GTE input use"; return false; } if (multi_use_indices.contains(user->tuple_index())) { continue; } if (input_gtes[user->tuple_index()] != nullptr) { multi_use_indices.insert(user->tuple_index()); input_gtes[user->tuple_index()] = nullptr; } else { input_gtes[user->tuple_index()] = user; } } HloInstruction* ind_var = input_gtes[induction_var_idx]; if (ind_var == nullptr || ind_var->shape().rank() > 0) { VLOG(2) << "Skip " << loop->name() << ", non-scalar induction var"; return false; } if (root->operand(induction_var_idx)->opcode() != HloOpcode::kAdd && root->operand(induction_var_idx)->opcode() != HloOpcode::kSubtract) { VLOG(2) << "Skip " << loop->name() << ", non-add/sub induction var"; return false; } if (root->operand(induction_var_idx)->operand(0) == ind_var) { if (!root->operand(induction_var_idx)->operand(1)->IsConstant()) { VLOG(2) << "Skip " << loop->name() << ", non-add/sub const induction var"; return false; } } else if (root->operand(induction_var_idx)->operand(1) == ind_var) { if (!root->operand(induction_var_idx)->operand(0)->IsConstant()) { VLOG(2) << "Skip " << loop->name() << ", non-add/sub const induction var"; return false; } } else { return false; } HloInstruction* ind_var_orig = loop->mutable_operand(0)->mutable_operand(induction_var_idx); if (!ind_var_orig->IsConstant()) { VLOG(2) << "Skip " << loop->name() << ", non-constant initial induction var"; return false; } bool changed = false; std::vector<MovableCluster> movable_outputs; for (int64_t i = 0; i < root->operand_count(); ++i) { if (output_appear_counts[root->operand(i)] > 1) { VLOG(2) << "Skip " << loop->name() << " index " << i << " appears multiple times in output."; continue; } if (!unused_indices_after_loop.contains(i)) { VLOG(2) << "Skip " << loop->name() << " index " << i << " used after loop."; continue; } auto cluster = FindMovableClusterAtBodyRoot(body, i, loop_consts); if (!cluster.has_value()) { VLOG(2) << "Skip " << loop->name() << " index " << i << " did not find a movable cluster."; continue; } HloInstruction* input = input_gtes[cluster->root_tuple_index]; HloInstruction* cp = cluster->collective_permute; if (input == nullptr || cp->operand(0) == input) { VLOG(2) << "Skip " << loop->name() << " index " << i << " collective-permute already at top."; continue; } const std::vector<HloInstruction*> original_input_users = input->users(); absl::flat_hash_map<const HloInstruction*, HloInstruction*> replacement; replacement[cp->operand(0)] = input; for (auto it = cluster->reverse_order_instructions.rbegin(); it != cluster->reverse_order_instructions.rend(); ++it) { HloInstruction* inst = *it; std::vector<HloInstruction*> new_operands; for (HloInstruction* operand : inst->mutable_operands()) { auto rit = replacement.find(operand); if (rit != replacement.end()) { new_operands.push_back(rit->second); } else { new_operands.push_back(operand); } } HloInstruction* clone = body->AddInstruction( inst->CloneWithNewOperands(inst->shape(), new_operands)); replacement[inst] = clone; } HloInstruction* new_input = replacement[cluster->reverse_order_instructions[0]]; if (ind_var_orig->parent() != body) { ind_var_orig = body->AddInstruction(ind_var_orig->Clone()); } HloInstruction* is_first_iter = body->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::ChangeElementType(new_input->shape(), PRED), body->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeScalarShape(PRED), ind_var, ind_var_orig, Comparison::Direction::kEq)), {})); new_input = body->AddInstruction( HloInstruction::CreateTernary(new_input->shape(), HloOpcode::kSelect, is_first_iter, input, new_input)); for (HloInstruction* user : original_input_users) { TF_RETURN_IF_ERROR(input->ReplaceUseWith(user, new_input)); } TF_RETURN_IF_ERROR(root->ReplaceOperandWith(cluster->root_tuple_index, cp->mutable_operand(0))); TF_RETURN_IF_ERROR(body->RemoveInstructionAndUnusedOperands( cluster->reverse_order_instructions[0])); VLOG(2) << "Moved " << loop->name() << " index " << i; changed = true; } return changed; } absl::StatusOr<bool> CollectivePermuteMotion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instr : computation->MakeInstructionPostOrder()) { if (instr->opcode() == HloOpcode::kWhile) { TF_ASSIGN_OR_RETURN(bool moved, MoveCollectivePermutes(computation, instr)); changed |= moved; } } } return changed; } }
#include "xla/service/spmd/collective_permute_motion.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using CollectivePermuteMotionTest = HloTestBase; namespace op = xla::testing::opcode_matchers; TEST_F(CollectivePermuteMotionTest, SimpleMove) { absl::string_view hlo_string = R"( HloModule test body { loop_var = (s32[], f32[4,4]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=0 add = s32[] add(gte0, constant.1) gte1 = f32[4,4] get-tuple-element(loop_var), index=1 mul = f32[4,4] multiply(gte1, gte1) cp = f32[4,4] collective-permute(mul), source_target_pairs={{0,1},{1,2}} ROOT tuple = (s32[], f32[4,4]) tuple(add, cp) } cond { loop_var = (s32[], f32[4,4]) parameter(0) gte.cond = s32[] get-tuple-element(loop_var), index=0 constant.3 = s32[] constant(5) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY main { constant.2 = s32[] constant(0) param = f32[4,4] parameter(0) tuple.1 = (s32[], f32[4,4]) tuple(constant.2, param) while = (s32[], f32[4,4]) while(tuple.1), condition=cond, body=body ROOT result = s32[] get-tuple-element(while), index=0 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CollectivePermuteMotion pass; ASSERT_TRUE(pass.Run(&*module).value()); VLOG(1) << module->ToString(); const HloInstruction* loop = FindInstruction(module.get(), "while"); const HloInstruction* output = loop->while_body()->root_instruction()->operand(1); auto input = AllOf(op::Shape("f32[4,4]"), op::GetTupleElement(op::Parameter(0))); auto cp = op::CollectivePermute(input); auto select = op::Select(op::Broadcast(op::Compare()), input, cp); EXPECT_THAT(output, op::Multiply(select, select)); } TEST_F(CollectivePermuteMotionTest, NoCollectivePermute) { absl::string_view hlo_string = R"( HloModule test body { loop_var = (s32[], f32[], f32[]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=0 add = s32[] add(gte0, constant.1) gte1 = f32[] get-tuple-element(loop_var), index=1 constant.4 = f32[] constant(4.0) ROOT tuple = (s32[], f32[], f32[]) tuple(add, constant.4, gte1) } cond { loop_var = (s32[], f32[], f32[]) parameter(0) gte.cond = s32[] get-tuple-element(loop_var), index=0 constant.3 = s32[] constant(5) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY main { constant.2 = s32[] constant(0) param = f32[] parameter(0) param.1 = f32[] parameter(1) tuple.1 = (s32[], f32[], f32[]) tuple(constant.2, param, param.1) while = (s32[], f32[], f32[]) while(tuple.1), condition=cond, body=body ROOT result = s32[] get-tuple-element(while), index=0 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CollectivePermuteMotion pass; ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(CollectivePermuteMotionTest, MoveWithElementwise) { absl::string_view hlo_string = R"( HloModule test body { loop_var = (s32[], f32[4,4]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=0 add = s32[] add(gte0, constant.1) gte1 = f32[4,4] get-tuple-element(loop_var), index=1 mul = f32[4,4] multiply(gte1, gte1) cp = f32[4,4] collective-permute(mul), source_target_pairs={{0,1},{1,2}} constant.4 = f32[] constant(1) broadcast = f32[4,4] broadcast(constant.4), dimensions={} add1 = f32[4,4] add(cp, broadcast) ROOT tuple = (s32[], f32[4,4]) tuple(add, add1) } cond { loop_var = (s32[], f32[4,4]) parameter(0) gte.cond = s32[] get-tuple-element(loop_var), index=0 constant.3 = s32[] constant(5) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY main { constant.2 = s32[] constant(0) param = f32[4,4] parameter(0) tuple.1 = (s32[], f32[4,4]) tuple(constant.2, param) while = (s32[], f32[4,4]) while(tuple.1), condition=cond, body=body ROOT result = s32[] get-tuple-element(while), index=0 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CollectivePermuteMotion pass; ASSERT_TRUE(pass.Run(&*module).value()); VLOG(1) << module->ToString(); const HloInstruction* loop = FindInstruction(module.get(), "while"); const HloInstruction* output = loop->while_body()->root_instruction()->operand(1); auto input = AllOf(op::Shape("f32[4,4]"), op::GetTupleElement(op::Parameter(0))); auto moved = op::Add(op::CollectivePermute(input), op::Broadcast(op::Constant())); auto select = op::Select(op::Broadcast(op::Compare()), input, moved); EXPECT_THAT(output, op::Multiply(select, select)); } TEST_F(CollectivePermuteMotionTest, DoNotMoveWithNonConstElementwise) { absl::string_view hlo_string = R"( HloModule test body { loop_var = (s32[], f32[4,4]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=0 add = s32[] add(gte0, constant.1) gte1 = f32[4,4] get-tuple-element(loop_var), index=1 mul = f32[4,4] multiply(gte1, gte1) cp = f32[4,4] collective-permute(mul), source_target_pairs={{0,1},{1,2}} constant.4 = f32[] constant(1) nonconst = f32[4,4] custom-call(), custom_call_target="unknown" add1 = f32[4,4] add(cp, nonconst) ROOT tuple = (s32[], f32[4,4]) tuple(add, add1) } cond { loop_var = (s32[], f32[4,4]) parameter(0) gte.cond = s32[] get-tuple-element(loop_var), index=0 constant.3 = s32[] constant(5) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY main { constant.2 = s32[] constant(0) param = f32[4,4] parameter(0) tuple.1 = (s32[], f32[4,4]) tuple(constant.2, param) while = (s32[], f32[4,4]) while(tuple.1), condition=cond, body=body ROOT result = s32[] get-tuple-element(while), index=0 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CollectivePermuteMotion pass; ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(CollectivePermuteMotionTest, DoNotMoveIfOutputUsed) { absl::string_view hlo_string = R"( HloModule test body { loop_var = (s32[], f32[4,4]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=0 add = s32[] add(gte0, constant.1) gte1 = f32[4,4] get-tuple-element(loop_var), index=1 mul = f32[4,4] multiply(gte1, gte1) cp = f32[4,4] collective-permute(mul), source_target_pairs={{0,1},{1,2}} ROOT tuple = (s32[], f32[4,4]) tuple(add, cp) } cond { loop_var = (s32[], f32[4,4]) parameter(0) gte.cond = s32[] get-tuple-element(loop_var), index=0 constant.3 = s32[] constant(5) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY main { constant.2 = s32[] constant(0) param = f32[4,4] parameter(0) tuple.1 = (s32[], f32[4,4]) tuple(constant.2, param) while = (s32[], f32[4,4]) while(tuple.1), condition=cond, body=body ROOT result = f32[4,4] get-tuple-element(while), index=1 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CollectivePermuteMotion pass; ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(CollectivePermuteMotionTest, DoNotMoveIfIndictionVarUnknown) { absl::string_view hlo_string = R"( HloModule test body { loop_var = (s32[], f32[4,4]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=0 custom = s32[] custom-call(gte0, constant.1), custom_call_target="unknown" gte1 = f32[4,4] get-tuple-element(loop_var), index=1 mul = f32[4,4] multiply(gte1, gte1) cp = f32[4,4] collective-permute(mul), source_target_pairs={{0,1},{1,2}} ROOT tuple = (s32[], f32[4,4]) tuple(custom, cp) } cond { loop_var = (s32[], f32[4,4]) parameter(0) gte.cond = s32[] get-tuple-element(loop_var), index=0 constant.3 = s32[] constant(5) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY main { constant.2 = s32[] constant(0) param = f32[4,4] parameter(0) tuple.1 = (s32[], f32[4,4]) tuple(constant.2, param) while = (s32[], f32[4,4]) while(tuple.1), condition=cond, body=body ROOT result = s32[] get-tuple-element(while), index=0 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CollectivePermuteMotion pass; ASSERT_FALSE(pass.Run(&*module).value()); } TEST_F(CollectivePermuteMotionTest, DoNotMoveIfMultiOutput) { absl::string_view hlo_string = R"( HloModule test body { loop_var = (s32[], f32[4,4], f32[4,4]) parameter(0) constant.1 = s32[] constant(1) gte0 = s32[] get-tuple-element(loop_var), index=0 add = s32[] add(gte0, constant.1) gte1 = f32[4,4] get-tuple-element(loop_var), index=1 mul = f32[4,4] multiply(gte1, gte1) cp = f32[4,4] collective-permute(mul), source_target_pairs={{0,1},{1,2}} ROOT tuple = (s32[], f32[4,4], f32[4,4]) tuple(add, cp, cp) } cond { loop_var = (s32[], f32[4,4], f32[4,4]) parameter(0) gte.cond = s32[] get-tuple-element(loop_var), index=0 constant.3 = s32[] constant(5) ROOT lt = pred[] compare(gte.cond, constant.3), direction=LT } ENTRY main { constant.2 = s32[] constant(0) param = f32[4,4] parameter(0) tuple.1 = (s32[], f32[4,4], f32[4,4]) tuple(constant.2, param, param) while = (s32[], f32[4,4], f32[4,4]) while(tuple.1), condition=cond, body=body ROOT result = s32[] get-tuple-element(while), index=0 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); CollectivePermuteMotion pass; ASSERT_FALSE(pass.Run(&*module).value()); } } }
2,008
cpp
tensorflow/tensorflow
shape_partition
third_party/xla/xla/service/cpu/shape_partition.cc
third_party/xla/xla/service/cpu/shape_partition_test.cc
#ifndef XLA_SERVICE_CPU_SHAPE_PARTITION_H_ #define XLA_SERVICE_CPU_SHAPE_PARTITION_H_ #include <cstdint> #include <utility> #include <vector> #include "absl/types/span.h" #include "xla/shape.h" namespace xla { namespace cpu { class ShapePartitionAssigner { public: explicit ShapePartitionAssigner(const Shape& shape) : shape_(shape) {} std::vector<int64_t> Run(int64_t target_partition_count); static int64_t GetTotalPartitionCount( const std::vector<int64_t>& dimension_partition_counts); private: const Shape& shape_; }; class ShapePartitionIterator { public: ShapePartitionIterator(const Shape& shape, absl::Span<const int64_t> dimension_partition_counts); std::vector<std::pair<int64_t, int64_t>> GetPartition(int64_t index) const; int64_t GetTotalPartitionCount() const; private: const Shape& shape_; const std::vector<int64_t> dimension_partition_counts_; std::vector<int64_t> dimensions_; std::vector<int64_t> dimension_partition_sizes_; std::vector<int64_t> dimension_partition_strides_; }; } } #endif #include "xla/service/cpu/shape_partition.h" #include <algorithm> #include <cmath> #include <cstdint> #include <utility> #include <vector> namespace xla { namespace cpu { std::vector<int64_t> ShapePartitionAssigner::Run( int64_t target_partition_count) { std::vector<int64_t> outer_dims; int64_t outer_dim_size = 1; for (int i = shape_.layout().minor_to_major_size() - 1; i >= 0; --i) { const int64_t dimension = shape_.layout().minor_to_major(i); outer_dims.push_back(dimension); outer_dim_size *= shape_.dimensions(dimension); if (outer_dim_size >= target_partition_count) { break; } } target_partition_count = std::min(outer_dim_size, target_partition_count); const int64_t target_dim_partition_count = std::pow( static_cast<double>(target_partition_count), 1.0 / outer_dims.size()); std::vector<int64_t> dimension_partition_counts(outer_dims.size()); for (int64_t i = 0; i < outer_dims.size(); ++i) { dimension_partition_counts[i] = std::min(static_cast<int64_t>(shape_.dimensions(outer_dims[i])), target_dim_partition_count); } if (GetTotalPartitionCount(dimension_partition_counts) < target_partition_count) { for (int64_t i = 0; i < dimension_partition_counts.size(); ++i) { const int64_t current_dim_partition_count = dimension_partition_counts[i]; const int64_t other_dims_partition_count = GetTotalPartitionCount(dimension_partition_counts) / current_dim_partition_count; int64_t additional_partition_count = target_partition_count / other_dims_partition_count - current_dim_partition_count; additional_partition_count = std::min( shape_.dimensions(outer_dims[i]) - dimension_partition_counts[i], additional_partition_count); if (additional_partition_count > 0) { dimension_partition_counts[i] += additional_partition_count; } } } return dimension_partition_counts; } int64_t ShapePartitionAssigner::GetTotalPartitionCount( const std::vector<int64_t>& dimension_partition_counts) { int64_t total_partition_count = 1; for (int64_t dim_partition_count : dimension_partition_counts) { total_partition_count *= dim_partition_count; } return total_partition_count; } ShapePartitionIterator::ShapePartitionIterator( const Shape& shape, absl::Span<const int64_t> dimension_partition_counts) : shape_(shape), dimension_partition_counts_(dimension_partition_counts.begin(), dimension_partition_counts.end()), dimensions_(dimension_partition_counts_.size()), dimension_partition_sizes_(dimension_partition_counts_.size()), dimension_partition_strides_(dimension_partition_counts_.size()) { for (int i = 0; i < dimensions_.size(); ++i) { dimensions_[i] = shape_.layout().minor_to_major( shape_.layout().minor_to_major_size() - 1 - i); } for (int i = 0; i < dimension_partition_sizes_.size(); ++i) { const int64_t dim_size = shape_.dimensions(dimensions_[i]); dimension_partition_sizes_[i] = std::max(int64_t{1}, dim_size / dimension_partition_counts_[i]); } dimension_partition_strides_[dimension_partition_strides_.size() - 1] = 1; for (int i = dimension_partition_strides_.size() - 2; i >= 0; --i) { dimension_partition_strides_[i] = dimension_partition_strides_[i + 1] * dimension_partition_counts_[i + 1]; } } std::vector<std::pair<int64_t, int64_t>> ShapePartitionIterator::GetPartition( int64_t index) const { std::vector<std::pair<int64_t, int64_t>> partition(dimensions_.size()); for (int64_t i = 0; i < partition.size(); ++i) { const int64_t partition_index = index / dimension_partition_strides_[i]; partition[i].first = partition_index * dimension_partition_sizes_[i]; if (partition_index == dimension_partition_counts_[i] - 1) { partition[i].second = shape_.dimensions(dimensions_[i]) - partition[i].first; } else { partition[i].second = dimension_partition_sizes_[i]; } CHECK_GT(partition[i].second, 0); index -= partition_index * dimension_partition_strides_[i]; } return partition; } int64_t ShapePartitionIterator::GetTotalPartitionCount() const { return ShapePartitionAssigner::GetTotalPartitionCount( dimension_partition_counts_); } } }
#include "xla/service/cpu/shape_partition.h" #include <algorithm> #include <random> #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" namespace xla { namespace cpu { namespace { class ShapePartitionAssignerTest : public HloTestBase { protected: typedef std::vector<int64_t> Vec; void RunR2Test(const Shape& shape, int64_t max_target_partition_count, const std::vector<int64_t>* expected_partitions) { ShapePartitionAssigner assigner(shape); for (int64_t i = 1; i <= max_target_partition_count; ++i) { std::vector<int64_t> actual_partitions = assigner.Run(i); EXPECT_THAT(actual_partitions, expected_partitions[i - 1]); } } }; TEST_F(ShapePartitionAssignerTest, Shape13WithLayout10) { std::vector<int64_t> expected_partitions[] = {{1} , {1, 2} }; RunR2Test(ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 3}, {1, 0}), 2, expected_partitions); } TEST_F(ShapePartitionAssignerTest, Shape31WithLayout01) { std::vector<int64_t> expected_partitions[] = { {1} , {1, 2} }; RunR2Test(ShapeUtil::MakeShapeWithDenseLayout(F32, {3, 1}, {0, 1}), 2, expected_partitions); } TEST_F(ShapePartitionAssignerTest, Shape53WithLayout10) { std::vector<int64_t> expected_partitions[] = {{1} , {2} , {3} , {4} , {5} , {3, 2} }; RunR2Test(ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3}, {1, 0}), 6, expected_partitions); } TEST_F(ShapePartitionAssignerTest, Shape53WithLayout01) { std::vector<int64_t> expected_partitions[] = { {1} , {2} , {3} , {2, 2} }; RunR2Test(ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3}, {0, 1}), 4, expected_partitions); } TEST_F(ShapePartitionAssignerTest, Shape532WithLayout210) { std::vector<int64_t> expected_partitions[] = { {1} , {2} , {3} , {4} , {5} , {3, 2} , {3, 2} , {4, 2} , {3, 3} , {3, 3} , {3, 3} , {4, 3} , {4, 3} , {4, 3} , {5, 3} , {4, 2, 2} }; RunR2Test(ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3, 2}, {2, 1, 0}), 16, expected_partitions); } TEST_F(ShapePartitionAssignerTest, Shape532WithLayout201) { std::vector<int64_t> expected_partitions[] = { {1} , {2} , {3} , {2, 2} , {2, 2} , {3, 2} , {3, 2} , {3, 2} , {3, 3} , {3, 3} , {3, 3} , {3, 4} , {3, 4} , {3, 4} , {3, 5} , {3, 2, 2} }; RunR2Test(ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3, 2}, {2, 0, 1}), 16, expected_partitions); } class ShapePartitionIteratorTest : public HloTestBase { protected: typedef std::vector<std::pair<int64_t, int64_t>> Partition; }; TEST_F(ShapePartitionIteratorTest, Shape53WithLayout10) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3}, {1, 0}); { ShapePartitionIterator iterator(shape, {1}); EXPECT_EQ(1, iterator.GetTotalPartitionCount()); EXPECT_TRUE(absl::c_equal(Partition({{0, 5}}), iterator.GetPartition(0))); } { ShapePartitionIterator iterator(shape, {2}); EXPECT_EQ(2, iterator.GetTotalPartitionCount()); EXPECT_TRUE(absl::c_equal(Partition({{0, 2}}), iterator.GetPartition(0))); EXPECT_TRUE(absl::c_equal(Partition({{2, 3}}), iterator.GetPartition(1))); } { ShapePartitionIterator iterator(shape, {3}); EXPECT_EQ(3, iterator.GetTotalPartitionCount()); EXPECT_TRUE(absl::c_equal(Partition({{0, 1}}), iterator.GetPartition(0))); EXPECT_TRUE(absl::c_equal(Partition({{1, 1}}), iterator.GetPartition(1))); EXPECT_TRUE(absl::c_equal(Partition({{2, 3}}), iterator.GetPartition(2))); } } TEST_F(ShapePartitionIteratorTest, Shape532WithLayout210) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 3, 2}, {2, 1, 0}); { ShapePartitionIterator iterator(shape, {1, 1}); EXPECT_EQ(1, iterator.GetTotalPartitionCount()); EXPECT_TRUE( absl::c_equal(Partition({{0, 5}, {0, 3}}), iterator.GetPartition(0))); } { ShapePartitionIterator iterator(shape, {2, 2}); EXPECT_EQ(4, iterator.GetTotalPartitionCount()); EXPECT_TRUE( absl::c_equal(Partition({{0, 2}, {0, 1}}), iterator.GetPartition(0))); EXPECT_TRUE( absl::c_equal(Partition({{0, 2}, {1, 2}}), iterator.GetPartition(1))); EXPECT_TRUE( absl::c_equal(Partition({{2, 3}, {0, 1}}), iterator.GetPartition(2))); EXPECT_TRUE( absl::c_equal(Partition({{2, 3}, {1, 2}}), iterator.GetPartition(3))); } } class RandomShapePartitionIteratorTest : public HloTestBase { protected: typedef std::vector<std::pair<int64_t, int64_t>> Partition; RandomShapePartitionIteratorTest() : generator_(rd_()), distribution_(1, 10) {} std::vector<int64_t> RandR4Dims() { return {Rand(), Rand(), Rand(), Rand()}; } int64_t Rand() { return distribution_(generator_); } std::random_device rd_; std::mt19937 generator_; std::uniform_int_distribution<int> distribution_; }; TEST_F(RandomShapePartitionIteratorTest, RandomShapeAndPartitions) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout(F32, RandR4Dims(), {3, 2, 1, 0}); const int num_outer_dims_to_partition = 1 + (Rand() % 3); std::vector<int64_t> dim_sizes(num_outer_dims_to_partition); std::vector<int64_t> dim_partition_counts(num_outer_dims_to_partition); int64_t total_dim_size = 1; for (int i = 0; i < num_outer_dims_to_partition; ++i) { const int64_t dimension = shape.layout().minor_to_major( shape.layout().minor_to_major_size() - 1 - i); dim_sizes[i] = shape.dimensions(dimension); total_dim_size *= dim_sizes[i]; const int64_t dim_partition_count = 1 + Rand() % dim_sizes[i]; dim_partition_counts[i] = dim_partition_count; } std::vector<std::map<int64_t, int64_t>> ranges(num_outer_dims_to_partition); ShapePartitionIterator partition_iterator(shape, dim_partition_counts); const int64_t partition_count = partition_iterator.GetTotalPartitionCount(); for (int64_t i = 0; i < partition_count; ++i) { const auto& dim_partition = partition_iterator.GetPartition(i); for (int dim = 0; dim < dim_partition.size(); ++dim) { ranges[dim].insert( std::make_pair(dim_partition[dim].first, dim_partition[dim].first + dim_partition[dim].second)); } } for (int i = 0; i < ranges.size(); ++i) { int64_t expected_index = 0; for (auto& r : ranges[i]) { EXPECT_EQ(expected_index, r.first); expected_index = r.second; } EXPECT_EQ(expected_index, dim_sizes[i]); } } } } }
2,009
cpp
tensorflow/tensorflow
cpu_runtime
third_party/xla/xla/service/cpu/cpu_runtime.cc
third_party/xla/xla/service/cpu/cpu_runtime_test.cc
#ifndef XLA_SERVICE_CPU_CPU_RUNTIME_H_ #define XLA_SERVICE_CPU_CPU_RUNTIME_H_ #include "xla/executable_run_options.h" #include "xla/service/cpu/xfeed_manager.h" namespace xla { namespace cpu { namespace runtime { extern const char* const kEigenMatMulF16SymbolName; extern const char* const kEigenMatMulF32SymbolName; extern const char* const kEigenMatMulF64SymbolName; extern const char* const kEigenMatMulC64SymbolName; extern const char* const kEigenMatMulC128SymbolName; extern const char* const kEigenMatMulS32SymbolName; extern const char* const kEigenBatchMatMulF32SymbolName; extern const char* const kMKLConv2DF32SymbolName; extern const char* const kACLConv2DF32SymbolName; extern const char* const kACLMatMulF32SymbolName; extern const char* const kACLBatchMatMulF32SymbolName; extern const char* const kEigenConv2DF16SymbolName; extern const char* const kEigenConv2DF32SymbolName; extern const char* const kEigenConv3DF16SymbolName; extern const char* const kEigenConv3DF32SymbolName; extern const char* const kDuccFftSymbolName; extern const char* const kDuccSingleThreadedFftSymbolName; extern const char* const kEigenSingleThreadedMatMulF16SymbolName; extern const char* const kEigenSingleThreadedMatMulF32SymbolName; extern const char* const kEigenSingleThreadedMatMulF64SymbolName; extern const char* const kEigenSingleThreadedMatMulC64SymbolName; extern const char* const kEigenSingleThreadedMatMulC128SymbolName; extern const char* const kEigenSingleThreadedMatMulS32SymbolName; extern const char* const kEigenSingleThreadedConv2DF16SymbolName; extern const char* const kEigenSingleThreadedConv2DF32SymbolName; extern const char* const kEigenSingleThreadedConv3DF16SymbolName; extern const char* const kEigenSingleThreadedConv3DF32SymbolName; extern const char* const kAcquireInfeedBufferForDequeueSymbolName; extern const char* const kReleaseInfeedBufferAfterDequeueSymbolName; extern const char* const kAcquireOutfeedBufferForPopulationSymbolName; extern const char* const kReleaseOutfeedBufferAfterPopulationSymbolName; extern const char* const kParallelForkJoinSymbolName; extern const char* const kPrintfToStderrSymbolName; extern const char* const kStatusIsSuccessSymbolName; extern const char* const kKeyValueSortSymbolName; extern const char* const kTopKF32SymbolName; extern const char* const kAllReduceSymbolName; extern const char* const kCollectivePermuteSymbolName; extern const char* const kPartitionIdSymbolName; extern const char* const kReplicaIdSymbolName; extern const char* const kTracingStartSymbolName; extern const char* const kTracingEndSymbolName; extern const char* const kAllToAllSymbolName; extern const char* const kAllGatherSymbolName; extern const char* const kReduceScatterSymbolName; extern const char* const kOneDnnMatMulSymbolName; extern const char* const kOneDnnSoftmaxSymbolName; extern const char* const kOneDnnLayerNormSymbolName; extern const char* const kOneDnnConvolutionSymbolName; extern const char* const kOneDnnMatMulReorderSymbolName; extern const char* const kHandleFfiCallSymbolName; extern const char* const kXlaCpuRuntimeSymbolNamePrefix; XfeedManager* GetXfeedManager(int device_ordinal); } } } extern "C" { extern int __xla_cpu_runtime_PrintfToStderr(const char* format, ...); extern int64_t __xla_cpu_runtime_TracingStart( const void* run_options_ptr, const char* name, const char* hlo_module, int64_t program_id); extern void __xla_cpu_runtime_TracingEnd( const void* run_options_ptr, int64_t id); extern void* __xla_cpu_runtime_AcquireInfeedBufferForDequeue( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape, int32_t shape_length); extern void __xla_cpu_runtime_ReleaseInfeedBufferAfterDequeue( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length); extern void* __xla_cpu_runtime_AcquireOutfeedBufferForPopulation( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape_ptr, int32_t shape_length); extern void __xla_cpu_runtime_ReleaseOutfeedBufferAfterPopulation( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length); extern void __xla_cpu_runtime_AllReduce( const xla::ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, const void* shape_ptr, int32_t shape_length, int32_t num_buffers, void** input_buffers, void** output_buffers); extern void __xla_cpu_runtime_CollectivePermute( const xla::ExecutableRunOptions* run_options, int32_t channel_id_present, int64_t op_id, int32_t byte_size, void* input_buffer, void* output_buffer, const void* source_target_pairs, int32_t source_target_pairs_size); extern void __xla_cpu_runtime_AllToAll( const xla::ExecutableRunOptions* run_options, int32_t channel_id_present, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t num_buffers, int64_t buffer_size, void** source_buffers, void** destination_buffers); extern void __xla_cpu_runtime_AllGather( const xla::ExecutableRunOptions* run_options, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int64_t buffer_size, void* source_buffer, void* destination_buffer); void __xla_cpu_runtime_ReduceScatter( const xla::ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, int32_t element_type, int64_t chunk_elems, void* input_buffer, void* output_buffer); extern void __xla_cpu_runtime_PartitionId( const xla::ExecutableRunOptions* run_options, void* output_buffer); extern void __xla_cpu_runtime_ReplicaId( const xla::ExecutableRunOptions* run_options, void* output_buffer); } #endif #include "xla/service/cpu/cpu_runtime.h" #include <cstdarg> #include <cstdint> #include <cstring> #include <iterator> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/base/dynamic_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/executable_run_options.h" #include "xla/layout_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/cpu/cpu_executable_run_options.h" #include "xla/service/cpu/in_process_collectives.h" #include "xla/service/cpu/xfeed_manager.h" #include "xla/service/global_device_id.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace cpu { namespace runtime { XfeedManager* GetXfeedManager(int device_ordinal) { static auto* managers = new absl::flat_hash_map<int, XfeedManager*>(); static absl::Mutex* mutex = new absl::Mutex(); absl::MutexLock lock(mutex); auto it = managers->find(device_ordinal); if (it == managers->end()) { it = managers->emplace(device_ordinal, new XfeedManager()).first; } return it->second; } extern const char* const kEigenMatMulF16SymbolName = "__xla_cpu_runtime_EigenMatMulF16"; extern const char* const kEigenMatMulF32SymbolName = "__xla_cpu_runtime_EigenMatMulF32"; extern const char* const kEigenMatMulF64SymbolName = "__xla_cpu_runtime_EigenMatMulF64"; extern const char* const kEigenMatMulC64SymbolName = "__xla_cpu_runtime_EigenMatMulC64"; extern const char* const kEigenMatMulC128SymbolName = "__xla_cpu_runtime_EigenMatMulC128"; extern const char* const kEigenMatMulS32SymbolName = "__xla_cpu_runtime_EigenMatMulS32"; extern const char* const kEigenBatchMatMulF32SymbolName = "__xla_cpu_runtime_EigenBatchMatMulF32"; extern const char* const kMKLConv2DF32SymbolName = "__xla_cpu_runtime_MKLConv2DF32"; extern const char* const kACLConv2DF32SymbolName = "__xla_cpu_runtime_ACLConv2DF32"; extern const char* const kACLMatMulF32SymbolName = "__xla_cpu_runtime_ACLMatMulF32"; extern const char* const kACLBatchMatMulF32SymbolName = "__xla_cpu_runtime_ACLBatchMatMulF32"; extern const char* const kEigenConv2DF16SymbolName = "__xla_cpu_runtime_EigenConv2DF16"; extern const char* const kEigenConv2DF32SymbolName = "__xla_cpu_runtime_EigenConv2DF32"; extern const char* const kEigenConv3DF16SymbolName = "__xla_cpu_runtime_EigenConv3DF16"; extern const char* const kEigenConv3DF32SymbolName = "__xla_cpu_runtime_EigenConv3DF32"; extern const char* const kDuccFftSymbolName = "__xla_cpu_runtime_DuccFft"; extern const char* const kDuccSingleThreadedFftSymbolName = "__xla_cpu_runtime_DuccSingleThreadedFft"; extern const char* const kEigenSingleThreadedMatMulF16SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF16"; extern const char* const kEigenSingleThreadedMatMulF32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF32"; extern const char* const kEigenSingleThreadedMatMulF64SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF64"; extern const char* const kEigenSingleThreadedMatMulC64SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulC64"; extern const char* const kEigenSingleThreadedMatMulC128SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulC128"; extern const char* const kEigenSingleThreadedMatMulS32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulS32"; extern const char* const kEigenSingleThreadedConv2DF16SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv2DF16"; extern const char* const kEigenSingleThreadedConv2DF32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv2DF32"; extern const char* const kEigenSingleThreadedConv3DF16SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv3DF16"; extern const char* const kEigenSingleThreadedConv3DF32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv3DF32"; extern const char* const kAcquireInfeedBufferForDequeueSymbolName = "__xla_cpu_runtime_AcquireInfeedBufferForDequeue"; extern const char* const kReleaseInfeedBufferAfterDequeueSymbolName = "__xla_cpu_runtime_ReleaseInfeedBufferAfterDequeue"; extern const char* const kAcquireOutfeedBufferForPopulationSymbolName = "__xla_cpu_runtime_AcquireOutfeedBufferForPopulation"; extern const char* const kReleaseOutfeedBufferAfterPopulationSymbolName = "__xla_cpu_runtime_ReleaseOutfeedBufferAfterPopulation"; extern const char* const kParallelForkJoinSymbolName = "__xla_cpu_runtime_ParallelForkJoin"; extern const char* const kPrintfToStderrSymbolName = "__xla_cpu_runtime_PrintfToStderr"; extern const char* const kStatusIsSuccessSymbolName = "__xla_cpu_runtime_StatusIsSuccess"; extern const char* const kKeyValueSortSymbolName = "__xla_cpu_runtime_KeyValueSort"; extern const char* const kTopKF32SymbolName = "__xla_cpu_runtime_TopKF32"; extern const char* const kTracingStartSymbolName = "__xla_cpu_runtime_TracingStart"; extern const char* const kTracingEndSymbolName = "__xla_cpu_runtime_TracingEnd"; extern const char* const kXlaCpuRuntimeSymbolNamePrefix = "__xla_cpu_runtime_"; extern const char* const kAllReduceSymbolName = "__xla_cpu_runtime_AllReduce"; extern const char* const kAllGatherSymbolName = "__xla_cpu_runtime_AllGather"; extern const char* const kReduceScatterSymbolName = "__xla_cpu_runtime_ReduceScatter"; extern const char* const kAllToAllSymbolName = "__xla_cpu_runtime_AllToAll"; extern const char* const kCollectivePermuteSymbolName = "__xla_cpu_runtime_CollectivePermute"; extern const char* const kPartitionIdSymbolName = "__xla_cpu_runtime_PartitionId"; extern const char* const kReplicaIdSymbolName = "__xla_cpu_runtime_ReplicaId"; extern const char* const kOneDnnMatMulSymbolName = "__xla_cpu_runtime_OneDnnMatMul"; extern const char* const kOneDnnSoftmaxSymbolName = "__xla_cpu_runtime_OneDnnSoftmax"; extern const char* const kOneDnnLayerNormSymbolName = "__xla_cpu_runtime_OneDnnLayerNorm"; extern const char* const kOneDnnConvolutionSymbolName = "__xla_cpu_runtime_OneDnnConvolution"; extern const char* const kOneDnnMatMulReorderSymbolName = "__xla_cpu_runtime_OneDnnMatMulReorder"; extern const char* const kHandleFfiCallSymbolName = "__xla_cpu_runtime_HandleFfiCall"; namespace { absl::StatusOr<Shape> DecodeSelfDescribingShapeConstant(const void* shape_ptr, int32_t size_bytes) { ShapeProto shape_proto; if (!shape_proto.ParseFromArray(shape_ptr, size_bytes)) { return tsl::errors::Internal("Failed parsing the shape proto"); } Shape shape(shape_proto); auto status = ShapeUtil::ValidateShape(shape); if (!status.ok()) { return status; } return std::move(shape); } std::string ShapeString(const void* shape_ptr, int32_t shape_length) { absl::StatusOr<Shape> shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length); if (shape.ok()) { return ShapeUtil::HumanStringWithLayout(shape.value()); } return "<invalid shape>"; } int GetDeviceOrdinal(const ExecutableRunOptions* run_options) { if (!run_options) { return 0; } else if (run_options->device_ordinal() != -1) { return run_options->device_ordinal(); } return run_options->stream()->parent()->device_ordinal(); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void* AcquireInfeedBufferForDequeueImpl(const ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "AcquireInfeedBufferForDequeue: " << ShapeString(shape, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); XfeedBuffer* buffer = xfeed->infeed()->BlockingDequeueBuffer(); CHECK_EQ(buffer->length(), buffer_length) << "XLA program infeed request buffer size " << buffer_length << " did not match the runtime's infed buffer length " << buffer->length() << "; program reports desired shape: " << ShapeString(shape, shape_length); return buffer->data(); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReleaseInfeedBufferAfterDequeueImpl( const ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "ReleaseInfeedBufferAfterDeque: " << ShapeString(shape_ptr, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); absl::StatusOr<Shape> shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length); xfeed->infeed()->ReleaseCurrentBuffer(buffer_length, buffer_ptr, std::move(shape)); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void* AcquireOutfeedBufferForPopulationImpl( const ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape_ptr, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "AcquireOutfeedBufferForPopulation: " << ShapeString(shape_ptr, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); XfeedBuffer* buffer = xfeed->outfeed()->BlockingDequeueBuffer(); CHECK_EQ(buffer->length(), buffer_length) << "XLA program outfeed request buffer size " << buffer_length << " did not match the runtime's outfeed buffer length " << buffer->length() << "; program reports outfed shape: " << ShapeString(shape_ptr, shape_length); return buffer->data(); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReleaseOutfeedBufferAfterPopulationImpl( const ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "ReleaseOutfeedBufferAfterPopulation: " << ShapeString(shape_ptr, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); absl::StatusOr<Shape> shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length); xfeed->outfeed()->ReleaseCurrentBuffer(buffer_length, buffer_ptr, std::move(shape)); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReplicaIdImpl(const ExecutableRunOptions* run_options, void* output_buffer) { int device_ordinal = GetDeviceOrdinal(run_options); int32_t replica_id = run_options->device_assignment() ->ReplicaIdForDevice(GlobalDeviceId(device_ordinal)) .value(); std::memcpy(output_buffer, &replica_id, 4); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void PartitionIdImpl(const ExecutableRunOptions* run_options, void* output_buffer) { int device_ordinal = GetDeviceOrdinal(run_options); const DeviceAssignment::LogicalID logical_id = run_options->device_assignment() ->LogicalIdForDevice(GlobalDeviceId(device_ordinal)) .value(); std::memcpy(output_buffer, &logical_id.computation_id, 4); } RendezvousKey GetRendezvousKey(const ExecutableRunOptions* run_options, GlobalDeviceId device, std::vector<ReplicaGroup> group, int32_t channel_id_present, std::optional<bool> use_global_device_ids, int64_t op_id) { const DeviceAssignment& device_assignment = *run_options->device_assignment(); RendezvousKey::CollectiveOpKind op_kind = channel_id_present ? RendezvousKey::kCrossModule : RendezvousKey::kCrossReplica; std::vector<GlobalDeviceId> participating_devices = GetParticipatingDevices(GlobalDeviceId(device), device_assignment, group, GetCollectiveOpGroupMode(channel_id_present != 0, use_global_device_ids) .value()) .value(); int num_local_participants = participating_devices.size(); return RendezvousKey{run_options->run_id(), std::move(participating_devices), num_local_participants, op_kind, op_id}; } CollectivesInterface* GetInProcessCollectivesImpl() { static InProcessCollectives* c = new InProcessCollectives(); return c; } CollectivesInterface* GetCollectivesImpl( const ExecutableRunOptions* run_options) { if (run_options->cpu_executable_run_options() && run_options->cpu_executable_run_options()->collectives()) { return run_options->cpu_executable_run_options()->collectives(); } return GetInProcessCollectivesImpl(); } absl::Duration DefaultCollectiveTimeout() { return absl::Minutes(30); } absl::StatusOr<int> RankInGlobalDevices( absl::Span<GlobalDeviceId const> devices, GlobalDeviceId device) { auto it = absl::c_find(devices, device); if (it == devices.end()) { return InvalidArgument( "Device %d not present in global devices %s.", device.value(), absl::StrJoin(devices, ", ", [](std::string* out, GlobalDeviceId id) { absl::StrAppend(out, id.value()); })); } return std::distance(devices.begin(), it); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void AllToAllImpl(const ExecutableRunOptions* run_options, int32_t channel_id_present, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t num_buffers, int64_t buffer_size, void** source_buffers, void** destination_buffers) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, std::nullopt, op_id); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(source_buffers, sizeof(void*) * num_buffers); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(destination_buffers, sizeof(void*) * num_buffers); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); TF_CHECK_OK(communicator->AllToAll( rendezvous_key, buffer_size, absl::Span<const void* const>(source_buffers, num_buffers), absl::Span<void* const>(destination_buffers, num_buffers), DefaultCollectiveTimeout())); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void AllGatherImpl(const ExecutableRunOptions* run_options, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int64_t buffer_size, void* source_buffer, void* destination_buffer) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, use_global_device_ids, op_id); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); TF_CHECK_OK(communicator->AllGather(rendezvous_key, buffer_size, source_buffer, destination_buffer, DefaultCollectiveTimeout())); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReduceScatterImpl(const ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, int32_t element_type, int64_t chunk_elems, void* input_buffer, void* output_buffer) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, use_global_device_ids, op_id); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); TF_CHECK_OK(communicator->ReduceScatter( rendezvous_key, static_cast<ReductionKind>(reduction_kind), static_cast<PrimitiveType>(element_type), chunk_elems, input_buffer, output_buffer, DefaultCollectiveTimeout())); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void AllReduceImpl(const ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, const void* shape_ptr, int32_t shape_length, int32_t num_buffers, void** input_buffers, void** output_buffers) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, use_global_device_ids, op_id); auto shape_str = ShapeString(shape_ptr, shape_length); VLOG(2) << "All-reduce input/output shape : " << shape_str; Shape shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length).value(); CHECK((num_buffers > 1 && shape.IsTuple()) || (num_buffers == 1 && LayoutUtil::IsDenseArray(shape))); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); for (int i = 0; i < num_buffers; i++) { Shape subshape = num_buffers == 1 ? shape : shape.tuple_shapes(i); TF_CHECK_OK(communicator->AllReduce( rendezvous_key, static_cast<ReductionKind>(reduction_kind), subshape.element_type(), ShapeUtil::ElementsIn(subshape), input_buffers[i], output_buffers[i], DefaultCollectiveTimeout())); } }
#define EIGEN_USE_THREADS #include "xla/service/cpu/cpu_runtime.h" #include <memory> #include <string> #include <tuple> #include "absl/strings/str_format.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/array2d.h" #include "xla/client/local_client.h" #include "xla/service/cpu/runtime_custom_call_status.h" #include "xla/service/cpu/runtime_matmul.h" #include "xla/service/cpu/runtime_matmul_acl.h" #include "xla/service/cpu/runtime_single_threaded_matmul.h" #include "xla/service/custom_call_status_internal.h" #include "xla/types.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace xla { namespace { class CpuRuntimeTest : public ::testing::Test {}; template <typename T> std::unique_ptr<Array2D<float>> MaybeTransposeArray2D(const Array2D<T>& array, bool transpose) { int64_t output_height = array.height(); int64_t output_width = array.width(); if (transpose) { std::swap(output_width, output_height); } auto output = std::make_unique<Array2D<float>>(output_height, output_width); for (int y = 0; y < array.height(); y++) { for (int x = 0; x < array.width(); x++) { if (transpose) { (*output)(x, y) = array(y, x); } else { (*output)(y, x) = array(y, x); } } } return output; } void CheckMatrixMultiply(const Array2D<float>& a, const Array2D<float>& b, const Array2D<float>& c) { for (int i = 0; i < a.height(); ++i) { for (int j = 0; j < b.width(); ++j) { float sum = 0.0; for (int k = 0; k < a.width(); ++k) { sum += a(i, k) * b(k, j); } EXPECT_NEAR(sum, c(i, j), 0.01); } } } std::unique_ptr<Array2D<float>> EigenMatrixMultiply(const Array2D<float>& a, const Array2D<float>& b, bool transpose_lhs, bool transpose_rhs, bool single_threaded) { CHECK_EQ(a.width(), b.height()); int64_t m = a.height(); int64_t n = b.width(); int64_t k = a.width(); auto a_transpose = MaybeTransposeArray2D(a, !transpose_lhs); auto b_transpose = MaybeTransposeArray2D(b, !transpose_rhs); auto c_transpose = std::make_unique<Array2D<float>>(n, m); if (single_threaded) { __xla_cpu_runtime_EigenSingleThreadedMatMulF32( nullptr, c_transpose->data(), a_transpose->data(), b_transpose->data(), m, n, k, transpose_lhs, transpose_rhs); } else { tsl::thread::ThreadPool pool(tsl::Env::Default(), "XLAEigen", 2); Eigen::ThreadPoolDevice device(pool.AsEigenThreadPool(), pool.NumThreads()); ExecutableRunOptions run_options; run_options.set_intra_op_thread_pool(&device); __xla_cpu_runtime_EigenMatMulF32(&run_options, c_transpose->data(), a_transpose->data(), b_transpose->data(), m, n, k, transpose_lhs, transpose_rhs); } return MaybeTransposeArray2D(*c_transpose, true); } struct MatMulShape { int64_t m; int64_t k; int64_t n; }; MatMulShape MatMulShapes[] = { MatMulShape{2, 2, 3}, MatMulShape{256, 512, 1024}, MatMulShape{128, 128, 1}, MatMulShape{1, 128, 128}, MatMulShape{1, 32, 128}, MatMulShape{1, 32, 16}, MatMulShape{32, 16, 1}, MatMulShape{32, 128, 1}, }; using MatMulTestParam = std::tuple<MatMulShape, bool, bool, bool>; class EigenMatMulTest : public CpuRuntimeTest, public ::testing::WithParamInterface<MatMulTestParam> { public: static std::string Name( const ::testing::TestParamInfo<MatMulTestParam>& info) { MatMulShape shape = std::get<0>(info.param); bool transpose_lhs = std::get<1>(info.param); bool transpose_rhs = std::get<2>(info.param); bool single_threaded = std::get<3>(info.param); return absl::StrFormat("EigenMatMul_%d_%d_%d_%s%s%s_threaded", shape.m, shape.k, shape.n, transpose_lhs ? "Tlhs_" : "", transpose_rhs ? "Trhs_" : "", single_threaded ? "single" : "multi"); } }; TEST_P(EigenMatMulTest, DoIt) { MatMulShape shape = std::get<0>(GetParam()); bool transpose_lhs = std::get<1>(GetParam()); bool transpose_rhs = std::get<2>(GetParam()); bool single_threaded = std::get<3>(GetParam()); auto a = MakeLinspaceArray2D(0.0, 1.0, shape.m, shape.k); auto b = MakeLinspaceArray2D(-2.0, 2.0, shape.k, shape.n); auto c = EigenMatrixMultiply(*a, *b, transpose_lhs, transpose_rhs, single_threaded); CheckMatrixMultiply(*a, *b, *c); } INSTANTIATE_TEST_SUITE_P(EigenMatMulTestInstantiaion, EigenMatMulTest, ::testing::Combine(::testing::ValuesIn(MatMulShapes), ::testing::Bool(), ::testing::Bool(), ::testing::Bool()), EigenMatMulTest::Name); TEST_F(CpuRuntimeTest, SuccessStatus) { XlaCustomCallStatus success_status; ASSERT_TRUE(__xla_cpu_runtime_StatusIsSuccess(&success_status)); } TEST_F(CpuRuntimeTest, FailureStatus) { XlaCustomCallStatus success_status; XlaCustomCallStatusSetFailure(&success_status, "Failed", 6); ASSERT_FALSE(__xla_cpu_runtime_StatusIsSuccess(&success_status)); } } }
2,010
cpp
tensorflow/tensorflow
cpu_instruction_fusion
third_party/xla/xla/service/cpu/cpu_instruction_fusion.cc
third_party/xla/xla/service/cpu/cpu_instruction_fusion_test.cc
#ifndef XLA_SERVICE_CPU_CPU_INSTRUCTION_FUSION_H_ #define XLA_SERVICE_CPU_CPU_INSTRUCTION_FUSION_H_ #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/fusion_node_indexing_evaluation.h" #include "xla/service/instruction_fusion.h" namespace xla { namespace cpu { class CpuInstructionFusion : public InstructionFusion { public: CpuInstructionFusion() : InstructionFusion(CpuInstructionFusion::IsExpensive) {} ~CpuInstructionFusion() override = default; using HloPassInterface::Run; absl::StatusOr<bool> Run(HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override { fusion_node_evaluations_.clear(); return InstructionFusion::Run(module, execution_threads); } protected: FusionDecision ShouldFuse(HloInstruction* consumer, int64_t operand_index) override; HloInstruction::FusionKind ChooseKind( const HloInstruction* producer, const HloInstruction* consumer) override; private: HloInstruction* FuseInstruction(HloInstruction* fusion_instruction, HloInstruction* producer) override; absl::flat_hash_map<const HloInstruction*, FusionNodeIndexingEvaluation> fusion_node_evaluations_; }; } } #endif #include "xla/service/cpu/cpu_instruction_fusion.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/fusion_node_indexing_evaluation.h" #include "xla/service/instruction_fusion.h" #include "xla/service/llvm_ir/fused_ir_emitter.h" namespace xla { namespace cpu { namespace { bool CanBeLoopFused(const HloInstruction& hlo) { return hlo.IsElementwise() || hlo.opcode() == HloOpcode::kBitcast || hlo.opcode() == HloOpcode::kBroadcast || hlo.opcode() == HloOpcode::kConcatenate || hlo.opcode() == HloOpcode::kDynamicSlice || hlo.opcode() == HloOpcode::kDynamicUpdateSlice || hlo.opcode() == HloOpcode::kGather || hlo.opcode() == HloOpcode::kIota || hlo.opcode() == HloOpcode::kPad || hlo.opcode() == HloOpcode::kReduce || hlo.opcode() == HloOpcode::kReshape || hlo.opcode() == HloOpcode::kReverse || hlo.opcode() == HloOpcode::kSlice || hlo.opcode() == HloOpcode::kTranspose; } bool IsNonComplexNonBatchedMatrixVectorDot(const HloInstruction* hlo) { const Shape& hlo_shape = hlo->shape(); return !ShapeUtil::ElementIsComplex(hlo_shape) && hlo->opcode() == HloOpcode::kDot && hlo_shape.dimensions_size() <= 1 && hlo->dot_dimension_numbers().lhs_batch_dimensions_size() == 0; } bool HasExactlyOneUse(const HloInstruction& hlo_instr) { return hlo_instr.user_count() == 1 && absl::c_count(hlo_instr.users().front()->operands(), &hlo_instr) == 1; } bool CanBeOutputFused(const HloInstruction* producer, const HloInstruction* consumer) { return consumer->opcode() == HloOpcode::kAdd && IsNonComplexNonBatchedMatrixVectorDot(producer) && HasExactlyOneUse(*producer) == 1; } bool CanBeOutputFusedIntoSomeOperand(const HloInstruction* consumer) { return consumer->opcode() == HloOpcode::kAdd && (CanBeOutputFused(consumer->operand(0), consumer) || CanBeOutputFused(consumer->operand(1), consumer)); } } FusionDecision CpuInstructionFusion::ShouldFuse(HloInstruction* consumer, int64_t operand_index) { HloInstruction* producer = consumer->mutable_operand(operand_index); VLOG(2) << "Considering for fusion: operand " << operand_index << " of " << consumer->ToString(); constexpr int kFusionThresholdBytes = 16 * 1024; if (CanBeOutputFused(producer, consumer)) { VLOG(2) << "Fusion OK: Can create output fusion."; return {}; } if (CanBeOutputFusedIntoSomeOperand(producer)) { return "Bailing because producer can be output-fused into some operand."; } if (!CanBeLoopFused(*producer)) { return "Producer is not loop-fusible."; } if (producer->opcode() != HloOpcode::kFusion && is_expensive(*producer) && ReusesOperandElements(consumer, operand_index)) { return "Fusion is not profitable."; } RETURN_IF_NOT_FUSIBLE(InstructionFusion::ShouldFuse(consumer, operand_index)); if (producer->opcode() == HloOpcode::kConstant && consumer->opcode() != HloOpcode::kFusion) { return "Not fusing: insufficient non-constant nodes."; } if (producer->opcode() == HloOpcode::kFusion) { return "Not fusing: producer is itself a fusion node."; } if (consumer->opcode() == HloOpcode::kFusion) { if (fusion_node_evaluations_.find(consumer) == fusion_node_evaluations_.end()) { fusion_node_evaluations_.emplace(consumer, FusionNodeIndexingEvaluation(consumer)); } if (fusion_node_evaluations_.at(consumer).CodeDuplicationTooHigh( producer)) { return "Code duplication too high"; } } if (consumer->opcode() == HloOpcode::kDot) { const Shape& output_shape = consumer->shape(); if (output_shape.dimensions_size() <= 1) { if (consumer->operand(0)->shape().rank() == 1 && operand_index == 1 && ShapeUtil::ByteSizeOfElements(consumer->operand(0)->shape()) < kFusionThresholdBytes) { VLOG(2) << "Fusing small matrix-vector product."; return {}; } else if (consumer->operand(1)->shape().rank() == 1 && operand_index == 0 && ShapeUtil::ByteSizeOfElements(consumer->operand(1)->shape()) < kFusionThresholdBytes) { VLOG(2) << "Fusing small matrix-vector product."; return {}; } } } if (consumer->opcode() == HloOpcode::kReduce && !absl::c_linear_search( consumer->dimensions(), LayoutUtil::Minor(consumer->operand(0)->shape().layout(), 0))) { return "Not fusing reductions over major dimensions"; } if (producer->opcode() == HloOpcode::kReduce && !absl::c_linear_search( producer->dimensions(), LayoutUtil::Minor(producer->operand(0)->shape().layout(), 0))) { return "Not fusing reductions over major dimensions"; } if (consumer->IsLoopFusion()) { VLOG(2) << "Fusing: consumer is a fusion node."; return {}; } if (CanBeLoopFused(*consumer)) { VLOG(2) << "Fusing: consumer is elementwise or fusible."; return {}; } return "Not fusing: not found a fusible case"; } HloInstruction::FusionKind CpuInstructionFusion::ChooseKind( const HloInstruction* producer, const HloInstruction* consumer) { return CanBeOutputFused(producer, consumer) ? HloInstruction::FusionKind::kOutput : HloInstruction::FusionKind::kLoop; } HloInstruction* CpuInstructionFusion::FuseInstruction( HloInstruction* fusion_instruction, HloInstruction* producer) { auto evaluation = fusion_node_evaluations_.find(fusion_instruction); if (evaluation == fusion_node_evaluations_.end()) { evaluation = fusion_node_evaluations_ .emplace(fusion_instruction, FusionNodeIndexingEvaluation(fusion_instruction)) .first; } auto indexing_users = evaluation->second.RemoveFusionOperand(producer); HloInstruction* new_producer = InstructionFusion::FuseInstruction(fusion_instruction, producer); evaluation->second.UpdateEvaluationCache(new_producer, indexing_users); return new_producer; } } }
#include "xla/service/cpu/cpu_instruction_fusion.h" #include <algorithm> #include <memory> #include <set> #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/transpose_folding.h" #include "xla/shape.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace cpu { namespace { using InstructionFusionTest = HloTestBase; std::unique_ptr<HloInstruction> MakeDot(const Shape& shape, HloInstruction* lhs, HloInstruction* rhs) { DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(lhs->shape().rank() - 1); dot_dnums.add_rhs_contracting_dimensions(0); PrecisionConfig precision_config; precision_config.mutable_operand_precision()->Resize( 2, PrecisionConfig::DEFAULT); return HloInstruction::CreateDot(shape, lhs, rhs, dot_dnums, precision_config); } TEST_F(InstructionFusionTest, DotOperationFusion_Basic_0) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1024, 256}), "arg0")); HloInstruction* arg1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {256}), "arg1")); HloInstruction* exp0 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {1024, 256}), HloOpcode::kExp, arg0)); HloInstruction* dot = builder.AddInstruction( MakeDot(ShapeUtil::MakeShape(F32, {1024}), exp0, arg1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(dot, computation->root_instruction()); EXPECT_TRUE(CpuInstructionFusion().Run(module.get()).value()); EXPECT_THAT(computation->root_instruction(), op::Fusion()); } TEST_F(InstructionFusionTest, DotOperationFusion_Basic_1) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {256}), "arg0")); HloInstruction* arg1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {256, 1024}), "arg1")); HloInstruction* exp1 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {256, 1024}), HloOpcode::kExp, arg1)); HloInstruction* dot = builder.AddInstruction( MakeDot(ShapeUtil::MakeShape(F32, {1024}), arg0, exp1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(dot, computation->root_instruction()); EXPECT_TRUE(CpuInstructionFusion().Run(module.get()).value()); EXPECT_THAT(computation->root_instruction(), op::Fusion()); } TEST_F(InstructionFusionTest, DotOperationFusion_Bitcast) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {2, 512, 2, 128}), "arg0")); HloInstruction* arg1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {256}), "arg1")); HloInstruction* exp0 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {2, 512, 2, 128}), HloOpcode::kExp, arg0)); HloInstruction* bitcast0 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {1024, 256}), HloOpcode::kBitcast, exp0)); HloInstruction* dot = builder.AddInstruction( MakeDot(ShapeUtil::MakeShape(F32, {1024}), bitcast0, arg1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(dot, computation->root_instruction()); EXPECT_TRUE(CpuInstructionFusion().Run(module.get()).value()); EXPECT_THAT(computation->root_instruction(), op::Fusion()); } TEST_F(InstructionFusionTest, DotOperationFusion_Reshape) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {2, 512, 2, 128}), "arg0")); HloInstruction* arg1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {256}), "arg1")); HloInstruction* exp0 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {2, 512, 2, 128}), HloOpcode::kExp, arg0)); HloInstruction* reshape0 = builder.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1024, 256}), exp0)); HloInstruction* dot = builder.AddInstruction( MakeDot(ShapeUtil::MakeShape(F32, {1024}), reshape0, arg1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(dot, computation->root_instruction()); EXPECT_TRUE(CpuInstructionFusion().Run(module.get()).value()); EXPECT_THAT(computation->root_instruction(), op::Fusion()); } TEST_F(InstructionFusionTest, DotOperationFusion_TooLarge) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {32 * 1024}), "arg0")); HloInstruction* arg1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {32 * 1024, 256}), "arg1")); HloInstruction* exp1 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {32 * 1024, 256}), HloOpcode::kExp, arg1)); HloInstruction* dot = builder.AddInstruction( MakeDot(ShapeUtil::MakeShape(F32, {256}), arg0, exp1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(dot, computation->root_instruction()); EXPECT_FALSE(CpuInstructionFusion().Run(module.get()).value()); EXPECT_EQ(dot, computation->root_instruction()); } TEST_F(InstructionFusionTest, DotOperationFusion_ElementReuse) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {2, 256}), "arg0")); HloInstruction* arg1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {256, 1024}), "arg1")); HloInstruction* exp1 = builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {256, 1024}), HloOpcode::kExp, arg1)); HloInstruction* dot = builder.AddInstruction( MakeDot(ShapeUtil::MakeShape(F32, {2, 1024}), arg0, exp1)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(dot, computation->root_instruction()); EXPECT_FALSE(CpuInstructionFusion().Run(module.get()).value()); EXPECT_EQ(dot, computation->root_instruction()); } TEST_F(InstructionFusionTest, DotOperationFusion_TransposeFusion_RHS) { std::string hlo_string = R"( HloModule DotOperationFusion_TransposeFusion ENTRY DotOperationFusion_TransposeFusion { arg0 = f32[1,256] parameter(0) arg1 = f32[1024,256] parameter(1) exponential = f32[1024,256] exponential(arg1) transpose = f32[256,1024] transpose(exponential), dimensions={1,0} ROOT dot = f32[1,1024] dot(arg0, transpose), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* computation = module->entry_computation(); TF_ASSERT_OK_AND_ASSIGN(bool changed, TransposeFolding().Run(module.get())); ASSERT_TRUE(changed); ASSERT_THAT(computation->root_instruction(), op::Dot(op::Parameter(0), op::Exp(op::Parameter(1)), 1, 1)); } TEST_F(InstructionFusionTest, DotOperationFusion_TransposeFusion_LHS) { std::string hlo_string = R"( HloModule DotOperationFusion_TransposeFusion ENTRY DotOperationFusion_TransposeFusion { arg0 = f32[256,1] parameter(0) arg1 = f32[256,1024] parameter(1) transpose = f32[1,256] transpose(arg0), dimensions={1,0} exponential = f32[256,1024] exponential(arg1) ROOT dot = f32[1,1024] dot(transpose, exponential), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* computation = module->entry_computation(); TF_ASSERT_OK_AND_ASSIGN(bool changed, TransposeFolding().Run(module.get())); ASSERT_TRUE(changed); ASSERT_THAT(computation->root_instruction(), op::Dot(op::Parameter(0), op::Exp(op::Parameter(1)), 0, 0)); } TEST_F(InstructionFusionTest, DotOperationFusion_TransposeFusion_LHS_NonDefault) { std::string hlo_string = R"( HloModule DotOperationFusion_TransposeFusion ENTRY DotOperationFusion_TransposeFusion { arg0 = f32[1,256] parameter(0) arg1 = f32[256,1024] parameter(1) transpose = f32[256,1] transpose(arg0), dimensions={1,0} exponential = f32[256,1024] exponential(arg1) ROOT dot = f32[1,1024] dot(transpose, exponential), lhs_contracting_dims={0}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* computation = module->entry_computation(); TF_ASSERT_OK_AND_ASSIGN(bool changed, TransposeFolding().Run(module.get())); ASSERT_TRUE(changed); ASSERT_THAT(computation->root_instruction(), op::Dot(op::Parameter(0), op::Exp(op::Parameter(1)), 1, 0)); } class OpcodeFusionTest : public InstructionFusionTest { protected: void RunFusionAndCheckOpcodesWereFused( HloModule* module, const std::multiset<HloOpcode>& expected_opcodes, HloInstruction::FusionKind fusion_kind = HloInstruction::FusionKind::kLoop) { auto computation = module->entry_computation(); auto did_fusion = CpuInstructionFusion().Run(module); ASSERT_TRUE(did_fusion.ok()); EXPECT_TRUE(did_fusion.value()); HloInstruction* root = computation->root_instruction(); ASSERT_THAT(root, op::Fusion()); EXPECT_EQ(root->fusion_kind(), fusion_kind); std::vector<HloOpcode> fused_opcodes(root->fused_instruction_count()); std::transform(root->fused_instructions().begin(), root->fused_instructions().end(), fused_opcodes.begin(), [](const HloInstruction* hlo) { return hlo->opcode(); }); EXPECT_EQ( std::multiset<HloOpcode>(fused_opcodes.begin(), fused_opcodes.end()), expected_opcodes); } HloComputation* CreateAdderToOne(HloModule* module) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "arg0")); HloInstruction* one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, arg0, one)); return module->AddEmbeddedComputation(builder.Build()); } HloComputation* CreateMax(HloModule* module) { HloComputation::Builder builder(TestName()); HloInstruction* arg0 = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "arg0")); HloInstruction* arg1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "arg1")); builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kMaximum, arg0, arg1)); return module->AddEmbeddedComputation(builder.Build()); } }; TEST_F(OpcodeFusionTest, Exponential_Reshape_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {1, 4}); Shape result_shape = ShapeUtil::MakeShape(F32, {4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* exp1 = builder.AddInstruction( HloInstruction::CreateUnary(param_shape, HloOpcode::kExp, param0)); HloInstruction* reshape2 = builder.AddInstruction(HloInstruction::CreateReshape(result_shape, exp1)); builder.AddInstruction( HloInstruction::CreateUnary(result_shape, HloOpcode::kNegate, reshape2)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kReshape, HloOpcode::kExp, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, Broadcast_Reshape_DynamicSlice_Tanh) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {8}); Shape starts_shape = ShapeUtil::MakeShape(S32, {}); Shape broadcast_shape = ShapeUtil::MakeShape(F32, {1, 8, 8}); Shape reshape_shape = ShapeUtil::MakeShape(F32, {8, 8}); Shape dynamic_slice_shape = ShapeUtil::MakeShape(F32, {4, 4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, starts_shape, "starts")); HloInstruction* param2 = builder.AddInstruction( HloInstruction::CreateParameter(2, starts_shape, "starts")); HloInstruction* broadcast2 = builder.AddInstruction( HloInstruction::CreateBroadcast(broadcast_shape, param0, {1})); HloInstruction* reshape3 = builder.AddInstruction( HloInstruction::CreateReshape(reshape_shape, broadcast2)); HloInstruction* dynamic_slice4 = builder.AddInstruction(HloInstruction::CreateDynamicSlice( dynamic_slice_shape, reshape3, {param1, param2}, {4, 4})); builder.AddInstruction(HloInstruction::CreateUnary( dynamic_slice_shape, HloOpcode::kTanh, dynamic_slice4)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kTanh, HloOpcode::kDynamicSlice, HloOpcode::kReshape, HloOpcode::kBroadcast, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, Broadcast_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {8}); Shape result_shape = ShapeUtil::MakeShape(F32, {8, 8}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* broadcast1 = builder.AddInstruction( HloInstruction::CreateBroadcast(result_shape, param0, {1})); builder.AddInstruction(HloInstruction::CreateUnary( result_shape, HloOpcode::kNegate, broadcast1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kBroadcast, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, DynamicSlice_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {4}); Shape slice_shape = ShapeUtil::MakeShape(S32, {}); Shape result_shape = ShapeUtil::MakeShape(F32, {2}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, slice_shape, "starts")); HloInstruction* dynamic_slice2 = builder.AddInstruction( HloInstruction::CreateDynamicSlice(result_shape, param0, {param1}, {2})); builder.AddInstruction(HloInstruction::CreateUnary( result_shape, HloOpcode::kNegate, dynamic_slice2)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kDynamicSlice, HloOpcode::kParameter, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, Exponential_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* exp1 = builder.AddInstruction( HloInstruction::CreateUnary(param_shape, HloOpcode::kExp, param0)); builder.AddInstruction( HloInstruction::CreateUnary(param_shape, HloOpcode::kNegate, exp1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kExp, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, Reshape_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {4, 4}); Shape result_shape = ShapeUtil::MakeShape(F32, {16}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* reshape1 = builder.AddInstruction( HloInstruction::CreateReshape(result_shape, param0)); builder.AddInstruction( HloInstruction::CreateUnary(result_shape, HloOpcode::kNegate, reshape1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kReshape, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, Reverse_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {8}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* reverse1 = builder.AddInstruction( HloInstruction::CreateReverse(param_shape, param0, {0})); builder.AddInstruction( HloInstruction::CreateUnary(param_shape, HloOpcode::kNegate, reverse1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kReverse, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, Slice_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {4}); Shape slice_shape = ShapeUtil::MakeShape(F32, {2}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* slice1 = builder.AddInstruction( HloInstruction::CreateSlice(slice_shape, param0, {0}, {4}, {2})); builder.AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeShape(F32, {2}), HloOpcode::kNegate, slice1)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kSlice, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, Exponential_Transpose_Negate) { HloComputation::Builder builder(TestName()); Shape param_shape = ShapeUtil::MakeShape(F32, {3, 4}); Shape result_shape = ShapeUtil::MakeShape(F32, {4, 3}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "param")); HloInstruction* exp1 = builder.AddInstruction( HloInstruction::CreateUnary(param_shape, HloOpcode::kExp, param0)); HloInstruction* transpose2 = builder.AddInstruction( HloInstruction::CreateTranspose(result_shape, exp1, {1, 0})); builder.AddInstruction(HloInstruction::CreateUnary( result_shape, HloOpcode::kNegate, transpose2)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kNegate, HloOpcode::kTranspose, HloOpcode::kExp, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, UnaryMapOfExp) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {3, 4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); HloInstruction* exp = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kExp, param0)); builder.AddInstruction( HloInstruction::CreateMap(shape, {exp}, CreateAdderToOne(module.get()))); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kParameter, HloOpcode::kExp, HloOpcode::kMap}); } TEST_F(OpcodeFusionTest, BinaryMapOfExps) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {3, 4}); HloInstruction* param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); HloInstruction* param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "param")); HloInstruction* exp0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kExp, param0)); HloInstruction* exp1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kExp, param1)); builder.AddInstruction( HloInstruction::CreateMap(shape, {exp0, exp1}, CreateMax(module.get()))); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kExp, HloOpcode::kExp, HloOpcode::kMap}); } TEST_F(OpcodeFusionTest, DynamicSliceWithDynamicUpdateSlice) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); Shape full_shape = ShapeUtil::MakeShape(F32, {10, 100, 1000}); Shape slice_shape = ShapeUtil::MakeShape(F32, {10, 1, 1000}); std::vector<HloInstruction*> slice_indices, update_indices; for (int i = 0; i < 3; ++i) { slice_indices.push_back( builder.AddInstruction(HloInstruction::CreateParameter( 1 + i, ShapeUtil::MakeShape(U32, {}), "slice_indices"))); update_indices.push_back( builder.AddInstruction(HloInstruction::CreateParameter( 5 + i, ShapeUtil::MakeShape(U32, {}), "update_indices"))); } HloInstruction* slice = builder.AddInstruction(HloInstruction::CreateDynamicSlice( slice_shape, builder.AddInstruction( HloInstruction::CreateParameter(0, full_shape, "slice_from")), slice_indices, {10, 1, 1000})); builder.AddInstruction(HloInstruction::CreateDynamicUpdateSlice( full_shape, builder.AddInstruction( HloInstruction::CreateParameter(4, full_shape, "to_update")), slice, update_indices)); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kDynamicSlice, HloOpcode::kDynamicUpdateSlice, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter}); } TEST_F(OpcodeFusionTest, MessOfFusibleNodes) { auto module = CreateNewVerifiedModule(); HloComputation::Builder builder(TestName()); Shape full_shape = ShapeUtil::MakeShape(F32, {4, 100, 10, 100, 50}); auto loop_idx = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(S32, {}), "param0")); auto param1 = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(S32, {}), "param1")); auto idx_choice = builder.AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(S32, {}), builder.AddInstruction(HloInstruction::CreateDynamicSlice( ShapeUtil::MakeShape(S32, {1}), builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeShape(S32, {4}), "param2")), {loop_idx}, {1})))); auto zero = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(0))); auto slice = builder.AddInstruction(HloInstruction::CreateDynamicSlice( ShapeUtil::MakeShape(F32, {1, 100, 10, 100, 50}), builder.AddInstruction(HloInstruction::CreateParameter( 3, ShapeUtil::MakeShape(F32, {100, 100, 10, 100, 50}), "param3")), {idx_choice, zero, zero, zero, zero}, {1, 100, 10, 100, 50})); builder.AddInstruction(HloInstruction::CreateDynamicUpdateSlice( full_shape, builder.AddInstruction( HloInstruction::CreateParameter(4, full_shape, "param4")), slice, {loop_idx, param1, param1, param1, param1})); module->AddEntryComputation(builder.Build()); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kDynamicSlice, HloOpcode::kDynamicSlice, HloOpcode::kDynamicUpdateSlice, HloOpcode::kReshape, HloOpcode::kConstant, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter}); } void CreateComputationForDotAddOutputFusionTest(const std::string& test_name, HloModule* module, int m, int k, int n, bool add_extra_use_for_dot) { HloComputation::Builder builder(test_name); Shape dot_lhs_shape = ShapeUtil::MakeShape(F32, {m, k}); Shape dot_rhs_shape = ShapeUtil::MakeShape(F32, {k, n}); Shape dot_shape = ShapeUtil::MakeShape(F32, {m, n}); if (m == 1) { dot_lhs_shape = ShapeUtil::MakeShape(F32, {k}); dot_shape = ShapeUtil::MakeShape(F32, {n}); } else if (n == 1) { dot_rhs_shape = ShapeUtil::MakeShape(F32, {k}); dot_shape = ShapeUtil::MakeShape(F32, {m}); } auto* dot_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, dot_lhs_shape, "param0")); auto* dot_rhs = builder.AddInstruction( HloInstruction::CreateParameter(1, dot_rhs_shape, "param1")); auto* addend = builder.AddInstruction( HloInstruction::CreateParameter(2, dot_shape, "param2")); auto* dot = builder.AddInstruction(CreateCanonicalDot(dot_shape, dot_lhs, dot_rhs)); builder.AddInstruction( HloInstruction::CreateBinary(dot_shape, HloOpcode::kAdd, dot, addend)); if (add_extra_use_for_dot) { auto* token = builder.AddInstruction(HloInstruction::CreateToken()); builder.AddInstruction( HloInstruction::CreateOutfeed(dot_shape, dot, token, "no_config")); } module->AddEntryComputation(builder.Build()); } TEST_F(OpcodeFusionTest, DotAddOutputFusion_1x50x19) { auto module = CreateNewVerifiedModule(); CreateComputationForDotAddOutputFusionTest(TestName(), module.get(), 1, 50, 19, false); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kDot, HloOpcode::kAdd, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter}, HloInstruction::FusionKind::kOutput); } TEST_F(OpcodeFusionTest, DotAddOutputFusion_19x50x1) { auto module = CreateNewVerifiedModule(); CreateComputationForDotAddOutputFusionTest(TestName(), module.get(), 19, 50, 1, false); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kDot, HloOpcode::kAdd, HloOpcode::kParameter, HloOpcode::kParameter, HloOpcode::kParameter}, HloInstruction::FusionKind::kOutput); } TEST_F(OpcodeFusionTest, DotAddOutputFusion_19x50x19) { auto module = CreateNewVerifiedModule(); CreateComputationForDotAddOutputFusionTest(TestName(), module.get(), 19, 50, 19, false); TF_ASSERT_OK_AND_ASSIGN(bool fused_something, CpuInstructionFusion().Run(module.get())); EXPECT_FALSE(fused_something); EXPECT_THAT(module->entry_computation()->root_instruction(), Not(op::Fusion())); } TEST_F(OpcodeFusionTest, DotAddOutputFusion_19x50x1_multi_use) { auto module = CreateNewVerifiedModule(); CreateComputationForDotAddOutputFusionTest(TestName(), module.get(), 19, 50, 1, true); TF_ASSERT_OK_AND_ASSIGN(bool fused_something, CpuInstructionFusion().Run(module.get())); EXPECT_FALSE(fused_something); EXPECT_THAT(module->entry_computation()->root_instruction(), Not(op::Fusion())); } TEST_F(InstructionFusionTest, DotOperationFusion_DontOutputFuseDuplicateOperands) { absl::string_view module_string = R"( HloModule module ENTRY main { a = f32[50,60]{1,0} parameter(0) b = f32[60,1]{1,0} parameter(1) c = f32[50,1]{1,0} dot(a, b), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT d = f32[50,1]{1,0} add(c, c) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool fused_something, CpuInstructionFusion().Run(module.get())); EXPECT_FALSE(fused_something); EXPECT_THAT(module->entry_computation()->root_instruction(), Not(op::Fusion())); } struct GatherLoopFusionTestSpec { std::string test_name; std::string hlo_computation_text; static std::string Name( const ::testing::TestParamInfo<GatherLoopFusionTestSpec>& info) { return info.param.test_name; } }; class GatherLoopFusionTest : public OpcodeFusionTest, public ::testing::WithParamInterface<GatherLoopFusionTestSpec> {}; TEST_P(GatherLoopFusionTest, GatherLoopFusion) { const GatherLoopFusionTestSpec& spec = GetParam(); std::string hlo_string = absl::StrCat("HloModule ", spec.test_name, "\n\n", spec.hlo_computation_text); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); RunFusionAndCheckOpcodesWereFused( module.get(), {HloOpcode::kGather, HloOpcode::kAdd, HloOpcode::kBroadcast, HloOpcode::kConstant, HloOpcode::kParameter, HloOpcode::kParameter}); } std::vector<GatherLoopFusionTestSpec> GetGatherLoopFusionTestSpecs() { std::vector<GatherLoopFusionTestSpec> result; result.push_back({"FusedTensorFlowGatherV2", R"( ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} one = s32[] constant(1) one_broadcasted = s32[3,2] broadcast(one), dimensions={} ROOT result = s32[3,2]{1,0} add(gather, one_broadcasted) } )"}); result.push_back({"FusedTensorFlowGatherMultipleBatchDims", R"( ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) gather = s32[2,3,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2,
2,011
cpp
tensorflow/tensorflow
onednn_matmul
third_party/xla/xla/service/cpu/onednn_matmul.cc
third_party/xla/xla/service/cpu/tests/onednn_matmul_test.cc
#ifndef XLA_SERVICE_CPU_ONEDNN_MATMUL_H_ #define XLA_SERVICE_CPU_ONEDNN_MATMUL_H_ #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "dnnl.hpp" #include "xla/service/cpu/backend_config.pb.h" #include "xla/shape.h" namespace xla { namespace cpu { Shape OneDnnMatMulOptWeightsShape(const Shape& input_shape, const Shape& weights_shape, const Shape& bias_shape, const Shape& output_shape, const OneDnnMatMulConfig* matmul_config); extern "C" { extern void __xla_cpu_runtime_OneDnnMatMul(void* result, void* scratch, void** args); extern void __xla_cpu_runtime_OneDnnMatMulReorder(void* result, void** args); } } } #endif #endif #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_matmul.h" #include <algorithm> #include <cmath> #include <cstring> #include <initializer_list> #include <iterator> #include <utility> #include <vector> #include "dnnl.hpp" #include "absl/base/dynamic_annotations.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/executable_run_options.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/onednn_memory_util.h" #include "xla/service/cpu/onednn_util.h" #include "xla/service/cpu/runtime_lightweight_check.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tsl/util/onednn_threadpool.h" #include "tsl/platform/logging.h" #define EIGEN_USE_THREADS namespace xla { namespace cpu { namespace { using dnnl::engine; using dnnl::matmul; using dnnl::memory; using dnnl::stream; dnnl::memory::desc OneDnnMatMulOptWeightsDesc( const dnnl::engine& engine, const dnnl::memory::desc& input_md, const dnnl::memory::desc& weights_md, const dnnl::memory::desc& bias_md, const dnnl::memory::desc& output_md) { auto weights_any_md = memory::desc(weights_md.get_dims(), weights_md.get_data_type(), dnnl::memory::format_tag::any); auto matmul_pd = matmul::primitive_desc(engine, input_md, weights_any_md, bias_md, output_md); return matmul_pd.weights_desc(); } dnnl::memory::desc OneDnnMatMulOptWeightsDesc( const dnnl::engine& engine, const Shape& input_shape, const Shape& weights_shape, const Shape& bias_shape, const Shape& output_shape, const OneDnnMatMulConfig* matmul_config) { auto input_md = ShapeToMemDesc(input_shape); auto weights_md = ShapeToMemDesc(weights_shape); TRANSPOSE_LAST_TWO_DIMS_IF(matmul_config->transpose_a(), input_md); TRANSPOSE_LAST_TWO_DIMS_IF(matmul_config->transpose_b(), weights_md); auto bias_md = absl::c_count(matmul_config->fusions().ops(), OneDnnFusionConfig::BIAS) > 0 ? ShapeToMemDesc(bias_shape) : dnnl::memory::desc{}; auto output_md = ShapeToMemDesc(output_shape); auto missed_rank = output_md.get_ndims() - bias_md.get_ndims(); XLA_LIGHTWEIGHT_CHECK(missed_rank >= 0); if (!bias_md.is_zero() && missed_rank > 0) { auto bias_dims = bias_md.get_dims(); bias_dims.insert(bias_dims.begin(), missed_rank, 1); bias_md = bias_md.reshape(bias_dims); } return OneDnnMatMulOptWeightsDesc(engine, input_md, weights_md, bias_md, output_md); } } Shape OneDnnMatMulOptWeightsShape(const Shape& input_shape, const Shape& weights_shape, const Shape& bias_shape, const Shape& output_shape, const OneDnnMatMulConfig* matmul_config) { engine cpu_engine(engine::kind::cpu, 0); auto optimized_weights_md = OneDnnMatMulOptWeightsDesc(cpu_engine, input_shape, weights_shape, bias_shape, output_shape, matmul_config); return MemDescToXlaShapeFlattened(optimized_weights_md); } struct FusedOperandsRef { const std::vector<void*>& bufs; std::vector<std::pair<int, dnnl::memory>>& postop_args; }; std::unique_ptr<matmul::primitive_desc> CreateMatMulPrimDesc( const engine& cpu_engine, const memory::desc& input_md, const memory::desc& plain_weights_md, const memory::desc& output_md, const std::vector<memory::desc>& fused_mds, const OneDnnMatMulConfig& matmul_config, FusedOperandsRef* fused_operands_ref = nullptr) { auto bias_md = memory::desc(); bool weights_packed = matmul_config.optimization_config().weights_prepacked(); auto weights_md = plain_weights_md; if (weights_packed) { weights_md = memory::desc(weights_md.get_dims(), weights_md.get_data_type(), memory::format_tag::any); } dnnl::post_ops post_ops; int fused_operand_idx = 0; for (auto& fused_op : matmul_config.fusions().ops()) { switch (fused_op) { case OneDnnFusionConfig::RELU: post_ops.append_eltwise(dnnl::algorithm::eltwise_relu, 0.f, 0.f); break; case OneDnnFusionConfig::TANH: post_ops.append_eltwise(dnnl::algorithm::eltwise_tanh, 0.f, 0.f); break; case OneDnnFusionConfig::GELU_TANH: post_ops.append_eltwise(dnnl::algorithm::eltwise_gelu_tanh, 0.f, 0.f); break; case OneDnnFusionConfig::GELU_ERF: post_ops.append_eltwise(dnnl::algorithm::eltwise_gelu_erf, 0.f, 0.f); break; case OneDnnFusionConfig::RELU6: post_ops.append_eltwise(dnnl::algorithm::eltwise_clip_v2, 0.f, 6.0f); break; case OneDnnFusionConfig::SIGMOID: post_ops.append_eltwise(dnnl::algorithm::eltwise_logistic, 0.f, 0.f); break; case OneDnnFusionConfig::BIAS: { bias_md = fused_mds.at(fused_operand_idx); auto missed_rank = output_md.get_ndims() - bias_md.get_ndims(); XLA_LIGHTWEIGHT_CHECK(missed_rank >= 0); if (missed_rank > 0) { auto bias_dims = bias_md.get_dims(); bias_dims.insert(bias_dims.begin(), missed_rank, 1); bias_md = bias_md.reshape(bias_dims); } if (fused_operands_ref) { fused_operands_ref->postop_args.emplace_back( DNNL_ARG_BIAS, dnnl::memory(bias_md, cpu_engine, fused_operands_ref->bufs[fused_operand_idx])); } fused_operand_idx++; } break; case OneDnnFusionConfig::ELU: post_ops.append_eltwise(dnnl::algorithm::eltwise_elu, 1.0f, 0.0f); break; case OneDnnFusionConfig::BINARY_ADD: { auto binary_md = fused_mds.at(fused_operand_idx); auto missed_rank = output_md.get_ndims() - binary_md.get_ndims(); XLA_LIGHTWEIGHT_CHECK(missed_rank >= 0); if (missed_rank > 0) { auto binary_dims = binary_md.get_dims(); binary_dims.insert(binary_dims.begin(), missed_rank, 1); binary_md = binary_md.reshape(binary_dims); } if (fused_operands_ref) { auto arg_idx = DNNL_ARG_ATTR_MULTIPLE_POST_OP(post_ops.len()) | DNNL_ARG_SRC_1; fused_operands_ref->postop_args.emplace_back( arg_idx, dnnl::memory(binary_md, cpu_engine, fused_operands_ref->bufs[fused_operand_idx])); } post_ops.append_binary(dnnl::algorithm::binary_add, binary_md); fused_operand_idx++; } break; case OneDnnFusionConfig::LINEAR: { float const_float; *(reinterpret_cast<int32_t*>(&const_float)) = matmul_config.fusions().alpha_typecast(); post_ops.append_eltwise(dnnl::algorithm::eltwise_linear, const_float, 0.f); } break; default: LOG(FATAL) << __FILE__ << ":" << __LINE__ << " Attempt to call OneDNN MatMul runtime library with " "unsupported post op." << std::endl; } } dnnl::primitive_attr attrs; if (matmul_config.optimization_config().user_scratchpad()) { attrs.set_scratchpad_mode(dnnl::scratchpad_mode::user); } if (post_ops.len() > 0) { attrs.set_post_ops(post_ops); } return std::make_unique<matmul::primitive_desc>( cpu_engine, input_md, weights_md, bias_md, output_md, attrs); } std::unique_ptr<matmul::primitive_desc> CreateMatMulPrimDesc( const Shape& input_shape, const Shape& weights_shape, const Shape& output_shape, const std::vector<Shape>& fused_shapes, const OneDnnMatMulConfig& matmul_config) { auto input_md = ShapeToMemDesc(input_shape); auto weights_md = ShapeToMemDesc(weights_shape); TRANSPOSE_LAST_TWO_DIMS_IF(matmul_config.transpose_a(), input_md); TRANSPOSE_LAST_TWO_DIMS_IF(matmul_config.transpose_b(), weights_md); auto output_md = ShapeToMemDesc(output_shape); std::vector<memory::desc> fused_mds; std::transform(fused_shapes.begin(), fused_shapes.end(), std::back_inserter(fused_mds), [](const Shape& shape) { return ShapeToMemDesc(shape); }); return CreateMatMulPrimDesc(engine(engine::kind::cpu, 0), input_md, weights_md, output_md, fused_mds, matmul_config); } template <> std::unique_ptr<dnnl::matmul::primitive_desc> CreateOneDnnPrimDesc<dnnl::matmul::primitive_desc>(HloInstruction* instr) { if (instr->opcode() != HloOpcode::kCustomCall) { return nullptr; } auto custom_call = Cast<xla::HloCustomCallInstruction>(instr); auto backend_config = custom_call->backend_config<BackendConfig>(); if (!backend_config.ok()) { return nullptr; } auto& matmul_config = backend_config.value().onednn_matmul_config(); auto operands = custom_call->operands(); auto input = operands[0]; auto weight = operands[1]; auto input_shape = input->shape(); auto weight_shape = weight->shape(); auto output_shape = custom_call->shape().IsTuple() ? custom_call->shape().tuple_shapes(0) : custom_call->shape(); auto fused_operands = HloInstruction::InstructionVector(operands.begin() + 2, operands.end()); std::vector<Shape> fused_shapes; std::transform(fused_operands.begin(), fused_operands.end(), std::back_inserter(fused_shapes), [](const HloInstruction* instr) { return instr->shape(); }); return CreateMatMulPrimDesc(input_shape, weight_shape, output_shape, fused_shapes, matmul_config); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_OneDnnMatMul( void* result, void* scratch, void** args) { int arg_indx = 0; const int64_t num_args = *(static_cast<int64_t*>(args[arg_indx++])); const xla::ExecutableRunOptions* run_options = static_cast<const xla::ExecutableRunOptions*>(args[arg_indx++]); auto thread_pool = CreateOneDnnThreadPool( run_options ? run_options->intra_op_thread_pool() : nullptr); engine cpu_engine(engine::kind::cpu, 0); auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get()); std::string config_str(static_cast<const char*>(args[arg_indx++])); OneDnnMatMulConfig matmul_config; matmul_config.ParseFromString(config_str); MemrefInfo input_minfo(args[arg_indx++]); MemrefInfo weights_minfo(args[arg_indx++]); MemrefInfo output_minfo(result); auto input_md = input_minfo.GetOneDnnMemDesc(); auto weights_md = weights_minfo.GetOneDnnMemDesc(); TRANSPOSE_LAST_TWO_DIMS_IF( matmul_config.transpose_a() && input_md.get_ndims() > 1, input_md); TRANSPOSE_LAST_TWO_DIMS_IF( matmul_config.transpose_b() && weights_md.get_ndims() > 1, weights_md); auto output_md = output_minfo.GetOneDnnMemDesc(); if (matmul_config.optimization_config().weights_prepacked()) { weights_md = memory::desc({input_md.get_dims().back(), output_md.get_dims().back()}, weights_md.get_data_type(), memory::format_tag::ab); } const int64_t num_fused_operands = num_args - arg_indx; std::vector<memory::desc> fused_mds; std::vector<void*> fused_bufs; for (int64_t i = 0; i < num_fused_operands; ++i) { MemrefInfo operand_minfo(args[arg_indx++]); fused_mds.push_back(operand_minfo.GetOneDnnMemDesc()); fused_bufs.push_back(operand_minfo.Data()); } std::vector<std::pair<int, dnnl::memory>> postop_args; FusedOperandsRef fused_operands_ref{fused_bufs, postop_args}; auto matmul_pd = CreateMatMulPrimDesc(cpu_engine, input_md, weights_md, output_md, fused_mds, matmul_config, &fused_operands_ref); XLA_LIGHTWEIGHT_CHECK(num_args == arg_indx); auto lhs_mem = memory(input_md, cpu_engine, input_minfo.Data()); auto rhs_mem = memory(matmul_pd->weights_desc(), cpu_engine, weights_minfo.Data()); auto result_mem = memory(output_md, cpu_engine, output_minfo.Data()); if (std::strstr(matmul_pd->impl_info_str(), "ref") != nullptr) { LOG(WARNING) << "[Perf]: MatMul reference implementation being executed"; } auto matmul_prim = matmul(*matmul_pd); std::unordered_map<int, memory> matmul_args{{DNNL_ARG_SRC, lhs_mem}, {DNNL_ARG_WEIGHTS, rhs_mem}, {DNNL_ARG_DST, result_mem}}; if (matmul_config.optimization_config().user_scratchpad()) { XLA_LIGHTWEIGHT_CHECK(scratch != nullptr); MemrefInfo scratch_minfo(scratch); auto scratchpad_md = matmul_pd->scratchpad_desc(); auto scratch_mem = memory(scratchpad_md, cpu_engine, scratch_minfo.Data()); matmul_args.insert({DNNL_ARG_SCRATCHPAD, scratch_mem}); } matmul_args.insert(postop_args.begin(), postop_args.end()); matmul_prim.execute(onednn_stream, matmul_args); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_OneDnnMatMulReorder( void* result, void** args) { int arg_indx = 0; const int64_t num_args = *(static_cast<int64_t*>(args[arg_indx++])); const xla::ExecutableRunOptions* run_options = static_cast<const xla::ExecutableRunOptions*>(args[arg_indx++]); auto thread_pool = CreateOneDnnThreadPool( run_options ? run_options->intra_op_thread_pool() : nullptr); engine cpu_engine(engine::kind::cpu, 0); auto onednn_stream = MakeOneDnnStream(cpu_engine, thread_pool.get()); std::string config_str(static_cast<const char*>(args[arg_indx++])); OneDnnMatMulConfig matmul_config; matmul_config.ParseFromString(config_str); MemrefInfo input_minfo(args[arg_indx++]); MemrefInfo weight_minfo(args[arg_indx++]); MemrefInfo output_minfo(args[arg_indx++]); MemrefInfo result_minfo(result); auto input_md = input_minfo.GetOneDnnMemDesc(); auto weight_md = weight_minfo.GetOneDnnMemDesc(); auto output_md = output_minfo.GetOneDnnMemDesc(); auto bias_md = dnnl::memory::desc{}; if (absl::c_count(matmul_config.fusions().ops(), OneDnnFusionConfig::BIAS) > 0) { MemrefInfo bias_minfo(args[arg_indx++]); bias_md = bias_minfo.GetOneDnnMemDesc(); } XLA_LIGHTWEIGHT_CHECK(num_args >= arg_indx); TRANSPOSE_LAST_TWO_DIMS_IF(matmul_config.transpose_a(), input_md); TRANSPOSE_LAST_TWO_DIMS_IF(matmul_config.transpose_b(), weight_md); if (!bias_md.is_zero()) { auto missed_rank = output_md.get_ndims() - bias_md.get_ndims(); XLA_LIGHTWEIGHT_CHECK(missed_rank >= 0); if (missed_rank > 0) { auto bias_dims = bias_md.get_dims(); bias_dims.insert(bias_dims.begin(), missed_rank, 1); bias_md = bias_md.reshape(bias_dims); } } auto result_md = OneDnnMatMulOptWeightsDesc(cpu_engine, input_md, weight_md, bias_md, output_md); XLA_LIGHTWEIGHT_CHECK(result_minfo.GetOneDnnMemDesc().get_size() == result_md.get_size()); auto weight_mem = dnnl::memory{weight_md, cpu_engine, weight_minfo.Data()}; auto result_mem = dnnl::memory{result_md, cpu_engine, result_minfo.Data()}; dnnl::reorder rdr{weight_mem, result_mem}; rdr.execute(onednn_stream, weight_mem, result_mem); onednn_stream.wait(); } } } #endif
#if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include <utility> #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/cpu/onednn_matmul_rewriter.h" #include "xla/service/cpu/onednn_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "tsl/platform/cpu_info.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace cpu { class MatmulTest : public HloTestBase { protected: const char* fused_matmul_bias_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BIAS"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"; const char* fused_matmul_binary_add_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BINARY_ADD"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"; const char* matmul_rewrite_str_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: } ; CHECK: } )"; const char* fused_matmul_bias_gelu_tanh_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BIAS","GELU_TANH"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"; const char* fused_matmul_bias_gelu_erf_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BIAS","GELU_ERF"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"; const char* fused_matmul_bias_elu_rewrite_str_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BIAS","ELU"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"; const char* fused_matmul_bias_tanh_rewrite_str_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BIAS","TANH"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"; const char* fused_matmul_bias_relu6_rewrite_str_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BIAS","RELU6"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"; const char* fused_matmul_bias_sigmoid_rewrite_str_ = R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["BIAS","SIGMOID"] ; CHECK-DAG: } ; CHECK: } )"; }; TEST_F(MatmulTest, SimpleTestF32) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg.0 = f32[32,8,128,64] parameter(0), parameter_replication={false} arg.1 = f32[32,8,64,128] parameter(1), parameter_replication={false} ROOT onednn.matmul.0 = f32[32,8,128,128] dot(arg.0, arg.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, matmul_rewrite_str_); } TEST_F(MatmulTest, SimpleTestBF16) { if (!IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const char* matmul_module_str = R"( HloModule matmul.test.bf16 ENTRY matmul.test.bf16 { arg.0 = bf16[32,8,128,64] parameter(0), parameter_replication={false} arg.1 = bf16[32,8,64,128] parameter(1), parameter_replication={false} ROOT onednn.matmul.0 = bf16[32,8,128,128] dot(arg.0, arg.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-2, 1e-4})); MatchOptimizedHlo(matmul_module_str, matmul_rewrite_str_); } TEST_F(MatmulTest, SimpleTestF16) { if (!IsSupportedType(PrimitiveType::F16)) { GTEST_SKIP() << "CPU does not support F16."; } const char* matmul_module_str = R"( HloModule matmul.test.f16 ENTRY matmul.test.f16 { arg.0 = f16[32,8,128,64] parameter(0), parameter_replication={false} arg.1 = f16[32,8,64,128] parameter(1), parameter_replication={false} ROOT onednn.matmul.0 = f16[32,8,128,128] dot(arg.0, arg.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-2, 1e-4})); MatchOptimizedHlo(matmul_module_str, matmul_rewrite_str_); } TEST_F(MatmulTest, SimpleTestF32TransposeB) { const char* matmul_module_str = R"( HloModule matmul.test.1 ENTRY matmul.test.1 { arg.0 = f32[32,8,128,64]{3,1,2,0} parameter(0), parameter_replication={false} arg.1 = f32[32,8,128,64]{3,1,2,0} parameter(1), parameter_replication={false} ROOT onednn.matmul.0 = f32[32,8,128,128] dot(arg.0, arg.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3} })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, matmul_rewrite_str_); } TEST_F(MatmulTest, SimpleTestF32WithBiasAddFusion1) { const char* matmul_module_str = R"( HloModule matmul.biasadd.test.f32 ENTRY matmul.biasadd.test.f32 { arg0.1 = f32[32,32,40,30] parameter(0), parameter_replication={false} reshape.2 = f32[32,32,40,30] reshape(arg0.1) constant.3 = f32[] constant(1) broadcast.4 = f32[32,32,30,40] broadcast(constant.3), dimensions={} dot.7 = f32[32,32,40,40] dot(reshape.2, broadcast.4), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} constant.5 = f32[] constant(15) broadcast.6 = f32[40] broadcast(constant.5), dimensions={} broadcast.9 = f32[32,32,40,40] broadcast(broadcast.6), dimensions={3} add.10 = f32[32,32,40,40] add(dot.7, broadcast.9) reshape.11 = f32[32,32,40,40] reshape(add.10) tuple.12 = (f32[32,32,40,40]) tuple(reshape.11) ROOT get-tuple-element.13 = f32[32,32,40,40] get-tuple-element(tuple.12), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_binary_add_); } TEST_F(MatmulTest, SimpleTestF32WithBiasAddFusion2) { const char* matmul_module_str = R"( HloModule matmul.biasadd.test.f32 ENTRY matmul.biasadd.test.f32 { arg0.1 = f32[400,300] parameter(0), parameter_replication={false} reshape.2 = f32[400,300] reshape(arg0.1) constant.3 = f32[] constant(1) broadcast.4 = f32[300,400] broadcast(constant.3), dimensions={} dot.7 = f32[400,400] dot(reshape.2, broadcast.4), lhs_batch_dims={}, lhs_contracting_dims={1}, rhs_batch_dims={}, rhs_contracting_dims={0} reshape.1 = f32[400,1,400] reshape(dot.7) constant.5 = f32[] constant(15) broadcast.6 = f32[400] broadcast(constant.5), dimensions={} broadcast.9 = f32[400,1,400] broadcast(broadcast.6), dimensions={2} add.10 = f32[400,1,400] add(reshape.1, broadcast.9) tuple.12 = (f32[400,1,400]) tuple(add.10) ROOT get-tuple-element.13 = f32[400,1,400] get-tuple-element(tuple.12), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_binary_add_); } TEST_F(MatmulTest, SimpleTestF32WithBiasAsParameter1) { const char* matmul_module_str = R"( HloModule matmul.biasadd.test.f32 ENTRY matmul.biasadd.test.f32 { arg0.1 = f32[32,32,40,30] parameter(0), parameter_replication={false} arg0.2 = f32[32,32,30,40] parameter(1), parameter_replication={false} arg0.3 = f32[32,32,40,40] parameter(2), parameter_replication={false} dot.7 = f32[32,32,40,40] dot(arg0.1, arg0.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} add.10 = f32[32,32,40,40] add(dot.7, arg0.3) reshape.11 = f32[32,32,40,40] reshape(add.10) tuple.12 = (f32[32,32,40,40]) tuple(reshape.11) ROOT get-tuple-element.13 = f32[32,32,40,40] get-tuple-element(tuple.12), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_binary_add_); } TEST_F(MatmulTest, SimpleTestF32WithBiasAsParameter2) { const char* matmul_module_str = R"( HloModule matmul.biasadd.test.f32 ENTRY matmul.biasadd.test.f32 { arg0.1 = f32[32,32,40,30] parameter(0), parameter_replication={false} arg0.2 = f32[32,32,30,40] parameter(1), parameter_replication={false} arg0.3 = f32[40]{0} parameter(2), parameter_replication={false} dot.7 = f32[32,32,40,40] dot(arg0.1, arg0.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} broad.1 = f32[32,32,40,40] broadcast(arg0.3), dimensions={3} add.10 = f32[32,32,40,40] add(dot.7, broad.1) reshape.11 = f32[32,32,40,40] reshape(add.10) tuple.12 = (f32[32,32,40,40]) tuple(reshape.11) ROOT get-tuple-element.13 = f32[32,32,40,40] get-tuple-element(tuple.12), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_); } TEST_F(MatmulTest, SimpleTestF32WithBiasAsParameter2D) { const char* matmul_module_str = R"( HloModule matmul.biasadd.test.f32 ENTRY matmul.biasadd.test.f32 { arg0.1 = f32[2,2,400,30] parameter(0), parameter_replication={false} arg0.2 = f32[2,2,30,400] parameter(1), parameter_replication={false} arg0.3 = f32[2,400] parameter(2), parameter_replication={false} dot.7 = f32[2,2,400,400] dot(arg0.1, arg0.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} broad.1 = f32[2,2,400,400] broadcast(arg0.3), dimensions={0,3} add.10 = f32[2,2,400,400] add(dot.7, broad.1) reshape.11 = f32[2,2,400,400] reshape(add.10) tuple.12 = (f32[2,2,400,400]) tuple(reshape.11) ROOT get-tuple-element.13 = f32[2,2,400,400] get-tuple-element(tuple.12), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_binary_add_); } TEST_F(MatmulTest, SimpleTestF32WithBiasAsParameter2D1B) { const char* matmul_module_str = R"( HloModule matmul.biasadd.test.f32 ENTRY matmul.biasadd.test.f32 { arg0.1 = f32[1,2,400,30] parameter(0), parameter_replication={false} arg0.2 = f32[1,2,30,400] parameter(1), parameter_replication={false} arg0.3 = f32[1,400] parameter(2), parameter_replication={false} dot.7 = f32[1,2,400,400] dot(arg0.1, arg0.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} broad.1 = f32[1,2,400,400] broadcast(arg0.3), dimensions={0,3} add.10 = f32[1,2,400,400] add(dot.7, broad.1) reshape.11 = f32[1,2,400,400] reshape(add.10) tuple.12 = (f32[1,2,400,400]) tuple(reshape.11) ROOT get-tuple-element.13 = f32[1,2,400,400] get-tuple-element(tuple.12), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_); } TEST_F(MatmulTest, SimpleTestF32WithBiasAsParameter3) { const char* matmul_module_str = R"( HloModule matmul.biasadd.test.f32 ENTRY matmul.biasadd.test.f32 { arg0.1 = f32[16,128,768] parameter(0), sharding={replicated} arg0.2 = f32[768,768] parameter(1), sharding={replicated} dot.84 = f32[16,128,768] dot(arg0.1, arg0.2), lhs_contracting_dims={2}, rhs_contracting_dims={0} arg0.3 = f32[768]{0} parameter(2), sharding={replicated} reshape.85 = f32[1,1,768] reshape(arg0.3) broadcast.86 = f32[1,1,768] broadcast(reshape.85), dimensions={0,1,2} reshape.87 = f32[768]{0} reshape(broadcast.86) broadcast.88 = f32[16,128,768] broadcast(reshape.87), dimensions={2} ROOT add.89 = f32[16,128,768] add(dot.84, broadcast.88) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_); } TEST_F(MatmulTest, SimpleTestF32TransposeBWithBiasAddFusion) { const char* matmul_module_str = R"( HloModule matmul.test.1 ENTRY matmul.test.1 { arg.0 = f32[32,8,4,16]{3,1,2,0} parameter(0), parameter_replication={false} arg.1 = f32[32,8,16,16]{3,1,2,0} parameter(1), parameter_replication={false} dot.7 = f32[32,8,4,16]{3,2,1,0} dot(arg.0, arg.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3} constant.5 = f32[] constant(15) broadcast.6 = f32[16]{0} broadcast(constant.5), dimensions={} broadcast.9 = f32[32,8,4,16]{3,2,1,0} broadcast(broadcast.6), dimensions={3} add.10 = f32[32,8,4,16]{3,2,1,0} add(dot.7, broadcast.9) reshape.11 = f32[32,8,4,16]{3,2,1,0} reshape(add.10) tuple.12 = (f32[32,8,4,16]{3,2,1,0}) tuple(reshape.11) ROOT get-tuple-element.13 = f32[32,8,4,16]{3,2,1,0} get-tuple-element(tuple.12), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_binary_add_); } TEST_F(MatmulTest, F32BiasAddFusionNonCompatibleBias) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.1 { arg.0 = f32[12288,2] parameter(0), parameter_replication={false} arg.1 = f32[2,1024] parameter(1), parameter_replication={false} dot.0 = f32[12288,1024] dot(arg.0, arg.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} reshape.0 = f32[32,384,1024] reshape(dot.0) constant.0 = f32[1,384,1024] constant(15) reshape.1 = f32[384,1024] reshape(constant.0) broadcast.0 = f32[32,384,1024] broadcast(reshape.1), dimensions={1,2} add.0 = f32[32,384,1024] add(reshape.0, broadcast.0) tuple.0 = (f32[32,384,1024]) tuple(add.0) ROOT get-tuple-element.0 = f32[32,384,1024] get-tuple-element(tuple.0), index=0 })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, matmul_rewrite_str_); } TEST_F(MatmulTest, ApproxGELUTestF32) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg.0 = f32[32,32,4,16] parameter(0), parameter_replication={false} arg.1 = f32[32,32,16,32] parameter(1), parameter_replication={false} onednn.matmul.0 = f32[32,32,4,32] dot(arg.0, arg.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} mul.0 = f32[32,32,4,32] multiply(onednn.matmul.0, onednn.matmul.0) mul.1 = f32[32,32,4,32] multiply(onednn.matmul.0, mul.0) const.0 = f32[] constant(0.044715) bcast.0 = f32[32,32,4,32] broadcast(const.0), dimensions={} mul.2 = f32[32,32,4,32] multiply(mul.1, bcast.0) add.0 = f32[32,32,4,32] add(onednn.matmul.0, mul.2) const.1 = f32[] constant(0.797884583) bcast.1 = f32[32,32,4,32] broadcast(const.1), dimensions={} mul.3 = f32[32,32,4,32] multiply(add.0, bcast.1) tanh = f32[32,32,4,32] tanh(mul.3) const.2 = f32[] constant(1) bcast.2 = f32[32,32,4,32] broadcast(const.2), dimensions={} add.2 = f32[32,32,4,32] add(tanh, bcast.2) const.3 = f32[] constant(0.5) bcast.3 = f32[32,32,4,32] broadcast(const.3), dimensions={} mul.4 = f32[32,32,4,32] multiply(add.2, bcast.3) ROOT out = f32[32,32,4,32] multiply(onednn.matmul.0, mul.4) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["GELU_TANH"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"); } TEST_F(MatmulTest, BiasAndApproxGELUTestF32) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { Arg_5.6 = f32[32,32,64] parameter(0), sharding={replicated} Arg_7.8 = f32[64,256] parameter(1), sharding={replicated} dot.232 = f32[32,32,256] dot(Arg_5.6, Arg_7.8), lhs_contracting_dims={2}, rhs_contracting_dims={0} Arg_6.7 = f32[256] parameter(2), sharding={replicated} reshape.233 = f32[1,1,256] reshape(Arg_6.7) broadcast.234 = f32[1,1,256] broadcast(reshape.233), dimensions={0,1,2} reshape.235 = f32[256] reshape(broadcast.234) broadcast.236 = f32[32,32,256] broadcast(reshape.235), dimensions={2} add.237 = f32[32,32,256] add(dot.232, broadcast.236) multiply.238 = f32[32,32,256] multiply(add.237, add.237) multiply.239 = f32[32,32,256] multiply(add.237, multiply.238) constant.20 = f32[] constant(0.044715) broadcast.21 = f32[32,32,256] broadcast(constant.20), dimensions={} multiply.240 = f32[32,32,256] multiply(multiply.239, broadcast.21) add.241 = f32[32,32,256] add(add.237, multiply.240) constant.18 = f32[] constant(0.797884583) broadcast.19 = f32[32,32,256] broadcast(constant.18), dimensions={} multiply.242 = f32[32,32,256] multiply(add.241, broadcast.19) tanh.243 = f32[32,32,256] tanh(multiply.242) constant.16 = f32[] constant(1) broadcast.17 = f32[32,32,256] broadcast(constant.16), dimensions={} add.244 = f32[32,32,256] add(tanh.243, broadcast.17) constant.14 = f32[] constant(0.5) broadcast.15 = f32[32,32,256] broadcast(constant.14), dimensions={} multiply.245 = f32[32,32,256] multiply(add.244, broadcast.15) ROOT out = f32[32,32,256] multiply(add.237, multiply.245) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_gelu_tanh_); } TEST_F(MatmulTest, BiasAndApproxTFGELUTestF32) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg0.1 = f32[1024,512] parameter(0), parameter_replication={false} arg1.2 = f32[256,512] parameter(1), parameter_replication={false} dot.7 = f32[1024,256] dot(arg0.1, arg1.2), lhs_contracting_dims={1}, rhs_contracting_dims={1}, frontend_attributes={grad_x="false",grad_y="false"} arg2.3 = f32[256] parameter(2), parameter_replication={false} broadcast.9 = f32[1024,256] broadcast(arg2.3), dimensions={1} add.10 = f32[1024,256] add(dot.7, broadcast.9) constant.12 = f32[] constant(0.044715) broadcast.13 = f32[1024,256] broadcast(constant.12), dimensions={} multiply.14 = f32[1024,256] multiply(broadcast.13, add.10) multiply.11 = f32[1024,256] multiply(add.10, add.10) multiply.15 = f32[1024,256] multiply(multiply.14, multiply.11) add.16 = f32[1024,256] add(add.10, multiply.15) constant.17 = f32[] constant(0.797884583) broadcast.18 = f32[1024,256] broadcast(constant.17), dimensions={} multiply.19 = f32[1024,256] multiply(add.16, broadcast.18) tanh.20 = f32[1024,256] tanh(multiply.19) constant.21 = f32[] constant(1) broadcast.22 = f32[1024,256] broadcast(constant.21), dimensions={} add.23 = f32[1024,256] add(tanh.20, broadcast.22) constant.24 = f32[] constant(0.5) broadcast.25 = f32[1024,256] broadcast(constant.24), dimensions={} multiply.26 = f32[1024,256] multiply(add.23, broadcast.25) ROOT multiply.27 = f32[1024,256] multiply(add.10, multiply.26) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_gelu_tanh_); } TEST_F(MatmulTest, BiasAndApproxTFGELUTestBF16) { if (!IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg0.1 = f32[1024,512] parameter(0), parameter_replication={false} convert.8 = bf16[1024,512] convert(arg0.1) arg1.2 = f32[256,512] parameter(1), parameter_replication={false} convert.9 = bf16[256,512] convert(arg1.2) dot.10 = bf16[1024,256] dot(convert.8, convert.9), lhs_contracting_dims={1}, rhs_contracting_dims={1}, frontend_attributes={grad_x="false",grad_y="false"} convert = f32[1024,256] convert(dot.10) arg2.3 = f32[256] parameter(2), parameter_replication={false} broadcast = f32[1024,256] broadcast(arg2.3), dimensions={1} add.13 = f32[1024,256] add(convert, broadcast) constant.16 = f32[] constant(0.044715) broadcast.17 = f32[1024,256] broadcast(constant.16), dimensions={} multiply.18 = f32[1024,256] multiply(broadcast.17, add.13) multiply.15 = f32[1024,256] multiply(add.13, add.13) multiply.19 = f32[1024,256] multiply(multiply.18, multiply.15) add.20 = f32[1024,256] add(add.13, multiply.19) constant.21 = f32[] constant(0.797884583) broadcast.22 = f32[1024,256] broadcast(constant.21), dimensions={} multiply.23 = f32[1024,256] multiply(add.20, broadcast.22) tanh.24 = f32[1024,256] tanh(multiply.23) constant.25 = f32[] constant(1) broadcast.26 = f32[1024,256] broadcast(constant.25), dimensions={} add.27 = f32[1024,256] add(tanh.24, broadcast.26) constant.1 = f32[] constant(0.5) broadcast.2 = f32[1024,256] broadcast(constant.1), dimensions={} multiply.30 = f32[1024,256] multiply(add.13, broadcast.2) ROOT multiply.32 = f32[1024,256] multiply(add.27, multiply.30) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_gelu_tanh_); } TEST_F(MatmulTest, BiasAndApproxTFGELUTestF16) { if (!IsSupportedType(PrimitiveType::F16)) { GTEST_SKIP() << "CPU does not support F16."; } const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg0.1 = f16[1024,512] parameter(0), parameter_replication={false} reshape.4 = f16[1024,512] reshape(arg0.1) arg1.2 = f16[256,512] parameter(1), parameter_replication={false} reshape.5 = f16[256,512] reshape(arg1.2) dot.7 = f16[1024,256] dot(reshape.4, reshape.5), lhs_contracting_dims={1}, rhs_contracting_dims={1}, frontend_attributes={grad_x="false",grad_y="false"} transpose.8 = f16[1024,256] transpose(dot.7), dimensions={0,1} arg2.3 = f16[256] parameter(2), parameter_replication={false} reshape.6 = f16[256] reshape(arg2.3) broadcast.9 = f16[1024,256] broadcast(reshape.6), dimensions={1} add.10 = f16[1024,256] add(transpose.8, broadcast.9) constant.12 = f16[] constant(0.044708) broadcast.13 = f16[1024,256] broadcast(constant.12), dimensions={} multiply.14 = f16[1024,256] multiply(broadcast.13, add.10) multiply.11 = f16[1024,256] multiply(add.10, add.10) multiply.15 = f16[1024,256] multiply(multiply.14, multiply.11) add.16 = f16[1024,256] add(add.10, multiply.15) constant.17 = f16[] constant(0.79785) broadcast.18 = f16[1024,256] broadcast(constant.17), dimensions={} multiply.19 = f16[1024,256] multiply(add.16, broadcast.18) tanh.20 = f16[1024,256] tanh(multiply.19) constant.21 = f16[] constant(1) broadcast.22 = f16[1024,256] broadcast(constant.21), dimensions={} add.23 = f16[1024,256] add(tanh.20, broadcast.22) constant.24 = f16[] constant(0.5) broadcast.25 = f16[1024,256] broadcast(constant.24), dimensions={} multiply.26 = f16[1024,256] multiply(add.23, broadcast.25) ROOT multiply.27 = f16[1024,256] multiply(add.10, multiply.26) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-2, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_gelu_tanh_); } TEST_F(MatmulTest, ExactGELUTestF32) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg.0 = f32[32,32,4,16] parameter(0), parameter_replication={false} arg.1 = f32[32,32,16,32] parameter(1), parameter_replication={false} onednn.matmul.0 = f32[32,32,4,32] dot(arg.0, arg.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} const.0 = f32[] constant(0.707106769) bcast.0 = f32[32,32,4,32] broadcast(const.0), dimensions={} mul.0 = f32[32,32,4,32] multiply(onednn.matmul.0, bcast.0) erf.0 = f32[32,32,4,32] erf(mul.0) const.1 = f32[] constant(1) bcast.1 = f32[32,32,4,32] broadcast(const.1), dimensions={} add.0 = f32[32,32,4,32] add(erf.0, bcast.1) const.2 = f32[] constant(0.5) bcast.2 = f32[32,32,4,32] broadcast(const.2), dimensions={} mul.1 = f32[32,32,4,32] multiply(add.0, bcast.2) ROOT out = f32[32,32,4,32] multiply(onednn.matmul.0, mul.1) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, R"( ; CHECK: custom_call_target="__onednn$matmul", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_matmul_config":{ ; CHECK-DAG: "fusions":{ ; CHECK-DAG: "ops":["GELU_ERF"] ; CHECK-DAG: } ; CHECK-DAG: } ; CHECK: } )"); } TEST_F(MatmulTest, BiasAndExactGELUTestF32) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg.0 = f32[6304,768] parameter(0), parameter_replication={false} arg.1 = f32[768,3072] parameter(1), parameter_replication={false} dot.378 = f32[6304,3072] dot(arg.0, arg.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} reshape.11 = f32[32,197,3072]reshape(dot.378) constant.381 = f32[3072] constant(0.3) broadcast.382 = f32[32,197,3072] broadcast(constant.381), dimensions={2} add.383 = f32[32,197,3072] add(reshape.11, broadcast.382) constant.384 = f32[] constant(0.707106769) broadcast.385 = f32[32,197,3072] broadcast(constant.384), dimensions={} multiply.386 = f32[32,197,3072] multiply(broadcast.385, add.383) erf.387 = f32[32,197,3072] erf(multiply.386) constant.388 = f32[] constant(1) broadcast.389 = f32[32,197,3072] broadcast(constant.388), dimensions={} add.390 = f32[32,197,3072] add(erf.387, broadcast.389) constant.391 = f32[] constant(0.5) broadcast.392 = f32[32,197,3072] broadcast(constant.391) multiply.393 = f32[32,197,3072] multiply(add.390, broadcast.392) multiply.394 = f32[32,197,3072] multiply(multiply.393, add.383) ROOT out = f32[6304,3072] reshape(multiply.394) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_gelu_erf_); } TEST_F(MatmulTest, BiasAndExactGELUTestBF16) { const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg.0 = f32[6304,768] parameter(0), parameter_replication={false} convert.0 = bf16[6304,768] convert(arg.0) arg.1 = f32[768,3072] parameter(1), parameter_replication={false} convert.1 = bf16[768,3072] convert(arg.1) dot.378 = bf16[6304,3072] dot(convert.0, convert.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} convert.2 = f32[6304,3072] convert(dot.378) constant.381 = f32[3072] constant(0.3) broadcast.382 = f32[6304,3072] broadcast(constant.381), dimensions={1} add.383 = f32[6304,3072] add(convert.2, broadcast.382) constant.384 = f32[] constant(0.707106769) broadcast.385 = f32[6304,3072] broadcast(constant.384), dimensions={} multiply.386 = f32[6304,3072] multiply(broadcast.385, add.383) erf.387 = f32[6304,3072] erf(multiply.386) constant.388 = f32[] constant(1) broadcast.389 = f32[6304,3072] broadcast(constant.388), dimensions={} add.390 = f32[6304,3072] add(erf.387, broadcast.389) constant.391 = f32[] constant(0.5) broadcast.392 = f32[6304,3072] broadcast(constant.391) multiply.393 = f32[6304,3072] multiply(add.390, broadcast.392) ROOT out = f32[6304,3072] multiply(multiply.393, add.383) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_gelu_erf_); } TEST_F(MatmulTest, BiasAndExactJaxGELUTestBF16) { if (!IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const char* matmul_module_str = R"( HloModule matmul.test.f32 ENTRY matmul.test.f32 { arg.0 = f32[6304,768] parameter(0), parameter_replication={false} convert.0 = bf16[6304,768] convert(arg.0) arg.1 = f32[768,3072] parameter(1), parameter_replication={false} convert.1 = bf16[768,3072] convert(arg.1) dot.378 = bf16[6304,3072] dot(convert.0, convert.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} convert.2 = f32[6304,3072] convert(dot.378) reshape.0 = f32[32,197,3072] reshape(convert.2) constant.381 = f32[3072] constant(0.3) broadcast.382 = f32[32,197,3072] broadcast(constant.381), dimensions={2} add.383 = f32[32,197,3072] add(reshape.0, broadcast.382) constant.384 = f32[] constant(0.707182348) broadcast.385 = f32[32,197,3072] broadcast(constant.384), dimensions={} multiply.386 = f32[32,197,3072] multiply(broadcast.385, add.383) erf.387 = f32[32,197,3072] erf(multiply.386) constant.388 = f32[] constant(1) broadcast.389 = f32[32,197,3072] broadcast(constant.388), dimensions={} add.390 = f32[32,197,3072] add(erf.387, broadcast.389) multiply.393 = f32[32,197,3072] multiply(add.390, add.383) constant.391 = f32[] constant(0.5) broadcast.392 = f32[32,197,3072] broadcast(constant.391) ROOT multiply.394 = f32[32,197,3072] multiply(multiply.393, broadcast.392) })"; EXPECT_TRUE(RunAndCompare(matmul_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(matmul_module_str, fused_matmul_bias_gelu_erf_); } TEST_F(MatmulTest, BiasAndExactTFGELUTestBF16) { if (!IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const char* matmul_module_str = R"( HloModule matmul.test.bf16 ENTRY matmul.test.bf16 { arg0.1 = f32[1024,512] parameter(0), parameter_replication={false} convert.8 = bf16[1024,512] convert(arg0.1) arg1.2 = f32[512,256] parameter(1), parameter_replication={false} convert.9 = bf16[512,256] convert(arg1.2) dot.10 = bf16[1024,256] dot(convert.8, convert.9), lhs_contracting_dims={1}, rhs_contracting_dims={0}, frontend_attributes={grad_x="false",grad_y="false"} convert = f32[1024,256] convert(dot.10) arg2.3 = f32
2,012
cpp
tensorflow/tensorflow
ir_emitter2
third_party/xla/xla/service/cpu/ir_emitter2.cc
third_party/xla/xla/service/cpu/ir_emitter2_test.cc
#ifndef XLA_SERVICE_CPU_IR_EMITTER2_H_ #define XLA_SERVICE_CPU_IR_EMITTER2_H_ #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Value.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/cpu/ir_emitter.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/loop_emitter.h" #include "xla/shape.h" #include "xla/stream_executor/launch_dim.h" namespace xla::cpu { class IrEmitter2 { public: IrEmitter2(const HloModule& hlo_module, llvm::Module* module, IrEmitter* nested_ir_emitter); struct KernelThreadDims { llvm::Value* x; llvm::Value* y; llvm::Value* z; }; struct KernelThread { llvm::Value* x; llvm::Value* y; llvm::Value* z; }; struct KernelPrototype { llvm::Function* function; KernelThreadDims thread_dims; KernelThread thread; std::vector<llvm_ir::IrArray> arguments; std::vector<llvm_ir::IrArray> results; }; struct KernelInfo { std::string name; se::BlockDim block_dims; se::ThreadDim thread_dims; }; absl::Span<const KernelInfo> kernels() const { return kernels_; } absl::StatusOr<KernelInfo> EmitElementalHostKernel( const HloInstruction* instr); absl::StatusOr<KernelInfo> EmitFusionHostKernel( const HloFusionInstruction* fusion); absl::StatusOr<KernelInfo> EmitReductionHostKernel( const HloInstruction* instr); absl::StatusOr<KernelInfo> EmitDotHostKernel(const HloInstruction* instr); absl::StatusOr<KernelInfo> EmitDotFusionHostKernel( const HloFusionInstruction* fusion); absl::StatusOr<KernelInfo> EmitSelectAndScatterHostKernel( const HloInstruction* instr); KernelPrototype EmitKernelPrototype(std::string_view name, absl::Span<const Shape> arguments, absl::Span<const Shape> results); KernelPrototype EmitKernelPrototype(const HloInstruction* instr); private: class ElementalIrEmitter; using ParallelPartitionBounds = std::vector<std::pair<llvm::Value*, llvm::Value*>>; struct ParallelConfig { std::vector<int64_t> outer_dimension_partitions; }; KernelThreadDims EmitKernelThreadDims(llvm::IRBuilder<>& b, llvm::Value* call_frame); KernelThread EmitKernelThread(llvm::IRBuilder<>& b, llvm::Value* call_frame); llvm_ir::IrArray EmitKernelArgument(llvm::IRBuilder<>& b, llvm::Value* call_frame, int64_t index, const Shape& shape); std::optional<ParallelConfig> GetParallelConfig(const HloInstruction* instr); ParallelPartitionBounds EmitParallelPartitionBounds( llvm::IRBuilder<>& b, const KernelPrototype& kernel_prototype, const ParallelConfig& parallel_config, const Shape& shape, std::string_view name); absl::StatusOr<se::ThreadDim> EmitElementalLoops( llvm::IRBuilder<>& b, const HloInstruction* instr, const KernelPrototype& kernel_prototype, const llvm_ir::ElementGenerator& element_generator); bool fast_min_max() const; const HloModule& hlo_module_; llvm::Module* module_; IrEmitter* nested_ir_emitter_; llvm::StructType* call_frame_ty_; llvm::StructType* thread_dims_ty_; llvm::StructType* thread_ty_; llvm::StructType* arg_ty_; std::vector<KernelInfo> kernels_; }; } #endif #include "xla/service/cpu/ir_emitter2.h" #include <array> #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "xla/cpu_function_runtime.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/dot_op_emitter.h" #include "xla/service/cpu/elemental_math_emitter.h" #include "xla/service/cpu/ir_emitter.h" #include "xla/service/cpu/parallel_loop_emitter.h" #include "xla/service/cpu/shape_partition.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/llvm_ir/dynamic_update_slice_util.h" #include "xla/service/llvm_ir/fused_ir_emitter.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/llvm_ir/loop_emitter.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/launch_dim.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::cpu { namespace { static std::vector<Shape> FlattenedParameters(const HloInstruction* instr) { std::vector<Shape> parameters; for (auto* operand : instr->operands()) { for (auto& indexed : ShapeUtil::GetLeafShapes(operand->shape())) { parameters.push_back(indexed.shape); } } return parameters; } static std::vector<Shape> FlattenedResults(const HloInstruction* instr) { std::vector<Shape> results; for (auto& indexed : ShapeUtil::GetLeafShapes(instr->shape())) { results.push_back(indexed.shape); } return results; } static llvm::StructType* Dim3StructTy(llvm::LLVMContext& ctx, std::string_view name) { auto* i64 = llvm::IntegerType::getInt64Ty(ctx); return llvm::StructType::create(name, i64, i64, i64); } static llvm::StructType* KernelThreadDimTy(llvm::LLVMContext& ctx) { return Dim3StructTy(ctx, "SE_HOST_KernelThreadDim"); } static llvm::StructType* KernelThreadTy(llvm::LLVMContext& ctx) { return Dim3StructTy(ctx, "SE_HOST_KernelThread"); } static llvm::StructType* KernelArgTy(llvm::LLVMContext& ctx) { auto* ptr = llvm::PointerType::getUnqual(ctx); auto* i64 = llvm::IntegerType::getInt64Ty(ctx); return llvm::StructType::create("SE_HOST_KernelArg", ptr, i64); } static llvm::StructType* KernelCallFrameTy(llvm::LLVMContext& ctx) { auto* ptr = llvm::PointerType::getUnqual(ctx); auto* i64 = llvm::IntegerType::getInt64Ty(ctx); return llvm::StructType::create("SE_HOST_KernelCallFrame", ptr, ptr, i64, ptr); } static llvm::FunctionType* KernelFunctionTy(llvm::LLVMContext& ctx) { return llvm::FunctionType::get(llvm::PointerType::getUnqual(ctx), llvm::PointerType::getUnqual(ctx), false); } } class IrEmitter2::ElementalIrEmitter : public xla::ElementalIrEmitter { public: ElementalIrEmitter(llvm::Module* module, llvm::IRBuilder<>* b, const HloModule* hlo_module, IrEmitter* nested_ir_emitter, bool fast_min_max) : xla::ElementalIrEmitter(module, b), hlo_module_(hlo_module), nested_ir_emitter_(nested_ir_emitter), fast_min_max_(fast_min_max) {} protected: absl::StatusOr<llvm::Value*> EmitAtan2(PrimitiveType prim_type, llvm::Value* lhs, llvm::Value* rhs, absl::string_view) override { return xla::cpu::EmitAtan2(module(), *b(), prim_type, lhs, rhs); } absl::StatusOr<llvm::Value*> EmitTanh(PrimitiveType prim_type, llvm::Value* value) override { return xla::cpu::EmitTanh(module(), *b(), prim_type, value); } absl::StatusOr<llvm::Value*> EmitErf(PrimitiveType prim_type, llvm::Value* value) override { return xla::cpu::EmitErf(module(), *b(), prim_type, value); } absl::StatusOr<std::vector<llvm::Value*>> EmitThreadLocalCall( const HloComputation& callee, absl::Span<llvm::Value* const> parameters, absl::string_view name, bool is_reducer) override { if (!hlo_module_ || !hlo_module_->has_schedule()) { return absl::InternalError( "HLO module must be scheduled to emit thread local computation."); } auto emit_computation = [&](const HloComputation* computation) { if (!nested_ir_emitter_->is_computation_emitted(*computation, is_reducer)) { VLOG(2) << "Emit nested computation: " << computation->name(); TF_RETURN_IF_ERROR( nested_ir_emitter_ ->EmitComputation( const_cast<HloComputation*>(computation), name, false, hlo_module_->schedule() .sequence(computation) .instructions(), is_reducer, {llvm::Attribute::AlwaysInline}) .status()); } return absl::OkStatus(); }; for (HloComputation* embedded : callee.MakeEmbeddedComputationsList()) { if (embedded->IsFusionComputation()) continue; TF_RETURN_IF_ERROR(emit_computation(embedded)); } TF_RETURN_IF_ERROR(emit_computation(&callee)); VLOG(2) << "Emit thread local call to: " << callee.name(); nested_ir_emitter_->b()->SetInsertPoint(b()->GetInsertPoint()); auto values = nested_ir_emitter_->EmitThreadLocalCall( callee, parameters, name, is_reducer, false); return values; } bool fast_min_max() override { return fast_min_max_; } private: const HloModule* hlo_module_; IrEmitter* nested_ir_emitter_; bool fast_min_max_; }; IrEmitter2::IrEmitter2(const HloModule& hlo_module, llvm::Module* module, IrEmitter* nested_ir_emitter) : hlo_module_(hlo_module), module_(module), nested_ir_emitter_(nested_ir_emitter), call_frame_ty_(KernelCallFrameTy(module_->getContext())), thread_dims_ty_(KernelThreadDimTy(module_->getContext())), thread_ty_(KernelThreadTy(module_->getContext())), arg_ty_(KernelArgTy(module_->getContext())) {} bool IrEmitter2::fast_min_max() const { return hlo_module_.config().debug_options().xla_cpu_enable_fast_min_max(); } absl::StatusOr<IrEmitter2::KernelInfo> IrEmitter2::EmitElementalHostKernel( const HloInstruction* instr) { VLOG(2) << "Emit elemental host kernel: " << instr->name(); KernelPrototype kernel_prototype = EmitKernelPrototype(instr); llvm::IRBuilder<> b(module_->getContext()); b.SetInsertPoint(kernel_prototype.function->getEntryBlock().getTerminator()); ElementalIrEmitter::HloToElementGeneratorMap operand_to_generator; for (int64_t i = 0; i < instr->operand_count(); ++i) { const HloInstruction* operand = instr->operand(i); operand_to_generator[operand] = [&, i](const llvm_ir::IrArray::Index& idx) { return kernel_prototype.arguments[i].EmitReadArrayElement(idx, &b); }; } ElementalIrEmitter elemental_emitter(module_, &b, &hlo_module_, nested_ir_emitter_, fast_min_max()); llvm_ir::ElementGenerator element_generator = elemental_emitter.MakeElementGenerator(instr, operand_to_generator); TF_ASSIGN_OR_RETURN( se::ThreadDim thread_dims, EmitElementalLoops(b, instr, kernel_prototype, element_generator)); return kernels_.emplace_back(KernelInfo{ kernel_prototype.function->getName().str(), se::BlockDim(), thread_dims}); } absl::StatusOr<IrEmitter2::KernelInfo> IrEmitter2::EmitFusionHostKernel( const HloFusionInstruction* fusion) { VLOG(2) << "Emit fusion host kernel: " << fusion->name(); if (fusion->fusion_kind() == HloInstruction::FusionKind::kOutput) { return EmitDotFusionHostKernel(fusion); } if (fusion->fusion_kind() != HloInstruction::FusionKind::kLoop) { return Internal("Unsupported loop fusion kind for instruction: %s", fusion->ToString()); } KernelPrototype kernel_prototype = EmitKernelPrototype(fusion); llvm::IRBuilder<> b(module_->getContext()); b.SetInsertPoint(kernel_prototype.function->getEntryBlock().getTerminator()); ElementalIrEmitter elemental_emitter(module_, &b, &hlo_module_, nested_ir_emitter_, fast_min_max()); FusedIrEmitter fused_emitter(elemental_emitter); for (int i = 0; i < fusion->operand_count(); i++) { fused_emitter.BindGenerator( *fusion->fused_parameter(i), [&, i](llvm_ir::IrArray::Index idx) { return kernel_prototype.arguments[i].EmitReadArrayElement(idx, &b); }); } if (llvm_ir::CanEmitFusedDynamicUpdateSliceInPlace( const_cast<HloFusionInstruction*>(fusion), nested_ir_emitter_->assignment())) { TF_RETURN_IF_ERROR(llvm_ir::EmitFusedDynamicUpdateSliceInPlace( const_cast<HloFusionInstruction*>(fusion), kernel_prototype.results[0], &fused_emitter, &b)); return kernels_.emplace_back( KernelInfo{kernel_prototype.function->getName().str(), se::BlockDim(), se::ThreadDim()}); } TF_ASSIGN_OR_RETURN( auto element_generator, fused_emitter.GetGenerator(*fusion->fused_expression_root())); TF_ASSIGN_OR_RETURN( se::ThreadDim thread_dims, EmitElementalLoops(b, fusion, kernel_prototype, element_generator)); return kernels_.emplace_back(KernelInfo{ kernel_prototype.function->getName().str(), se::BlockDim(), thread_dims}); } absl::StatusOr<IrEmitter2::KernelInfo> IrEmitter2::EmitReductionHostKernel( const HloInstruction* instr) { VLOG(2) << "Emit reduction host kernel: " << instr->name(); return EmitElementalHostKernel(instr); } static bool IsDotCodegenStrategy(DotImplementationStrategy strategy) { static std::array<DotImplementationStrategy, 3> kDotCodegenStrategies = { DotImplementationStrategy::kNaiveLlvmIr, DotImplementationStrategy::kTiledLlvmIrGemm, DotImplementationStrategy::kTiledLlvmIrGemv, }; return absl::c_find(kDotCodegenStrategies, strategy) != kDotCodegenStrategies.end(); } absl::StatusOr<IrEmitter2::KernelInfo> IrEmitter2::EmitDotHostKernel( const HloInstruction* instr) { VLOG(2) << "Emit dot host kernel: " << instr->name(); DotImplementationStrategy strategy = GetDotImplementationStrategy( hlo_module_.config(), *instr, nested_ir_emitter_->target_machine_features()); if (!IsDotCodegenStrategy(strategy)) { return Internal("Unsupported dot implementation strategy"); } KernelPrototype kernel_prototype = EmitKernelPrototype(instr); llvm::IRBuilder<> b(module_->getContext()); b.SetInsertPoint(kernel_prototype.function->getEntryBlock().getTerminator()); llvm_ir::IrArray lhs_array = kernel_prototype.arguments[0]; llvm_ir::IrArray rhs_array = kernel_prototype.arguments[1]; llvm_ir::IrArray target_array = kernel_prototype.results[0]; TF_RETURN_IF_ERROR(EmitDotOperation( *instr, target_array, lhs_array, rhs_array, nullptr, nullptr, &b, hlo_module_.config(), nested_ir_emitter_->target_machine_features(), false)); return kernels_.emplace_back( KernelInfo{kernel_prototype.function->getName().str(), se::BlockDim(), se::ThreadDim()}); } absl::StatusOr<IrEmitter2::KernelInfo> IrEmitter2::EmitDotFusionHostKernel( const HloFusionInstruction* fusion) { VLOG(2) << "Emit dot fusion host kernel: " << fusion->name(); const HloInstruction* add = fusion->fused_expression_root(); if (add->opcode() != HloOpcode::kAdd) { return Internal("Dot fusion supports only `add` root instruction"); } bool is_dot_operand0 = add->operand(0)->opcode() == HloOpcode::kDot; bool is_dot_operand1 = add->operand(1)->opcode() == HloOpcode::kDot; if (is_dot_operand0 == is_dot_operand1) { return Internal("Dot fusion root instruction must have single dot operand"); } int64_t dot_op_index = is_dot_operand0 ? 0 : 1; int64_t addend_op_index = 1 - dot_op_index; const HloInstruction* dot = add->operand(dot_op_index); DotImplementationStrategy strategy = GetDotImplementationStrategy( hlo_module_.config(), *dot, nested_ir_emitter_->target_machine_features()); if (!IsDotCodegenStrategy(strategy)) { return Internal("Unsupported dot implementation strategy"); } int64_t dot_lhs_pnum = dot->operand(0)->parameter_number(); int64_t dot_rhs_pnum = dot->operand(1)->parameter_number(); int64_t addend_pnum = add->operand(addend_op_index)->parameter_number(); KernelPrototype kernel_prototype = EmitKernelPrototype(fusion); llvm::IRBuilder<> b(module_->getContext()); b.SetInsertPoint(kernel_prototype.function->getEntryBlock().getTerminator()); llvm_ir::IrArray lhs_array = kernel_prototype.arguments[dot_lhs_pnum]; llvm_ir::IrArray rhs_array = kernel_prototype.arguments[dot_rhs_pnum]; llvm_ir::IrArray addend_array = kernel_prototype.arguments[addend_pnum]; llvm_ir::IrArray target_array = kernel_prototype.results[0]; TF_RETURN_IF_ERROR(EmitDotOperation( *dot, target_array, lhs_array, rhs_array, &addend_array, nullptr, &b, hlo_module_.config(), nested_ir_emitter_->target_machine_features(), false)); return kernels_.emplace_back( KernelInfo{kernel_prototype.function->getName().str(), se::BlockDim(), se::ThreadDim()}); } absl::StatusOr<IrEmitter2::KernelInfo> IrEmitter2::EmitSelectAndScatterHostKernel(const HloInstruction* instr) { KernelPrototype kernel_prototype = EmitKernelPrototype(instr); llvm_ir::IrArray operand_array = kernel_prototype.arguments[0]; llvm_ir::IrArray source_array = kernel_prototype.arguments[1]; llvm_ir::IrArray output_array = kernel_prototype.results[0]; TF_RETURN_IF_ERROR(nested_ir_emitter_->HandleSelectAndScatter( const_cast<HloInstruction*>(instr), operand_array, source_array, output_array)); return kernels_.emplace_back( KernelInfo{kernel_prototype.function->getName().str(), se::BlockDim(), se::ThreadDim()}); } IrEmitter2::KernelThreadDims IrEmitter2::EmitKernelThreadDims( llvm::IRBuilder<>& b, llvm::Value* call_frame) { auto* td_gep = b.CreateStructGEP(call_frame_ty_, call_frame, 0, "tdims_gep"); auto* tdims = b.CreateLoad(b.getPtrTy(), td_gep, "tdims"); auto* x_gep = b.CreateStructGEP(thread_dims_ty_, tdims, 0, "tdim_x_gep"); auto* y_gep = b.CreateStructGEP(thread_dims_ty_, tdims, 1, "tdim_y_gep"); auto* z_gep = b.CreateStructGEP(thread_dims_ty_, tdims, 2, "tdim_z_gep"); return {b.CreateLoad(b.getInt64Ty(), x_gep, "tdim_x"), b.CreateLoad(b.getInt64Ty(), y_gep, "tdim_y"), b.CreateLoad(b.getInt64Ty(), z_gep, "tdim_z")}; } IrEmitter2::KernelThread IrEmitter2::EmitKernelThread(llvm::IRBuilder<>& b, llvm::Value* call_frame) { auto* t_gep = b.CreateStructGEP(call_frame_ty_, call_frame, 1, "tid_gep"); auto* tids = b.CreateLoad(b.getPtrTy(), t_gep, "tids"); auto* x_gep = b.CreateStructGEP(thread_ty_, tids, 0, "tid_x_gep"); auto* y_gep = b.CreateStructGEP(thread_ty_, tids, 1, "tid_y_gep"); auto* z_gep = b.CreateStructGEP(thread_ty_, tids, 2, "tid_z_gep"); return {b.CreateLoad(b.getInt64Ty(), x_gep, "tid_x"), b.CreateLoad(b.getInt64Ty(), y_gep, "tid_y"), b.CreateLoad(b.getInt64Ty(), z_gep, "tid_z")}; } llvm_ir::IrArray IrEmitter2::EmitKernelArgument(llvm::IRBuilder<>& b, llvm::Value* call_frame, int64_t index, const Shape& shape) { llvm::Type* ptr = llvm::PointerType::get(b.getContext(), 0); std::string name = absl::StrCat("arg", index); auto* args_gep = b.CreateStructGEP(call_frame_ty_, call_frame, 3, "args_gep"); auto* args = b.CreateLoad(ptr, args_gep, "args"); auto* data_gep = b.CreateConstGEP2_32(arg_ty_, args, index, 0, name + "_gep"); auto* data = b.CreateLoad(ptr, data_gep, name); llvm_ir::SetAlignmentMetadataForLoad(data, cpu_function_runtime::MinAlign()); return llvm_ir::IrArray(data, llvm_ir::ShapeToIrType(shape, module_), shape); } IrEmitter2::KernelPrototype IrEmitter2::EmitKernelPrototype( std::string_view name, absl::Span<const Shape> arguments, absl::Span<const Shape> results) { VLOG(3) << "Emit kernel prototype: " << name << ", #arguments=" << arguments.size() << ", #results=" << results.size(); for (const Shape& argument : arguments) { VLOG(3) << " argument: " << argument.ToString(true); } for (const Shape& result : results) { VLOG(3) << " result: " << result.ToString(true); } llvm::LLVMContext& ctx = module_->getContext(); llvm::IRBuilder<> b(ctx); llvm::Function* function = llvm::dyn_cast<llvm::Function>( module_->getOrInsertFunction(name, KernelFunctionTy(ctx)).getCallee()); function->setCallingConv(llvm::CallingConv::C); function->setDoesNotThrow(); const DebugOptions& debug_options = hlo_module_.config().debug_options(); function->addFnAttr( "prefer-vector-width", absl::StrCat(debug_options.xla_cpu_prefer_vector_width())); function->addFnAttr("frame-pointer", "all"); b.SetInsertPoint(llvm::BasicBlock::Create(ctx, "", function)); llvm::Value* call_frame = function->getArg(0); KernelThreadDims kernel_thread_dims = EmitKernelThreadDims(b, call_frame); KernelThread kernel_thread = EmitKernelThread(b, call_frame); int64_t idx = 0; std::vector<llvm_ir::IrArray> ir_arguments; for (const Shape& argument : arguments) { ir_arguments.push_back(EmitKernelArgument(b, call_frame, idx++, argument)); } std::vector<llvm_ir::IrArray> ir_results; for (const Shape& result : results) { ir_results.push_back(EmitKernelArgument(b, call_frame, idx++, result)); } b.CreateRet( llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(ctx))); return KernelPrototype{function, kernel_thread_dims, kernel_thread, std::move(ir_arguments), std::move(ir_results)}; } IrEmitter2::KernelPrototype IrEmitter2::EmitKernelPrototype( const HloInstruction* instr) { return EmitKernelPrototype(instr->name(), FlattenedParameters(instr), FlattenedResults(instr)); } std::optional<IrEmitter2::ParallelConfig> IrEmitter2::GetParallelConfig( const HloInstruction* instr) { auto backend_config = instr->backend_config<BackendConfig>(); if (!backend_config.ok() || backend_config->outer_dimension_partitions().empty()) { return std::nullopt; } ParallelConfig config; config.outer_dimension_partitions.assign( backend_config->outer_dimension_partitions().begin(), backend_config->outer_dimension_partitions().end()); return config; } IrEmitter2::ParallelPartitionBounds IrEmitter2::EmitParallelPartitionBounds( llvm::IRBuilder<>& b, const KernelPrototype& kernel_prototype, const ParallelConfig& parallel_config, const Shape& shape, std::string_view name) { ShapePartitionIterator it(shape, parallel_config.outer_dimension_partitions); size_t num_parallel_dimensions = parallel_config.outer_dimension_partitions.size(); llvm::ArrayType* dim_bounds_ty = llvm::ArrayType::get(b.getInt64Ty(), 2); llvm::ArrayType* partition_bounds_ty = llvm::ArrayType::get(dim_bounds_ty, num_parallel_dimensions); llvm::ArrayType* parallel_bounds_ty = llvm::ArrayType::get(partition_bounds_ty, it.GetTotalPartitionCount()); std::vector<llvm::Constant*> partition_bounds; for (int64_t i = 0; i < it.GetTotalPartitionCount(); ++i) { std::vector<llvm::Constant*> dim_counts; for (auto [lower, size] : it.GetPartition(i)) { dim_counts.push_back(llvm::ConstantArray::get( dim_bounds_ty, {b.getInt64(lower), b.getInt64(lower + size)})); } partition_bounds.push_back( llvm::ConstantArray::get(partition_bounds_ty, dim_counts)); } llvm::Constant* parallel_bounds = llvm::Constant
#include "xla/service/cpu/ir_emitter2.h" #include <memory> #include <vector> #include "absl/status/statusor.h" #include "llvm/IR/LLVMContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { using IrEmitter2Test = HloTestBase; TEST_F(IrEmitter2Test, BuildKernelPrototype) { auto hlo = std::make_unique<HloModule>("test", HloModuleConfig()); llvm::LLVMContext context; auto module = std::make_unique<llvm::Module>("test", context); auto shape = ShapeUtil::MakeShape(PrimitiveType::F32, {4, 2}); std::vector<Shape> parameters = {shape}; std::vector<Shape> results = {shape}; IrEmitter2 ir_emitter(*hlo, module.get(), nullptr); IrEmitter2::KernelPrototype prototype = ir_emitter.EmitKernelPrototype("test", parameters, results); ASSERT_TRUE(*RunFileCheck(llvm_ir::DumpToString(module.get()), R"( CHECK: define ptr @test(ptr %0) #0 { CHECK-NEXT: getelementptr inbounds %SE_HOST_KernelCallFrame, {{.*}} i32 0 CHECK: getelementptr inbounds %SE_HOST_KernelThreadDim, {{.*}} i32 0 CHECK: getelementptr inbounds %SE_HOST_KernelThreadDim, {{.*}} i32 1 CHECK: getelementptr inbounds %SE_HOST_KernelThreadDim, {{.*}} i32 2 CHECK: load i64 CHECK: load i64 CHECK: load i64 CHECK-NEXT: getelementptr inbounds %SE_HOST_KernelCallFrame, {{.*}} i32 1 CHECK: getelementptr inbounds %SE_HOST_KernelThread, {{.*}} i32 0 CHECK: getelementptr inbounds %SE_HOST_KernelThread, {{.*}} i32 1 CHECK: getelementptr inbounds %SE_HOST_KernelThread, {{.*}} i32 2 CHECK: load i64 CHECK: load i64 CHECK: load i64 CHECK-NEXT: getelementptr inbounds %SE_HOST_KernelCallFrame, {{.*}} i32 3 CHECK: load ptr CHECK: getelementptr %SE_HOST_KernelArg, {{.*}} i32 0, i32 0 CHECK: load ptr, {{.*}} !align !0 CHECK-NEXT: getelementptr inbounds %SE_HOST_KernelCallFrame, {{.*}} i32 3 CHECK: load ptr CHECK: getelementptr %SE_HOST_KernelArg, {{.*}} i32 1, i32 0 CHECK: load ptr, {{.*}} !align !0 CHECK: ret ptr null CHECK: } CHECK: !0 = !{i64 16} )")); } TEST_F(IrEmitter2Test, EmitElementalKernel) { llvm::LLVMContext context; auto module = std::make_unique<llvm::Module>("test", context); const char* hlo_text = R"( HloModule m ENTRY main { p0 = f32[2,2] parameter(0) ROOT convert = s32[2,2] convert(p0) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo, ParseAndReturnUnverifiedModule(hlo_text)); HloInstruction* convert = FindInstruction(hlo.get(), "convert"); ASSERT_NE(convert, nullptr); IrEmitter2 ir_emitter(*hlo, module.get(), nullptr); TF_ASSERT_OK_AND_ASSIGN(IrEmitter2::KernelInfo kernel, ir_emitter.EmitElementalHostKernel(convert)); ASSERT_TRUE(*RunFileCheck(llvm_ir::DumpToString(module.get()), R"( CHECK: define ptr @convert(ptr %0) #0 { CHECK: fptosi float {{.*}} to i32 CHECK: } )")); } TEST_F(IrEmitter2Test, EmitParallelKernel) { llvm::LLVMContext context; auto module = std::make_unique<llvm::Module>("test", context); const char* hlo_text = R"( HloModule m ENTRY main { p0 = f32[1,2,1,16384,256] parameter(0) ROOT convert = s32[1,2,1,16384,256] convert(p0), backend_config={"outer_dimension_partitions":["1","2","1","4"]} })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo, ParseAndReturnUnverifiedModule(hlo_text)); HloInstruction* convert = FindInstruction(hlo.get(), "convert"); ASSERT_NE(convert, nullptr); IrEmitter2 ir_emitter(*hlo, module.get(), nullptr); TF_ASSERT_OK_AND_ASSIGN(IrEmitter2::KernelInfo kernel, ir_emitter.EmitElementalHostKernel(convert)); ASSERT_TRUE(*RunFileCheck(llvm_ir::DumpToString(module.get()), R"( CHECK: @convert_parallel_bounds = private constant [8 x [4 x [2 x i64]]] CHECK: define ptr @convert(ptr %0) #0 { CHECK: %lo_dim_0_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 0, i32 0 CHECK: %up_dim_0_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 0, i32 1 CHECK: %lo_dim_1_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 1, i32 0 CHECK: %up_dim_1_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 1, i32 1 CHECK: %lo_dim_2_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 2, i32 0 CHECK: %up_dim_2_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 2, i32 1 CHECK: %lo_dim_3_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 3, i32 0 CHECK: %up_dim_3_gep = getelementptr{{.*}} i32 0, i64 %tid_x, i32 3, i32 1 CHECK: fptosi float {{.*}} to i32 CHECK: } )")); } } }
2,013
cpp
tensorflow/tensorflow
onednn_layer_norm
third_party/xla/xla/service/cpu/onednn_layer_norm.cc
third_party/xla/xla/service/cpu/tests/onednn_layer_norm_test.cc
#ifndef XLA_SERVICE_CPU_ONEDNN_LAYER_NORM_H_ #define XLA_SERVICE_CPU_ONEDNN_LAYER_NORM_H_ #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) namespace xla { namespace cpu { extern "C" { extern void __xla_cpu_runtime_OneDnnLayerNorm(void* result, void** args); } } } #endif #endif #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_layer_norm.h" #include <algorithm> #include <cmath> #include <initializer_list> #include <vector> #define EIGEN_USE_THREADS #include "dnnl.hpp" #include "absl/base/dynamic_annotations.h" #include "xla/executable_run_options.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/onednn_memory_util.h" #include "xla/service/cpu/runtime_lightweight_check.h" #include "xla/tsl/util/onednn_threadpool.h" #include "unsupported/Eigen/CXX11/Tensor" namespace xla { namespace cpu { namespace { using dnnl::engine; using dnnl::layer_normalization_forward; using dnnl::memory; using dnnl::normalization_flags; using dnnl::prop_kind; using dnnl::stream; } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_OneDnnLayerNorm( void* result, void** args) { int arg_indx = 1; const xla::ExecutableRunOptions* run_options = static_cast<const xla::ExecutableRunOptions*>(args[arg_indx++]); XLA_LIGHTWEIGHT_CHECK(run_options != nullptr); XLA_LIGHTWEIGHT_CHECK(run_options->intra_op_thread_pool() != nullptr); tsl::OneDnnThreadPool thread_pool( run_options->intra_op_thread_pool()->getPool(), false); engine cpu_engine(engine::kind::cpu, 0); #ifndef ENABLE_ONEDNN_OPENMP auto onednn_stream = stream(dnnl::threadpool_interop::make_stream(cpu_engine, &thread_pool)); #else auto onednn_stream = stream(cpu_engine); #endif std::string config_str(static_cast<const char*>(args[arg_indx++])); OneDnnNormConfig ln_config; ln_config.ParseFromString(config_str); MemrefInfo layer_minfo(args[arg_indx++]); MemrefInfo gamma_minfo(args[arg_indx++]); MemrefInfo beta_minfo(args[arg_indx++]); MemrefInfo result_minfo(result); auto src_md = layer_minfo.GetOneDnnMemDesc(); auto dst_md = result_minfo.GetOneDnnMemDesc(); auto scaleshift_md = beta_minfo.GetOneDnnMemDesc(); auto src_mem = memory(src_md, cpu_engine, layer_minfo.Data()); auto dst_mem = memory(dst_md, cpu_engine, result_minfo.Data()); auto scale_mem = memory(scaleshift_md, cpu_engine, gamma_minfo.Data()); auto shift_mem = memory(scaleshift_md, cpu_engine, beta_minfo.Data()); float epsilon; *(reinterpret_cast<int32_t*>(&epsilon)) = ln_config.epsilon_typecast(); auto lnorm_pd = layer_normalization_forward::primitive_desc( cpu_engine, prop_kind::forward_inference, src_md, dst_md, epsilon, normalization_flags::use_scale | normalization_flags::use_shift); auto lnorm_prim = layer_normalization_forward(lnorm_pd); std::unordered_map<int, memory> ln_args; ln_args.insert({DNNL_ARG_SRC, src_mem}); ln_args.insert({DNNL_ARG_SCALE, scale_mem}); ln_args.insert({DNNL_ARG_SHIFT, shift_mem}); ln_args.insert({DNNL_ARG_DST, dst_mem}); lnorm_prim.execute(onednn_stream, ln_args); } } } #endif
#if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class LayerNormTest : public HloTestBase { protected: const char* onednn_layer_norm_ = R"( ; CHECK: custom_call_target="__onednn$layernorm", ; CHECK: backend_config={ ; CHECK-DAG: "onednn_layer_norm_config":{ ; CHECK-DAG: "rescale":"SCALE_AND_SHIFT" ; CHECK-DAG: } ; CHECK: } )"; std::string common_hlo_region_ = R"( region_add { Arg_0.7555 = f32[] parameter(0) Arg_1.7556 = f32[] parameter(1) ROOT add.7557 = f32[] add(Arg_0.7555, Arg_1.7556) } )"; std::string common_hlo_entry_computation_block_ = R"( Arg_0.2 = f32[768]{0} parameter(1), sharding={replicated} Arg_0.3 = f32[768]{0} parameter(2), sharding={replicated} convert.290 = f32[84,197,768]{2,1,0} convert(Arg_0.1) constant.291 = f32[] constant(0) convert.292 = f32[] convert(constant.291) reduce.297 = f32[84,197]{1,0} reduce(convert.290, convert.292), dimensions={2}, to_apply=region_add constant.298 = s32[] constant(768) convert.299 = f32[] convert(constant.298) broadcast.300 = f32[84,197]{1,0} broadcast(convert.299), dimensions={} divide.301 = f32[84,197]{1,0} divide(reduce.297, broadcast.300) convert.302 = f32[84,197]{1,0} convert(divide.301) reshape.303 = f32[84,197,1]{2,1,0} reshape(convert.302) reshape.304 = f32[84,197]{1,0} reshape(reshape.303) broadcast.305 = f32[84,197,768]{2,1,0} broadcast(reshape.304), dimensions={0,1} subtract.306 = f32[84,197,768]{2,1,0} subtract(Arg_0.1, broadcast.305) multiply.307 = f32[84,197,768]{2,1,0} multiply(subtract.306, subtract.306) convert.308 = f32[84,197,768]{2,1,0} convert(multiply.307) constant.309 = f32[] constant(0) convert.310 = f32[] convert(constant.309) reduce.315 = f32[84,197]{1,0} reduce(convert.308, convert.310), dimensions={2}, to_apply=region_add constant.316 = s32[] constant(768) convert.317 = f32[] convert(constant.316) broadcast.318 = f32[84,197]{1,0} broadcast(convert.317), dimensions={} divide.319 = f32[84,197]{1,0} divide(reduce.315, broadcast.318) convert.320 = f32[84,197]{1,0} convert(divide.319) reshape.321 = f32[84,197,1]{2,1,0} reshape(convert.320) constant.322 = f32[] constant(1e-12) broadcast.323 = f32[84,197,1]{2,1,0} broadcast(constant.322), dimensions={} add.324 = f32[84,197,1]{2,1,0} add(reshape.321, broadcast.323) rsqrt.325 = f32[84,197,1]{2,1,0} rsqrt(add.324) reshape.328 = f32[84,197]{1,0} reshape(rsqrt.325) broadcast.329 = f32[84,197,768]{2,1,0} broadcast(reshape.328), dimensions={0,1} broadcast.327 = f32[84,197,768]{2,1,0} broadcast(Arg_0.2), dimensions={2} multiply.330 = f32[84,197,768]{2,1,0} multiply(broadcast.329, broadcast.327) multiply.331 = f32[84,197,768]{2,1,0} multiply(Arg_0.1, multiply.330) broadcast.336 = f32[84,197,768]{2,1,0} broadcast(Arg_0.3), dimensions={2} reshape.332 = f32[84,197]{1,0} reshape(reshape.303) broadcast.333 = f32[84,197,768]{2,1,0} broadcast(reshape.332), dimensions={0,1} multiply.334 = f32[84,197,768]{2,1,0} multiply(multiply.330, broadcast.333) subtract.337 = f32[84,197,768]{2,1,0} subtract(broadcast.336, multiply.334) )"; }; TEST_F(LayerNormTest, LayerNormTest0_FP32) { std::string layer_norm_module_str = R"(HloModule layer_norm.test, entry_computation_layout={(f32[84,197,768]{2,1,0}, f32[768]{0}, f32[768]{0})->f32[84,197,768]{2,1,0}})" + common_hlo_region_ + R"( ENTRY main { Arg_0.1 = f32[84,197,768]{2,1,0} parameter(0), sharding={replicated} )" + common_hlo_entry_computation_block_ + R"( ROOT add.338 = f32[84,197,768]{2,1,0} add(multiply.331, subtract.337) } )"; EXPECT_TRUE(RunAndCompare(layer_norm_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(layer_norm_module_str, onednn_layer_norm_); } TEST_F(LayerNormTest, LayerNormTest0_BF16) { if (!xla::cpu::IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } std::string layer_norm_module_str = R"(HloModule layer_norm.test, entry_computation_layout={(bf16[84,197,768]{2,1,0}, f32[768]{0}, f32[768]{0})->bf16[84,197,768]{2,1,0}})" + common_hlo_region_ + R"( ENTRY main { Arg_0.1.0 = bf16[84,197,768]{2,1,0} parameter(0), sharding={replicated} Arg_0.1 = f32[84,197,768]{2,1,0} convert(Arg_0.1.0) )" + common_hlo_entry_computation_block_ + R"( add.338 = f32[84,197,768]{2,1,0} add(multiply.331, subtract.337) ROOT convert.339 = bf16[84,197,768]{2,1,0} convert(add.338) } )"; EXPECT_TRUE(RunAndCompare(layer_norm_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(layer_norm_module_str, onednn_layer_norm_); } TEST_F(LayerNormTest, LayerNormTest0_F16) { if (!xla::cpu::IsSupportedType(PrimitiveType::F16)) { GTEST_SKIP() << "CPU does not support F16."; } std::string layer_norm_module_str = R"(HloModule layer_norm.test, entry_computation_layout={(f16[84,197,768]{2,1,0}, f32[768]{0}, f32[768]{0})->f16[84,197,768]{2,1,0}})" + common_hlo_region_ + R"( ENTRY main { Arg_0.1.0 = f16[84,197,768]{2,1,0} parameter(0), sharding={replicated} Arg_0.1 = f32[84,197,768]{2,1,0} convert(Arg_0.1.0) )" + common_hlo_entry_computation_block_ + R"( add.338 = f32[84,197,768]{2,1,0} add(multiply.331, subtract.337) ROOT convert.339 = f16[84,197,768]{2,1,0} convert(add.338) } )"; EXPECT_TRUE(RunAndCompare(layer_norm_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(layer_norm_module_str, onednn_layer_norm_); } TEST_F(LayerNormTest, LayerNormTest1_F16) { if (!xla::cpu::IsSupportedType(PrimitiveType::F16)) { GTEST_SKIP() << "CPU does not support F16."; } const char* layer_norm_module_str = R"( HloModule layer_norm.test region_add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add_0 = f32[] add(Arg_0, Arg_1) } ENTRY main { Arg_2 = f16[2,4,8] parameter(0), sharding={replicated} convert_0 = f32[2,4,8] convert(Arg_2) constant_0 = f32[] constant(0) convert_1 = f32[] convert(constant_0) reduce_0 = f32[2,4] reduce(convert_0, convert_1), dimensions={2}, to_apply=region_add constant_1 = s32[] constant(8) convert_2 = f32[] convert(constant_1) broadcast_0 = f32[2,4] broadcast(convert_2), dimensions={} divide_0 = f32[2,4] divide(reduce_0, broadcast_0) convert_3 = f16[2,4] convert(divide_0) reshape_0 = f16[2,4,1] reshape(convert_3) reshape_1 = f16[2,4] reshape(reshape_0) broadcast_1 = f16[2,4,8] broadcast(reshape_1), dimensions={0,1} subtract_0 = f16[2,4,8] subtract(Arg_2, broadcast_1) multiply_0 = f16[2,4,8] multiply(subtract_0, subtract_0) convert_4 = f32[2,4,8] convert(multiply_0) constant_2 = f32[] constant(0) convert_5 = f32[] convert(constant_2) reduce_2 = f32[2,4] reduce(convert_4, convert_5), dimensions={2}, to_apply=region_add constant_3 = s32[] constant(8) convert_6 = f32[] convert(constant_3) broadcast_2 = f32[2,4] broadcast(convert_6), dimensions={} divide_1 = f32[2,4] divide(reduce_2, broadcast_2) convert_7 = f16[2,4] convert(divide_1) reshape_2 = f16[2,4,1] reshape(convert_7) rsqrt_0 = f16[2,4,1] rsqrt(reshape_2) reshape_3 = f16[2,4] reshape(rsqrt_0) broadcast_3 = f16[2,4,8] broadcast(reshape_3), dimensions={0,1} constant_4 = f16[8]{0} constant({1,1,1,1,1,1,1,1}) broadcast_4 = f16[2,4,8] broadcast(constant_4), dimensions={2} multiply_1 = f16[2,4,8] multiply(broadcast_3, broadcast_4) multiply_2 = f16[2,4,8] multiply(Arg_2, multiply_1) constant_5 = f16[8]{0} constant({1,1,1,1,1,1,1,1}) broadcast_5 = f16[2,4,8] broadcast(constant_5), dimensions={2} reshape_4 = f16[2,4] reshape(reshape_0) broadcast_6 = f16[2,4,8] broadcast(reshape_4), dimensions={0,1} multiply_3 = f16[2,4,8] multiply(multiply_1, broadcast_6) subtract_1 = f16[2,4,8] subtract(broadcast_5, multiply_3) ROOT add_1 = f16[2,4,8] add(multiply_2, subtract_1) } )"; EXPECT_TRUE(RunAndCompare(layer_norm_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(layer_norm_module_str, onednn_layer_norm_); } TEST_F(LayerNormTest, LayerNormTest2_F16) { if (!xla::cpu::IsSupportedType(PrimitiveType::F16)) { GTEST_SKIP() << "CPU does not support F16."; } const char* layer_norm_module_str = R"( HloModule layer_norm.test region_add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add_0 = f32[] add(Arg_0, Arg_1) } ENTRY main { Arg_2= f16[2,4,8] parameter(0), sharding={replicated} convert_0 = f32[2,4,8] convert(Arg_2) constant_0 = f32[] constant(0) convert_1 = f32[] convert(constant_0) reduce_0 = f32[2,4] reduce(convert_0, convert_1), dimensions={2}, to_apply=region_add constant_1 = s32[] constant(8) convert_2 = f32[] convert(constant_1) broadcast_0 = f32[2,4] broadcast(convert_2), dimensions={} divide_0 = f32[2,4] divide(reduce_0, broadcast_0) convert_3 = f16[2,4] convert(divide_0) reshape_0 = f16[2,4,1] reshape(convert_3) reshape_1 = f16[2,4] reshape(reshape_0) broadcast_1 = f16[2,4,8] broadcast(reshape_1), dimensions={0,1} subtract_0 = f16[2,4,8] subtract(broadcast_1, Arg_2) multiply_0 = f16[2,4,8] multiply(subtract_0, subtract_0) convert_4 = f32[2,4,8] convert(multiply_0) constant_2 = f32[] constant(0) convert_5 = f32[] convert(constant_2) reduce_1 = f32[2,4] reduce(convert_4, convert_5), dimensions={2}, to_apply=region_add constant_3 = s32[] constant(8) convert_6 = f32[] convert(constant_3) broadcast_2 = f32[2,4] broadcast(convert_6), dimensions={} divide_1= f32[2,4] divide(reduce_1, broadcast_2) convert_7 = f16[2,4] convert(divide_1) reshape_2 = f16[2,4,1] reshape(convert_7) rsqrt_0 = f16[2,4,1] rsqrt(reshape_2) reshape_3 = f16[2,4] reshape(rsqrt_0) broadcast_3 = f16[2,4,8] broadcast(reshape_3), dimensions={0,1} constant_4 = f16[8] constant({1,1,1,1,1,1,1,1}) broadcast_4 = f16[2,4,8] broadcast(constant_4), dimensions={2} multiply_1 = f16[2,4,8] multiply(broadcast3, broadcast_4) multiply_2 = f16[2,4,8] multiply(multiply_1, Arg_2) constant_5 = f16[8] constant({1,1,1,1,1,1,1,1}) broadcast_5 = f16[2,4,8] broadcast(constant_5), dimensions={2} reshape_4 = f16[2,4] reshape(reshape_0) broadcast_5 = f16[2,4,8] broadcast(reshape_4), dimensions={0,1} multiply_3 = f16[2,4,8] multiply(multiply_1, broadcast_5) subtract_1 = f16[2,4,8] subtract(broadcast_5, multiply_3) ROOT add_1 = f16[2,4,8] add(multiply_2, subtract_1) } )"; EXPECT_TRUE(RunAndCompare(layer_norm_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(layer_norm_module_str, onednn_layer_norm_); } TEST_F(LayerNormTest, LayerNormTest1_BF16) { if (!xla::cpu::IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const char* layer_norm_module_str = R"( HloModule layer_norm.test region_add { Arg_0.7555 = f32[] parameter(0) Arg_1.7556 = f32[] parameter(1) ROOT add.7557 = f32[] add(Arg_0.7555, Arg_1.7556) } ENTRY main { Arg_0.1 = bf16[160,197,768] parameter(0), sharding={replicated} Arg_0.2 = bf16[768] parameter(1), sharding={replicated} Arg_0.3 = bf16[768] parameter(2), sharding={replicated} convert.80 = f32[160,197,768] convert(Arg_0.1) constant.81 = f32[] constant(0) convert.82 = f32[] convert(constant.81) reduce.87 = f32[160,197] reduce(convert.80, convert.82), dimensions={2}, to_apply=region_add constant.88 = s32[] constant(768) convert.89 = f32[] convert(constant.88) broadcast.90 = f32[160,197] broadcast(convert.89), dimensions={} divide.91 = f32[160,197] divide(reduce.87, broadcast.90) convert.92 = bf16[160,197] convert(divide.91) reshape.93 = bf16[160,197,1] reshape(convert.92) reshape.94 = bf16[160,197] reshape(reshape.93) broadcast.95 = bf16[160,197,768] broadcast(reshape.94), dimensions={0,1} subtract.96 = bf16[160,197,768] subtract(Arg_0.1, broadcast.95) multiply.97 = bf16[160,197,768] multiply(subtract.96, subtract.96) convert.98 = f32[160,197,768] convert(multiply.97) constant.99 = f32[] constant(0) convert.100 = f32[] convert(constant.99) reduce.105 = f32[160,197] reduce(convert.98, convert.100), dimensions={2}, to_apply=region_add constant.106 = s32[] constant(768) convert.107 = f32[] convert(constant.106) broadcast.108 = f32[160,197] broadcast(convert.107), dimensions={} divide.109 = f32[160,197] divide(reduce.105, broadcast.108) convert.110 = bf16[160,197] convert(divide.109) reshape.111 = bf16[160,197,1] reshape(convert.110) constant.112 = bf16[] constant(1.002e-12) broadcast.113 = bf16[160,197,1] broadcast(constant.112), dimensions={} add.114 = bf16[160,197,1] add(reshape.111, broadcast.113) rsqrt.115 = bf16[160,197,1] rsqrt(add.114) reshape.118 = bf16[160,197] reshape(rsqrt.115) broadcast.119 = bf16[160,197,768] broadcast(reshape.118), dimensions={0,1} broadcast.117 = bf16[160,197,768] broadcast(Arg_0.2), dimensions={2} multiply.120 = bf16[160,197,768] multiply(broadcast.119, broadcast.117) multiply.121 = bf16[160,197,768] multiply(Arg_0.1, multiply.120) broadcast.126 = bf16[160,197,768] broadcast(Arg_0.3), dimensions={2} reshape.122 = bf16[160,197] reshape(reshape.93) broadcast.123 = bf16[160,197,768] broadcast(reshape.122), dimensions={0,1} multiply.124 = bf16[160,197,768] multiply(multiply.120, broadcast.123) subtract.127 = bf16[160,197,768] subtract(broadcast.126, multiply.124) ROOT add.128 = bf16[160,197,768] add(multiply.121, subtract.127) } )"; EXPECT_TRUE(RunAndCompare(layer_norm_module_str, ErrorSpec{1e-2, 1e-2})); MatchOptimizedHlo(layer_norm_module_str, onednn_layer_norm_); } } } #endif
2,014
cpp
tensorflow/tensorflow
ir_emission_utils
third_party/xla/xla/service/gpu/ir_emission_utils.cc
third_party/xla/xla/service/gpu/ir_emission_utils_test.cc
#ifndef XLA_SERVICE_GPU_IR_EMISSION_UTILS_H_ #define XLA_SERVICE_GPU_IR_EMISSION_UTILS_H_ #include <cstdint> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Value.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" namespace xla { namespace gpu { inline constexpr int64_t kMinDimensionToTransposeTiled = 16; inline constexpr int64_t kMinDimensionToTransposeTiled2 = 8; inline constexpr int64_t kMinTotalDimensionsToTransposeTiled = 64 * 128; bool IsMatrixMultiplication(const HloInstruction& dot); bool IsMatrixVectorMultiplication(const HloInstruction& dot); inline constexpr int64_t WarpSize() { return 32; } inline constexpr absl::string_view kCustomFusionKind = "__custom_fusion"; inline constexpr absl::string_view kTritonFusionKind = "__triton"; inline constexpr absl::string_view kTritonGemmFusionKind = "__triton_gemm"; inline constexpr absl::string_view kCuDnnFusionKind = "__cudnn$fusion"; inline constexpr absl::string_view kUncompilableFusion = "__uncompilable_fusion"; inline constexpr absl::string_view kTopKCustomCallTarget = "__gpu$TopK"; bool IsCustomCallToCusolver(const HloInstruction& hlo); bool IsCustomCallToTopK(const HloInstruction& hlo); extern const char* const kCusolverCholeskyCallTarget; bool IsSliceWithUnitStrides(const HloInstruction* instr); bool IsContiguousSlice(const HloInstruction& instr); bool IsContiguousSlice(const Shape& orig, const Shape& sliced); llvm::Value* EmitFullWarpShuffleDown( llvm::Value* value, llvm::Value* offset, llvm::IRBuilder<>* builder, const se::DeviceDescription& gpu_device_info); llvm::Value* IsBlock0Thread0(llvm::IRBuilder<>* b); absl::StatusOr<BufferAllocation::Slice> GetAllocationSlice( const BufferAssignment& buffer_assignment, const HloInstruction* instr, const ShapeIndex& index); absl::StatusOr<bool> CanEmitFusedDynamicUpdateSliceInPlaceForGpu( const HloFusionInstruction* fusion, std::function<absl::StatusOr<BufferAllocation::Slice>( const HloInstruction* instr, const ShapeIndex& index)> get_allocation_slice, absl::Span<HloInstructionAdaptor const> roots); std::vector<const HloInstruction*> GetOutputDefiningDynamicUpdateSlices( absl::Span<HloInstructionAdaptor const> roots); HloInstructionAdaptor FindNonTrivialHero(const HloInstructionAdaptor& instr); const HloInstruction& FindNonTrivialHero(const HloInstruction& instr); struct TransposeDescription { const HloInstruction* instr; Vector3 dimensions; Vector3 permutation; TransposeDescription(Vector3 dimensions, Vector3 permutation) : TransposeDescription(nullptr, dimensions, permutation) {} TransposeDescription(const HloInstruction* instr, Vector3 dimensions, Vector3 permutation) : instr(instr), dimensions(dimensions), permutation(permutation) {} const Shape& input_shape() const { return instr->operand(0)->shape(); } bool IsEquivalent(const TransposeDescription& other) const { return dimensions == other.dimensions && permutation == other.permutation; } }; std::optional<TransposeDescription> GetDescriptionForTiledTransposeEmitter( const HloInstruction& root, const HloInstruction& hero); bool IsIntermediate(const HloInstruction* instr, int allowed_operand_count = 1); void VLogModule(int level, const llvm::Module& module); void VerifyModule(const llvm::Module& module); llvm::Type* GetIndexTypeForKernel(const HloInstruction* hlo, int64_t launch_size, llvm::IRBuilder<>* b); bool IsAMDGPU(const llvm::Module* module); bool IsSPIR(const llvm::Module* module); class DenseDataIntermediate { public: static DenseDataIntermediate Own(std::vector<uint8_t> owned) { DenseDataIntermediate di; di.data_ = std::move(owned); return di; } static DenseDataIntermediate Alias(absl::Span<const uint8_t> aliased) { DenseDataIntermediate di; di.data_ = aliased; return di; } absl::Span<const uint8_t> span() const { return data_.index() == 0 ? absl::Span<const uint8_t>(std::get<0>(data_)) : std::get<1>(data_); } private: std::variant<std::vector<uint8_t>, absl::Span<const uint8_t>> data_; }; absl::StatusOr<DenseDataIntermediate> LiteralToXlaFormat( const Literal& literal); } } #endif #include "xla/service/gpu/ir_emission_utils.h" #include <cstdint> #include <functional> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/FPEnv.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/target_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/llvm_ir/buffer_assignment_util.h" #include "xla/service/llvm_ir/llvm_type_conversion_util.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/translate/mhlo_to_hlo/location_exporter.h" #include "xla/translate/mhlo_to_hlo/type_to_shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { bool IsRank2(const Shape& shape, int64_t batch_dimensions_size) { return shape.rank() == batch_dimensions_size + 2; } bool IsRank1(const Shape& shape, int64_t batch_dimensions_size) { return shape.rank() == batch_dimensions_size + 1; } } bool IsMatrixMultiplication(const HloInstruction& dot) { if (dot.opcode() != HloOpcode::kDot) { return false; } const Shape& lhs_shape = dot.operand(0)->shape(); const Shape& rhs_shape = dot.operand(1)->shape(); const DotDimensionNumbers& dim_numbers = dot.dot_dimension_numbers(); PrimitiveType output_primitive_type = dot.shape().element_type(); bool type_is_allowed = (output_primitive_type == F8E4M3FN || output_primitive_type == F8E5M2 || output_primitive_type == F8E4M3FNUZ || output_primitive_type == F8E5M2FNUZ || output_primitive_type == F16 || output_primitive_type == BF16 || output_primitive_type == F32 || output_primitive_type == F64 || output_primitive_type == C64 || output_primitive_type == C128) || (output_primitive_type == S32 && lhs_shape.element_type() == S8 && rhs_shape.element_type() == S8); bool shapes_are_valid = type_is_allowed && IsRank2(lhs_shape, dim_numbers.lhs_batch_dimensions_size()) && IsRank2(rhs_shape, dim_numbers.lhs_batch_dimensions_size()) && IsRank2(dot.shape(), dim_numbers.lhs_batch_dimensions_size()) && !ShapeUtil::IsZeroElementArray(lhs_shape) && !ShapeUtil::IsZeroElementArray(rhs_shape); return shapes_are_valid; } bool IsMatrixVectorMultiplication(const HloInstruction& dot) { if (dot.opcode() != HloOpcode::kDot) { return false; } const Shape& lhs_shape = dot.operand(0)->shape(); const Shape& rhs_shape = dot.operand(1)->shape(); const DotDimensionNumbers& dim_numbers = dot.dot_dimension_numbers(); PrimitiveType output_primitive_type = dot.shape().element_type(); bool type_is_allowed = (output_primitive_type == F8E4M3FN || output_primitive_type == F8E5M2 || output_primitive_type == F16 || output_primitive_type == BF16 || output_primitive_type == F32 || output_primitive_type == F64 || output_primitive_type == C64 || output_primitive_type == C128) || (output_primitive_type == S32 && lhs_shape.element_type() == S8 && rhs_shape.element_type() == S8); bool shapes_are_valid = type_is_allowed && ((IsRank2(lhs_shape, dim_numbers.lhs_batch_dimensions_size()) && IsRank1(rhs_shape, dim_numbers.lhs_batch_dimensions_size())) || (IsRank1(lhs_shape, dim_numbers.lhs_batch_dimensions_size()) && IsRank2(rhs_shape, dim_numbers.lhs_batch_dimensions_size()))) && IsRank1(dot.shape(), dim_numbers.lhs_batch_dimensions_size()) && !ShapeUtil::IsZeroElementArray(lhs_shape) && !ShapeUtil::IsZeroElementArray(rhs_shape); return shapes_are_valid; } const char* const kCusolverCholeskyCallTarget = "__cusolver$cholesky"; bool IsCustomCallToCusolver(const HloInstruction& hlo) { if (hlo.opcode() != HloOpcode::kCustomCall) { return false; } return hlo.custom_call_target() == kCusolverCholeskyCallTarget; } bool IsCustomCallToTopK(const HloInstruction& hlo) { return hlo.opcode() == HloOpcode::kCustomCall && hlo.custom_call_target() == kTopKCustomCallTarget; } bool IsSliceWithUnitStrides(const HloInstruction* instr) { auto slice = DynCast<HloSliceInstruction>(instr); return slice && absl::c_all_of(slice->slice_strides(), [](int64_t stride) { return stride == 1; }); } bool IsContiguousSlice(const HloInstruction& instr) { auto slice = DynCast<HloSliceInstruction>(&instr); if (!slice) return false; const Shape& src_shape = slice->operand(0)->shape(); const Shape& dst_shape = slice->shape(); return IsContiguousSlice(src_shape, dst_shape); } bool IsContiguousSlice(const Shape& orig, const Shape& sliced) { bool sliced_dim_found = false; for (auto dim : orig.layout().minor_to_major()) { if (!sliced_dim_found) { sliced_dim_found = sliced.dimensions(dim) < orig.dimensions(dim); continue; } if (sliced.dimensions(dim) != 1) return false; } return true; } llvm::Value* EmitAMDGPUShflDown(llvm::Value* value, llvm::Value* offset, llvm::IRBuilder<>* b) { llvm::Module* module = b->GetInsertBlock()->getModule(); CHECK_EQ(value->getType()->getPrimitiveSizeInBits(), 32); auto* i32_ty = b->getInt32Ty(); llvm::FunctionCallee shfl_fn = module->getOrInsertFunction( llvm_ir::AsStringRef("__ockl_readuplane_i32"), llvm::FunctionType::get(i32_ty, {i32_ty, i32_ty}, false)); llvm::Value* result = b->CreateCall(shfl_fn, {b->CreateBitCast(value, i32_ty), offset}); return b->CreateBitCast(result, value->getType()); } llvm::Value* EmitAMDGPUShflDownSwizzle(llvm::Value* value, llvm::Value* offset, llvm::IRBuilder<>* b) { llvm::Module* module = b->GetInsertBlock()->getModule(); CHECK_EQ(value->getType()->getPrimitiveSizeInBits(), 32); auto* i32_ty = b->getInt32Ty(); llvm::Function* intrinsic = llvm::cast<llvm::Function>( module ->getOrInsertFunction( "llvm.amdgcn.ds.swizzle", llvm::FunctionType::get(i32_ty, {i32_ty, i32_ty}, false)) .getCallee()); llvm::Value* bitcast_value = b->CreateBitCast(value, i32_ty); llvm::Value* control_value = b->CreateAdd(b->CreateMul(offset, b->getInt32(0x20)), b->getInt32(0x1f)); llvm::Value* result = b->CreateCall(intrinsic, {bitcast_value, control_value}); return b->CreateBitCast(result, value->getType()); } llvm::Value* EmitNVPTXShflDown(llvm::Value* value, llvm::Value* offset, llvm::IRBuilder<>* b) { llvm::Module* module = b->GetInsertBlock()->getModule(); llvm::Intrinsic::ID llvm_intrinsic_id; CHECK_EQ(value->getType()->getPrimitiveSizeInBits(), 32); if (value->getType()->isFloatTy()) { llvm_intrinsic_id = llvm::Intrinsic::nvvm_shfl_sync_down_f32; } else { llvm_intrinsic_id = llvm::Intrinsic::nvvm_shfl_sync_down_i32; } llvm::Function* intrinsic = llvm::Intrinsic::getDeclaration(module, llvm_intrinsic_id, {}); return b->CreateCall( intrinsic, {b->getInt32(-1), value, offset, b->getInt32(WarpSize() - 1)}); } llvm::Value* EmitSPIRShflDown(llvm::Value* value, llvm::Value* offset, llvm::IRBuilder<>* b) { CHECK_EQ(value->getType()->getPrimitiveSizeInBits(), 32); if (value->getType()->isFloatTy()) { return EmitDeviceFunctionCall( "_Z34__spirv_GroupNonUniformShuffleDownffj", {b->getInt32(3), value, offset}, {U32, F32, U32}, F32, llvm::AttrBuilder(b->getContext()) .addAttribute(llvm::Attribute::NoUnwind) .addAttribute(llvm::Attribute::Convergent), b); } else { return EmitDeviceFunctionCall( "_Z34__spirv_GroupNonUniformShuffleDownjjj", {b->getInt32(3), value, offset}, {U32, U32, U32}, U32, llvm::AttrBuilder(b->getContext()) .addAttribute(llvm::Attribute::NoUnwind) .addAttribute(llvm::Attribute::Convergent), b); } } llvm::Value* EmitFullWarpShuffleDown( llvm::Value* value, llvm::Value* offset, llvm::IRBuilder<>* builder, const se::DeviceDescription& gpu_device_info) { int bit_width = value->getType()->getPrimitiveSizeInBits(); llvm::Module* module = builder->GetInsertBlock()->getModule(); llvm::Triple target_triple = llvm::Triple(module->getTargetTriple()); if (value->getType()->isFloatTy() && bit_width == 32) { if (target_triple.isNVPTX()) { return EmitNVPTXShflDown(value, offset, builder); } else if (target_triple.getArch() == llvm::Triple::amdgcn) { if (gpu_device_info.rocm_compute_capability().gfx9_mi100_or_later()) { return EmitAMDGPUShflDownSwizzle(value, offset, builder); } return EmitAMDGPUShflDown(value, offset, builder); } else if (target_triple.isSPIR()) { return EmitSPIRShflDown(value, offset, builder); } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } } int num_segments = CeilOfRatio(bit_width, 32); llvm::Value* x = builder->CreateBitCast( builder->CreateZExt( builder->CreateBitCast(value, builder->getIntNTy(bit_width)), builder->getIntNTy(32 * num_segments)), llvm::VectorType::get(builder->getInt32Ty(), num_segments, false)); for (int i = 0; i < num_segments; ++i) { llvm::Value* insert_val; if (target_triple.isNVPTX()) { insert_val = EmitNVPTXShflDown(builder->CreateExtractElement(x, i), offset, builder); } else if (target_triple.getArch() == llvm::Triple::amdgcn) { if (gpu_device_info.rocm_compute_capability().gfx9_mi100_or_later()) { insert_val = EmitAMDGPUShflDownSwizzle( builder->CreateExtractElement(x, i), offset, builder); } else { insert_val = EmitAMDGPUShflDown(builder->CreateExtractElement(x, i), offset, builder); } } else if (target_triple.isSPIR()) { insert_val = EmitSPIRShflDown(builder->CreateExtractElement(x, i), offset, builder); } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } x = builder->CreateInsertElement(x, insert_val, i); } return builder->CreateBitCast( builder->CreateTrunc( builder->CreateBitCast(x, builder->getIntNTy(32 * num_segments)), builder->getIntNTy(bit_width)), value->getType()); } llvm::Value* IsBlock0Thread0(llvm::IRBuilder<>* b) { llvm::Value* is_thread0 = b->CreateICmpEQ( b->getInt32(0), EmitCallToTargetIntrinsic(TargetIntrinsicID::kThreadIdx, {}, {}, b)); llvm::Value* is_block0 = b->CreateICmpEQ( b->getInt32(0), EmitCallToTargetIntrinsic(TargetIntrinsicID::kBlockIdx, {}, {}, b)); return b->CreateAnd(is_thread0, is_block0); } absl::StatusOr<BufferAllocation::Slice> GetAllocationSlice( const BufferAssignment& buffer_assignment, const HloInstruction* instr, const ShapeIndex& index) { return buffer_assignment.GetUniqueSlice(instr, index); } std::vector<const HloInstruction*> GetOutputDefiningDynamicUpdateSlices( absl::Span<HloInstructionAdaptor const> roots) { std::vector<const HloInstruction*> dus_ops; for (HloInstructionAdaptor root : roots) { while (root.opcode() == HloOpcode::kBitcast) { root = root.GetOperand(0); } if (root.opcode() == HloOpcode::kDynamicUpdateSlice) { dus_ops.push_back(&root.instruction()); } } return dus_ops; } template <typename T> absl::InlinedVector<const HloInstruction*, 4> GetStartIndices(T instr) { absl::InlinedVector<const HloInstruction*, 4> result; for (int i = instr->first_index_operand_number(); i < instr->operand_count(); i++) { const HloInstruction* index = instr->operand(i); result.push_back(index); } return result; } absl::StatusOr<bool> CanEmitFusedDynamicUpdateSliceInPlaceForGpu( const HloFusionInstruction* fusion, std::function<absl::StatusOr<BufferAllocation::Slice>( const HloInstruction* instr, const ShapeIndex& index)> get_allocation_slice, absl::Span<HloInstructionAdaptor const> roots) { std::vector<const HloInstruction*> dus_instrs = GetOutputDefiningDynamicUpdateSlices(roots); std::vector<BufferAllocation::Slice> output_buffers; TF_RETURN_IF_ERROR(ShapeUtil::ForEachSubshapeWithStatus( fusion->shape(), [&](const Shape& shape, const ShapeIndex index) { if (shape.IsArray()) { TF_ASSIGN_OR_RETURN(BufferAllocation::Slice buffer, get_allocation_slice(fusion, index)); output_buffers.push_back(buffer); } return absl::OkStatus(); })); if (dus_instrs.size() != output_buffers.size()) { return false; } if (output_buffers.empty()) { return Internal("Output buffers should not be empty"); } Shape update_shape = dus_instrs[0]->operand(1)->shape(); for (int i = 0; i < dus_instrs.size(); ++i) { auto* dus = Cast<HloDynamicUpdateSliceInstruction>(dus_instrs[i]); if (!dus->IsRoot() && dus->user_count() != 1) return false; HloInstruction* dus_user = dus->IsRoot() ? nullptr : dus->users().front(); if (dus_user && dus_user->opcode() == HloOpcode::kBitcast) { if (!dus_user->IsRoot() && dus_user->user_count() != 1) return false; dus_user = dus_user->IsRoot() ? nullptr : dus_user->users().front(); } if (dus_user && dus_user->opcode() == HloOpcode::kTuple) { if (!dus_user->IsRoot()) return false; dus_user = nullptr; } if (dus_user != nullptr) return false; const HloInstruction* operand = dus->operand(0); if (operand->opcode() == HloOpcode::kBitcast) { operand = operand->operand(0); } auto* parameter = DynCast<HloParameterInstruction>(operand); if (!parameter) return false; std::queue<const HloInstruction*> q; absl::flat_hash_set<const HloInstruction*> visited; q.push(parameter); visited.insert(parameter); visited.insert(dus); while (!q.empty()) { const HloInstruction* instr = q.front(); q.pop(); for (const HloInstruction* user : instr->users()) { if (user->opcode() == HloOpcode::kDynamicSlice && dus->operand(0) == user->operand(0) && update_shape == user->shape()) { absl::InlinedVector<const HloInstruction*, 4> user_start_indices = GetStartIndices(Cast<HloDynamicSliceInstruction>(user)); absl::InlinedVector<const HloInstruction*, 4> dus_start_indices = GetStartIndices(dus); if (ShapeUtil::ElementsIn(update_shape) != 1 && user_start_indices != dus_start_indices) { return false; } } else if (user != dus && !user->IsElementwise() && user->opcode() != HloOpcode::kBitcast && user->opcode() != HloOpcode::kTuple) { return false; } if (visited.insert(user).second) { q.push(user); } } } if (dus->update()->shape() != update_shape) { return false; } const HloInstruction* lhs = fusion->operand(parameter->parameter_number()); TF_ASSIGN_OR_RETURN(BufferAllocation::Slice lhs_buffer, get_allocation_slice(lhs, {})); BufferAllocation::Slice rhs_buffer = output_buffers[i]; if (lhs_buffer != rhs_buffer) { return false; } } return true; } static std::optional<TransposeDescription> FindTiledTranspose( const HloInstruction& instr) { if (instr.opcode() != HloOpcode::kCopy) { return std::nullopt; } if (std::optional<Vector3> tr = ShapeUtil::GetNormalizedTransposeShape( instr.operand(0)->shape(), instr.shape(), Vector3{0, 2, 1})) { if ((tr->at(1) >= kMinDimensionToTransposeTiled && tr->at(2) >= kMinDimensionToTransposeTiled) || (tr->at(1) >= kMinDimensionToTransposeTiled2 && tr->at(2) >= kMinDimensionToTransposeTiled2 && tr->at(1) * tr->at(2) >= kMinTotalDimensionsToTransposeTiled)) { return TransposeDescription{&instr, *tr, Vector3{0, 2, 1}}; } } if (std::optional<Vector3> tr = ShapeUtil::GetNormalizedTransposeShape( instr.operand(0)->shape(), instr.shape(), Vector3{2, 1, 0})) { if ((tr->at(0) >= kMinDimensionToTransposeTiled && tr->at(2) >= kMinDimensionToTransposeTiled) || (tr->at(0) >= kMinDimensionToTransposeTiled2 && tr->at(2) >= kMinDimensionToTransposeTiled2 && tr->at(0) * tr->at(2) >= kMinTotalDimensionsToTransposeTiled)) { return TransposeDescription{&instr, *tr, Vector3{2, 1, 0}}; } } return std::nullopt; } static std::optional<TransposeDescription> FindTiledLogicalTranspose( const HloInstruction& instr) { if (instr.opcode() != HloOpcode::kTranspose) { return std::nullopt; } if (std::optional<Vector3> tr = ShapeUtil::GetNormalizedLogicalTransposeShape( instr.operand(0)->shape(), instr.shape(), instr.dimensions(), Vector3{0, 2, 1})) { if ((tr->at(1) >= kMinDimensionToTransposeTiled && tr->at(2) >= kMinDimensionToTransposeTiled) ||
#include "xla/service/gpu/ir_emission_utils.h" #include <cstdint> #include <memory> #include <vector> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { using ::tsl::testing::IsOkAndHolds; class IrEmissionUtilsTest : public HloTestBase {}; TEST_F(IrEmissionUtilsTest, FindTiledLogicalTranspose) { const char* hlo = R"( HloModule module ENTRY entry { p = f32[32,48,64]{2,1,0} parameter(0) ROOT t = f32[64,32,48]{2,1,0} transpose(p), dimensions={2,0,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* tr = module->entry_computation()->root_instruction(); auto result = GetDescriptionForTiledTransposeEmitter(*tr, *tr); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, tr); EXPECT_EQ(result->dimensions, Vector3({1, 64, 1536})); EXPECT_EQ(result->permutation, Vector3({0, 2, 1})); } TEST_F(IrEmissionUtilsTest, FindAnyTiledTranspose) { const char* hlo = R"( HloModule module ENTRY entry { p = f32[32,48,64]{2,1,0} parameter(0) ROOT t = f32[64,48,32]{2,1,0} transpose(p), dimensions={2,1,0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); auto result = GetDescriptionForTiledTransposeEmitter(*r, *r); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, r); EXPECT_EQ(result->dimensions, Vector3({64, 48, 32})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, FindAnyTiledTransposeWithIntermediateUnaryOp) { const char* hlo = R"( HloModule module ENTRY entry { p = f32[32,48,64]{2,1,0} parameter(0) t = f32[64,48,32]{2,1,0} transpose(p), dimensions={2,1,0} ROOT n = f32[64,48,32]{2,1,0} negate(t) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); auto result = GetDescriptionForTiledTransposeEmitter(*r, *r->operand(0)); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, r->operand(0)); EXPECT_EQ(result->dimensions, Vector3({64, 48, 32})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, FindAnyTiledTransposeWithIntermediateUnaryOpS8) { const char* hlo = R"( HloModule module fusion { p = f32[32,48,64]{2,1,0} parameter(0) t = f32[64,48,32]{2,1,0} transpose(p), dimensions={2,1,0} ROOT c = s8[64,48,32]{2,1,0} convert(t) } ENTRY main { p0 = f32[32,48,64]{2,1,0} parameter(0) ROOT f = s8[64,48,32]{2,1,0} fusion(p0), kind=kInput, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction()->fused_expression_root(); EXPECT_FALSE( GetDescriptionForTiledTransposeEmitter(*r, *r->operand(0)).has_value()); EXPECT_EQ(FindNonTrivialHero(*r).name(), "t"); } TEST_F(IrEmissionUtilsTest, FindReduceHeroEpilogueFusion) { const char* hlo = R"( HloModule module %add { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } %fused_computation (param_0.4: f32[128,64], param_1.4: bf16[]) -> bf16[64] { %param_0 = f32[128,64]{1,0} parameter(0) %param_1 = bf16[] parameter(1) %convert.0 = f32[] convert(bf16[] %param_1) %reduce.0 = f32[64]{0} reduce(f32[128,64]{1,0} %param_0, f32[] %convert.0), dimensions={0}, to_apply=%add ROOT %convert.1 = bf16[64]{0} convert(f32[64]{0} %reduce.0) } ENTRY %main { %param_0 = f32[128,64]{1,0} parameter(0) %param_1 = bf16[] parameter(1) ROOT fusion = bf16[64]{0} fusion(%param_0, %param_1), kind=kInput, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); auto fusion = HloFusionAdaptor::ForInstruction(r); const auto& result = FindNonTrivialHero(fusion->GetRoots()[0]); EXPECT_EQ(result.name(), "reduce.0"); } TEST_F(IrEmissionUtilsTest, FindReduceHeroEpilogueFusionTwoRootUsers) { const char* hlo = R"( HloModule module Add { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %add = f32[] add(%x, %y) } fused_computation { param_0 = f32[4,2]{1,0} parameter(0) neg = f32[4,2]{1,0} negate(param_0) constant_0 = f32[] constant(0) reduce.1 = f32[4]{0} reduce(param_0, constant_0), dimensions={1}, to_apply=Add bitcast.1 = f32[1,1,4]{2,1,0} bitcast(reduce.1) sign.1 = f32[1,1,4]{2,1,0} sign(bitcast.1) ROOT tuple.12 = (f32[4,2]{1,0}, f32[1,1,4]{2,1,0}, f32[1,1,4]{2,1,0}) tuple(neg, bitcast.1, sign.1) } ENTRY main.7749 { Arg_2.1 = f32[4,2]{1,0} parameter(0) ROOT fusion = (f32[4,2]{1,0}, f32[1,1,4]{2,1,0}, f32[1,1,4]{2,1,0}) fusion(Arg_2.1), kind=kInput, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); auto fusion = HloFusionAdaptor::ForInstruction(r); const auto& result = FindNonTrivialHero(fusion->GetRoots()[1]); EXPECT_EQ(result.name(), "reduce.1"); const auto& result2 = FindNonTrivialHero(fusion->GetRoots()[2]); EXPECT_EQ(result2.name(), "reduce.1"); } TEST_F(IrEmissionUtilsTest, FindReduceHeroEpilogueFusionHeroAlsoUsedAsNonHero) { const char* hlo = R"( HloModule module Add { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } fused_computation { p0 = f32[4]{0} parameter(0) zero = f32[] constant(0.0) reduce.0 = f32[] reduce(f32[4]{0} p0, f32[] zero), dimensions={0}, to_apply=Add broadcast = f32[4]{0} broadcast(f32[] reduce.0), dimensions={} reduce.1 = f32[] reduce(f32[4]{0} broadcast, f32[] zero), dimensions={0}, to_apply=Add bitcast = f32[1]{0} bitcast(f32[] reduce.0) ROOT tuple.1 = (f32[], f32[4]{0}, f32[1]{0}) tuple(f32[] reduce.1, f32[4]{0} broadcast, f32[1]{0} bitcast) } ENTRY main { Arg0 = f32[4]{0} parameter(0) ROOT fusion = (f32[], f32[4]{0}, f32[1]{0}) fusion(Arg0), kind=kInput, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); auto fusion = HloFusionAdaptor::ForInstruction(r); const auto& result = FindNonTrivialHero(fusion->GetRoots()[1]); EXPECT_EQ(result.name(), "broadcast"); const auto& result2 = FindNonTrivialHero(fusion->GetRoots()[2]); EXPECT_EQ(result2.name(), "reduce.0"); } TEST_F(IrEmissionUtilsTest, FindAnyTiledTransposeWithIntermediateBinaryOp) { const char* hlo = R"( HloModule module ENTRY entry { p = f32[32,48,64]{2,1,0} parameter(0) p2 = f32[64,48,32]{2,1,0} parameter(1) t = f32[64,48,32]{2,1,0} transpose(p), dimensions={2,1,0} ROOT add = f32[64,48,32]{2,1,0} add(t, p2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); auto result = GetDescriptionForTiledTransposeEmitter(*r, *r->operand(0)); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, r->operand(0)); EXPECT_EQ(result->dimensions, Vector3({64, 48, 32})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, FindAnyTiledTransposeWithTwoIntermediateBinaryOps) { const char* hlo = R"( HloModule module fusion { p = f32[32,48,64]{2,1,0} parameter(0) p2 = f32[64,48,32]{2,1,0} parameter(1) t = f32[64,48,32]{2,1,0} transpose(p), dimensions={2,1,0} mul = f32[64,48,32]{2,1,0} multiply(t, p2) ROOT add = f32[64,48,32]{2,1,0} add(mul, p2) } ENTRY main { param0 = f32[32,48,64]{2,1,0} parameter(0) param1 = f32[64,48,32]{2,1,0} parameter(1) ROOT fusion = f32[64,48,32]{2,1,0} fusion(param0, param1), kind=kInput, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction()->fused_expression_root(); auto result = GetDescriptionForTiledTransposeEmitter(*r, FindNonTrivialHero(*r)); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, r->operand(0)->operand(0)); EXPECT_EQ(result->dimensions, Vector3({64, 48, 32})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, FindAnyTiledTransposeWithIntermediateBinaryOpTwoTransposes) { const char* hlo = R"( HloModule module fusion { p = f32[32,48,64]{2,1,0} parameter(0) p2 = f32[48,32,64]{2,1,0} parameter(1) t = f32[64,48,32]{2,1,0} transpose(p), dimensions={2,1,0} t2 = f32[64,48,32]{2,1,0} transpose(p2), dimensions={2,0,1} ROOT add = f32[64,48,32]{2,1,0} add(t, t2) } ENTRY main { param0 = f32[32,48,64]{2,1,0} parameter(0) param1 = f32[48,32,64]{2,1,0} parameter(1) ROOT fusion = f32[64,48,32]{2,1,0} fusion(param0, param1), kind=kInput, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction()->fused_expression_root(); EXPECT_FALSE( GetDescriptionForTiledTransposeEmitter(*r, FindNonTrivialHero(*r)) .has_value()); EXPECT_EQ(&FindNonTrivialHero(*r), r); } TEST_F(IrEmissionUtilsTest, FindNonTrivialHeroOutsideFusion) { const char* hlo = R"( HloModule module f { p0 = f32[100,200,300]{2,1,0} parameter(0) ROOT add = f32[100,200,300]{2,1,0} add(p0, p0) } ENTRY entry { p0 = f32[300,200,100]{2,1,0} parameter(0) t = f32[100,200,300]{2,1,0} transpose(p0), dimensions={2,1,0} fusion = f32[100,200,300]{2,1,0} fusion(t), kind=kLoop, calls=f ROOT add = f32[100,200,300]{2,1,0} add(t, fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* transpose = module->entry_computation()->GetInstructionWithName("t"); HloInstruction* fusion = module->entry_computation()->GetInstructionWithName("fusion"); auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer(transpose, fusion); HloInstructionAdaptor r( *module->GetComputationWithName("f")->root_instruction(), fusion_adaptor.get()); EXPECT_EQ(&FindNonTrivialHero(r).instruction(), transpose); } TEST_F(IrEmissionUtilsTest, FindNonTrivialTransposeHeroInsideFusion) { const char* hlo = R"( HloModule module f { p0 = f32[300,200,100]{2,1,0} parameter(0) t = f32[100,200,300]{2,1,0} transpose(p0), dimensions={2,1,0} ROOT add = f32[100,200,300]{2,1,0} add(t, t) } ENTRY entry { p0 = f32[300,200,100]{2,1,0} parameter(0) p1 = f32[100,200,300]{2,1,0} parameter(1) fusion = f32[100,200,300]{2,1,0} fusion(p0), kind=kLoop, calls=f ROOT add = f32[100,200,300]{2,1,0} add(p1, fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); HloInstruction* transpose = module->GetComputationWithName("f") ->parameter_instruction(0) ->users() .front(); HloInstruction* fusion = module->entry_computation()->GetInstructionWithName("fusion"); auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer(fusion, r); EXPECT_EQ(&FindNonTrivialHero(HloInstructionAdaptor(*r, fusion_adaptor.get())) .instruction(), transpose); } TEST_F(IrEmissionUtilsTest, FindNonTrivialCopyHeroInsideFusion) { const char* hlo = R"( HloModule module f { p0 = f32[100,200,300]{2,1,0} parameter(0) t = f32[100,200,300]{0,1,2} copy(p0) ROOT add = f32[100,200,300]{0,1,2} add(t, t) } ENTRY entry { p0 = f32[100,200,300]{2,1,0} parameter(0) p1 = f32[100,200,300]{0,1,2} parameter(1) fusion = f32[100,200,300]{0,1,2} fusion(p0), kind=kLoop, calls=f ROOT add = f32[100,200,300]{0,1,2} add(p1, fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction(); HloInstruction* copy = module->GetComputationWithName("f") ->parameter_instruction(0) ->users() .front(); HloInstruction* fusion = module->entry_computation()->GetInstructionWithName("fusion"); auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer(fusion, r); EXPECT_EQ(&FindNonTrivialHero(HloInstructionAdaptor(*r, fusion_adaptor.get())) .instruction(), copy); } TEST_F(IrEmissionUtilsTest, TransposeReachableViaTrivialAndNontrivialOps) { const char* hlo = R"( HloModule module fusion { p = f64[16,16]{1,0} parameter(0) trans = f64[16,16]{1,0} transpose(p), dimensions={1,0} rev = f64[16,16]{1,0} reverse(trans), dimensions={0,1} sub = f64[16,16]{1,0} subtract(trans, trans) ROOT add = f64[16,16]{1,0} add(rev, sub) } ENTRY main { param = f64[16,16]{1,0} parameter(0) ROOT fusion = f64[16,16]{1,0} fusion(param), kind=kLoop, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* r = module->entry_computation()->root_instruction()->fused_expression_root(); EXPECT_FALSE( GetDescriptionForTiledTransposeEmitter(*r, FindNonTrivialHero(*r)) .has_value()); EXPECT_EQ(&FindNonTrivialHero(*r), r); } TEST_F(IrEmissionUtilsTest, FindTiledTransposeOneSwapDimIsSmall) { const char* hlo = R"( HloModule module fusion { p = f32[100,11,12,8]{3,2,1,0} parameter(0) ROOT c = f32[100,11,12,8]{1,0,2,3} copy(p) } ENTRY main { param = f32[100,11,12,8]{3,2,1,0} parameter(0) ROOT fusion = f32[100,11,12,8]{1,0,2,3} fusion(param), kind=kInput, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* copy = module->entry_computation()->root_instruction()->fused_expression_root(); auto result = GetDescriptionForTiledTransposeEmitter(*copy, FindNonTrivialHero(*copy)); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, copy); EXPECT_EQ(result->dimensions, Vector3({8, 12, 1100})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, FindTiledLogicalTransposeOneSwapDimIsSmall) { const char* hlo = R"( HloModule module fusion { p = f32[100,11,12,8]{3,2,1,0} parameter(0) ROOT t = f32[8,12,100,11]{3,2,1,0} transpose(p), dimensions={3,2,0,1} } ENTRY main { param = f32[100,11,12,8]{3,2,1,0} parameter(0) ROOT fusion = f32[8,12,100,11]{3,2,1,0} fusion(param), kind=kInput, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* tr = module->entry_computation()->root_instruction()->fused_expression_root(); auto result = GetDescriptionForTiledTransposeEmitter(*tr, FindNonTrivialHero(*tr)); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, tr); EXPECT_EQ(result->dimensions, Vector3({8, 12, 1100})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, FindTiledTransposeOtherSwapDimIsSmall) { const char* hlo = R"( HloModule module fusion { p = f32[8,12,100,11]{3,2,1,0} parameter(0) ROOT c = f32[8,12,100,11]{0,1,3,2} copy(p) } ENTRY main { param = f32[8,12,100,11]{3,2,1,0} parameter(0) ROOT fusion = f32[8,12,100,11]{0,1,3,2} fusion(param), kind=kInput, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* copy = module->entry_computation()->root_instruction()->fused_expression_root(); auto result = GetDescriptionForTiledTransposeEmitter(*copy, FindNonTrivialHero(*copy)); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, copy); EXPECT_EQ(result->dimensions, Vector3({1100, 12, 8})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, FindTiledLogicalTransposeOtherSwapDimIsSmall) { const char* hlo = R"( HloModule module fusion { p = f32[8,12,100,11]{3,2,1,0} parameter(0) ROOT t = f32[100,11,12,8]{3,2,1,0} transpose(p), dimensions={2,3,1,0} } ENTRY main { param = f32[8,12,100,11]{3,2,1,0} parameter(0) ROOT fusion = f32[100,11,12,8]{3,2,1,0} fusion(param), kind=kInput, calls=fusion } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* tr = module->entry_computation()->root_instruction()->fused_expression_root(); auto result = GetDescriptionForTiledTransposeEmitter(*tr, FindNonTrivialHero(*tr)); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result->instr, tr); EXPECT_EQ(result->dimensions, Vector3({1100, 12, 8})); EXPECT_EQ(result->permutation, Vector3({2, 1, 0})); } TEST_F(IrEmissionUtilsTest, IsContiguousSlice) { const char* hlo = R"( HloModule module ENTRY entry { p = f32[8,12,100,11]{3,2,1,0} parameter(0) slice.1 = f32[2,12,100,11]{3,2,1,0} slice(p), slice={[1:3], [0:12], [0:100], [0:11]} slice.2 = f32[1,1,1,11]{3,2,1,0} slice(p), slice={[1:2], [0:1], [0:1], [0:11]} slice.3 = f32[1,1,10,11]{3,2,1,0} slice(p), slice={[1:2], [0:1], [0:10], [0:11]} slice.4 = f32[1,2,10,11]{3,2,1,0} slice(p), slice={[1:2], [0:2], [0:10], [0:11]} slice.5 = f32[8,2,100,11]{3,2,1,0} slice(p), slice={[0:8], [10:12], [0:100], [0:11]} c = f32[8,12,100,11]{0,1,3,2} copy(p) slice.6 = f32[8,12,40,11]{0,1,3,2} slice(c), slice={[0:8], [0:12], [10:50], [0:11]} slice.7 = f32[8,12,1,2]{0,1,3,2} slice(c), slice={[0:8], [0:12], [0:1], [0:2]} slice.8 = f32[8,2,100,11]{0,1,3,2} slice(c), slice={[0:8], [0:2], [0:100], [0:11]} slice.9 = f32[8,2,40,11]{0,1,3,2} slice(c), slice={[0:8], [10:12], [10:50], [0:11]} slice.10 = f32[8,2,50,11]{3,2,1,0} slice(p), slice={[0:8:1], [10:12:1], [0:100:2], [0:11:1]} ROOT t = (f32[2,12,100,11]{3,2,1,0}, f32[1,1,1,11]{3,2,1,0}, f32[1,1,10,11]{3,2,1,0}, f32[1,2,10,11]{3,2,1,0}, f32[8,2,100,11]{3,2,1,0}, f32[8,12,40,11]{0,1,3,2}, f32[8,12,1,2]{0,1,3,2}, f32[8,2,100,11]{0,1,3,2}, f32[8,2,40,11]{0,1,3,2}, f32[8,2,50,11]{3,2,1,0}) tuple(slice.1, slice.2, slice.3, slice.4, slice.5, slice.6, slice.7, slice.8, slice.9, slice.10) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstruction* slice1 = module->entry_computation()->GetInstructionWithName("slice.1"); HloInstruction* slice2 = module->entry_computation()->GetInstructionWithName("slice.2"); HloInstruction* slice3 = module->entry_computation()->GetInstructionWithName("slice.3"); HloInstruction* slice4 = module->entry_computation()->GetInstructionWithName("slice.4"); HloInstruction* slice5 = module->entry_computation()->GetInstructionWithName("slice.5"); HloInstruction* slice6 = module->entry_computation()->GetInstructionWithName("slice.6"); HloInstruction* slice7 = module->entry_computation()->GetInstructionWithName("slice.7"); HloInstruction* slice8 = module->entry_computation()->GetInstructionWithName("slice.8"); HloInstruction* slice9 = module->entry_computation()->GetInstructionWithName("slice.9"); HloInstruction* slice10 = module->entry_computation()->GetInstructionWithName("slice.10"); EXPECT_TRUE(IsContiguousSlice(*slice1)); EXPECT_TRUE(IsContiguousSlice(*slice2)); EXPECT_TRUE(IsContiguousSlice(*slice3)); EXPECT_TRUE(!IsContiguousSlice(*slice4)); EXPECT_TRUE(!IsContiguousSlice(*slice5)); EXPECT_TRUE(IsContiguousSlice(*slice6)); EXPECT_TRUE(IsContiguousSlice(*slice7)); EXPECT_TRUE(!IsContiguousSlice(*slice8)); EXPECT_TRUE(!IsContiguousSlice(*slice9)); EXPECT_TRUE(!IsContiguousSlice(*slice10)); } TEST_F(IrEmissionUtilsTest, LiteralToAttrToXlaFormat) { { Literal literal = LiteralUtil::CreateR2<int16_t>({{0, 1, 2}, {3, 4, 5}}); TF_ASSERT_OK_AND_ASSIGN(DenseDataIntermediate data, LiteralToXlaFormat(literal)); EXPECT_EQ(data.span().size(), literal.size_bytes()); EXPECT_EQ(reinterpret_cast<const char*>(data.span().data()), literal.untyped_data()); } { Literal literal = LiteralUtil::CreateR2<s4>( {{s4(0), s4(1), s4(2)}, {s4(3), s4(4), s4(5)}}); TF_ASSERT_OK_AND_ASSIGN(DenseDataIntermediate data, LiteralToXlaFormat(literal)); EXPECT_EQ(data.span(), std::vector<uint8_t>({0x01, 0x23, 0x45})); EXPECT_NE(reinterpret_cast<const void*>(data.span().data()), literal.untyped_data()); } { Literal literal = LiteralUtil::CreateR2<u4>( {{u4(0), u4(1), u4(2)}, {u4(3), u4(4), u4(5)}, {u4(6), u4(7), u4(8)}}); TF_ASSERT_OK_AND_ASSIGN(DenseDataIntermediate data, LiteralToXlaFormat(literal)); EXPECT_EQ(data.span(), std::vector<uint8_t>({0x01, 0x23, 0x45, 0x67, 0x80})); EXPECT_NE(reinterpret_cast<const void*>(data.span().data()), literal.untyped_data()); } } TEST_F(IrEmissionUtilsTest, CanEmitFusedDynamicUpdateSliceInPlaceForGpu_HandlesBitcasts) { const char* hlo = R"( HloModule fusion, is_scheduled=true fused_computation { param_0.1 = s32[6]{0} parameter(0) bitcast = s32[2,3]{1,0} bitcast(param_0.1) zero = s32[] constant(0) param_1.1 = s32[] parameter(1) dynamic-slice = s32[1,1]{1,0} dynamic-slice(bitcast, param_1.1, zero), dynamic_slice_sizes={1,1} one = s32[] constant(1) bitcasted_one = s32[1,1]{1,0} bitcast(one) add = s32[1,1] add(dynamic-slice, bitcasted_one) dynamic-update-slice = s32[2,3]{1,0} dynamic-update-slice(bitcast, add, param_1.1, zero) ROOT bitcast.1 = s32[6]{0} bitcast(dynamic-update-slice) } ENTRY main { param_0 = s32[6]{0} parameter(0) param_1 = s32[] parameter(1) ROOT fusion = s32[6]{0} fusion(param_0, param_1), kind=kInput, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); auto fusion = module->entry_computation()->root_instruction(); BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); EXPECT_THAT(CanEmitFusedDynamicUpdateSliceInPlaceForGpu( Cast<HloFusionInstruction>(fusion), [&slice0](const HloInstruction*, const ShapeIndex&) { return slice0; }, HloFusionAdaptor::ForInstruction(fusion)->GetRoots()), IsOkAndHolds(true)); } TEST_F( IrEmissionUtilsTest, CanEmitFusedDynamicUpdateSliceInPlaceForGpu_ElementwiseOnPathToParameter) { const char* hlo = R"( HloModule fusion, is_scheduled=true fused_computation { param_0.1 = s32[2,3]{1,0} parameter(0) bitcast = s32[2,3]{1,0} negate(param_0.1) zero = s32[] constant(0) param_1.1 = s32[] parameter(1) dynamic-slice = s32[1,1]{1,0} dynamic-slice(bitcast, param_1.1, zero), dynamic_slice_sizes={1,1} one = s32[] constant(1) bitcasted_one = s32[1,1]{1,0} bitcast(one) add = s32[1,1] add(dynamic-slice, bitcasted_one) dynamic-update-slice = s32[2,3]{1,0} dynamic-update-slice(bitcast, add, param_1.1, zero) ROOT bitcast.1 = s32[6]{0} bitcast(dynamic-update-slice) } ENTRY main { param_0 = s32[2,3]{1,0} parameter(0) param_1 = s32[] parameter(1) ROOT fusion = s32[6]{0} fusion(param_0, param_1), kind=kInput, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); auto fusion = module->entry_computation()->root_instruction(); BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); EXPECT_THAT(CanEmitFusedDynamicUpdateSliceInPlaceForGpu( Cast<HloFusionInstruction>(fusion), [&slice0](const HloInstruction*, const ShapeIndex&) { return slice0; }, HloFusionAdaptor::ForInstruction(fusion)->GetRoots()), IsOkAndHolds(false)); } TEST_F(IrEmissionUtilsTest, CanEmitFusedDynamicUpdateSliceInPlaceForGpu_SlicesDifferent) { const char* hlo = R"( HloModule fusion, is_scheduled=true fused_computation { param_0.1 = s32[6]{0} parameter(0) bitcast = s32[2,3]{1,0} bitcast(param_0.1) zero = s32[] constant(0) param_1.1 = s32[] parameter(1) dynamic-slice = s32[1,1]{1,0} dynamic-slice(bitcast, param_1.1, zero), dynamic_slice_sizes={1,1} one = s32[] constant(1) bitcasted_one = s32[1,1]{1,0} bitcast(one) add = s32[1,1] add(dynamic-slice, bitcasted_one) dynamic-update-slice = s32[2,3]{1,0} dynamic-update-slice(bitcast, add, param_1.1, zero) ROOT bitcast.1 = s32[6]{0} bitcast(dynamic-update-slice) } ENTRY main { param_0 = s32[6]{0} parameter(0) param_1 = s32[] parameter(1) ROOT fusion = s32[6]{0} fusion(param_0, param_1), kind=kInput, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); auto fusion = module->entry_computation()->root_instruction(); BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); BufferAllocation::Slice slice1(&alloc, 10, 20); EXPECT_THAT(CanEmitFusedDynamicUpdateSliceInPlaceForGpu( Cast<HloFusionInstruction>(fusion), [fusion, &slice0, &slice1](const HloInstruction* instr, const ShapeIndex&) { if (instr == fusion) { return slice0; } return slice1; }, HloFusionAdaptor::ForInstruction(fusion)->GetRoots()), IsOkAndHolds(false)); } TEST_F( IrEmissionUtilsTest, CanEmitFusedDynamicUpdateSliceInPlaceForGpu_DynamicUpdateSliceWithDifferentDynamicSliceAccess) { const char* hlo = R"( HloModule fusion, input_output_alias={ {}: (0, {}) } fused_computation { param_0.1 = s32[6]{0} parameter(0) bitcast = s32[2,3]{1,0} bitcast(param_0.1) zero = s32[] constant(0) one = s32[] constant(1) param_1.1 = s32[] parameter(1) dynamic-slice = s32[2,2]{1,0} dynamic-slice(bitcast, param_1.1, one), dynamic_slice_sizes={2,2} broadcasted_one = s32[2,2]{1,0} broadcast(one), dimensions={} add = s32[2,2] add(dynamic-slice, broadcasted_one) dynamic-update-slice = s32[2,3]{1,0} dynamic-update-slice(bitcast, add, param_1.1, zero) ROOT bitcast.1 = s32[6]{0} bitcast(dynamic-update-slice) } ENTRY main { param_0 = s32[6]{0} parameter(0) param_1 = s32[] parameter(1) ROOT fusion = s32[6]{0} fusion(param_0, param_1), kind=kInput, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); auto fusion = module->entry_computation()->root_instruction(); BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); EXPECT_THAT(CanEmitFusedDynamicUpdateSliceInPlaceForGpu( Cast<HloFusionInstruction>(fusion), [&slice0](const HloInstruction*, const ShapeIndex&) { return slice0; }, HloFusionAdaptor::ForInstruction(fusion)->GetRoots()), IsOkAndHolds(false)); } TEST_F(IrEmissionUtilsTest, CanEmitFusedDynamicUpdateSliceInPlaceForGpu_HandlesMultiOutputFusion) { const char* hlo = R"( HloModule MultipleInplaceDus, is_scheduled=true, input_output_alias={ {0}: (0, {}), {1}: (2, {}) } fused_computation { p0 = bf16[10,11,12] parameter(0) p1 = bf16[1,11,12] parameter(1) p2 = bf16[8,11,12] parameter(2) p3 = bf16[1,11,12] parameter(3) p4 = s32[] parameter(4) c0 = s32[] constant(0) cmp = pred[] compare(p4, c0), direction=EQ broadcast = pred[1,11,12] broadcast(cmp), dimensions={} select = bf16[1,11,12] select(broadcast, p1, p3) dus0 = bf16[10,11,12] dynamic-update-slice(p0, select, c0, c0, c0) dus1 = bf16[8,11,12] dynamic-update-slice(p2, select, c0, c0, c0) ROOT tuple = (bf16[10,11,12], bf16[8,11,12]) tuple(dus0, dus1) } ENTRY main { p0 = bf16[10,11,12] parameter(0) p1 = bf16[1,11,12] parameter(1) p2 = bf16[8,11,12] parameter(2) p3 = bf16[1,11,12] parameter(3) p4 = s32[] parameter(4) ROOT fusion_root_multiple = (bf16[10,11,12], bf16[8,11,12]) fusion(p0, p1, p2, p3, p4), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); auto fusion = module->entry_computation()->root_instruction(); BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice slice0(&alloc, 0, 10); EXPECT_THAT(CanEmitFusedDynamicUpdateSliceInPlaceForGpu( Cast<HloFusionInstruction>(fusion), [&slice0](const HloInstruction*, const ShapeIndex&) { return slice0; }, HloFusionAdaptor::ForInstruction(fusion)->GetRoots()), IsOkAndHolds(true)); } TEST_F( IrEmissionUtilsTest, CanEmitFusedDynamicUpdateSliceInPlaceForGpu_HandlesMultiOutputFusionWithTransposeBitcasts) { const char* hlo = R"( HloModule MultipleInplaceDusWithTransposeBitcastToTheRoot, is_scheduled=true, input_output_alias={ {0}: (0, {}), {1}: (2, {}) } fused_computation { p0 = bf16[10,11,12] parameter(0) p1 = bf16[1,11,12] parameter(1) p2 = bf16[8,11,12] parameter(2) p3 = bf16[1,11,12] parameter(3) p4 = s32[] parameter(4) c0 = s32[] constant(0) cmp = pred[] compare(p4, c0), direction=EQ broadcast = pred[1,11,12] broadcast(cmp), dimensions={} select = bf16[1,11,12] select(broadcast, p1, p3) dus0 = bf16[10,11,12] dynamic-update-slice(p0, select, c0, c0, c0) bitcasted_dus0 = bf16[11,10,12] bitcast(dus0) dus1 = bf16[8,11,12] dynamic-update-slice(p2, select, c0, c0, c0) ROOT tuple = (bf16[11,10,12], bf16[8,11,12]) tuple(bitcasted_dus0, dus1) } ENTRY main { p0 = bf16[10,11,12] parameter(0) p1 = bf16[1,11,12] parameter(1) p2 = bf16[8,11,12] parameter(2) p3 = bf16[1,11,12] parameter(3) p4 = s32[] parameter(4) ROOT fusi
2,015
cpp
tensorflow/tensorflow
onednn_softmax
third_party/xla/xla/service/cpu/onednn_softmax.cc
third_party/xla/xla/service/cpu/tests/onednn_softmax_test.cc
#ifndef XLA_SERVICE_CPU_ONEDNN_SOFTMAX_H_ #define XLA_SERVICE_CPU_ONEDNN_SOFTMAX_H_ #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) namespace xla { namespace cpu { extern "C" { extern void __xla_cpu_runtime_OneDnnSoftmax(const void* run_options_ptr, void* input, void* result, void* softmax_config_ptr); } } } #endif #endif #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_softmax.h" #include <algorithm> #include <cmath> #include <initializer_list> #include <vector> #include "dnnl.hpp" #include "absl/base/dynamic_annotations.h" #include "xla/executable_run_options.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/onednn_memory_util.h" #include "xla/service/cpu/runtime_lightweight_check.h" #include "xla/tsl/util/onednn_threadpool.h" #include "unsupported/Eigen/CXX11/Tensor" namespace xla { namespace cpu { ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_OneDnnSoftmax( const void* run_options_ptr, void* input, void* result, void* softmax_config_ptr) { const xla::ExecutableRunOptions* run_options = static_cast<const xla::ExecutableRunOptions*>(run_options_ptr); XLA_LIGHTWEIGHT_CHECK(run_options != nullptr); XLA_LIGHTWEIGHT_CHECK(run_options->intra_op_thread_pool() != nullptr); tsl::OneDnnThreadPool thread_pool( run_options->intra_op_thread_pool()->getPool(), false); dnnl::engine cpu_engine(dnnl::engine::kind::cpu, 0); #ifndef ENABLE_ONEDNN_OPENMP auto onednn_stream = dnnl::stream( dnnl::threadpool_interop::make_stream(cpu_engine, &thread_pool)); #else auto onednn_stream = dnnl::stream(cpu_engine); #endif std::string config_str(static_cast<const char*>(softmax_config_ptr)); OneDnnSoftmaxConfig softmax_config; softmax_config.ParseFromString(config_str); MemrefInfo input_minfo(input); MemrefInfo result_minfo(result); auto src_md = input_minfo.GetOneDnnMemDesc(); auto dst_md = result_minfo.GetOneDnnMemDesc(); auto src_mem = dnnl::memory(src_md, cpu_engine, input_minfo.Data()); auto dst_mem = dnnl::memory(dst_md, cpu_engine, result_minfo.Data()); int axis = softmax_config.softmax_axis(); auto softmax_pd = dnnl::softmax_forward::primitive_desc( cpu_engine, dnnl::prop_kind::forward_inference, dnnl::algorithm::softmax_accurate, src_md, dst_md, axis); auto softmax_prim = dnnl::softmax_forward(softmax_pd); std::unordered_map<int, dnnl::memory> softmax_args; softmax_args.insert({DNNL_ARG_SRC, src_mem}); softmax_args.insert({DNNL_ARG_DST, dst_mem}); softmax_prim.execute(onednn_stream, softmax_args); } } } #endif
#if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include <utility> #include "absl/strings/str_replace.h" #include "absl/strings/substitute.h" #include "xla/literal.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/onednn_ops_rewriter.h" #include "xla/service/cpu/onednn_util.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace cpu { std::string TestParamsToString( const ::testing::TestParamInfo<std::tuple<PrimitiveType, int>>& data) { PrimitiveType data_type; int batch_size; std::tie(data_type, batch_size) = data.param; return absl::StrCat(primitive_util::LowercasePrimitiveTypeName(data_type), "_BatchSize", std::to_string(batch_size)); } class OneDnnSoftmaxTest : public HloTestBase, public ::testing::WithParamInterface<std::tuple<PrimitiveType, int>> { protected: const char* onednn_softmax_ = R"( ; CHECK: custom_call_target="__onednn$softmax" )"; void TestSoftmax(std::string input_hlo_string, int expected_softmax_axis) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(input_hlo_string)); OneDnnOpsRewriter softmax_rewrite_pass; HloInstruction* onednn_softmax; OneDnnSoftmaxConfig softmax_config; TF_ASSERT_OK_AND_ASSIGN( bool changed, this->RunHloPass(&softmax_rewrite_pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(::xla::match::CustomCall(&onednn_softmax, {"__onednn$softmax"}))); auto backend_config = onednn_softmax->backend_config<BackendConfig>(); softmax_config.CopyFrom(backend_config->onednn_softmax_config()); int axis_after_rewrite = softmax_config.softmax_axis(); EXPECT_EQ(expected_softmax_axis, axis_after_rewrite); } }; TEST_P(OneDnnSoftmaxTest, SoftmaxGenericTest) { PrimitiveType data_type; int batch_size; std::tie(data_type, batch_size) = GetParam(); if (!IsSupportedType(data_type)) { GTEST_SKIP() << "CPU does not support " << primitive_util::LowercasePrimitiveTypeName(data_type); } const std::string softmax_hlo_template_string = R"( HloModule softmax_module region_max { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(Arg_0, Arg_1) } region_add { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT add = $0[] add(Arg_0, Arg_1) } ENTRY main { Arg_0 = $0[$1,128,30522]{2,1,0} parameter(0) neg_inf = $0[] constant(-inf) reduce_max = $0[$1,128]{1,0} reduce(Arg_0, neg_inf), dimensions={2}, to_apply=region_max reshape.0 = $0[$1,128,1]{2,1,0} reshape(reduce_max) broadcast.0 = $0[$1,128,1]{2,1,0} broadcast(reshape.0), dimensions={0,1,2} reshape.1 = $0[$1,128]{1,0} reshape(broadcast.0) broadcast.1 = $0[$1,128,30522]{2,1,0} broadcast(reshape.1), dimensions={0,1} subtract.0 = $0[$1,128,30522]{2,1,0} subtract(Arg_0, broadcast.1) exponential = $0[$1,128,30522]{2,1,0} exponential(subtract.0) const_zero = $0[] constant(0) reduce_add = $0[$1,128]{1,0} reduce(exponential, const_zero), dimensions={2}, to_apply=region_add reshape.2 = $0[$1,128,1]{2,1,0} reshape(reduce_add) broadcast.2 = $0[$1,128,1]{2,1,0} broadcast(reshape.2), dimensions={0,1,2} reshape.3 = $0[$1,128]{1,0} reshape(broadcast.2) broadcast.3 = $0[$1,128,30522]{2,1,0} broadcast(reshape.3), dimensions={0,1} ROOT divide = $0[$1,128,30522]{2,1,0} divide(exponential, broadcast.3) } )"; const std::string softmax_hlo_string = absl::Substitute( softmax_hlo_template_string, primitive_util::LowercasePrimitiveTypeName(data_type), batch_size); TestSoftmax(softmax_hlo_string, 2); } INSTANTIATE_TEST_SUITE_P(OneDnnSoftmaxTestSuite, OneDnnSoftmaxTest, ::testing::Combine(::testing::ValuesIn({F32, BF16, F16}), ::testing::Values(1, 16)), TestParamsToString); TEST_F(OneDnnSoftmaxTest, SoftmaxFP32OnAxisZero) { const std::string softmax_hlo_string = R"( HloModule softmax_module region_max { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT maximum = f32[] maximum(Arg_0, Arg_1) } region_add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } ENTRY main { Arg_0 = f32[3,1,1]{2,1,0} parameter(0) neg_inf = f32[] constant(-inf) reduce_max = f32[1,1]{1,0} reduce(Arg_0, neg_inf), dimensions={0}, to_apply=region_max neg_inf.1 = f32[1,1]{1,0} constant({ {-inf} }) maximum = f32[1,1]{1,0} maximum(reduce_max, neg_inf.1) reshape.0 = f32[1,1,1]{2,1,0} reshape(maximum) broadcast.0 = f32[1,1,1]{2,1,0} broadcast(reshape.0), dimensions={0,1,2} reshape.1 = f32[1,1]{1,0} reshape(broadcast.0) broadcast.1 = f32[3,1,1]{2,1,0} broadcast(reshape.1), dimensions={1,2} subtract = f32[3,1,1]{2,1,0} subtract(Arg_0, broadcast.1) exponential = f32[3,1,1]{2,1,0} exponential(subtract) const_zero = f32[] constant(0) reduce_add = f32[1,1]{1,0} reduce(exponential, const_zero), dimensions={0}, to_apply=region_add reshape.2 = f32[1,1,1]{2,1,0} reshape(reduce_add) broadcast.2 = f32[1,1,1]{2,1,0} broadcast(reshape.2), dimensions={0,1,2} reshape.3 = f32[1,1]{1,0} reshape(broadcast.2) broadcast.3 = f32[3,1,1]{2,1,0} broadcast(reshape.3), dimensions={1,2} ROOT divide = f32[3,1,1]{2,1,0} divide(exponential, broadcast.3) } )"; TestSoftmax(softmax_hlo_string, 0); } TEST_F(OneDnnSoftmaxTest, SoftmaxWithBF16ConvertOutputFP32Pattern) { if (!IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const std::string softmax_hlo_string = R"( HloModule softmax_module region_max { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT maximum = f32[] maximum(Arg_0, Arg_1) } region_add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } ENTRY main { Arg_0 = f32[16,128,30522]{2,1,0} parameter(0) neg_inf = f32[] constant(-inf) reduce_max = f32[16,128]{1,0} reduce(Arg_0, neg_inf), dimensions={2}, to_apply=region_max reshape.0 = f32[16,128,1]{2,1,0} reshape(reduce_max) broadcast.0 = f32[16,128,1]{2,1,0} broadcast(reshape.0), dimensions={0,1,2} reshape.1 = f32[16,128]{1,0} reshape(broadcast.0) broadcast.1 = f32[16,128,30522]{2,1,0} broadcast(reshape.1), dimensions={0,1} subtract = f32[16,128,30522]{2,1,0} subtract(Arg_0, broadcast.1) exponential = f32[16,128,30522]{2,1,0} exponential(subtract) const_zero = f32[] constant(0) reduce_add = f32[16,128]{1,0} reduce(exponential, const_zero), dimensions={2}, to_apply=region_add reshape.2 = f32[16,128,1]{2,1,0} reshape(reduce_add) broadcast.2 = f32[16,128,1]{2,1,0} broadcast(reshape.2), dimensions={0,1,2} reshape.3 = f32[16,128]{1,0} reshape(broadcast.2) broadcast.3 = f32[16,128,30522]{2,1,0} broadcast(reshape.3), dimensions={0,1} divide = f32[16,128,30522]{2,1,0} divide(exponential, broadcast.3) ROOT convert = bf16[16,128,30522]{2,1,0} convert(divide) } )"; TestSoftmax(softmax_hlo_string, 2); } } } #endif
2,016
cpp
tensorflow/tensorflow
parallel_task_assignment
third_party/xla/xla/service/cpu/parallel_task_assignment.cc
third_party/xla/xla/service/cpu/parallel_task_assignment_test.cc
#ifndef XLA_SERVICE_CPU_PARALLEL_TASK_ASSIGNMENT_H_ #define XLA_SERVICE_CPU_PARALLEL_TASK_ASSIGNMENT_H_ #include <cstdint> #include <memory> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/cpu/target_machine_features.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/util.h" namespace xla { namespace cpu { class ParallelCostModel { public: virtual ~ParallelCostModel() = default; virtual int64_t GetParallelTaskCount(HloInstruction* instruction) = 0; }; class ParallelTaskAssignment { public: ParallelTaskAssignment(int64_t max_parallelism, const HloCostAnalysis::ShapeSizeFunction& shape_size, HloModule* module, const TargetMachineFeatures* target_machine_features); ~ParallelTaskAssignment() {} int64_t GetTargetParallelTaskCount(HloInstruction* instruction); private: std::unique_ptr<ParallelCostModel> cost_model_; const TargetMachineFeatures& target_machine_features_; }; class ParallelTaskAssigner : public HloModulePass { public: ParallelTaskAssigner(const int64_t max_parallelism, const HloCostAnalysis::ShapeSizeFunction& shape_size, const TargetMachineFeatures* target_machine_features) : max_parallelism_(max_parallelism), shape_size_function_(shape_size), target_machine_features_(*target_machine_features) {} ~ParallelTaskAssigner() override {} absl::string_view name() const override { return "cpu-parallel-task-assigner"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: using HloToParallelTasks = absl::flat_hash_map<const HloInstruction*, int64_t>; bool AssignParallelTasks(HloModule* module, const HloToParallelTasks& hlo_to_parallel_tasks); bool AssignParallelTasksHelper( HloModule* module, HloComputation* computation, const HloToParallelTasks& hlo_to_parallel_tasks); void ComputeTargetParallelTasks(HloModule* module, HloToParallelTasks* hlo_to_parallel_tasks); int64_t max_parallelism_; HloCostAnalysis::ShapeSizeFunction shape_size_function_; const TargetMachineFeatures& target_machine_features_; }; } } #endif #include "xla/service/cpu/parallel_task_assignment.h" #include <algorithm> #include <cmath> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/ir_emission_utils.h" #include "xla/service/cpu/shape_partition.h" #include "xla/service/cpu/target_machine_features.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/llvm_ir/dynamic_update_slice_util.h" #include "xla/util.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace cpu { class SimpleCostModel : public ParallelCostModel { public: SimpleCostModel(const int64_t max_parallelism, const HloCostAnalysis::ShapeSizeFunction& shape_size) : max_parallelism_(max_parallelism), shape_size_(shape_size) {} ~SimpleCostModel() override {} int64_t GetParallelTaskCount(HloInstruction* instruction) override { const int64_t instruction_cost = shape_size_(instruction->shape()); const int64_t min_cost_per_thread = 256LL << 10; return std::min( max_parallelism_, std::max(int64_t{1}, instruction_cost / min_cost_per_thread)); } private: const int64_t max_parallelism_; const HloCostAnalysis::ShapeSizeFunction shape_size_; }; class DefaultCostModel : public ParallelCostModel { public: DefaultCostModel(const int64_t max_parallelism, const HloCostAnalysis::ShapeSizeFunction& shape_size, std::unique_ptr<HloCostAnalysis> cost_analysis) : max_parallelism_(max_parallelism), shape_size_(shape_size), cost_analysis_(std::move(cost_analysis)) {} ~DefaultCostModel() override {} int64_t GetParallelTaskCount(HloInstruction* instruction) override { int64_t instruction_cost; int64_t min_cost_per_thread; int64_t max_parallelism; const int64_t bytes_accessed = std::max(int64_t{1}, cost_analysis_->bytes_accessed(*instruction)); const float flops_to_bytes_ratio = cost_analysis_->flop_count(*instruction) / static_cast<float>(bytes_accessed); if (flops_to_bytes_ratio <= 1.0) { max_parallelism = std::min<int64_t>( max_parallelism_, std::ceil(std::sqrt(tsl::port::MaxParallelism()))); instruction_cost = shape_size_(instruction->shape()); min_cost_per_thread = 256LL << 10; } else { max_parallelism = max_parallelism_; instruction_cost = 1 * cost_analysis_->flop_count(*instruction) + 2 * cost_analysis_->transcendental_count(*instruction) + 10 * cost_analysis_->bytes_accessed(*instruction); min_cost_per_thread = 100000; } return std::min( max_parallelism, std::max(int64_t{1}, instruction_cost / min_cost_per_thread)); } private: const int64_t max_parallelism_; const HloCostAnalysis::ShapeSizeFunction shape_size_; const std::unique_ptr<HloCostAnalysis> cost_analysis_; }; ParallelTaskAssignment::ParallelTaskAssignment( const int64_t max_parallelism, const HloCostAnalysis::ShapeSizeFunction& shape_size, HloModule* module, const TargetMachineFeatures* target_machine_features) : target_machine_features_(*target_machine_features) { VLOG(1) << "ParallelTaskAssignment max_parallelism: " << max_parallelism; auto cost_analysis = std::make_unique<HloCostAnalysis>(shape_size); HloComputation* computation = module->entry_computation(); absl::Status status = computation->root_instruction()->Accept(cost_analysis.get()); if (status.ok()) { cost_model_ = std::make_unique<DefaultCostModel>( max_parallelism, shape_size, std::move(cost_analysis)); } else { cost_model_ = std::make_unique<SimpleCostModel>(max_parallelism, shape_size); } } int64_t ParallelTaskAssignment::GetTargetParallelTaskCount( HloInstruction* instruction) { auto opcode = instruction->opcode(); if (llvm_ir::MayBeImplementedAsInPlaceDynamicUpdateSlice(instruction) || instruction->shape().IsTuple() || opcode == HloOpcode::kRng || opcode == HloOpcode::kConstant) { return 1; } if (instruction->IsElementwise() || instruction->IsLoopFusion() || opcode == HloOpcode::kBroadcast || opcode == HloOpcode::kConcatenate || opcode == HloOpcode::kDynamicSlice || opcode == HloOpcode::kDynamicUpdateSlice || opcode == HloOpcode::kGather || opcode == HloOpcode::kIota || opcode == HloOpcode::kPad || opcode == HloOpcode::kReduce || opcode == HloOpcode::kReduceWindow || opcode == HloOpcode::kReshape || opcode == HloOpcode::kReverse || opcode == HloOpcode::kSlice || opcode == HloOpcode::kTranspose || (opcode == HloOpcode::kConvolution && !PotentiallyImplementedAsEigenConvolution(*instruction, target_machine_features_))) { return cost_model_->GetParallelTaskCount(instruction); } return 1; } absl::StatusOr<bool> ParallelTaskAssigner::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES(2, "ParallelTaskAssigner ENTRY"); XLA_VLOG_LINES(3, module->ToString()); HloToParallelTasks hlo_to_parallel_tasks; ComputeTargetParallelTasks(module, &hlo_to_parallel_tasks); bool changed = AssignParallelTasks(module, hlo_to_parallel_tasks); XLA_VLOG_LINES(2, "ParallelTaskAssigner EXIT"); XLA_VLOG_LINES(3, module->ToString()); return changed; } bool ParallelTaskAssigner::AssignParallelTasks( HloModule* module, const HloToParallelTasks& hlo_to_parallel_tasks) { return AssignParallelTasksHelper(module, module->entry_computation(), hlo_to_parallel_tasks); } bool ParallelTaskAssigner::AssignParallelTasksHelper( HloModule* module, HloComputation* computation, const HloToParallelTasks& hlo_to_parallel_tasks) { bool changed = false; std::vector<HloInstruction*> instructions(computation->instructions().begin(), computation->instructions().end()); for (auto* instruction : instructions) { if (instruction->opcode() == HloOpcode::kWhile) { changed |= AssignParallelTasksHelper(module, instruction->while_body(), hlo_to_parallel_tasks); continue; } else if (instruction->opcode() == HloOpcode::kCall) { changed |= AssignParallelTasksHelper(module, instruction->to_apply(), hlo_to_parallel_tasks); continue; } auto it = hlo_to_parallel_tasks.find(instruction); if (it == hlo_to_parallel_tasks.end()) { continue; } const int64_t target_parallel_task_count = (*it).second; auto dim_partition_counts = ShapePartitionAssigner(instruction->shape()) .Run(target_parallel_task_count); const int64_t total_partition_count = ShapePartitionAssigner::GetTotalPartitionCount(dim_partition_counts); if (total_partition_count <= 1) { continue; } auto* call = module->OutlineExpressionFromComputation( {instruction}, absl::StrCat("parallel_", instruction->name()), computation); auto* new_root = call->to_apply()->root_instruction(); BackendConfig backend_config; absl::c_copy(dim_partition_counts, tsl::protobuf::RepeatedFieldBackInserter( backend_config.mutable_outer_dimension_partitions())); TF_CHECK_OK(new_root->set_backend_config(backend_config)); VLOG(2) << "Assigned parallel task count: " << total_partition_count << " to instruction: " << new_root->name() << " parent: " << new_root->parent()->name(); changed = true; } return changed; } void ParallelTaskAssigner::ComputeTargetParallelTasks( HloModule* module, HloToParallelTasks* hlo_to_parallel_tasks) { ParallelTaskAssignment parallel_task_assignment(max_parallelism_, shape_size_function_, module, &target_machine_features_); for (auto* computation : module->MakeNonfusionComputations()) { for (auto* instruction : computation->instructions()) { const int64_t target_parallel_task_count = parallel_task_assignment.GetTargetParallelTaskCount(instruction); if (target_parallel_task_count > 1) { hlo_to_parallel_tasks->insert( {instruction, target_parallel_task_count}); } } } } } }
#include "xla/service/cpu/parallel_task_assignment.h" #include "xla/service/cpu/cpu_executable.h" #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace { class ParallelTaskAssignmentTest : public HloTestBase { protected: const HloCostAnalysis::ShapeSizeFunction shape_size_func_ = cpu::CpuExecutable::ShapeSizeBytes; const int max_parallelism_ = 10; cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features_; ParallelTaskAssignmentTest() : HloTestBase(), target_machine_features_([](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }) {} absl::StatusOr<bool> RunParallelTaskAssigner(HloModule* module) { return cpu::ParallelTaskAssigner(max_parallelism_, shape_size_func_, &target_machine_features_) .Run(module); } }; TEST_F(ParallelTaskAssignmentTest, DotOperationNotParallelized) { const std::string hlo_string = R"( HloModule TestTaskParallel_Dot ENTRY Dot { dot_lhs = f32[196614,2]{1,0} parameter(0) dot_rhs = f32[2,1]{1,0} parameter(1) ROOT dot = f32[196614,1]{1,0} dot(dot_lhs, dot_rhs), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunParallelTaskAssigner(m.get())); EXPECT_FALSE(changed); } TEST_F(ParallelTaskAssignmentTest, FusedComputationWithDotOperationNotParallelized) { const std::string hlo_string = R"( HloModule TestTaskParallel_DotNestedInFusedComp fused_computation.0 { parameter.0 = f32[196614,2]{1,0} parameter(0) parameter.0.1 = f32[2,1]{1,0} parameter(1) parameter.0.2 = f32[196614,1]{1,0} parameter(2) dot.0 = f32[196614,1]{1,0} dot(parameter.0, parameter.0.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT add.0 = f32[196614,1]{1,0} add(dot.0, parameter.0.2) } ENTRY DotNestedInFusedComp { parameter = f32[196614,2]{1,0} parameter(0) parameter.1 = f32[2,1]{1,0} parameter(1) parameter.2 = f32[196614,1]{1,0} parameter(2) ROOT fusion = f32[196614,1]{1,0} fusion(parameter, parameter.1, parameter.2), kind=kOutput, calls=fused_computation.0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunParallelTaskAssigner(m.get())); EXPECT_FALSE(changed); } TEST_F(ParallelTaskAssignmentTest, RngOperationNotParallelized) { const std::string hlo_string = R"( HloModule TestTaskParallel_rng ENTRY Rng { src0 = f32[] parameter(0) src1 = f32[] parameter(1) ROOT rng0 = f32[1234567,2]{1,0} rng(f32[] src0, f32[] src1), distribution=rng_uniform } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunParallelTaskAssigner(m.get())); EXPECT_FALSE(changed); } TEST_F(ParallelTaskAssignmentTest, InfeedOutfeedOperationNotParallelized) { const std::string hlo_string = R"( HloModule TestTaskParallel_infeed_outfeed ENTRY InfeedOutfeed { token0 = token[] after-all() infeed0 = (u32[12345678,2]{1,0}, token[]) infeed(token0) infeed0.data = u32[12345678,2]{1,0} get-tuple-element((u32[12345678,2]{1,0}, token[]) infeed0), index=0 ROOT outfeed0 = token[] outfeed(infeed0.data, token0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunParallelTaskAssigner(m.get())); EXPECT_FALSE(changed); } TEST_F(ParallelTaskAssignmentTest, InPlaceDynamicUpdateSliceNotParallelized) { const std::string hlo_string = R"( HloModule test body { zero = s32[] constant(0) one = s32[] constant(1) ten = s32[] constant(10) loop_carry = (s32[], u32[1,100], u32[10000,100]) parameter(0) i = s32[] get-tuple-element(loop_carry), index=0 i_plus_ten = s32[] add(i, ten) update = u32[1,100] get-tuple-element(loop_carry), index=1 data = u32[10000,100] get-tuple-element(loop_carry), index=2 new_data = u32[10000,100] dynamic-update-slice(data, update, i_plus_ten, zero) new_i = s32[] add(i, one) ROOT tuple = (s32[], u32[1,100], u32[10000,100]) tuple(new_i, update, new_data) } cond { loop_carry = (s32[], u32[1,100], u32[10000,100]) parameter(0) two = s32[] constant(2) i = s32[] get-tuple-element(loop_carry), index=0 ROOT less-than = pred[] compare(i, two), direction=LT } ENTRY test { zero = s32[] constant(0) initial_i = s32[] parameter(0) update = u32[1,100] parameter(1) data = u32[10000,100] parameter(2) tuple = (s32[], u32[1,100], u32[10000,100]) tuple(initial_i, update, data) ROOT while = (s32[], u32[1,100], u32[10000,100]) while(tuple), condition=cond, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunParallelTaskAssigner(m.get())); EXPECT_FALSE(changed); } TEST_F(ParallelTaskAssignmentTest, AllReduceNotParallelized) { constexpr char hlo_string[] = R"( HloModule TestTaskParallel_allreduce add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[1234567] parameter(0) ROOT crs = f32[1234567] all-reduce(input), replica_groups={}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunParallelTaskAssigner(m.get())); EXPECT_FALSE(changed); } TEST_F(ParallelTaskAssignmentTest, ConstantNotParallelized) { constexpr char hlo_string[] = R"( HloModule TestTaskParallel_constant ENTRY const { ROOT constant = f32[1234567] constant({...}) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunParallelTaskAssigner(m.get())); EXPECT_FALSE(changed); } } }
2,017
cpp
tensorflow/tensorflow
xfeed_manager
third_party/xla/xla/service/cpu/xfeed_manager.cc
third_party/xla/xla/service/cpu/xfeed_manager_test.cc
#ifndef XLA_SERVICE_CPU_XFEED_MANAGER_H_ #define XLA_SERVICE_CPU_XFEED_MANAGER_H_ #include <deque> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/shape.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace cpu { namespace runtime { class XfeedBuffer { public: virtual ~XfeedBuffer() = default; virtual int32_t length() = 0; virtual void* data() = 0; virtual void Done(absl::StatusOr<Shape> shape) = 0; }; class XfeedQueueManager { public: XfeedQueueManager(std::string queue_name) : queue_name_(queue_name) {} void Reset(); void EnqueueBuffersAtomically(absl::Span<XfeedBuffer* const> buffers); XfeedBuffer* BlockingDequeueBuffer(); void ReleaseCurrentBuffer(int32_t length, void* data, absl::StatusOr<Shape> shape); private: const std::string queue_name_; absl::Mutex mu_; absl::CondVar cv_; std::deque<XfeedBuffer*> enqueued_buffers_; XfeedBuffer* current_buffer_ = nullptr; }; class XfeedManager { public: XfeedManager() = default; void Reset(); XfeedQueueManager* infeed() { return &infeed_; } XfeedQueueManager* outfeed() { return &outfeed_; } private: XfeedQueueManager infeed_ = {"infeed"}; XfeedQueueManager outfeed_ = {"outfeed"}; }; int64_t GetByteSizeRequirement(const Shape& shape, int64_t pointer_size); } } } #endif #include "xla/service/cpu/xfeed_manager.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { namespace cpu { namespace runtime { void XfeedManager::Reset() { infeed()->Reset(); outfeed()->Reset(); } void XfeedQueueManager::Reset() { absl::MutexLock l(&mu_); CHECK(current_buffer_ == nullptr); for (auto buffer : enqueued_buffers_) { buffer->Done(ShapeUtil::MakeNil()); } enqueued_buffers_.clear(); } void XfeedQueueManager::EnqueueBuffersAtomically( absl::Span<XfeedBuffer* const> buffers) { absl::MutexLock l(&mu_); bool was_empty = enqueued_buffers_.empty(); for (XfeedBuffer* b : buffers) { VLOG(3) << "Enqueueing " << queue_name_ << " buffer (of " << buffers.size() << " buffers) with length: " << b->length(); enqueued_buffers_.push_back(b); } if (was_empty && !buffers.empty()) { cv_.Signal(); } } XfeedBuffer* XfeedQueueManager::BlockingDequeueBuffer() { absl::MutexLock l(&mu_); VLOG(3) << "Waiting for an available buffer."; while (enqueued_buffers_.empty()) { cv_.Wait(&mu_); } VLOG(3) << "A buffer is available!"; CHECK(current_buffer_ == nullptr); current_buffer_ = enqueued_buffers_.front(); enqueued_buffers_.pop_front(); return current_buffer_; } void XfeedQueueManager::ReleaseCurrentBuffer(int32_t length, void* data, absl::StatusOr<Shape> shape) { VLOG(3) << "Releasing buffer with shape: " << (shape.ok() ? ShapeUtil::HumanString(shape.value()) : "<error status>"); absl::MutexLock l(&mu_); CHECK(current_buffer_ != nullptr); CHECK_EQ(length, current_buffer_->length()); CHECK_EQ(data, current_buffer_->data()); current_buffer_->Done(std::move(shape)); current_buffer_ = nullptr; } int64_t GetByteSizeRequirement(const Shape& shape, int64_t pointer_size) { if (shape.IsTuple() || shape.is_static()) { return ShapeUtil::ByteSizeOf(shape, pointer_size); } int64_t metadata_size = sizeof(int32_t) * shape.dimensions_size(); return ShapeUtil::ByteSizeOf(shape, pointer_size) + metadata_size; } } } }
#include "xla/service/cpu/xfeed_manager.h" #include <memory> #include "xla/service/cpu/cpu_runtime.h" #include "xla/shape_util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla { namespace { class InfeedManagerTest : public ::testing::Test {}; class TestInfeedBuffer : public cpu::runtime::XfeedBuffer { public: explicit TestInfeedBuffer(int32_t length, bool expect_shape_match = true) : shape_(ShapeUtil::MakeShape(U8, {length})), done_called_(false), length_(length), expect_shape_match_(expect_shape_match) {} ~TestInfeedBuffer() override { EXPECT_TRUE(done_called_); } int32_t length() override { return length_; } void* data() override { return nullptr; } void Done(absl::StatusOr<Shape> shape) override { CHECK(!done_called_); done_called_ = true; TF_ASSERT_OK(shape.status()); EXPECT_EQ(expect_shape_match_, ShapeUtil::Equal(shape_, shape.value())) << "want " << ShapeUtil::HumanString(shape_) << " " << (expect_shape_match_ ? "==" : "!=") << " " << ShapeUtil::HumanString(shape.value()); delete this; } const Shape& shape() const { return shape_; } private: Shape shape_; bool done_called_; int32_t length_; bool expect_shape_match_; }; void ProcessNextBuffer(int32_t length) { auto shape = ShapeUtil::MakeShape(U8, {length}); std::string bytes = shape.SerializeAsString(); void* buffer = __xla_cpu_runtime_AcquireInfeedBufferForDequeue( nullptr, length, bytes.data(), bytes.size()); __xla_cpu_runtime_ReleaseInfeedBufferAfterDequeue( nullptr, length, buffer, bytes.data(), bytes.size()); } void ProcessNextOutfeedBuffer(int32_t length, const Shape& shape) { std::string bytes = shape.SerializeAsString(); void* buffer = __xla_cpu_runtime_AcquireOutfeedBufferForPopulation( nullptr, length, bytes.data(), bytes.size()); __xla_cpu_runtime_ReleaseOutfeedBufferAfterPopulation( nullptr, length, buffer, bytes.data(), bytes.size()); } TEST_F(InfeedManagerTest, SingleThreadedSequential) { TestInfeedBuffer* a = new TestInfeedBuffer(64); TestInfeedBuffer* b = new TestInfeedBuffer(32); cpu::runtime::XfeedManager* xfeed = cpu::runtime::GetXfeedManager(0); xfeed->infeed()->EnqueueBuffersAtomically({a}); xfeed->infeed()->EnqueueBuffersAtomically({b}); ProcessNextBuffer(a->length()); ProcessNextBuffer(b->length()); } TEST_F(InfeedManagerTest, SingleThreadedInterleaved) { TestInfeedBuffer* a = new TestInfeedBuffer(64); TestInfeedBuffer* b = new TestInfeedBuffer(32); cpu::runtime::XfeedManager* xfeed = cpu::runtime::GetXfeedManager(0); xfeed->infeed()->EnqueueBuffersAtomically({a}); ProcessNextBuffer(a->length()); xfeed->infeed()->EnqueueBuffersAtomically({b}); ProcessNextBuffer(b->length()); } TEST_F(InfeedManagerTest, MultiThreaded) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "test", 2); cpu::runtime::XfeedManager* xfeed = cpu::runtime::GetXfeedManager(0); const int32_t length = 64; pool.Schedule([length, &xfeed]() { int64_t start_micros = tsl::Env::Default()->NowMicros(); while (true) { int64_t end_micros = tsl::Env::Default()->NowMicros(); if ((end_micros - start_micros) >= 100000) { break; } } TestInfeedBuffer* a = new TestInfeedBuffer(length); xfeed->infeed()->EnqueueBuffersAtomically({a}); }); ProcessNextBuffer(length); } TEST_F(InfeedManagerTest, OutfeedBasic) { TestInfeedBuffer* b = new TestInfeedBuffer(32, true); cpu::runtime::XfeedManager* xfeed = cpu::runtime::GetXfeedManager(0); xfeed->outfeed()->EnqueueBuffersAtomically({b}); ProcessNextOutfeedBuffer(32, ShapeUtil::MakeShape(U8, {32})); } TEST_F(InfeedManagerTest, OutfeedEmpty) { TestInfeedBuffer* b = new TestInfeedBuffer(0, true); cpu::runtime::XfeedManager* xfeed = cpu::runtime::GetXfeedManager(0); xfeed->outfeed()->EnqueueBuffersAtomically({b}); ProcessNextOutfeedBuffer(0, ShapeUtil::MakeShape(U8, {0})); } TEST_F(InfeedManagerTest, OutfeedWrongShape) { TestInfeedBuffer* b = new TestInfeedBuffer(32, false); cpu::runtime::XfeedManager* xfeed = cpu::runtime::GetXfeedManager(0); xfeed->outfeed()->EnqueueBuffersAtomically({b}); ProcessNextOutfeedBuffer(32, ShapeUtil::MakeShape(U8, {33})); } } }
2,018
cpp
tensorflow/tensorflow
onednn_convolution
third_party/xla/xla/service/cpu/onednn_convolution.cc
third_party/xla/xla/service/cpu/tests/onednn_convolution_test.cc
#ifndef XLA_SERVICE_CPU_ONEDNN_CONVOLUTION_H_ #define XLA_SERVICE_CPU_ONEDNN_CONVOLUTION_H_ #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) namespace xla { namespace cpu { extern "C" { extern void __xla_cpu_runtime_OneDnnConvolution(void* result, void** args); } } } #endif #endif #if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_convolution.h" #include <algorithm> #include <cmath> #include <cstring> #include <initializer_list> #include <utility> #include <vector> #define EIGEN_USE_THREADS #include "dnnl.hpp" #include "absl/base/dynamic_annotations.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/executable_run_options.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/onednn_memory_util.h" #include "xla/service/cpu/runtime_lightweight_check.h" #include "xla/tsl/util/onednn_threadpool.h" #include "tsl/platform/logging.h" namespace xla { namespace cpu { namespace { using dnnl::algorithm; using dnnl::convolution_forward; using dnnl::memory; using dnnl::prop_kind; using dnnl::stream; } dnnl::memory ReorderMemory(const dnnl::engine& engine, const dnnl::memory::desc& dest_md, dnnl::memory& src_mem, const dnnl::stream& onednn_stream) { auto dest_mem = memory(dest_md, engine); dnnl::reorder(src_mem, dest_mem).execute(onednn_stream, src_mem, dest_mem); return dest_mem; } dnnl::memory::format_tag GetFormatTag(const int dims) { return (dims == 3) ? dnnl::memory::format_tag::nwc : (dims == 4) ? dnnl::memory::format_tag::nhwc : (dims == 5) ? dnnl::memory::format_tag::ndhwc : dnnl::memory::format_tag::any; } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_OneDnnConvolution( void* result, void** args) { int arg_indx = 0; const int64_t num_args = *(static_cast<int64_t*>(args[arg_indx++])); const xla::ExecutableRunOptions* run_options = static_cast<const xla::ExecutableRunOptions*>(args[arg_indx++]); XLA_LIGHTWEIGHT_CHECK(run_options != nullptr); XLA_LIGHTWEIGHT_CHECK(run_options->intra_op_thread_pool() != nullptr); tsl::OneDnnThreadPool thread_pool( run_options->intra_op_thread_pool()->getPool(), false); dnnl::engine cpu_engine(dnnl::engine::kind::cpu, 0); #ifndef ENABLE_ONEDNN_OPENMP auto onednn_stream = stream(dnnl::threadpool_interop::make_stream(cpu_engine, &thread_pool)); #else auto onednn_stream = stream(cpu_engine); #endif std::string config_str(static_cast<const char*>(args[arg_indx++])); OneDnnConvolutionConfig conv_config; conv_config.ParseFromString(config_str); std::vector<int64_t> inp_perm_axes(conv_config.dims()); std::vector<int64_t> ker_perm_axes(conv_config.dims()); std::vector<int64_t> out_perm_axes(conv_config.dims()); int index_i = 0; int index_o = 0; int index_k = 0; inp_perm_axes[conv_config.input().data().batch_dim()] = index_i++; out_perm_axes[conv_config.output().data().batch_dim()] = index_o++; ker_perm_axes[conv_config.kernel().filter().output_feature_dim()] = index_k++; inp_perm_axes[conv_config.input().data().feature_dim()] = index_i++; out_perm_axes[conv_config.output().data().feature_dim()] = index_o++; ker_perm_axes[conv_config.kernel().filter().input_feature_dim()] = index_k++; std::vector<int64_t> inp_dim_axes( conv_config.input().data().spatial_dims().begin(), conv_config.input().data().spatial_dims().end()); std::vector<int64_t> ker_dim_axes( conv_config.kernel().filter().spatial_dims().begin(), conv_config.kernel().filter().spatial_dims().end()); std::vector<int64_t> out_dim_axes( conv_config.output().data().spatial_dims().begin(), conv_config.output().data().spatial_dims().end()); std::for_each(inp_dim_axes.begin(), inp_dim_axes.end(), [&inp_perm_axes, &index_i](int64_t& n) { n -= 1; inp_perm_axes[n] = index_i++; }); std::for_each(ker_dim_axes.begin(), ker_dim_axes.end(), [&ker_perm_axes, &index_k](int64_t& n) { n -= 1; ker_perm_axes[n] = index_k++; }); std::for_each(out_dim_axes.begin(), out_dim_axes.end(), [&out_perm_axes, &index_o](int64_t& n) { n -= 1; out_perm_axes[n] = index_o++; }); memory::dims strides(conv_config.window().strides().begin(), conv_config.window().strides().end()); memory::dims pad_left(conv_config.window().pad_left().begin(), conv_config.window().pad_left().end()); memory::dims pad_right(conv_config.window().pad_right().begin(), conv_config.window().pad_right().end()); memory::dims rhs_dilations(conv_config.window().window_dilations().begin(), conv_config.window().window_dilations().end()); std::for_each(strides.begin(), strides.end(), [](int64_t& n) { n -= 1; }); std::for_each(pad_left.begin(), pad_left.end(), [](int64_t& n) { n -= 1; }); std::for_each(pad_right.begin(), pad_right.end(), [](int64_t& n) { n -= 1; }); std::for_each(rhs_dilations.begin(), rhs_dilations.end(), [](int64_t& n) { n -= 2; }); auto groups = conv_config.feature_groups(); MemrefInfo inp_minfo(args[arg_indx++]); MemrefInfo ker_minfo(args[arg_indx++]); MemrefInfo res_minfo(result); auto inp_md = inp_minfo.GetOneDnnMemDesc(); auto ker_md = ker_minfo.GetOneDnnMemDesc(); auto res_md = res_minfo.GetOneDnnMemDesc(); std::vector<int> inp_axes(inp_perm_axes.begin(), inp_perm_axes.end()); std::vector<int> ker_axes(ker_perm_axes.begin(), ker_perm_axes.end()); std::vector<int> out_axes(out_perm_axes.begin(), out_perm_axes.end()); auto new_inp_md = inp_md.permute_axes(inp_axes); auto new_ker_md = ker_md.permute_axes(ker_axes); auto new_res_md = res_md.permute_axes(out_axes); if (groups > 1) { auto corr_dims = new_ker_md.get_dims(); corr_dims.insert(corr_dims.begin(), 1, groups); corr_dims[1] = corr_dims[1] / groups; new_ker_md = new_ker_md.reshape(corr_dims); } auto any_ker_md = memory::desc(new_ker_md.get_dims(), new_ker_md.get_data_type(), dnnl::memory::format_tag::any); auto any_inp_md = memory::desc(new_inp_md.get_dims(), new_inp_md.get_data_type(), GetFormatTag(new_inp_md.get_ndims())); auto any_res_md = memory::desc(new_res_md.get_dims(), new_res_md.get_data_type(), GetFormatTag(new_res_md.get_ndims())); XLA_LIGHTWEIGHT_CHECK(num_args == arg_indx); dnnl::primitive_attr attrs; auto inp_mem = memory(new_inp_md, cpu_engine, inp_minfo.Data()); auto ker_mem = memory(new_ker_md, cpu_engine, ker_minfo.Data()); auto res_mem = memory(new_res_md, cpu_engine, res_minfo.Data()); auto conv_pd = convolution_forward::primitive_desc( cpu_engine, prop_kind::forward_inference, algorithm::convolution_direct, any_inp_md, any_ker_md, any_res_md, strides, rhs_dilations, pad_left, pad_right, attrs); auto new_inp_mem = (conv_pd.src_desc() == inp_mem.get_desc()) ? inp_mem : ReorderMemory(cpu_engine, conv_pd.src_desc(), inp_mem, onednn_stream); auto new_ker_mem = (conv_pd.weights_desc() == ker_mem.get_desc()) ? ker_mem : ReorderMemory(cpu_engine, conv_pd.weights_desc(), ker_mem, onednn_stream); auto new_res_mem = (conv_pd.dst_desc() == res_mem.get_desc()) ? res_mem : memory(conv_pd.dst_desc(), cpu_engine); auto conv_prim = convolution_forward(conv_pd); std::unordered_map<int, memory> conv_args{{DNNL_ARG_SRC, new_inp_mem}, {DNNL_ARG_WEIGHTS, new_ker_mem}, {DNNL_ARG_DST, new_res_mem}}; conv_prim.execute(onednn_stream, conv_args); if (conv_pd.dst_desc() == res_mem.get_desc()) { res_mem = new_res_mem; } else { dnnl::reorder(new_res_mem, res_mem) .execute(onednn_stream, new_res_mem, res_mem); } } } } #endif
#if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include <utility> #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/service/cpu/onednn_matmul_rewriter.h" #include "xla/service/cpu/onednn_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "tsl/platform/cpu_info.h" namespace xla { namespace cpu { class ConvolutionTest : public HloTestBase { protected: const char* conv_rewrite_str_ = R"( ; CHECK: custom_call_target="__onednn$convolution", ; CHECK: backend_config={ ; CHECK-DAG: "outer_dimension_partitions":[], ; CHECK-DAG: "onednn_conv_config":{ ; CHECK-DAG: } ; CHECK: } )"; }; TEST_F(ConvolutionTest, Simple2DTestF32) { const char* convolution_module_str = R"( HloModule convolution.test.f32 ENTRY convolution.test.f32 { arg.0 = f32[1,22,22,1] parameter(0), parameter_replication={false} reshape.0 = f32[1,22,22,1] reshape(arg.0) arg.1 = f32[8,8,1,1] parameter(1), parameter_replication={false} reshape.1 = f32[8,8,1,1] reshape(arg.1) convolution.0 = f32[1,11,11,1] convolution(reshape.0, reshape.1), window={size=8x8 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f reshape.2 = f32[1,11,11,1] reshape(convolution.0) tuple.0 = (f32[1,11,11,1]) tuple(reshape.2) ROOT get-tuple-element.0 = f32[1,11,11,1] get-tuple-element(tuple.0), index=0 })"; EXPECT_TRUE(RunAndCompare(convolution_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(convolution_module_str, conv_rewrite_str_); } TEST_F(ConvolutionTest, Simple3DTestBF16) { if (!IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const char* convolution_module_str = R"( HloModule convolution.test.bf16 ENTRY convolution.test.bf16 { p0 = bf16[8,4,5,5,1] parameter(0) p1 = bf16[3,3,3,1,32] parameter(1) ROOT conv = bf16[8,4,5,5,32] convolution(p0, p1), window={size=3x3x3 pad=1_1x1_1x1_1}, dim_labels=b012f_012io->b012f })"; EXPECT_TRUE(RunAndCompare(convolution_module_str, ErrorSpec{1e-4, 1e-4})); MatchOptimizedHlo(convolution_module_str, conv_rewrite_str_); } } } #endif
2,019
cpp
tensorflow/tensorflow
cpu_layout_assignment
third_party/xla/xla/service/cpu/cpu_layout_assignment.cc
third_party/xla/xla/service/cpu/cpu_layout_assignment_test.cc
#ifndef XLA_SERVICE_CPU_CPU_LAYOUT_ASSIGNMENT_H_ #define XLA_SERVICE_CPU_CPU_LAYOUT_ASSIGNMENT_H_ #include "xla/service/computation_layout.h" #include "xla/service/cpu/target_machine_features.h" #include "xla/service/layout_assignment.h" #include "tsl/platform/status.h" namespace xla { namespace cpu { class CpuLayoutAssignment : public LayoutAssignment { public: explicit CpuLayoutAssignment( ComputationLayout* entry_computation_layout, const TargetMachineFeatures* target_machine_features, ChannelLayoutConstraints* channel_constraints = nullptr) : LayoutAssignment(entry_computation_layout, channel_constraints), target_machine_features_(*target_machine_features) {} ~CpuLayoutAssignment() override {} protected: absl::Status AddBackendConstraints(LayoutConstraints* constraints) override; const TargetMachineFeatures& target_machine_features_; }; } } #endif #include "xla/service/cpu/cpu_layout_assignment.h" #include <cstdint> #include <numeric> #include <optional> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/map_util.h" #include "xla/service/cpu/dot_op_emitter.h" #include "xla/service/cpu/ir_emission_utils.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" namespace xla { namespace cpu { namespace { using std::nullopt; using std::optional; using ShouldMakeOperandColMajorCache = absl::flat_hash_map<const HloInstruction*, bool>; } static bool ShouldMakeAllUsersColMajor(const HloInstruction* instruction) { for (auto* user : instruction->users()) { optional<int64_t> operand_idx = ProfitableToMakeDotOperandColumnMajor(*user); if (!operand_idx || user->operand(*operand_idx) != instruction || absl::c_count(user->operands(), instruction) != 1) { return false; } } return true; } static optional<int64_t> ShouldMakeOperandColumnMajor( ShouldMakeOperandColMajorCache* cache, const HloInstruction& instruction) { optional<int64_t> operand_idx = ProfitableToMakeDotOperandColumnMajor(instruction); if (!operand_idx) { return nullopt; } const HloInstruction* operand = instruction.operand(*operand_idx); if (operand->opcode() != HloOpcode::kConstant) { return nullopt; } auto it = cache->find(operand); if (it == cache->end()) { auto insert_result = cache->insert({operand, ShouldMakeAllUsersColMajor(operand)}); CHECK(insert_result.second); it = insert_result.first; } return it->second ? operand_idx : nullopt; } static Shape RowMajorShape(Shape shape) { ShapeUtil::ForEachMutableSubshape( &shape, [](Shape* subshape, const ShapeIndex& index) { if (!subshape->IsArray()) { return; } std::vector<int64_t> dimension_order(subshape->dimensions_size()); std::iota(dimension_order.rbegin(), dimension_order.rend(), 0); *subshape->mutable_layout() = LayoutUtil::MakeLayout(dimension_order); }); return shape; } static Shape ColMajorShape(const Shape& old_shape) { Shape new_shape(old_shape); std::vector<int64_t> dimension_order(new_shape.dimensions_size()); std::iota(dimension_order.begin(), dimension_order.end(), 0); *new_shape.mutable_layout() = LayoutUtil::MakeLayout(dimension_order); return new_shape; } static bool OperandsAndResultMustHaveRowMajorLayout( const HloInstruction& instr, const TargetMachineFeatures& target_machine_features) { if (instr.opcode() == HloOpcode::kConvolution) { return PotentiallyImplementedAsEigenConvolution(instr, target_machine_features); } else if (instr.opcode() == HloOpcode::kDot) { return DotOperandsAndResultMustHaveRowMajorLayout(instr, target_machine_features); } else if (instr.opcode() == HloOpcode::kCustomCall) { return instr.custom_call_target() == "TopK"; } return false; } absl::Status CpuLayoutAssignment::AddBackendConstraints( LayoutConstraints* constraints) { ShouldMakeOperandColMajorCache cache; const HloComputation* computation = constraints->computation(); for (auto* instruction : computation->instructions()) { if (OperandsAndResultMustHaveRowMajorLayout(*instruction, target_machine_features_)) { TF_RETURN_IF_ERROR(SetInstructionLayout( RowMajorShape(instruction->shape()), instruction)); for (int i = 0; i < instruction->operand_count(); i++) { TF_RETURN_IF_ERROR(SetOperandLayout( RowMajorShape(instruction->operand(i)->shape()), instruction, i)); } } else if (optional<int64_t> op_idx = ShouldMakeOperandColumnMajor(&cache, *instruction)) { const HloInstruction* op = instruction->operand(*op_idx); TF_RETURN_IF_ERROR( SetOperandLayout(ColMajorShape(op->shape()), instruction, *op_idx)); } else if (instruction->opcode() == HloOpcode::kReduceScatter) { auto ars = Cast<HloReduceScatterInstruction>(instruction); TF_RETURN_IF_ERROR(SetInstructionLayout( ShapeUtil::MoveDimToMajor(ars->shape(), ars->scatter_dimension()), ars)); } else if (instruction->opcode() == HloOpcode::kAllGather) { auto ag = Cast<HloAllGatherInstruction>(instruction); TF_RETURN_IF_ERROR(SetInstructionLayout( ShapeUtil::MoveDimToMajor(ag->shape(), ag->all_gather_dimension()), ag)); } else { for (int64_t operand_no = 0; operand_no < instruction->operand_count(); ++operand_no) { if (constraints->OperandLayout(instruction, operand_no) != nullptr) { continue; } if (AnyOperandBufferForwarded(instruction, operand_no)) { continue; } if (!instruction->operand(operand_no)->shape().IsArray()) { continue; } Shape operand_shape( RowMajorShape(instruction->operand(operand_no)->shape())); TF_RETURN_IF_ERROR( SetOperandLayout(operand_shape, instruction, operand_no)); } if (computation->parent()->entry_computation() == computation && computation->root_instruction() == instruction) { continue; } if (!instruction->shape().IsArray()) { continue; } } } return absl::OkStatus(); } } }
#include "xla/service/cpu/cpu_layout_assignment.h" #include <initializer_list> #include <memory> #include <utility> #include <vector> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/computation_layout.h" #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class CpuLayoutAssignmentTest : public HloTestBase { protected: void AssignLayouts(HloModule* module, ComputationLayout* entry_computation_layout) { cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); cpu::CpuLayoutAssignment layout_assignment(entry_computation_layout, &target_machine_features); EXPECT_IS_OK(layout_assignment.Run(module).status()); } }; TEST_F(CpuLayoutAssignmentTest, DotWithConstantRhsTensor) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12}, {0}); Shape rhs_shape = ShapeUtil::MakeShape(F32, {12, 24}); Shape result_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {24}, {0}); auto dot_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "param0")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(rhs_shape))); auto result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_lhs, dot_rhs)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0}), dot_lhs->shape().layout())); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1}), dot_rhs->shape().layout())); EXPECT_TRUE( LayoutUtil::Equal(LayoutUtil::MakeLayout({0}), result->shape().layout())); for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, MultipleDotsWithSameConstantRhsTensor0) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12}, {0}); Shape rhs_shape = ShapeUtil::MakeShape(F32, {12, 24}); Shape result_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {24}, {0}); auto dot_a_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "param0")); auto dot_b_lhs = builder.AddInstruction( HloInstruction::CreateParameter(1, lhs_shape, "param1")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(rhs_shape))); auto dot_a_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_a_lhs, dot_rhs)); auto dot_b_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_b_lhs, dot_rhs)); builder.AddInstruction(HloInstruction::CreateBinary( result_shape, HloOpcode::kAdd, dot_a_result, dot_b_result)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1}), dot_rhs->shape().layout())); for (HloInstruction* instruction : {dot_a_lhs, dot_b_lhs, dot_a_result, dot_b_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, MultipleDotsWithSameConstantRhsTensor1) { auto builder = HloComputation::Builder(TestName()); Shape lhs_a_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 12}, {0, 1}); Shape lhs_b_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 12}, {0, 1}); Shape rhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12, 24}, {0, 1}); Shape result_a_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 24}, {0, 1}); Shape result_b_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 24}, {0, 1}); auto dot_a_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_a_shape, "param0")); auto dot_b_lhs = builder.AddInstruction( HloInstruction::CreateParameter(1, lhs_b_shape, "param1")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(rhs_shape))); auto dot_a_result = builder.AddInstruction( CreateCanonicalDot(result_a_shape, dot_a_lhs, dot_rhs)); auto dot_b_result = builder.AddInstruction( CreateCanonicalDot(result_b_shape, dot_b_lhs, dot_rhs)); auto tuple_result = builder.AddInstruction( HloInstruction::CreateTuple({dot_a_result, dot_b_result})); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_a_shape)); *computation_layout.mutable_parameter_layout(1) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_b_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(tuple_result->shape())); AssignLayouts(module.get(), &computation_layout); for (HloInstruction* instruction : {dot_rhs, dot_a_lhs, dot_b_lhs, dot_a_result, dot_b_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({1, 0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, DotWithConstantLhsTensor) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 12}, {0, 1}); Shape rhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12, 24}, {0, 1}); Shape result_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 24}, {0, 1}); auto dot_lhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(lhs_shape))); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateParameter(0, rhs_shape, "param0")); auto dot_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_lhs, dot_rhs)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(rhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); for (HloInstruction* instruction : {dot_lhs, dot_rhs, dot_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({1, 0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, DotWithConstantRhsTensorThroughGTE) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 12}, {0, 1}); Shape rhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12, 24}, {0, 1}); Shape other_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {100, 24}, {0, 1}); auto constant_shape = ShapeUtil::MakeTupleShape({other_shape, rhs_shape}); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(constant_shape))); Shape result_shape = ShapeUtil::MakeShape(F32, {1, 24}); auto dot_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "param0")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, constant, 1)); auto dot_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_lhs, dot_rhs)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); for (HloInstruction* instruction : {dot_lhs, dot_rhs, dot_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({1, 0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } struct DotOutputFusionLayoutAssignmentResult { bool layout_assignment_changed_something; const HloInstruction* dot_lhs_fusion_param; const HloInstruction* dot_rhs_fusion_param; const HloInstruction* addend_fusion_param; }; static absl::StatusOr<DotOutputFusionLayoutAssignmentResult> RunDotOutputFusion( HloModule* module, const std::string& test_name, int m, int k, int n, const int64_t dot_operand_idx_in_add) { DotOutputFusionLayoutAssignmentResult result; CHECK(dot_operand_idx_in_add == 0 || dot_operand_idx_in_add == 1); auto builder = HloComputation::Builder(test_name); Shape dot_lhs_shape = ShapeUtil::MakeShape(F32, {m, k}); Shape dot_rhs_shape = ShapeUtil::MakeShape(F32, {k, n}); Shape dot_shape = ShapeUtil::MakeShape(F32, {m, n}); if (m == 1) { dot_lhs_shape = ShapeUtil::MakeShape(F32, {k}); dot_shape = ShapeUtil::MakeShape(F32, {n}); } else if (n == 1) { dot_rhs_shape = ShapeUtil::MakeShape(F32, {k}); dot_shape = ShapeUtil::MakeShape(F32, {m}); } HloInstruction* dot_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, dot_lhs_shape, "param0")); HloInstruction* addend = builder.AddInstruction( HloInstruction::CreateParameter(1, dot_shape, "param1")); HloInstruction* dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(dot_rhs_shape))); HloInstruction* dot_result = builder.AddInstruction(CreateCanonicalDot(dot_shape, dot_lhs, dot_rhs)); HloInstruction* add_result; if (dot_operand_idx_in_add == 0) { add_result = builder.AddInstruction(HloInstruction::CreateBinary( dot_shape, HloOpcode::kAdd, dot_result, addend)); } else { add_result = builder.AddInstruction(HloInstruction::CreateBinary( dot_shape, HloOpcode::kAdd, addend, dot_result)); } HloComputation* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion_instruction = module->entry_computation()->AddInstruction(HloInstruction::CreateFusion( dot_shape, HloInstruction::FusionKind::kOutput, add_result)); TF_RETURN_IF_ERROR( computation->ReplaceInstruction(add_result, fusion_instruction)); HloInstruction* fused_add = fusion_instruction->fused_instructions_computation()->root_instruction(); HloInstruction* fused_dot = fusion_instruction->FuseInstruction(dot_result); TF_RETURN_IF_ERROR( computation->RemoveInstructionAndUnusedOperands(dot_result)); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(dot_lhs_shape)); *computation_layout.mutable_parameter_layout(1) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(dot_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(dot_shape)); result.dot_lhs_fusion_param = fusion_instruction->operand(fused_dot->operand(0)->parameter_number()); result.dot_rhs_fusion_param = fusion_instruction->operand(fused_dot->operand(1)->parameter_number()); result.addend_fusion_param = fusion_instruction->operand( fused_add->operand(1 - dot_operand_idx_in_add)->parameter_number()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); cpu::CpuLayoutAssignment layout_assignment(&computation_layout, &target_machine_features); TF_ASSIGN_OR_RETURN(result.layout_assignment_changed_something, layout_assignment.Run(module)); return result; } static void AssertCorrectLayoutForDotOutputFusion( const HloComputation* computation, const DotOutputFusionLayoutAssignmentResult& layout_assignment_result, bool expect_col_major_dot_rhs) { Layout expected_dot_rhs_layout = expect_col_major_dot_rhs ? LayoutUtil::MakeLayout({0, 1}) : LayoutUtil::MakeLayout({1, 0}); if (layout_assignment_result.dot_rhs_fusion_param->shape().rank() == 1) { expected_dot_rhs_layout = LayoutUtil::MakeLayout({0}); } EXPECT_TRUE(LayoutUtil::Equal( expected_dot_rhs_layout, layout_assignment_result.dot_rhs_fusion_param->shape().layout())); EXPECT_TRUE(LayoutUtil::Equal( LayoutUtil::MakeDescendingLayout( layout_assignment_result.dot_lhs_fusion_param->shape().rank()), layout_assignment_result.dot_lhs_fusion_param->shape().layout())); EXPECT_TRUE(LayoutUtil::Equal( LayoutUtil::MakeDescendingLayout( layout_assignment_result.addend_fusion_param->shape().rank()), layout_assignment_result.addend_fusion_param->shape().layout())); EXPECT_THAT(computation->instructions(), Each(Not(op::Copy()))); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_1x50x19_dot_idx_0) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 1, 50, 19, 0)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, true); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_1x50x19_dot_idx_1) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 1, 50, 19, 1)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, true); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x1_dot_idx_0) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 1, 0)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x1_dot_idx_1) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 1, 1)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x19_dot_idx_0) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 19, 0)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x19_dot_idx_1) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 19, 1)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, BatchDotLayoutMustBeRowMajor) { const char* hlo_string = R"( HloModule BatchDotLayoutMustBeRowMajor ENTRY BatchDotLayoutMustBeRowMajor { p0 = f32[10,1,10] parameter(0) p1 = f32[10,10,1] parameter(1) ROOT dot = f32[10,1,1] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* computation = module->entry_computation(); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 1, 10}, {2, 1, 0})); *computation_layout.mutable_parameter_layout(1) = ShapeLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10, 1}, {2, 1, 0})); *computation_layout.mutable_result_layout() = ShapeLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 1, 1}, {1, 2, 0})); AssignLayouts(module.get(), &computation_layout); Shape expected_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 1, 1}, {2, 1, 0}); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Copy(op::ShapeWithLayout(expected_shape))); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Copy(op::Dot( op::ShapeWithLayout(computation_layout.parameter_layout(0).shape()), op::ShapeWithLayout( computation_layout.parameter_layout(1).shape())))); } } }
2,020
cpp
tensorflow/tensorflow
conv_canonicalization
third_party/xla/xla/service/cpu/conv_canonicalization.cc
third_party/xla/xla/service/cpu/conv_canonicalization_test.cc
#ifndef XLA_SERVICE_CPU_CONV_CANONICALIZATION_H_ #define XLA_SERVICE_CPU_CONV_CANONICALIZATION_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/cpu/target_machine_features.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace cpu { class ConvCanonicalization : public HloModulePass { public: explicit ConvCanonicalization( const TargetMachineFeatures* target_machine_features) : target_machine_features_(*target_machine_features) {} ~ConvCanonicalization() override {} absl::string_view name() const override { return "convolution-canonicalization"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const TargetMachineFeatures& target_machine_features_; }; } } #endif #include "xla/service/cpu/conv_canonicalization.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/permutation_util.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/service/cpu/ir_emission_utils.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace cpu { absl::StatusOr<bool> ConvCanonicalization::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloInstruction* hlo : module->entry_computation()->MakeInstructionPostOrder()) { if (hlo->opcode() == HloOpcode::kConvolution && !PotentiallyImplementedAsEigenConvolution(*hlo, target_machine_features_)) { const ConvolutionDimensionNumbers& dnums = hlo->convolution_dimension_numbers(); auto input_batch_dim = dnums.input_batch_dimension(); auto input_feature_dim = dnums.input_feature_dimension(); auto kernel_input_feature_dim = dnums.kernel_input_feature_dimension(); auto kernel_output_feature_dim = dnums.kernel_output_feature_dimension(); const int64_t num_spatial_dims = dnums.output_spatial_dimensions_size(); const int64_t num_dims = num_spatial_dims + 2; HloInstruction* input = hlo->mutable_operand(0); std::vector<int64_t> new_input_dim_order(num_dims); std::vector<int64_t> new_input_dims(num_dims); new_input_dim_order[0] = input_batch_dim; new_input_dims[0] = input->shape().dimensions(input_batch_dim); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_input_dim_order[i + 1] = dnums.input_spatial_dimensions(i); new_input_dims[i + 1] = input->shape().dimensions(dnums.input_spatial_dimensions(i)); } new_input_dim_order[num_dims - 1] = input_feature_dim; new_input_dims[num_dims - 1] = input->shape().dimensions(input_feature_dim); Shape new_input_shape = ShapeUtil::MakeShape(input->shape().element_type(), new_input_dims); HloInstruction* new_input = module->entry_computation()->AddInstruction( HloInstruction::CreateTranspose(new_input_shape, input, new_input_dim_order)); HloInstruction* kernel = hlo->mutable_operand(1); std::vector<int64_t> new_kernel_dim_order(num_dims); std::vector<int64_t> new_kernel_dims(num_dims); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_kernel_dim_order[i] = dnums.kernel_spatial_dimensions(i); new_kernel_dims[i] = kernel->shape().dimensions(dnums.kernel_spatial_dimensions(i)); } new_kernel_dim_order[num_dims - 2] = kernel_input_feature_dim; new_kernel_dims[num_dims - 2] = kernel->shape().dimensions(kernel_input_feature_dim); new_kernel_dim_order[num_dims - 1] = kernel_output_feature_dim; new_kernel_dims[num_dims - 1] = kernel->shape().dimensions(kernel_output_feature_dim); Shape new_kernel_shape = ShapeUtil::MakeShape(kernel->shape().element_type(), new_kernel_dims); HloInstruction* new_kernel = module->entry_computation()->AddInstruction( HloInstruction::CreateTranspose(new_kernel_shape, kernel, new_kernel_dim_order)); std::vector<int64_t> new_output_dim_order(num_dims); std::vector<int64_t> new_conv_dims(num_dims); auto output_batch_dim = dnums.output_batch_dimension(); auto output_feature_dim = dnums.output_feature_dimension(); new_output_dim_order[0] = output_batch_dim; new_conv_dims[0] = hlo->shape().dimensions(output_batch_dim); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_output_dim_order[i + 1] = dnums.output_spatial_dimensions(i); new_conv_dims[i + 1] = hlo->shape().dimensions(dnums.output_spatial_dimensions(i)); } new_output_dim_order[num_dims - 1] = output_feature_dim; new_conv_dims[num_dims - 1] = hlo->shape().dimensions(output_feature_dim); Shape new_conv_shape = ShapeUtil::MakeShape(hlo->shape().element_type(), new_conv_dims); ConvolutionDimensionNumbers new_dnums; new_dnums.set_input_batch_dimension(0); new_dnums.set_output_batch_dimension(0); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_dnums.add_input_spatial_dimensions(i + 1); new_dnums.add_kernel_spatial_dimensions(i); new_dnums.add_output_spatial_dimensions(i + 1); } new_dnums.set_input_feature_dimension(num_dims - 1); new_dnums.set_output_feature_dimension(num_dims - 1); new_dnums.set_kernel_input_feature_dimension(num_dims - 2); new_dnums.set_kernel_output_feature_dimension(num_dims - 1); HloInstruction* new_conv = module->entry_computation()->AddInstruction( HloInstruction::CreateConvolve( new_conv_shape, new_input, new_kernel, hlo->feature_group_count(), hlo->batch_group_count(), hlo->window(), new_dnums, hlo->precision_config())); TF_RETURN_IF_ERROR(module->entry_computation()->ReplaceWithNewInstruction( hlo, HloInstruction::CreateTranspose( hlo->shape(), new_conv, InversePermutation(new_output_dim_order)))); changed = true; } } return changed; } } }
#include "xla/service/cpu/conv_canonicalization.h" #include <vector> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" namespace xla { namespace cpu { using ::testing::ElementsAre; class ConvCanonicalizationTest : public HloTestBase { public: ConvCanonicalizationTest() { for (int i = 0; i < 2; ++i) { auto dim = conv_window_.add_dimensions(); dim->set_size(kWindowSize); dim->set_stride(1); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); } } protected: Window conv_window_; static constexpr int kBatchSize = 50; static constexpr int kInputSize = 28; static constexpr int kWindowSize = 5; static constexpr int kInputFeatureCount = 32; static constexpr int kOutputFeatureCount = 64; }; TEST_F(ConvCanonicalizationTest, NonCanonicalToCanonical) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kInputFeatureCount, kBatchSize, kInputSize, kInputSize)))); auto kernel = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kOutputFeatureCount, kInputFeatureCount, kWindowSize, kWindowSize)))); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(1); dnums.set_output_batch_dimension(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.add_input_spatial_dimensions(3); dnums.add_output_spatial_dimensions(3); dnums.set_input_feature_dimension(0); dnums.set_output_feature_dimension(0); dnums.add_kernel_spatial_dimensions(2); dnums.add_kernel_spatial_dimensions(3); dnums.set_kernel_input_feature_dimension(1); dnums.set_kernel_output_feature_dimension(0); auto output_size = kInputSize - kWindowSize + 1; builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape( F32, {kOutputFeatureCount, kBatchSize, output_size, output_size}), input, kernel, 1, 1, conv_window_, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); ConvCanonicalization conv_canonicalization(&target_machine_features); EXPECT_TRUE(conv_canonicalization.Run(module.get()).value()); const HloInstruction* output_reshape = entry_computation->root_instruction(); EXPECT_EQ(HloOpcode::kTranspose, output_reshape->opcode()); const HloInstruction* canonical_conv = output_reshape->operand(0); EXPECT_EQ(HloOpcode::kConvolution, canonical_conv->opcode()); const HloInstruction* input_reshape = canonical_conv->operand(0); EXPECT_EQ(HloOpcode::kTranspose, input_reshape->opcode()); const HloInstruction* kernel_reshape = canonical_conv->operand(1); EXPECT_EQ(HloOpcode::kTranspose, kernel_reshape->opcode()); EXPECT_THAT(input_reshape->dimensions(), ElementsAre(1, 2, 3, 0)); EXPECT_THAT(kernel_reshape->dimensions(), ElementsAre(2, 3, 1, 0)); EXPECT_THAT(output_reshape->dimensions(), ElementsAre(3, 0, 1, 2)); } TEST_F(ConvCanonicalizationTest, CanonicalStaysTheSame) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kBatchSize, kInputSize, kInputSize, kInputFeatureCount)))); auto kernel = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kWindowSize, kWindowSize, kInputFeatureCount, kOutputFeatureCount)))); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); auto output_size = kInputSize - kWindowSize + 1; builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape( F32, {kBatchSize, output_size, output_size, kOutputFeatureCount}), input, kernel, 1, 1, conv_window_, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); ConvCanonicalization conv_canonicalization(&target_machine_features); EXPECT_FALSE(conv_canonicalization.Run(module.get()).value()); } } }
2,021
cpp
tensorflow/tensorflow
infeed_thunk
third_party/xla/xla/backends/cpu/runtime/infeed_thunk.cc
third_party/xla/xla/backends/cpu/runtime/infeed_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_INFEED_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_INFEED_THUNK_H_ #include <vector> #include "absl/status/status.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla { namespace gpu { class InfeedThunk : public Thunk { public: InfeedThunk(ThunkInfo thunk_info, std::vector<ShapedSlice> dest_slices); InfeedThunk(const InfeedThunk&) = delete; InfeedThunk& operator=(const InfeedThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: const std::vector<ShapedSlice> dest_slices_; }; } } #endif #include "xla/service/gpu/runtime/infeed_thunk.h" #include <cstddef> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/infeed_manager.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { InfeedThunk::InfeedThunk(ThunkInfo thunk_info, std::vector<ShapedSlice> dest_slices) : Thunk(Kind::kInfeed, thunk_info), dest_slices_(std::move(dest_slices)) {} absl::Status InfeedThunk::ExecuteOnStream(const ExecuteParams& params) { se::Stream& stream = *params.stream; const BufferAllocations& buffer_allocations = *params.buffer_allocations; VLOG(2) << "Infeeding to GPU"; ShapeTree<se::DeviceMemoryHandle> source_buffers = GetOrCreateInfeedManager(stream.parent())->BlockingGetNextDestination(); size_t index = 0; for (auto& source : source_buffers.leaves()) { const ShapeIndex& shape_index = source.first; se::DeviceMemoryHandle& buffer = source.second; const Shape& source_shape = ShapeUtil::GetSubshape(source_buffers.shape(), shape_index); TF_RET_CHECK( ShapeUtil::ReshapeIsBitcast(dest_slices_[index].shape, source_shape)) << "Mismatch between infeed source buffer shape " << ShapeUtil::HumanStringWithLayout(source_shape) << " and infeed dest buffer shape " << ShapeUtil::HumanStringWithLayout(dest_slices_[index].shape); se::DeviceMemoryBase dest_address = buffer_allocations.GetDeviceAddress(dest_slices_[index++].slice); TF_RETURN_IF_ERROR( stream.Memcpy(&dest_address, buffer.memory(), buffer.memory().size())); } CHECK_EQ(index, dest_slices_.size()) << "Infeed did not populate all destination buffers"; absl::Status block_status = stream.BlockHostUntilDone(); if (!block_status.ok()) { return Internal("Failed to complete data transfer on stream %p: %s", &stream, block_status.message()); } VLOG(2) << "Infeeding to GPU complete"; return absl::OkStatus(); } } }
#include "xla/service/cpu/runtime/infeed_thunk.h" #include <memory> #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(InfeedThunkTest, BufferUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice infeed_slice(&alloc, 10, 40); InfeedThunk::InfeedBuffer infeed_buffer = { infeed_slice, ShapeUtil::MakeShape(F32, {10}), }; TF_ASSERT_OK_AND_ASSIGN(auto thunk, InfeedThunk::Create({"infeed"}, {infeed_buffer})); EXPECT_EQ(thunk->buffer_uses().size(), 2); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Write(infeed_slice)); BufferAllocation::Slice side_effect_slice(&alloc, 0, 1); EXPECT_EQ(thunk->buffer_uses()[1], BufferUse::Write(side_effect_slice)); } } }
2,022
cpp
tensorflow/tensorflow
copy_thunk
third_party/xla/xla/backends/cpu/runtime/copy_thunk.cc
third_party/xla/xla/backends/cpu/runtime/copy_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_COPY_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_COPY_THUNK_H_ #include <cstdint> #include <memory> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { class DeviceToDeviceCopyThunk : public Thunk { public: DeviceToDeviceCopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size); DeviceToDeviceCopyThunk(const DeviceToDeviceCopyThunk&) = delete; DeviceToDeviceCopyThunk& operator=(const DeviceToDeviceCopyThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; const BufferAllocation::Slice& source() const { return source_buffer_; } const BufferAllocation::Slice& destination() const { return destination_buffer_; } uint64_t size_bytes() const { return mem_size_; } private: const BufferAllocation::Slice source_buffer_; const BufferAllocation::Slice destination_buffer_; const uint64_t mem_size_; }; class CopyThunk : public Thunk { public: class AsyncEvents { public: absl::Status Emplace(se::StreamExecutor* executor, const HloInstruction* instr, std::unique_ptr<se::Event> event); absl::StatusOr<std::unique_ptr<se::Event>> Extract( se::StreamExecutor* executor, const HloInstruction* instr); private: using Key = std::pair<se::StreamExecutor*, const HloInstruction*>; absl::Mutex mutex_; absl::flat_hash_map<Key, std::unique_ptr<se::Event>> events_ ABSL_GUARDED_BY(mutex_); }; CopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size); absl::Status ExecuteOnStream(const ExecuteParams& params) override; const BufferAllocation::Slice& source() const { return source_buffer_; } const BufferAllocation::Slice& destination() const { return destination_buffer_; } uint64_t size_bytes() const { return mem_size_; } private: const BufferAllocation::Slice source_buffer_; const BufferAllocation::Slice destination_buffer_; const uint64_t mem_size_; }; class DeviceToHostCopyThunk : public CopyThunk { public: DeviceToHostCopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> events, const HloInstruction* instr); absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::shared_ptr<CopyThunk::AsyncEvents> async_events_; const HloInstruction* instr_; }; class HostToDeviceCopyThunk : public CopyThunk { public: HostToDeviceCopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> events, const HloInstruction* instr); absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::shared_ptr<CopyThunk::AsyncEvents> async_events_; const HloInstruction* instr_; }; class CopyDoneThunk : public Thunk { public: CopyDoneThunk(Thunk::Kind kind, ThunkInfo thunk_info, std::shared_ptr<CopyThunk::AsyncEvents> events, const HloInstruction* copy_start_instr); absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::shared_ptr<CopyThunk::AsyncEvents> async_events_; const HloInstruction* copy_start_instr_; }; } } #endif #include "xla/service/gpu/runtime/copy_thunk.h" #include <cstdint> #include <memory> #include <utility> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/event.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { DeviceToDeviceCopyThunk::DeviceToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status DeviceToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination_buffer_); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source_buffer_); VLOG(3) << "Memcpy D2D of size " << mem_size_ << " from " << source_data.opaque() << " to " << destination_data.opaque(); return params.stream->Memcpy(&destination_data, source_data, mem_size_); } CopyThunk::CopyThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size) : Thunk(Kind::kCopy, std::move(thunk_info)), source_buffer_(source_buffer), destination_buffer_(destination_buffer), mem_size_(mem_size) {} absl::Status CopyThunk::ExecuteOnStream(const ExecuteParams& params) { return absl::OkStatus(); } absl::Status CopyThunk::AsyncEvents::Emplace(se::StreamExecutor* executor, const HloInstruction* instr, std::unique_ptr<se::Event> event) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); VLOG(3) << "Emplace event " << event.get(); if (auto [it, inserted] = events_.try_emplace(key, std::move(event)); inserted) { return absl::OkStatus(); } return absl::InternalError("Async copy event already exists!"); } absl::StatusOr<std::unique_ptr<se::Event>> CopyThunk::AsyncEvents::Extract( se::StreamExecutor* executor, const HloInstruction* instr) { Key key = {executor, instr}; absl::MutexLock lock(&mutex_); if (auto event = events_.extract(key)) { VLOG(3) << "Extract event " << event.mapped().get(); return std::move(event.mapped()); } return absl::InternalError("Async copy event was not found!"); } DeviceToHostCopyThunk::DeviceToHostCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status DeviceToHostCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_dst = destination_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(cpu_dst, source_data, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy D2H from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy D2H from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } HostToDeviceCopyThunk::HostToDeviceCopyThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& source_buffer, const BufferAllocation::Slice& destination_buffer, uint64_t mem_size, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* instr) : CopyThunk(std::move(thunk_info), source_buffer, destination_buffer, mem_size), async_events_(std::move(async_events)), instr_(instr) {} absl::Status HostToDeviceCopyThunk::ExecuteOnStream( const ExecuteParams& params) { se::DeviceMemoryBase destination_data = params.buffer_allocations->GetDeviceAddress(destination()); se::DeviceMemoryBase source_data = params.buffer_allocations->GetDeviceAddress(source()); void* cpu_src = source_data.opaque(); TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); TF_RETURN_IF_ERROR(stream->Memcpy(&destination_data, cpu_src, size_bytes())); if (stream == params.stream) { VLOG(2) << "Memcpy H2D from the main stream"; return absl::OkStatus(); } VLOG(2) << "Memcpy H2D from the other stream"; se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(auto event, executor->CreateEvent()); TF_RETURN_IF_ERROR(stream->RecordEvent(event.get())); VLOG(3) << "Emplace events: " << event.get() << " for instr: " << instr_->ToString(); return async_events_->Emplace(executor, instr_, std::move(event)); } CopyDoneThunk::CopyDoneThunk( Thunk::Kind kind, ThunkInfo thunk_info, std::shared_ptr<CopyThunk::AsyncEvents> async_events, const HloInstruction* copy_start_instr) : Thunk(kind, std::move(thunk_info)), async_events_(std::move(async_events)), copy_start_instr_(copy_start_instr) {} absl::Status CopyDoneThunk::ExecuteOnStream(const ExecuteParams& params) { VLOG(3) << "CopyDone thunk between a host and a device for: " << copy_start_instr_->ToString(); se::StreamExecutor* executor = params.stream->parent(); TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Event> event, async_events_->Extract(executor, copy_start_instr_)); return params.stream->WaitFor(event.get()); } } }
#include "xla/service/cpu/runtime/copy_thunk.h" #include <cstddef> #include <vector> #include "xla/layout_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(CopyThunkTest, CopySameShape) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, shape, dst_slice, shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(src, dst); } TEST(CopyThunkTest, CopyTransposed) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> src = {1.0, 2.0, 3.0, 4.0}; std::vector<float> dst(4, 0.0); size_t size_in_bytes = src.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(src.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation src_alloc(0, size_in_bytes, 0); BufferAllocation dst_alloc(1, size_in_bytes, 0); BufferAllocation::Slice src_slice(&src_alloc, 0, size_in_bytes); BufferAllocation::Slice dst_slice(&dst_alloc, 0, size_in_bytes); Shape src_shape = ShapeUtil::MakeShape(F32, {2, 2}); *src_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape dst_shape = ShapeUtil::MakeShape(F32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, CopyThunk::Create({"copy"}, src_slice, src_shape, dst_slice, dst_shape)); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected = {1.0, 3.0, 2.0, 4.0}; EXPECT_EQ(expected, dst); } } }
2,023
cpp
tensorflow/tensorflow
convolution_thunk
third_party/xla/xla/backends/cpu/runtime/convolution_thunk.cc
third_party/xla/xla/backends/cpu/runtime/convolution_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_CONVOLUTION_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_CONVOLUTION_THUNK_H_ #include <cstdint> #include <memory> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { class ConvolutionThunk : public Thunk { public: ConvolutionThunk(ThunkInfo thunk_info, GpuConvConfig config, std::vector<BufferAllocation::Slice> operand_slices, std::vector<BufferAllocation::Slice> result_slices, BufferAllocation::Slice scratch_slice); ConvolutionThunk(const ConvolutionThunk&) = delete; ConvolutionThunk& operator=(const ConvolutionThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::vector<BufferAllocation::Slice> operand_buffers_; std::vector<BufferAllocation::Slice> result_buffers_; BufferAllocation::Slice scratch_buffer_; GenericConvRunner& GetOrCreateRunner(const stream_executor::Stream* stream, bool* runner_created); const GpuConvConfig config_; absl::Mutex mu_; absl::flat_hash_map<const stream_executor::Stream*, std::unique_ptr<GenericConvRunner>> runner_cache_ ABSL_GUARDED_BY(mu_); }; class ConvolutionReorderThunk : public Thunk { public: ConvolutionReorderThunk( ThunkInfo thunk_info, absl::Span<int64_t> filter_nchw, absl::InlinedVector<BufferAllocation::Slice, 2> operand_slices, absl::InlinedVector<BufferAllocation::Slice, 2> result_slices); ConvolutionReorderThunk(const ConvolutionReorderThunk&) = delete; ConvolutionReorderThunk& operator=(const ConvolutionReorderThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: static se::dnn::FilterDescriptor CreateFilterDescriptor( absl::Span<int64_t> filter_nchw); const se::dnn::FilterDescriptor filter_descriptor_; absl::InlinedVector<BufferAllocation::Slice, 2> operand_buffers_; absl::InlinedVector<BufferAllocation::Slice, 2> result_buffers_; }; } } #endif #include "xla/service/gpu/runtime/convolution_thunk.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #if TENSORFLOW_USE_ROCM #include "xla/service/gpu/stream_executor_util.h" #endif #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { ConvolutionThunk::ConvolutionThunk( ThunkInfo thunk_info, GpuConvConfig config, std::vector<BufferAllocation::Slice> operand_slices, std::vector<BufferAllocation::Slice> result_slices, BufferAllocation::Slice scratch_slice) : Thunk(Kind::kConvolution, thunk_info), operand_buffers_(std::move(operand_slices)), result_buffers_(std::move(result_slices)), scratch_buffer_(scratch_slice), config_(std::move(config)) {} GenericConvRunner& ConvolutionThunk::GetOrCreateRunner( const stream_executor::Stream* stream, bool* runner_created) { absl::MutexLock lock(&mu_); auto it = runner_cache_.find(stream); *runner_created = (it == runner_cache_.end()); if (*runner_created) { it = runner_cache_ .insert({stream, std::make_unique<GenericConvRunner>(config_)}) .first; } return *it->second; } absl::Status ConvolutionThunk::ExecuteOnStream(const ExecuteParams& params) { const auto& buffer_allocations = *params.buffer_allocations; std::vector<se::DeviceMemoryBase> operand_se_buffers, result_se_buffers; operand_se_buffers.reserve(operand_buffers_.size()); for (BufferAllocation::Slice buffer : operand_buffers_) { operand_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } result_se_buffers.reserve(result_buffers_.size()); for (BufferAllocation::Slice buffer : result_buffers_) { result_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } se::DeviceMemoryBase scratch = buffer_allocations.GetDeviceAddress(scratch_buffer_); bool runner_created = false; RunConvOptions opts; opts.runner_cache = &GetOrCreateRunner(params.stream, &runner_created); #if TENSORFLOW_USE_ROCM if (runner_created) { TF_ASSIGN_OR_RETURN( GpuConvParams conv_params, GetGpuConvParams(config_, operand_se_buffers, result_se_buffers)); TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config_.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType input_type, GetDNNDataTypeFromPrimitiveType(config_.input_type)); TF_ASSIGN_OR_RETURN(se::dnn::DataType output_type, GetDNNDataTypeFromPrimitiveType(config_.output_type)); TF_ASSIGN_OR_RETURN(auto dnn, se::dnn::internal::GetDnnFromStream(params.stream)); se::OwningScratchAllocator<> scratch_allocator( buffer_allocations.device_ordinal(), buffer_allocations.memory_allocator()); std::vector<se::dnn::ProfileResult> profile_results; dnn->GetMIOpenConvolveAlgorithms( kind, input_type, output_type, params.stream, config_.input_descriptor, conv_params.input_buf, config_.filter_descriptor, conv_params.filter_buf, config_.output_descriptor, conv_params.output_buf, config_.conv_desc, &scratch_allocator, &profile_results); } #endif TF_RETURN_IF_ERROR(RunGpuConv(config_, absl::MakeSpan(operand_se_buffers), absl::MakeSpan(result_se_buffers), scratch, params.stream, opts)); if (!params.stream->ok()) { return Internal("ConvolutionThunk::ExecuteOnStream failed."); } return absl::OkStatus(); } ConvolutionReorderThunk::ConvolutionReorderThunk( ThunkInfo thunk_info, absl::Span<int64_t> filter_nchw, absl::InlinedVector<BufferAllocation::Slice, 2> operand_slices, absl::InlinedVector<BufferAllocation::Slice, 2> result_slices) : Thunk(Kind::kConvolutionReorder, thunk_info), filter_descriptor_(CreateFilterDescriptor(filter_nchw)), operand_buffers_(operand_slices), result_buffers_(result_slices) {} absl::Status ConvolutionReorderThunk::ExecuteOnStream( const ExecuteParams& params) { bool has_bias = operand_buffers_.size() > 1; CHECK_EQ(operand_buffers_.size(), result_buffers_.size()); const auto& buffer_allocations = *params.buffer_allocations; auto filter_input = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(operand_buffers_[0])); auto filter_output = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(result_buffers_[0])); auto bias_input = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(operand_buffers_[1]))) : std::nullopt; auto bias_output = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(result_buffers_[1]))) : std::nullopt; auto dnn = params.stream->parent()->AsDnn(); if (dnn == nullptr) { return absl::InternalError("No DNN for stream."); } return dnn->CudnnReorderConvolutionFilterAndBias( params.stream, filter_descriptor_, filter_input, &filter_output, std::move(bias_input), std::move(bias_output)); } se::dnn::FilterDescriptor ConvolutionReorderThunk::CreateFilterDescriptor( absl::Span<int64_t> filter_nchw) { CHECK_EQ(filter_nchw.size(), 4); se::dnn::FilterDescriptor filter_desc(2); filter_desc.set_layout(se::dnn::FilterLayout::kOutputInputYX32); filter_desc.set_output_feature_map_count(filter_nchw[0]); filter_desc.set_input_feature_map_count(filter_nchw[1]); filter_desc.set_input_filter_height(filter_nchw[2]); filter_desc.set_input_filter_width(filter_nchw[3]); return filter_desc; } } }
#include "xla/service/cpu/runtime/convolution_thunk.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "Eigen/Core" #include "xla/primitive_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { struct ConvolutionDimensions { int batch_size = 1; int input_size = 3; int input_channels = 5; int kernel_size = 3; int output_channels = 3; int output_size = input_size - kernel_size + 1; }; template <typename T> class ConvolutionThunkTypedTest : public ::testing::Test {}; using CorrectTypes = ::testing::Types<float, Eigen::half>; TYPED_TEST_SUITE(ConvolutionThunkTypedTest, CorrectTypes); std::vector<int64_t> MakeInputDims( int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> input_dims = {dims.batch_size}; for (int i = 0; i < convolution_rank; ++i) { input_dims.push_back(dims.input_size); } input_dims.push_back(dims.input_channels); return input_dims; } std::vector<int64_t> MakeKernelDims( int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> kernel_dims = {}; for (int i = 0; i < convolution_rank; ++i) { kernel_dims.push_back(dims.kernel_size); } kernel_dims.push_back(dims.input_channels); kernel_dims.push_back(dims.output_channels); return kernel_dims; } std::vector<int64_t> MakeOutputDims( int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> output_dims = {dims.batch_size}; for (int i = 0; i < convolution_rank; ++i) { output_dims.push_back(dims.output_size); } output_dims.push_back(dims.output_channels); return output_dims; } template <typename ElementType> std::vector<ElementType> MakeDataVector(const std::vector<int64_t>& dims) { auto size = absl::c_accumulate(dims, 1, std::multiplies<int>()); return std::vector<ElementType>(size, ElementType(0.0)); } template <typename ElementType> std::vector<MaybeOwningDeviceMemory> MakeBuffers( const std::vector<ElementType>& input, const std::vector<ElementType>& kernel, const std::vector<ElementType>& output) { std::vector<MaybeOwningDeviceMemory> buffers; size_t input_size_in_bytes = input.size() * sizeof(ElementType); buffers.emplace_back(se::DeviceMemoryBase(input.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(kernel.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(output.data(), output_size_in_bytes)); return buffers; } ConvolutionThunk::Options MakeConvolutionOptions() { ConvolutionThunk::Options options; options.multi_threaded = false; options.use_acl = false; return options; } ConvolutionDimensionNumbers MakeConvolutionDimensionNumbers( int convolution_rank) { ConvolutionDimensionNumbers dnums; int dim = 0; dnums.set_input_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_input_spatial_dimensions(dim++); } dnums.set_input_feature_dimension(dim++); dim = 0; for (int i = 0; i < convolution_rank; ++i) { dnums.add_kernel_spatial_dimensions(dim++); } dnums.set_kernel_input_feature_dimension(dim++); dnums.set_kernel_output_feature_dimension(dim++); dim = 0; dnums.set_output_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_output_spatial_dimensions(dim++); } dnums.set_output_feature_dimension(dim++); return dnums; } Window MakeWindow(int convolution_rank) { Window window; for (int i = 0; i < convolution_rank; ++i) { WindowDimension* window_dim = window.add_dimensions(); window_dim->set_stride(1); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_dilation(1); window_dim->set_base_dilation(1); } return window; } template <typename ElementType> class ConvolutionThunkBuilder { public: auto Build(int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { auto input_dims = MakeInputDims(convolution_rank, dims); auto kernel_dims = MakeKernelDims(convolution_rank, dims); auto output_dims = MakeOutputDims(convolution_rank, dims); input_ = MakeDataVector<ElementType>(input_dims); kernel_ = MakeDataVector<ElementType>(kernel_dims); output_ = MakeDataVector<ElementType>(output_dims); size_t input_size_in_bytes = input_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(input_.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(kernel_.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(output_.data(), output_size_in_bytes)); allocations_ = std::make_unique<BufferAllocations>(buffers_); input_alloc_ = std::make_unique<BufferAllocation>(0, input_size_in_bytes, 0); kernel_alloc_ = std::make_unique<BufferAllocation>(1, kernel_size_in_bytes, 0); output_alloc_ = std::make_unique<BufferAllocation>(2, output_size_in_bytes, 0); BufferAllocation::Slice input_slice(input_alloc_.get(), 0, input_size_in_bytes); BufferAllocation::Slice kernel_slice(kernel_alloc_.get(), 0, kernel_size_in_bytes); BufferAllocation::Slice output_slice(output_alloc_.get(), 0, output_size_in_bytes); auto primitive_type = primitive_util::NativeToPrimitiveType<ElementType>(); Shape input_shape = ShapeUtil::MakeShape(primitive_type, input_dims); Shape kernel_shape = ShapeUtil::MakeShape(primitive_type, kernel_dims); Shape output_shape = ShapeUtil::MakeShape(primitive_type, output_dims); auto options = MakeConvolutionOptions(); auto dnums = MakeConvolutionDimensionNumbers(convolution_rank); auto window = MakeWindow(convolution_rank); return ConvolutionThunk::Create( {"convolution"}, options, std::move(input_slice), input_shape, std::move(kernel_slice), kernel_shape, std::move(output_slice), output_shape, dnums, window, 1); } auto GetExecutionParams() { return Thunk::ExecuteParams{nullptr, allocations_.get()}; } private: std::vector<ElementType> input_; std::vector<ElementType> kernel_; std::vector<ElementType> output_; std::vector<MaybeOwningDeviceMemory> buffers_; std::unique_ptr<BufferAllocations> allocations_; std::unique_ptr<BufferAllocation> input_alloc_; std::unique_ptr<BufferAllocation> kernel_alloc_; std::unique_ptr<BufferAllocation> output_alloc_; }; template <typename ElementType> void SuccessfulConvolution(int convolution_rank) { ConvolutionThunkBuilder<ElementType> builder; TF_ASSERT_OK_AND_ASSIGN(auto thunk, builder.Build(convolution_rank)) Thunk::ExecuteParams params = builder.GetExecutionParams(); auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()) << execute_event.GetError(); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution1D) { SuccessfulConvolution<TypeParam>(1); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution2D) { SuccessfulConvolution<TypeParam>(2); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution3D) { SuccessfulConvolution<TypeParam>(3); } TEST(ConvolutionThunkTest, CreationErrorOnUnsupportedType) { ConvolutionThunkBuilder<int> builder; auto status_or_thunk = builder.Build(2); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Unsupported element type (S32)")); } TEST(ConvolutionThunkTest, CreationErrorOnIncorrectConvolutionRank) { ConvolutionThunkBuilder<float> builder; auto status_or_thunk = builder.Build(4); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Incorrect convolution rank (4)")); } } }
2,024
cpp
tensorflow/tensorflow
outfeed_thunk
third_party/xla/xla/backends/cpu/runtime/outfeed_thunk.cc
third_party/xla/xla/backends/cpu/runtime/outfeed_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_OUTFEED_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_OUTFEED_THUNK_H_ #include <vector> #include "absl/status/status.h" #include "xla/service/gpu/runtime/thunk.h" namespace xla { namespace gpu { class OutfeedThunk : public Thunk { public: OutfeedThunk(ThunkInfo thunk_info, std::vector<ShapedSlice> source_slices); OutfeedThunk(const OutfeedThunk&) = delete; OutfeedThunk& operator=(const OutfeedThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: const std::vector<ShapedSlice> source_slices_; }; } } #endif #include "xla/service/gpu/runtime/outfeed_thunk.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/outfeed_manager.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { OutfeedThunk::OutfeedThunk(ThunkInfo thunk_info, std::vector<ShapedSlice> source_slices) : Thunk(Kind::kOutfeed, thunk_info), source_slices_(std::move(source_slices)) {} absl::Status OutfeedThunk::ExecuteOnStream(const ExecuteParams& params) { se::Stream& stream = *params.stream; const BufferAllocations& buffer_allocations = *params.buffer_allocations; VLOG(2) << "Outfeeding from GPU"; OutfeedManager* outfeed_manager = GetOrCreateOutfeedManager(stream.parent()); ShapeTree<std::unique_ptr<OutfeedBuffer>>* output_buffers = outfeed_manager->BlockingGetNextDestination(); if (source_slices_.empty()) { return absl::OkStatus(); } const int64_t leaf_count = output_buffers->leaf_count(); TF_RET_CHECK(source_slices_.size() == leaf_count) << "Mismatch between number of outfeed inputs (" << source_slices_.size() << ") and outputs (" << leaf_count << ")"; auto output_leaf_it = output_buffers->leaf_begin(); for (int64_t index = 0; index < leaf_count; ++index) { const ShapeIndex& shape_index = output_leaf_it->first; std::unique_ptr<OutfeedBuffer>& buffer = output_leaf_it->second; ++output_leaf_it; const Shape& output_shape = ShapeUtil::GetSubshape(output_buffers->shape(), shape_index); TF_RET_CHECK( ShapeUtil::ReshapeIsBitcast(source_slices_[index].shape, output_shape)) << "Mismatch between outfeed output buffer shape " << ShapeUtil::HumanStringWithLayout(output_shape) << " and outfeed source buffer shape " << ShapeUtil::HumanStringWithLayout(source_slices_[index].shape); BufferAllocation::Slice source_slice = source_slices_[index].slice; if (!source_slice.allocation()) return Internal("outfeed source missing buffer allocation"); se::DeviceMemoryBase data_address = buffer_allocations.GetDeviceAddress(source_slice); TF_RETURN_IF_ERROR(stream.Memcpy(buffer->destination()->untyped_data(), data_address, buffer->length())); TF_RETURN_IF_ERROR(stream.DoHostCallback([&buffer]() { buffer->Done(); })); } absl::Status block_status = stream.BlockHostUntilDone(); if (!block_status.ok()) { return Internal("Failed to complete data transfer on stream %p: %s", &stream, block_status.message()); } VLOG(2) << "Outfeeding from GPU complete"; return absl::OkStatus(); } } }
#include "xla/service/cpu/runtime/outfeed_thunk.h" #include <memory> #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(OutfeedThunkTest, BufferUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice outfeed_slice(&alloc, 10, 40); OutfeedThunk::OutfeedBuffer outfeed_buffer = { outfeed_slice, ShapeUtil::MakeShape(F32, {10}), }; TF_ASSERT_OK_AND_ASSIGN(auto thunk, OutfeedThunk::Create({"outfeed"}, {outfeed_buffer})); EXPECT_EQ(thunk->buffer_uses().size(), 2); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Read(outfeed_slice)); BufferAllocation::Slice side_effect_slice(&alloc, 0, 1); EXPECT_EQ(thunk->buffer_uses()[1], BufferUse::Write(side_effect_slice)); } } }
2,025
cpp
tensorflow/tensorflow
while_thunk
third_party/xla/xla/backends/cpu/runtime/while_thunk.cc
third_party/xla/xla/backends/cpu/runtime/while_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_WHILE_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_WHILE_THUNK_H_ #include <cstdint> #include <memory> #include <optional> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { class WhileThunk : public Thunk { public: WhileThunk(ThunkInfo thunk_info, const BufferAllocation::Slice& condition_result_buffer_index, std::unique_ptr<SequentialThunk> condition_thunk_sequence, std::unique_ptr<SequentialThunk> body_thunk_sequence, std::optional<int64_t> trip_count = std::nullopt); WhileThunk(const WhileThunk&) = delete; WhileThunk& operator=(const WhileThunk&) = delete; absl::Status Prepare(const PrepareParams& params, ResourceRequests& resource_requests) override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; SequentialThunk* condition_thunk_sequence() const { return condition_thunk_sequence_.get(); } SequentialThunk* body_thunk_sequence() const { return body_thunk_sequence_.get(); } const BufferAllocation::Slice& condition_result_buffer() const { return condition_result_buffer_index_; } static absl::StatusOr<int64_t> CurrentLoopIteration(int64_t depth = 0); private: const BufferAllocation::Slice condition_result_buffer_index_; std::unique_ptr<SequentialThunk> condition_thunk_sequence_; std::unique_ptr<SequentialThunk> body_thunk_sequence_; std::optional<int64_t> trip_count_; absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::MemoryAllocation>> predicates_ ABSL_GUARDED_BY(mutex_); }; } } #endif #include "xla/service/gpu/runtime/while_thunk.h" #include <cstdint> #include <iterator> #include <list> #include <memory> #include <optional> #include <utility> #include "absl/cleanup/cleanup.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/memory_allocation.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { static std::list<int64_t>& LoopCounters() { static thread_local std::list<int64_t> loop_counters; return loop_counters; } absl::StatusOr<int64_t> WhileThunk::CurrentLoopIteration(int64_t depth) { if (depth >= LoopCounters().size()) { return absl::InvalidArgumentError(absl::StrFormat( "Loop depth %d is greater than the number of tracked loops %d", depth, LoopCounters().size())); } auto counter = LoopCounters().begin(); std::advance(counter, depth); return *counter; } WhileThunk::WhileThunk( ThunkInfo thunk_info, const BufferAllocation::Slice& condition_result_buffer_index, std::unique_ptr<SequentialThunk> condition_thunk_sequence, std::unique_ptr<SequentialThunk> body_thunk_sequence, std::optional<int64_t> trip_count) : Thunk(Kind::kWhile, thunk_info), condition_result_buffer_index_(condition_result_buffer_index), condition_thunk_sequence_(std::move(condition_thunk_sequence)), body_thunk_sequence_(std::move(body_thunk_sequence)), trip_count_(trip_count) {} absl::Status WhileThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { TF_RETURN_IF_ERROR( condition_thunk_sequence_->Prepare(params, resource_requests)); TF_RETURN_IF_ERROR(body_thunk_sequence_->Prepare(params, resource_requests)); return absl::OkStatus(); } absl::Status WhileThunk::Initialize(const InitializeParams& params) { TF_RETURN_IF_ERROR(condition_thunk_sequence_->Initialize(params)); TF_RETURN_IF_ERROR(body_thunk_sequence_->Initialize(params)); absl::MutexLock lock(&mutex_); if (auto it = predicates_.find(params.executor); it == predicates_.end()) { TF_ASSIGN_OR_RETURN(std::unique_ptr<se::MemoryAllocation> allocation, params.executor->HostMemoryAllocate(sizeof(bool))); predicates_.emplace(params.executor, std::move(allocation)); } return absl::OkStatus(); } absl::Status WhileThunk::ExecuteOnStream(const ExecuteParams& params) { auto& stream = *params.stream; int64_t& iter = LoopCounters().emplace_front(); absl::Cleanup cleanup = [&] { LoopCounters().pop_front(); }; se::DeviceMemoryBase condition_result_data = params.buffer_allocations->GetDeviceAddress( condition_result_buffer_index_); if (trip_count_.has_value()) { VLOG(2) << "Executing WhileThunk for " << *trip_count_ << " iterations"; for (iter = 0; iter < trip_count_; ++iter) { VLOG(3) << "Executing iteration # " << iter; TF_RETURN_IF_ERROR(body_thunk_sequence_->ExecuteOnStream(params)); } return absl::OkStatus(); } bool* condition_result = [&] { absl::MutexLock lock(&mutex_); return reinterpret_cast<bool*>(predicates_.at(stream.parent())->opaque()); }(); while (true) { VLOG(3) << "Executing WhileThunk condition computation; iter=" << iter; TF_RETURN_IF_ERROR(condition_thunk_sequence_->ExecuteOnStream(params)); TF_RETURN_IF_ERROR( stream.Memcpy(condition_result, condition_result_data, sizeof(bool))); if (absl::Status blocked = stream.BlockHostUntilDone(); !blocked.ok()) { return absl::InternalError(absl::StrFormat( "Failed to complete all kernels launched on stream %p: %s", &stream, blocked.message())); } VLOG(3) << "condition_result = " << *condition_result; if (!*condition_result) { VLOG(3) << "Break WhileThunk loop; iter=" << iter; break; } VLOG(3) << "Executing WhileThunk body computation; iter=" << iter; TF_RETURN_IF_ERROR(body_thunk_sequence_->ExecuteOnStream(params)); ++iter; } return absl::OkStatus(); } } }
#include "xla/service/cpu/runtime/while_thunk.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/cpu/runtime/thunk_testlib.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(WhileThunkTest, BufferUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice predicate_slice(&alloc, 0, sizeof(int32_t)); BufferAllocation::Slice cond_read_slice(&alloc, 10, 10); BufferAllocation::Slice body_read_slice(&alloc, 20, 10); ThunkSequence cond_sequence; cond_sequence.push_back( std::make_unique<BufferUseThunk>(BufferUse::Read(cond_read_slice))); ThunkSequence body_sequence; body_sequence.push_back( std::make_unique<BufferUseThunk>(BufferUse::Read(body_read_slice))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, WhileThunk::Create({"while"}, predicate_slice, std::move(cond_sequence), std::move(body_sequence))); EXPECT_EQ(thunk->buffer_uses().size(), 3); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Write(predicate_slice)); EXPECT_EQ(thunk->buffer_uses()[1], BufferUse::Read(cond_read_slice)); EXPECT_EQ(thunk->buffer_uses()[2], BufferUse::Read(body_read_slice)); } } }
2,026
cpp
tensorflow/tensorflow
thunk_executor
third_party/xla/xla/backends/cpu/runtime/thunk_executor.cc
third_party/xla/xla/backends/cpu/runtime/thunk_executor_test.cc
#ifndef XLA_SERVICE_CPU_RUNTIME_THUNK_EXECUTOR_H_ #define XLA_SERVICE_CPU_RUNTIME_THUNK_EXECUTOR_H_ #include <atomic> #include <cstdint> #include <limits> #include <string> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/fixed_array.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/tsl/concurrency/async_value_ref.h" namespace xla::cpu { class ThunkExecutor { public: using BufferUses = Thunk::BufferUses; using ExecuteEvent = Thunk::ExecuteEvent; using Task = absl::AnyInvocable<void()>; using TaskRunner = absl::AnyInvocable<void(Task)>; using NodeId = int64_t; static constexpr NodeId kInvalidNodeId = std::numeric_limits<NodeId>::min(); ThunkExecutor(ThunkExecutor&&) = default; ThunkExecutor& operator=(ThunkExecutor&&) = default; static absl::StatusOr<ThunkExecutor> Create(ThunkSequence thunk_sequence); struct NodeDef { NodeId id = kInvalidNodeId; std::vector<NodeId> in_edges; std::vector<NodeId> out_edges; }; tsl::AsyncValueRef<ExecuteEvent> Execute(const Thunk::ExecuteParams& params, TaskRunner runner = nullptr); absl::Span<const NodeDef> nodes_defs() const { return nodes_defs_; } const NodeDef& node_def(NodeId id) const { return nodes_defs_[id]; } absl::Span<const NodeId> source() const { return source_; } absl::Span<const NodeId> sink() const { return sink_; } BufferUses buffer_uses() const { return thunk_sequence_.buffer_uses(); } std::string ToString() const; bool is_sequential() const { return is_sequential_; } private: using ReadyQueue = absl::InlinedVector<NodeId, 8>; ThunkExecutor(ThunkSequence thunk_sequence, std::vector<NodeDef> nodes_defs); struct Node { NodeId id = kInvalidNodeId; std::atomic<int64_t>* counter = nullptr; const std::vector<NodeId>* out_edges = nullptr; }; struct ExecuteState { ExecuteState(ThunkExecutor* executor, TaskRunner runner); ThunkExecutor* executor; TaskRunner runner; absl::FixedArray<std::atomic<int64_t>> counters; absl::InlinedVector<Node, 32> nodes; std::atomic<bool> abort; absl::Mutex abort_mutex; absl::Status abort_status ABSL_GUARDED_BY(abort_mutex); std::atomic<int64_t> pending_sink_nodes; tsl::AsyncValueRef<ExecuteEvent> execute_event; }; tsl::AsyncValueRef<ExecuteEvent> ExecuteSequential( const Thunk::ExecuteParams& params); void ResumeExecuteSequential(int64_t index, const Thunk::ExecuteParams& params, tsl::AsyncValueRef<ExecuteEvent> event); void Execute(ExecuteState* state, const Thunk::ExecuteParams& params, ReadyQueue ready_queue); void ProcessOutEdges(ExecuteState* state, tsl::AsyncValuePtr<Thunk::ExecuteEvent> node_event, Node& node, ReadyQueue& ready_queue); int64_t TransitiveReduction(); ThunkSequence thunk_sequence_; std::vector<NodeDef> nodes_defs_; std::vector<NodeId> source_; std::vector<NodeId> sink_; bool is_sequential_; }; } #endif #include "xla/service/cpu/runtime/thunk_executor.h" #include <atomic> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/runtime/buffer_use.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/logging.h" #include "tsl/profiler/lib/traceme.h" namespace xla::cpu { ThunkExecutor::ThunkExecutor(ThunkSequence thunk_sequence, std::vector<NodeDef> nodes_defs) : thunk_sequence_(std::move(thunk_sequence)), nodes_defs_(std::move(nodes_defs)), is_sequential_(true) { for (NodeId i = 0; i < nodes_defs_.size(); ++i) { if (nodes_defs_[i].in_edges.empty()) { source_.push_back(i); } if (nodes_defs_[i].out_edges.empty()) { sink_.push_back(i); } } int64_t num_erased_edges = TransitiveReduction(); for (NodeId i = 1; i < nodes_defs_.size() && is_sequential_; ++i) { is_sequential_ &= (absl::c_count(nodes_defs_[i].in_edges, i - 1) != 0); } VLOG(2) << absl::StreamFormat( "Constructed ThunkExecutor with %d nodes: #source_nodes=%d " "#sink_nodes=%d, #erased_edges=%d, is_sequential=%v", nodes_defs_.size(), source_.size(), sink_.size(), num_erased_edges, is_sequential_); DCHECK((!source_.empty() && !sink_.empty() && !thunk_sequence_.empty()) || (source_.empty() && sink_.empty() && thunk_sequence_.empty())); } absl::StatusOr<ThunkExecutor> ThunkExecutor::Create( ThunkSequence thunk_sequence) { std::vector<NodeDef> defs(thunk_sequence.size()); std::vector<BufferUse::ReadWriteSet> rwsets(thunk_sequence.size()); std::vector<Thunk::BufferUses> buffer_uses(thunk_sequence.size()); for (NodeId i = 0; i < thunk_sequence.size(); ++i) { defs[i].id = i; Thunk& thunk = *thunk_sequence[i]; rwsets[i].AddAll(thunk.buffer_uses()); for (NodeId j = i - 1; j >= 0; --j) { if (rwsets[j].HasConflicts(rwsets[i])) { defs[j].out_edges.push_back(i); defs[i].in_edges.push_back(j); } } } return ThunkExecutor(std::move(thunk_sequence), std::move(defs)); } ThunkExecutor::ExecuteState::ExecuteState(ThunkExecutor* executor, TaskRunner runner) : executor(executor), runner(std::move(runner)), counters(executor->nodes_defs().size()), nodes(executor->nodes_defs().size()), abort(false), pending_sink_nodes(executor->sink().size()), execute_event(tsl::MakeConstructedAsyncValueRef<ExecuteEvent>()) { for (NodeId id = 0; id < nodes.size(); ++id) { const NodeDef& node_def = executor->node_def(id); counters[id].store(node_def.in_edges.size(), std::memory_order_release); nodes[id] = Node{id, &counters[id], &node_def.out_edges}; } } tsl::AsyncValueRef<ThunkExecutor::ExecuteEvent> ThunkExecutor::Execute( const Thunk::ExecuteParams& params, TaskRunner runner) { if (ABSL_PREDICT_FALSE(thunk_sequence_.empty())) { return Thunk::OkExecuteEvent(); } if (ABSL_PREDICT_FALSE(thunk_sequence_.size() == 1)) { return thunk_sequence_[0]->Execute(params); } if (is_sequential_) { return ExecuteSequential(params); } auto state = std::make_unique<ExecuteState>(this, std::move(runner)); Execute(state.get(), params, ReadyQueue(source_.begin(), source_.end())); auto execute_event = state->execute_event; execute_event.AndThen([state = std::move(state)] { CHECK_EQ(state->pending_sink_nodes.load(std::memory_order_acquire), 0) << "All sink nodes must be completed before execute_event is marked " "available."; }); return execute_event; } tsl::AsyncValueRef<ThunkExecutor::ExecuteEvent> ThunkExecutor::ExecuteSequential(const Thunk::ExecuteParams& params) { for (int64_t i = 0; i < thunk_sequence_.size(); ++i) { Thunk& thunk = *thunk_sequence_[i]; auto execute_event = thunk.Execute(params); if (ABSL_PREDICT_FALSE(!execute_event.IsAvailable())) { auto event = tsl::MakeConstructedAsyncValueRef<ExecuteEvent>(); execute_event.AndThen([this, &params, i, event](absl::Status status) { if (ABSL_PREDICT_FALSE(!status.ok())) { event.SetError(std::move(status)); } else { ResumeExecuteSequential(i + 1, params, std::move(event)); } }); return event; } if (ABSL_PREDICT_FALSE(execute_event.IsError())) { return execute_event; } } return Thunk::OkExecuteEvent(); } void ThunkExecutor::ResumeExecuteSequential( int64_t index, const Thunk::ExecuteParams& params, tsl::AsyncValueRef<ExecuteEvent> event) { for (int64_t i = index; i < thunk_sequence_.size(); ++i) { Thunk& thunk = *thunk_sequence_[i]; auto execute_event = thunk.Execute(params); if (ABSL_PREDICT_FALSE(!execute_event.IsAvailable())) { execute_event.AndThen( [this, &params, i, event = std::move(event)](absl::Status status) { if (ABSL_PREDICT_FALSE(!status.ok())) { event.SetError(std::move(status)); } else { ResumeExecuteSequential(i + 1, params, std::move(event)); } }); return; } if (ABSL_PREDICT_FALSE(execute_event.IsError())) { event.SetError(execute_event.GetError()); return; } } event.SetStateConcrete(); } void ThunkExecutor::Execute(ExecuteState* state, const Thunk::ExecuteParams& params, ReadyQueue ready_queue) { tsl::profiler::TraceMe trace("ThunkExecutor::Execute"); if (ready_queue.empty()) return; bool has_runner = state->runner != nullptr; for (int64_t i = 0; i < ready_queue.size(); ++i) { NodeId id = ready_queue[i]; Node& node = state->nodes[id]; int64_t cnt = node.counter->load(std::memory_order_acquire); CHECK_EQ(cnt, 0) << "Node counter must be 0"; if (has_runner && i < ready_queue.size() - 1) { ReadyQueue tail(ready_queue.begin() + i + 1, ready_queue.end()); ready_queue.erase(ready_queue.begin() + i + 1, ready_queue.end()); state->runner([&params, state, tail = std::move(tail)]() mutable { state->executor->Execute(state, params, std::move(tail)); }); } Thunk& thunk = *state->executor->thunk_sequence_[id]; auto execute_event = state->abort.load(std::memory_order_relaxed) ? Thunk::OkExecuteEvent() : thunk.Execute(params); if (ABSL_PREDICT_FALSE(!execute_event.IsAvailable())) { execute_event.AndThen([&, state, execute_event = execute_event.AsPtr()] { ReadyQueue ready_queue; ProcessOutEdges(state, execute_event, node, ready_queue); Execute(state, params, std::move(ready_queue)); }); } else { ProcessOutEdges(state, execute_event.AsPtr(), node, ready_queue); } } } void ThunkExecutor::ProcessOutEdges( ExecuteState* state, tsl::AsyncValuePtr<Thunk::ExecuteEvent> node_event, Node& node, ReadyQueue& ready_queue) { if (ABSL_PREDICT_FALSE(node_event.IsError())) { absl::MutexLock lock(&state->abort_mutex); state->abort = true; state->abort_status.Update(node_event.GetError()); } bool is_sink = node.out_edges->empty(); for (NodeId out_edge : *node.out_edges) { Node& out_node = state->nodes[out_edge]; int64_t cnt = out_node.counter->fetch_sub(1, std::memory_order_release); CHECK_GE(cnt, 1) << "Node counter can't drop below 0"; if (cnt == 1) ready_queue.push_back(out_edge); } if (ABSL_PREDICT_FALSE(is_sink)) { bool is_done = state->pending_sink_nodes.fetch_sub(1, std::memory_order_acq_rel) == 1; if (ABSL_PREDICT_TRUE(!is_done)) return; if (ABSL_PREDICT_FALSE(state->abort.load(std::memory_order_relaxed))) { auto take_error = [&] { absl::MutexLock lock(&state->abort_mutex); CHECK(!state->abort_status.ok()) << "Abort status must be set if execution is aborted"; return std::move(state->abort_status); }; state->execute_event.SetError(take_error()); } else { state->execute_event.SetStateConcrete(); } } } int64_t ThunkExecutor::TransitiveReduction() { int64_t num_erased_edges = 0; auto erase_edge = [&](NodeDef& from, NodeDef& to) { auto out_edge_it = absl::c_find(from.out_edges, to.id); auto in_edge_it = absl::c_find(to.in_edges, from.id); bool has_out_edge = out_edge_it != from.out_edges.end(); bool has_in_edge = in_edge_it != to.in_edges.end(); DCHECK_EQ(has_out_edge, has_in_edge) << "Edges must be symmetric"; if (has_out_edge && has_in_edge) { from.out_edges.erase(out_edge_it); to.in_edges.erase(in_edge_it); ++num_erased_edges; } }; std::vector<int64_t> stack; std::vector<bool> visited; auto add_to_stack = [&](int64_t node_id) { if (!visited[node_id]) { stack.push_back(node_id); visited[node_id] = true; } }; for (int64_t i = 0; i < nodes_defs_.size(); ++i) { NodeDef& source_node = nodes_defs_[i]; stack.clear(); visited.assign(nodes_defs_.size(), false); for (int64_t out_id : source_node.out_edges) { NodeDef& out_node = nodes_defs_[out_id]; for (int64_t start_id : out_node.out_edges) add_to_stack(start_id); } while (!stack.empty()) { int64_t node_id = stack.back(); stack.pop_back(); NodeDef& node = nodes_defs_[node_id]; erase_edge(source_node, node); for (int64_t out_id : node.out_edges) add_to_stack(out_id); } } return num_erased_edges; } std::string ThunkExecutor::ToString() const { std::string str = absl::StrFormat( "ThunkExecutor: #thunks=%d #source_nodes=%d #sink_nodes=%d", thunk_sequence_.size(), source_.size(), sink_.size()); std::vector<std::vector<std::string>> in_edges(thunk_sequence_.size()); for (const auto& node_def : nodes_defs_) { for (NodeId in_edge : node_def.in_edges) { in_edges[node_def.id].push_back(thunk_sequence_[in_edge]->info().op_name); } } for (NodeId i = 0; i < thunk_sequence_.size(); ++i) { const Thunk& thunk = *thunk_sequence_[i]; bool is_source = absl::c_find(source_, i) != source_.end(); bool is_sink = absl::c_find(sink_, i) != sink_.end(); absl::StrAppendFormat( &str, "\n thunk #%05d: op_name=%s, dependencies=[%s], source=%v, sink=%v", i, thunk.info().op_name, absl::StrJoin(in_edges[i], ", "), is_source, is_sink); } return str; } }
#include "xla/service/cpu/runtime/thunk_executor.h" #define EIGEN_USE_THREADS #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <random> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/task.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" namespace xla::cpu { namespace { using ::testing::ElementsAre; class AddI32Thunk final : public Thunk { public: AddI32Thunk(std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace, bool inject_error, bool inject_side_effect); static std::unique_ptr<Thunk> Create( std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace = nullptr, bool inject_error = false, bool inject_side_effect = false); static std::vector<MaybeOwningDeviceMemory> AsDeviceMemory( absl::Span<std::vector<int32_t>* const> data); static absl::Status Execute(const BufferAllocations* allocations, BufferAllocation::Slice src_slice, BufferAllocation::Slice dst_slice); tsl::AsyncValueRef<ExecuteEvent> Execute(const ExecuteParams&) final; BufferUses buffer_uses() const final; private: std::vector<BufferAllocation::Slice> srcs_; std::vector<BufferAllocation::Slice> dsts_; std::vector<std::string>* trace_; bool inject_error_; bool inject_side_effect_; }; std::unique_ptr<Thunk> AddI32Thunk::Create( std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace, bool inject_error, bool inject_side_effect) { return std::make_unique<AddI32Thunk>(std::move(name), std::move(srcs), std::move(dsts), trace, inject_error, inject_side_effect); } std::vector<MaybeOwningDeviceMemory> AddI32Thunk::AsDeviceMemory( absl::Span<std::vector<int32_t>* const> data) { std::vector<MaybeOwningDeviceMemory> buffers; for (auto& vec : data) { buffers.emplace_back( se::DeviceMemoryBase(vec->data(), vec->size() * sizeof(int32_t))); } return buffers; } AddI32Thunk::AddI32Thunk(std::string name, std::vector<BufferAllocation::Slice> srcs, std::vector<BufferAllocation::Slice> dsts, std::vector<std::string>* trace, bool inject_error, bool inject_side_effect) : Thunk(Kind::kKernel, Info{name}), srcs_(std::move(srcs)), dsts_(std::move(dsts)), trace_(trace), inject_error_(inject_error), inject_side_effect_(inject_side_effect) {} absl::Status AddI32Thunk::Execute(const BufferAllocations* allocations, BufferAllocation::Slice src_slice, BufferAllocation::Slice dst_slice) { TF_ASSIGN_OR_RETURN(se::DeviceMemoryBase src, allocations->GetDeviceAddress(src_slice)); TF_ASSIGN_OR_RETURN(se::DeviceMemoryBase dst, allocations->GetDeviceAddress(dst_slice)); CHECK_EQ(src.size() % sizeof(int32_t), 0); CHECK_EQ(dst.size() % sizeof(int32_t), 0); int32_t* src_ptr = static_cast<int32_t*>(src.opaque()); int32_t* dst_ptr = static_cast<int32_t*>(dst.opaque()); size_t len = std::min(src.size(), dst.size()) / sizeof(int32_t); for (int j = 0; j < len; ++j) dst_ptr[j] += src_ptr[j]; return absl::OkStatus(); } tsl::AsyncValueRef<Thunk::ExecuteEvent> AddI32Thunk::Execute( const ExecuteParams& params) { if (trace_) trace_->push_back(info().op_name); auto execute = [&]() -> absl::Status { CHECK_EQ(srcs_.size(), dsts_.size()); for (int i = 0; i < srcs_.size(); ++i) { TF_RETURN_IF_ERROR( Execute(params.buffer_allocations, srcs_.at(i), dsts_.at(i))); } return absl::OkStatus(); }; if (params.intra_op_threadpool) { auto event = tsl::MakeConstructedAsyncValueRef<ExecuteEvent>(); params.intra_op_threadpool->getPool()->Schedule([&, event, execute] { if (inject_error_) { event.SetError(absl::InternalError("Injected error")); } else { CHECK_OK(execute()); event.SetStateConcrete(); } }); return event; } if (inject_error_) { return tsl::MakeErrorAsyncValueRef(absl::InternalError("Injected error")); } TF_RETURN_IF_ERROR(execute()); return Thunk::OkExecuteEvent(); } AddI32Thunk::BufferUses AddI32Thunk::buffer_uses() const { BufferUses buffer_uses; for (const auto& src : srcs_) buffer_uses.push_back(BufferUse::Read(src)); for (const auto& dst : dsts_) buffer_uses.push_back(BufferUse::Write(dst)); if (inject_side_effect_) { static auto* fake_alloc = new BufferAllocation(0, 1, 0); buffer_uses.push_back( BufferUse::Write(BufferAllocation::Slice(fake_alloc, 0, 1))); } return buffer_uses; } TEST(ThunkExecutorTest, DependencyOrdering) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice0(&alloc, 0, 40); BufferAllocation::Slice slice1(&alloc, 40, 40); BufferAllocation::Slice slice2(&alloc, 20, 40); ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice0}, {slice0})); sequence.push_back(AddI32Thunk::Create("b", {slice1}, {slice1})); sequence.push_back(AddI32Thunk::Create("c", {slice2}, {slice2})); TF_ASSERT_OK_AND_ASSIGN(ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence))); EXPECT_FALSE(executor.is_sequential()); EXPECT_THAT(executor.source(), ElementsAre(0, 1)); EXPECT_THAT(executor.sink(), ElementsAre(2)); } TEST(ThunkExecutorTest, SequentialOrdering) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice(&alloc, 0, 40); ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("b", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("c", {slice}, {slice})); TF_ASSERT_OK_AND_ASSIGN(ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence))); EXPECT_TRUE(executor.is_sequential()); EXPECT_THAT(executor.source(), ElementsAre(0)); EXPECT_THAT(executor.sink(), ElementsAre(2)); } TEST(ThunkExecutorTest, TransitiveReduction) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice(&alloc, 0, 40); ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("b", {slice}, {slice})); sequence.push_back(AddI32Thunk::Create("c", {slice}, {slice})); TF_ASSERT_OK_AND_ASSIGN(ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence))); EXPECT_THAT(executor.source(), ElementsAre(0)); EXPECT_THAT(executor.sink(), ElementsAre(2)); EXPECT_THAT(executor.node_def(0).out_edges, ElementsAre(1)); EXPECT_THAT(executor.node_def(1).in_edges, ElementsAre(0)); EXPECT_THAT(executor.node_def(1).out_edges, ElementsAre(2)); EXPECT_THAT(executor.node_def(2).in_edges, ElementsAre(1)); } TEST(ThunkExecutorTest, Execute) { BufferAllocation alloc(0, 80, 0); BufferAllocation::Slice slice0(&alloc, 0, 40); BufferAllocation::Slice slice1(&alloc, 40, 40); BufferAllocation::Slice slice2(&alloc, 20, 40); std::vector<std::string> trace; ThunkSequence sequence; sequence.push_back(AddI32Thunk::Create("a", {slice0}, {slice0}, &trace)); sequence.push_back(AddI32Thunk::Create("b", {slice1}, {slice1}, &trace)); sequence.push_back(AddI32Thunk::Create("c", {slice2}, {slice2}, &trace)); TF_ASSERT_OK_AND_ASSIGN(ThunkExecutor executor, ThunkExecutor::Create(std::move(sequence))); std::vector<int32_t> data(20, 1); auto buffers = AddI32Thunk::AsDeviceMemory({&data}); BufferAllocations allocations(buffers); Thunk::ExecuteParams params = {nullptr, &allocations}; auto execute_event = executor.Execute(params, [&](ThunkExecutor::Task task) { trace.push_back("<TaskRunner>"); task(); }); tsl::BlockUntilReady(execute_event); ASSERT_TRUE(execute_event.IsConcrete()); EXPECT_THAT(trace, ElementsAre("<TaskRunner>", "b", "a", "c")); EXPECT_THAT(data, ElementsAre(2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2)); } struct GeneratedThunkSequence { BufferAllocation src_alloc; BufferAllocation dst_alloc; std::vector<int32_t> src; std::vector<int32_t> dst; std::vector<int32_t> expected; std::vector<MaybeOwningDeviceMemory> expected_buffers; std::vector<MaybeOwningDeviceMemory> buffers; ThunkSequence sequence; }; static absl::StatusOr<std::unique_ptr<GeneratedThunkSequence>> GenerateThunkSequence(size_t num_elements, size_t num_thunks, bool inject_errors, bool inject_side_effects) { auto g = std::make_unique<GeneratedThunkSequence>(GeneratedThunkSequence{ BufferAllocation(0, num_elements * sizeof(int32_t), 0), BufferAllocation(1, num_elements * sizeof(int32_t), 0), std::vector<int32_t>(num_elements, 1), std::vector<int32_t>(num_elements, 0), std::vector<int32_t>(num_elements, 0), }); g->expected_buffers = AddI32Thunk::AsDeviceMemory({&g->src, &g->expected}); g->buffers = AddI32Thunk::AsDeviceMemory({&g->src, &g->dst}); std::minstd_rand0 engine; std::uniform_int_distribution<size_t> offset_dist(0, num_elements - 1); std::uniform_int_distribution<size_t> size_dist(32, 64); std::uniform_int_distribution<size_t> inject_error_dist(0, num_thunks / 10); auto random_slice = [&](BufferAllocation* alloc) { size_t start = offset_dist(engine); size_t size = std::min(num_elements - start, size_dist(engine)); return BufferAllocation::Slice(alloc, start * sizeof(int32_t), size * sizeof(int32_t)); }; for (int i = 0; i < num_thunks; ++i) { BufferAllocation::Slice src = random_slice(&g->src_alloc); BufferAllocation::Slice dst = random_slice(&g->dst_alloc); BufferAllocations allocations(g->expected_buffers); TF_RETURN_IF_ERROR(AddI32Thunk::Execute(&allocations, src, dst)); bool inject_error = inject_errors && inject_error_dist(engine) == 0; g->sequence.push_back(AddI32Thunk::Create(absl::StrCat(i), {src}, {dst}, nullptr, inject_error, inject_side_effects)); } return g; } class ThunkExecutorStressTest : public testing::TestWithParam< std::tuple<int32_t, bool, bool, bool, bool>> { public: void SetUp() override { auto& [_, use_task_runner, use_device, inject_errors, inject_side_effects] = GetParam(); use_task_runner_ = use_task_runner; use_device_ = use_device; if (use_task_runner_ || use_device_) { thread_pool_.emplace(tsl::Env::Default(), "thunk-executor", 8); device_.emplace(thread_pool_->AsEigenThreadPool(), thread_pool_->NumThreads()); } } ThunkExecutor::TaskRunner task_runner() { if (!use_task_runner_) return nullptr; return [&](ThunkExecutor::Task task) { thread_pool_->Schedule(ToCopyableTask(std::move(task))); }; } Eigen::ThreadPoolDevice* device() { if (!use_device_) return nullptr; return &*device_; } private: bool use_task_runner_; bool use_device_; std::optional<tsl::thread::ThreadPool> thread_pool_; std::optional<Eigen::ThreadPoolDevice> device_; }; TEST_P(ThunkExecutorStressTest, Execute) { auto [num_thunks, use_task_runner, use_device, inject_errors, inject_side_effects] = GetParam(); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GeneratedThunkSequence> g, GenerateThunkSequence(1024, num_thunks, inject_errors, inject_side_effects)); TF_ASSERT_OK_AND_ASSIGN(ThunkExecutor executor, ThunkExecutor::Create(std::move(g->sequence))); BufferAllocations allocations(g->buffers); Thunk::ExecuteParams params = {nullptr, &allocations, nullptr, device()}; auto execute_event = executor.Execute(params, task_runner()); tsl::BlockUntilReady(execute_event); if (inject_errors) { ASSERT_TRUE(execute_event.IsError()); EXPECT_EQ(execute_event.GetError(), absl::InternalError("Injected error")); } else { ASSERT_TRUE(execute_event.IsConcrete()); EXPECT_EQ(g->dst, g->expected); } } INSTANTIATE_TEST_SUITE_P(ThunkExecutor, ThunkExecutorStressTest, testing::Combine(testing::ValuesIn({10, 100, 1000}), testing::Bool(), testing::Bool(), testing::Bool(), testing::Bool())); static void BM_SyncThunkExecutor(benchmark::State& state) { const size_t num_thunks = state.range(0); auto g = GenerateThunkSequence(1024, num_thunks, false, false) .value(); auto e = ThunkExecutor::Create(std::move(g->sequence)).value(); BufferAllocations allocations(g->buffers); Thunk::ExecuteParams params = {nullptr, &allocations}; for (auto _ : state) { auto execute_event = e.Execute(params, nullptr); tsl::BlockUntilReady(execute_event); CHECK(execute_event.IsConcrete()); } } static void BM_AsyncThunkExecutor(benchmark::State& state) { const size_t num_thunks = state.range(0); tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "thunk-executor", 8); Eigen::ThreadPoolDevice device(thread_pool.AsEigenThreadPool(), thread_pool.NumThreads()); auto g = GenerateThunkSequence(1024, num_thunks, false, false) .value(); auto e = ThunkExecutor::Create(std::move(g->sequence)).value(); BufferAllocations allocations(g->buffers); Thunk::ExecuteParams params = {nullptr, &allocations, nullptr, &device}; for (auto _ : state) { auto execute_event = e.Execute(params, [&](ThunkExecutor::Task task) { thread_pool.Schedule(ToCopyableTask(std::move(task))); }); tsl::BlockUntilReady(execute_event); CHECK(execute_event.IsConcrete()); } } BENCHMARK(BM_SyncThunkExecutor) ->MeasureProcessCPUTime() ->Arg(1) ->Arg(16) ->Arg(64) ->Arg(128) ->Arg(258) ->Arg(512); BENCHMARK(BM_AsyncThunkExecutor) ->MeasureProcessCPUTime() ->Arg(1) ->Arg(16) ->Arg(64) ->Arg(128) ->Arg(258) ->Arg(512); } }
2,027
cpp
tensorflow/tensorflow
kernel_thunk
third_party/xla/xla/backends/cpu/runtime/kernel_thunk.cc
third_party/xla/xla/backends/cpu/runtime/kernel_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_KERNEL_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_KERNEL_THUNK_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include <string_view> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" #include "xla/types.h" namespace xla { namespace gpu { class GpuExecutable; class KernelThunk : public Thunk { public: KernelThunk(const HloInstruction* instr, std::string kernel_name, absl::Span<const KernelArgument> kernel_arguments, LaunchDimensions launch_dimensions, std::optional<se::ClusterDim> cluster_dim, int64_t shmem_bytes); KernelThunk(const KernelThunk&) = delete; KernelThunk& operator=(const KernelThunk&) = delete; ~KernelThunk() override = default; std::string ToString(int indent) const override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; const std::vector<BufferAllocation::Slice>& arguments() const { return args_; } const std::vector<bool>& written() const { return written_; } const std::string& kernel_name() const { return kernel_name_; } const LaunchDimensions& launch_dimensions() const { return launch_dimensions_; } int64_t shmem_bytes() const { return shmem_bytes_; } private: std::vector<BufferAllocation::Slice> args_; std::vector<bool> written_; const std::string kernel_name_; const LaunchDimensions launch_dimensions_; const std::optional<se::ClusterDim> cluster_dim_; int64_t shmem_bytes_; mutable absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::Kernel>> kernel_cache_ ABSL_GUARDED_BY(mutex_); }; class CustomKernelThunk : public Thunk { public: CustomKernelThunk(const HloInstruction* inst, CustomKernel custom_kernel, absl::Span<const KernelArgument> kernel_arguments); std::string ToString(int indent) const override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; const CustomKernel& custom_kernel() const { return custom_kernel_; } const std::vector<BufferAllocation::Slice>& arguments() const { return args_; } std::string_view custom_kernel_name() const { return custom_kernel_.name(); } const std::vector<bool>& written() const { return written_; } LaunchDimensions launch_dimensions() const { return LaunchDimensions(custom_kernel_.block_dims(), custom_kernel_.thread_dims()); } int64_t shmem_bytes() const { return custom_kernel_.shared_memory_bytes(); } private: std::vector<BufferAllocation::Slice> args_; std::vector<bool> written_; CustomKernel custom_kernel_; mutable absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::Kernel>> kernel_cache_ ABSL_GUARDED_BY(mutex_); }; } } #endif #include "xla/service/gpu/runtime/kernel_thunk.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_factory.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { KernelThunk::KernelThunk(const HloInstruction* instr, std::string kernel_name, absl::Span<const KernelArgument> kernel_arguments, LaunchDimensions launch_dimensions, std::optional<se::ClusterDim> cluster_dim, int64_t shmem_bytes) : Thunk(Kind::kKernel, Thunk::ThunkInfo::WithProfileAnnotation(instr)), kernel_name_(std::move(kernel_name)), launch_dimensions_(std::move(launch_dimensions)), cluster_dim_(std::move(cluster_dim)), shmem_bytes_(shmem_bytes) { args_.reserve(kernel_arguments.size()); written_.reserve(kernel_arguments.size()); for (const auto& kernel_argument : kernel_arguments) { if (!kernel_argument.first_with_same_slice().has_value()) { args_.push_back(kernel_argument.slice()); written_.push_back(kernel_argument.written()); } } } std::string KernelThunk::ToString(int indent) const { return absl::StrFormat( ", kernel = %s, launch dimensions = %s, cluster_dim = %s", kernel_name_, launch_dimensions_.ToString(), cluster_dim_.has_value() ? cluster_dim_->ToString() : "nullopt"); } absl::Status KernelThunk::Initialize(const InitializeParams& params) { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(params.executor); if (kernel_cache_.end() == it) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::Kernel> kernel, CreateKernel(kernel_name_, args_.size(), params.src.text, params.src.binary, params.executor, shmem_bytes_)); kernel_cache_.emplace(params.executor, std::move(kernel)); } return absl::OkStatus(); } static void PrintBufferContents( se::Stream* stream, absl::Span<const se::DeviceMemoryBase> buffer_args) { int input_idx = 0; for (const se::DeviceMemoryBase& buf : buffer_args) { auto host_buffer = std::make_unique<char[]>(buf.size()); CHECK_OK(stream->Memcpy(host_buffer.get(), buf, buf.size())); CHECK_OK(stream->BlockHostUntilDone()); std::string buffer_contents; for (int i = 0; i < buf.size(); i++) { absl::StrAppendFormat(&buffer_contents, "%x ", static_cast<unsigned>(host_buffer[i])); } VLOG(100) << "BUF(" << input_idx++ << ") = " << buffer_contents; } } absl::Status KernelThunk::ExecuteOnStream(const ExecuteParams& params) { se::StreamExecutor* executor = params.stream->parent(); LaunchDimensions launch_dimensions; std::optional<se::ClusterDim> cluster_dim; const se::Kernel* kernel = nullptr; TF_ASSIGN_OR_RETURN( se::Stream * stream, GetStreamForExecution(Thunk::execution_stream_id(), params)); { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(executor); CHECK(it != kernel_cache_.end()) << "Initialize() not called for StreamExecutor " << executor; launch_dimensions = launch_dimensions_; cluster_dim = cluster_dim_; kernel = it->second.get(); } VLOG(3) << "Launching " << kernel->name(); absl::InlinedVector<se::DeviceMemoryBase, 4> buffer_args; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = params.buffer_allocations->GetDeviceAddress(arg); VLOG(3) << " Arg: alloc #" << arg.index() << ", offset: " << arg.offset() << ": " << buf.opaque() << " (" << buf.size() << "B)"; buffer_args.push_back(buf); } if (VLOG_IS_ON(100)) { PrintBufferContents(stream, buffer_args); } if (cluster_dim.has_value()) { return ExecuteKernelOnStream(*kernel, buffer_args, launch_dimensions, cluster_dim.value(), stream); } else { return ExecuteKernelOnStream(*kernel, buffer_args, launch_dimensions, stream); } } CustomKernelThunk::CustomKernelThunk( const HloInstruction* instr, CustomKernel custom_kernel, absl::Span<const KernelArgument> kernel_arguments) : Thunk(Kind::kCustomKernel, Thunk::ThunkInfo::WithProfileAnnotation(instr)), custom_kernel_(std::move(custom_kernel)) { args_.reserve(kernel_arguments.size()); written_.reserve(kernel_arguments.size()); for (const auto& kernel_argument : kernel_arguments) { if (!kernel_argument.first_with_same_slice().has_value()) { args_.push_back(kernel_argument.slice()); written_.push_back(kernel_argument.written()); } } } std::string CustomKernelThunk::ToString(int indent) const { return custom_kernel_.ToString(); } absl::Status CustomKernelThunk::Initialize(const InitializeParams& params) { absl::MutexLock lock(&mutex_); auto it = kernel_cache_.find(params.executor); if (kernel_cache_.end() == it) { TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Kernel> kernel, se::KernelFactory::Create( params.executor, custom_kernel_.kernel_spec())); kernel_cache_.emplace(params.executor, std::move(kernel)); } return absl::OkStatus(); } absl::Status CustomKernelThunk::ExecuteOnStream(const ExecuteParams& params) { se::StreamExecutor* executor = params.stream->parent(); const se::Kernel* kernel = [&] { absl::MutexLock lock(&mutex_); return kernel_cache_[executor].get(); }(); VLOG(3) << "Launching " << custom_kernel_.ToString() << " as device kernel " << kernel->name(); absl::InlinedVector<se::DeviceMemoryBase, 4> buffer_args; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = params.buffer_allocations->GetDeviceAddress(arg); VLOG(3) << " Arg: alloc #" << arg.index() << ", offset: " << arg.offset() << ": " << buf.opaque() << " (" << buf.size() << "B)"; buffer_args.push_back(buf); } if (VLOG_IS_ON(100)) { PrintBufferContents(params.stream, buffer_args); } se::KernelArgsDeviceMemoryArray args(buffer_args, custom_kernel_.shared_memory_bytes()); if (auto cluster = custom_kernel_.cluster_dims(); cluster.has_value()) { return params.stream->Launch(custom_kernel_.thread_dims(), custom_kernel_.block_dims(), *cluster, *kernel, args); } else { return params.stream->Launch(custom_kernel_.thread_dims(), custom_kernel_.block_dims(), *kernel, args); } } } }
#include "xla/service/cpu/runtime/kernel_thunk.h" #include <cstddef> #include <cstdint> #include <string_view> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/host/host_kernel_c_api.h" #include "xla/stream_executor/launch_dim.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { class AddF32HostKernels : public Thunk::HostKernels { public: absl::StatusOr<SE_HOST_Kernel*> Find(std::string_view name) override { return +[](const SE_HOST_KernelCallFrame* call_frame) { const SE_HOST_KernelArg& in = call_frame->args[0]; const SE_HOST_KernelArg& out = call_frame->args[1]; float* in_ptr = reinterpret_cast<float*>(in.data); float* out_ptr = reinterpret_cast<float*>(out.data); uint64_t i = call_frame->thread->x; *(out_ptr + i) = *(in_ptr + i) + *(in_ptr + i); return static_cast<SE_HOST_KernelError*>(nullptr); }; } }; TEST(KernelThunkTest, CheckAlignment) { auto thunk = KernelThunk::Create({"test"}, {}, {}, "test", se::ThreadDim(), 3); EXPECT_TRUE(absl::StrContains(thunk.status().message(), "minimum alignment 3 is not a power of 2")); } TEST(KernelThunkTest, AddF32) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> in = {1.0, 2.0, 3.0, 4.0}; std::vector<float> out(4, 0.0); size_t size_in_bytes = in.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(in.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(out.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation in_alloc(0, size_in_bytes, 0); BufferAllocation out_alloc(1, size_in_bytes, 0); BufferAllocation::Slice in_slice(&in_alloc, 0, size_in_bytes); BufferAllocation::Slice out_slice(&out_alloc, 0, size_in_bytes); TF_ASSERT_OK_AND_ASSIGN( auto thunk, KernelThunk::Create({"add_f32"}, {in_slice}, {out_slice}, "add_f32", se::ThreadDim(4))); AddF32HostKernels host_kernels; Thunk::ExecuteParams params = {&host_kernels, &allocations}; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected = {2.0, 4.0, 6.0, 8.0}; EXPECT_EQ(out, expected); } } }
2,028
cpp
tensorflow/tensorflow
thunk
third_party/xla/xla/backends/cpu/runtime/thunk.cc
third_party/xla/xla/backends/cpu/runtime/thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_THUNK_H_ #include <cstddef> #include <cstdint> #include <functional> #include <map> #include <memory> #include <ostream> #include <string> #include <string_view> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "mlir/IR/Operation.h" #include "xla/executable_run_options.h" #include "xla/ffi/execution_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/buffer_assignment.h" #include "xla/service/global_device_id.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/runtime/nccl_api.h" #include "xla/service/gpu/runtime/nccl_clique.h" #include "xla/service/gpu/runtime/nccl_clique_key.h" #include "xla/service/service_executable_run_options.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/lib/gtl/int_type.h" namespace xla { namespace gpu { TSL_LIB_GTL_DEFINE_INT_TYPE(ExecutionStreamId, uint64_t); class Thunk { public: using ExecutionStreamIdMap = absl::flat_hash_map<ExecutionStreamId, se::Stream*>; static constexpr auto kDefaultExecutionStreamId = ExecutionStreamId(0); enum Kind { kAddressComputation, kCholesky, kConditional, kConvolution, kConvolutionReorder, kCopy, kCopyDone, kCommandBuffer, kCubSort, kCublasLtMatmul, kCustomCall, kCustomKernel, kFft, kGemm, kInfeed, kKernel, kMemset32BitValue, kMemzero, kNcclAllGather, kNcclAllGatherStart, kNcclAllGatherDone, kNcclAllReduce, kNcclAllReduceStart, kNcclAllReduceDone, kNcclCollectiveBroadcast, kNcclCollectiveBroadcastStart, kNcclCollectiveBroadcastDone, kNcclCollectivePermute, kNcclCollectivePermuteStart, kNcclCollectivePermuteDone, kNcclReduceScatter, kNcclReduceScatterStart, kNcclReduceScatterDone, kNcclAllToAll, kNcclAllToAllStart, kNcclAllToAllDone, kNcclSend, kNcclSendDone, kNcclRecv, kNcclRecvDone, kNorm, kOutfeed, kPartitionId, kRecv, kRecvDone, kReplicaId, kSequential, kSend, kSendDone, kTriangularSolve, kWhile, kFusedMHA, kWaitForStreams, kCuDnn }; using BinaryMap = absl::flat_hash_map<std::string, std::string>; struct ExecutableSource { std::string_view text; absl::Span<const uint8_t> binary; BinaryMap dnn_compiled_graphs; }; struct ThunkInfo { ThunkInfo() = default; static ThunkInfo WithProfileAnnotation(const HloInstruction* instr); std::string profile_annotation; ExecutionStreamId execution_stream_id = kDefaultExecutionStreamId; }; class ResourceRequests { public: virtual ~ResourceRequests() = default; virtual absl::Status AddClique(const NcclCliqueKey& clique_key, int32_t num_local_participants) = 0; }; class CollectiveCliques { public: CollectiveCliques() = default; explicit CollectiveCliques(NcclClique::AcquiredCliquesMap cliques_map); absl::StatusOr<NcclApi::NcclCommHandle> GetComm( const NcclCliqueKey& clique_key, int32_t rank) const; absl::StatusOr<size_t> num_communicators( const NcclCliqueKey& clique_key) const; absl::StatusOr<bool> is_local_clique(const NcclCliqueKey& clique_key) const; bool empty() const { return cliques_map_.empty(); } private: NcclClique::AcquiredCliquesMap cliques_map_; }; struct CollectiveExecuteParams { static absl::StatusOr<CollectiveExecuteParams> Create( const ServiceExecutableRunOptions& run_options, absl::Span<se::Stream* const> async_streams, int64_t local_device_ordinal, int64_t collective_max_nchannels = 0, int64_t p2p_max_nchannels = 0); using GlobalDeviceIdMap = std::map<int32_t, GlobalDeviceId>; se::StreamExecutor* executor; RunId run_id; absl::InlinedVector<se::Stream*, 4> async_streams; int64_t local_device_ordinal; GlobalDeviceId global_device_id; const DeviceAssignment* device_assn; const GlobalDeviceIdMap* global_device_id_map; const NcclCliqueIdCallback* nccl_clique_id_callback; int64_t collective_max_nchannels; int64_t p2p_max_nchannels; private: CollectiveExecuteParams(se::StreamExecutor* executor, RunId run_id, absl::Span<se::Stream* const> async_streams, int64_t local_device_ordinal, GlobalDeviceId global_device_id, const DeviceAssignment* device_assn, const GlobalDeviceIdMap* global_device_id_map, const NcclCliqueIdCallback* nccl_clique_id_callback, int64_t collective_max_nchannels, int64_t p2p_max_nchannels); }; struct PrepareParams { const CollectiveExecuteParams* collective_params = nullptr; }; struct InitializeParams { se::StreamExecutor* executor = nullptr; ExecutableSource src; const BufferAllocations* buffer_allocations = nullptr; se::Stream* stream = nullptr; se::Stream* command_buffer_trace_stream = nullptr; CollectiveExecuteParams* collective_params = nullptr; CollectiveCliques* collective_cliques = nullptr; const ffi::ExecutionContext* ffi_execution_context = nullptr; }; struct ExecuteParams { static ExecuteParams Create( const ServiceExecutableRunOptions& run_options, const BufferAllocations& buffer_allocations, se::Stream* stream, se::Stream* command_buffer_trace_stream, CollectiveExecuteParams* collective_params, CollectiveCliques* collective_cliques, ExecutionStreamIdMap additional_compute_streams = {}); static ExecuteParams CloneWithNewAllocations( const ExecuteParams& params, const BufferAllocations& buffer_allocations); const BufferAllocations* buffer_allocations; se::Stream* stream; se::Stream* command_buffer_trace_stream; CollectiveExecuteParams* collective_params; CollectiveCliques* collective_cliques; se::Stream* device_to_host_stream; se::Stream* host_to_device_stream; SendDeviceMemoryFunction* send_device_memory_function; RecvDeviceMemoryFunction* recv_device_memory_function; const ffi::ExecutionContext* ffi_execution_context; ExecutionStreamIdMap additional_compute_streams; bool mock_collectives = false; private: friend class CommandBufferThunk; ExecuteParams(const BufferAllocations* buffer_allocations, se::Stream* stream, se::Stream* command_buffer_trace_stream, CollectiveExecuteParams* collective_params, CollectiveCliques* collective_cliques, se::Stream* device_to_host_stream, se::Stream* host_to_device_stream, SendDeviceMemoryFunction* send_device_memory_function, RecvDeviceMemoryFunction* recv_device_memory_function, const ffi::ExecutionContext* ffi_execution_context, ExecutionStreamIdMap additional_compute_streams = {}, bool mock_collectives = false); }; Thunk(Kind kind, ThunkInfo thunk_info) : kind_(kind), profile_annotation_(thunk_info.profile_annotation), execution_stream_id_(thunk_info.execution_stream_id) {} virtual ~Thunk() = default; Thunk(const Thunk&) = delete; Thunk& operator=(const Thunk&) = delete; virtual std::string ToString(int indent) const { return ""; } Kind kind() const { return kind_; } std::string_view profile_annotation() const { return profile_annotation_; } virtual absl::Status Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { return absl::OkStatus(); } virtual absl::Status Initialize(const InitializeParams& params) { return absl::OkStatus(); } virtual absl::Status ExecuteOnStream(const ExecuteParams& params) = 0; static absl::string_view KindToString(Thunk::Kind kind); ExecutionStreamId execution_stream_id() const { return execution_stream_id_; } void set_execution_stream_id(ExecutionStreamId execution_stream_id) { execution_stream_id_ = execution_stream_id; } static absl::StatusOr<se::Stream*> GetStreamForExecution( ExecutionStreamId stream_id, const ExecuteParams& params); bool IsCollective() const; private: Kind kind_; std::string profile_annotation_; ExecutionStreamId execution_stream_id_; }; using ThunkSequence = std::vector<std::unique_ptr<Thunk>>; std::ostream& operator<<(std::ostream& os, Thunk::Kind kind); struct ShapedSlice { BufferAllocation::Slice slice; Shape shape; }; bool IsReductionCollective(Thunk::Kind kind); } } #endif #include "xla/service/gpu/runtime/thunk.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/executable_run_options.h" #include "xla/ffi/execution_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/global_device_id.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/gpu_executable_run_options.h" #include "xla/service/gpu/runtime/nccl_api.h" #include "xla/service/gpu/runtime/nccl_clique.h" #include "xla/service/gpu/runtime/nccl_clique_key.h" #include "xla/service/service_executable_run_options.h" #include "xla/stream_executor/stream.h" #include "xla/translate/mhlo_to_hlo/location_exporter.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { Thunk::CollectiveCliques::CollectiveCliques( NcclClique::AcquiredCliquesMap cliques_map) : cliques_map_(std::move(cliques_map)) {} absl::StatusOr<NcclApi::NcclCommHandle> Thunk::CollectiveCliques::GetComm( const NcclCliqueKey& clique_key, int32_t rank) const { auto clique = cliques_map_.find(clique_key); if (clique == cliques_map_.end()) { return absl::NotFoundError(absl::StrCat("No clique found for clique key: ", clique_key.ToString())); } auto communicator = (*clique->second)->comm(rank); if (!communicator.has_value()) { return absl::InternalError(absl::StrCat("Communicator for rank ", rank, " not found in a NCCL clique ", clique_key.ToString())); } return *communicator; } absl::StatusOr<bool> Thunk::CollectiveCliques::is_local_clique( const NcclCliqueKey& clique_key) const { auto clique = cliques_map_.find(clique_key); if (clique == cliques_map_.end()) { return absl::NotFoundError(absl::StrCat("No clique found for clique key: ", clique_key.ToString())); } return (*clique->second)->IsLocal(); } absl::StatusOr<size_t> Thunk::CollectiveCliques::num_communicators( const NcclCliqueKey& clique_key) const { auto clique = cliques_map_.find(clique_key); if (clique == cliques_map_.end()) { return absl::NotFoundError(absl::StrCat("No clique found for clique key: ", clique_key.ToString())); } return (*clique->second)->num_communicators(); } using GlobalDeviceIdMap = Thunk::CollectiveExecuteParams::GlobalDeviceIdMap; static absl::StatusOr<GlobalDeviceId> GetGlobalDeviceId( const GlobalDeviceIdMap* device_id_map, int64_t local_device_ordinal) { if (!device_id_map) return GlobalDeviceId(local_device_ordinal); auto it = device_id_map->find(local_device_ordinal); if (it == device_id_map->end()) return absl::NotFoundError( absl::StrCat("No global device id found for local device ordinal: ", local_device_ordinal)); return it->second; } absl::StatusOr<Thunk::CollectiveExecuteParams> Thunk::CollectiveExecuteParams::Create( const ServiceExecutableRunOptions& run_options, absl::Span<se::Stream* const> async_streams, int64_t local_device_ordinal, int64_t collective_max_nchannels, int64_t p2p_max_nchannels) { const GpuExecutableRunOptions* gpu_options = run_options.run_options().gpu_executable_run_options(); auto* device_id_map = gpu_options && gpu_options->gpu_global_device_ids() ? &*gpu_options->gpu_global_device_ids() : nullptr; auto* nccl_callback = gpu_options && gpu_options->nccl_clique_id_callback() ? &gpu_options->nccl_clique_id_callback() : nullptr; TF_ASSIGN_OR_RETURN(GlobalDeviceId global_device_id, GetGlobalDeviceId(device_id_map, local_device_ordinal)); return CollectiveExecuteParams( run_options.stream()->parent(), run_options.run_options().run_id(), async_streams, local_device_ordinal, global_device_id, run_options.run_options().device_assignment(), device_id_map, nccl_callback, collective_max_nchannels, p2p_max_nchannels); } Thunk::CollectiveExecuteParams::CollectiveExecuteParams( se::StreamExecutor* executor, RunId run_id, absl::Span<se::Stream* const> async_streams, int64_t local_device_ordinal, GlobalDeviceId global_device_id, const DeviceAssignment* device_assn, const GlobalDeviceIdMap* global_device_id_map, const NcclCliqueIdCallback* nccl_clique_id_callback, int64_t collective_max_nchannels, int64_t p2p_max_nchannels) : executor(executor), run_id(run_id), async_streams(async_streams.begin(), async_streams.end()), local_device_ordinal(local_device_ordinal), global_device_id(global_device_id), device_assn(device_assn), global_device_id_map(global_device_id_map), nccl_clique_id_callback(nccl_clique_id_callback), collective_max_nchannels(collective_max_nchannels), p2p_max_nchannels(p2p_max_nchannels) {} Thunk::ExecuteParams Thunk::ExecuteParams::Create( const ServiceExecutableRunOptions& run_options, const BufferAllocations& buffer_allocations, se::Stream* stream, se::Stream* command_buffer_trace_stream, CollectiveExecuteParams* collective_params, CollectiveCliques* collective_cliques, ExecutionStreamIdMap additional_compute_streams) { return ExecuteParams(&buffer_allocations, stream, command_buffer_trace_stream, collective_params, collective_cliques, run_options.run_options().device_to_host_stream(), run_options.run_options().host_to_device_stream(), run_options.run_options().send_device_memory_function(), run_options.run_options().recv_device_memory_function(), run_options.run_options().ffi_execution_context(), additional_compute_streams, run_options.run_options().gpu_executable_run_options() ? run_options.run_options() .gpu_executable_run_options() ->enable_mock_nccl_collectives() : false); } Thunk::ExecuteParams Thunk::ExecuteParams::CloneWithNewAllocations( const Thunk::ExecuteParams& params, const BufferAllocations& buffer_allocations) { return ExecuteParams( &buffer_allocations, params.stream, params.command_buffer_trace_stream, params.collective_params, params.collective_cliques, params.device_to_host_stream, params.host_to_device_stream, params.send_device_memory_function, params.recv_device_memory_function, params.ffi_execution_context, params.additional_compute_streams); } Thunk::ExecuteParams::ExecuteParams( const BufferAllocations* buffer_allocations, se::Stream* stream, se::Stream* command_buffer_trace_stream, CollectiveExecuteParams* collective_params, CollectiveCliques* collective_cliques, se::Stream* device_to_host_stream, se::Stream* host_to_device_stream, SendDeviceMemoryFunction* send_device_memory_function, RecvDeviceMemoryFunction* recv_device_memory_function, const ffi::ExecutionContext* ffi_execution_context, ExecutionStreamIdMap additional_compute_streams, bool mock_collectives) : buffer_allocations(buffer_allocations), stream(stream), command_buffer_trace_stream(command_buffer_trace_stream), collective_params(collective_params), collective_cliques(collective_cliques), device_to_host_stream(device_to_host_stream), host_to_device_stream(host_to_device_stream), send_device_memory_function(send_device_memory_function), recv_device_memory_function(recv_device_memory_function), ffi_execution_context(ffi_execution_context), additional_compute_streams(additional_compute_streams), mock_collectives(mock_collectives) {} absl::string_view Thunk::KindToString(Thunk::Kind kind) { #define CASE(x) \ case Thunk::x: \ return #x switch (kind) { CASE(kAddressComputation); CASE(kCholesky); CASE(kCommandBuffer); CASE(kConditional); CASE(kConvolution); CASE(kConvolutionReorder); CASE(kCopy); CASE(kCopyDone); CASE(kCubSort); CASE(kCublasLtMatmul); CASE(kCustomCall); CASE(kCustomKernel); CASE(kNcclAllGather); CASE(kNcclAllGatherStart); CASE(kNcclAllGatherDone); CASE(kNcclAllReduce); CASE(kNcclAllReduceStart); CASE(kNcclAllReduceDone); CASE(kNcclCollectiveBroadcast); CASE(kNcclCollectiveBroadcastStart); CASE(kNcclCollectiveBroadcastDone); CASE(kNcclCollectivePermute); CASE(kNcclCollectivePermuteStart); CASE(kNcclCollectivePermuteDone); CASE(kNcclReduceScatter); CASE(kNcclReduceScatterStart); CASE(kNcclReduceScatterDone); CASE(kNcclAllToAll); CASE(kNcclAllToAllStart); CASE(kNcclAllToAllDone); CASE(kNcclSend); CASE(kNcclSendDone); CASE(kNcclRecv); CASE(kNcclRecvDone); CASE(kFft); CASE(kGemm); CASE(kInfeed); CASE(kKernel); CASE(kMemset32BitValue); CASE(kMemzero); CASE(kNorm); CASE(kOutfeed); CASE(kSend); CASE(kSendDone); CASE(kPartitionId); CASE(kReplicaId); CASE(kRecv); CASE(kRecvDone); CASE(kSequential); CASE(kTriangularSolve); CASE(kWhile); CASE(kFusedMHA); CASE(kWaitForStreams); CASE(kCuDnn); } } absl::StatusOr<se::Stream*> Thunk::GetStreamForExecution( ExecutionStreamId stream_id, const ExecuteParams& params) { if (stream_id == kDefaultExecutionStreamId) { return params.stream; } auto iter = params.additional_compute_streams.find(stream_id); if (iter == params.additional_compute_streams.end()) { return absl::InvalidArgumentError("Invalid execution stream id."); } return iter->second; } std::ostream& operator<<(std::ostream& os, Thunk::Kind kind) { return os << Thunk::KindToString(kind); } bool IsReductionCollective(Thunk::Kind kind) { return kind == Thunk::kNcclAllReduce || kind == Thunk::kNcclAllReduceStart || kind == Thunk::kNcclReduceScatter || kind == Thunk::kNcclReduceScatterStart; } Thunk::ThunkInfo Thunk::ThunkInfo::WithProfileAnnotation( const HloInstruction* instr) { ThunkInfo thunk_info; thunk_info.profile_annotation = instr->name(); auto gpu_backend_config = instr->backend_config<GpuBackendConfig>(); if (gpu_backend_config.ok()) { thunk_info.execution_stream_id = std::max<uint64_t>(kDefaultExecutionStreamId.value(), gpu_backend_config->operation_queue_id()); } return thunk_info; } bool Thunk::IsCollective() const { switch (kind()) { case kNcclAllGather: case kNcclAllGatherStart: case kNcclAllGatherDone: case kNcclAllReduce: case kNcclAllReduceStart: case kNcclAllReduceDone: case kNcclCollectiveBroadcast: case kNcclCollectiveBroadcastStart: case kNcclCollectiveBroadcastDone: case kNcclCollectivePermute: case kNcclCollectivePermuteStart: case kNcclCollectivePermuteDone: case kNcclReduceScatter: case kNcclReduceScatterStart: case kNcclReduceScatterDone: case kNcclAllToAll: case kNcclAllToAllStart: case kNcclAllToAllDone: case kNcclSend: case kNcclSendDone: case kNcclRecv: case kNcclRecvDone: return true; default: return false; } } } }
#include "xla/service/cpu/runtime/thunk.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(ThunkTest, OkExecuteEvent) { auto event = Thunk::OkExecuteEvent(); ASSERT_TRUE(event.IsConcrete()); } } }
2,029
cpp
tensorflow/tensorflow
logical_id_thunk
third_party/xla/xla/backends/cpu/runtime/logical_id_thunk.cc
third_party/xla/xla/backends/cpu/runtime/logical_id_thunk_test.cc
#ifndef XLA_SERVICE_CPU_RUNTIME_LOGICAL_ID_THUNK_H_ #define XLA_SERVICE_CPU_RUNTIME_LOGICAL_ID_THUNK_H_ #include <cstdint> #include <memory> #include "absl/status/statusor.h" #include "xla/service/buffer_assignment.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/global_device_id.h" #include "xla/tsl/concurrency/async_value_ref.h" namespace xla::cpu { enum class LogicalIdKind { kPartitionId, kReplicaId, }; template <LogicalIdKind type> class LogicalIdThunk : public Thunk { public: static absl::StatusOr<std::unique_ptr<LogicalIdThunk>> Create( Info info, BufferAllocation::Slice logical_id_buffer); tsl::AsyncValueRef<ExecuteEvent> Execute(const ExecuteParams& params) final; BufferUses buffer_uses() const final; private: LogicalIdThunk(Info info, BufferAllocation::Slice logical_id_buffer); absl::StatusOr<int32_t> GetIdForDevice( const DeviceAssignment* device_assignment, GlobalDeviceId device_id) const; BufferAllocation::Slice logical_id_buffer_; }; class ReplicaIdThunk final : public LogicalIdThunk<LogicalIdKind::kReplicaId> { }; class PartitionIdThunk final : public LogicalIdThunk<LogicalIdKind::kPartitionId> {}; } #endif #include "xla/service/cpu/runtime/logical_id_thunk.h" #include <cstdint> #include <cstring> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/global_device_id.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace xla::cpu { static Thunk::Kind ToThunkKind(LogicalIdKind logical_id_kind) { switch (logical_id_kind) { case LogicalIdKind::kPartitionId: return Thunk::Kind::kPartitionId; case LogicalIdKind::kReplicaId: return Thunk::Kind::kReplicaId; } } template <LogicalIdKind type> absl::StatusOr<std::unique_ptr<LogicalIdThunk<type>>> LogicalIdThunk<type>::Create(Info info, BufferAllocation::Slice logical_id_buffer) { return absl::WrapUnique( new LogicalIdThunk(std::move(info), logical_id_buffer)); } template <LogicalIdKind type> LogicalIdThunk<type>::LogicalIdThunk(Info info, BufferAllocation::Slice logical_id_buffer) : Thunk(ToThunkKind(type), info), logical_id_buffer_(logical_id_buffer) {} template <LogicalIdKind type> static constexpr auto ToString() { if constexpr (type == LogicalIdKind::kPartitionId) { return "Partition"; } else if constexpr (type == LogicalIdKind::kReplicaId) { return "Replica"; } } template <LogicalIdKind type> absl::StatusOr<int32_t> LogicalIdThunk<type>::GetIdForDevice( const DeviceAssignment* device_assignment, GlobalDeviceId device_id) const { if constexpr (type == LogicalIdKind::kPartitionId) { return device_assignment->PartitionIdForDevice(device_id); } else if constexpr (type == LogicalIdKind::kReplicaId) { return device_assignment->ReplicaIdForDevice(device_id); } } template <LogicalIdKind type> tsl::AsyncValueRef<typename LogicalIdThunk<type>::ExecuteEvent> LogicalIdThunk<type>::Execute(const ExecuteParams& params) { tsl::profiler::TraceMe trace([&] { return TraceMeEncode(); }); TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase logical_id_data, params.buffer_allocations->GetDeviceAddress(logical_id_buffer_)); TF_RET_CHECK(logical_id_data.size() == sizeof(int32_t)) << "Logical id buffer must be able to fit logical id value"; TF_RET_CHECK(params.collective_params) << ToString<type>() << " id requires collective params"; TF_ASSIGN_OR_RETURN( int32_t logical_id, GetIdForDevice(params.collective_params->device_assignment, params.collective_params->global_device_id)); VLOG(3) << absl::StreamFormat("%s id: %d", ToString<type>(), logical_id); VLOG(3) << absl::StreamFormat(" logical_id: slice %s (%p)", logical_id_buffer_.ToString(), logical_id_data.opaque()); std::memcpy(logical_id_data.opaque(), &logical_id, sizeof(int32_t)); return OkExecuteEvent(); } template <LogicalIdKind type> using BufferUses = typename LogicalIdThunk<type>::BufferUses; template <LogicalIdKind type> BufferUses<type> LogicalIdThunk<type>::buffer_uses() const { return {BufferUse::Write(logical_id_buffer_)}; } template class LogicalIdThunk<LogicalIdKind::kReplicaId>; template class LogicalIdThunk<LogicalIdKind::kPartitionId>; }
#include "xla/service/cpu/runtime/logical_id_thunk.h" #include <cstdint> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/executable_run_options.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { absl::StatusOr<DeviceAssignment> CreateDeviceAssignment( std::vector<std::vector<int64_t>> devices) { const auto computation_count = devices.size(); if (devices.empty()) { return absl::InternalError("Devices must not be empty."); } const auto replica_count = devices[0].size(); DeviceAssignment device_assignment(replica_count, computation_count); for (int64_t partition = 0; partition < computation_count; ++partition) { for (int64_t replica = 0; replica < replica_count; ++replica) { device_assignment(replica, partition) = devices[partition][replica]; } } return device_assignment; } TEST(LogicalIdThunkTest, GetReplicaId) { std::vector<int32_t> dst(1, -1); std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(dst.data(), sizeof(int32_t))); BufferAllocation alloc(0, sizeof(int32_t), 0); BufferAllocation::Slice id_slice(&alloc, 0, sizeof(int32_t)); std::string name(Thunk::KindToString(Thunk::Kind::kReplicaId)); TF_ASSERT_OK_AND_ASSIGN(auto thunk, ReplicaIdThunk::Create({name}, id_slice)); BufferAllocations allocations(buffers); TF_ASSERT_OK_AND_ASSIGN(DeviceAssignment device_assn, CreateDeviceAssignment({{0, 1}})); ExecutableRunOptions run_options; run_options.set_device_ordinal(0); run_options.set_device_assignment(&device_assn); TF_ASSERT_OK_AND_ASSIGN(Thunk::CollectiveExecuteParams collective_params, Thunk::CollectiveExecuteParams::Create(&run_options)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.collective_params = &collective_params; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(dst[0], 0); } TEST(LogicalIdThunkTest, GetPartitionId) { std::vector<int32_t> dst(2, -1); std::vector<MaybeOwningDeviceMemory> buffers; static constexpr auto kDataSize = 2 * sizeof(int32_t); buffers.emplace_back(se::DeviceMemoryBase(dst.data(), kDataSize)); BufferAllocation alloc(0, kDataSize, 0); BufferAllocation::Slice id_slice(&alloc, sizeof(int32_t), sizeof(int32_t)); std::string name(Thunk::KindToString(Thunk::Kind::kPartitionId)); TF_ASSERT_OK_AND_ASSIGN(auto thunk, PartitionIdThunk::Create({name}, id_slice)); BufferAllocations allocations(buffers); TF_ASSERT_OK_AND_ASSIGN(DeviceAssignment device_assn, CreateDeviceAssignment({{0}, {1}})); ExecutableRunOptions run_options; run_options.set_device_ordinal(0); run_options.set_device_assignment(&device_assn); TF_ASSERT_OK_AND_ASSIGN(Thunk::CollectiveExecuteParams collective_params, Thunk::CollectiveExecuteParams::Create(&run_options)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; params.collective_params = &collective_params; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); EXPECT_EQ(dst[0], -1); EXPECT_EQ(dst[1], 0); } } }
2,030
cpp
tensorflow/tensorflow
conditional_thunk
third_party/xla/xla/backends/cpu/runtime/conditional_thunk.cc
third_party/xla/xla/backends/cpu/runtime/conditional_thunk_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_CONDITIONAL_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_CONDITIONAL_THUNK_H_ #include <cstdint> #include <memory> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { struct ConditionalThunkConfig { bool branch_index_is_bool; int64_t branch_count; std::vector<std::unique_ptr<SequentialThunk>> branch_thunks; }; class ConditionalThunk : public Thunk { public: ConditionalThunk(ThunkInfo thunk_info, ConditionalThunkConfig config, const BufferAllocation::Slice& branch_index_buffer_index); ConditionalThunk(const ConditionalThunk&) = delete; ConditionalThunk& operator=(const ConditionalThunk&) = delete; absl::Status Prepare(const PrepareParams& params, ResourceRequests& resource_requests) override; absl::Status Initialize(const InitializeParams& params) override; absl::Status ExecuteOnStream(const ExecuteParams& params) override; absl::Span<const std::unique_ptr<SequentialThunk>> branch_thunks() const { return config_.branch_thunks; } const BufferAllocation::Slice& branch_index_buffer() const { return branch_index_buffer_index_; } private: const ConditionalThunkConfig config_; const BufferAllocation::Slice branch_index_buffer_index_; absl::Mutex mutex_; absl::flat_hash_map<se::StreamExecutor*, std::unique_ptr<se::MemoryAllocation>> predicates_ ABSL_GUARDED_BY(mutex_); }; } } #endif #include "xla/service/gpu/runtime/conditional_thunk.h" #include <cstdint> #include <memory> #include <utility> #include <variant> #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { ConditionalThunk::ConditionalThunk( ThunkInfo thunk_info, ConditionalThunkConfig config, const BufferAllocation::Slice& branch_index_buffer_index) : Thunk(Kind::kConditional, thunk_info), config_(std::move(config)), branch_index_buffer_index_(branch_index_buffer_index) {} absl::Status ConditionalThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { if (config_.branch_index_is_bool) { TF_RET_CHECK(config_.branch_thunks.size() == 2); } else { TF_RET_CHECK(!config_.branch_thunks.empty()); } for (auto& branch_thunk : config_.branch_thunks) { TF_RETURN_IF_ERROR(branch_thunk->Prepare(params, resource_requests)); } return absl::OkStatus(); } absl::Status ConditionalThunk::Initialize(const InitializeParams& params) { if (config_.branch_index_is_bool) { TF_RET_CHECK(config_.branch_thunks.size() == 2); } else { TF_RET_CHECK(!config_.branch_thunks.empty()); } for (auto& branch_thunk : config_.branch_thunks) { TF_RETURN_IF_ERROR(branch_thunk->Initialize(params)); } absl::MutexLock lock(&mutex_); if (auto it = predicates_.find(params.executor); it == predicates_.end()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::MemoryAllocation> allocation, params.executor->HostMemoryAllocate( config_.branch_index_is_bool ? sizeof(bool) : sizeof(int32_t))); predicates_.emplace(params.executor, std::move(allocation)); } return absl::OkStatus(); } absl::Status ConditionalThunk::ExecuteOnStream(const ExecuteParams& params) { auto& stream = *params.stream; auto branch_index_or_pred = [&]() -> std::variant<int32_t*, bool*> { absl::MutexLock lock(&mutex_); se::StreamExecutor* executor = stream.parent(); if (config_.branch_index_is_bool) { return reinterpret_cast<bool*>(predicates_.at(executor)->opaque()); } else { return reinterpret_cast<int32_t*>(predicates_.at(executor)->opaque()); } }(); se::DeviceMemoryBase branch_index_address = params.buffer_allocations->GetDeviceAddress(branch_index_buffer_index_); if (config_.branch_index_is_bool) { TF_RETURN_IF_ERROR(stream.Memcpy(std::get<bool*>(branch_index_or_pred), branch_index_address, sizeof(bool))); } else { TF_RETURN_IF_ERROR(stream.Memcpy(std::get<int32_t*>(branch_index_or_pred), branch_index_address, sizeof(int32_t))); } if (absl::Status blocked = stream.BlockHostUntilDone(); !blocked.ok()) { return Internal("Failed to retrieve branch_index value on stream %p: %s.", &stream, blocked.message()); } int32_t branch_index = std::visit( VariantVisitor{[](int32_t* branch_index) { return *branch_index; }, [](bool* pred) { return *pred ? 0 : 1; }}, branch_index_or_pred); if (branch_index < 0 || branch_index >= config_.branch_count) { branch_index = config_.branch_count - 1; } TF_RETURN_IF_ERROR( config_.branch_thunks[branch_index]->ExecuteOnStream(params)); return absl::OkStatus(); } } }
#include "xla/service/cpu/runtime/conditional_thunk.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/cpu/runtime/thunk_testlib.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(ConditionalThunkTest, BufferUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice branch_index_slice(&alloc, 0, sizeof(int32_t)); BufferAllocation::Slice read_slice(&alloc, 10, 10); std::vector<ThunkSequence> branch_sequences(1); branch_sequences[0].push_back( std::make_unique<BufferUseThunk>(BufferUse::Read(read_slice))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, ConditionalThunk::Create({"conditional"}, branch_index_slice, std::move(branch_sequences))); EXPECT_EQ(thunk->buffer_uses().size(), 2); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Read(branch_index_slice)); EXPECT_EQ(thunk->buffer_uses()[1], BufferUse::Read(read_slice)); } } }
2,031
cpp
tensorflow/tensorflow
graphcycles
third_party/xla/xla/service/graphcycles/graphcycles.cc
third_party/xla/xla/service/graphcycles/graphcycles_test.cc
#ifndef XLA_SERVICE_GRAPHCYCLES_GRAPHCYCLES_H_ #define XLA_SERVICE_GRAPHCYCLES_GRAPHCYCLES_H_ #include <vector> #include <optional> #include "absl/types/span.h" namespace tensorflow { class GraphCycles { public: GraphCycles(); ~GraphCycles(); int32_t NewNode(); void RemoveNode(int32_t node); bool InsertEdge(int32_t source_node, int32_t dest_node); void RemoveEdge(int32_t source_node, int32_t dest_node); bool HasEdge(int32_t source_node, int32_t dest_node) const; std::optional<int32_t> ContractEdge(int32_t a, int32_t b); bool CanContractEdge(int32_t a, int32_t b); bool IsReachable(int32_t source_node, int32_t dest_node) const; bool IsReachableNonConst(int32_t source_node, int32_t dest_node); void *GetNodeData(int32_t node) const; void SetNodeData(int32_t node, void *data); int FindPath(int32_t source, int32_t dest, int max_path_len, int32_t path[]) const; bool CheckInvariants() const; absl::Span<const int32_t> Successors(int32_t node) const; absl::Span<const int32_t> Predecessors(int32_t node) const; std::vector<int32_t> SuccessorsCopy(int32_t node) const; std::vector<int32_t> PredecessorsCopy(int32_t node) const; std::vector<int32_t> AllNodesInPostOrder() const; std::string DebugString() const; struct Rep; private: Rep *rep_; GraphCycles(const GraphCycles &) = delete; GraphCycles &operator=(const GraphCycles &) = delete; }; } #endif #include "xla/service/graphcycles/graphcycles.h" #include <algorithm> #include <cstddef> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/service/graphcycles/ordered_set.h" #include "tsl/platform/logging.h" namespace tensorflow { namespace { using NodeSet = absl::flat_hash_set<int32_t>; using OrderedNodeSet = OrderedSet<int32_t>; struct Node { int32_t rank; bool visited; }; struct NodeIO { OrderedNodeSet in; OrderedNodeSet out; }; } struct GraphCycles::Rep { std::vector<Node> nodes_; std::vector<NodeIO> node_io_; std::vector<int32_t> free_nodes_; std::vector<int32_t> deltaf_; std::vector<int32_t> deltab_; std::vector<int32_t> list_; std::vector<int32_t> merged_; std::vector<int32_t> stack_; std::vector<void*> node_data_; }; GraphCycles::GraphCycles() : rep_(new Rep) {} GraphCycles::~GraphCycles() { delete rep_; } bool GraphCycles::CheckInvariants() const { Rep* r = rep_; NodeSet ranks; for (size_t x = 0; x < r->nodes_.size(); x++) { Node* nx = &r->nodes_[x]; if (nx->visited) { LOG(FATAL) << "Did not clear visited marker on node " << x; } if (!ranks.insert(nx->rank).second) { LOG(FATAL) << "Duplicate occurrence of rank " << nx->rank; } NodeIO* nx_io = &r->node_io_[x]; for (int32_t y : nx_io->out.GetSequence()) { Node* ny = &r->nodes_[y]; if (nx->rank >= ny->rank) { LOG(FATAL) << "Edge " << x << "->" << y << " has bad rank assignment " << nx->rank << "->" << ny->rank; } } } return true; } int32_t GraphCycles::NewNode() { if (rep_->free_nodes_.empty()) { Node n; n.visited = false; n.rank = rep_->nodes_.size(); rep_->nodes_.emplace_back(n); rep_->node_io_.emplace_back(); rep_->node_data_.push_back(nullptr); return n.rank; } else { int32_t r = rep_->free_nodes_.back(); rep_->free_nodes_.pop_back(); rep_->node_data_[r] = nullptr; return r; } } void GraphCycles::RemoveNode(int32_t node) { NodeIO* x = &rep_->node_io_[node]; for (int32_t y : x->out.GetSequence()) { rep_->node_io_[y].in.Erase(node); } for (int32_t y : x->in.GetSequence()) { rep_->node_io_[y].out.Erase(node); } x->in.Clear(); x->out.Clear(); rep_->free_nodes_.push_back(node); } void* GraphCycles::GetNodeData(int32_t node) const { return rep_->node_data_[node]; } void GraphCycles::SetNodeData(int32_t node, void* data) { rep_->node_data_[node] = data; } bool GraphCycles::HasEdge(int32_t x, int32_t y) const { return rep_->node_io_[x].out.Contains(y); } void GraphCycles::RemoveEdge(int32_t x, int32_t y) { rep_->node_io_[x].out.Erase(y); rep_->node_io_[y].in.Erase(x); } static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound); static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound); static void Reorder(GraphCycles::Rep* r); static void Sort(absl::Span<const Node>, std::vector<int32_t>* delta); static void MoveToList(GraphCycles::Rep* r, std::vector<int32_t>* src, std::vector<int32_t>* dst); static void ClearVisitedBits(GraphCycles::Rep* r, absl::Span<const int32_t> visited_indices); bool GraphCycles::InsertEdge(int32_t x, int32_t y) { if (x == y) return false; Rep* r = rep_; NodeIO* nx_io = &r->node_io_[x]; if (!nx_io->out.Insert(y)) { return true; } NodeIO* ny_io = &r->node_io_[y]; ny_io->in.Insert(x); Node* nx = &r->nodes_[x]; Node* ny = &r->nodes_[y]; if (nx->rank <= ny->rank) { return true; } if (!ForwardDFS(r, y, nx->rank)) { nx_io->out.Erase(y); ny_io->in.Erase(x); ClearVisitedBits(r, r->deltaf_); return false; } BackwardDFS(r, x, ny->rank); Reorder(r); return true; } static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) { r->deltaf_.clear(); r->stack_.clear(); r->stack_.push_back(n); while (!r->stack_.empty()) { n = r->stack_.back(); r->stack_.pop_back(); Node* nn = &r->nodes_[n]; if (nn->visited) continue; nn->visited = true; r->deltaf_.push_back(n); NodeIO* nn_io = &r->node_io_[n]; for (auto w : nn_io->out.GetSequence()) { Node* nw = &r->nodes_[w]; if (nw->rank == upper_bound) { return false; } if (!nw->visited && nw->rank < upper_bound) { r->stack_.push_back(w); } } } return true; } static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) { r->deltab_.clear(); r->stack_.clear(); r->stack_.push_back(n); while (!r->stack_.empty()) { n = r->stack_.back(); r->stack_.pop_back(); Node* nn = &r->nodes_[n]; if (nn->visited) continue; nn->visited = true; r->deltab_.push_back(n); NodeIO* nn_io = &r->node_io_[n]; for (auto w : nn_io->in.GetSequence()) { Node* nw = &r->nodes_[w]; if (!nw->visited && lower_bound < nw->rank) { r->stack_.push_back(w); } } } } static void Reorder(GraphCycles::Rep* r) { Sort(r->nodes_, &r->deltab_); Sort(r->nodes_, &r->deltaf_); r->list_.clear(); MoveToList(r, &r->deltab_, &r->list_); MoveToList(r, &r->deltaf_, &r->list_); r->merged_.resize(r->deltab_.size() + r->deltaf_.size()); std::merge(r->deltab_.begin(), r->deltab_.end(), r->deltaf_.begin(), r->deltaf_.end(), r->merged_.begin()); for (size_t i = 0; i < r->list_.size(); i++) { r->nodes_[r->list_[i]].rank = r->merged_[i]; } } static void Sort(absl::Span<const Node> nodes, std::vector<int32_t>* delta) { std::sort(delta->begin(), delta->end(), [&](int32_t a, int32_t b) { return nodes[a].rank < nodes[b].rank; }); } static void MoveToList(GraphCycles::Rep* r, std::vector<int32_t>* src, std::vector<int32_t>* dst) { for (size_t i = 0; i < src->size(); i++) { int32_t w = (*src)[i]; (*src)[i] = r->nodes_[w].rank; r->nodes_[w].visited = false; dst->push_back(w); } } static void ClearVisitedBits(GraphCycles::Rep* r, absl::Span<const int32_t> visited_indices) { for (auto index : visited_indices) { r->nodes_[index].visited = false; } } int GraphCycles::FindPath(int32_t x, int32_t y, int max_path_len, int32_t path[]) const { int path_len = 0; Rep* r = rep_; NodeSet seen; r->stack_.clear(); r->stack_.push_back(x); while (!r->stack_.empty()) { int32_t n = r->stack_.back(); r->stack_.pop_back(); if (n < 0) { path_len--; continue; } if (path_len < max_path_len) { path[path_len] = n; } path_len++; r->stack_.push_back(-1); if (n == y) { return path_len; } for (auto w : r->node_io_[n].out.GetSequence()) { if (seen.insert(w).second) { r->stack_.push_back(w); } } } return 0; } bool GraphCycles::IsReachable(int32_t x, int32_t y) const { return FindPath(x, y, 0, nullptr) > 0; } bool GraphCycles::IsReachableNonConst(int32_t x, int32_t y) { if (x == y) return true; Rep* r = rep_; Node* nx = &r->nodes_[x]; Node* ny = &r->nodes_[y]; if (nx->rank >= ny->rank) { return false; } bool reachable = !ForwardDFS(r, x, ny->rank); ClearVisitedBits(r, r->deltaf_); return reachable; } bool GraphCycles::CanContractEdge(int32_t a, int32_t b) { CHECK(HasEdge(a, b)) << "No edge exists from " << a << " to " << b; RemoveEdge(a, b); bool reachable = IsReachableNonConst(a, b); InsertEdge(a, b); return !reachable; } std::optional<int32_t> GraphCycles::ContractEdge(int32_t a, int32_t b) { CHECK(HasEdge(a, b)); RemoveEdge(a, b); if (IsReachableNonConst(a, b)) { InsertEdge(a, b); return std::nullopt; } if (rep_->node_io_[b].in.Size() + rep_->node_io_[b].out.Size() > rep_->node_io_[a].in.Size() + rep_->node_io_[a].out.Size()) { std::swap(a, b); } NodeIO* nb_io = &rep_->node_io_[b]; OrderedNodeSet out = std::move(nb_io->out); OrderedNodeSet in = std::move(nb_io->in); for (int32_t y : out.GetSequence()) { rep_->node_io_[y].in.Erase(b); } for (int32_t y : in.GetSequence()) { rep_->node_io_[y].out.Erase(b); } rep_->free_nodes_.push_back(b); rep_->node_io_[a].out.Reserve(rep_->node_io_[a].out.Size() + out.Size()); for (int32_t y : out.GetSequence()) { InsertEdge(a, y); } rep_->node_io_[a].in.Reserve(rep_->node_io_[a].in.Size() + in.Size()); for (int32_t y : in.GetSequence()) { InsertEdge(y, a); } return a; } absl::Span<const int32_t> GraphCycles::Successors(int32_t node) const { return rep_->node_io_[node].out.GetSequence(); } absl::Span<const int32_t> GraphCycles::Predecessors(int32_t node) const { return rep_->node_io_[node].in.GetSequence(); } std::vector<int32_t> GraphCycles::SuccessorsCopy(int32_t node) const { absl::Span<const int32_t> successors = Successors(node); return std::vector<int32_t>(successors.begin(), successors.end()); } std::vector<int32_t> GraphCycles::PredecessorsCopy(int32_t node) const { absl::Span<const int32_t> predecessors = Predecessors(node); return std::vector<int32_t>(predecessors.begin(), predecessors.end()); } namespace { void SortInPostOrder(absl::Span<const Node> nodes, std::vector<int32_t>* to_sort) { absl::c_sort(*to_sort, [&](int32_t a, int32_t b) { DCHECK(a == b || nodes[a].rank != nodes[b].rank); return nodes[a].rank > nodes[b].rank; }); } } std::vector<int32_t> GraphCycles::AllNodesInPostOrder() const { absl::flat_hash_set<int32_t> free_nodes_set; absl::c_copy(rep_->free_nodes_, std::inserter(free_nodes_set, free_nodes_set.begin())); std::vector<int32_t> all_nodes; all_nodes.reserve(rep_->nodes_.size() - free_nodes_set.size()); for (int64_t i = 0, e = rep_->nodes_.size(); i < e; i++) { if (!free_nodes_set.contains(i)) { all_nodes.push_back(i); } } SortInPostOrder(rep_->nodes_, &all_nodes); return all_nodes; } std::string GraphCycles::DebugString() const { absl::flat_hash_set<int32_t> free_nodes_set(rep_->free_nodes_.begin(), rep_->free_nodes_.end()); std::string result = "digraph {\n"; for (int i = 0, end = rep_->nodes_.size(); i < end; i++) { if (free_nodes_set.contains(i)) { continue; } for (int32_t succ : rep_->node_io_[i].out.GetSequence()) { absl::StrAppend(&result, " \"", i, "\" -> \"", succ, "\"\n"); } } absl::StrAppend(&result, "}\n"); return result; } }
#include "xla/service/graphcycles/graphcycles.h" #include <cstdint> #include <optional> #include <random> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/random/random.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" typedef std::vector<int> Nodes; struct Edge { int from; int to; }; typedef std::vector<Edge> Edges; static bool IsReachable(Edges *edges, int from, int to, absl::flat_hash_set<int> *seen) { seen->insert(from); if (from == to) return true; for (int i = 0; i != edges->size(); i++) { Edge *edge = &(*edges)[i]; if (edge->from == from) { if (edge->to == to) { return true; } else if (seen->find(edge->to) == seen->end() && IsReachable(edges, edge->to, to, seen)) { return true; } } } return false; } static void PrintNodes(Nodes *nodes) { LOG(INFO) << "NODES (" << nodes->size() << ")"; for (int i = 0; i != nodes->size(); i++) { LOG(INFO) << (*nodes)[i]; } } static void PrintEdges(Edges *edges) { LOG(INFO) << "EDGES (" << edges->size() << ")"; for (int i = 0; i != edges->size(); i++) { int a = (*edges)[i].from; int b = (*edges)[i].to; LOG(INFO) << a << " " << b; } LOG(INFO) << "---"; } static void PrintGCEdges(Nodes *nodes, tensorflow::GraphCycles *gc) { LOG(INFO) << "GC EDGES"; for (int i = 0; i != nodes->size(); i++) { for (int j = 0; j != nodes->size(); j++) { int a = (*nodes)[i]; int b = (*nodes)[j]; if (gc->HasEdge(a, b)) { LOG(INFO) << a << " " << b; } } } LOG(INFO) << "---"; } static void PrintTransitiveClosure(Nodes *nodes, Edges *edges, tensorflow::GraphCycles *gc) { LOG(INFO) << "Transitive closure"; for (int i = 0; i != nodes->size(); i++) { for (int j = 0; j != nodes->size(); j++) { int a = (*nodes)[i]; int b = (*nodes)[j]; absl::flat_hash_set<int> seen; if (IsReachable(edges, a, b, &seen)) { LOG(INFO) << a << " " << b; } } } LOG(INFO) << "---"; } static void PrintGCTransitiveClosure(Nodes *nodes, tensorflow::GraphCycles *gc) { LOG(INFO) << "GC Transitive closure"; for (int i = 0; i != nodes->size(); i++) { for (int j = 0; j != nodes->size(); j++) { int a = (*nodes)[i]; int b = (*nodes)[j]; if (gc->IsReachable(a, b)) { LOG(INFO) << a << " " << b; } } } LOG(INFO) << "---"; } static void CheckTransitiveClosure(Nodes *nodes, Edges *edges, tensorflow::GraphCycles *gc) { absl::flat_hash_set<int> seen; for (int i = 0; i != nodes->size(); i++) { for (int j = 0; j != nodes->size(); j++) { seen.clear(); int a = (*nodes)[i]; int b = (*nodes)[j]; bool gc_reachable = gc->IsReachable(a, b); CHECK_EQ(gc_reachable, gc->IsReachableNonConst(a, b)); bool reachable = IsReachable(edges, a, b, &seen); if (gc_reachable != reachable) { PrintEdges(edges); PrintGCEdges(nodes, gc); PrintTransitiveClosure(nodes, edges, gc); PrintGCTransitiveClosure(nodes, gc); LOG(FATAL) << "gc_reachable " << gc_reachable << " reachable " << reachable << " a " << a << " b " << b; } } } } static void CheckEdges(Nodes *nodes, Edges *edges, tensorflow::GraphCycles *gc) { int count = 0; for (int i = 0; i != edges->size(); i++) { int a = (*edges)[i].from; int b = (*edges)[i].to; if (!gc->HasEdge(a, b)) { PrintEdges(edges); PrintGCEdges(nodes, gc); LOG(FATAL) << "!gc->HasEdge(" << a << ", " << b << ")"; } } for (int i = 0; i != nodes->size(); i++) { for (int j = 0; j != nodes->size(); j++) { int a = (*nodes)[i]; int b = (*nodes)[j]; if (gc->HasEdge(a, b)) { count++; } } } if (count != edges->size()) { PrintEdges(edges); PrintGCEdges(nodes, gc); LOG(FATAL) << "edges->size() " << edges->size() << " count " << count; } } static int RandomNode(std::mt19937 *rnd, Nodes *nodes) { std::uniform_int_distribution<int> distribution(0, nodes->size() - 1); return distribution(*rnd); } static int RandomEdge(std::mt19937 *rnd, Edges *edges) { std::uniform_int_distribution<int> distribution(0, edges->size() - 1); return distribution(*rnd); } static int EdgeIndex(Edges *edges, int from, int to) { int i = 0; while (i != edges->size() && ((*edges)[i].from != from || (*edges)[i].to != to)) { i++; } return i == edges->size() ? -1 : i; } TEST(GraphCycles, RandomizedTest) { Nodes nodes; Edges edges; tensorflow::GraphCycles graph_cycles; static const int kMaxNodes = 7; static const int kDataOffset = 17; int n = 100000; int op = 0; std::mt19937 rnd(tsl::testing::RandomSeed() + 1); for (int iter = 0; iter != n; iter++) { if ((iter % 10000) == 0) VLOG(0) << "Iter " << iter << " of " << n; if (VLOG_IS_ON(3)) { LOG(INFO) << "==============="; LOG(INFO) << "last op " << op; PrintNodes(&nodes); PrintEdges(&edges); PrintGCEdges(&nodes, &graph_cycles); } for (int i = 0; i != nodes.size(); i++) { ASSERT_EQ(reinterpret_cast<intptr_t>(graph_cycles.GetNodeData(i)), i + kDataOffset) << " node " << i; } CheckEdges(&nodes, &edges, &graph_cycles); CheckTransitiveClosure(&nodes, &edges, &graph_cycles); std::uniform_int_distribution<int> distribution(0, 5); op = distribution(rnd); switch (op) { case 0: if (nodes.size() < kMaxNodes) { int new_node = graph_cycles.NewNode(); ASSERT_NE(-1, new_node); VLOG(1) << "adding node " << new_node; ASSERT_EQ(nullptr, graph_cycles.GetNodeData(new_node)); graph_cycles.SetNodeData( new_node, reinterpret_cast<void *>( static_cast<intptr_t>(new_node + kDataOffset))); ASSERT_GE(new_node, 0); for (int i = 0; i != nodes.size(); i++) { ASSERT_NE(nodes[i], new_node); } nodes.push_back(new_node); } break; case 1: if (!nodes.empty()) { int node_index = RandomNode(&rnd, &nodes); int node = nodes[node_index]; nodes[node_index] = nodes.back(); nodes.pop_back(); VLOG(1) << "removing node " << node; graph_cycles.RemoveNode(node); int i = 0; while (i != edges.size()) { if (edges[i].from == node || edges[i].to == node) { edges[i] = edges.back(); edges.pop_back(); } else { i++; } } } break; case 2: if (!nodes.empty()) { int from = RandomNode(&rnd, &nodes); int to = RandomNode(&rnd, &nodes); if (EdgeIndex(&edges, nodes[from], nodes[to]) == -1) { if (graph_cycles.InsertEdge(nodes[from], nodes[to])) { Edge new_edge; new_edge.from = nodes[from]; new_edge.to = nodes[to]; edges.push_back(new_edge); } else { absl::flat_hash_set<int> seen; ASSERT_TRUE(IsReachable(&edges, nodes[to], nodes[from], &seen)) << "Edge " << nodes[to] << "->" << nodes[from]; } } } break; case 3: if (!edges.empty()) { int i = RandomEdge(&rnd, &edges); int from = edges[i].from; int to = edges[i].to; ASSERT_EQ(i, EdgeIndex(&edges, from, to)); edges[i] = edges.back(); edges.pop_back(); ASSERT_EQ(-1, EdgeIndex(&edges, from, to)); VLOG(1) << "removing edge " << from << " " << to; graph_cycles.RemoveEdge(from, to); } break; case 4: if (!nodes.empty()) { int from = RandomNode(&rnd, &nodes); int to = RandomNode(&rnd, &nodes); int32_t path[2 * kMaxNodes]; int path_len = graph_cycles.FindPath(nodes[from], nodes[to], 2 * kMaxNodes, path); absl::flat_hash_set<int> seen; bool reachable = IsReachable(&edges, nodes[from], nodes[to], &seen); bool gc_reachable = graph_cycles.IsReachable(nodes[from], nodes[to]); ASSERT_EQ(gc_reachable, graph_cycles.IsReachableNonConst(nodes[from], nodes[to])); ASSERT_EQ(path_len != 0, reachable); ASSERT_EQ(path_len != 0, gc_reachable); ASSERT_LE(path_len, kMaxNodes + 1); if (path_len != 0) { ASSERT_EQ(nodes[from], path[0]); ASSERT_EQ(nodes[to], path[path_len - 1]); for (int i = 1; i < path_len; i++) { ASSERT_NE(-1, EdgeIndex(&edges, path[i - 1], path[i])); ASSERT_TRUE(graph_cycles.HasEdge(path[i - 1], path[i])); } } } break; case 5: CHECK(graph_cycles.CheckInvariants()); break; default: LOG(FATAL); } std::bernoulli_distribution rarely(1.0 / 1024.0); if (rarely(rnd)) { VLOG(3) << "Graph expansion"; CheckEdges(&nodes, &edges, &graph_cycles); CheckTransitiveClosure(&nodes, &edges, &graph_cycles); for (int i = 0; i != 256; i++) { int new_node = graph_cycles.NewNode(); ASSERT_NE(-1, new_node); VLOG(1) << "adding node " << new_node; ASSERT_GE(new_node, 0); ASSERT_EQ(nullptr, graph_cycles.GetNodeData(new_node)); graph_cycles.SetNodeData( new_node, reinterpret_cast<void *>( static_cast<intptr_t>(new_node + kDataOffset))); for (int j = 0; j != nodes.size(); j++) { ASSERT_NE(nodes[j], new_node); } nodes.push_back(new_node); } for (int i = 0; i != 256; i++) { ASSERT_GT(nodes.size(), 0); int node_index = RandomNode(&rnd, &nodes); int node = nodes[node_index]; nodes[node_index] = nodes.back(); nodes.pop_back(); VLOG(1) << "removing node " << node; graph_cycles.RemoveNode(node); int j = 0; while (j != edges.size()) { if (edges[j].from == node || edges[j].to == node) { edges[j] = edges.back(); edges.pop_back(); } else { j++; } } } CHECK(graph_cycles.CheckInvariants()); } } } class GraphCyclesTest : public ::testing::Test { public: tensorflow::GraphCycles g_; GraphCyclesTest() { for (int i = 0; i < 100; i++) { CHECK_EQ(i, g_.NewNode()); } CHECK(g_.CheckInvariants()); } bool AddEdge(int x, int y) { return g_.InsertEdge(x, y); } void AddMultiples() { for (int x = 1; x < 25; x++) { EXPECT_TRUE(AddEdge(x, 2 * x)) << x; EXPECT_TRUE(AddEdge(x, 3 * x)) << x; } CHECK(g_.CheckInvariants()); } std::string Path(int x, int y) { static const int kPathSize = 5; int32_t path[kPathSize]; int np = g_.FindPath(x, y, kPathSize, path); std::string result; for (int i = 0; i < np; i++) { if (i >= kPathSize) { result += " ..."; break; } if (!result.empty()) result.push_back(' '); char buf[20]; snprintf(buf, sizeof(buf), "%d", path[i]); result += buf; } return result; } }; TEST_F(GraphCyclesTest, NoCycle) { AddMultiples(); CHECK(g_.CheckInvariants()); } TEST_F(GraphCyclesTest, SimpleCycle) { AddMultiples(); EXPECT_FALSE(AddEdge(8, 4)); EXPECT_EQ("4 8", Path(4, 8)); CHECK(g_.CheckInvariants()); } TEST_F(GraphCyclesTest, IndirectCycle) { AddMultiples(); EXPECT_TRUE(AddEdge(16, 9)); CHECK(g_.CheckInvariants()); EXPECT_FALSE(AddEdge(9, 2)); EXPECT_EQ("2 4 8 16 9", Path(2, 9)); CHECK(g_.CheckInvariants()); } TEST_F(GraphCyclesTest, LongPath) { ASSERT_TRUE(AddEdge(2, 4)); ASSERT_TRUE(AddEdge(4, 6)); ASSERT_TRUE(AddEdge(6, 8)); ASSERT_TRUE(AddEdge(8, 10)); ASSERT_TRUE(AddEdge(10, 12)); ASSERT_FALSE(AddEdge(12, 2)); EXPECT_EQ("2 4 6 8 10 ...", Path(2, 12)); CHECK(g_.CheckInvariants()); } TEST_F(GraphCyclesTest, RemoveNode) { ASSERT_TRUE(AddEdge(1, 2)); ASSERT_TRUE(AddEdge(2, 3)); ASSERT_TRUE(AddEdge(3, 4)); ASSERT_TRUE(AddEdge(4, 5)); g_.RemoveNode(3); ASSERT_TRUE(AddEdge(5, 1)); } TEST_F(GraphCyclesTest, ManyEdges) { const int N = 50; for (int i = 0; i < N; i++) { for (int j = 1; j < N; j++) { ASSERT_TRUE(AddEdge(i, i + j)); } } CHECK(g_.CheckInvariants()); ASSERT_TRUE(AddEdge(2 * N - 1, 0)); CHECK(g_.CheckInvariants()); ASSERT_FALSE(AddEdge(10, 9)); CHECK(g_.CheckInvariants()); } TEST_F(GraphCyclesTest, ContractEdge) { ASSERT_TRUE(AddEdge(1, 2)); ASSERT_TRUE(AddEdge(1, 3)); ASSERT_TRUE(AddEdge(2, 3)); ASSERT_TRUE(AddEdge(2, 4)); ASSERT_TRUE(AddEdge(3, 4)); EXPECT_FALSE(g_.ContractEdge(1, 3).has_value()); CHECK(g_.CheckInvariants()); EXPECT_TRUE(g_.HasEdge(1, 3)); EXPECT_EQ(g_.ContractEdge(1, 2).value(), 2); CHECK(g_.CheckInvariants()); EXPECT_TRUE(g_.HasEdge(2, 3)); EXPECT_TRUE(g_.HasEdge(2, 4)); EXPECT_TRUE(g_.HasEdge(3, 4)); EXPECT_EQ(g_.ContractEdge(2, 3).value(), 2); CHECK(g_.CheckInvariants()); EXPECT_TRUE(g_.HasEdge(2, 4)); } TEST_F(GraphCyclesTest, CanContractEdge) { ASSERT_TRUE(AddEdge(1, 2)); ASSERT_TRUE(AddEdge(1, 3)); ASSERT_TRUE(AddEdge(2, 3)); ASSERT_TRUE(AddEdge(2, 4)); ASSERT_TRUE(AddEdge(3, 4)); EXPECT_FALSE(g_.CanContractEdge(1, 3)); EXPECT_FALSE(g_.CanContractEdge(2, 4)); EXPECT_TRUE(g_.CanContractEdge(1, 2)); EXPECT_TRUE(g_.CanContractEdge(2, 3)); EXPECT_TRUE(g_.CanContractEdge(3, 4)); } static void BM_StressTest(::testing::benchmark::State &state) { const int num_nodes = state.range(0); while (state.KeepRunningBatch(num_nodes)) { tensorflow::GraphCycles g; int32_t *nodes = new int32_t[num_nodes]; for (int i = 0; i < num_nodes; i++) { nodes[i] = g.NewNode(); } for (int i = 0; i < num_nodes; i++) { int end = std::min(num_nodes, i + 5); for (int j = i + 1; j < end; j++) { if (nodes[i] >= 0 && nodes[j] >= 0) { CHECK(g.InsertEdge(nodes[i], nodes[j])); } } } delete[] nodes; } } BENCHMARK(BM_StressTest)->Range(2048, 1048576); static void BM_ContractEdge(::testing::benchmark::State &state) { const int num_nodes = state.range(0); while (state.KeepRunningBatch(num_nodes)) { state.PauseTiming(); tensorflow::GraphCycles g; std::vector<int32_t> nodes; nodes.reserve(num_nodes); for (int i = 0; i < num_nodes; i++) { nodes.push_back(g.NewNode()); } for (int i = 0; i < num_nodes - 1; ++i) { g.InsertEdge(nodes[i], nodes[num_nodes - 1]); } state.ResumeTiming(); int node = num_nodes - 1; for (int i = 0; i < num_nodes - 1; ++i) { node = g.ContractEdge(nodes[i], node).value(); } } } BENCHMARK(BM_ContractEdge)->Arg(1000)->Arg(10000); static void BM_IsReachableNonConst(testing::benchmark::State &state) { const int num_nodes = state.range(0); tensorflow::GraphCycles g; std::vector<uint32_t> nodes; nodes.reserve(num_nodes); for (int i = 0; i < num_nodes; i++) { nodes.push_back(g.NewNode()); } absl::BitGen bitgen; for (int i = 0; i < num_nodes; i++) { int max = num_nodes - 1 - i; if (max == 0) break; constexpr int branch_factor = 2; for (int b = 0; b < branch_factor; b++) { int j = i + 1 + absl::Uniform(bitgen, 0, max); CHECK_LT(j, num_nodes); CHECK(g.InsertEdge(nodes[i], nodes[j])); } } auto get_random_node = [&]() { return nodes[absl::Uniform(bitgen, 0, num_nodes)]; }; uint32_t src, dst; int i = 0; for (auto s : state) { if (i % 256 == 0) { src = get_random_node(); dst = get_random_node(); } bool reachable = g.IsReachableNonConst(src, dst); benchmark::DoNotOptimize(reachable); i++; } } BENCHMARK(BM_IsReachableNonConst) ->Arg(10) ->Arg(50) ->Arg(100) ->Arg(200) ->Arg(1000) ->Arg(30000);
2,032
cpp
tensorflow/tensorflow
reduction_dimension_grouper
third_party/xla/xla/service/gpu/transforms/reduction_dimension_grouper.cc
third_party/xla/xla/service/gpu/transforms/reduction_dimension_grouper_test.cc
#ifndef XLA_SERVICE_GPU_REDUCTION_DIMENSION_GROUPER_H_ #define XLA_SERVICE_GPU_REDUCTION_DIMENSION_GROUPER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class ReductionDimensionGrouper : public HloModulePass { public: absl::string_view name() const override { return "reduction-dimension-grouper"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/reduction_dimension_grouper.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class ReduceDimensionGroupVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleReduce(HloInstruction *hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); VLOG(4) << "Input: " << reduce->ToString(); absl::InlinedVector<HloInstruction *, 2> reduce_inputs_grouped; std::vector<int64_t> reduced_dims_grouped; int idx = -1; for (HloInstruction *operand : reduce->inputs()) { idx++; std::vector<int64_t> new_grouped_dims; const Shape &shape = operand->shape(); CHECK(shape == LayoutUtil::GetWithDefaultLayout(shape)) << "Default layout should be enforced on reduction operand"; auto is_reduced = [&](int dim) { return absl::c_linear_search(reduce->dimensions(), dim); }; bool changed = false; int64_t next_dim_size = 1; for (int logical_dim = 0; logical_dim < shape.rank(); logical_dim++) { VLOG(5) << "Processing dimension " << logical_dim << " of size " << shape.dimensions(logical_dim); if (is_reduced(logical_dim) && logical_dim < shape.rank() - 1 && is_reduced(logical_dim + 1)) { VLOG(5) << "This and consecutive dimension are reduced, merging"; changed = true; next_dim_size *= shape.dimensions(logical_dim); continue; } if (is_reduced(logical_dim)) { new_grouped_dims.push_back(next_dim_size * shape.dimensions(logical_dim)); if (idx == 0) { reduced_dims_grouped.push_back(new_grouped_dims.size() - 1); } next_dim_size = 1; } else { new_grouped_dims.push_back(shape.dimensions(logical_dim)); } } if (!changed) { return absl::OkStatus(); } Shape grouped_shape = ShapeUtil::MakeShape(shape.element_type(), new_grouped_dims); reduce_inputs_grouped.push_back(reduce->parent()->AddInstruction( HloInstruction::CreateBitcast(grouped_shape, operand), &operand->metadata())); VLOG(5) << "Adding bitcast: " << reduce_inputs_grouped.back()->ToString(); } std::unique_ptr<HloInstruction> new_reduce = HloInstruction::CreateReduce( reduce->shape(), reduce_inputs_grouped, reduce->init_values(), reduced_dims_grouped, reduce->to_apply()); VLOG(5) << "Generated new reduction: " << new_reduce->ToString(); return ReplaceWithNewInstruction(reduce, std::move(new_reduce)); } }; absl::StatusOr<bool> ReductionDimensionGrouper::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { TF_ASSIGN_OR_RETURN(bool changed, ReduceDimensionGroupVisitor().RunOnModule( module, execution_threads)); return changed; } } }
#include "xla/service/gpu/reduction_dimension_grouper.h" #include <optional> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace { class ReductionDimensionGrouperTest : public HloTestBase { public: void CheckDimensionGrouper(absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite(hlo, gpu::ReductionDimensionGrouper{}, expected); } }; TEST_F(ReductionDimensionGrouperTest, ReductionWithGrouping) { const char* hlo = R"( HloModule ReductionWithGrouping add { accum = f32[] parameter(0) op = f32[] parameter(1) ROOT out = f32[] add(accum, op) } ENTRY main { input = f32[100,10,32,3]{3,2,1,0} parameter(0) zero = f32[] constant(0) ROOT out = f32[100,10]{0,1} reduce(input, zero), dimensions={2,3}, to_apply=add } )"; CheckDimensionGrouper(hlo, R"( )"); } TEST_F(ReductionDimensionGrouperTest, ReductionWithGroupingVariadic) { const char* hlo = R"( HloModule ReductionWithGrouping argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { input = f32[100,10,32,3]{3,2,1,0} parameter(0) idxs = u32[100,10,32,3]{3,2,1,0} parameter(1) zero = f32[] constant(0) zero_idx = u32[] constant(0) ROOT out = (f32[100,10]{1,0}, u32[100,10]{1,0}) reduce(input, idxs, zero, zero_idx), dimensions={2,3}, to_apply=argmax } )"; CheckDimensionGrouper(hlo, R"( )"); } } }
2,033
cpp
tensorflow/tensorflow
gpu_layout_assignment
null
null
#ifndef XLA_SERVICE_GPU_GPU_LAYOUT_ASSIGNMENT_H_ #define XLA_SERVICE_GPU_GPU_LAYOUT_ASSIGNMENT_H_ #include <cstdint> #include <initializer_list> #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/computation_layout.h" #include "xla/service/layout_assignment.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" namespace xla { namespace gpu { class GpuLayoutAssignment : public LayoutAssignment { public: explicit GpuLayoutAssignment( ComputationLayout* entry_computation_layout, const se::GpuComputeCapability& gpu_version, const se::dnn::VersionInfo& dnn_version, ChannelLayoutConstraints* channel_constraints = nullptr) : LayoutAssignment(entry_computation_layout, channel_constraints), gpu_version_(gpu_version), dnn_version_(dnn_version) {} ~GpuLayoutAssignment() override = default; protected: absl::Status AddBackendConstraints(LayoutConstraints* constraints) override; private: absl::Status AddBackendConstraintsToDnnConvCustomCall( HloCustomCallInstruction* instr, LayoutConstraints* constraints); absl::Status SetOperandMajorToMinorLayout( const HloInstruction* instruction, int64_t operand, std::initializer_list<absl::Span<const int64_t>> dim_groups); absl::Status SetDotOperandLayout(const HloInstruction* instruction, int64_t operand, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims); absl::Status SetDotLayout(const HloInstruction* instruction, LayoutConstraints* constraints); bool PropagateReductionLayoutToOperand(const HloInstruction* user) override; bool InstructionCanChangeLayoutInstance( const HloInstruction* instruction) override; const se::GpuComputeCapability gpu_version_; const se::dnn::VersionInfo dnn_version_; }; } } #endif #include "xla/service/gpu/gpu_layout_assignment.h" #include <cstddef> #include <cstdint> #include <initializer_list> #include <memory> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/host_memory_offload_annotations.h" #include "xla/service/logical_buffer.h" #include "xla/shape.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/tsl/util/env_var.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { using se::dnn::DataLayout; using se::dnn::FilterLayout; static std::tuple<DataLayout, FilterLayout, DataLayout> HeuristicLayoutAssignment(const HloInstruction* instr, const se::GpuComputeCapability& gpu_version, const se::dnn::VersionInfo& dnn_version) { constexpr auto kAllNCHW = std::make_tuple(DataLayout::kBatchDepthYX, FilterLayout::kOutputInputYX, DataLayout::kBatchDepthYX); constexpr auto kAllNCHW_VECT_C = std::make_tuple(DataLayout::kBatchDepthYX4, FilterLayout::kOutputInputYX4, DataLayout::kBatchDepthYX4); constexpr auto kAllNHWC = std::make_tuple(DataLayout::kBatchYXDepth, FilterLayout::kOutputYXInput, DataLayout::kBatchYXDepth); const ConvolutionDimensionNumbers& dnums = instr->convolution_dimension_numbers(); Shape input_shape = instr->operand(0)->shape(); PrimitiveType input_ty = instr->operand(0)->shape().element_type(); if (primitive_util::IsIntegralType(input_ty)) { if (input_ty == S8 && dnums.input_spatial_dimensions_size() == 2 && input_shape.dimensions_size() == 5) { VLOG(2) << "Using NCHW_VECT_C for int8_t conv " << instr->ToString(); return kAllNCHW_VECT_C; } VLOG(2) << "Using NHWC for int8_t conv " << instr->ToString(); return kAllNHWC; } if (primitive_util::IsF8Type(input_ty)) { VLOG(2) << "Using NHWC for FP8 conv " << instr->ToString(); return kAllNHWC; } const DebugOptions& debug_options = instr->GetModule()->config().debug_options(); if (debug_options.xla_gpu_force_conv_nchw()) { VLOG(2) << "Overriding layout to NCHW for " << instr->ToString(); return kAllNCHW; } if (debug_options.xla_gpu_force_conv_nhwc()) { VLOG(2) << "Overriding layout to NHWC for " << instr->ToString(); return kAllNHWC; } const auto* rocm_compute_capability = std::get_if<se::RocmComputeCapability>(&gpu_version); if (rocm_compute_capability && input_ty == F16) return kAllNHWC; const bool isFloat16 = (input_ty == F16) || (input_ty == BF16); if (std::holds_alternative<se::CudaComputeCapability>(gpu_version)) { const auto* cuda_compute_capability = std::get_if<se::CudaComputeCapability>(&gpu_version); bool is_volta = cuda_compute_capability && cuda_compute_capability->IsAtLeast(se::CudaComputeCapability::VOLTA); if (!isFloat16 || !is_volta || instr->shape().tuple_shapes(0).dimensions_size() != 4) { return kAllNCHW; } if (std::make_tuple(dnn_version.major_version(), dnn_version.minor_version()) <= std::make_tuple(7, 3) && instr->custom_call_target() == kCudnnConvBackwardInputCallTarget && window_util::HasStride(instr->window())) { return kAllNCHW; } } else if (std::holds_alternative<se::RocmComputeCapability>(gpu_version)) { bool is_enabled = false; TF_CHECK_OK(tsl::ReadBoolFromEnvVar("TF_USE_ROCM_NHWC", false, &is_enabled)); auto rocm_compute_capability = std::get<se::RocmComputeCapability>(gpu_version); if (!isFloat16 || (!rocm_compute_capability.has_nhwc_layout_support()) || instr->shape().tuple_shapes(0).dimensions_size() != 4 || !is_enabled) { return kAllNCHW; } } VLOG(2) << "Using heuristic to figure out layouts for " << instr->ToString(); return kAllNHWC; } absl::Status GpuLayoutAssignment::AddBackendConstraintsToDnnConvCustomCall( HloCustomCallInstruction* instr, LayoutConstraints* constraints) { Shape lhs_shape = instr->operand(0)->shape(); Shape rhs_shape = instr->operand(1)->shape(); Shape result_shape = instr->shape().tuple_shapes(0); Shape* input_shape; Shape* filter_shape; Shape* output_shape; TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(instr)); switch (kind) { case CudnnConvKind::kForward: case CudnnConvKind::kForwardActivation: case CudnnConvKind::kForwardGraph: input_shape = &lhs_shape; filter_shape = &rhs_shape; output_shape = &result_shape; break; case CudnnConvKind::kBackwardInput: input_shape = &result_shape; filter_shape = &rhs_shape; output_shape = &lhs_shape; break; case CudnnConvKind::kBackwardFilter: input_shape = &lhs_shape; filter_shape = &result_shape; output_shape = &rhs_shape; break; } { DataLayout input; FilterLayout filter; DataLayout output; std::tie(input, filter, output) = HeuristicLayoutAssignment(instr, gpu_version_, dnn_version_); TF_ASSIGN_OR_RETURN( std::tie(*input_shape->mutable_layout(), *filter_shape->mutable_layout(), *output_shape->mutable_layout()), StreamExecutorConvLayoutsToXlaLayouts( instr->convolution_dimension_numbers(), input, filter, output)); } TF_ASSIGN_OR_RETURN( const LogicalBuffer* call_result_buf, points_to_analysis_->GetBufferDefinedAt(instr, {0})); TF_RETURN_IF_ERROR(SetOperandLayout(lhs_shape, instr, 0)); TF_RETURN_IF_ERROR(SetOperandLayout(rhs_shape, instr, 1)); TF_RETURN_IF_ERROR(SetBufferLayout(result_shape.layout(), *call_result_buf)); if (kind == CudnnConvKind::kForwardActivation && instr->operand_count() == 4) { TF_RETURN_IF_ERROR(SetOperandLayout(*output_shape, instr, 3)); } if (kind == CudnnConvKind::kForwardGraph) { for (int k = 2; k < instr->operand_count(); ++k) { if (!ShapeUtil::IsScalar(instr->operand(k)->shape())) { TF_RETURN_IF_ERROR(SetOperandLayout(*output_shape, instr, k)); } } } if (instr->operand_count() > 2 && kind != CudnnConvKind::kForwardActivation && kind != CudnnConvKind::kForwardGraph) { return Internal( "Invalid convolution. Conv has a side input, but kind is not fused " "conv forward or graph conv foward: %s", instr->ToString()); } return absl::OkStatus(); } namespace { void SetFortranLayout(Shape* shape) { LayoutUtil::SetToDefaultLayout(shape); int n = shape->mutable_layout()->minor_to_major_size(); CHECK_GE(n, 2); std::swap(shape->mutable_layout()->mutable_minor_to_major()->at(0), shape->mutable_layout()->mutable_minor_to_major()->at(1)); } bool DotCanSupportShapeWithLayout(const HloInstruction* dot, const Shape& shape) { const DotDimensionNumbers& dot_dims = dot->dot_dimension_numbers(); return MatrixLayout::For(shape, dot_dims.lhs_batch_dimensions().size(), dot->operand(0)->shape().rank() - dot_dims.lhs_contracting_dimensions().size() - dot_dims.lhs_batch_dimensions().size(), dot_dims.rhs_batch_dimensions().size(), dot->operand(1)->shape().rank() - dot_dims.rhs_contracting_dimensions().size() - dot_dims.rhs_batch_dimensions().size()) .ok(); } } absl::Status GpuLayoutAssignment::AddBackendConstraints( LayoutConstraints* constraints) { auto post_order = constraints->computation()->MakeInstructionPostOrder(); for (auto iterator = post_order.rbegin(); iterator != post_order.rend(); ++iterator) { HloInstruction* instruction = *iterator; if (IsCustomCallToDnnConvolution(*instruction)) { TF_RETURN_IF_ERROR(AddBackendConstraintsToDnnConvCustomCall( Cast<HloCustomCallInstruction>(instruction), constraints)); } CHECK(!IsCublasGemm(*instruction)) << "Gemm rewriting should run after layout assignment"; if (instruction->opcode() == HloOpcode::kDot) { const Shape& output_shape = instruction->shape(); const Shape& lhs_shape = instruction->operand(0)->shape(); const Shape& rhs_shape = instruction->operand(1)->shape(); const DotDimensionNumbers& dot_dims = instruction->dot_dimension_numbers(); absl::Span<const int64_t> lhs_batch_dims = dot_dims.lhs_batch_dimensions(); absl::Span<const int64_t> lhs_contracting_dims = dot_dims.lhs_contracting_dimensions(); TF_ASSIGN_OR_RETURN(std::vector<int64_t> lhs_non_contracting_dims, GetNonContractingDims(lhs_shape, lhs_batch_dims, lhs_contracting_dims)); absl::Span<const int64_t> rhs_batch_dims = dot_dims.rhs_batch_dimensions(); absl::Span<const int64_t> rhs_contracting_dims = dot_dims.rhs_contracting_dimensions(); TF_ASSIGN_OR_RETURN(std::vector<int64_t> rhs_non_contracting_dims, GetNonContractingDims(rhs_shape, rhs_batch_dims, rhs_contracting_dims)); const DebugOptions& debug_options = instruction->GetModule()->config().debug_options(); bool is_bf16_to_bf16 = (output_shape.element_type() == PrimitiveType::BF16 && lhs_shape.element_type() == PrimitiveType::BF16 && rhs_shape.element_type() == PrimitiveType::BF16); bool is_s8_to_s32 = (output_shape.element_type() == PrimitiveType::S32 && lhs_shape.element_type() == PrimitiveType::S8 && rhs_shape.element_type() == PrimitiveType::S8 && output_shape.dimensions_size() == 2 && lhs_shape.dimensions_size() == 2 && rhs_shape.dimensions_size() == 2); if (is_s8_to_s32 || (is_bf16_to_bf16 && debug_options.xla_gpu_ensure_minor_dot_contraction_dims())) { TF_RETURN_IF_ERROR(SetOperandMajorToMinorLayout( instruction, 0, {lhs_batch_dims, lhs_non_contracting_dims, lhs_contracting_dims})); TF_RETURN_IF_ERROR(SetOperandMajorToMinorLayout( instruction, 1, {rhs_batch_dims, rhs_non_contracting_dims, rhs_contracting_dims})); TF_RETURN_IF_ERROR(SetDotLayout(instruction, constraints)); } else { if (!lhs_batch_dims.empty() || lhs_contracting_dims.size() > 1 || lhs_non_contracting_dims.size() > 1) { TF_RETURN_IF_ERROR(SetDotOperandLayout(instruction, 0, lhs_batch_dims, lhs_contracting_dims, lhs_non_contracting_dims)); } if (!rhs_batch_dims.empty() || rhs_non_contracting_dims.size() > 1 || rhs_contracting_dims.size() > 1) { TF_RETURN_IF_ERROR(SetDotOperandLayout(instruction, 1, rhs_batch_dims, rhs_contracting_dims, rhs_non_contracting_dims)); } if (!lhs_batch_dims.empty() || lhs_non_contracting_dims.size() > 1 || rhs_non_contracting_dims.size() > 1) { TF_RETURN_IF_ERROR(SetDotLayout(instruction, constraints)); } } } else if (instruction->opcode() == HloOpcode::kTranspose) { const HloInstruction* operand = instruction->operand(0); if ((operand->opcode() != HloOpcode::kDot) || (operand->user_count() > 1)) { continue; } Shape shape = operand->shape(); *shape.mutable_layout() = LayoutUtil::MakeLayoutFromMajorToMinor(instruction->dimensions()); if (DotCanSupportShapeWithLayout(operand, shape)) { TF_RETURN_IF_ERROR( SetOperandLayout(shape, instruction, 0)); } } else if (instruction->opcode() == HloOpcode::kFft) { Shape op0_shape = instruction->operand(0)->shape(); LayoutUtil::SetToDefaultLayout(&op0_shape); Shape output_shape = instruction->shape(); LayoutUtil::SetToDefaultLayout(&output_shape); TF_RETURN_IF_ERROR(SetOperandLayout(op0_shape, instruction, 0)); TF_RETURN_IF_ERROR(SetInstructionLayout(output_shape, instruction)); } else if (instruction->opcode() == HloOpcode::kSort && instruction->operand(0)->shape().rank() > 1) { Shape keys_shape = instruction->operand(0)->shape(); Layout keys_layout = LayoutUtil::GetDefaultLayoutForRank(keys_shape.rank()); for (int64_t i = 0; i < instruction->operand_count(); ++i) { Shape shape = instruction->operand(i)->shape(); *shape.mutable_layout() = keys_layout; TF_RETURN_IF_ERROR(SetOperandLayout(shape, instruction, i)); const LogicalBuffer* output_buffer; if (instruction->shape().IsArray()) { TF_ASSIGN_OR_RETURN( output_buffer, points_to_analysis_->GetBufferDefinedAt(instruction, {})); } else { TF_ASSIGN_OR_RETURN( output_buffer, points_to_analysis_->GetBufferDefinedAt(instruction, {i})); } TF_RETURN_IF_ERROR(SetBufferLayout(keys_layout, *output_buffer)); } } else if (instruction->opcode() == HloOpcode::kTriangularSolve) { Shape op0_shape = instruction->operand(0)->shape(); Shape op1_shape = instruction->operand(1)->shape(); Shape output_shape = instruction->shape(); SetFortranLayout(&op0_shape); SetFortranLayout(&op1_shape); SetFortranLayout(&output_shape); TF_RETURN_IF_ERROR(SetOperandLayout(op0_shape, instruction, 0)); TF_RETURN_IF_ERROR(SetOperandLayout(op1_shape, instruction, 1)); TF_RETURN_IF_ERROR(SetInstructionLayout(output_shape, instruction)); } else if (instruction->opcode() == HloOpcode::kReduceScatter) { auto ars = Cast<HloReduceScatterInstruction>(instruction); TF_RETURN_IF_ERROR(SetInstructionLayout( ShapeUtil::MoveDimToMajor(ars->shape(), ars->scatter_dimension()), ars)); } else if (instruction->opcode() == HloOpcode::kAllGather) { auto ag = Cast<HloAllGatherInstruction>(instruction); TF_RETURN_IF_ERROR(SetInstructionLayout( ShapeUtil::MoveDimToMajor(ag->shape(), ag->all_gather_dimension()), ag)); } else if (instruction->opcode() == HloOpcode::kAllToAll && instruction->shape().IsArray()) { auto* all_to_all = Cast<HloAllToAllInstruction>(instruction); TF_RETURN_IF_ERROR(SetInstructionLayout( ShapeUtil::MoveDimToMajor(all_to_all->shape(), *all_to_all->split_dimension()), all_to_all)); } else if (instruction->opcode() == HloOpcode::kSend) { Shape s = instruction->operand(0)->shape(); LayoutUtil::SetToDefaultLayout(&s); TF_RETURN_IF_ERROR(SetInstructionLayout(s, instruction->operand(0))); TF_RETURN_IF_ERROR( SetArrayOperandLayout(s.layout(), instruction->operand(0), 0)); } else if (instruction->opcode() == HloOpcode::kRecv) { Shape s = instruction->shape(); ShapeUtil::ForEachMutableSubshape( &s, [&](Shape* subshape, const ShapeIndex& index) { LayoutUtil::SetToDefaultLayout(subshape); }); TF_RETURN_IF_ERROR(SetInstructionLayout(s, instruction)); } } return absl::OkStatus(); } absl::Status GpuLayoutAssignment::SetDotOperandLayout( const HloInstruction* instruction, int64_t operand, absl::Span<const int64_t> batch_dims, absl::Span<const int64_t> row_dims, absl::Span<const int64_t> col_dims) { Shape shape = instruction->operand(operand)->shape(); if (shape.has_layout() && MatrixLayout::For(shape, batch_dims, row_dims, col_dims).ok()) return SetOperandLayout(shape, instruction, operand); LayoutUtil::SetToDefaultLayout(&shape); if (MatrixLayout::For(shape, batch_dims, row_dims, col_dims).ok()) return SetOperandLayout(shape, instruction, operand); return SetOperandMajorToMinorLayout( instruction, operand, {batch_dims, row_dims, col_dims}); } absl::Status GpuLayoutAssignment::SetOperandMajorToMinorLayout( const HloInstruction* instruction, int64_t operand, std::initializer_list<absl::Span<const int64_t>> dim_groups) { size_t size = 0; for (auto group : dim_groups) size += group.size(); std::vector<int64_t> major_to_minor; major_to_minor.reserve(size); for (const auto& group : dim_groups) { major_to_minor.insert(major_to_minor.end(), group.begin(), group.end()); } Shape shape = instruction->operand(operand)->shape(); *shape.mutable_layout() = LayoutUtil::MakeLayoutFromMajorToMinor(major_to_minor); return SetOperandLayout(shape, instruction, operand); } absl::Status GpuLayoutAssignment::SetDotLayout( const HloInstruction* instruction, LayoutConstraints* constraints) { for (const HloInstruction* user : instruction->users()) { for (int64_t i = 0; i < user->operand_count(); ++i) { if (user->operand(i) != instruction) { continue; } const ShapeLayout* constraint = constraints->OperandLayout(user, i); if ((constraint != nullptr) && DotCanSupportShapeWithLayout(instruction, constraint->shape())) { return SetInstructionLayout(constraint->shape(), instruction); } } } return SetInstructionLayout( LayoutUtil::GetWithDefaultLayout(instruction->shape()), instruction); } bool GpuLayoutAssignment::PropagateReductionLayoutToOperand( const HloInstruction* user) { int64_t reduction_size = 1; for (int64_t reduction_dim : user->dimensions()) { reduction_size *= user->operand(0)->shape().dimensions(reduction_dim); } int64_t kept_dimension_size = ShapeUtil::ElementsIn(user->shape()); return IsUnnestedReductionFasterThanElemental( {true, {1, kept_dimension_size, reduction_size}}); } bool GpuLayoutAssignment::InstructionCanChangeLayoutInstance( const HloInstruction* instruction) { const HloCustomCallInstruction* custom_call = DynCast<HloCustomCallInstruction>(instruction); if (custom_call != nullptr && (custom_call->custom_call_target() == host_memory_offload_annotations::kMoveToHostCustomCallTarget || custom_call->custom_call_target() == host_memory_offload_annotations::kMoveToDeviceCustomCallTarget)) { return false; } return LayoutAssignment::InstructionCanChangeLayoutInstance(instruction); } } }
#include "xla/service/gpu/gpu_layout_assignment.h" #include <cstdint> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/service/computation_layout.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using ::tsl::testing::IsOkAndHolds; class LayoutAssignmentTest : public HloTestBase { public: se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } se::GpuComputeCapability GetGpuComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); } se::dnn::VersionInfo GetDnnVersion() { return GetDnnVersionInfoOrDefault(backend().default_stream_executor(), se::dnn::VersionInfo{8, 3, 0}); } }; TEST_F(LayoutAssignmentTest, Elementwise) { Shape ashape = ShapeUtil::MakeShape(F32, {42, 12}); Shape ashape_in_row_major(ashape); Shape ashape_in_col_major(ashape); *ashape_in_row_major.mutable_layout() = LayoutUtil::MakeLayout({1, 0}); *ashape_in_col_major.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); for (const Shape& lhs_shape_with_layout : {ashape_in_row_major, ashape_in_col_major}) { for (const Shape& rhs_shape_with_layout : {ashape_in_row_major, ashape_in_col_major}) { for (const Shape& result_shape_with_layout : {ashape_in_row_major, ashape_in_col_major}) { auto builder = HloComputation::Builder(TestName()); auto x = builder.AddInstruction( HloInstruction::CreateParameter(0, ashape, "x")); auto y = builder.AddInstruction( HloInstruction::CreateParameter(1, ashape, "y")); auto add = builder.AddInstruction( HloInstruction::CreateBinary(ashape, HloOpcode::kAdd, x, y)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build(add)); ComputationLayout computation_layout( computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(lhs_shape_with_layout); *computation_layout.mutable_parameter_layout(1) = ShapeLayout(rhs_shape_with_layout); *computation_layout.mutable_result_layout() = ShapeLayout(result_shape_with_layout); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); for (const HloInstruction* operand : add->operands()) { EXPECT_TRUE(LayoutUtil::Equal(add->shape().layout(), operand->shape().layout())); } } } } } TEST_F(LayoutAssignmentTest, DotLayoutUnchangedIfValid) { const char* hlo_text = R"( HloModule DotLayout ENTRY dot { p0 = f32[5,2,3]{1,2,0} parameter(0) p1 = f32[5,3,4]{1,2,0} parameter(1) ROOT dot.1330.10585 = f32[5,2,4]{2,1,0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Dot(m::Op().WithShape(F32, {5, 2, 3}, {1, 2, 0}), m::Op().WithShape(F32, {5, 3, 4}, {1, 2, 0})) .WithShape(F32, {5, 2, 4}, {2, 1, 0}))); } TEST_F(LayoutAssignmentTest, DotLayoutSetToDefaultIfDefaultValid) { const char* hlo_text = R"( HloModule DotLayout ENTRY dot { p0 = f32[5,3,2] parameter(0) p1 = f32[5,4,3]{0,1,2} parameter(1) ROOT dot.1330.10585 = f32[5,2,4] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Dot(m::Op().WithShape(F32, {5, 3, 2}, {2, 1, 0}), m::Op().WithShape(F32, {5, 4, 3}, {2, 1, 0})) .WithShape(F32, {5, 2, 4}, {2, 1, 0}))); } TEST_F(LayoutAssignmentTest, DotOperandLayoutSetToBatchRowsColsOtherwise) { const char* hlo_text = R"( HloModule DotLayout ENTRY dot { p0 = f32[2,3,5]{2,1,0} parameter(0) p1 = f32[3,4,5] parameter(1) ROOT dot.1330.10585 = f32[5,2,4] dot(p0, p1), lhs_batch_dims={2}, lhs_contracting_dims={1}, rhs_batch_dims={2}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Dot(m::Op().WithShape(F32, {2, 3, 5}, {0, 1, 2}), m::Op().WithShape(F32, {3, 4, 5}, {1, 0, 2})))); } TEST_F(LayoutAssignmentTest, DotOperandInconsistentDimLayouts) { const char* hlo_text = R"( HloModule DotLayout ENTRY dot { p0 = f32[5,6,2,3] parameter(0) p1 = f32[6,5,3,4] parameter(1) ROOT dot.1330.10585 = f32[5,6,2,4] dot(p0, p1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={1,0}, rhs_contracting_dims={2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Dot(m::Op().WithShape(F32, {5, 6, 2, 3}, {3, 2, 1, 0}), m::Op().WithShape(F32, {6, 5, 3, 4}, {3, 2, 0, 1})))); } TEST_F(LayoutAssignmentTest, TransposedDotLayout) { const char* hlo_text = R"( HloModule DotLayout ENTRY dot { p0 = f32[5,2,3] parameter(0) p1 = f32[5,3,4,6] parameter(1) dot = f32[5,2,4,6] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT out = f32[2,5,4,6] transpose(dot), dimensions={1,0,2,3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Transpose( m::Dot(m::Op().WithShape(F32, {5, 2, 3}, {2, 1, 0}), m::Op().WithShape(F32, {5, 3, 4, 6}, {3, 2, 1, 0})) .WithShape(F32, {5, 2, 4, 6}, {3, 2, 0, 1})) .WithShape(F32, {2, 5, 4, 6}, {3, 2, 1, 0}))); } TEST_F(LayoutAssignmentTest, TransposedDotOfDotLayout) { const char* hlo_text = R"( HloModule DotLayout ENTRY dot { p0 = f32[8,50] parameter(0) p1 = f32[2,8,4,4] parameter(1) p2 = f32[4,38] parameter(2) dot.1 = f32[50,2,4,4]{3,2,1,0} dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={1} dot.2 = f32[50,2,4,38]{3,2,1,0} dot(dot.1, p2), lhs_contracting_dims={2}, rhs_contracting_dims={0} ROOT out = f32[2,50,38,4]{2,3,0,1} transpose(dot.2), dimensions={1,0,3,2} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Transpose( m::Dot(m::Copy(m::Dot(m::Op().WithShape(F32, {8, 50}, {1, 0}), m::Op().WithShape(F32, {2, 8, 4, 4}, {3, 2, 0, 1})) .WithShape(F32, {50, 2, 4, 4}, {3, 2, 1, 0})) .WithShape(F32, {50, 2, 4, 4}, {3, 1, 0, 2}), m::Op().WithShape(F32, {4, 38}, {1, 0})) .WithShape(F32, {50, 2, 4, 38}, {3, 2, 1, 0})) .WithShape(F32, {2, 50, 38, 4}, {2, 3, 0, 1}))); } TEST_F(LayoutAssignmentTest, DotLayoutS8) { const char* hlo_text = R"( HloModule DotLayout ENTRY int8_t { p0 = s8[32,64] parameter(0) p1 = s8[64,96] parameter(1) ROOT out = s32[32,96] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Dot(m::Op().WithShape(S8, {32, 64}, {1, 0}), m::Op().WithShape(S8, {64, 96}, {0, 1})))); } TEST_F(LayoutAssignmentTest, SortLayout) { const char* hlo_text = R"( HloModule SortLayout compare { p.0.lhs = f32[] parameter(0) p.0.rhs = f32[] parameter(1) p.1.lhs = f32[] parameter(2) p.1.rhs = f32[] parameter(3) ROOT lt = pred[] compare(p.0.lhs, p.0.rhs), direction=LT } ENTRY sort { keys = f32[3,2]{0,1} constant({{0,1},{0,1},{0,1}}) values = f32[2,3]{1,0} parameter(0) transpose = f32[3,2]{1,0} transpose(values), dimensions={1,0} ROOT sort = (f32[3,2]{1,0}, f32[3,2]{1,0}) sort(keys, transpose), dimensions={1}, to_apply=compare })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Sort(m::Op().WithShape(F32, {3, 2}, {1, 0}), m::Op().WithShape(F32, {3, 2}, {1, 0})))); } TEST_F(LayoutAssignmentTest, FftLayout) { const char* hlo_text = R"( HloModule Fft_module ENTRY Fft { input = c64[8,32]{0,1} parameter(0) fft = c64[8,32] fft(input), fft_type=FFT, fft_length={32} ROOT transpose = c64[32,8] transpose(fft), dimensions={1,0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); ComputationLayout computation_layout( module->entry_computation()->ComputeProgramShape(), false); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Copy( m::Transpose(m::Fft(m::Op().WithShape(C64, {8, 32}, {1, 0})) .WithShape(C64, {8, 32}, {1, 0}))))); } TEST_F(LayoutAssignmentTest, CustomCallConstrainedAlias) { const char* module_str = R"( HloModule TestModule ENTRY entry { Arg_0 = f32[2,5,5]{2,1,0} parameter(0) Arg_1 = f32[2,5,5]{2,1,0} parameter(1) Arg_2 = f32[2,5,5]{2,1,0} parameter(2) dot.0 = f32[2,5,5]{2,1,0} dot(Arg_1, Arg_2), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={2}, operand_precision={highest,highest} custom-call.0 = (f32[2,5,5]{1,2,0}, s8[16]{0}, s8[16]{0}) custom-call(Arg_0, dot.0), custom_call_target="dummy_call", operand_layout_constraints={f32[2,5,5]{1,2,0}, f32[2,5,5]{1,2,0}}, output_to_operand_aliasing={{0}: (1, {})} ROOT get-tuple-element.0 = f32[2,5,5]{1,2,0} get-tuple-element(custom-call.0), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(module_str)); ComputationLayout computation_layout( m->entry_computation()->ComputeProgramShape()); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(m.get()), IsOkAndHolds(true)); const HloInstruction* call_0 = FindInstruction(m.get(), "custom-call.0"); auto expect_layout = [](const Shape& shape, absl::Span<const int64_t> minor_to_major) { const Layout expected = LayoutUtil::MakeLayout(minor_to_major); EXPECT_TRUE(LayoutUtil::Equal(shape.layout(), expected)) << "Expected layout " << expected << ", actual " << shape.layout(); }; expect_layout(ShapeUtil::GetSubshape(call_0->shape(), {0}), {1, 2, 0}); expect_layout(call_0->operand(0)->shape(), {1, 2, 0}); expect_layout(call_0->operand(1)->shape(), {1, 2, 0}); } TEST_F(LayoutAssignmentTest, MoveToHostCustomCallConstrained) { const char* module_str = R"( HloModule TestModule ENTRY entry { Arg_0 = f32[2,5,5]{2,1,0} parameter(0) custom-call.0 = f32[2,5,5] custom-call(Arg_0), custom_call_target="MoveToHost" ROOT custom-call.1 = f32[2,5,5]{2, 1, 0} custom-call(custom-call.0), custom_call_target="fixed_call", operand_layout_constraints={f32[2,5,5]{1,2,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(module_str)); ComputationLayout computation_layout( m->entry_computation()->ComputeProgramShape()); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(m.get()), IsOkAndHolds(true)); const HloInstruction* call_0 = FindInstruction(m.get(), "custom-call.0"); const Layout input_layout = call_0->operand(0)->shape().layout(); const Layout output_layout = call_0->shape().layout(); EXPECT_TRUE(LayoutUtil::Equal(input_layout, output_layout)) << "Expected the same input/output layouts. Input: " << input_layout << ". Output: " << output_layout; } TEST_F(LayoutAssignmentTest, MoveToDeviceCustomCallConstrained) { const char* module_str = R"( HloModule TestModule ENTRY entry { Arg_0 = f32[2,5,5]{2,1,0} parameter(0) custom-call.0 = f32[2,5,5] custom-call(Arg_0), custom_call_target="MoveToDevice" ROOT custom-call.1 = f32[2,5,5]{2, 1, 0} custom-call(custom-call.0), custom_call_target="fixed_call", operand_layout_constraints={f32[2,5,5]{1,2,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(module_str)); ComputationLayout computation_layout( m->entry_computation()->ComputeProgramShape()); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(m.get()), IsOkAndHolds(true)); const HloInstruction* call_0 = FindInstruction(m.get(), "custom-call.0"); const Layout input_layout = call_0->operand(0)->shape().layout(); const Layout output_layout = call_0->shape().layout(); EXPECT_TRUE(LayoutUtil::Equal(input_layout, output_layout)) << "Expected the same input/output layouts. Input: " << input_layout << ". Output: " << output_layout; } TEST_F(LayoutAssignmentTest, ConvCuDNNF8) { if (!GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "FP8 convolutions require HOPPER or newer archiecture."; } const char* hlo = R"( HloModule jit_conv_general_dilated ENTRY main.4 { Arg_0 = f8e4m3fn[1,64,64,16]{3,2,1,0} parameter(0) Arg_1 = f8e4m3fn[3,3,16,32]{3,2,1,0} parameter(1) ROOT conv = f8e4m3fn[1,64,64,32]{3,2,1,0} convolution(Arg_0, Arg_1), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f } )"; MatchOptimizedHlo(hlo, R"( )"); } TEST_F(LayoutAssignmentTest, ConvCuDNNBF16) { if (!GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::AMPERE)) { GTEST_SKIP() << "Conv with Bfloat16 uses NHWC layout for " "architectures with Tensor Cores."; } const char* hlo = R"( HloModule jit_conv_general_dilated ENTRY main.4 { Arg_0.1 = bf16[1,64,64,16]{3,2,1,0} parameter(0), sharding={replicated} Arg_1.2 = bf16[3,3,16,32]{3,2,1,0} parameter(1), sharding={replicated} ROOT convolution.3 = bf16[1,64,64,32]{3,2,1,0} convolution(Arg_0.1, Arg_1.2), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, metadata={op_name="jit(conv_general_dilated)/jit(main)/conv_general_dilated[window_strides=(1, 1) padding=((1, 1), (1, 1)) lhs_dilation=(1, 1) rhs_dilation=(1, 1) dimension_numbers=ConvDimensionNumbers(lhs_spec=(0, 3, 1, 2), rhs_spec=(3, 2, 0, 1), out_spec=(0, 3, 1, 2)) feature_group_count=1 batch_group_count=1 lhs_shape=(1, 64, 64, 16) rhs_shape=(3, 3, 16, 32) precision=None preferred_element_type=None]" source_file="/usr/local/lib/python3.8/dist-packages/flax/linen/linear.py" source_line=438} } )"; MatchOptimizedHlo(hlo, R"( )"); } TEST_F(LayoutAssignmentTest, ConvCuDNNFP16) { if (!GetCudaComputeCapability().IsAtLeast(se::CudaComputeCapability::VOLTA)) { GTEST_SKIP() << "Conv with FP16 uses NHWC layout for " "architectures with Tensor Cores."; } const char* hlo = R"( HloModule jit_conv_general_dilated ENTRY main.4 { Arg_0.1 = f16[1,64,64,16]{3,2,1,0} parameter(0), sharding={replicated} Arg_1.2 = f16[3,3,16,32]{3,2,1,0} parameter(1), sharding={replicated} ROOT convolution.3 = f16[1,64,64,32]{3,2,1,0} convolution(Arg_0.1, Arg_1.2), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f } )"; MatchOptimizedHlo(hlo, R"( )"); } TEST_F(LayoutAssignmentTest, ReduceOperandLayout) { const char* module_str = R"( scalar_add_computation { scalar_lhs = c64[] parameter(0) scalar_rhs = c64[] parameter(1) ROOT add.1 = c64[] add(scalar_lhs, scalar_rhs) } ENTRY main { param_0 = c64[512,64,1024,32,128]{4,3,2,1,0} parameter(0) negate = c64[512,64,1024,32,128]{4,3,2,1,0} negate(param_0) constant_7 = c64[] constant((0, 0)) ROOT reduce.2 = c64[512,1024,128]{2,1,0} reduce(negate, constant_7), dimensions={1,3}, to_apply=scalar_add_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(module_str)); ComputationLayout computation_layout( m->entry_computation()->ComputeProgramShape()); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(m.get()), IsOkAndHolds(true)); auto reduce = m->entry_computation()->root_instruction(); EXPECT_EQ(reduce->operand(0)->shape().layout().minor_to_major(), LayoutUtil::MakeLayout({3, 1, 4, 2, 0}).minor_to_major()); } TEST_F(LayoutAssignmentTest, ReduceOperandLayoutDivisorOfWarpSize) { const char* module_str = R"( scalar_add_computation { scalar_lhs = c64[] parameter(0) scalar_rhs = c64[] parameter(1) ROOT add.1 = c64[] add(scalar_lhs, scalar_rhs) } ENTRY main { param_0 = c64[512,16,1024,128]{3,2,1,0} parameter(0) negate = c64[512,16,1024,128]{3,2,1,0} negate(param_0) constant_7 = c64[] constant((0, 0)) ROOT reduce.2 = c64[512,1024,128]{2,1,0} reduce(negate, constant_7), dimensions={1}, to_apply=scalar_add_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(module_str)); ComputationLayout computation_layout( m->entry_computation()->ComputeProgramShape()); GpuLayoutAssignment layout_assignment( &computation_layout, GetGpuComputeCapability(), GetDnnVersion()); EXPECT_THAT(layout_assignment.Run(m.get()), IsOkAndHolds(true)); auto reduce = m->entry_computation()->root_instruction(); EXPECT_EQ(reduce->operand(0)->shape().layout().minor_to_major(), LayoutUtil::MakeLayout({1, 3, 2, 0}).minor_to_major()); } TEST_F(LayoutAssignmentTest, SendRcvLayout) { const char* hlo = R"( HloModule Module condition { p = (f32[100,100], (f32[100,100], u32[], token[])) parameter(0) ROOT lt = pred[] constant(1) } body { p = (f32[100,100], (f32[100,100], u32[], token[])) parameter(0) t1 = f32[100,100] get-tuple-element(p), index=0 t = (f32[100,100], u32[], token[]) get-tuple-element(p), index=1 sdone = token[] send-done(t), channel_id=3, frontend_attributes={ _xla_send_recv_pipeline="0" } tk = token[] after-all() rcvd = (f32[100,100]{0,1}, u32[], token[]) recv(tk), channel_id=2 zz = (f32[100,100]{0,1}, token[]) recv-done(rcvd), channel_id=2 rcvd_d = get-tuple-element(zz), index=0 snd = (f32[100,100]{0,1}, u32[], token[]) send(t1, tk), channel_id=3, frontend_attributes={ _xla_send_recv_pipeline="0" } a = add(t1, t1) b = add(rcvd_d, a) ROOT tup = tuple(b, snd) } ENTRY %main { p0 = f32[100,100] parameter(0) tk = token[] after-all() snd = (f32[100,100]{0,1}, u32[], token[]) send(p0, tk), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } t = tuple(p0, snd) ROOT loop = while(t), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> m, ParseAndReturnVerifiedModule(hlo)); ComputationLayout computation_layout( m->entry_computation()->ComputeProgramShape()); RunAndFilecheckHloRewrite( hlo, GpuLayoutAssignment{&computation_layout, GetGpuComputeCapability(), GetDnnVersion()}, R"( )"); } } } }
2,034
cpp
tensorflow/tensorflow
split_k_gemm_rewriter
third_party/xla/xla/service/gpu/split_k_gemm_rewriter.cc
third_party/xla/xla/service/gpu/split_k_gemm_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_SPLIT_K_GEMM_REWRITER_H_ #define XLA_SERVICE_GPU_SPLIT_K_GEMM_REWRITER_H_ #include <cstdint> #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/matmul_utils.h" namespace xla { namespace gpu { bool HasDivisibleSuffixAllowingSplit(absl::Span<int64_t const> span, int64_t divisor); absl::Status MakeDotSplitKBatch(HloInstruction* dot_fusion, const TritonGemmConfig& config); } } #endif #include "xla/service/gpu/split_k_gemm_rewriter.h" #include <cmath> #include <cstdint> #include <iterator> #include <stack> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout.h" #include "xla/literal_util.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/gpu/triton_support.h" #include "xla/service/gpu/triton_tiling_propagation.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { bool HasDivisibleSuffixAllowingSplit(const absl::Span<int64_t const> span, const int64_t divisor) { CHECK_GE(divisor, 1); int64_t product = 1; for (auto it = span.crbegin(); it != span.crend(); ++it) { product *= *it; if (product % divisor == 0) { return true; } if (divisor % product != 0) { return false; } } return false; } namespace { void CopyIncrementingAboveThreshold( const tsl::protobuf::RepeatedField<int64_t>& source, tsl::protobuf::RepeatedField<int64_t>& destination, const int threshold) { destination.Reserve(source.size()); for (int64_t x : source) { if (x >= threshold) { ++x; } destination.Add(x); } } void CopyIncrementingAboveThreshold(absl::Span<const int64_t> source, DimensionVector& destination, const int threshold) { destination.reserve(source.size()); for (int64_t x : source) { if (x >= threshold) { ++x; } destination.push_back(x); } } absl::Status UncompilableMatmul(absl::string_view explanation) { absl::Status s = absl::CancelledError(explanation); s.SetPayload(kUncompilableFusion, absl::Cord(explanation)); return s; } absl::StatusOr<HloInstruction*> MakeSparseMetaOperand( HloDotInstruction& dot, const TritonGemmConfig& config) { CHECK_EQ(dot.sparse_operands(), 1); CHECK_EQ(dot.sparsity().front().index(), 0); HloInstruction* meta = dot.mutable_operand(2); const Shape& shape = meta->shape(); if (shape.dimensions().back() % config.split_k != 0) { return UncompilableMatmul("Sparsity metadata has incorrect shape."); } std::vector<int64_t> dimensions(shape.dimensions().begin(), shape.dimensions().end() - 1); dimensions.push_back(config.split_k); dimensions.push_back(shape.dimensions().back() / config.split_k); Shape new_shape = ShapeUtil::MakeShapeWithDescendingLayout( shape.element_type(), dimensions); return MakeBitcastHlo(meta, new_shape); } } absl::StatusOr<HloInstruction*> MakeSplitKOperand( HloInstruction& dot, const TritonFusionAnalysis& analysis, const TritonGemmConfig& config, const int64_t contracting_dim_idx, const int operand_number) { HloInstruction* operand = dot.mutable_operand(operand_number); const int64_t k = operand->shape().dimensions(contracting_dim_idx); const bool need_padding = k % config.split_k != 0; TritonFusionAnalysis::Scope scope = (operand_number == 0) ? TritonFusionAnalysis::Scope::LHS : TritonFusionAnalysis::Scope::RHS; auto check_if_supported = [&](const HloInstruction& hlo, bool check_divisibility) { const TensorIterationSpec::DimIterationSpec* spec = analysis.IterSpec(scope, &hlo, contracting_dim_idx); if (spec == nullptr) { return absl::OkStatus(); } if (spec->size() != 1) { return UncompilableMatmul("Unsupported case."); } const TensorIterationSpec::IterationSpecFragment& fragment = spec->at(0); if (fragment.is_sliced()) { return UncompilableMatmul( "Sliced contracting dimension is not supported yet."); } if (check_divisibility && !HasDivisibleSuffixAllowingSplit( fragment.subfragments, config.split_k)) { return UncompilableMatmul("Contracting dimension is too fragmented."); } if (config.split_k > ceil(1.0 * fragment.count / config.block_k)) { return UncompilableMatmul( "Too small divisible part of the contracting dimension."); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR( check_if_supported(*operand, !need_padding)); for (const HloInstruction* param : analysis.ScopeParameters(scope)) { TF_RETURN_IF_ERROR( check_if_supported(*param, !need_padding)); } if (need_padding) { HloInstruction* const zero = dot.parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(operand->shape().element_type()))); PaddingConfig padding_config = MakeNoPaddingConfig(operand->shape().rank()); padding_config.mutable_dimensions(contracting_dim_idx) ->set_edge_padding_high(config.split_k - k % config.split_k); TF_ASSIGN_OR_RETURN(HloInstruction * pad, MakePadHlo(operand, zero, padding_config)); *pad->mutable_shape()->mutable_layout() = operand->shape().layout(); operand = pad; } CHECK_GE(operand->shape().dimensions(contracting_dim_idx), config.split_k); const Shape& shape = operand->shape(); Shape new_shape(shape.element_type(), {}, {}, {}); for (int i = 0; i < shape.rank(); ++i) { const int64_t dimension_size = shape.dimensions(i); if (i == contracting_dim_idx) { new_shape.add_dimensions(config.split_k); new_shape.add_dimensions(dimension_size / config.split_k); } else { new_shape.add_dimensions(dimension_size); } } Layout* new_layout = new_shape.mutable_layout(); for (int64_t logical_dim_idx : shape.layout().minor_to_major()) { if (logical_dim_idx >= contracting_dim_idx) { new_layout->add_minor_to_major(logical_dim_idx + 1); } if (logical_dim_idx <= contracting_dim_idx) { new_layout->add_minor_to_major(logical_dim_idx); } } return MakeBitcastHlo(operand, new_shape); } absl::Status MakeDotComputationSplitKBatch( HloComputation* computation, const TritonGemmConfig& config, bool disable_reduced_precision_reduction) { HloDotInstruction* dot = Cast<HloDotInstruction>( hlo_query::GetFirstInstructionWithOpcode(*computation, HloOpcode::kDot)); TF_ASSIGN_OR_RETURN(const auto analysis, TritonFusionAnalysis::Execute(*computation)); const DotDimensionNumbers& old_dim_numbers = dot->dot_dimension_numbers(); DotDimensionNumbers new_dim_numbers; TF_ASSIGN_OR_RETURN(const int64_t lhs_contracting_idx, ContractingDimensionIndex(*dot, 0)); CopyIncrementingAboveThreshold( old_dim_numbers.lhs_contracting_dimensions(), *new_dim_numbers.mutable_lhs_contracting_dimensions(), lhs_contracting_idx); new_dim_numbers.mutable_lhs_batch_dimensions()->Add(lhs_contracting_idx); CopyIncrementingAboveThreshold( old_dim_numbers.lhs_batch_dimensions(), *new_dim_numbers.mutable_lhs_batch_dimensions(), lhs_contracting_idx); TF_ASSIGN_OR_RETURN(const int64_t rhs_contracting_idx, ContractingDimensionIndex(*dot, 1)); CopyIncrementingAboveThreshold( old_dim_numbers.rhs_contracting_dimensions(), *new_dim_numbers.mutable_rhs_contracting_dimensions(), rhs_contracting_idx); new_dim_numbers.mutable_rhs_batch_dimensions()->Add(rhs_contracting_idx); CopyIncrementingAboveThreshold( old_dim_numbers.rhs_batch_dimensions(), *new_dim_numbers.mutable_rhs_batch_dimensions(), rhs_contracting_idx); if (dot->sparse_operands()) { if (dot->sparsity().size() != 1 || dot->sparsity().front().index() != 0) { return UncompilableMatmul("Sparsity is only supported on left operand."); } } std::stack<HloInstruction*> to_process; absl::flat_hash_set<HloInstruction*> to_process_set; HloInstruction* current = dot; do { to_process.push(current); CHECK(to_process_set.insert(current).second); if (current->users().empty()) { break; } CHECK_EQ(current->user_count(), 1); current = current->users()[0]; if (!legacy_triton::IsDistributiveOverAddition(*current)) { return Cancelled("Operation non-distributive over addition after dot."); } } while (true); bool did_pad = false; while (!to_process.empty()) { HloInstruction* current = to_process.top(); to_process.pop(); HloInstruction* expanded; if (current == dot) { TF_ASSIGN_OR_RETURN( HloInstruction * lhs, MakeSplitKOperand(*dot, analysis, config, lhs_contracting_idx, 0)); TF_ASSIGN_OR_RETURN( HloInstruction * rhs, MakeSplitKOperand(*dot, analysis, config, rhs_contracting_idx, 1)); if (lhs->operand(0)->opcode() == HloOpcode::kPad) { CHECK_EQ(rhs->operand(0)->opcode(), HloOpcode::kPad); did_pad = true; } std::vector<SparsityDescriptor> sparsity(dot->sparsity().begin(), dot->sparsity().end()); std::vector<HloInstruction*> sparse_meta(sparsity.size()); for (int i = 0; i < sparsity.size(); ++i) { sparsity[i].set_dimension(sparsity[i].dimension() + 1); TF_ASSIGN_OR_RETURN(sparse_meta[i], MakeSparseMetaOperand(*dot, config)); } expanded = MakeDotHlo(lhs, rhs, new_dim_numbers, dot->precision_config(), dot->shape().element_type(), sparsity, sparse_meta) .value(); expanded->mutable_shape()->mutable_layout()->clear_minor_to_major(); CopyIncrementingAboveThreshold(dot->shape().layout().minor_to_major(), *expanded->mutable_shape() ->mutable_layout() ->mutable_minor_to_major(), 0); expanded->mutable_shape()->mutable_layout()->add_minor_to_major(0); dot->SetupDerivedInstruction(expanded); } else { expanded = computation->AddInstruction(current->CloneWithNewShape( ShapeUtil::PrependMajorDimension(config.split_k, current->shape()))); if (expanded->opcode() == HloOpcode::kTranspose) { const auto* old_transpose = Cast<HloTransposeInstruction>(current); auto* new_transpose = Cast<HloTransposeInstruction>(expanded); new_transpose->mutable_dimensions()->clear(); new_transpose->mutable_dimensions()->reserve( new_transpose->shape().rank()); new_transpose->mutable_dimensions()->push_back(0); for (const int64_t dim : old_transpose->dimensions()) { new_transpose->mutable_dimensions()->push_back(dim + 1); } } } TF_RETURN_IF_ERROR(current->ReplaceAllUsesWithDifferentShape(expanded)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(current)); if (current == dot) { continue; } for (int i = 0; i < expanded->operands().size(); ++i) { HloInstruction* operand = expanded->mutable_operand(i); if (!to_process_set.contains(operand)) { std::vector<int64_t> broadcast_dimensions(operand->shape().rank()); absl::c_iota(broadcast_dimensions, 1); TF_RETURN_IF_ERROR(expanded->ReplaceOperandWithDifferentShape( i, MakeBroadcastHlo(operand, broadcast_dimensions, ShapeUtil::PrependMajorDimension( config.split_k, operand->shape())))); } } } if (disable_reduced_precision_reduction) { PrimitiveType output_type = computation->root_instruction()->shape().element_type(); PrimitiveType accumulator_type = output_type == PrimitiveType::F64 ? PrimitiveType::F64 : PrimitiveType::F32; computation->root_instruction()->mutable_shape()->set_element_type( accumulator_type); } if (did_pad) { TF_RETURN_IF_ERROR( TritonFusionAnalysis::Execute(*computation, config.split_k).status()); } return absl::OkStatus(); } absl::Status MakeDotSplitKBatch(HloInstruction* dot_fusion, const TritonGemmConfig& config) { CHECK_EQ(dot_fusion->opcode(), HloOpcode::kFusion); if (dot_fusion->shape().IsTuple()) { return Unimplemented("Tuple output is not supported with split-K yet."); } const bool disable_reduced_precision_reduction = dot_fusion->GetModule() ->config() .debug_options() .xla_gpu_triton_gemm_disable_reduced_precision_reduction(); const PrimitiveType output_type = dot_fusion->shape().element_type(); const Layout output_layout = dot_fusion->shape().layout(); TF_RETURN_IF_ERROR(MakeDotComputationSplitKBatch( dot_fusion->fused_instructions_computation(), config, disable_reduced_precision_reduction)); const HloInstruction* root = dot_fusion->fused_expression_root(); *dot_fusion->mutable_shape() = root->shape(); HloInstruction* zero = dot_fusion->parent()->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(root->shape().element_type()))); TF_ASSIGN_OR_RETURN(HloInstruction * reduce, MakeReduceHlo(dot_fusion, zero, {0}, HloOpcode::kAdd, &dot_fusion->metadata())); *reduce->mutable_shape()->mutable_layout() = output_layout; if (dot_fusion->IsRoot()) { dot_fusion->parent()->set_root_instruction(reduce, true); } else { TF_RETURN_IF_ERROR(dot_fusion->ReplaceAllUsesWithDifferentShape(reduce)); } if (disable_reduced_precision_reduction) { HloInstruction* convert = MakeConvertToHlo(reduce, output_type); if (reduce->IsRoot()) { reduce->parent()->set_root_instruction(convert, true); } else { TF_RETURN_IF_ERROR(reduce->ReplaceAllUsesWithDifferentShape(convert)); } } return absl::OkStatus(); } } }
#include "xla/service/gpu/split_k_gemm_rewriter.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/hlo_verifier.h" #include "xla/service/layout_assignment.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::FieldsAre; namespace m = ::xla::match; TEST(HasDivisibleSuffixAllowingSplitTest, AllTests) { EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({1}, 1)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({2}, 2)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({2, 2}, 2)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({3, 2}, 6)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({2, 3, 2}, 6)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({15, 2}, 6)); EXPECT_TRUE(HasDivisibleSuffixAllowingSplit({3, 15, 2}, 6)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({}, 1)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({1}, 2)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({3}, 2)); EXPECT_FALSE(HasDivisibleSuffixAllowingSplit({2, 3}, 2)); } using SplitKTest = HloTestBase; TEST_F(SplitKTest, MakeSplitK) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,128,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,128]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,128]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,128]{1,0} reshape(copy.1) convert.8 = bf16[480,128]{1,0} convert(reshape.5) parameter_1 = bf16[16,128]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,128,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm", metadata={op_name="foo"} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduce); EXPECT_EQ(root->metadata().op_name(), "foo"); } TEST_F(SplitKTest, MakeSplitKWithOutputFusion) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) d = f16[480,16]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} c = bf16[] constant(123) n = bf16[] negate(c) bc = bf16[480,16]{1,0} broadcast(n) cv = bf16[480,16]{1,0} convert(d) ROOT a = bf16[480,16]{1,0} multiply(bc, cv) } ENTRY e { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); } TEST_F(SplitKTest, PreventSplitKWithNonDistributiveOperations) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) d = f16[480,16]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} c = f32[480,16]{1,0} convert(d) ROOT s = f32[480,16]{1,0} tanh(c) } ENTRY e { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) ROOT fusion = f32[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); EXPECT_THAT(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs( tsl::error::CANCELLED, absl::StrFormat( "Operation non-distributive over addition after dot."))); } TEST_F(SplitKTest, MakeSplitKWithNonDivisibleDimensionSize) { constexpr absl::string_view kHloText = R"( t { c1 = s32[] constant(1) bc1 = s32[31]{0} broadcast(c1), dimensions={} p0 = s32[31]{0} parameter(0) cmp = pred[31]{0} compare(bc1, p0), direction=EQ cvt = f32[31]{0} convert(cmp) bc2 = f32[17,31]{1,0} broadcast(cvt), dimensions={1} c0 = f32[] constant(0) bc0 = f32[17,16]{1,0} broadcast(c0), dimensions={} ROOT dot = f32[31,16]{1,0} dot(bc2, bc0), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { p0 = s32[31]{0} parameter(0) ROOT r = f32[31,16]{1,0} fusion(p0), kind=kCustom, calls=t, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 2, 1, 2); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, AvoidSplitKWithSlicedContractingDimension) { const std::string hlo_text = R"( t { p0 = f16[32,1234] parameter(0) s0 = f16[32,256] slice(p0), slice={[0:32], [41:297]} p1 = f16[256,768] parameter(1) ROOT d = f16[32,768] dot(s0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[32,1234] parameter(0) p1 = f16[256,768] parameter(1) ROOT r = f16[32,768] fusion(p0, p1), kind=kCustom, calls=t, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 2, 1, 2); EXPECT_THAT(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs( tsl::error::CANCELLED, absl::StrFormat( "Sliced contracting dimension is not supported yet."))); } TEST_F(SplitKTest, MakeSplitKWithNonStandardOutputLayout) { const std::string kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,128,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,128]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,128]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,128]{1,0} reshape(copy.1) convert.8 = bf16[480,128]{1,0} convert(reshape.5) parameter_1 = bf16[16,128]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{0,1} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,128,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{0,1} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); EXPECT_EQ(module->entry_computation()->root_instruction()->shape().layout(), Layout({0, 1})); } TEST_F(SplitKTest, MakeSplitKWithExistingBatchDim) { const std::string hlo_text = R"( HloModule m triton_gemm_dot.24 { parameter_1 = bf16[1,1,800,5,128]{4,3,2,1,0} parameter(1) bitcast.3 = bf16[800,5,128]{2,1,0} bitcast(parameter_1) convert.3 = f32[800,5,128]{2,1,0} convert(bitcast.3) parameter_0 = f32[1,5,700,800]{3,2,1,0} parameter(0) bitcast.2 = f32[5,700,800]{2,1,0} bitcast(parameter_0) ROOT dot.26 = f32[5,128,700]{2,1,0} dot(convert.3, bitcast.2), lhs_batch_dims={1}, lhs_contracting_dims={0}, rhs_batch_dims={0}, rhs_contracting_dims={2} } ENTRY e { tmp_3 = f32[1,5,700,800]{3,2,1,0} parameter(0) tmp_0 = bf16[1,1,800,5,128]{4,3,2,1,0} parameter(1) ROOT triton_gemm_dot.24 = f32[5,128,700]{2,1,0} fusion(tmp_3, tmp_0), kind=kCustom, calls=triton_gemm_dot.24, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(32, 64, 64, 8, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); } TEST_F(SplitKTest, SupportsIndivisible) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,129,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,129]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,129]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,129]{1,0} reshape(copy.1) convert.8 = bf16[480,129]{1,0} convert(reshape.5) parameter_1 = bf16[16,129]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,129,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,129]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleSimpleSplitK4) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,129]{1,0} parameter(0) convert_0 = bf16[480,129]{1,0} convert(parameter_0) parameter_1 = bf16[16,129]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,129]{1,0} parameter(0) p1 = bf16[16,129]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleWithCustomLayout) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,129]{0,1} parameter(0) convert_0 = bf16[480,129]{0,1} convert(parameter_0) parameter_1 = bf16[16,129]{0,1} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,129]{0,1} parameter(0) p1 = bf16[16,129]{0,1} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); constexpr TritonGemmConfig kConfig(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), kConfig)); TF_EXPECT_OK(HloVerifier(true, true, LayoutAssignment::InstructionCanChangeLayout) .Run(module.get()) .status()); } TEST_F(SplitKTest, SupportsIndivisibleSimpleSplitK16) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,255]{1,0} parameter(0) convert_0 = bf16[480,255]{1,0} convert(parameter_0) parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,255]{1,0} parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleWithTranspose) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[480,255]{1,0} parameter(0) convert_0 = bf16[480,255]{1,0} convert(parameter_0) transpose_0 = bf16[255,480]{1,0} transpose(convert_0), dimensions={1,0} parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(transpose_0, parameter_1), lhs_contracting_dims={0}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[480,255]{1,0} parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportIndivisibleWithBroadcast) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[] parameter(0) convert_0 = bf16[] convert(parameter_0) broadcast_0 = bf16[480,255]{1,0} broadcast(convert_0) parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(broadcast_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[] parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SupportsIndivisibleWithBitcast) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,5,480,17]{3,0,1,2} parameter(0) convert_0 = bf16[3,5,480,17]{3,0,1,2} convert(parameter_0) bitcast_0 = bf16[480,255]{1,0} bitcast(convert_0) parameter_1 = bf16[16,255]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(bitcast_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,5,480,17]{3,0,1,2} parameter(0) p1 = bf16[16,255]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 16, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); } TEST_F(SplitKTest, SkipSmallK) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,64,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,64]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,64]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,64]{1,0} reshape(copy.1) convert.8 = bf16[480,64]{1,0} convert(reshape.5) parameter_1 = bf16[16,64]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,64,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,64]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 128, 4, 1, 4); EXPECT_THAT(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs( tsl::error::CANCELLED, "Too small divisible part of the contracting dimension.")); } TEST_F(SplitKTest, FragmentedKSupported) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[7,2,16,4,20] parameter(0) t0 = f16[2,16,4,20,7] transpose(p0), dimensions={1,2,3,4,0} b0 = f16[2560,7] bitcast(t0) a1 = f16[2560,5] parameter(1) ROOT r = f16[7,5] dot(b0, a1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[7,2,16,4,20] parameter(0) p1 = f16[2560,5] parameter(1) ROOT fusion = f16[7,5] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(32, 32, 16, 1, 1, 4); config.split_k = 5; EXPECT_THAT( MakeDotSplitKBatch(module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs(tsl::error::CANCELLED, "Contracting dimension is too fragmented.")); config.split_k = 8; TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduce); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); TF_ASSERT_OK_AND_ASSIGN( const auto analysis, TritonFusionAnalysis::Execute(*dot_computation, config.split_k)); EXPECT_EQ(dot_computation->root_instruction()->shape(), ShapeUtil::MakeShapeWithDescendingLayout(F16, {8, 7, 5})); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 2560, 0, 2560, ElementsAre(20, 4, 4, 4, 2)))); } TEST_F(SplitKTest, FragmentedKUnsupported) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f32[3,128,77] parameter(0) b0 = f32[384,77] bitcast(p0) a1 = f32[384,25] parameter(1) ROOT r = f32[77,25] dot(b0, a1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[3,128,77] parameter(0) p1 = f32[384,25] parameter(1) ROOT fusion = f32[77,25] fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); EXPECT_THAT( MakeDotSplitKBatch(module->entry_computation()->root_instruction(), config), tsl::testing::StatusIs(tsl::error::CANCELLED, "Contracting dimension is too fragmented.")); } TEST_F(SplitKTest, MakeSplitKWithNonDefaultOutputLayout) { const std::string kHloText = R"( triton_gemm_dot.4842_computation { parameter_0 = bf16[96,96]{1,0} parameter(0) parameter_1 = bf16[96,7]{1,0} parameter(1) dot.0 = bf16[96,7]{0,1} dot(parameter_0, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT bitcast.2 = bf16[7,3,32]{2,1,0} bitcast(dot.0) } ENTRY e { parameter_0.91 = bf16[96,96]{1,0} parameter(0) parameter_1.86 = bf16[96,7]{1,0} parameter(1) ROOT triton_gemm_dot.4842 = bf16[7,3,32]{2,1,0} fusion(parameter_0.91, parameter_1.86), kind=kCustom, calls=triton_gemm_dot.4842_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 2, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kReduce); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); } TEST_F(SplitKTest, SparseDotWithLhsSparseOperandIsRewritten) { const std::string hlo_text = R"( HloModule test triton_gemm { lhs = f16[2,5,1600] parameter(0) rhs = f16[2,3200,10] parameter(1) meta = u16[2,5,200] parameter(2) ROOT dot = f32[2,5,10] dot(lhs, rhs, meta), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1}, sparsity=L.2@2:4 } ENTRY e { lhs = f16[2,5,1600] parameter(0) rhs = f16[2,3200,10] parameter(1) meta = u16[2,5,200] parameter(2) ROOT fusion = f32[2,5,10] fusion(lhs, rhs, meta), kind=kCustom, calls=triton_gemm, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 1); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->opcode(), HloOpcode::kReduce); HloInstruction* dot = module->GetComputationWithName("triton_gemm")->root_instruction(); EXPECT_EQ(dot->operand(0)->shape(), ShapeUtil::MakeShapeWithDescendingLayout(F16, {2, 5, 4, 400})); EXPECT_EQ(dot->operand(1)->shape(), ShapeUtil::MakeShapeWithDescendingLayout(F16, {2, 4, 800, 10})); EXPECT_EQ(dot->operand(2)->shape(), ShapeUtil::MakeShapeWithDescendingLayout(U16, {2, 5, 4, 50})); } TEST_F(SplitKTest, SparseDotWithRhsSparseOperandTriggersError) { const std::string hlo_text = R"( HloModule test triton_gemm { lhs = f16[2,5,3200] parameter(0) rhs = f16[2,1600,10] parameter(1) meta = u16[2,200,10] parameter(2) ROOT dot = f32[2,5,10] dot(lhs, rhs, meta), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1}, sparsity=R.1@2:4 } ENTRY e { lhs = f16[2,5,3200] parameter(0) rhs = f16[2,1600,10] parameter(1) meta = u16[2,200,10] parameter(2) ROOT fusion = f32[2,5,10] fusion(lhs, rhs, meta), kind=kCustom, calls=triton_gemm, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 1); auto result = MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config); EXPECT_FALSE(result.ok()); } class SplitKTestWithMorePreciseReduction : public HloTestBase, public ::testing::WithParamInterface<int> { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_gemm_disable_reduced_precision_reduction( true); return debug_options; } }; TEST_F(SplitKTestWithMorePreciseReduction, MakeSplitK) { constexpr absl::string_view kHloText = R"( HloModule t triton_gemm_dot { parameter_0 = s8[3,128,5,32]{3,2,1,0} parameter(0) bitcast.1 = s8[3,5,32,128]{2,1,3,0} bitcast(parameter_0) copy.1 = s8[3,5,32,128]{3,2,1,0} copy(bitcast.1) reshape.5 = s8[480,128]{1,0} reshape(copy.1) convert.8 = bf16[480,128]{1,0} convert(reshape.5) parameter_1 = bf16[16,128]{1,0} parameter(1) ROOT dot.0 = bf16[480,16]{1,0} dot(convert.8, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = s8[3,128,5,32]{3,2,1,0} parameter(0) p1 = bf16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Convert(m::Reduce(m::Fusion(), m::Constant())))); } TEST_F(SplitKTestWithMorePreciseReduction, MakeSplitKWithOutputFusion) { const std::string hlo_text = R"( HloModule t triton_gemm_dot { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) d = f16[480,16]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} c = bf16[] constant(123) n = bf16[] negate(c) bc = bf16[480,16]{1,0} broadcast(n) cv = bf16[480,16]{1,0} convert(d) ROOT a = bf16[480,16]{1,0} multiply(bc, cv) } ENTRY e { p0 = f16[480,128]{1,0} parameter(0) p1 = f16[16,128]{1,0} parameter(1) ROOT fusion = bf16[480,16]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot, backend_config="__triton_gemm" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 16, 16, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Convert(m::Reduce(m::Fusion(), m::Constant())))); } TEST_F(SplitKTest, MakeSplitKWithTransposeAfterDot) { const std::string hlo_text = R"( triton_gemm_dot { p0 = f16[8,288,288]{2,1,0} parameter(0) p1 = f16[8,288,32]{2,0,1} parameter(1) d = f16[8,288,32]{2,1,0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT t = f16[288,8,32]{2,1,0} transpose(d), dimensions={1,0,2} } ENTRY e { p0 = f16[8,288,288]{2,1,0} parameter(0) p1 = f16[8,288,32]{2,0,1} parameter(1) ROOT fusion = f16[288,8,32]{2,1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 128, 32, 8, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); const auto* transpose = Cast<HloTransposeInstruction>(module->entry_computation() ->root_instruction() ->operand(0) ->fused_instructions_computation() ->root_instruction()); EXPECT_THAT(transpose->dimensions(), ElementsAre(0, 2, 1, 3)); } TEST_F(SplitKTest, MakeSplitKWithTrivialDimension) { const std::string hlo_text = R"( triton_gemm_dot { parameter_0 = f32[1001,1]{1,0} parameter(0) parameter_1 = f32[1001,2048]{1,0} parameter(1) ROOT dot = f32[1,2048]{1,0} dot(parameter_0, parameter_1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY %entry_computation { p0 = f32[1001,1]{1,0} parameter(0) p1 = f32[1001,2048]{1,0} parameter(1) ROOT fusion = f32[1,2048]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_dot })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); TritonGemmConfig config(16, 128, 64, 4, 1, 4); TF_EXPECT_OK(MakeDotSplitKBatch( module->entry_computation()->root_instruction(), config)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reduce(m::Fusion(), m::Constant()))); } } } }
2,035
cpp
tensorflow/tensorflow
gpu_algebraic_simplifier
null
null
#ifndef XLA_SERVICE_GPU_GPU_ALGEBRAIC_SIMPLIFIER_H_ #define XLA_SERVICE_GPU_GPU_ALGEBRAIC_SIMPLIFIER_H_ #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" namespace xla::gpu { class GpuAlgebraicSimplifierVisitor : public AlgebraicSimplifierVisitor { public: explicit GpuAlgebraicSimplifierVisitor( const AlgebraicSimplifierOptions& options, se::GpuComputeCapability compute_capability, AlgebraicSimplifier* simplifier) : AlgebraicSimplifierVisitor(options, simplifier), compute_capability_(std::move(compute_capability)) {} bool ShouldStrengthReduceDotToReduce(const HloInstruction* hlo) override; private: se::GpuComputeCapability compute_capability_; }; class GpuAlgebraicSimplifier : public AlgebraicSimplifier { public: explicit GpuAlgebraicSimplifier(const AlgebraicSimplifierOptions& options, se::GpuComputeCapability compute_capability) : AlgebraicSimplifier(options), compute_capability_(std::move(compute_capability)) {} using HloPassInterface::Run; absl::StatusOr<bool> Run(HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override { XLA_VLOG_LINES( 2, "GpuAlgebraicSimplifier::Run(), before:\n" + module->ToString()); bool changed = false; GpuAlgebraicSimplifierVisitor visitor(options_, compute_capability_, this); for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { if (visitor.Run(comp, options_, this)) { changed = true; } } XLA_VLOG_LINES( 2, "GpuAlgebraicSimplifier::Run(), after:\n" + module->ToString()); return changed; } private: se::GpuComputeCapability compute_capability_; }; } #endif #include "xla/service/gpu/gpu_algebraic_simplifier.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_support.h" #include "xla/xla_data.pb.h" namespace xla::gpu { bool GpuAlgebraicSimplifierVisitor::ShouldStrengthReduceDotToReduce( const HloInstruction* hlo) { if (!options_.enable_dot_strength_reduction()) { return false; } const HloDotInstruction* dot = DynCast<HloDotInstruction>(hlo); if (dot == nullptr) { return false; } const HloInstruction* lhs = dot->operand(0); const HloInstruction* rhs = dot->operand(1); DotDimensionNumbers dnums = dot->dot_dimension_numbers(); bool lhs_is_vector = (dnums.lhs_batch_dimensions_size() + dnums.lhs_contracting_dimensions_size() == lhs->shape().rank()); bool rhs_is_vector = (dnums.rhs_batch_dimensions_size() + dnums.rhs_contracting_dimensions_size() == rhs->shape().rank()); if (lhs_is_vector && rhs_is_vector) { return true; } absl::StatusOr<bool> is_too_small = IsMatrixMultiplicationTooSmallForRewriting(*hlo, 1000000); CHECK_OK(is_too_small.status()); if (is_too_small.value()) { return true; } return !legacy_triton::CanTritonHandleGEMM(*dot, compute_capability_); } }
#include "xla/service/gpu/gpu_algebraic_simplifier.h" #include <string> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/algebraic_simplifier.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class GpuAlgebraicSimplifierTest : public HloTestBase {}; TEST_F(GpuAlgebraicSimplifierTest, VectorVectorDotShouldBeStrengthReduced) { const std::string& hlo_string = R"( HloModule m ENTRY entry { p0 = f32[32, 500] parameter(0) p1 = f32[32, 500] parameter(1) ROOT dot = f32[32] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* dot = module->entry_computation()->root_instruction(); AlgebraicSimplifierOptions options; options.set_enable_dot_strength_reduction(true); se::CudaComputeCapability ampere(8, 0); GpuAlgebraicSimplifier simplifier(options, ampere); GpuAlgebraicSimplifierVisitor visitor(options, ampere, &simplifier); EXPECT_TRUE(visitor.ShouldStrengthReduceDotToReduce(dot)); } TEST_F(GpuAlgebraicSimplifierTest, MatrixVectorDotShouldNotBeStrengthReduced) { const std::string& hlo_string = R"( HloModule m ENTRY entry { p0 = f32[32, 5000, 7000] parameter(0) p1 = f32[32, 5000] parameter(1) ROOT dot = f32[32,7000] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1}, algorithm=dot_bf16_bf16_f32_x6 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* dot = module->entry_computation()->root_instruction(); AlgebraicSimplifierOptions options; options.set_enable_dot_strength_reduction(true); se::CudaComputeCapability ampere(8, 0); GpuAlgebraicSimplifier simplifier(options, ampere); GpuAlgebraicSimplifierVisitor visitor(options, ampere, &simplifier); EXPECT_FALSE(visitor.ShouldStrengthReduceDotToReduce(dot)); } TEST_F(GpuAlgebraicSimplifierTest, DotWithTypeUnsupportedByGemmFusionShouldBeStrengthReduced) { const std::string& hlo_string = R"( HloModule m ENTRY entry { p0 = c64[32, 5000, 7000] parameter(0) p1 = c64[32, 5000] parameter(1) ROOT dot = c64[32,7000] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* dot = module->entry_computation()->root_instruction(); AlgebraicSimplifierOptions options; options.set_enable_dot_strength_reduction(true); se::CudaComputeCapability ampere(8, 0); GpuAlgebraicSimplifier simplifier(options, ampere); GpuAlgebraicSimplifierVisitor visitor(options, ampere, &simplifier); EXPECT_TRUE(visitor.ShouldStrengthReduceDotToReduce(dot)); } TEST_F(GpuAlgebraicSimplifierTest, SmallDotShouldBeStrengthReduced) { const std::string& hlo_string = R"( HloModule m ENTRY entry { p0 = f32[32, 50, 70] parameter(0) p1 = f32[32, 50] parameter(1) ROOT dot = f32[32,70] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1}, algorithm=dot_bf16_bf16_f32_x6 })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* dot = module->entry_computation()->root_instruction(); AlgebraicSimplifierOptions options; options.set_enable_dot_strength_reduction(true); se::CudaComputeCapability ampere(8, 0); GpuAlgebraicSimplifier simplifier(options, ampere); GpuAlgebraicSimplifierVisitor visitor(options, ampere, &simplifier); EXPECT_TRUE(visitor.ShouldStrengthReduceDotToReduce(dot)); } } }
2,036
cpp
tensorflow/tensorflow
gpu_reduce_scatter_creator
null
null
#ifndef XLA_SERVICE_GPU_GPU_REDUCE_SCATTER_CREATOR_H_ #define XLA_SERVICE_GPU_GPU_REDUCE_SCATTER_CREATOR_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class ReduceScatterCreator : public HloModulePass { public: ReduceScatterCreator() = default; absl::string_view name() const override { return "reduce-scatter-creator"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/gpu_reduce_scatter_creator.h" #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_opt_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { absl::StatusOr<bool> ReduceScatterCreator::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { const HloModuleConfig &config = module->config(); int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (HloComputation *computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction *instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() != HloOpcode::kAllReduce) { continue; } auto *ar = Cast<HloAllReduceInstruction>(instruction); auto ar_spec = MatchReduceScatter(ar, config.num_partitions(), config.replica_count(), false, true); if (!ar_spec) { VLOG(2) << "Cannot match reduce-scatter " << ar->ToString(); continue; } HloInstruction *ds = ar_spec->dynamic_slice; const int64_t split_dim = ar_spec->split_dim; Shape scatter_shape = ar->shape(); const int64_t split_dim_size = scatter_shape.dimensions(split_dim); HloInstruction *rs_input = ar->mutable_operand(0); const int64_t scatter_dim_size = split_dim_size / ar_spec->group_size; TF_RET_CHECK(scatter_dim_size * ar_spec->group_size <= split_dim_size); if (split_dim_size % ar_spec->group_size != 0) { scatter_shape.set_dimensions(split_dim, scatter_dim_size * ar_spec->group_size); rs_input = computation->AddInstruction(HloInstruction::CreateSlice( scatter_shape, rs_input, std::vector<int64_t>(scatter_shape.rank(), 0), scatter_shape.dimensions(), std::vector<int64_t>(scatter_shape.rank(), 1))); } scatter_shape.set_dimensions(split_dim, scatter_dim_size); std::optional<int64_t> channel_id; if (ar->channel_id()) { channel_id = next_channel_id++; } HloInstruction *ars = computation->AddInstruction(HloInstruction::CreateReduceScatter( scatter_shape, {rs_input}, ar->to_apply(), ar->device_list(), ar->constrain_layout(), channel_id, ar->use_global_device_ids(), ar_spec->split_dim)); HloInstruction *result = ars; HloInstruction *reshape = nullptr; if (ds->operand(0) != ar) { reshape = ds->mutable_operand(0); result = computation->AddInstruction( HloInstruction::CreateReshape(ds->shape(), result)); } TF_RETURN_IF_ERROR(ds->ReplaceAllUsesWith(result)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(ds)); if (reshape) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(reshape)); } TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands(ar)); changed = true; } } return changed; } } }
#include "xla/service/gpu/gpu_reduce_scatter_creator.h" #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_module_config.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class GpuReduceScatterCreatorTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, int64_t num_replicas, int64_t num_partitions, bool expect_change) { HloModuleConfig config = GetModuleConfigForTest( num_replicas, num_partitions); config.set_use_spmd_partitioning(num_partitions > 1); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); auto changed = ReduceScatterCreator().Run(module.get()); if (!changed.ok()) { return changed.status(); } EXPECT_EQ(changed.value(), expect_change); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } size_t AllReduceCount(std::unique_ptr<HloModule> &module) { return CollectiveCount(module, HloOpcode::kAllReduce); } size_t ReduceScatterCount(std::unique_ptr<HloModule> &module) { return CollectiveCount(module, HloOpcode::kAllReduce); } private: size_t CollectiveCount(std::unique_ptr<HloModule> &module, HloOpcode opcode) { return absl::c_count_if( module->entry_computation()->instructions(), [&opcode](HloInstruction *instr) { return instr->opcode() == opcode; }); } }; TEST_F(GpuReduceScatterCreatorTest, AllReplicas) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={}, to_apply=%sum %table = s32[8]{0} constant({0,1,2,3,4,5,6,7}) %rid = u32[] replica-id() %id = s32[1] dynamic-slice(%table, %rid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%id) %slice_size = s32[] constant(4) %offset = s32[] multiply(%reshape, %slice_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[4,8,128] dynamic-slice(%all-reduce, %offset, %zero, %zero), dynamic_slice_sizes={4,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, true)); ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); const auto *rs = Cast<HloReduceScatterInstruction>( module->entry_computation()->root_instruction()); EXPECT_EQ(rs->scatter_dimension(), 0) << rs->ToString(); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, AllReplicasWithOffsetReshape) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={}, to_apply=%sum %table = s32[8]{0} constant({0,1,2,3,4,5,6,7}) %rid = u32[] replica-id() %id = s32[1] dynamic-slice(%table, %rid), dynamic_slice_sizes={1} %slice_size = s32[1] constant({4}) %offset = s32[1] multiply(%id, %slice_size) %reshape = s32[] reshape(%offset) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[4,8,128] dynamic-slice(%all-reduce, %reshape, %zero, %zero), dynamic_slice_sizes={4,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, true)); ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); const auto *rs = Cast<HloReduceScatterInstruction>( module->entry_computation()->root_instruction()); EXPECT_EQ(rs->scatter_dimension(), 0) << rs->ToString(); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, AllReplicasWithReshape) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={}, to_apply=%sum %table = s32[8]{0} constant({0,1,2,3,4,5,6,7}) %rid = u32[] replica-id() %id = s32[1] dynamic-slice(%table, %rid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%id) %slice_size = s32[] constant(4) %offset = s32[] multiply(%reshape, %slice_size) %zero = s32[] constant(0) %reshape.1 = f32[32,16,64] reshape(%all-reduce) ROOT %dynamic-slice = f32[4,16,64] dynamic-slice(%reshape.1, %offset, %zero, %zero), dynamic_slice_sizes={4,16,64} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::ReduceScatter(m::Parameter(0))))); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, AllReplicasWithReshapeSplitDimModified) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[336,1024] parameter(0) %all-reduce = f32[336,1024] all-reduce(%param), replica_groups={}, to_apply=%sum %rid = u32[] replica-id() %id = s32[] convert(%rid) %slice_size = s32[] constant(128) %offset = s32[] multiply(%id, %slice_size) %zero = s32[] constant(0) %reshape.1 = f32[4,84,1024] reshape(%all-reduce) ROOT %dynamic-slice = f32[4,84,128] dynamic-slice(%reshape.1, %zero, %zero, %offset), dynamic_slice_sizes={4,84,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reshape(m::ReduceScatter(m::Parameter(0))))); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, AllReplicasDim2) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={}, to_apply=%sum %table = s32[8]{0} constant({0,1,2,3,4,5,6,7}) %rid = u32[] replica-id() %rid_s32 = s32[] convert(%rid) %slice_size = s32[] constant(16) %offset = s32[] multiply(%rid_s32, %slice_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[32,8,16] dynamic-slice(%all-reduce, %zero, %zero, %offset), dynamic_slice_sizes={32,8,16} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, true)); ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); const auto *rs = Cast<HloReduceScatterInstruction>( module->entry_computation()->root_instruction()); EXPECT_EQ(rs->scatter_dimension(), 2) << rs->ToString(); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, AllReplicasWrongOffsets) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={}, to_apply=%sum %table = s32[8]{0} constant({0,1,2,3,4,5,6,8}) %rid = u32[] replica-id() %id = s32[1] dynamic-slice(%table, %rid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%id) %slice_size = s32[] constant(4) %offset = s32[] multiply(%reshape, %slice_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[4,8,128] dynamic-slice(%all-reduce, %offset, %zero, %zero), dynamic_slice_sizes={4,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, false)); } TEST_F(GpuReduceScatterCreatorTest, AllReplicasIotaTable) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={}, to_apply=%sum %table = s32[8]{0} iota(), iota_dimension=0 %rid = u32[] replica-id() %id = s32[1] dynamic-slice(%table, %rid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%id) %slice_size = s32[] constant(4) %offset = s32[] multiply(%reshape, %slice_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[4,8,128] dynamic-slice(%all-reduce, %offset, %zero, %zero), dynamic_slice_sizes={4,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 2, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, SubgroupedReplicas) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={{1,3,2,0},{4,5,6,7}}, to_apply=%sum %gtable = s32[8]{0} constant({3,0,2,1,0,1,2,3}) %rid = u32[] replica-id() %id = s32[1] dynamic-slice(%gtable, %rid), dynamic_slice_sizes={1} %reshape.0 = s32[] reshape(%id) %table = s32[4]{0} constant({0,8,16,24}) %offset = s32[1] dynamic-slice(%table, %reshape.0), dynamic_slice_sizes={1} %reshape.1 = s32[] reshape(%offset) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[8,8,128] dynamic-slice(%all-reduce, %reshape.1, %zero, %zero), dynamic_slice_sizes={8,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 2, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, AllPartitions) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={{0},{1}}, to_apply=%sum, channel_id=1 %table = s32[8]{0} constant({0,1,2,3,4,5,6,7}) %pid = u32[] partition-id() %id = s32[1] dynamic-slice(%table, %pid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%id) %slice_size = s32[] constant(4) %offset = s32[] multiply(%reshape, %slice_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[4,8,128] dynamic-slice(%all-reduce, %offset, %zero, %zero), dynamic_slice_sizes={4,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 2, 8, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, AllReduceFollowedByAllReduce) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce.scattered = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={{0,1,2,3,4,5,6,7},{8,9,10,11,12,13,14,15}}, to_apply=%sum, use_global_device_ids=true, channel_id=1 %table = s32[8]{0} constant({0,1,2,3,4,5,6,7}) %pid = u32[] partition-id() %id = s32[1] dynamic-slice(%table, %pid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%id) %slice_size = s32[] constant(4) %offset = s32[] multiply(%reshape, %slice_size) %zero = s32[] constant(0) %dynamic-slice = f32[4,8,128] dynamic-slice(%all-reduce.scattered, %offset, %zero, %zero), dynamic_slice_sizes={4,8,128} ROOT %all-reduce.sync = f32[4,8,128]{2,1,0} all-reduce(%dynamic-slice), replica_groups={{0,8},{1,9},{2,10},{3,11},{4,12},{5,13},{6,14},{7,15}}, to_apply=%sum, use_global_device_ids=true, channel_id=2 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 2, 8, true)); EXPECT_EQ(AllReduceCount(module), 1); EXPECT_EQ(ReduceScatterCount(module), 1); } TEST_F(GpuReduceScatterCreatorTest, SubgroupsGlobals) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={{1,3,2,0},{4,5,6,7}}, to_apply=%sum, channel_id=1, use_global_device_ids=true %pid = u32[] partition-id() %rid = u32[] replica-id() %pcount = u32[] constant(4) %ridxp = u32[] multiply(%rid, %pcount) %gid = u32[] add(%ridxp, %pid) %gtable = s32[8]{0} constant({3,0,2,1,0,1,2,3}) %id = s32[1] dynamic-slice(%gtable, %gid), dynamic_slice_sizes={1} %reshape.0 = s32[] reshape(%id) %table = s32[4]{0} constant({0,8,16,24}) %offset = s32[1] dynamic-slice(%table, %reshape.0), dynamic_slice_sizes={1} %reshape.1 = s32[] reshape(%offset) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[8,8,128] dynamic-slice(%all-reduce, %reshape.1, %zero, %zero), dynamic_slice_sizes={8,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 2, 4, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, SubgroupsGlobalsOrthogonalReplicas) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={{1,3,2,0},{5,7,6,4}}, to_apply=%sum, channel_id=1, use_global_device_ids=true %pid = u32[] partition-id() %pid_table = s32[4]{0} constant({3,0,2,1}) %offset = s32[1] dynamic-slice(%pid_table, %pid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%offset) %shard_size = s32[] constant(8) %mul = s32[] multiply(%reshape, %shard_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[8,8,128] dynamic-slice(%all-reduce, %mul, %zero, %zero), dynamic_slice_sizes={8,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 2, 4, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Parameter(0)))); EXPECT_EQ(AllReduceCount(module), 0); } TEST_F(GpuReduceScatterCreatorTest, SubgroupsGlobalsNonOrthogonalReplicas) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[32,8,128]{2,1,0} parameter(0) %all-reduce = f32[32,8,128]{2,1,0} all-reduce(%param), replica_groups={{1,3,2,0},{7,5,6,4}}, to_apply=%sum, channel_id=1, use_global_device_ids=true %pid = u32[] partition-id() %pid_table = s32[4]{0} constant({3,0,2,1}) %offset = s32[1] dynamic-slice(%pid_table, %pid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%offset) %shard_size = s32[] constant(8) %mul = s32[] multiply(%reshape, %shard_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[8,8,128] dynamic-slice(%all-reduce, %mul, %zero, %zero), dynamic_slice_sizes={8,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 2, 4, false)); } TEST_F(GpuReduceScatterCreatorTest, NonUniformSplit) { absl::string_view hlo_string = R"( HloModule AllReduce %sum { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(%a, %b) } ENTRY %AllReduce { %param = f32[1,7]{1,0} parameter(0) %all-reduce = f32[1,7]{1,0} all-reduce(%param), replica_groups={{0,1},{2,3},{4,5},{6,7}}, to_apply=%sum, channel_id=1, use_global_device_ids=true %pid = u32[] partition-id() %pid_table = s32[8]{0} constant({0, 1, 0, 1, 0, 1, 0, 1}) %offset = s32[1] dynamic-slice(%pid_table, %pid), dynamic_slice_sizes={1} %reshape = s32[] reshape(%offset) %shard_size = s32[] constant(3) %mul = s32[] multiply(%reshape, %shard_size) %zero = s32[] constant(0) ROOT %dynamic-slice = f32[1,3] dynamic-slice(%all-reduce, %zero, %mul), dynamic_slice_sizes={1,3} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 1, 8, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::ReduceScatter(m::Slice(m::Parameter(0))))); } } } }
2,037
cpp
tensorflow/tensorflow
priority_fusion
third_party/xla/xla/service/gpu/transforms/priority_fusion.cc
third_party/xla/xla/service/gpu/transforms/priority_fusion_test.cc
#ifndef XLA_SERVICE_GPU_PRIORITY_FUSION_H_ #define XLA_SERVICE_GPU_PRIORITY_FUSION_H_ #include <stdint.h> #include <memory> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/fusion_queue.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/service/instruction_fusion.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { class GpuPriorityFusion : public InstructionFusion { public: GpuPriorityFusion(tsl::thread::ThreadPool* thread_pool, const se::DeviceDescription& device, GpuHloCostAnalysis::Options cost_analysis_options) : InstructionFusion(GpuPriorityFusion::IsExpensive), thread_pool_(thread_pool), device_info_(device), cost_analysis_options_(std::move(cost_analysis_options)), fusion_analysis_cache_(device_info_) {} absl::string_view name() const override { return "priority-fusion"; } static bool IsExpensive(const HloInstruction& instruction); using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; protected: std::unique_ptr<FusionQueue> GetFusionQueue( HloComputation* computation) override; FusionDecision ShouldFuse(HloInstruction* consumer, int64_t operand_index) override; HloInstruction::FusionKind ChooseKind( const HloInstruction* producer, const HloInstruction* consumer) override; private: HloInstruction* FuseInstruction(HloInstruction* fusion_instruction, HloInstruction* producer) override; bool ConsumeFuel(HloInstruction* producer, HloInstruction* consumer); tsl::thread::ThreadPool* thread_pool_; se::DeviceDescription device_info_; GpuHloCostAnalysis::Options cost_analysis_options_; std::unique_ptr<FusionProcessDumpProto> fusion_process_dump_; HloFusionAnalysisCache fusion_analysis_cache_; mlir::MLIRContext mlir_context_; }; } } #endif #include "xla/service/gpu/priority_fusion.h" #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <limits> #include <map> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/meta/type_traits.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "llvm/ADT/STLExtras.h" #include "mlir/IR/MLIRContext.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/dump.h" #include "xla/service/fusion_queue.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { namespace { bool ElementIsF32OrF16(const Shape& shape) { PrimitiveType type = shape.element_type(); return type == F32 || type == F16; } bool IsFusible(const HloInstruction& instr) { if (!instr.IsFusible()) { return false; } if (instr.IsElementwise()) { return true; } switch (instr.opcode()) { case HloOpcode::kFusion: return instr.fusion_kind() != HloInstruction::FusionKind::kCustom; case HloOpcode::kCopy: case HloOpcode::kIota: case HloOpcode::kConstant: case HloOpcode::kReduce: case HloOpcode::kBitcast: case HloOpcode::kBroadcast: case HloOpcode::kConcatenate: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGather: case HloOpcode::kPad: case HloOpcode::kReduceWindow: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kScatter: case HloOpcode::kSlice: case HloOpcode::kTranspose: return true; default: return false; } } class GpuPriorityFusionQueue { using Priority = int64_t; using CanFuseCallback = std::function<FusionDecision( HloInstruction* , int64_t )>; public: GpuPriorityFusionQueue( HloComputation* computation, const GpuHloCostAnalysis::Options& cost_analysis_options, const se::DeviceDescription* device_info, FusionProcessDumpProto* fusion_process_dump, tsl::thread::ThreadPool* thread_pool, mlir::MLIRContext* mlir_context, HloFusionAnalysisCache& fusion_analysis_cache, bool triton_softmax_priority_fusion_enabled) : computation_(computation), cost_analysis_(cost_analysis_options, device_info), fusion_process_dump_(fusion_process_dump), thread_pool_(thread_pool), mlir_context_(mlir_context), fusion_analysis_cache_(fusion_analysis_cache), triton_softmax_priority_fusion_enabled_( triton_softmax_priority_fusion_enabled) { VLOG(2) << "Running full HLO cost analysis for " << computation_->name(); TF_CHECK_OK(computation_->Accept(&cost_analysis_)); dump_fusion_visualization_ = computation->parent() ->config() .debug_options() .xla_dump_fusion_visualization(); std::vector<HloInstruction*> instructions; for (auto* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kParameter || instruction->user_count() == 0 || !instruction->IsFusible() || instruction->opcode() == HloOpcode::kTuple || instruction->opcode() == HloOpcode::kGetTupleElement) { continue; } instructions.push_back(instruction); } ComputeAndSetPriorities(instructions); } void ComputeAndSetPriorities( const std::vector<HloInstruction*>& instructions) { std::vector<Priority> priorities = ComputePriorities(instructions); for (auto [instruction, priority] : llvm::zip(instructions, priorities)) { auto key = std::make_pair(priority, instruction->unique_id()); auto reverse_it = reverse_map_.find(instruction); if (reverse_it != reverse_map_.end()) { const PriorityQueue::iterator& queue_it = reverse_it->second; if (key == queue_it->first) { continue; } producer_priority_queue_.erase(queue_it); reverse_map_.erase(reverse_it); } if (priority < 0) { continue; } auto emplace_result = producer_priority_queue_.emplace(key, instruction); reverse_map_.emplace(instruction, emplace_result.first); } } std::vector<Priority> ComputePriorities( const std::vector<HloInstruction*>& instructions) { auto schedule_or_run = [this](std::function<void()> fn) { if (thread_pool_) { thread_pool_->Schedule(std::move(fn)); } else { fn(); } }; tsl::BlockingCounter counter(instructions.size()); std::vector<Priority> priorities(instructions.size()); for (size_t i = 0; i < instructions.size(); ++i) { schedule_or_run([&, i] { priorities[i] = CalculateProducerPriority(instructions[i]); counter.DecrementCount(); }); } counter.Wait(); return priorities; } bool DequeueNextProducer() { current_producer_ = nullptr; current_consumers_.clear(); while (!producer_priority_queue_.empty() && current_consumers_.empty()) { auto next_it = std::prev(producer_priority_queue_.end()); current_producer_ = next_it->second; producer_priority_queue_.erase(next_it); reverse_map_.erase(current_producer_); current_consumers_ = current_producer_->users(); if (current_producer_->opcode() == HloOpcode::kBitcast) { llvm::erase_if(current_consumers_, [&](HloInstruction* consumer) { return !CanFuseCached(current_producer_, consumer); }); } } return !current_consumers_.empty(); } void UpdatePriorities() { for (auto instruction : to_update_priority_) { TF_CHECK_OK(cost_analysis_.RevisitInstruction(instruction)); } ComputeAndSetPriorities(std::vector<HloInstruction*>{ to_update_priority_.begin(), to_update_priority_.end()}); to_update_priority_.clear(); } void PreFusion(HloInstruction* producer, HloInstruction* consumer) { if (dump_fusion_visualization_) { RegisterFusionState( *computation_, absl::StrCat("About to fuse |", producer->name(), "| into |", consumer->name(), "| inside PriorityFusion"), *consumer, producer); } InvalidateCaches(producer); InvalidateCaches(consumer); } void InvalidateCaches(HloInstruction* instruction) { can_fuse_cache_.erase(instruction); for (const HloInstruction* operand : instruction->operands()) { auto it = can_fuse_cache_.find(operand); if (it != can_fuse_cache_.end()) { it->second.erase(instruction); } } gpu_performance_model_cache_.Invalidate(*instruction); fusion_analysis_cache_.Invalidate(*instruction); } void OnFusingInstruction(HloInstruction* fusion, HloInstruction* original_producer, HloInstruction* original_consumer) { if (fusion_process_dump_) { auto* fusion_step = fusion_process_dump_->add_fusion_steps()->mutable_fusion(); fusion_step->set_fusion_name(std::string(fusion->name())); fusion_step->set_producer_name(std::string(original_producer->name())); fusion_step->set_consumer_name(std::string(original_consumer->name())); } if (dump_fusion_visualization_) { RegisterFusionState( *computation_, absl::StrCat("Fused |", original_producer->name(), "| into |", fusion->name(), "| inside PriorityFusion"), *fusion); } if (fusion != original_consumer) { RemoveInstruction(original_consumer); } if (original_producer->user_count() == 0) { original_producer->DetachFromOperandsAndUsers(); } for (HloInstruction* operand : fusion->operands()) { if (operand == original_producer || operand->opcode() == HloOpcode::kConstant || operand->opcode() == HloOpcode::kGetTupleElement) { continue; } if (!operand->IsFusible()) { continue; } to_update_priority_.insert(operand); } to_update_priority_.insert(fusion); } void RemoveInstruction(HloInstruction* instruction) { to_update_priority_.erase(instruction); fusion_analysis_cache_.Invalidate(*instruction); auto reverse_it = reverse_map_.find(instruction); if (reverse_it == reverse_map_.end()) { return; } producer_priority_queue_.erase(reverse_it->second); reverse_map_.erase(reverse_it); } HloInstruction* current_producer() { return current_producer_; } const std::vector<HloInstruction*>& current_consumers() { return current_consumers_; } private: Priority CalculateProducerPriority(HloInstruction* producer) { if (producer->opcode() == HloOpcode::kBitcast) { return std::numeric_limits<Priority>::max(); } if (producer->opcode() == HloOpcode::kConstant) { return std::numeric_limits<Priority>::min(); } if (auto fusion_decision = CanFuseWithAllNonBitcastUsers(producer); !fusion_decision) { if (fusion_process_dump_) { absl::MutexLock lock(&fusion_process_dump_mutex_); auto* step = fusion_process_dump_->add_fusion_steps() ->mutable_producer_ineligible(); step->set_producer_name(std::string(producer->name())); step->set_reason(fusion_decision.Explain()); } return std::numeric_limits<Priority>::min(); } GpuPerformanceModel::RunTimes run_times = GpuPerformanceModel::EstimateRunTimesForPriorityFusion( producer, &cost_analysis_, GpuPerformanceModelOptions::PriorityFusion( &fusion_analysis_cache_, &gpu_performance_model_cache_), producer->users()); if (fusion_process_dump_) { absl::MutexLock lock(&fusion_process_dump_mutex_); auto* step = fusion_process_dump_->add_fusion_steps()->mutable_update_priority(); step->set_producer_name(std::string(producer->name())); for (auto* consumer : producer->users()) { step->add_consumer_names(std::string(consumer->name())); } step->set_us_fused(absl::ToDoubleMicroseconds(run_times.time_fused)); step->set_us_unfused(absl::ToDoubleMicroseconds(run_times.time_unfused)); } return absl::ToInt64Nanoseconds(run_times.time_unfused - run_times.time_fused); } FusionDecision CanFuseTriton(HloInstruction* producer, HloInstruction* consumer) { if (!triton_softmax_priority_fusion_enabled_) { return "triton softmax fusion is not enabled"; } if (IsGenericTritonFusion(*producer)) { if (!IsFusible(*consumer)) { return "the consumer is not fusible"; } } else { if (!IsFusible(*producer)) { return "the producer is not fusible"; } } auto fusion = HloFusionAdaptor::ForProducerConsumer(producer, consumer); SymbolicTileAnalysisOrError symbolic_tile_analysis_or = SymbolicTileAnalysis::AnalyzeFusion(*fusion, mlir_context_); if (const auto* fusion_decision = std::get_if<FusionDecision>(&symbolic_tile_analysis_or)) { return { absl::StrCat("Fusion can not be tiled with SymbolicTileAnalysis: ", fusion_decision->Explain())}; } return {}; } FusionDecision CanFuse(HloInstruction* producer, HloInstruction* consumer) { if (IsGenericTritonFusion(*producer) || IsGenericTritonFusion(*consumer)) { return CanFuseTriton(producer, consumer); } if (!IsFusible(*producer)) { return "the producer is not fusible"; } if (!IsFusible(*consumer)) { return "the consumer is not fusible"; } if (consumer->opcode() == HloOpcode::kBitcast) { return "not fusing into a single bitcast as consumer"; } if (auto can_fuse = CanEmitInputFusedScatter(*producer, *consumer); !can_fuse) { return can_fuse; } auto contains_significant_reduce = [&](const HloInstruction* instr) { auto fusion = HloFusionAdaptor::ForInstruction(instr); return HloAnyOf(fusion->GetRoots(), *fusion, [](auto node) { if (!(node.opcode() == HloOpcode::kReduce && node.shape().IsArray())) { return false; } int64_t reduction_size = ShapeUtil::ElementsIn(node.instruction().operand(0)->shape()) / ShapeUtil::ElementsIn(node.shape()); return reduction_size >= 16; }); }; if (contains_significant_reduce(producer) && contains_significant_reduce(consumer)) { return "both the producer and the consumer contain a reduce"; } const auto& analysis = fusion_analysis_cache_.Get(*producer); if (analysis.GetEmitterFusionKind() == HloFusionAnalysis::EmitterFusionKind::kReduction) { const auto& analysis_fused = fusion_analysis_cache_.Get(*producer, *consumer); if (analysis_fused.GetEmitterFusionKind() == HloFusionAnalysis::EmitterFusionKind::kLoop) { return "fusion into output of a reduce fusion would create a loop " "fusion"; } } if (auto fits_budget = FusionFitsInBudget( *consumer, *producer, *cost_analysis_.device_info_, true); !fits_budget) { return fits_budget; } if (cost_analysis_.ProducerConsumerMergedTooLarge(*producer, *consumer)) { return "the fusion would result in an overly large code duplication"; } if (producer == producer->parent()->root_instruction()) { return "not fusing into the output of the root instruction"; } return InstructionFusion::ShouldFuseInPlaceOp(producer, consumer); } FusionDecision CanFuseCached(HloInstruction* producer, HloInstruction* consumer) { { absl::MutexLock lock(&can_fuse_cache_mutex_); auto& producer_cache = can_fuse_cache_[producer]; auto it = producer_cache.find(consumer); if (it != producer_cache.end()) { return it->second; } } auto fusion_decision = CanFuse(producer, consumer); { absl::MutexLock lock(&can_fuse_cache_mutex_); can_fuse_cache_[producer][consumer] = fusion_decision; } return fusion_decision; } FusionDecision CanFuseWithAllNonBitcastUsers(HloInstruction* producer) { if (producer->users().empty()) { return "No users to fuse"; } FusionDecision result; bool has_non_bitcast_user = false; for (const auto& user : producer->users()) { if (user->opcode() == HloOpcode::kBitcast) { continue; } has_non_bitcast_user = true; if (auto fusion_decision = CanFuseCached(producer, user); !fusion_decision) { VLOG(10) << "Cannot fuse " << producer->name() << " with " << user->name() << ", because: " << fusion_decision.Explain(); return fusion_decision; } } if (!has_non_bitcast_user) { return "not fusing because there are only bitcast users"; } return {}; } HloComputation* computation_; GpuHloCostAnalysis cost_analysis_; using PriorityQueue = std::map<std::pair<Priority, int>, HloInstruction*>; PriorityQueue producer_priority_queue_; absl::flat_hash_map<HloInstruction*, PriorityQueue::iterator> reverse_map_; HloInstruction* current_producer_; std::vector<HloInstruction*> current_consumers_; absl::flat_hash_set<HloInstruction*> to_update_priority_; FusionProcessDumpProto* fusion_process_dump_; absl::Mutex fusion_process_dump_mutex_; tsl::thread::ThreadPool* thread_pool_; mlir::MLIRContext* mlir_context_; HloFusionAnalysisCache& fusion_analysis_cache_; absl::flat_hash_map< const HloInstruction*, absl::flat_hash_map<const HloInstruction*, FusionDecision>> can_fuse_cache_; absl::Mutex can_fuse_cache_mutex_; GpuPerformanceModelCache gpu_performance_model_cache_; bool triton_softmax_priority_fusion_enabled_; bool dump_fusion_visualization_; }; } bool GpuPriorityFusion::IsExpensive( const HloInstruction& instruction) { switch (instruction.opcode()) { case HloOpcode::kDivide: case HloOpcode::kSqrt: case HloOpcode::kRsqrt: case HloOpcode::kExp: if (ElementIsF32OrF16(instruction.shape())) { return false; } break; case HloOpcode::kFusion: return false; default: break; } return InstructionFusion::IsExpensive(instruction); } bool IsSmallConstant(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kConstant && instr->shape().IsArray() && ShapeUtil::ElementsIn(instr->shape()) <= 1; } bool GpuPriorityFusion::ConsumeFuel(HloInstruction* producer, HloInstruction* consumer) { return xla::ConsumeFuel(name(), [&] { return absl::StrFormat("Not fusing producer %s with consumer %s", producer->name(), consumer->name()); }); }; absl::StatusOr<bool> GpuPriorityFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool dump_enabled = DumpingEnabledForHloPass(name(), module->config().debug_options()); if (dump_enabled) { fusion_process_dump_ = std::make_unique<FusionProcessDumpProto>(); *fusion_process_dump_->mutable_gpu_device_info() = device_info_.ToGpuProto(); } auto fusible_computations = GetFusibleComputations(*module, execution_threads); for (auto* computation : fusible_computations) { for (auto* instruction : computation->instructions()) { module->SetAndUniquifyInstrName(instruction, absl::StrCat(instruction->name(), ".0")); } } if (dump_enabled) { fusion_process_dump_->set_hlo_module_before_fusion( module->ToString(HloPrintOptions::ShortParsable())); } bool triton_softmax_priority_fusion_enabled = module->config() .debug_options() .xla_gpu_enable_triton_softmax_priority_fusion(); int changed = false; for (auto* computation : fusible_computations) { CHECK(!computation->IsFusionComputation()); auto fusion_queue = std::make_unique<GpuPriorityFusionQueue>( computation, cost_analysis_options_, &device_info_, fusion_process_dump_.get(), thread_pool_, &mlir_context_, fusion_analysis_cache_, triton_softmax_priority_fusion_enabled); while (fusion_queue->DequeueNextProducer()) { auto producer = fusion_queue->current_producer(); for (auto* consumer : fusion_queue->current_consumers()) { if (consumer->opcode() == HloOpcode::kBitcast) { continue; } if (!ConsumeFuel(producer, consumer)) continue; VLOG(5) << "next: " << consumer->name() << "(" << consumer << ") + " << producer->name() << "(" << producer << ")"; fusion_queue->PreFusion(producer, consumer); auto fusion_instruction = Fuse(producer, consumer, computation); fusion_queue->OnFusingInstruction(fusion_instruction, producer, consumer); changed = true; } if (producer->user_count() == 0) { fusion_queue->RemoveInstruction(producer); TF_RETURN_IF_ERROR(computation->RemoveInstruction(producer)); } fusion_queue->UpdatePriorities(); } std::vector<HloInstruction*> constants; for (auto* instruction : computation->instructions()) { if (IsSmallConstant(instruction)) { constants.push_back(instruction); } } for (auto* constant : constants) { auto users = constant->users(); for (auto* user : users) { if (IsFusible(*user) && CanEmitInputFusedScatter(*constant, *user)) {
#include "xla/service/gpu/priority_fusion.h" #include <stdint.h> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace m = ::xla::match; using ::testing::UnorderedElementsAre; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; namespace xla { namespace gpu { class PriorityFusionTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: std::vector<HloFusionAnalysis::EmitterFusionKind> RunAndGetFusionKinds( absl::string_view hlo) { auto module = ParseAndReturnVerifiedModule(hlo).value(); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(module->RemoveUnusedComputations(), IsOk()); std::vector<HloFusionAnalysis::EmitterFusionKind> kinds; for (auto computation : module->computations()) { if (!computation->FusionInstruction()) continue; auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto analysis = HloFusionAnalysis::Create( Cast<HloFusionInstruction>(computation->FusionInstruction()), &device_info); kinds.push_back(analysis.GetEmitterFusionKind()); } return kinds; } GpuPriorityFusion priority_fusion_{ nullptr, TestGpuDeviceInfo::RTXA6000DeviceInfo(), GpuHloCostAnalysis::Options{ShapeSizeBytesFunction(), {}, true}}; }; TEST_F(PriorityFusionTest, FuseWithSharedArgument) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) %subtract = f32[] subtract(%p0, %p1) %compare = pred[] compare(%subtract, %subtract), direction=NE %add = f32[] add(%p0, %p1) %abs = f32[] abs(%subtract) ROOT %select = f32[] select(%compare, %add, %abs) })") .value(); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Fusion())); EXPECT_EQ(root->fusion_kind(), HloInstruction::FusionKind::kLoop); } TEST_F(PriorityFusionTest, FusionFusionWithDuplication) { absl::string_view kHlo = R"( HloModule test_module square { p = f32[16384]{0} parameter(0) ROOT m = f32[16384]{0} multiply(p, p) } exp { p = f32[16384]{0} parameter(0) ROOT e = f32[16384]{0} exponential(p) } log { p = f32[16384]{0} parameter(0) ROOT l = f32[16384]{0} log(p) } ENTRY main { p = f32[16384]{0} parameter(0) s = f32[16384]{0} fusion(p), kind=kLoop, calls=square e = f32[16384]{0} fusion(s), kind=kLoop, calls=exp l = f32[16384]{0} fusion(s), kind=kInput, calls=log ROOT t = (f32[16384], f32[16384]) tuple(l, e) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK-NEXT: %[[PARAM:.*]] = f32[16384]{0} parameter(0) CHECK-NEXT: %[[FUSION_0:.*]] = f32[16384]{0} fusion(%[[PARAM]]) CHECK-NEXT: %[[FUSION_1:.*]] = f32[16384]{0} fusion(%[[PARAM]]) CHECK-NEXT: ROOT {{.*}} tuple(%[[FUSION_0]], %[[FUSION_1]]) )"); } TEST_F(PriorityFusionTest, FuseBroadcastIntoBitcastConsumers) { absl::string_view kHlo = R"( HloModule test_module ENTRY main { param_0 = f32[96]{0} parameter(0) broadcast = f32[8,96,128,7]{3,2,1,0} broadcast(param_0), dimensions={1} bitcast.6079.2 = f32[8,24,4,128,7]{4,3,2,1,0} bitcast(broadcast) ROOT transpose.1990.2 = f32[8,24,128,7,4]{4,3,2,1,0} transpose(bitcast.6079.2), dimensions={0,1,3,4,2} } )"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK-NEXT: %[[PARAM:.*]] = f32[96]{0} parameter(0) CHECK-NEXT: ROOT %{{.*}} fusion(%[[PARAM]]) )"); } TEST_F(PriorityFusionTest, FuseWideningConvertIntoConsumers) { absl::string_view kHlo = R"( HloModule test_module ENTRY main { p = f16[512]{0} parameter(0) a = f16[512]{0} add(p, p) c = f32[512]{0} convert(a) s = f32[512]{0} multiply(c, c) bc = s32[512]{0} bitcast(c) ROOT t = (f32[512], s32[512]) tuple(s, bc) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK-NEXT: %[[PARAM:.*]] = f16[512]{0} parameter(0) CHECK-NEXT: %[[FUSION_F32:.*]] = f32[512]{0} fusion(%[[PARAM]]) CHECK-NEXT: %[[CONVERT_FUSION:.*]] = f32[512]{0} fusion(%[[PARAM]]) CHECK-NEXT: %[[BITCAST:.*]] = s32[512]{0} bitcast(%[[CONVERT_FUSION]]) CHECK-NEXT: ROOT %{{.*}} = (f32[512]{0}, s32[512]{0}) tuple(%[[FUSION_F32]], %[[BITCAST]]) )"); } TEST_F(PriorityFusionTest, FuseConvertIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } ENTRY main { param_0_0.79 = bf16[1024,8192]{1,0} parameter(0) param_1_0.79 = bf16[1024,8192]{1,0} parameter(1) param_2.483 = f32[8192]{0} parameter(2) param_4.2892 = bf16[1024,8192]{1,0} parameter(3) convert.21854 = f32[1024,8192]{1,0} convert(param_0_0.79) convert.21855 = f32[1024,8192]{1,0} convert(param_1_0.79) constant_7773 = f32[] constant(0) broadcast.14555 = f32[1024,8192]{1,0} broadcast(param_2.483), dimensions={1} multiply.6906 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21854) reduce.4813 = f32[1024]{0} reduce(multiply.6906, constant_7773), dimensions={1}, to_apply=add convert.13970 = bf16[1024]{0} convert(reduce.4813) convert.21534 = f32[1024,8192]{1,0} convert(param_4.2892) multiply.6910.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21534) reduce.4811.clone.1 = f32[1024]{0} reduce(multiply.6910.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13967.clone.1 = bf16[1024]{0} convert(reduce.4811.clone.1) multiply.6908.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21855) reduce.4812.clone.1 = f32[1024]{0} reduce(multiply.6908.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13969.clone.1 = bf16[1024]{0} convert(reduce.4812.clone.1) ROOT fusion.241 = (bf16[1024]{0}, bf16[1024]{0}, bf16[1024]{0}) tuple(convert.13970, convert.13967.clone.1, convert.13969.clone.1) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK-COUNT-3: ROOT {{.*}} convert( CHECK: ENTRY %main CHECK-COUNT-3: fusion )"); } TEST_F(PriorityFusionTest, ReductionEpilogueFusionRegressionTest) { absl::string_view kHlo = R"( HloModule test_module add { rhs.407 = f32[] parameter(1) lhs.407 = f32[] parameter(0) ROOT add.24451 = f32[] add(lhs.407, rhs.407) } ENTRY main { param_1.15162 = f32[2752]{0} parameter(1) convert.44829 = bf16[2752]{0} convert(param_1.15162) bitcast.24686 = bf16[1,1,2752]{2,1,0} bitcast(convert.44829) convert.44468 = f32[1,1,2752]{2,1,0} convert(bitcast.24686) constant_13722 = bf16[] constant(1) convert.17451 = f32[] convert(constant_13722) broadcast.17565 = f32[1,1,2752]{2,1,0} broadcast(convert.17451), dimensions={} negate.167 = f32[1,1,2752]{2,1,0} negate(convert.44468) exponential.569 = f32[1,1,2752]{2,1,0} exponential(negate.167) add.1850 = f32[1,1,2752]{2,1,0} add(broadcast.17565, exponential.569) divide.1376 = f32[1,1,2752]{2,1,0} divide(broadcast.17565, add.1850) multiply.9709 = f32[1,1,2752]{2,1,0} multiply(convert.44468, divide.1376) param_0.15005 = f32[2752]{0} parameter(0) convert.44826 = bf16[2752]{0} convert(param_0.15005) bitcast.24683 = bf16[1,1,2752]{2,1,0} bitcast(convert.44826) convert.44467 = f32[1,1,2752]{2,1,0} convert(bitcast.24683) multiply.9708 = f32[1,1,2752]{2,1,0} multiply(multiply.9709, convert.44467) convert.16959 = bf16[1,1,2752]{2,1,0} convert(multiply.9708) fusion.3203 = bf16[2752]{0} bitcast(convert.16959) convert.15093 = f32[2752]{0} convert(fusion.3203) broadcast.13841 = f32[8192,2752]{1,0} broadcast(convert.15093), dimensions={1} param_0.15525 = bf16[8192,2752]{1,0} parameter(2) convert.13738 = f32[8192,2752]{1,0} convert(param_0.15525) multiply.6422 = f32[8192,2752]{1,0} multiply(broadcast.13841, convert.13738) constant_14382 = f32[] constant(0) fusion.339 = f32[8192]{0} reduce(multiply.6422, constant_14382), dimensions={1}, to_apply=add convert.44633 = bf16[8192]{0} convert(fusion.339) ROOT bitcast.24487 = bf16[1,1,8192]{2,1,0} bitcast(convert.44633) } )"; EXPECT_THAT( RunAndGetFusionKinds(kHlo), UnorderedElementsAre(HloFusionAnalysis::EmitterFusionKind::kLoop, HloFusionAnalysis::EmitterFusionKind::kReduction)); RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK: ROOT {{.*}} bitcast({{.*}}fusion{{.*}}) )"); } TEST_F(PriorityFusionTest, DoNotChangeReductionFusionToLoopFusion) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { rhs.407 = f32[] parameter(1) lhs.407 = f32[] parameter(0) ROOT add.24451 = f32[] add(lhs.407, rhs.407) } fused_computation { p0 = f32[16,64]{1,0} parameter(0) zero = f32[] constant(0.0) ROOT reduce = f32[16]{0} reduce(p0, zero), dimensions={1}, to_apply=add } ENTRY main { param0 = f32[16,64]{1,0} parameter(0) fusion = f32[16]{0} fusion(param0), kind=kLoop, calls=fused_computation ROOT slice = f32[8]{0} slice(fusion), slice={[0:8]} })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionTest, DoNotFuseTransposeIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { Arg_1.1046 = f32[] parameter(1) Arg_0.1045 = f32[] parameter(0) ROOT add.3303 = f32[] add(Arg_0.1045, Arg_1.1046) } ENTRY main { param_0.17323 = pred[2048,2048]{1,0} parameter(0) broadcast.22829 = pred[1,12,2048,2048]{3,2,1,0} broadcast(param_0.17323), dimensions={2,3} param_1.19761 = bf16[2048,24576]{1,0} parameter(1) convert.29880.clone.1 = f32[2048,24576]{1,0} convert(param_1.19761) constant_10033_clone_1 = bf16[] constant(0.02002) convert.30056.clone.1 = f32[] convert(constant_10033_clone_1) broadcast.18898.clone.1 = f32[2048,24576]{1,0} broadcast(convert.30056.clone.1), dimensions={} multiply.13451.clone.1 = f32[2048,24576]{1,0} multiply(convert.29880.clone.1, broadcast.18898.clone.1) tanh.798.clone.1 = f32[2048,24576]{1,0} tanh(multiply.13451.clone.1) constant_10244_clone_1 = bf16[] constant(50) convert.30039.clone.1 = f32[] convert(constant_10244_clone_1) broadcast.18310.clone.1 = f32[2048,24576]{1,0} broadcast(convert.30039.clone.1), dimensions={} multiply.12550.clone.1 = f32[2048,24576]{1,0} multiply(tanh.798.clone.1, broadcast.18310.clone.1) convert.29370.clone.1 = bf16[2048,24576]{1,0} convert(multiply.12550.clone.1) bitcast.22330 = bf16[1,2048,2048,12]{3,2,1,0} bitcast(convert.29370.clone.1) transpose.6582 = bf16[1,12,2048,2048]{3,2,1,0} transpose(bitcast.22330), dimensions={0,3,2,1} convert.33705 = f32[1,12,2048,2048]{3,2,1,0} convert(transpose.6582) constant_10212 = f32[] constant(-2.38197633e+38) broadcast.22828 = f32[1,12,2048,2048]{3,2,1,0} broadcast(constant_10212), dimensions={} select.589 = f32[1,12,2048,2048]{3,2,1,0} select(broadcast.22829, convert.33705, broadcast.22828) bitcast.22075 = f32[12,2048,2048]{2,1,0} bitcast(select.589) constant_10192 = f32[] constant(-inf) reduce.1614 = f32[12,2048]{1,0} reduce(bitcast.22075, constant_10192), dimensions={2}, to_apply=add predarg = pred[1,1,2048,2048]{3,2,1,0} parameter(2) bitcast.11069 = pred[2048,2048]{1,0} bitcast(predarg) broadcast.22825 = pred[1,12,2048,2048]{3,2,1,0} broadcast(bitcast.11069), dimensions={2,3} bitcast.22331 = bf16[1,2048,2048,12]{3,2,1,0} bitcast(convert.29370.clone.1) transpose.6580 = bf16[1,12,2048,2048]{3,2,1,0} transpose(bitcast.22331), dimensions={0,3,2,1} convert.33703 = f32[1,12,2048,2048]{3,2,1,0} convert(transpose.6580) constant_10213 = f32[] constant(-2.38197633e+38) broadcast.22824 = f32[1,12,2048,2048]{3,2,1,0} broadcast(constant_10213), dimensions={} select.587 = f32[1,12,2048,2048]{3,2,1,0} select(broadcast.22825, convert.33703, broadcast.22824) broadcast.22819 = f32[1,12,2048,2048]{3,2,1,0} broadcast(reduce.1614), dimensions={1,2} subtract.1129 = f32[1,12,2048,2048]{3,2,1,0} subtract(select.587, broadcast.22819) exponential.418 = f32[1,12,2048,2048]{3,2,1,0} exponential(subtract.1129) bitcast.22074 = f32[12,2048,2048]{2,1,0} bitcast(exponential.418) constant_10490 = f32[] constant(0) reduce.1613 = f32[12,2048]{1,0} reduce(bitcast.22074, constant_10490), dimensions={2}, to_apply=add constant_468 = f32[] constant(-2.38197633e+38) broadcast.22833 = pred[1,12,2048,2048]{3,2,1,0} broadcast(bitcast.11069), dimensions={2,3} bitcast.22332 = bf16[1,2048,2048,12]{3,2,1,0} bitcast(convert.29370.clone.1) transpose.6584 = bf16[1,12,2048,2048]{3,2,1,0} transpose(bitcast.22332), dimensions={0,3,2,1} convert.33707 = f32[1,12,2048,2048]{3,2,1,0} convert(transpose.6584) broadcast.22832 = f32[1,12,2048,2048]{3,2,1,0} broadcast(constant_468), dimensions={} select.591 = f32[1,12,2048,2048]{3,2,1,0} select(broadcast.22833, convert.33707, broadcast.22832) broadcast.22821 = f32[1,12,2048,2048]{3,2,1,0} broadcast(reduce.1614), dimensions={1,2} subtract.1131 = f32[1,12,2048,2048]{3,2,1,0} subtract(select.591, broadcast.22821) exponential.420 = f32[1,12,2048,2048]{3,2,1,0} exponential(subtract.1131) broadcast.18351 = f32[1,12,2048,2048]{3,2,1,0} broadcast(reduce.1613), dimensions={1,2} divide.340 = f32[1,12,2048,2048]{3,2,1,0} divide(exponential.420, broadcast.18351) ROOT convert.29418 = bf16[1,12,2048,2048]{3,2,1,0} convert(divide.340) })"; using Kind = HloFusionAnalysis::EmitterFusionKind; EXPECT_THAT( RunAndGetFusionKinds(kHlo), UnorderedElementsAre(Kind::kLoop, Kind::kLoop, Kind::kLoop, Kind::kReduction, Kind::kReduction, Kind::kTranspose, Kind::kTranspose, Kind::kTranspose)); } TEST_F(PriorityFusionTest, DoNotFuseReduceIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } ENTRY main { p0 = f32[8,4,128,226]{3,2,1,0} parameter(0) c0 = f32[] constant(0) r0 = f32[8,4,128]{2,1,0} reduce(p0, c0), dimensions={3}, to_apply=add ROOT r1 = f32[8,4]{1,0} reduce(r0, c0), dimensions={2}, to_apply=add })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} reduce( CHECK: ROOT {{.*}} reduce( )"); } TEST_F(PriorityFusionTest, ConvertFusedIntoReduce) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } ENTRY main { param_0_0.79 = bf16[1024,8192]{1,0} parameter(0) param_1_0.79 = bf16[1024,8192]{1,0} parameter(1) param_2.483 = f32[8192]{0} parameter(2) param_4.2892 = bf16[1024,8192]{1,0} parameter(3) convert.21854 = f32[1024,8192]{1,0} convert(param_0_0.79) convert.21855 = f32[1024,8192]{1,0} convert(param_1_0.79) constant_7773 = f32[] constant(0) broadcast.14555 = f32[1024,8192]{1,0} broadcast(param_2.483), dimensions={1} multiply.6906 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21854) reduce.4813 = f32[1024]{0} reduce(multiply.6906, constant_7773), dimensions={1}, to_apply=add convert.13970 = bf16[1024]{0} convert(reduce.4813) convert.21534 = f32[1024,8192]{1,0} convert(param_4.2892) multiply.6910.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21534) reduce.4811.clone.1 = f32[1024]{0} reduce(multiply.6910.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13967.clone.1 = bf16[1024]{0} convert(reduce.4811.clone.1) multiply.6908.clone.1 = f32[1024,8192]{1,0} multiply(broadcast.14555, convert.21855) reduce.4812.clone.1 = f32[1024]{0} reduce(multiply.6908.clone.1, constant_7773), dimensions={1}, to_apply=add convert.13969.clone.1 = bf16[1024]{0} convert(reduce.4812.clone.1) ROOT fusion.241 = (bf16[1024]{0}, bf16[1024]{0}, bf16[1024]{0}) tuple(convert.13970, convert.13967.clone.1, convert.13969.clone.1) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK-COUNT-3: ROOT {{.*}} convert( CHECK: ENTRY %main CHECK-COUNT-3: fusion( CHECK-NOT: fusion( )"); } TEST_F(PriorityFusionTest, DoNotFuseDynamicUpdateSliceIntoReduce) { GTEST_SKIP() << "b/294198633"; absl::string_view kHlo = R"( HloModule test_module add { Arg_1.1046 = f32[] parameter(1) Arg_0.1045 = f32[] parameter(0) ROOT add.3303 = f32[] add(Arg_0.1045, Arg_1.1046) } ENTRY main { param_0.10549 = f32[4,2112]{1,0} parameter(0) param_5.2561 = pred[] parameter(5) broadcast.19725 = pred[4,1]{1,0} broadcast(param_5.2561), dimensions={} param_1.11587 = pred[4]{0} parameter(1) constant_5837 = f32[] constant(1) broadcast.19723 = f32[4]{0} broadcast(constant_5837), dimensions={} param_2.5952 = f32[4,8000]{1,0} parameter(2) param_3.4004 = f32[4]{0} parameter(3) broadcast.19718 = f32[4,8000]{1,0} broadcast(param_3.4004), dimensions={0} subtract.1112 = f32[4,8000]{1,0} subtract(param_2.5952, broadcast.19718) exponential.418 = f32[4,8000]{1,0} exponential(subtract.1112) constant_6254 = f32[] constant(0) reduce.1154 = f32[4]{0} reduce(exponential.418, constant_6254), dimensions={1}, to_apply=add log.38 = f32[4]{0} log(reduce.1154) broadcast.19717 = f32[4,8000]{1,0} broadcast(log.38), dimensions={0} subtract.1111 = f32[4,8000]{1,0} subtract(subtract.1112, broadcast.19717) iota.170 = s32[4,1]{1,0} iota(), iota_dimension=0 constant_6281 = s32[] constant(0) broadcast.19735 = s32[4]{0} broadcast(constant_6281), dimensions={} param_4.3400 = s32[4,8000]{1,0} parameter(4) slice.3186 = s32[4,40]{1,0} slice(param_4.3400), slice={[0:4], [0:40]} iota.168 = s32[4,1]{1,0} iota(), iota_dimension=0 param_7.1596 = s32[4]{0} parameter(7) compare.341 = pred[4]{0} compare(param_7.1596, broadcast.19735), direction=LT constant_5833 = s32[] constant(40) broadcast.19731 = s32[4]{0} broadcast(constant_5833), dimensions={} add.8348 = s32[4]{0} add(param_7.1596, broadcast.19731) select.418 = s32[4]{0} select(compare.341, add.8348, param_7.1596) bitcast.20942 = s32[4,1]{1,0} bitcast(select.418) concatenate.1337 = s32[4,2]{1,0} concatenate(iota.168, bitcast.20942), dimensions={1} gather.43 = s32[4,1,1]{2,1,0} gather(slice.3186, concatenate.1337), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1} bitcast.20941 = s32[4]{0} bitcast(gather.43) select.398 = s32[4]{0} select(param_1.11587, broadcast.19735, bitcast.20941) compare.334 = pred[4]{0} compare(select.398, broadcast.19735), direction=LT constant_6260 = s32[] constant(8000) broadcast.19720 = s32[4]{0} broadcast(constant_6260), dimensions={} add.8336 = s32[4]{0} add(select.398, broadcast.19720) select.396 = s32[4]{0} select(compare.334, add.8336, select.398) bitcast.20830 = s32[4,1]{1,0} bitcast(select.396) concatenate.1308 = s32[4,2]{1,0} concatenate(iota.170, bitcast.20830), dimensions={1} gather.41 = f32[4,1,1]{2,1,0} gather(subtract.1111, concatenate.1308), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1} bitcast.20824 = f32[4]{0} bitcast(gather.41) select.389 = f32[4]{0} select(param_1.11587, broadcast.19723, bitcast.20824) bitcast.20823 = f32[4,1]{1,0} bitcast(select.389) param_6.1719 = s32[] parameter(6) constant_6323 = s32[] constant(2048) add.8549 = s32[] add(param_6.1719, constant_6323) compare.388 = pred[] compare(add.8549, constant_6281), direction=LT constant_5436 = s32[] constant(4160) add.8339 = s32[] add(param_6.1719, constant_5436) select.409 = s32[] select(compare.388, add.8339, add.8549) dynamic-slice.36 = f32[4,1]{1,0} dynamic-slice(param_0.10549, constant_6281, select.409), dynamic_slice_sizes={4,1} select.388 = f32[4,1]{1,0} select(broadcast.19725, bitcast.20823, dynamic-slice.36) ROOT dynamic-update-slice.307 = f32[4,2112]{1,0} dynamic-update-slice(param_0.10549, select.388, constant_6281, select.409) })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} dynamic-update-slice( CHECK: %[[REDUCE:.*]] = {{.*}} reduce( CHECK: ROOT {{.*}} log(%[[REDUCE]]) CHECK: ENTRY CHECK-COUNT-2: fusion( )"); } TEST_F(PriorityFusionTest, DontFuseIntoFirstOperandOfScatter) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY FuseIntoScatter { p0 = s32[3,3] parameter(0) operand = s32[3,3] add(p0, p0) p1 = s32[2] parameter(1) indices = s32[2] add(p1, p1) p2 = s32[2,3] parameter(2) updates = s32[2,3] add(p2, p2) scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 ROOT add = s32[3,3] add(scatter, scatter) })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Add(m::Fusion(&fusion), m::Fusion()))); EXPECT_EQ(fusion->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Scatter(m::Parameter(), m::Add(), m::Add()))); } TEST_F(PriorityFusionTest, DontFuseConstantIntoFirstOperandOfScatter) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY FuseIntoScatter { operand = s32[1] constant({0}) indices = s32[24,1] parameter(0) constant = s32[] constant(1) updates = s32[24,1] broadcast(constant) ROOT scatter = s32[1] scatter(operand, indices, updates), to_apply=add, update_window_dims={1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(true)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Fusion(m::Constant(), m::Parameter()))); EXPECT_EQ(root->fusion_kind(), HloInstruction::FusionKind::kInput); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Scatter(m::Parameter(), m::Parameter(), m::Broadcast(m::Constant())))); } TEST_F(PriorityFusionTest, DoNotFuseReduceIntoReduceEvenIfOccupancyIsHigh) { constexpr absl::string_view kHlo = R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY main { p0 = f32[4,3584,128,168]{3,2,1,0} parameter(0) c = f32[] constant(0) r1 = f32[4,3584,128]{2,1,0} reduce(p0, c), dimensions={3}, to_apply=add ROOT r2 = f32[4,3584]{1,0} reduce(r1, c), dimensions={2}, to_apply=add })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} reduce( CHECK: ROOT {{.*}} reduce( )"); } TEST_F(PriorityFusionTest, FuseReductionEpilogueWithMultipleUsers) { constexpr absl::string_view kHlo = R"( HloModule test_module add { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(x, y) } fused_computation { p0 = f32[64,16384]{1,0} parameter(0) c0 = f32[] constant(0) ROOT reduce.858 = f32[64]{0} reduce(p0, c0), dimensions={1}, to_apply=add } ENTRY main { p0 = f32[64,16384]{1,0} parameter(0) fusion = f32[64]{0} fusion(p0), kind=kInput, calls=fused_computation log = f32[64]{0} log(fusion) negate = f32[64]{0} custom-call(log), custom_call_target="negate" ROOT add = f32[64]{0} add(negate, log) } )"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ENTRY CHECK: %[[PARAM:.*]] = {{.*}} parameter(0) CHECK: %[[FUSION:.*]] = {{.*}} fusion(%[[PARAM]]) CHECK: custom-call(%[[FUSION]]) )"); } TEST_F(PriorityFusionTest, EpilogueFusion) { absl::string_view kHlo = R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } fused_computation.1 { p0 = f32[8,4,128,226]{3,2,1,0} parameter(0) c0 = f32[] constant(0) ROOT r0 = f32[8,4,128]{2,1,0} reduce(p0, c0), dimensions={3}, to_apply=add } fused_computation.2 { p0 = f32[8,4,128]{2,1,0} parameter(0) r1 = f32[8,4,128]{2,1,0} log(p0) ROOT r2 = f32[8,4,128]{2,1,0} log(r1) } ENTRY main { p0 = f32[8,4,128,226]{3,2,1,0} parameter(0) f1 = f32[8,4,128]{2,1,0} fusion(p0), kind=kInput, calls=%fused_computation.1 ROOT fusion = f32[8,4,128]{2,1,0} fusion(f1), kind=kLoop, calls=%fused_computation.2 })"; RunAndFilecheckHloRewrite(kHlo, std::move(priority_fusion_), R"( CHECK: ROOT {{.*}} = f32[8,4,128]{2,1,0} fusion(%p{{.*}}), kind=kInput, calls=%fused_computation)"); } TEST_F(PriorityFusionTest, EpilogueFusionFails) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add.13235 = f32[] add(p0, p1) } fused_computation.1 { p0 = f32[28672,4096]{1,0} parameter(0) c0 = f32[] constant(0) ROOT r = f32[28672]{0} reduce(p0, c0), dimensions={1}, to_apply=add } fused_computation.2 { p0 = f32[28672]{0} parameter(0) p1 = f32[28672]{0} parameter(1) ROOT a = f32[28672]{0} add(p0, p1) } ENTRY main { p0 = f32[28672,4096]{1,0} parameter(0) p1 = f32[28672]{0} parameter(1) f = f32[28672]{0} fusion(p0), kind=kInput, calls=%fused_computation.1 ROOT fusion = f32[28672]{0} fusion(f,p1), kind=kLoop, calls=%fused_computation.2 })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionTest, DoNotFuseIntoRoot) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY %main (p.0: u32[2], p.1: u32[]) -> u32[2] { %p.0 = u32[2]{0} parameter(0) %p.1 = u32[] parameter(1) ROOT %broadcast = u32[2]{0} broadcast(u32[] %p.1), dimensions={}, sharding={replicated} %add = u32[2]{0} add(u32[2]{0} %p.0, u32[2]{0} %broadcast) %tuple.1 = (u32[2]{0}) tuple(u32[2]{0} %add) %token.0 = token[] after-all() %outfeed.6 = token[] outfeed((u32[2]{0}) %tuple.1, token[] %token.0), outfeed_shape=(u32[2]{0}), sharding={maximal device=0} })"); EXPECT_THAT(priority_fusion_.Run(module.get()), IsOkAndHolds(false)); } TEST_F(PriorityFusionTest, DontFuseConcat) { auto module = *ParseAndReturnVerifiedModule(R"( HloModule module %maximum (param_0: f32[], param_1: f32[]) -> f32[] { %param_0 = f32[] parameter(0) %param_1 = f32[] parameter(1) ROOT %maximum = f32[] maximum(f32[] %param_0, f32[] %param_1) } %fused_concat (param_0: f32[1,4,401,8,8], param_1: f32[1,1,4,1023,8], param_2: bf16[1,4,1023,8,8]) -> f32[1,4,1424,8,8] { %param_2 = bf16[1,4,1023,8,8]{4,3,2,1,0} parameter(2) %convert = f32[1,4,1023,8,8]{4,3,2,1,0} convert(bf16[1,4,1023,8,8]{4,3,2,1,0} %param_2) %param_1 = f32[1,1,4,1023,8]{4,3,2,1,0} parameter(1) %bitcast = f32[4,1023,8]{2,1,0} bitcast(f32[1,1,4,1023,8]{4,3,2,1,0} %param_1) %broadcast = f32[1,4,1023,8,8]{4,3,2,1,0} broadcast(f32[4,1023,8]{2,1,0} %bitcast), dimensions={1,2,4} %add = f32[1,4,1023,8,8]{4,3,2,1,0} add(f32[1,4,1023,8,8]{4,3,2,1,0} %convert, f32[1,4,1023,8,8]{4,3,2,1,0} %broadcast) %param_0 = f32[1,4,401,8,8]{4,3,2,1,0} parameter(0) ROOT %concatenate = f32[1,4,1424,8,8]{4,3,2,1,0} concatenate(f32[1,4,1023,8,8]{4,3,2,1,0} %add, f32[1,4,401,8,8]{4,3,2,1,0} %param_0), dimensions={2} } %fused_reduce (param_0: f32[], param_1: f32[1,4,1424,8,8]) -> f32[4,8,8] { %param_1 = f32[1,4,1424,8,8]{4,3,2,1,0} parameter(1) %bitcast = f32[4,1424,8,8]{3,2,1,0} bitcast(f32[1,4,1424,8,8]{4,3,2,1,0} %param_1) %param_0 = f32[] parameter(0) ROOT %reduce = f32[4,8,8]{2,1,0} reduce(f32[4,1424,8,8]{3,2,1,0} %bitcast, f32[] %param_0), dimensions={1}, to_apply=%maximum } %fused_broadcast (param_0: f32[1,4,1424,8,8], param_1: f32[4,8,8]) -> f32[1,4,1424,8,8] { %param_0 = f32[1,4,1424,8,8]{4,3,2,1,0} parameter(0) %param_1 = f32[4,8,8]{2,1,0} parameter(1) %broadcast = f32[1,4,1424,8,8]{4,3,2,1,0} broadcast(f32[4,8,8]{2,1,0} %param_1), dimensions={1,3,4} ROOT %subtract = f32[1,4,1424,8,8]{4,3,2,1,0} subtract(f32[1,4,1424,8,8]{4,3,2,1,0} %param_0, f32[1,4,1424,8,8]{4,3,2,1,0} %broadcast) } ENTRY fusion { %param_0 = f32[1,4,401,8,8]{4,3,2,1,0} parameter(0) %param_1 = f32[1,1,4,1023,8]{4,3,2,1,0} parameter(1) %param_2 = bf16[1,4,1023,8,8]{4,3,2,1,0} parameter(2) %concat = f32[1,4,1424,8,8]{4,3,2,1,0} fusion(%param_0, %param_1, %param_2), kind=kLoop, calls=fused_concat %param_3 = f32[] parameter(3) %reduce = f32[4,8,8]{2,1,0} fusion(%param_3, %concat), kind=kLoop, calls=fused_reduce %param_4 = f32[4,8
2,038
cpp
tensorflow/tensorflow
command_buffer_scheduling
third_party/xla/xla/service/gpu/transforms/command_buffer_scheduling.cc
third_party/xla/xla/service/gpu/transforms/command_buffer_scheduling_test.cc
#ifndef XLA_SERVICE_GPU_COMMAND_BUFFER_SCHEDULING_H_ #define XLA_SERVICE_GPU_COMMAND_BUFFER_SCHEDULING_H_ #include <cstdint> #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla::gpu { class CommandBufferScheduling : public HloModulePass { public: struct CommandBufferConfig { absl::flat_hash_set<DebugOptions::CommandBufferCmdType> enabled_commands; const se::DeviceDescription& device_description; }; CommandBufferScheduling(const se::DeviceDescription& device_description, int32_t gpu_toolkit_version, int32_t gpu_driver_version); absl::string_view name() const override { return "command-buffer-scheduling"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; static std::vector<HloInstructionSequence> CollectCommandBufferSequences( HloInstructionSequence schedule, const CommandBufferConfig& config, int32_t min_num_commands = 1); static absl::Status MoveParametersAndConstantsToFront( HloComputation* computation); struct CommandBuffer { std::vector<HloInstruction*> arguments; std::vector<HloInstruction*> results; std::unique_ptr<HloComputation> computation; absl::flat_hash_map<HloInstruction*, HloInstruction*> inst_mapping; }; static absl::StatusOr<CommandBuffer> PrepareCommandBuffer( const HloInstructionSequence& seq); static absl::StatusOr<HloComputation*> RewriteCommandBuffer( HloComputation* parent, const HloInstructionSequence& seq, CommandBuffer command_buffer); private: se::DeviceDescription device_description_; int32_t gpu_toolkit_version_; int32_t gpu_driver_version_; }; } #endif #include "xla/service/gpu/command_buffer_scheduling.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/ffi/ffi_api.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { using CommandBuffer = CommandBufferScheduling::CommandBuffer; using CommandBufferConfig = CommandBufferScheduling::CommandBufferConfig; static bool IsCommand(const HloComputation* computation, const CommandBufferConfig& config); static bool IsConstant(const HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kConstant; } static bool IsParameter(const HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kParameter; } static bool IsNoOp(const HloInstruction* hlo) { return HloPredicateIsOp<HloOpcode::kBitcast, HloOpcode::kTuple, HloOpcode::kGetTupleElement>(hlo); }; template <HloOpcode op> static bool IsCommand(const HloInstruction*, const CommandBufferConfig&); template <> bool IsCommand<HloOpcode::kWhile>(const HloInstruction* hlo, const CommandBufferConfig& config) { return config.enabled_commands.contains(DebugOptions::CONDITIONALS) && IsCommand(hlo->while_body(), config) && IsCommand(hlo->while_condition(), config); } template <> bool IsCommand<HloOpcode::kConditional>(const HloInstruction* hlo, const CommandBufferConfig& config) { return config.enabled_commands.contains(DebugOptions::CONDITIONALS) && absl::c_all_of(hlo->branch_computations(), [&](const HloComputation* comp) { return IsCommand(comp, config); }); } static bool IsCommand(const HloCustomCallInstruction* hlo, const CommandBufferConfig& config) { if (config.enabled_commands.contains(DebugOptions::CUBLAS) && IsLegacyCublasMatmul(*hlo)) { return true; } if (config.enabled_commands.contains(DebugOptions::CUBLASLT) && (IsCublasLtMatmul(*hlo) || IsCublasLtMatmulF8(*hlo))) { return true; } if (!config.enabled_commands.contains(DebugOptions::CUSTOM_CALL)) { return false; } if (hlo->custom_call_target() == "triton_kernel_call" && !absl::StrContains(hlo->metadata().op_name(), "Autotuner")) { return true; } auto registration = ffi::FindHandler(hlo->custom_call_target(), "gpu"); return registration.ok() ? ffi::IsCommandBufferCompatible(registration->traits) : false; } static bool IsCommand(const HloInstruction* hlo, const CommandBufferConfig& config) { if (auto* fusion = DynCast<HloFusionInstruction>(hlo)) { auto gpu_config = fusion->backend_config<GpuBackendConfig>(); const FusionBackendConfig& backend_config = gpu_config->fusion_backend_config(); if (backend_config.kind() == kCuDnnFusionKind) { return config.enabled_commands.contains(DebugOptions::CUDNN); } const auto& custom_config = backend_config.custom_fusion_config(); if (custom_config.name() == "address_computation") { auto fusion_analysis = HloFusionAnalysis::Create(fusion, &config.device_description); const HloFusionAdaptor& adaptor = fusion_analysis.fusion(); auto custom_call_adaptor = HloFindIf( adaptor.GetRoots(), adaptor, [](auto node) { return node.opcode() == HloOpcode::kCustomCall; }); const auto* custom_call = static_cast<const HloCustomCallInstruction*>( &custom_call_adaptor->instruction()); return IsCommand(custom_call, config); } if (custom_config.name() == "dynamic_address_computation") { return false; } return config.enabled_commands.contains(DebugOptions::FUSION); } if (auto* sort = DynCast<HloSortInstruction>(hlo)) return config.enabled_commands.contains(DebugOptions::FUSION); if (hlo->opcode() == HloOpcode::kPartitionId || hlo->opcode() == HloOpcode::kReplicaId) { return config.enabled_commands.contains(DebugOptions::FUSION); } if (auto* custom_call = DynCast<HloCustomCallInstruction>(hlo)) return IsCommand(custom_call, config); if (hlo->opcode() == HloOpcode::kWhile) return IsCommand<HloOpcode::kWhile>(hlo, config); if (hlo->opcode() == HloOpcode::kConditional) return IsCommand<HloOpcode::kConditional>(hlo, config); return false; } static bool IsAsyncStartCommand(const HloInstruction* hlo, const CommandBufferConfig& config) { if (hlo->opcode() == HloOpcode::kAllReduceStart || hlo->opcode() == HloOpcode::kAllGatherStart) { return config.enabled_commands.contains(DebugOptions::COLLECTIVES); } if (hlo->opcode() == HloOpcode::kAsyncStart) { if (hlo->async_wrapped_opcode() == HloOpcode::kReduceScatter) { return config.enabled_commands.contains(DebugOptions::COLLECTIVES); } } return false; } static bool IsAsyncDoneCommand(const HloInstruction* hlo, const CommandBufferConfig& config) { if (hlo->opcode() == HloOpcode::kAllReduceDone || hlo->opcode() == HloOpcode::kAllGatherDone) { return config.enabled_commands.contains(DebugOptions::COLLECTIVES); } if (hlo->opcode() == HloOpcode::kAsyncDone) { if (hlo->async_wrapped_opcode() == HloOpcode::kReduceScatter) { return config.enabled_commands.contains(DebugOptions::COLLECTIVES); } } return false; } static HloInstruction* FindAsyncDoneCommand(const HloInstruction* start) { if (start->opcode() == HloOpcode::kAllReduceStart || start->opcode() == HloOpcode::kAllGatherStart) { CHECK(start->users().size() == 1); return start->users().front(); } else if (start->opcode() == HloOpcode::kAsyncStart) { return start->async_chain_done(); } return nullptr; } static bool IsCommand(const HloComputation* computation, const CommandBufferConfig& config) { return absl::c_all_of( computation->instructions(), [&](const HloInstruction* inst) { return IsNoOp(inst) || IsConstant(inst) || IsParameter(inst) || IsCommand(inst, config) || IsAsyncStartCommand(inst, config) || IsAsyncDoneCommand(inst, config); }); } static void RemoveTrailingNoOps(HloInstructionSequence& seq) { std::vector<HloInstruction*> instructions = seq.instructions(); for (int i = instructions.size() - 1; i >= 0; i--) { if (HloInstruction* inst = instructions[i]; IsNoOp(inst)) { seq.remove_instruction(inst); } else { break; } } } std::vector<HloInstructionSequence> CommandBufferScheduling::CollectCommandBufferSequences( const HloInstructionSequence schedule, const CommandBufferConfig& config, int32_t min_num_commands) { std::vector<HloInstructionSequence> sequences; HloInstructionSequence current_seq; int64_t num_commands_in_current_seq = 0; auto collect_current_seq = [&]() { if (num_commands_in_current_seq >= std::max(1, min_num_commands)) { RemoveTrailingNoOps(current_seq); sequences.push_back(std::move(current_seq)); } current_seq = HloInstructionSequence(); num_commands_in_current_seq = 0; }; auto& instructions = schedule.instructions(); auto collect_async_region = [&](const HloInstruction* start) { auto get_index = [&](const HloInstruction* inst) -> size_t { auto it = std::find(instructions.begin(), instructions.end(), inst); return std::distance(instructions.begin(), it); }; HloInstructionSequence seq; size_t done_index = get_index(FindAsyncDoneCommand(start)); for (size_t i = get_index(start); i <= done_index; i++) { HloInstruction* inst = instructions.at(i); if (IsAsyncStartCommand(inst, config)) { const HloInstruction* done = FindAsyncDoneCommand(inst); done_index = std::max(done_index, get_index(done)); } seq.push_back(inst); } return seq; }; auto check_async_region = [&](const HloInstructionSequence& seq) { if (!absl::c_all_of(seq.instructions(), [&](HloInstruction* inst) { return IsNoOp(inst) || IsCommand(inst, config) || IsAsyncStartCommand(inst, config) || IsAsyncDoneCommand(inst, config); })) { return false; } absl::flat_hash_set<HloInstruction*> done_instructions; for (const HloInstruction* inst : seq.instructions()) { if (IsAsyncStartCommand(inst, config)) { done_instructions.insert(FindAsyncDoneCommand(inst)); } if (IsAsyncDoneCommand(inst, config)) { if (!done_instructions.contains(inst)) { return false; } } } return true; }; for (size_t i = 0; i < instructions.size(); i++) { HloInstruction* inst = instructions.at(i); if (IsNoOp(inst) && num_commands_in_current_seq) { current_seq.push_back(inst); continue; } if (IsCommand(inst, config)) { num_commands_in_current_seq++; current_seq.push_back(inst); continue; } if (IsAsyncStartCommand(inst, config)) { HloInstructionSequence seq = collect_async_region(inst); if (check_async_region(seq)) { num_commands_in_current_seq += seq.instructions().size(); for (HloInstruction* inst : seq.instructions()) { current_seq.push_back(inst); } i += seq.instructions().size() - 1; continue; } } collect_current_seq(); } collect_current_seq(); return sequences; } absl::Status CommandBufferScheduling::MoveParametersAndConstantsToFront( HloComputation* computation) { HloInstructionSequence new_sequence; HloSchedule& schedule = computation->parent()->schedule(); HloInstructionSequence& sequence = schedule.GetOrCreateSequence(computation); for (HloInstruction* inst : sequence.instructions()) { if (IsParameter(inst) || IsConstant(inst)) { new_sequence.push_back(inst); for (HloInstruction* control_predecessor : inst->control_predecessors()) { for (HloInstruction* user : inst->users()) { TF_RETURN_IF_ERROR(control_predecessor->AddControlDependencyTo(user)); } } TF_RETURN_IF_ERROR(inst->DropAllControlDeps()); } } for (HloInstruction* inst : sequence.instructions()) { if (!IsParameter(inst) && !IsConstant(inst)) { new_sequence.push_back(inst); } } schedule.set_sequence(computation, new_sequence); return absl::OkStatus(); } absl::StatusOr<CommandBuffer> CommandBufferScheduling::PrepareCommandBuffer( const HloInstructionSequence& seq) { auto builder = HloComputation::Builder("command_buffer"); absl::Span<HloInstruction* const> instructions = absl::MakeSpan(seq.instructions()); absl::flat_hash_set<HloInstruction*> in_command_buffer(instructions.begin(), instructions.end()); absl::flat_hash_map<HloInstruction*, HloParameterInstruction*> parameters; absl::flat_hash_map<HloInstruction*, HloInstruction*> inst_mapping; auto mapped_operands = [&](HloInstruction* instr) { absl::InlinedVector<HloInstruction*, 4> operands; for (HloInstruction* operand : instr->operands()) { if (auto it = inst_mapping.find(operand); it != inst_mapping.end()) operands.push_back(it->second); } return operands; }; for (HloInstruction* inst : instructions) { for (HloInstruction* operand : inst->operands()) { if (parameters.contains(operand)) continue; if (in_command_buffer.contains(operand)) continue; int64_t parameter_id = parameters.size(); auto* parameter = Cast<HloParameterInstruction>(builder.AddInstruction( HloInstruction::CreateParameter(parameter_id, operand->shape(), absl::StrCat("p", parameter_id)))); inst_mapping[operand] = parameters[operand] = parameter; } } for (HloInstruction* inst : seq.instructions()) { HloCloneContext ctx(inst->GetModule()); for (HloComputation* called_computation : inst->called_computations()) { if (called_computation->IsAsyncComputation()) { called_computation->RemoveAsyncStart(); } ctx.MapComputation(called_computation, called_computation); } inst_mapping[inst] = builder.AddInstruction( inst->CloneWithNewOperands(inst->shape(), mapped_operands(inst), &ctx)); } std::vector<HloInstruction*> arguments(parameters.size()); for (auto& [argument, parameter] : parameters) { arguments[parameter->parameter_number()] = argument; } std::vector<HloInstruction*> results; std::vector<HloInstruction*> returned; auto has_external_users = [&](HloInstruction* inst) { return inst->IsRoot() || absl::c_any_of(inst->users(), [&](auto* user) { return !in_command_buffer.contains(user); }); }; for (HloInstruction* inst : instructions) { if (has_external_users(inst)) { results.push_back(inst); returned.push_back(inst_mapping[inst]); } } if (returned.size() > 1) { builder.AddInstruction(HloInstruction::CreateTuple(returned)); } return CommandBuffer{std::move(arguments), std::move(results), builder.Build(), std::move(inst_mapping)}; } absl::StatusOr<HloComputation*> CommandBufferScheduling::RewriteCommandBuffer( HloComputation* parent, const HloInstructionSequence& seq, CommandBuffer command_buffer) { if (command_buffer.results.empty()) return absl::InternalError("command buffer results must not be empty"); Shape cmd_buffer_result_shape; bool has_single_result = command_buffer.results.size() == 1; if (has_single_result) { cmd_buffer_result_shape = command_buffer.results[0]->shape(); } else { absl::InlinedVector<Shape, 4> shapes; shapes.reserve(command_buffer.results.size()); for (auto* res : command_buffer.results) shapes.push_back(res->shape()); cmd_buffer_result_shape = ShapeUtil::MakeTupleShape(shapes); } HloComputation* computation = parent->parent()->AddComputationAndUnifyNamesAndIds( std::move(command_buffer.computation), false); HloInstruction* call = parent->AddInstruction(HloInstruction::CreateCall( cmd_buffer_result_shape, command_buffer.arguments, computation)); if (has_single_result) { TF_RETURN_IF_ERROR(command_buffer.results[0]->ReplaceAllUsesWith(call)); } else { for (int i = 0; i < command_buffer.results.size(); i++) { TF_RETURN_IF_ERROR( command_buffer.results[i]->ReplaceAllUsesWith(parent->AddInstruction( HloInstruction::CreateGetTupleElement(call, i)))); } } HloSchedule& schedule = parent->parent()->schedule(); HloInstructionSequence& sequence = schedule.GetOrCreateSequence(parent); sequence.replace_instruction(seq.instructions().back(), call); HloInstructionSequence cmd_buffer_schedule; for (auto* argument : command_buffer.arguments) { cmd_buffer_schedule.push_back(command_buffer.inst_mapping[argument]); } for (auto* inst : seq.instructions()) { cmd_buffer_schedule.push_back(command_buffer.inst_mapping[inst]); } if (!has_single_result) { cmd_buffer_schedule.push_back(computation->root_instruction()); } schedule.set_sequence(computation, cmd_buffer_schedule); auto& inst_mapping = command_buffer.inst_mapping; for (HloInstruction* inst : seq.instructions()) { HloInstruction* cmd_inst = inst_mapping[inst]; for (HloInstruction* predecessor : inst->control_predecessors()) { if (auto it = inst_mapping.find(predecessor); it != inst_mapping.end()) { HloInstruction* cmd_predecessor = it->second; if (IsParameter(cmd_predecessor)) { TF_RETURN_IF_ERROR(predecessor->AddControlDependencyTo(call)); } else { TF_RETURN_IF_ERROR(cmd_predecessor->AddControlDependencyTo(cmd_inst)); } } else { TF_RETURN_IF_ERROR(predecessor->AddControlDependencyTo(call)); } } for (HloInstruction* successor : inst->control_successors()) { if (auto it = inst_mapping.find(successor); it != inst_mapping.end()) { HloInstruction* cmd_successor = it->second; TF_RETURN_IF_ERROR(cmd_inst->AddControlDependencyTo(cmd_successor)); } else { TF_RETURN_IF_ERROR(call->AddControlDependencyTo(successor)); } } TF_RETURN_IF_ERROR(inst->DropAllControlDeps()); } for (int32_t i = seq.instructions().size() - 1; i >= 0; i--) { TF_RETURN_IF_ERROR(parent->RemoveInstruction(seq.instructions()[i])); } return computation; } CommandBufferScheduling::CommandBufferScheduling( const se::DeviceDescription& device_description, int32_t gpu_toolkit_version, int32_t gpu_driver_version) : device_description_(device_description), gpu_toolkit_versi
#include "xla/service/gpu/command_buffer_scheduling.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/hlo_parser.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class CommandBufferSchedulingTest : public HloTestBase { public: static constexpr int32_t kCudaVersion = 12030; const se::DeviceDescription& device_desc() { return backend().default_stream_executor()->GetDeviceDescription(); } DebugOptions GetDebugOptionsForTest() override { auto debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.add_xla_gpu_enable_command_buffer(DebugOptions::FUSION); debug_options.add_xla_gpu_enable_command_buffer(DebugOptions::CONDITIONALS); debug_options.add_xla_gpu_enable_command_buffer(DebugOptions::COLLECTIVES); debug_options.add_xla_gpu_enable_command_buffer(DebugOptions::CUDNN); debug_options.set_xla_gpu_graph_min_graph_size(2); return debug_options; } }; using CommandBuffer = CommandBufferScheduling::CommandBuffer; TEST_F(CommandBufferSchedulingTest, SingleCommandBuffer) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation (param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.1 (param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[], b: s32[]) -> s32[] { %a = s32[] parameter(0) %b = s32[] parameter(1) %fusion = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation %fusion.1 = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation.1 ROOT %custom-call = s32[] custom-call(s32[] %fusion, s32[] %fusion.1), custom_call_target="some target" })"; const char* expected = R"( RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, MultipleCommandBuffers) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.1(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.2(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.3(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[], b: s32[], c: (s32[], s32[])) -> s32[] { %a = s32[] parameter(0) %b = s32[] parameter(1) %c = (s32[], s32[]) parameter(2) %fusion = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation %d = s32[] get-tuple-element((s32[], s32[]) %c), index=0 %fusion.1 = s32[] fusion(s32[] %fusion, s32[] %d), kind=kLoop, calls=%fused_computation.1 %e = s32[] get-tuple-element((s32[], s32[]) %c), index=1 %custom-call = s32[] custom-call(s32[] %fusion.1, s32[] %e), custom_call_target="some target" %fusion.2 = s32[] fusion(s32[] %custom-call, s32[] %a), kind=kLoop, calls=%fused_computation.2 %fusion.3 = s32[] fusion(s32[] %custom-call, s32[] %fusion.2), kind=kLoop, calls=%fused_computation.3 ROOT %custom-call.1 = s32[] custom-call(s32[] %fusion.3), custom_call_target="some target" })"; const char* expected = R"( RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, AllReduceStartFollowedByDone) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %add (p0: s32[4], p1: s32[4]) -> s32[4] { %p0 = s32[4] parameter(0) %p1 = s32[4] parameter(1) ROOT %add = s32[4] add(s32[4] %p0, s32[4] %p1) } ENTRY %main (a: s32[4]) -> s32[4] { %a = s32[4] parameter(0) %start = s32[4]{0} all-reduce-start(s32[4]{0} %a), replica_groups={{0,1}}, to_apply=%add, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} ROOT %done = s32[4]{0} all-reduce-done(s32[4]{0} %start) })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: s32[4]) -> s32[4] { CHECK: %[[P0]] = s32[4]{0} parameter(0) CHECK: %[[START:.+]] = s32[4]{0} all-reduce-start(%[[P0]]) CHECK: ROOT %[[DONE:.+]] = s32[4]{0} all-reduce-done(%[[START]]) CHECK: } CHECK: ENTRY %main (a: s32[4]) -> s32[4] { CHECK: %[[A:.+]] = s32[4]{0} parameter(0) CHECK: ROOT %[[CALL:.+]] = s32[4]{0} call(%[[A]]), CHECK: to_apply=%command_buffer CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, AllGatherStartFollowedByDone) { const char* hlo = R"( HloModule TestModule, is_scheduled=true ENTRY %main (a: s32[2]) -> s32[4] { %a = s32[2] parameter(0) %start = (s32[2]{0}, s32[4]{0}) all-gather-start(%a), channel_id=555, replica_groups={{0,1}}, dimensions={0}, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} ROOT %done = s32[4]{0} all-gather-done(%start) })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: s32[2]) -> s32[4] { CHECK: %[[P0]] = s32[2]{0} parameter(0) CHECK: %[[START:.+]] = {{.*}} all-gather-start(%[[P0]]) CHECK: ROOT %[[DONE:.+]] = s32[4]{0} all-gather-done(%[[START]]) CHECK: } CHECK: ENTRY %main (a: s32[2]) -> s32[4] { CHECK: %[[A:.+]] = s32[2]{0} parameter(0) CHECK: ROOT %[[CALL:.+]] = s32[4]{0} call(%[[A]]), CHECK: to_apply=%command_buffer CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, ReduceScatterStartFollowedByDone) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %add (p0: s32[], p1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[4]) -> s32[2] { %a = s32[4] parameter(0) %start = ((s32[4]{0}), s32[2]{0}) reduce-scatter-start(%a), channel_id=555, replica_groups={{0,1}}, dimensions={0}, to_apply=add, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} ROOT %done = s32[2]{0} reduce-scatter-done(%start) })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: s32[4]) -> s32[2] { CHECK: %[[P0]] = s32[4]{0} parameter(0) CHECK: %[[START:.+]] = {{.*}} reduce-scatter-start(%[[P0]]) CHECK: ROOT %[[DONE:.+]] = s32[2]{0} reduce-scatter-done(%[[START]]) CHECK: } CHECK: ENTRY %main (a: s32[4]) -> s32[2] { CHECK: %[[A:.+]] = s32[4]{0} parameter(0) CHECK: ROOT %[[CALL:.+]] = s32[2]{0} call(%[[A]]), CHECK: to_apply=%command_buffer CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, AllReduceStartFollowedByBitcast) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %add (p0: s32[4], p1: s32[4]) -> s32[4] { %p0 = s32[4] parameter(0) %p1 = s32[4] parameter(1) ROOT %add = s32[4] add(s32[4] %p0, s32[4] %p1) } ENTRY %main (a: s32[4]) -> s32[4] { %a = s32[4] parameter(0) %start = s32[4]{0} all-reduce-start(s32[4]{0} %a), replica_groups={{0,1}}, to_apply=%add, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} %bitcast = s32[4] bitcast(s32[4]{0} %a) ROOT %done = s32[4]{0} all-reduce-done(s32[4]{0} %start) })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: s32[4]) -> s32[4] { CHECK: %[[P0]] = s32[4]{0} parameter(0) CHECK: %[[START:.+]] = s32[4]{0} all-reduce-start(%[[P0]]) CHECK: %[[BITCAST:.+]] = s32[4]{0} bitcast(%[[P0]]) CHECK: ROOT %[[DONE:.+]] = s32[4]{0} all-reduce-done(%[[START]]) CHECK: } CHECK: ENTRY %main (a: s32[4]) -> s32[4] { CHECK: %[[A:.+]] = s32[4]{0} parameter(0) CHECK: ROOT %[[CALL:.+]] = s32[4]{0} call(%[[A]]), CHECK: to_apply=%command_buffer CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, AllReduceStartFollowedAllReduceStart) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %add (p0: s32[4], p1: s32[4]) -> s32[4] { %p0 = s32[4] parameter(0) %p1 = s32[4] parameter(1) ROOT %add = s32[4] add(s32[4] %p0, s32[4] %p1) } ENTRY %main (a: s32[4]) -> s32[4] { %a = s32[4] parameter(0) %start1 = s32[4]{0} all-reduce-start(s32[4]{0} %a), replica_groups={{0,1}}, to_apply=%add, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} %start2 = s32[4]{0} all-reduce-start(s32[4]{0} %a), replica_groups={{0,1}}, to_apply=%add, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} %done1 = s32[4]{0} all-reduce-done(s32[4]{0} %start1) ROOT %done2 = s32[4]{0} all-reduce-done(s32[4]{0} %start2) })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: s32[4]) -> s32[4] { CHECK: %[[P0]] = s32[4]{0} parameter(0) CHECK: %[[START1:.+]] = s32[4]{0} all-reduce-start(%[[P0]]) CHECK: %[[START2:.+]] = s32[4]{0} all-reduce-start(%[[P0]]) CHECK: %[[DONE1:.+]] = s32[4]{0} all-reduce-done(%[[START1]]) CHECK: ROOT %[[DONE2:.+]] = s32[4]{0} all-reduce-done(%[[START2]]) CHECK: } CHECK: ENTRY %main (a: s32[4]) -> s32[4] { CHECK: %[[A:.+]] = s32[4]{0} parameter(0) CHECK: ROOT %[[CALL:.+]] = s32[4]{0} call(%[[A]]), CHECK: to_apply=%command_buffer CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, DoNotCaptureUnmatchedAsyncDone) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.1(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %add (p0: s32[4], p1: s32[4]) -> s32[4] { %p0 = s32[4] parameter(0) %p1 = s32[4] parameter(1) ROOT %add = s32[4] add(s32[4] %p0, s32[4] %p1) } ENTRY %main (a: s32[4], b:s32[]) -> s32[] { %a = s32[4] parameter(0) %b = s32[] parameter(1) %start1 = s32[4]{0} all-reduce-start(s32[4]{0} %a), replica_groups={{0,1}}, to_apply=%add, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} %c = s32[] custom-call(), custom_call_target="target" %start2 = s32[4]{0} all-reduce-start(s32[4]{0} %a), replica_groups={{0,1}}, to_apply=%add, backend_config={"collective_backend_config": {"is_sync":true,"no_parallel_custom_call":false}} %done1 = s32[4]{0} all-reduce-done(s32[4]{0} %start1) %done2 = s32[4]{0} all-reduce-done(s32[4]{0} %start2) %fusion = s32[] fusion(s32[] %b, s32[] %c), kind=kLoop, calls=%fused_computation ROOT %fusion.1 = s32[] fusion(s32[] %b, s32[] %c), kind=kLoop, calls=%fused_computation.1 })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: s32[], [[P1:.+]]: s32[]) -> s32[] { CHECK: %[[P0]] = s32[] parameter(0) CHECK: %[[P1]] = s32[] parameter(1) CHECK: %fusion.2 = s32[] fusion(%[[P0]], %[[P1]]), kind=kLoop, calls=%fused_computation CHECK: ROOT %fusion.3 = s32[] fusion(%[[P0]], %[[P1]]), kind=kLoop, calls=%fused_computation.1 CHECK: } CHECK: ENTRY %main (a: s32[4], b: s32[]) -> s32[] { CHECK: %[[A:.+]] = s32[4]{0} parameter(0) CHECK: %[[B:.+]] = s32[] parameter(1) CHECK: %[[START1:.+]] = s32[4]{0} all-reduce-start(%[[A]]) CHECK: %[[C:.+]] = s32[] custom-call() CHECK: %[[START2:.+]] = s32[4]{0} all-reduce-start(%[[A]]) CHECK: %[[DONE1:.+]] = s32[4]{0} all-reduce-done(%[[START1]]) CHECK: %[[DONE2:.+]] = s32[4]{0} all-reduce-done(%[[START2]]) CHECK: %call = s32[] call(%b, %c), to_apply=%command_buffer CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, CollectCommandBufferSequence) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.1(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.2(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.3(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[], b: s32[], c: (s32[], s32[])) -> s32[] { %a = s32[] parameter(0) %b = s32[] parameter(1) %c = (s32[], s32[]) parameter(2) %fusion = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation %d = s32[] get-tuple-element((s32[], s32[]) %c), index=0 %fusion.1 = s32[] fusion(s32[] %fusion, s32[] %d), kind=kLoop, calls=%fused_computation.1 %e = s32[] get-tuple-element((s32[], s32[]) %c), index=1 %custom-call = s32[] custom-call(s32[] %fusion.1, s32[] %e), custom_call_target="some target" %fusion.2 = s32[] fusion(s32[] %custom-call, s32[] %a), kind=kLoop, calls=%fused_computation.2 ROOT %fusion.3 = s32[] fusion(s32[] %custom-call, s32[] %fusion.2), kind=kLoop, calls=%fused_computation.3 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo)); HloInstructionSequence seq; for (HloInstruction* x : module->entry_computation()->instructions()) { seq.push_back(x); } EXPECT_EQ(seq.size(), 10); CommandBufferScheduling::CommandBufferConfig config{{DebugOptions::FUSION}, device_desc()}; std::vector<HloInstructionSequence> command_buffer_sequences = CommandBufferScheduling::CollectCommandBufferSequences(seq, config); EXPECT_EQ(command_buffer_sequences.size(), 2); std::vector<HloInstruction*> seq_0 = command_buffer_sequences[0].instructions(); EXPECT_EQ(seq_0.size(), 3); EXPECT_EQ(seq_0[0]->opcode(), HloOpcode::kFusion); EXPECT_EQ(seq_0[1]->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(seq_0[2]->opcode(), HloOpcode::kFusion); std::vector<HloInstruction*> seq_1 = command_buffer_sequences[1].instructions(); EXPECT_EQ(seq_1.size(), 2); EXPECT_EQ(seq_1[0]->opcode(), HloOpcode::kFusion); EXPECT_EQ(seq_1[1]->opcode(), HloOpcode::kFusion); } TEST_F(CommandBufferSchedulingTest, MoveParametersToFront) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation (param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.1 (param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[], b: s32[], c: s32[]) -> s32[] { %a = s32[] parameter(0) %b = s32[] parameter(1) %fusion = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation %c = s32[] parameter(2) ROOT %fusion.1 = s32[] fusion(s32[] %a, s32[] %c), kind=kLoop, calls=%fused_computation.1 })"; const char* expected = R"( TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo)); TF_ASSERT_OK(CommandBufferScheduling::MoveParametersAndConstantsToFront( module->entry_computation())); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck( module->ToString(HloPrintOptions{}.set_print_operand_shape(false)), expected)); EXPECT_TRUE(filecheck_matches); } TEST_F(CommandBufferSchedulingTest, PrepareCommandBuffer) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation(param_0: s32[], param_1: s32[]) -> (s32[], s32[]) { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %tuple = (s32[], s32[]) tuple(s32[] %p0, s32[] %p1) } %fused_computation.1(param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[], b: s32[]) -> s32[] { %a = s32[] parameter(0) %b = s32[] custom-call(), custom_call_target="target" %fusion = (s32[], s32[]) fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation %d = s32[] get-tuple-element((s32[], s32[]) %fusion), index=0 %fusion.1 = s32[] fusion(s32[] %a, s32[] %d), kind=kLoop, calls=%fused_computation.1 ROOT %custom-call = s32[] custom-call(s32[] %fusion.1, s32[] %d), custom_call_target="some target" })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule(hlo)); EXPECT_EQ(module->entry_computation()->instruction_count(), 6); std::vector<HloInstruction*> instructions; HloInstructionSequence seq; for (HloInstruction* inst : module->entry_computation()->instructions()) { if (inst->opcode() == HloOpcode::kFusion || inst->opcode() == HloOpcode::kGetTupleElement) { seq.push_back(inst); } instructions.push_back(inst); } TF_ASSERT_OK_AND_ASSIGN(CommandBuffer command_buffer, CommandBufferScheduling::PrepareCommandBuffer(seq)); HloComputation* computation = module->AddComputationAndUnifyNamesAndIds( std::move(command_buffer.computation), false); const char* expected = R"( TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck(computation->ToString( HloPrintOptions{}.set_print_operand_shape(false)), expected)); EXPECT_TRUE(filecheck_matches); auto& arguments = command_buffer.arguments; ASSERT_EQ(arguments.size(), 2); EXPECT_EQ(arguments[0], instructions[0]); EXPECT_EQ(arguments[1], instructions[1]); auto& results = command_buffer.results; ASSERT_EQ(results.size(), 2); EXPECT_EQ(results[0], instructions[3]); EXPECT_EQ(results[1], instructions[4]); } TEST_F(CommandBufferSchedulingTest, ForwardControlDependencies) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation (param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.1 (param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.2 (param_0: s32[], param_1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[], b: s32[]) -> s32[] { %a = s32[] parameter(0) %b = s32[] parameter(1) %custom-call = s32[] custom-call(), custom_call_target="some target" %fusion = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation, control-predecessors={%custom-call} %fusion.1 = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation.1, control-predecessors={%fusion} %custom-call.1 = s32[] custom-call(), custom_call_target="some target" %fusion.2 = s32[] fusion(s32[] %a, s32[] %b), kind=kLoop, calls=%fused_computation.2, control-predecessors={%fusion.1} ROOT %custom-call.2 = s32[] custom-call(s32[] %fusion.1, s32[] %fusion.2), custom_call_target="some target" })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: s32[], [[P1:.+]]: s32[]) -> s32[] { CHECK: %[[P0]] = s32[] parameter(0) CHECK: %[[P1]] = s32[] parameter(1) CHECK: %[[F0:.+]] = s32[] fusion(%[[P0]], %[[P1]]) CHECK: ROOT {{.*}} = s32[] fusion(%[[P0]], %[[P1]]), {{.*}} control-predecessors={%[[F0]]} CHECK: } CHECK: ENTRY %main (a: s32[], b: s32[]) -> s32[] { CHECK: %a = s32[] parameter(0) CHECK: %b = s32[] parameter(1) CHECK: %custom-call = s32[] custom-call(), custom_call_target="some target" CHECK: %call = s32[] call(%a, %b), to_apply=%command_buffer, control-predecessors={%custom-call} CHECK: %custom-call.1 = s32[] custom-call(), custom_call_target="some target" CHECK: %[[F3:.+]] = s32[] fusion(%a, %b), kind=kLoop, calls=%fused_computation.2, control-predecessors={%call} CHECK: ROOT %custom-call.2 = s32[] custom-call(%call, %[[F3]]), custom_call_target="some target" CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, ForwardControlDependenciesToParams) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation.0 (p0: s32[], p1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } %fused_computation.1 (p0: s32[], p1: s32[]) -> s32[] { %p0 = s32[] parameter(0) %p1 = s32[] parameter(1) ROOT %add = s32[] add(s32[] %p0, s32[] %p1) } ENTRY %main (a: s32[], b: s32[]) -> s32[] { %a = s32[] parameter(0) %b = s32[] parameter(1) %custom-call = s32[] custom-call(), custom_call_target="some target" %fusion = s32[] fusion(s32[] %custom-call, s32[] %a), kind=kLoop, calls=%fused_computation.0, control-predecessors={%custom-call} ROOT %fusion.1 = s32[] fusion(s32[] %fusion, s32[] %b), kind=kLoop, calls=%fused_computation.1 })"; const char* expected = R"( CHECK: ENTRY %main (a: s32[], b: s32[]) -> s32[] { CHECK: %a = s32[] parameter(0) CHECK: %b = s32[] parameter(1) CHECK: %[[CUSTOM_CALL:.+]] = s32[] custom-call(), custom_call_target="some target" CHECK: ROOT {{.*}} call(%[[CUSTOM_CALL]], %a, %b), to_apply=%command_buffer, control-predecessors={%[[CUSTOM_CALL]]} CHECK: })"; RunAndFilecheckHloRewrite( hlo, CommandBufferScheduling(device_desc(), kCudaVersion, kCudaVersion), expected, [](HloModule* module) { EXPECT_TRUE(module->has_schedule()); TF_CHECK_OK(module->schedule().Verify()); }); } TEST_F(CommandBufferSchedulingTest, WhileNotCommand) { const char* hlo = R"( HloModule TestModule, is_scheduled=true %fused_computation (param_0: f32[1]) -> f32[1] { %param_0 = f32[1]{0} parameter(0) ROOT %copy.5 = f32[1]{0} copy(f32[1]{0} %param_0) } %fused_computation.1 (param_0.1: f32[1], param_1: f32[1]) -> f32[1] { %param_0.1 = f32[1]{0} parameter(0) %param_1 = f32[1]{0} parameter(1) ROOT %add.2 = f32[1]{0} add(f32[1]{0} %param_0.1, f32[1]{0} %param_1) } %fused_computation.2 (param_0.2: f32[1], param_1.1: f32[1]) -> pred[1] { %param_0.2 = f32[1]{0} parameter(0) %param_1.1 = f32[1]{0} parameter(1) ROOT %compare.3 = pred[1]{0} compare(f32[1]{0} %param_0.2, f32[1]{0} %param_1.1), direction=LT } %fused_computation.3 (param_0.1: f32[1], param_1: f32[1]) -> f32[1] { %param_0.1 = f32[1]{0} parameter(0) %param_1 = f32[1]{0} parameter(1) ROOT %add.2 = f32[1]{0} add(f32[1]{0} %param_0.1, f32[1]{0} %param_1) } %body (Arg_.3: f32[1]) -> f32[1] { %constant_4 = f32[1]{0} constant({1}) %Arg_.3 = f32[1]{0} parameter(0) %custom-call = s32[] custom-call(), custom_call_target="some target" %add = f32[1]{0} fusion(f32[1]{0} %Arg_.3, f32[1]{0} %constant_4), kind=kLoop, calls=%fused_computation.1, control-predecessors={%custom-call} ROOT %wrapped_add.1 = f32[1]{0} fusion(f32[1]{0} %add, f32[1]{0} %constant_4), kind=kLoop, calls=%fused_computation.3, control-predecessors={%custom-call} } %cond (Arg_.11: f32[1]) -> pred[] { %constant = f32[1]{0} constant({100}) %Arg_.11 = f32[1]{0} parameter(0) %wrapped_compare.2 = pred[1]{0} fusion(f32[1]{0} %Arg_.11, f32[1]{0} %constant), kind=kLoop, calls=%fused_computation.2 ROOT %bitcast = pred[] bitcast(pred[1]{0} %wrapped_compare.2) } ENTRY %main.18 (Arg_0.1: f32[1]) -> f32[] { %Arg_0.1 = f32[1]{0} parameter(0), sharding={replicated} %wrapped_copy.4 = f32[1]{0} fusion(f32[1]{0} %Arg_0.1), kind=kLoop, calls=%fused_computation %while.16 = f32[1]{0} while(f32[1]{0} %wrapped_copy.4), condition=%cond, body=%body ROOT %bitcast.1 = f32[] bitcast(f32[1]{0} %while.16) })"; const char* expected = R"( CHECK: %command_buffer ([[P0:.+]]: f32[1], [[P1:.+]]: f32[1]) -> f32[1] { CHECK: %[[P0]] = f32[1]{0} parameter(0) CHECK: %[[P1]] = f32[1]{0} parameter(1) CHECK: %[[ADD:.*]] = f32[1]{0} fusion(%[[P0]], %[[P1]]), kind=kLoop CHECK: ROOT {{.*}} = f32[1]{0} fusion(%[[ADD]], %[[P1]]), kind=kLoop CHECK: } CHECK: %[[BODY:[a-z_0-9.]+]] ([[P0:.+]]: f32[1]) -> f32[1] { CHECK: %[[C1:.*]] = f32[1]{0} constant({1}) CHECK: %[[P0]] = f32[1]{0} parameter(0) CHE
2,039
cpp
tensorflow/tensorflow
cudnn_pad_for_convolutions
third_party/xla/xla/service/gpu/transforms/cudnn_pad_for_convolutions.cc
third_party/xla/xla/service/gpu/transforms/cudnn_pad_for_convolutions_test.cc
#ifndef XLA_SERVICE_GPU_CUDNN_PAD_FOR_CONVOLUTIONS_H_ #define XLA_SERVICE_GPU_CUDNN_PAD_FOR_CONVOLUTIONS_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" namespace xla { namespace gpu { class CudnnPadForConvolutions : public HloModulePass { public: explicit CudnnPadForConvolutions(se::CudaComputeCapability compute_capability) : compute_capability_(compute_capability) {} absl::string_view name() const override { return "cudnn_pad_for_convolutions"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const se::CudaComputeCapability compute_capability_; }; } } #endif #include "xla/service/gpu/cudnn_pad_for_convolutions.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/functional/bind_front.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/cudnn_support_utils.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { static HloInstruction* PadInstruction(HloInstruction* instr, const Shape& new_shape) { HloComputation* comp = instr->parent(); const Shape& shape = instr->shape(); PaddingConfig pad_config = MakeNoPaddingConfig(shape.rank()); bool added_padding = false; for (int64_t dim = 0; dim < shape.rank(); ++dim) { if (shape.dimensions(dim) == new_shape.dimensions(dim)) { continue; } CHECK_GT(new_shape.dimensions(dim), shape.dimensions(dim)); pad_config.mutable_dimensions(dim)->set_edge_padding_high( new_shape.dimensions(dim) - shape.dimensions(dim)); added_padding = true; } if (!added_padding) { return instr; } auto* zero = comp->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(shape.element_type()))); return comp->AddInstruction( HloInstruction::CreatePad(new_shape, instr, zero, pad_config), &instr->metadata()); } static absl::Status PadConv(HloCustomCallInstruction* conv, absl::Span<const Shape> new_input_shapes, const Shape& new_result_shape) { CHECK_EQ(0, conv->shape().tuple_shapes(1).dimensions(0)) << "conv must use 0 scratch bytes, i.e. this pass must be run " "before CudnnConvAlgorithmPicker."; std::vector<HloInstruction*> new_operands; new_operands.reserve(conv->operand_count()); for (int i = 0; i < conv->operand_count(); ++i) { new_operands.push_back( PadInstruction(conv->mutable_operand(i), new_input_shapes[i])); } const Shape& result_shape = conv->shape().tuple_shapes(0); bool changed = false; for (int i = 0; i < conv->operand_count(); ++i) { changed |= (new_operands[i] != conv->mutable_operand(i)); } CHECK(changed) << "We should have had to pad at least one input operand."; auto add = [&](std::unique_ptr<HloInstruction> new_instr) { return conv->parent()->AddInstruction(std::move(new_instr)); }; Shape new_conv_shape = ShapeUtil::MakeTupleShape( {new_result_shape, ShapeUtil::MakeShape(U8, {0})}); auto* new_conv = add(conv->CloneWithNewOperands(new_conv_shape, new_operands)); new_conv->SetAndSanitizeName(conv->name()); VLOG(2) << "Padded features of " << conv->ToString() << ", replaced with " << new_conv->ToString(); if (!ShapeUtil::Equal(result_shape, new_result_shape)) { std::vector<int64_t> start_indices(result_shape.dimensions_size(), 0); std::vector<int64_t> end_indices(result_shape.dimensions().begin(), result_shape.dimensions().end()); std::vector<int64_t> strides(result_shape.dimensions_size(), 1); auto* new_conv_result = add( HloInstruction::CreateGetTupleElement(new_result_shape, new_conv, 0)); auto* empty_temp_buffer = add(HloInstruction::CreateConstant(LiteralUtil::CreateR1<uint8_t>({}))); auto* sliced_result = add(HloInstruction::CreateSlice( result_shape, new_conv_result, start_indices, end_indices, strides)); new_conv = add(HloInstruction::CreateTuple({sliced_result, empty_temp_buffer})); } return conv->parent()->ReplaceInstruction(conv, new_conv); } static std::vector<HloCustomCallInstruction*> GetRelevantConvs( HloComputation* comp) { std::vector<HloCustomCallInstruction*> convs; for (HloInstruction* instr : comp->instructions()) { if (IsCustomCallToDnnConvolution(*instr)) { convs.push_back(Cast<HloCustomCallInstruction>(instr)); } } return convs; } static absl::StatusOr<bool> ResolveAndPad( HloCustomCallInstruction* conv, std::function<absl::StatusOr<bool>(HloCustomCallInstruction* conv, std::vector<Shape>* new_input_shapes, Shape* new_result_shape)> resolve_pad_shapes) { std::vector<Shape> new_input_shapes; Shape new_result_shape; TF_ASSIGN_OR_RETURN(bool result, resolve_pad_shapes(conv, &new_input_shapes, &new_result_shape)); if (result) { TF_RETURN_IF_ERROR(PadConv(conv, new_input_shapes, new_result_shape)); return true; } return false; } static absl::StatusOr<bool> TryResolvePaddedShapesForTensorCore( HloCustomCallInstruction* conv, std::vector<Shape>* new_input_shapes_ptr, Shape* new_result_shape_ptr) { TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(conv)); const auto& dnums = conv->convolution_dimension_numbers(); auto* lhs = conv->mutable_operand(0); auto* rhs = conv->mutable_operand(1); const Shape& result_shape = conv->shape().tuple_shapes(0); if (result_shape.element_type() != PrimitiveType::F16) { return false; } if (conv->feature_group_count() > 1 || conv->batch_group_count() > 1) { VLOG(2) << "Do not pad grouped convolution."; return false; } if (kind == CudnnConvKind::kForwardActivation) { return false; } Shape new_lhs_shape = lhs->shape(); Shape new_rhs_shape = rhs->shape(); Shape& new_result_shape = *new_result_shape_ptr; new_result_shape = conv->shape().tuple_shapes(0); Shape* new_input_shape; Shape* new_filter_shape; Shape* new_output_shape; std::tie(new_input_shape, new_filter_shape, new_output_shape) = [&] { switch (kind) { case CudnnConvKind::kForward: case CudnnConvKind::kForwardActivation: case CudnnConvKind::kForwardGraph: return std::make_tuple(&new_lhs_shape, &new_rhs_shape, &new_result_shape); case CudnnConvKind::kBackwardInput: return std::make_tuple(&new_result_shape, &new_rhs_shape, &new_lhs_shape); case CudnnConvKind::kBackwardFilter: return std::make_tuple(&new_lhs_shape, &new_result_shape, &new_rhs_shape); } }(); auto input_features = new_input_shape->dimensions(dnums.input_feature_dimension()); auto output_features = new_output_shape->dimensions(dnums.output_feature_dimension()); if (input_features == 3 && (output_features == 32 || output_features == 64)) { new_input_shape->set_dimensions(dnums.input_feature_dimension(), 4); new_filter_shape->set_dimensions(dnums.kernel_input_feature_dimension(), 4); } else { auto pad_dim = [](Shape* s, int64_t dim) { s->set_dimensions(dim, RoundUpTo<int64_t>(s->dimensions(dim), 8)); }; pad_dim(new_input_shape, dnums.input_feature_dimension()); pad_dim(new_filter_shape, dnums.kernel_input_feature_dimension()); pad_dim(new_filter_shape, dnums.kernel_output_feature_dimension()); pad_dim(new_output_shape, dnums.output_feature_dimension()); static constexpr double kMaxBytesTouchedBound = 1.35; auto check_size_increase = [&](const Shape& old_shape, const Shape& new_shape) { int64_t old_bytes = ShapeUtil::ByteSizeOf(old_shape); int64_t new_bytes = ShapeUtil::ByteSizeOf(new_shape); if (new_bytes <= old_bytes * kMaxBytesTouchedBound) { return true; } VLOG(3) << "Not padding convolution; doing so would change input / result " "shape from " << ShapeUtil::HumanString(old_shape) << " to " << ShapeUtil::HumanString(new_shape) << ", a size increase of " << new_bytes / static_cast<double>(old_bytes) << "x > " << kMaxBytesTouchedBound << "x: " << conv->ToString(); return false; }; if (!check_size_increase(lhs->shape(), new_lhs_shape) || !check_size_increase(rhs->shape(), new_rhs_shape) || !check_size_increase(result_shape, new_result_shape)) { return false; } } if (ShapeUtil::Equal(lhs->shape(), new_lhs_shape) && ShapeUtil::Equal(rhs->shape(), new_rhs_shape)) { VLOG(3) << "No need to pad features of " << conv->ToString(); return false; } new_input_shapes_ptr->push_back(new_lhs_shape); new_input_shapes_ptr->push_back(new_rhs_shape); return true; } absl::StatusOr<bool> TryResolvePaddedShapesForIntegerConvolution( int pad_to, const se::CudaComputeCapability& compute_capability, HloCustomCallInstruction* conv, std::vector<Shape>* new_input_shapes_ptr, Shape* new_result_shape_ptr) { TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(conv)); const Shape& input_shape = conv->operand(0)->shape(); const Shape& kernel_shape = conv->operand(1)->shape(); const Shape& result_shape = conv->shape().tuple_shapes(0); if (!primitive_util::IsIntegralType(input_shape.element_type())) { return false; } if (kind != CudnnConvKind::kForward && kind != CudnnConvKind::kForwardActivation) { return false; } const auto& dnums = conv->convolution_dimension_numbers(); std::vector<Shape>& new_input_shapes = *new_input_shapes_ptr; for (auto operand : conv->operands()) { new_input_shapes.push_back(operand->shape()); } Shape& new_result_shape = *new_result_shape_ptr; new_result_shape = conv->shape().tuple_shapes(0); std::optional<int64_t> input_vect_dim; std::optional<int64_t> kernel_vect_dim; std::optional<int64_t> result_vect_dim; std::tie(input_vect_dim, kernel_vect_dim, result_vect_dim) = FindVectorizedFeatureDims(dnums, input_shape, kernel_shape, result_shape); int64_t input_vect_size = input_vect_dim.has_value() ? input_shape.dimensions(*input_vect_dim) : 1; int64_t kernel_vect_size = kernel_vect_dim.has_value() ? kernel_shape.dimensions(*kernel_vect_dim) : 1; int64_t result_vect_size = result_vect_dim.has_value() ? result_shape.dimensions(*result_vect_dim) : 1; if (pad_to % input_vect_size != 0 || pad_to % kernel_vect_size != 0 || pad_to % result_vect_size != 0) { return false; } TF_ASSIGN_OR_RETURN(bool cudnn_supports, CudnnSupportsOptimizedIntegerConvolution( compute_capability, *conv, pad_to)); if (!cudnn_supports) { return false; } { auto pad_dim = [&](Shape* s, int64_t dim, int64_t cur_vect_size) { CHECK_EQ(pad_to % cur_vect_size, 0); s->set_dimensions( dim, RoundUpTo<int64_t>(s->dimensions(dim), pad_to / cur_vect_size)); }; switch (kind) { case CudnnConvKind::kForward: CHECK_EQ(new_input_shapes.size(), 2); pad_dim(new_input_shapes.data(), dnums.input_feature_dimension(), input_vect_size); pad_dim(&new_input_shapes[1], dnums.kernel_input_feature_dimension(), kernel_vect_size); pad_dim(&new_input_shapes[1], dnums.kernel_output_feature_dimension(), 1); pad_dim(&new_result_shape, dnums.output_feature_dimension(), result_vect_size); break; case CudnnConvKind::kForwardActivation: CHECK(new_input_shapes.size() == 3 || new_input_shapes.size() == 4); pad_dim(new_input_shapes.data(), dnums.input_feature_dimension(), input_vect_size); pad_dim(&new_input_shapes[1], dnums.kernel_input_feature_dimension(), kernel_vect_size); pad_dim(&new_input_shapes[1], dnums.kernel_output_feature_dimension(), 1); pad_dim(&new_input_shapes[2], 0, 1); if (new_input_shapes.size() == 4) { pad_dim(&new_input_shapes[3], dnums.output_feature_dimension(), result_vect_size); } pad_dim(&new_result_shape, dnums.output_feature_dimension(), result_vect_size); break; default: CHECK(false); } static constexpr double kMaxBytesTouchedBound = 2; auto check_size_increase = [&](const Shape& old_shape, const Shape& new_shape) { int64_t old_bytes = ShapeUtil::ByteSizeOf(old_shape); int64_t new_bytes = ShapeUtil::ByteSizeOf(new_shape); if (new_bytes < old_bytes * kMaxBytesTouchedBound) { return true; } VLOG(3) << "Not padding convolution; doing so would change input / result " "shape from " << ShapeUtil::HumanString(old_shape) << " to " << ShapeUtil::HumanString(new_shape) << ", a size increase of " << new_bytes / static_cast<double>(old_bytes) << "x >= " << kMaxBytesTouchedBound << "x: " << conv->ToString(); return false; }; if (!check_size_increase(conv->operand(0)->shape(), new_input_shapes[0]) || !check_size_increase(result_shape, new_result_shape)) { return false; } } bool changed = false; for (int64_t i = 0; i < conv->operand_count(); ++i) { changed |= !ShapeUtil::Equal(conv->operand(i)->shape(), new_input_shapes[i]); } if (!changed) { VLOG(3) << "No need to pad features of " << conv->ToString(); } return changed; } absl::StatusOr<bool> CudnnPadForConvolutions::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloCustomCallInstruction* conv : GetRelevantConvs(comp)) { bool local_changed = false; if (compute_capability_.IsAtLeast(7, 5)) { TF_ASSIGN_OR_RETURN( local_changed, ResolveAndPad(conv, absl::bind_front( TryResolvePaddedShapesForIntegerConvolution, 32, compute_capability_))); } if (!local_changed) { TF_ASSIGN_OR_RETURN( local_changed, ResolveAndPad(conv, absl::bind_front( TryResolvePaddedShapesForIntegerConvolution, 4, compute_capability_))); } changed |= local_changed; } if (compute_capability_.IsAtLeast(se::CudaComputeCapability::VOLTA)) { for (HloCustomCallInstruction* conv : GetRelevantConvs(comp)) { TF_ASSIGN_OR_RETURN( bool local_changed, ResolveAndPad(conv, TryResolvePaddedShapesForTensorCore)); changed |= local_changed; } } } return changed; } } }
#include "xla/service/gpu/cudnn_pad_for_convolutions.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { namespace m = xla::match; class CudnnPadForConvolutionsTest : public HloTestBase {}; TEST_F(CudnnPadForConvolutionsTest, DoNotPadF16ForwardConvWhenGrouped) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[704,48,1,49]{3,2,1,0} parameter(0) filter = f16[44,768,1,50]{3,2,1,0} parameter(1) ROOT result = (f16[1,128,48,768]{3,2,1,0}, u8[0]{0}) custom-call(input, filter) , window={size=1x50 pad=0_0x64_64} , dim_labels=fb01_io01->01bf , feature_group_count=16 , custom_call_target="__cudnn$convForward" })") .value(); EXPECT_FALSE(CudnnPadForConvolutions({7, 5}).Run(module.get()).value()); } TEST_F(CudnnPadForConvolutionsTest, PadF16ForwardConvInputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[10,20,30,41] parameter(0) filter = f16[2,2,41,40] parameter(1) ROOT result = (f16[10,20,30,40], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); SCOPED_TRACE(module->ToString()); EXPECT_THAT( root, GmockMatch(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()).WithShape(F16, {10, 20, 30, 48}), m::Pad(m::Parameter(1), m::Op()).WithShape(F16, {2, 2, 48, 40})))); } TEST_F(CudnnPadForConvolutionsTest, PadF16BackwardInputConvOutputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { output = f16[10,20,30,41] parameter(0) filter = f16[2,2,40,41] parameter(1) ROOT result = (f16[10,20,30,40], u8[0]) custom-call(output, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardInput" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::CustomCall( {kCudnnConvBackwardInputCallTarget}, m::Pad(m::Parameter(0), m::Op()).WithShape(F16, {10, 20, 30, 48}), m::Pad(m::Parameter(1), m::Op()).WithShape(F16, {2, 2, 40, 48})))); } TEST_F(CudnnPadForConvolutionsTest, PadF16ForwardConvOutputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[10,20,30,40] parameter(0) filter = f16[2,2,40,41] parameter(1) ROOT result = (f16[10,20,30,41], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Parameter(0), m::Pad(m::Parameter(1), m::Op())))), m::Op()))); } TEST_F(CudnnPadForConvolutionsTest, PadF16BackwardInputConvInputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { output = f16[10,20,30,40] parameter(0) filter = f16[2,2,41,40] parameter(1) result = (f16[10,20,30,41], u8[0]) custom-call(output, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardInput" ROOT gte = f16[10,20,30,41] get-tuple-element(result), index=0 })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvBackwardInputCallTarget}, m::Parameter(0), m::Pad(m::Parameter(1), m::Op())))), m::Op())))); } TEST_F(CudnnPadForConvolutionsTest, PadF16BackwardFilterConvInputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[10,20,30,41] parameter(0) output = f16[10,20,30,40] parameter(1) result = (f16[2,2,41,40], u8[0]) custom-call(input, output), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardFilter" ROOT gte = f16[2,2,41,40] get-tuple-element(result), index=0 })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvBackwardFilterCallTarget}, m::Pad(m::Parameter(0), m::Op()), m::Parameter(1)))), m::Op())))); } TEST_F(CudnnPadForConvolutionsTest, PadF16BackwardFilterConvOutputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[10,20,30,40] parameter(0) output = f16[10,20,30,41] parameter(1) result = (f16[2,2,40,41], u8[0]) custom-call(input, output), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardFilter" ROOT gte = f16[2,2,40,41] get-tuple-element(result), index=0 })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvBackwardFilterCallTarget}, m::Parameter(0), m::Pad(m::Parameter(1), m::Op())))), m::Op())))); } TEST_F(CudnnPadForConvolutionsTest, PadInputFeatures3To4) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[10,20,30,3] parameter(0) filter = f16[2,2,3,32] parameter(1) ROOT result = (f16[10,20,30,32], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); SCOPED_TRACE(module->ToString()); EXPECT_THAT( root, GmockMatch(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()).WithShape(F16, {10, 20, 30, 4}), m::Pad(m::Parameter(1), m::Op()).WithShape(F16, {2, 2, 4, 32})))); } TEST_F(CudnnPadForConvolutionsTest, PadIntForwardConvInputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,41] parameter(0) filter = s8[2,2,41,40] parameter(1) ROOT result = (f32[10,20,30,40], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); SCOPED_TRACE(module->ToString()); EXPECT_THAT( root, GmockMatch(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()).WithShape(S8, {10, 20, 30, 44}), m::Pad(m::Parameter(1), m::Op()).WithShape(S8, {2, 2, 44, 40})))); } TEST_F(CudnnPadForConvolutionsTest, PadIntForwardConvOutputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,40] parameter(0) filter = s8[2,2,40,41] parameter(1) ROOT result = (f32[10,20,30,41], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Parameter(0), m::Pad(m::Parameter(1), m::Op())))), m::Op()))); } TEST_F(CudnnPadForConvolutionsTest, PadInt8To32OnSm75) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,40] parameter(0) filter = s8[2,2,40,41] parameter(1) ROOT result = (s8[10,20,30,41], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 5}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()).WithShape(S8, {10, 20, 30, 64}), m::Pad(m::Parameter(1), m::Op()).WithShape(S8, {2, 2, 64, 64})))), m::Op()))); } TEST_F(CudnnPadForConvolutionsTest, NoPadInt8To32OnSm70) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,40] parameter(0) filter = s8[2,2,40,41] parameter(1) ROOT result = (s8[10,20,30,41], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Parameter(0), m::Pad(m::Parameter(1), m::Op()).WithShape(S8, {2, 2, 40, 44})))), m::Op()))); } TEST_F(CudnnPadForConvolutionsTest, NoPadInt8To32FloatOutputSm75) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,38] parameter(0) filter = s8[2,2,38,41] parameter(1) ROOT result = (f32[10,20,30,41], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 5}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()).WithShape(S8, {10, 20, 30, 40}), m::Pad(m::Parameter(1), m::Op()).WithShape(S8, {2, 2, 40, 44})))), m::Op()))); } TEST_F(CudnnPadForConvolutionsTest, NoPadInt8UnsupportedFilterTypeOutputSm75) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,38] parameter(0) filter = f32[2,2,38,41] parameter(1) ROOT result = (s8[10,20,30,41], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_FALSE(CudnnPadForConvolutions({7, 5}).Run(module.get()).value()); } TEST_F(CudnnPadForConvolutionsTest, NoPadToInt8x32ExcessiveBlowup) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[128,4,48,48] parameter(0) filter = s8[64,4,3,3] parameter(1) ROOT result = (f32[128,64,48,48], u8[0]) custom-call(input, filter), window={size=3x3}, dim_labels=bf01_io01->bf01, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_FALSE(CudnnPadForConvolutions({7, 5}).Run(module.get()).value()); } TEST_F(CudnnPadForConvolutionsTest, PadInt8x4To32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,41,4] parameter(0) filter = s8[2,2,41,4,168] parameter(1) ROOT result = (s8[10,20,30,42,4], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f?_01i?o->b01f?, custom_call_target="__cudnn$convForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 5}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement( m::CustomCall({kCudnnConvForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()) .WithShape(S8, {10, 20, 30, 48, 4}), m::Pad(m::Parameter(1), m::Op()) .WithShape(S8, {2, 2, 48, 4, 192}))) .WithShape(S8, {10, 20, 30, 48, 4})), m::Op()))); } TEST_F(CudnnPadForConvolutionsTest, PadInt8x4To32BiasActivation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,41,4] parameter(0) filter = s8[2,2,41,4,168] parameter(1) bias = f32[10] parameter(2) side_input = s8[10,20,30,42,4] parameter(3) ROOT result = (s8[10,20,30,42,4], u8[0]) custom-call(input, filter, bias, side_input), window={size=2x2}, dim_labels=b01f?_01i?o->b01f?, custom_call_target="__cudnn$convBiasActivationForward" })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 5}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::Slice( m::GetTupleElement( m::CustomCall( {kCudnnConvBiasActivationForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()) .WithShape(S8, {10, 20, 30, 48, 4}), m::Pad(m::Parameter(1), m::Op()) .WithShape(S8, {2, 2, 48, 4, 192}), m::Pad(m::Parameter(2), m::Op()).WithShape(F32, {32}), m::Pad(m::Parameter(3), m::Op()) .WithShape(S8, {10, 20, 30, 48, 4}))) .WithShape(S8, {10, 20, 30, 48, 4})), m::Op()))); } TEST_F(CudnnPadForConvolutionsTest, PadIntFusedForwardConvInputAndOutputChannels) { auto module = ParseAndReturnVerifiedModule(R"( HloModule Test ENTRY %Test (input: s8[1,3,3,2], filter: s8[3,3,2,5], side_input: s8[1,3,3,5], bias: s8[5]) -> f32[1,3,3,5] { %input = s8[1,3,3,3]{3,2,1,0} parameter(0) %filter = s8[3,3,2,5]{3,2,1,0} parameter(1) %bias = s8[5]{0} parameter(3) %convert = f32[5]{0} convert(s8[5]{0} %bias) %side_input = f32[1,3,3,5]{3,2,1,0} parameter(2) %custom-call.1 = (f32[1,3,3,5]{3,2,1,0}, u8[0]{0}) custom-call(s8[1,3,3,3]{3,2,1,0} %input, s8[3,3,2,5]{3,2,1,0} %filter, f32[5]{0} %convert, f32[1,3,3,5]{3,2,1,0} %side_input), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBiasActivationForward", backend_config="{\"activationMode\":\"2\",\"convResultScale\":1,\"sideInputScale\":1}" ROOT %get-tuple-element.1 = f32[1,3,3,5]{3,2,1,0} get-tuple-element((f32[1,3,3,5]{3,2,1,0}, u8[0]{0}) %custom-call.1), index=0 })") .value(); EXPECT_TRUE(CudnnPadForConvolutions({7, 0}).Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::GetTupleElement(m::Tuple( m::Slice(m::GetTupleElement(m::CustomCall( {kCudnnConvBiasActivationForwardCallTarget}, m::Pad(m::Parameter(0), m::Op()), m::Pad(m::Parameter(1), m::Op()), m::Pad(m::Convert(m::Parameter(3)), m::Op()), m::Pad(m::Parameter(2), m::Op())))), m::Op())))); } } } }
2,040
cpp
tensorflow/tensorflow
gpu_hlo_schedule
third_party/xla/xla/service/gpu/gpu_hlo_schedule.cc
third_party/xla/xla/service/gpu/gpu_hlo_schedule_test.cc
#ifndef XLA_SERVICE_GPU_GPU_HLO_SCHEDULE_H_ #define XLA_SERVICE_GPU_GPU_HLO_SCHEDULE_H_ #include <cstdint> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" namespace xla { namespace gpu { absl::Status IsProfileApplicable( const HloModule* module, const tensorflow::profiler::ProfiledInstructionsProto& profile); struct ScheduleMetadata { int64_t scheduler_mem_limit; }; absl::StatusOr<ScheduleMetadata> ScheduleGpuModule( HloModule* module, int64_t pointer_size, const se::DeviceDescription& gpu_device_info); HloInstructionSequence PostProcessSchedule(const HloInstructionSequence& input); constexpr absl::string_view kFingerprintBeforeLHS = "fingerprint_before_lhs"; } } #endif #include "xla/service/gpu/gpu_hlo_schedule.h" #include <cstddef> #include <cstdint> #include <deque> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/buffer_value.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include "xla/service/gpu/gpu_schedule_postprocessing.h" #include "xla/service/gpu/model/analytical_latency_estimator.h" #include "xla/service/hlo_memory_scheduler.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/service/p2p_schedule_preparation.h" #include "xla/service/profile_guided_latency_estimator.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { bool ShouldScheduleAsEarlyAsPossible(const HloInstruction& instr) { switch (instr.opcode()) { case HloOpcode::kAllReduceStart: case HloOpcode::kCollectivePermuteStart: return !IsSyncCollective(&instr); case HloOpcode::kCustomCall: return static_cast<const HloCustomCallInstruction&>(instr) .custom_call_schedule() == CustomCallSchedule::SCHEDULE_EARLIEST; default: return false; } } bool ShouldScheduleSuccessor(const HloInstruction& sussessor, const HloPredicate& is_scheduled) { return ShouldScheduleAsEarlyAsPossible(sussessor) && absl::c_all_of(sussessor.operands(), is_scheduled) && absl::c_all_of(sussessor.control_predecessors(), is_scheduled); } bool ShouldScheduleAsLateAsPossible(const HloInstruction& instr) { switch (instr.opcode()) { case HloOpcode::kAllReduceDone: case HloOpcode::kCollectivePermuteDone: return ShouldScheduleAsEarlyAsPossible(*instr.operand(0)); case HloOpcode::kCustomCall: return static_cast<const HloCustomCallInstruction&>(instr) .custom_call_schedule() == CustomCallSchedule::SCHEDULE_LATEST; default: return false; } } bool ShouldSchedulePredecessor(const HloInstruction& predecessor, const HloPredicate& is_scheduled) { return ShouldScheduleAsLateAsPossible(predecessor) && absl::c_all_of(predecessor.users(), is_scheduled) && absl::c_all_of(predecessor.control_successors(), is_scheduled); } HloInstructionSequence PostprocessorToScheduleAsEarlyOrLateAsPossible( const HloInstructionSequence& input) { std::vector<HloInstruction*> earliest_scheduled; { absl::flat_hash_set<HloInstruction*> scheduled; auto is_scheduled = [&](const HloInstruction* instr) -> bool { return scheduled.contains(instr); }; auto add_to_schedule = [&](HloInstruction* instr) { earliest_scheduled.push_back(instr); scheduled.insert(instr); }; for (HloInstruction* instr : input.instructions()) { if (is_scheduled(instr)) continue; add_to_schedule(instr); for (HloInstruction* user : instr->users()) { if (is_scheduled(user)) continue; if (ShouldScheduleSuccessor(*user, is_scheduled)) { add_to_schedule(user); } } for (HloInstruction* successor : instr->control_successors()) { if (is_scheduled(successor)) continue; if (ShouldScheduleSuccessor(*successor, is_scheduled)) { add_to_schedule(successor); } } } } std::deque<HloInstruction*> latest_scheduled; { absl::flat_hash_set<HloInstruction*> scheduled; auto is_scheduled = [&](const HloInstruction* instr) -> bool { return scheduled.contains(instr); }; auto add_to_schedule = [&](HloInstruction* instr) { latest_scheduled.push_front(instr); scheduled.insert(instr); }; for (auto it = earliest_scheduled.rbegin(); it != earliest_scheduled.rend(); it++) { if (is_scheduled(*it)) continue; add_to_schedule(*it); for (HloInstruction* operand : (*it)->operands()) { if (is_scheduled(operand)) continue; if (ShouldSchedulePredecessor(*operand, is_scheduled)) { add_to_schedule(operand); } } for (HloInstruction* predecessor : (*it)->control_predecessors()) { if (is_scheduled(predecessor)) continue; if (ShouldSchedulePredecessor(*predecessor, is_scheduled)) { add_to_schedule(predecessor); } } } } HloInstructionSequence result; absl::c_for_each(latest_scheduled, [&](HloInstruction* i) { result.push_back(i); }); CHECK(input.instructions().size() == result.size()) << "schedule as early or late post-processing changed schedule size from " << input.instructions().size() << " to " << result.size(); return result; } HloInstructionSequence PostprocessorToScheduleSyncCollectives( const HloInstructionSequence& input) { HloInstructionSequence result; auto is_sync_start = [](const HloInstruction* instr) { return hlo_query::IsAsyncCollectiveStartOp(instr, true) && IsSyncCollective(instr); }; for (HloInstruction* instr : input.instructions()) { if (is_sync_start(instr)) continue; if (hlo_query::IsAsyncCollectiveDoneOp(instr, true)) { HloInstruction* start = instr->mutable_operand(0); if (is_sync_start(start)) result.push_back(start); } result.push_back(instr); } CHECK(input.instructions().size() == result.size()) << "sync collectives post-processing changed schedule size from " << input.instructions().size() << " to " << result.size(); return result; } absl::StatusOr<HloSchedule> ScheduleGpuModuleWithMemoryScheduler( const HloModule* module, int64_t pointer_size) { return ScheduleModule( module, [pointer_size](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), pointer_size); }, ComputationSchedulerToModuleScheduler(DefaultMemoryScheduler, PostProcessSchedule)); } SchedulerConfig GetSchedulerConfig(int64_t memory_limit) { SchedulerConfig config; config.all_reduce_overlap_limit = 1; config.collective_broadcast_overlap_limit = 1; config.collective_permute_overlap_limit = 1; config.use_real_cost_model = false; config.aggressive_scheduling_policies = true; config.schedule_send_recvs = true; config.memory_limit = memory_limit; return config; } tensorflow::profiler::ProfiledInstructionsProto GetProfileForFingerprint( tensorflow::profiler::ProfiledInstructionsProto& profile, const std::string& fingerprint) { tensorflow::profiler::ProfiledInstructionsProto result; bool merge_remat_clones = false; for (const auto& cost : profile.costs()) { absl::string_view cost_name = cost.name(); std::string new_cost_name = cost.name(); absl::string_view cost_sep = "::"; if (absl::StrContains(cost_name, cost_sep)) { std::vector<std::string> split_names = absl::StrSplit(cost_name, cost_sep); if (split_names.size() != 2 || split_names[0] != fingerprint) { continue; } new_cost_name = split_names[1]; } merge_remat_clones |= absl::StrContains(new_cost_name, ".remat"); auto* new_cost = result.add_costs(); new_cost->set_cost_us(cost.cost_us()); new_cost->set_name(new_cost_name); } if (!merge_remat_clones) { return result; } auto strip_remat_suffix = [](absl::string_view name) -> absl::string_view { absl::string_view suffix = ".remat"; size_t index = name.rfind(suffix); if (index == std::string::npos) { return name; } auto after_suffix = name.substr(index + suffix.size()); int64_t numeric_suffix; if (after_suffix.empty() || absl::SimpleAtoi(after_suffix, &numeric_suffix)) { return name.substr(0, index); } return name; }; absl::flat_hash_map<absl::string_view, std::pair<double, int64_t>> costs; for (const auto& cost : result.costs()) { std::pair<double, int64_t>& data = costs[strip_remat_suffix(cost.name())]; data.first += cost.cost_us(); data.second++; } tensorflow::profiler::ProfiledInstructionsProto merged_result; for (const auto& cost : costs) { auto* new_cost = merged_result.add_costs(); double average = cost.second.first / cost.second.second; new_cost->set_cost_us(average); new_cost->set_name(std::string(cost.first)); } return merged_result; } std::optional<tensorflow::profiler::ProfiledInstructionsProto> ReadPGLEProfile( const HloModule* module, const std::string& fingerprint) { tensorflow::profiler::ProfiledInstructionsProto profile; absl::string_view fdo_profile = module->config().fdo_profile(); if (!fdo_profile.empty()) { if (tsl::ParseProtoUnlimited(&profile, fdo_profile.data(), fdo_profile.size())) { LOG(INFO) << "Using PGLE profile for module from fdo_profile (binary)"; return GetProfileForFingerprint(profile, fingerprint); } profile.Clear(); if (tsl::protobuf::TextFormat::ParseFromString(std::string(fdo_profile), &profile)) { LOG(INFO) << "Using PGLE profile for module from fdo_profile (text)"; return GetProfileForFingerprint(profile, fingerprint); } LOG(ERROR) << "Unable to prase FDO profile: not a valid text or binary " "ProfiledInstructionsProto"; } const std::string& pgle_profile_file_or_dir_path = module->config() .debug_options() .xla_gpu_pgle_profile_file_or_directory_path(); if (pgle_profile_file_or_dir_path.empty()) { return std::nullopt; } tsl::Env* env = tsl::Env::Default(); auto read_text_or_binary_profile = [&profile, env, &fingerprint]( const std::string& text_path, const std::string& binary_path) -> std::optional<tensorflow::profiler::ProfiledInstructionsProto> { if (env->FileExists(text_path).ok()) { absl::Status s = tsl::ReadTextProto(env, text_path, &profile); if (s.ok()) { LOG(INFO) << "Using PGLE profile from " << text_path; return GetProfileForFingerprint(profile, fingerprint); } else { LOG(ERROR) << "Unable to read PGLE text proto from " << text_path << ": " << s.message(); } profile.Clear(); } if (env->FileExists(binary_path).ok()) { absl::Status s = tsl::ReadBinaryProto(env, binary_path, &profile); if (s.ok()) { LOG(INFO) << "Using PGLE profile from " << binary_path; return GetProfileForFingerprint(profile, fingerprint); } else { LOG(ERROR) << "Unable to read PGLE binary proto from " << binary_path << ": " << s.message(); } profile.Clear(); } return std::nullopt; }; if (env->IsDirectory(pgle_profile_file_or_dir_path).ok()) { std::string pgle_profile_path_prefix = pgle_profile_file_or_dir_path + "/" + fingerprint; return read_text_or_binary_profile(pgle_profile_path_prefix + ".pbtxt", pgle_profile_path_prefix + ".pb"); } auto extension = tsl::io::Extension(pgle_profile_file_or_dir_path); if (extension == "pbtxt") { return read_text_or_binary_profile(pgle_profile_file_or_dir_path, ""); } else if (extension == "pb") { return read_text_or_binary_profile("", pgle_profile_file_or_dir_path); } else { return read_text_or_binary_profile(pgle_profile_file_or_dir_path, pgle_profile_file_or_dir_path); } } } absl::Status IsProfileApplicable( const HloModule* module, const tensorflow::profiler::ProfiledInstructionsProto& profile) { absl::flat_hash_set<absl::string_view> all_instruction_names; for (HloComputation* comp : module->MakeNonfusionComputations()) { for (HloInstruction* instr : comp->instructions()) { all_instruction_names.insert(instr->name()); } } std::vector<std::string> missing_costs_names; for (const auto& cost : profile.costs()) { if (!all_instruction_names.contains(cost.name())) { missing_costs_names.push_back(cost.name()); } } std::vector<std::string> missing_latency_names; for (const auto& latency : profile.latencies()) { if (!all_instruction_names.contains(latency.source())) { missing_latency_names.push_back(latency.source()); } if (!all_instruction_names.contains(latency.target())) { missing_latency_names.push_back(latency.target()); } } if (!(missing_costs_names.empty() && missing_latency_names.empty())) { return absl::InvalidArgumentError( absl::StrFormat("\nMissing costs: %s;\nMissing latencies: %s", absl::StrJoin(missing_costs_names, ", "), absl::StrJoin(missing_latency_names, ", "))); } return absl::OkStatus(); } static int64_t GetSchedulerMemoryLimit( const HloModule* module, const se::DeviceDescription& gpu_device_info, int pointer_size); absl::StatusOr<ScheduleMetadata> ScheduleGpuModule( HloModule* module, int64_t pointer_size, const se::DeviceDescription& gpu_device_info) { int64_t memory_limit = GetSchedulerMemoryLimit(module, gpu_device_info, pointer_size); if (module->has_schedule()) { return ScheduleMetadata{memory_limit}; } HloPassPipeline prepare_pipeline("p2p-schedule-preparation"); prepare_pipeline.AddPass<P2PSchedulePreparation>(); TF_RETURN_IF_ERROR(prepare_pipeline.Run(module).status()); TF_ASSIGN_OR_RETURN( HloSchedule schedule, ScheduleGpuModuleWithMemoryScheduler(module, pointer_size)); TF_RETURN_IF_ERROR(module->set_schedule(std::move(schedule))); std::string fingerprint = module->GetFingerprint128( HloPrintOptions::Canonical().set_print_backend_config(true)); FrontendAttributes attributes; (*attributes.mutable_map())[std::string(kFingerprintBeforeLHS)] = fingerprint; module->add_frontend_attributes(attributes); VLOG(1) << "Fingerprint before LHS for module " << module->name() << "(" << module->unique_id() << ") = " << fingerprint; const bool enable_latency_hiding_scheduler = module->config() .debug_options() .xla_gpu_enable_latency_hiding_scheduler(); if (!enable_latency_hiding_scheduler) { return ScheduleMetadata{memory_limit}; } SchedulerConfig config = GetSchedulerConfig(memory_limit); auto gpu_latency_estimator = std::make_unique<GpuLatencyEstimator>(pointer_size); std::unique_ptr<LatencyEstimator> latency_estimator; std::optional<tensorflow::profiler::ProfiledInstructionsProto> profile = ReadPGLEProfile(module, fingerprint); const bool enable_analytical_latency_estimator = module->config() .debug_options() .xla_gpu_enable_analytical_latency_estimator(); if (profile.has_value()) { latency_estimator = std::make_unique<ProfileGuidedLatencyEstimator>( config, std::move(gpu_latency_estimator), profile.value()); LOG(INFO) << "Found profile, using profile guided latency estimator. Profile:\n" << profile->DebugString(); absl::Status s = IsProfileApplicable(module, profile.value()); if (!s.ok()) { LOG(INFO) << "PGLE profile may not applicable to the module, but will " "still be used : " << s.message(); } } else if (enable_analytical_latency_estimator) { latency_estimator = std::make_unique<AnalyticalLatencyEstimator>( config, std::move(gpu_latency_estimator), gpu_device_info, [input_pointer_size = pointer_size](const Shape& shape) { return GetSizeOfShape(shape, input_pointer_size); }, module->entry_computation()); LOG(INFO) << "Using analytical latency estimator"; } else { latency_estimator = std::move(gpu_latency_estimator); } auto async_tracker = [&]() -> std::unique_ptr<AsyncTracker> { return module->config() .debug_options() .xla_gpu_lhs_enable_gpu_async_tracker() ? std::make_unique<GpuAsyncTracker>(config) : std::make_unique<GpuAsyncTrackerBase>(config); }(); auto shape_size_in_bytes = [pointer_size](const Shape& shape) { return GetSizeOfShape(shape, pointer_size); }; HloPassPipeline pipeline("latency-hiding-scheduler"); auto scheduler_core = std::make_unique<DefaultSchedulerCore>( shape_size_in_bytes, async_tracker.get(), latency_estimator.get(), config); pipeline.AddPass<LatencyHidingScheduler>( std::move(latency_estimator), std::move(async_tracker), std::move(scheduler_core), shape_size_in_bytes); TF_RETURN_IF_ERROR(pipeline.Run(module).status()); HloPassPipeline postprocessing_pipeline("gpu-schedule-postprocessing"); postprocessing_pipeline.AddPass<GpuSchedulePostprocessing>(); TF_RETURN_IF_ERROR(postprocessing_pipeline.Run(module).status()); return ScheduleMetadata{memory_limit}; } HloInstructionSequence PostProcessSchedule( const HloInstructionSequence& input) { HloInstructionSequence result = PostprocessorToScheduleSyncCollectives(input); return PostprocessorToScheduleAsEarlyOrLateAsPossible(result); } static int64_t GetSchedulerMemoryLimit( const HloModule* module, const se::DeviceDescription& gpu_device_info, int pointer_size) { const int64_t base_limit = module->config().device_memory_size() != 0 ? module->config().device_memory_size() : gpu_device_info.device_memory_size() * 80 / 100; int64_t total_io_size = 0; for (HloInstruction* param : module->entry_computation()->parameter_instructions()) { ShapeUtil::ForEachSubshape( param->shape(), [&](const Shape& subshape, const ShapeIndex& ) { total_io_size += GetSizeOfShape(subshape, pointer_size); }); } ShapeUtil::ForEachSubshape( module->result_shape(), [&](const Shape& subshape, const ShapeIndex& ) { total_io_size += GetSizeOfShape(subshape, pointer_size); }); module->input_output_alias_config().ForEachAlias( [&](const ShapeIndex& output_index, const HloInputOutputAliasConfig::Alias&) { const Shape& subshape = ShapeUtil::GetSubshape(module->result_shape(), output_index); total_io_size -= GetSizeOfShape(subshape, pointer_size); }); int64_t limit = (base_limit - total_io_size) * module->config().debug_options().xla_gpu_memory_limit_slop_factor() / 100; return limit; } } }
#include "xla/service/gpu/gpu_hlo_schedule.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <memory> #include <optional> #include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/backend.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_ordering.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" namespace xla { namespace gpu { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; class GpuHloScheduleTest : public HloTestBase { protected: using HloVec = std::vector<HloInstruction*>; Shape f32_2x2_ = ShapeUtil::MakeShape(F32, {2, 2}); SequentialHloOrdering BuildHloOrdering(HloModule* module) { Backend& test_backend = backend(); const se::DeviceDescription& gpu_device_info = test_backend.default_stream_executor()->GetDeviceDescription(); TF_CHECK_OK(ScheduleGpuModule(module, 8, gpu_device_info) .status()); return SequentialHloOrdering{module->schedule()}; } HloModuleConfig GetModuleConfig(bool enable_latency_hiding_scheduler, bool enable_gpu_async_tracker = false, absl::string_view fdo_profile = "") { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_latency_hiding_scheduler( enable_latency_hiding_scheduler); debug_options.set_xla_gpu_lhs_enable_gpu_async_tracker( enable_gpu_async_tracker); config.set_debug_options(debug_options); *config.mutable_fdo_profile() = fdo_profile; return config; } std::unique_ptr<HloModule> CreateNewVerifiedModule( bool enable_latency_hiding_scheduler = false) { return std::make_unique<HloModule>( "test_module", GetModuleConfig(enable_latency_hiding_scheduler)); } static bool HasValidFingerprint(HloModule* module) { const FrontendAttributes& attrs = module->frontend_attributes(); auto it = attrs.map().find(kFingerprintBeforeLHS); return it != attrs.map().end() && it->second.size() == 128 / 4; } }; TEST_F(GpuHloScheduleTest, SequentialMatMul) { HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* dot1 = builder.AddInstruction(CreateCanonicalDot(f32_2x2_, x, y)); HloInstruction* dot2 = builder.AddInstruction(CreateCanonicalDot(f32_2x2_, dot1, z)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build(dot2)); SequentialHloOrdering order = BuildHloOrdering(module.get()); EXPECT_TRUE(order.ExecutesBefore(y, x)); EXPECT_TRUE(order.ExecutesBefore(y, dot1)); EXPECT_TRUE(order.ExecutesBefore(z, dot1)); EXPECT_TRUE(order.ExecutesBefore(z, dot2)); EXPECT_TRUE(order.ExecutesBefore(dot1, dot2)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, SequentialAdd) { HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, x, y)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, y, z)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, add2)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build(add3)); SequentialHloOrdering order = BuildHloOrdering(module.get()); EXPECT_TRUE(order.ExecutesBefore(y, x)); EXPECT_TRUE(order.ExecutesBefore(y, add1)); EXPECT_TRUE(order.ExecutesBefore(z, add1)); EXPECT_TRUE(order.ExecutesBefore(z, add2)); EXPECT_TRUE(order.ExecutesBefore(add1, add2)); EXPECT_TRUE(order.ExecutesBefore(add2, add3)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, AsyncCustomCall) { HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, x, y)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add0, y)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, z)); HloInstruction* nonblocking_call = builder.AddInstruction(HloInstruction::CreateCustomCall( f32_2x2_, {add0}, "nonblocking-call-start", "")); static_cast<HloCustomCallInstruction*>(nonblocking_call) ->set_custom_call_schedule(SCHEDULE_EARLIEST); TF_CHECK_OK(add1->AddControlDependencyTo(nonblocking_call)); HloInstruction* blocking_call = builder.AddInstruction(HloInstruction::CreateCustomCall( f32_2x2_, {nonblocking_call}, "blocking-call-done", "")); static_cast<HloCustomCallInstruction*>(blocking_call) ->set_custom_call_schedule(SCHEDULE_LATEST); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, add2)); HloInstruction* add4 = builder.AddInstruction(HloInstruction::CreateBinary( f32_2x2_, HloOpcode::kAdd, add3, blocking_call)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build(add4)); SequentialHloOrdering order = BuildHloOrdering(module.get()); VLOG(2) << order.ToString(); EXPECT_TRUE(order.ExecutesBefore(add0, nonblocking_call)); EXPECT_TRUE(order.ExecutesBefore(add1, nonblocking_call)); EXPECT_TRUE(order.ExecutesBefore(nonblocking_call, add2)); EXPECT_TRUE(order.ExecutesBefore(nonblocking_call, add3)); EXPECT_TRUE(order.ExecutesBefore(nonblocking_call, add4)); EXPECT_TRUE(order.ExecutesBefore(add3, blocking_call)); EXPECT_TRUE(order.ExecutesBefore(blocking_call, add4)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, AsyncCollectivePermute) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); HloComputation::Builder builder("entry_computation"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, f32_2x2_, "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, f32_2x2_, "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, f32_2x2_, "z")); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, x, y)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add0, y)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, z)); Shape u32_scalar = ShapeUtil::MakeShape(U32, {}); Shape collective_permute_start_shape = ShapeUtil::MakeTupleShape({f32_2x2_, f32_2x2_}); HloInstruction* collective_permute_start = builder.AddInstruction(HloInstruction::CreateCollectivePermuteStart( collective_permute_start_shape, add0, {{0, 1}}, std::nullopt)); TF_CHECK_OK(add1->AddControlDependencyTo(collective_permute_start)); HloInstruction* collective_permute_done = builder.AddInstruction( HloInstruction::CreateUnary(f32_2x2_, HloOpcode::kCollectivePermuteDone, collective_permute_start)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(f32_2x2_, HloOpcode::kAdd, add1, add2)); HloInstruction* add4 = builder.AddInstruction(HloInstruction::CreateBinary( f32_2x2_, HloOpcode::kAdd, add3, collective_permute_done)); module->AddEntryComputation(builder.Build(add4)); SequentialHloOrdering order = BuildHloOrdering(module.get()); VLOG(2) << order.ToString(); EXPECT_TRUE(order.ExecutesBefore(add0, collective_permute_start)); EXPECT_TRUE(order.ExecutesBefore(add1, collective_permute_start)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_start, add2)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_start, add3)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_start, add4)); EXPECT_TRUE(order.ExecutesBefore(add3, collective_permute_done)); EXPECT_TRUE(order.ExecutesBefore(collective_permute_done, add4)); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, LHSCostModel) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(dot0, p2), custom_call_target="__cublas$gemm" dot2 = f32[32,32]{1,0} custom-call(dot1, p2), custom_call_target="__cublas$gemm" dot3 = f32[32,32]{1,0} custom-call(dot2, p2), custom_call_target="__cublas$gemm" dot4 = f32[32,32]{1,0} custom-call(dot3, p2), custom_call_target="__cublas$gemm" dot5 = f32[32,32]{1,0} custom-call(dot4, p2), custom_call_target="__cublas$gemm" dot6 = f32[32,32]{1,0} custom-call(dot5, p2), custom_call_target="__cublas$gemm" ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) add0 = f32[32,32] add(dot0, dot1) add1 = f32[32,32] add(add0, dot2) add2 = f32[32,32] add(add1, dot3) add3 = f32[32,32] add(add2, dot4) add4 = f32[32,32] add(add3, dot5) add5 = f32[32,32] add(add4, dot6) ROOT t = (f32[32], f32[32], f32[32,32]) tuple(ar-done, ar-done1, add5) })"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); std::vector<int64_t> count_between_pairs; bool in_between = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->opcode() == HloOpcode::kAllReduceStart) { in_between = true; count_between_pairs.push_back(0); } else if (inst->opcode() == HloOpcode::kAllReduceDone) { in_between = false; } else if (in_between && inst->opcode() == HloOpcode::kCustomCall) { count_between_pairs.back()++; } } EXPECT_EQ(count_between_pairs.size(), 2); EXPECT_GT(count_between_pairs[0], 0); EXPECT_GT(count_between_pairs[1], 0); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, LHSCostModelCostlyAR) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = bf16[] parameter(0) y = bf16[] parameter(1) ROOT apply_op = bf16[] add(x, y) } ENTRY ar { p0 = bf16[32505856] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(dot0, p2), custom_call_target="__cublas$gemm" dot2 = f32[32,32]{1,0} custom-call(dot1, p2), custom_call_target="__cublas$gemm" dot3 = f32[32,32]{1,0} custom-call(dot2, p2), custom_call_target="__cublas$gemm" dot4 = f32[32,32]{1,0} custom-call(dot3, p2), custom_call_target="__cublas$gemm" dot5 = f32[32,32]{1,0} custom-call(dot4, p2), custom_call_target="__cublas$gemm" dot6 = f32[32,32]{1,0} custom-call(dot5, p2), custom_call_target="__cublas$gemm" ar-start = bf16[32505856] all-reduce-start(p0), to_apply=apply_op ar-done = bf16[32505856] all-reduce-done(ar-start) ROOT t = (bf16[32505856], f32[32,32]) tuple(ar-done, dot6) })"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); std::vector<int64_t> count_between_pairs; bool in_between = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->opcode() == HloOpcode::kAllReduceStart) { in_between = true; count_between_pairs.push_back(0); } else if (inst->opcode() == HloOpcode::kAllReduceDone) { in_between = false; } else if (in_between && inst->opcode() == HloOpcode::kCustomCall) { count_between_pairs.back()++; } } EXPECT_EQ(count_between_pairs.size(), 1); EXPECT_EQ(count_between_pairs[0], 7); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, ProfileGuidedCostModel) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" add0 = f32[32,32] add(dot0, dot1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) ROOT t = (f32[32], f32[32], f32[32,32]) tuple(ar-done, ar-done1, add0) })"; struct SubTest { std::string profile; std::string target_start, target_done; }; std::vector<SubTest> subtests; const std::string ar_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 1000.0 } costs { name: "ar-start1" cost_us: 10.0 } )pb"; subtests.push_back({ar_long_latency_proto_text, "ar-start", "ar-done"}); const std::string ar1_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 10.0 } costs { name: "ar-start1" cost_us: 1000.0 } )pb"; tensorflow::profiler::ProfiledInstructionsProto profile; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( ar1_long_latency_proto_text, &profile)); std::string ar1_long_latency_proto_binary = profile.SerializeAsString(); subtests.push_back({profile.SerializeAsString(), "ar-start1", "ar-done1"}); for (const SubTest& subtest : subtests) { TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true, subtest.profile))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); bool between_target_collective_pair = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->name() == subtest.target_start) { between_target_collective_pair = true; } else if (inst->name() == subtest.target_done) { between_target_collective_pair = false; } else if (inst->opcode() == HloOpcode::kDot || inst->opcode() == HloOpcode::kAdd) { EXPECT_TRUE(between_target_collective_pair); } } } } TEST_F(GpuHloScheduleTest, ProfileGuidedCostModelApplicabilityListsMissingCostsAndLatencies) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) ROOT t = (f32[32], f32[32], f32[32,32]) tuple(ar-done, ar-done1, dot0) })"; const std::string ar_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 10.0 } costs { name: "ar-start-2" cost_us: 10.0 } )pb"; tensorflow::profiler::ProfiledInstructionsProto profile; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( ar_long_latency_proto_text, &profile)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true, ar_long_latency_proto_text))); absl::Status result = IsProfileApplicable(module.get(), profile); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(result.message(), HasSubstr("add0")); EXPECT_THAT(result.message(), HasSubstr("dot1")); EXPECT_THAT(result.message(), HasSubstr("ar-start-2")); } TEST_F(GpuHloScheduleTest, ProfileGuidedCostModelWithRematData) { const char* hlo_text = R"( HloModule AsyncAR apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" add0 = f32[32,32] add(dot0, dot1) ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) ar-start1 = f32[32] all-reduce-start(p3), to_apply=apply_op ar-done1 = f32[32] all-reduce-done(ar-start1) ROOT t = (f32[32], f32[32], f32[32,32]) tuple(ar-done, ar-done1, add0) })"; const std::string ar_long_latency_proto_text = R"pb( costs { name: "dot0" cost_us: 100.0 } costs { name: "dot1" cost_us: 100.0 } costs { name: "add0" cost_us: 10.0 } costs { name: "ar-start" cost_us: 1.0 } costs { name: "ar-start1" cost_us: 1.0 } costs { name: "ar-start.remat100" cost_us: 2000.0 } )pb"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true, ar_long_latency_proto_text))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* entry = module->entry_computation(); bool between_target_collective_pair = false; for (const HloInstruction* inst : order.SequentialOrder(*entry)->instructions()) { if (inst->name() == "ar-start") { between_target_collective_pair = true; } else if (inst->name() == "ar-done") { between_target_collective_pair = false; } else if (inst->opcode() == HloOpcode::kDot || inst->opcode() == HloOpcode::kAdd) { EXPECT_TRUE(between_target_collective_pair); } } } TEST_F(GpuHloScheduleTest, LHSSendRecv) { const char* hlo_text = R"( HloModule test while_cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(25) ROOT cond_result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } recv-done = (f32[1, 1024, 1024], token[]) recv-done(recv), channel_id=1 send-done = token[] send-done(send), channel_id=1 recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT result = (u32[], f32[1, 1024, 1024]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} while_init = (u32[], f32[1, 1024, 1024]) tuple(c0, init) while_result = (u32[], f32[1, 1024, 1024]) while(while_init), body=while_body, condition=while_cond ROOT entry_result = f32[1, 1024, 1024] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* while_body = module->GetComputationWithName("while_body"); const std::vector<HloInstruction*>& instruction_sequence = order.SequentialOrder(*while_body)->instructions(); auto get_index = [&](absl::string_view hlo_name) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_LT(get_index("recv"), get_index("send")); EXPECT_LT(get_index("send"), get_index("recv-done")); EXPECT_GE(get_index("send-done") - get_index("recv-done"), 8); EXPECT_LT(abs(get_index("send-done") - get_index("result")), 2); EXPECT_TRUE(HasValidFingerprint(module.get())); } TEST_F(GpuHloScheduleTest, LHSSendRecvPairs2) { const char* hlo_text = R"( HloModule test while_cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(25) ROOT cond_result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 after-all-0 = token[] after-all() recv-0 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all-0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } send-0 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all-0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" } recv-done-0 = (f32[1, 1024, 1024], token[]) recv-done(recv-0), channel_id=1 send-done-0 = token[] send-done(send-0), channel_id=1 recv-data-0 = f32[1, 1024, 1024] get-tuple-element(recv-done-0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) bc1 = f32[1, 1024, 1024] broadcast(conv), dimensions={} after-all-1 = token[] after-all() recv-1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all-1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1, 0}}" } send-1 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all-1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1, 0}}" } recv-done-1 = (f32[1, 1024, 1024], token[]) recv-done(recv-1), channel_id=2 send-done-1 = token[] send-done(send-1), channel_id=2 recv-data-1 = f32[1, 1024, 1024] get-tuple-element(recv-done-1), index=0 add2 = f32[1, 1024, 1024] add(recv-data-0, bc1) add = f32[1, 1024, 1024] add(recv-data-1, add2) ROOT result = (u32[], f32[1, 1024, 1024]) tuple(new_count, add) } ENTRY test_computation { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} while_init = (u32[], f32[1, 1024, 1024]) tuple(c0, init) while_result = (u32[], f32[1, 1024, 1024]) while(while_init), body=while_body, condition=while_cond ROOT entry_result = f32[1, 1024, 1024] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN( auto module, ParseAndReturnVerifiedModule( hlo_text, GetModuleConfig(true, true))); SequentialHloOrdering order = BuildHloOrdering(module.get()); HloComputation* while_body = module->GetComputationWithName("while_body"); const std::vector<HloInstruction*>& instruction_sequence = order.SequentialOrder(*while_body)->instructions(); auto get_index = [&](absl::string_view hlo_name) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); }; EXPECT_TRUE(HasValidFingerprint(module.get())); EXPECT_LT(get_index("recv-1"), get_index("send-1")); EXPECT_LT(get_index("send-1"), get_index("recv-done-1")); EXPECT_GT(get_index("send-done-1"), get_index("send-1")); EXPECT_LT(get_index("send-done-1"), get_index("recv-0")); EXPECT_LT(abs(get_index("send-done-0") - get_index("result")), 2); } TEST_F(GpuHloScheduleTest, LHSSendRecvAllReduce) { const char* hlo_text = R"( HloModule test add (x: f32[], y: f32[]) -> f32[] { x = f32[] parameter(0) y = f32[] parameter(1) ROOT add = f32[] add(f32[] x, f32[] y) } while_cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(25) ROOT cond_result = pred[] compare(count, ub), direction=LT } while_body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0, 1}}" }
2,041
cpp
tensorflow/tensorflow
hlo_traversal
third_party/xla/xla/service/gpu/hlo_traversal.cc
third_party/xla/xla/service/gpu/hlo_traversal_test.cc
#ifndef XLA_SERVICE_GPU_HLO_TRAVERSAL_H_ #define XLA_SERVICE_GPU_HLO_TRAVERSAL_H_ #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" namespace xla { namespace gpu { class HloFusionAdaptor; class HloInstructionAdaptor { public: HloInstructionAdaptor() = default; HloInstructionAdaptor(const HloInstruction& instruction, const HloFusionAdaptor* parent) : instruction_(&instruction), parent_(parent) {} HloOpcode opcode() const { return instruction_->opcode(); } absl::string_view name() const { return instruction_->name(); } HloInstructionAdaptor GetOperand(int index) const; absl::InlinedVector<HloInstructionAdaptor, 2> GetOperands() const; absl::InlinedVector<HloInstructionAdaptor, 2> GetUsers() const; const xla::Shape& shape() const { return instruction_->shape(); } std::string ToString() const { return instruction_->ToString(); } friend bool operator==(const HloInstructionAdaptor& lhs, const HloInstructionAdaptor& rhs); template <typename H> friend H AbslHashValue(H h, const HloInstructionAdaptor& m); const HloInstruction& instruction() const { return *instruction_; } const HloFusionAdaptor& parent() const { return *parent_; } private: const HloInstruction* instruction_; const HloFusionAdaptor* parent_; }; template <typename H> H AbslHashValue(H h, const HloInstructionAdaptor& m) { return H::combine(std::move(h), m.instruction_->GetModule(), m.instruction_->unique_id()); } template <HloOpcode op, HloOpcode... rest> bool IsOpcodeAnyOf(const HloInstruction* instr) { return (instr->opcode() == op) || ((instr->opcode() == rest) || ...); } namespace internal { class HloFusionInstructionAdaptor { public: virtual ~HloFusionInstructionAdaptor() = default; virtual bool ContainsInstruction(const HloInstruction* instruction) const = 0; virtual absl::InlinedVector<HloInstructionAdaptor, 2> GetRoots() const = 0; virtual absl::InlinedVector<const HloInstruction*, 2> GetParameters() const = 0; virtual const HloInstruction& FusionInstruction() const = 0; virtual absl::InlinedVector<HloInstructionAdaptor, 2> MakeInstructionPostOrder() const = 0; virtual std::string ToString() const = 0; }; } class HloFusionAdaptor { public: bool ContainsInstruction(HloInstructionAdaptor instruction) const; bool ContainsInstruction(const HloInstruction* instruction) const; absl::InlinedVector<HloInstructionAdaptor, 2> GetRoots() const; absl::InlinedVector<const HloInstruction*, 2> GetParameters() const; absl::InlinedVector<HloInstructionAdaptor, 2> MakeInstructionPostOrder() const; std::string ToString() const; static std::unique_ptr<HloFusionAdaptor> ForInstruction( const HloInstruction* instruction); static std::unique_ptr<HloFusionAdaptor> ForProducerConsumer( const HloInstruction* producer, const HloInstruction* consumer); static std::unique_ptr<HloFusionAdaptor> ForComputation( const HloComputation* computation); private: void AddInstruction(const HloInstruction* instruction); void AddComputation(const HloComputation* computation); absl::InlinedVector<std::unique_ptr<internal::HloFusionInstructionAdaptor>, 2> fusion_instructions_; }; enum class TraversalResult { kAdvance, kInterrupt, kSkip, }; void HloBfsConsumersFirstTraversal( absl::Span<const HloInstructionAdaptor> roots, const HloFusionAdaptor& fusion, const std::function<TraversalResult(HloInstructionAdaptor node)>& visit_node, const std::function<void(HloInstructionAdaptor producer)>& visit_arg = [](HloInstructionAdaptor) {}); void HloBfsProducersFirstTraversal( absl::Span<const HloInstructionAdaptor> producers, const HloFusionAdaptor& fusion, const std::function<TraversalResult(HloInstructionAdaptor node)>& visit_node); bool HloAnyOf(absl::Span<const HloInstructionAdaptor> roots, const HloFusionAdaptor& fusion, const std::function<bool(HloInstructionAdaptor node)>& visit, bool visit_operands = true); bool HloAnyOf(absl::Span<const HloInstruction* const> roots, const std::function<bool(const HloInstruction* node)>& visit, bool visit_operands = true); std::optional<HloInstructionAdaptor> HloFindIf( absl::Span<const HloInstructionAdaptor> roots, const HloFusionAdaptor& fusion, const std::function<bool(HloInstructionAdaptor node)>& visit, bool visit_operands = true); std::optional<const HloInstruction*> HloFindIf( absl::Span<const HloInstruction* const> roots, const std::function<bool(const HloInstruction* node)>& visit, bool visit_operands = true); std::vector<const HloInstruction*> HloFindAll( absl::Span<const HloInstruction* const> roots, const std::function<bool(const HloInstruction* node)>& visit, bool visit_operands = true); std::vector<HloInstructionAdaptor> HloFindUseChain(HloInstructionAdaptor parent, HloInstructionAdaptor root); } } #endif #include "xla/service/gpu/hlo_traversal.h" #include <algorithm> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <queue> #include <sstream> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" namespace xla { namespace gpu { namespace { template <typename F> void ResolveUsers(const HloInstruction* value, const HloInstruction* user, const HloFusionAdaptor& fusion_adaptor, F&& fn) { if (user->opcode() == HloOpcode::kTuple && user->IsRoot()) { if (auto* fusion = user->parent()->FusionInstruction()) { for (const auto* gte : fusion->users()) { if (gte->opcode() != HloOpcode::kGetTupleElement) { fn(gte); continue; } for (const auto* gte_user : gte->users()) { ResolveUsers(gte, gte_user, fusion_adaptor, fn); } } } } else if (fusion_adaptor.ContainsInstruction(user) && user->opcode() == HloOpcode::kFusion) { auto* param = user->fused_parameter(user->operand_index(value)); for (const auto* param_user : param->users()) { fn(param_user); } } else { fn(user); } } const HloInstruction* ResolveOperand(const HloInstruction* operand, const HloFusionAdaptor& fusion_adaptor) { if (operand->opcode() == HloOpcode::kGetTupleElement && operand->operand(0)->opcode() == HloOpcode::kFusion && operand->operand(0)->fused_expression_root()->opcode() == HloOpcode::kTuple && fusion_adaptor.ContainsInstruction(operand->operand(0))) { return operand->operand(0)->fused_expression_root()->operand( operand->tuple_index()); } if (!fusion_adaptor.ContainsInstruction(operand)) { return operand; } if (operand->opcode() == HloOpcode::kFusion) { return operand->fused_expression_root(); } if (operand->opcode() == HloOpcode::kParameter) { if (auto* fusion = operand->parent()->FusionInstruction()) { return ResolveOperand(fusion->operand(operand->parameter_number()), fusion_adaptor); } } return operand; } } class SingleInstructionFusion : public internal::HloFusionInstructionAdaptor { public: explicit SingleInstructionFusion(const HloInstruction* instruction, const HloFusionAdaptor* parent) : instruction_(instruction), parent_(parent) { CHECK_NE(instruction->opcode(), HloOpcode::kFusion) << "Use HloComputationFusion"; } bool ContainsInstruction(const HloInstruction* instruction) const override { return instruction == instruction_; } absl::InlinedVector<HloInstructionAdaptor, 2> GetRoots() const override { return {HloInstructionAdaptor{*instruction_, parent_}}; } absl::InlinedVector<const HloInstruction*, 2> GetParameters() const override { const auto& operands = instruction_->operands(); return absl::InlinedVector<const HloInstruction*, 2>(operands.begin(), operands.end()); } const HloInstruction& FusionInstruction() const override { return *instruction_; } absl::InlinedVector<HloInstructionAdaptor, 2> MakeInstructionPostOrder() const override { return {HloInstructionAdaptor{*instruction_, parent_}}; } std::string ToString() const override { return instruction_->ToString(); } private: const HloInstruction* instruction_; const HloFusionAdaptor* parent_; }; class HloComputationFusion : public internal::HloFusionInstructionAdaptor { public: explicit HloComputationFusion(const HloComputation* computation, const HloFusionAdaptor* parent) : computation_(computation), parent_(parent) { CHECK(computation->IsFusionComputation()); roots_ = FindRoots(computation); } absl::InlinedVector<HloInstructionAdaptor, 2> FindRoots( const HloComputation* computation) { absl::InlinedVector<HloInstructionAdaptor, 2> roots; std::function<void(const HloInstruction*)> get_roots; get_roots = [&](const HloInstruction* instr) { if (instr->opcode() == HloOpcode::kTuple) { for (const auto* operand : instr->operands()) { get_roots(operand); } } else { HloInstructionAdaptor wrapped{*instr, parent_}; roots.push_back(wrapped); } }; get_roots(computation->root_instruction()); return roots; } bool ContainsInstruction(const HloInstruction* instruction) const override { return instruction->parent() == computation_ || instruction == computation_->FusionInstruction(); } absl::InlinedVector<HloInstructionAdaptor, 2> GetRoots() const override { CHECK(!roots_.empty()) << "No roots found in the computation. HloFusionAdaptor was likely " "created for a non-fusion computation: " << computation_->ToString(); return roots_; } absl::InlinedVector<const HloInstruction*, 2> GetParameters() const override { const auto& operands = computation_->FusionInstruction()->operands(); return absl::InlinedVector<const HloInstruction*, 2>(operands.begin(), operands.end()); } const HloInstruction& FusionInstruction() const override { return *computation_->FusionInstruction(); } absl::InlinedVector<HloInstructionAdaptor, 2> MakeInstructionPostOrder() const override { auto post_order = computation_->MakeInstructionPostOrder(); absl::InlinedVector<HloInstructionAdaptor, 2> result; result.reserve(post_order.size() - computation_->num_parameters()); for (auto* instr : post_order) { if (instr->opcode() == HloOpcode::kParameter || (instr->opcode() == HloOpcode::kTuple && instr->IsRoot())) { continue; } result.emplace_back(*instr, parent_); } return result; } std::string ToString() const override { return computation_->ToString(); } private: const HloComputation* computation_; absl::InlinedVector<HloInstructionAdaptor, 2> roots_; const HloFusionAdaptor* parent_; }; std::unique_ptr<HloFusionAdaptor> HloFusionAdaptor::ForInstruction( const HloInstruction* instruction) { if (instruction->opcode() == HloOpcode::kFusion) { return ForComputation(instruction->fused_instructions_computation()); } auto fusion_adaptor = std::make_unique<HloFusionAdaptor>(); fusion_adaptor->AddInstruction(instruction); return fusion_adaptor; } std::unique_ptr<HloFusionAdaptor> HloFusionAdaptor::ForProducerConsumer( const HloInstruction* producer, const HloInstruction* consumer) { auto fusion_adaptor = std::make_unique<HloFusionAdaptor>(); fusion_adaptor->AddInstruction(producer); fusion_adaptor->AddInstruction(consumer); return fusion_adaptor; } std::unique_ptr<HloFusionAdaptor> HloFusionAdaptor::ForComputation( const HloComputation* computation) { auto fusion_adaptor = std::make_unique<HloFusionAdaptor>(); fusion_adaptor->AddComputation(computation); return fusion_adaptor; } bool HloFusionAdaptor::ContainsInstruction( HloInstructionAdaptor instruction) const { return ContainsInstruction(&instruction.instruction()); } bool HloFusionAdaptor::ContainsInstruction( const HloInstruction* instruction) const { for (const auto& fusion_instruction : fusion_instructions_) { if (fusion_instruction->ContainsInstruction(instruction)) return true; } return false; } absl::InlinedVector<HloInstructionAdaptor, 2> HloFusionAdaptor::GetRoots() const { auto roots = fusion_instructions_.back()->GetRoots(); if (fusion_instructions_.size() == 1) { return roots; } CHECK_EQ(fusion_instructions_.size(), 2); auto producer_roots = fusion_instructions_[0]->GetRoots(); const HloInstruction& producer_fusion = fusion_instructions_[0]->FusionInstruction(); const HloInstruction& consumer_fusion = fusion_instructions_.back()->FusionInstruction(); for (auto& root : roots) { if (root.opcode() != HloOpcode::kParameter) { continue; } const HloInstruction* operand = consumer_fusion.operand(root.instruction().parameter_number()); int64_t root_index = 0; if (operand->opcode() == HloOpcode::kGetTupleElement) { root_index = operand->tuple_index(); operand = operand->operand(0); } if (operand == &producer_fusion) { root = producer_roots[root_index]; } } if (!producer_fusion.IsMultiOutputFusion()) { return roots; } absl::flat_hash_set<int64_t> root_indices_with_outside_usage; for (HloInstruction* instr : producer_fusion.users()) { bool has_outside_user = false; int64_t root_index = 0; if (instr->opcode() == HloOpcode::kGetTupleElement) { for (HloInstruction* user : instr->users()) { if (user != &consumer_fusion) { root_index = instr->tuple_index(); has_outside_user = true; break; } } } else if (instr != &consumer_fusion) { has_outside_user = true; } if (has_outside_user) { root_indices_with_outside_usage.insert(root_index); } } for (int64_t i = 0; i < producer_roots.size(); ++i) { if (!root_indices_with_outside_usage.contains(i)) { continue; } if (producer_roots[i].opcode() != HloOpcode::kParameter) { roots.push_back(producer_roots[i]); } } return roots; } absl::InlinedVector<const HloInstruction*, 2> HloFusionAdaptor::GetParameters() const { if (fusion_instructions_.size() == 1) { return fusion_instructions_.back()->GetParameters(); } CHECK_EQ(fusion_instructions_.size(), 2); absl::InlinedVector<const HloInstruction*, 2> combined_parameters; const HloInstruction& producer_fusion = fusion_instructions_[0]->FusionInstruction(); for (const auto& param : fusion_instructions_.back()->GetParameters()) { const HloInstruction* operand = param; if (operand->opcode() == HloOpcode::kGetTupleElement) { operand = operand->operand(0); } if (operand != &producer_fusion) { combined_parameters.push_back(param); } } absl::flat_hash_set<const HloInstruction*> params(combined_parameters.begin(), combined_parameters.end()); auto producer_roots = fusion_instructions_[0]->GetRoots(); absl::flat_hash_set<const HloInstruction*> parameters_to_skip; for (const auto& root : producer_roots) { if (root.opcode() == HloOpcode::kParameter) { if (&root.instruction() == &producer_fusion) { parameters_to_skip.insert(&producer_fusion); } else if (root.instruction().user_count() <= 1) { parameters_to_skip.insert( producer_fusion.operand(root.instruction().parameter_number())); } } } for (auto param : fusion_instructions_[0]->GetParameters()) { if (!parameters_to_skip.contains(param) && params.insert(param).second) { combined_parameters.push_back(param); } } return combined_parameters; } absl::InlinedVector<HloInstructionAdaptor, 2> HloFusionAdaptor::MakeInstructionPostOrder() const { absl::InlinedVector<HloInstructionAdaptor, 2> result_post_order; for (const auto& fusion_instruction : fusion_instructions_) { absl::c_move(fusion_instruction->MakeInstructionPostOrder(), std::back_inserter(result_post_order)); } return result_post_order; } std::string HloFusionAdaptor::ToString() const { std::ostringstream ss; for (const auto& fusion_instruction : fusion_instructions_) { ss << fusion_instruction->ToString() << "\n"; } return ss.str(); } void HloFusionAdaptor::AddInstruction(const HloInstruction* instruction) { if (instruction->opcode() == HloOpcode::kFusion) { AddComputation(instruction->fused_instructions_computation()); } else { fusion_instructions_.push_back( std::make_unique<SingleInstructionFusion>(instruction, this)); } } void HloFusionAdaptor::AddComputation(const HloComputation* computation) { fusion_instructions_.push_back( std::make_unique<HloComputationFusion>(computation, this)); } absl::InlinedVector<HloInstructionAdaptor, 2> HloInstructionAdaptor::GetOperands() const { absl::InlinedVector<HloInstructionAdaptor, 2> operands; if (instruction_->opcode() == HloOpcode::kParameter) { auto operand = ResolveOperand(instruction_, *parent_); if (operand != instruction_) { operands.emplace_back(*operand, parent_); } } else { for (const auto* operand : instruction_->operands()) { operands.emplace_back(*ResolveOperand(operand, *parent_), parent_); } } return operands; } HloInstructionAdaptor HloInstructionAdaptor::GetOperand(int index) const { return HloInstructionAdaptor{ *ResolveOperand(instruction_->operand(index), *parent_), parent_}; } absl::InlinedVector<HloInstructionAdaptor, 2> HloInstructionAdaptor::GetUsers() const { absl::InlinedVector<HloInstructionAdaptor, 2> users; auto add_user = [&](const HloInstruction* instr) { users.emplace_back(*instr, parent_); }; if (instruction_->IsRoot()) { if (auto* fusion = instruction_->parent()->FusionInstruction()) { for (auto* user : fusion->users()) { ResolveUsers(fusion, user, *parent_, add_user); } } } for (auto* user : instruction_->users()) { ResolveUsers(instruction_, user, *parent_, add_user); } return users; } bool operator==(const HloInstructionAdaptor& lhs, const HloInstructionAdaptor& rhs) { return lhs.instruction_->GetModule() == rhs.instruction_->GetModule() && lhs.instruction_->unique_id() == rhs.instruction_->unique_id(); } namespace { void HloBfsTraversal( absl::Span<const HloInstructionAdaptor> roots, const HloFusionAdaptor& fusion, const std::function<TraversalResult(HloInstructionAdaptor node)>& visit_node, const std::function<void(HloInstructionAdaptor producer)>& visit_arg, bool visit_operands) { absl::flat_hash_set<HloInstructionAdaptor> visited; std::queue<HloInstructionAdaptor> q; auto enqueue = [&](const HloInstructionAdaptor& node) { const auto& adjacent_nodes = visit_operands ? node.GetOperands() : node.GetUsers(); for (const auto& node : adjacent_nodes) { if (visited.insert(node).second) { if (fusion.ContainsInstruction(node)) { q.push(node); } else { visit_arg(node); } } } }; for (auto root : roots) { if (visited.insert(root).second) { q.push(root); } } while (!q.empty()) { HloInstructionAdaptor node = q.front(); q.pop(); switch (visit_node(node)) { case TraversalResult::kAdvance: enqueue(node); break; case TraversalResult::kInterrupt: return; case TraversalResult::kSkip: break; } } } } void HloBfsConsumersFirstTraversal( absl::Span<const HloInstructionAdaptor> roots, const HloFusionAdaptor& fusion, const std::function<TraversalResult(HloInstructionAdaptor node)>& visit_node, const std::function<void(HloInstructionAdaptor producer)>& visit_arg) { HloBfsTraversal(roots, fusion, visit_node, visit_arg, true); } void HloBfsProducersFirstTraversal( absl::Span<const HloInstructionAdaptor> producers, const HloFusionAdaptor& fusion, const std::function<TraversalResult(HloInstructionAdaptor node)>& visit_node) { HloBfsTraversal( producers, fusion, visit_node, [](HloInstructionAdaptor) {}, false); } bool HloAnyOf(absl::Span<const HloInstructionAdaptor> roots, const HloFusionAdaptor& fusion, const std::function<bool(HloInstructionAdaptor node)>& visit, bool visit_operands) { return HloFindIf(roots, fusion, visit, visit_operands).has_value(); } bool HloAnyOf(absl::Span<const HloInstruction* const> roots, const std::function<bool(const HloInstruction* node)>& visit, bool visit_operands) { return HloFindIf(roots, visit, visit_operands).has_value(); } std::optional<HloInstructionAdaptor> HloFindIf( absl::Span<const HloInstructionAdaptor> roots, const HloFusionAdaptor& fusion, const std::function<bool(HloInstructionAdaptor node)>& visit, bool visit_operands) { std::optional<HloInstructionAdaptor> result = std::nullopt; HloBfsTraversal( roots, fusion, [&](HloInstructionAdaptor node) { if (visit(node)) { result = node; return TraversalResult::kInterrupt; } return TraversalResult::kAdvance; }, [](HloInstructionAdaptor) {}, visit_operands); return result; } std::vector<const HloInstruction*> HloFindAllImpl( absl::Span<const HloInstruction* const> roots, const std::function<bool(const HloInstruction* node)>& visit, bool visit_operands, bool find_first_only = false) { std::vector<const HloInstruction*> result; absl::flat_hash_set<const HloInstruction*> visited; std::queue<const HloInstruction*> q; auto enqueue = [&](const HloInstruction* node) { if (visit_operands) { for (const HloInstruction* operand : node->operands()) { if (visited.insert(operand).second) { q.push(operand); } } } else { for (const HloInstruction* operand : node->users()) { if (visited.insert(operand).second) { q.push(operand); } } } }; for (auto root : roots) { if (visited.insert(root).second) { q.push(root); } } while (!q.empty()) { const HloInstruction* node = q.front(); q.pop(); if (visit(node)) { result.push_back(node); if (find_first_only) { return result; } } enqueue(node); } return result; } std::optional<const HloInstruction*> HloFindIf( absl::Span<const HloInstruction* const> roots, const std::function<bool(const HloInstruction* node)>& visit, bool visit_operands) { auto result = HloFindAllImpl(roots, visit, visit_operands, true); if (result.empty()) { return std::nullopt; } return result[0]; } std::vector<const HloInstruction*> HloFindAll( absl::Span<const HloInstruction* const> roots, const std::function<bool(const HloInstruction* node)>& visit, bool visit_operands) { std::vector<const HloInstruction*> result; return HloFindAllImpl(roots, visit, visit_operands); } std::vector<HloInstructionAdaptor> HloFindUseChain(HloInstructionAdaptor parent, HloInstructionAdaptor root) { absl::flat_hash_set<HloInstructionAdaptor> visited; std::vector<HloInstructionAdaptor> result; std::function<bool(HloInstructionAdaptor)> visit; visit = [&](HloInstructionAdaptor node) { if (node == root) return true; for (const auto& user : node.GetUsers()) { if (visited.insert(user).second && visit(user)) { result.push_back(user); return true; } } return false; }; if (visit(parent)) { result.push_back(parent); std::reverse(result.begin(), result.end()); } else { result.clear(); } return result; } } }
#include "xla/service/gpu/hlo_traversal.h" #include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using ::testing::ElementsAre; using ::testing::IsEmpty; MATCHER_P(InstructionAdaptorName, name, "") { return arg.name() == name; } class HloTraversalTest : public HloTestBase {}; const char kTestModule[] = R"( HloModule test scalar_add_computation { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) ROOT add.0 = f32[] add(scalar_lhs.0, scalar_rhs.0) } fused_computation { p0.1 = f32[] parameter(0) p1.1 = f32[128] parameter(1) mul = f32[128] multiply(p1.1, p1.1) ROOT reduce.1 = f32[] reduce(mul, p0.1), dimensions={0}, to_apply=scalar_add_computation } fused_computation_1 { p0.2 = f32[] parameter(0) zero = f32[] constant(0.0) is_positive = pred[] compare(p0.2, zero), direction=GE not = pred[] not(is_positive) ROOT tuple = (pred[], pred[]) tuple(is_positive, not) } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128] parameter(1) sum = f32[128] add(p1, p1) log = f32[128] log(sum) negate = f32[128] negate(log) fusion = f32[] fusion(p0, negate), kind=kLoop, calls=fused_computation fusion2 = (pred[], pred[]) fusion(fusion), kind=kLoop, calls=fused_computation_1 gte = pred[] get-tuple-element(fusion2), index=0 ROOT select = f32[] select(gte, fusion, p0) })"; TEST_F(HloTraversalTest, AdaptorOperands) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer( module->entry_computation()->GetInstructionWithName("fusion2"), module->entry_computation()->GetInstructionWithName("select")); HloInstructionAdaptor instr = fusion_adaptor->GetRoots()[0]; EXPECT_THAT(instr.GetOperands(), ElementsAre(InstructionAdaptorName("is_positive"), InstructionAdaptorName("fusion"), InstructionAdaptorName("p0"))); } TEST_F(HloTraversalTest, AdaptorUsers) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test fused_computation { p0 = f32[] parameter(0) neg = f32[] negate(p0) add = f32[] add(p0, neg) ROOT t = (f32[], f32[]) tuple(neg, add) } fused_computation_1 { p0.0 = f32[] parameter(0) mul = f32[] multiply(p0.0, p0.0) ROOT neg.1 = f32[] negate(mul) } ENTRY entry { p0 = f32[] parameter(0) fusion = (f32[], f32[]) fusion(p0), kind=kLoop, calls=fused_computation gte = f32[] get-tuple-element(fusion), index=0 add.1 = f32[] add(p0, gte) fusion2 = f32[] fusion(gte), kind=kLoop, calls=fused_computation_1 exp.1 = f32[] exponential(fusion2) ROOT res = (f32[], (f32[], f32[]), f32[], f32[]) tuple(add.1, fusion, fusion2, exp.1) } )") .value(); auto fusion_adaptor1 = HloFusionAdaptor::ForProducerConsumer( module->entry_computation()->GetInstructionWithName("fusion"), module->entry_computation()->GetInstructionWithName("fusion2")); HloInstructionAdaptor add{*module->GetComputationWithName("fused_computation") ->GetInstructionWithName("add"), fusion_adaptor1.get()}; EXPECT_THAT(add.GetUsers(), ElementsAre(InstructionAdaptorName("add.1"), InstructionAdaptorName("mul"), InstructionAdaptorName("res"))); auto fusion_adaptor2 = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion2")); HloInstructionAdaptor mul{ *module->GetComputationWithName("fused_computation_1") ->GetInstructionWithName("mul"), fusion_adaptor2.get()}; EXPECT_THAT(mul.GetUsers(), ElementsAre(InstructionAdaptorName("neg.1"))); HloInstructionAdaptor neg{ *module->GetComputationWithName("fused_computation_1") ->GetInstructionWithName("neg.1"), fusion_adaptor2.get()}; EXPECT_THAT(neg.GetUsers(), ElementsAre(InstructionAdaptorName("exp.1"))); } TEST_F(HloTraversalTest, TraverseFusionConsumerFirst) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); std::vector<std::string> visited_nodes; std::vector<std::string> visited_args; auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); HloBfsConsumersFirstTraversal( fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { visited_nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }, [&](HloInstructionAdaptor arg) { visited_args.emplace_back(arg.name()); }); EXPECT_THAT(visited_nodes, ElementsAre("reduce.1", "mul")); EXPECT_THAT(visited_args, ElementsAre("p0", "negate")); } TEST_F(HloTraversalTest, TraverseFusionConsumerFirstFromFusionRootAndInnerNode) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); std::vector<std::string> visited_nodes; std::vector<std::string> visited_args; auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); auto root = fusion->GetRoots()[0]; HloBfsConsumersFirstTraversal( {root, root.GetOperand(0)}, *fusion, [&](HloInstructionAdaptor node) { visited_nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }, [&](HloInstructionAdaptor arg) { visited_args.emplace_back(arg.name()); }); EXPECT_THAT(visited_nodes, ElementsAre("reduce.1", "mul")); EXPECT_THAT(visited_args, ElementsAre("p0", "negate")); } TEST_F(HloTraversalTest, TraverseFusionProducerFirst) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); std::vector<std::string> visited_nodes; auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); auto root = fusion->GetRoots()[0]; HloBfsProducersFirstTraversal({root.GetOperand(0)}, *fusion, [&](HloInstructionAdaptor node) { visited_nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }); EXPECT_THAT(visited_nodes, ElementsAre("mul", "reduce.1")); } TEST_F(HloTraversalTest, AbortTraversal) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); std::vector<std::string> visited_nodes; HloBfsConsumersFirstTraversal(fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { visited_nodes.emplace_back(node.name()); return node.opcode() == HloOpcode::kReduce ? TraversalResult::kAdvance : TraversalResult::kInterrupt; }); EXPECT_THAT(visited_nodes, ElementsAre("reduce.1", "mul")); } TEST_F(HloTraversalTest, FindArguments) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); std::vector<std::string> producers; absl::c_for_each(fusion->GetParameters(), [&](const HloInstruction* producer) { producers.emplace_back(producer->name()); }); EXPECT_THAT(producers, ElementsAre("p0", "negate")); } TEST_F(HloTraversalTest, FindArgumentsAfterFusion) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); auto fusion = HloFusionAdaptor::ForProducerConsumer( module->entry_computation()->GetInstructionWithName("negate"), module->entry_computation()->GetInstructionWithName("fusion")); std::vector<std::string> producers; absl::c_for_each(fusion->GetParameters(), [&](const HloInstruction* producer) { producers.emplace_back(producer->name()); }); EXPECT_THAT(producers, ElementsAre("p0", "log")); } TEST_F(HloTraversalTest, FindIf) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); auto result = HloFindIf(fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { return node.opcode() == HloOpcode::kMultiply; }); ASSERT_NE(result, std::nullopt); ASSERT_EQ(result->name(), "mul"); } TEST_F(HloTraversalTest, NotFound) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); auto result = HloFindIf(fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { return false; }); ASSERT_EQ(result, std::nullopt); } TEST_F(HloTraversalTest, FindAllMultiple) { const char kConverts[] = R"( HloModule test ENTRY entry { p0 = s8[128] parameter(0) p1 = pred[128] parameter(1) p1c = s8[128] convert(p1) p1c1 = f16[128] convert(p1c) p0c = f16[128] convert(p0) ROOT diff = f16[128] subtract(p0c, p1c1) })"; auto module = ParseAndReturnVerifiedModule(kConverts).value(); auto root = module->entry_computation()->GetInstructionWithName("diff"); std::vector<const HloInstruction*> converts = HloFindAll({root}, [&](const HloInstruction* node) { return node->opcode() == HloOpcode::kConvert; }); auto get = [&](absl::string_view name) { return module->entry_computation()->GetInstructionWithName(name); }; EXPECT_THAT(converts, ElementsAre(get("p0c"), get("p1c1"), get("p1c"))); } TEST_F(HloTraversalTest, FindAllNotFound) { const char kConverts[] = R"( HloModule test ENTRY entry { p0 = s8[128] parameter(0) p1 = f16[128] parameter(1) p0c = f16[128] convert(p0) ROOT diff = f16[128] subtract(p0c, p1) })"; auto module = ParseAndReturnVerifiedModule(kConverts).value(); auto root = module->entry_computation()->GetInstructionWithName("diff"); std::vector<const HloInstruction*> converts = HloFindAll({root}, [&](const HloInstruction* node) { return node->opcode() == HloOpcode::kAdd; }); EXPECT_THAT(converts, IsEmpty()); } const char kTwoFusions[] = R"( HloModule test scalar_add_computation { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) ROOT add.0 = f32[] add(scalar_lhs.0, scalar_rhs.0) } fused_computation_1 { p0.1 = f32[] parameter(0) p1.1 = f32[128] parameter(1) mul = f32[128] multiply(p1.1, p1.1) ROOT reduce.1 = f32[] reduce(mul, p0.1), dimensions={0}, to_apply=scalar_add_computation } fused_computation_2 { p0.2 = f32[] parameter(0) p1.2 = f32[128] parameter(1) ROOT reduce.2 = f32[] reduce(p1.2, p0.2), dimensions={0}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128] parameter(1) sum = f32[128] add(p1, p1) negate = f32[128] negate(sum) fusion.1 = f32[] fusion(p0, negate), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[] fusion(fusion.1, negate), kind=kLoop, calls=fused_computation_2 ROOT difference = f32[] subtract(fusion.2, p0) })"; TEST_F(HloTraversalTest, FuseFusionConsumer) { auto module = ParseAndReturnVerifiedModule(kTwoFusions).value(); auto producer = module->entry_computation()->GetInstructionWithName("negate"); auto consumer = module->entry_computation()->GetInstructionWithName("fusion.1"); auto fusion = HloFusionAdaptor::ForProducerConsumer(producer, consumer); HloInstructionAdaptor reduce_1( *module->GetComputationWithName("fused_computation_1") ->GetInstructionWithName("reduce.1"), fusion.get()); EXPECT_THAT(reduce_1.GetUsers(), ElementsAre(InstructionAdaptorName("fusion.2"))); std::vector<std::string> nodes; std::vector<std::string> params; HloBfsConsumersFirstTraversal( fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }, [&](HloInstructionAdaptor param) { params.emplace_back(param.name()); }); EXPECT_THAT(nodes, ElementsAre("reduce.1", "mul", "negate")); EXPECT_THAT(params, ElementsAre("p0", "sum")); } TEST_F(HloTraversalTest, FuseFusionProducer) { auto module = ParseAndReturnVerifiedModule(kTwoFusions).value(); auto producer = module->entry_computation()->GetInstructionWithName("fusion.2"); auto consumer = module->entry_computation()->GetInstructionWithName("difference"); auto fusion = HloFusionAdaptor::ForProducerConsumer(producer, consumer); HloInstructionAdaptor reduce_2( *module->GetComputationWithName("fused_computation_2") ->GetInstructionWithName("reduce.2"), fusion.get()); EXPECT_THAT(reduce_2.GetOperands(), ElementsAre(InstructionAdaptorName("negate"), InstructionAdaptorName("fusion.1"))); std::vector<std::string> nodes; std::vector<std::string> params; HloBfsConsumersFirstTraversal( fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }, [&](HloInstructionAdaptor arg) { params.emplace_back(arg.name()); }); EXPECT_THAT(nodes, ElementsAre("difference", "reduce.2")); EXPECT_THAT(params, ElementsAre("p0", "negate", "fusion.1")); } TEST_F(HloTraversalTest, FuseFusionConsumerAndProducer) { auto module = ParseAndReturnVerifiedModule(kTwoFusions).value(); auto producer = module->entry_computation()->GetInstructionWithName("fusion.1"); auto consumer = module->entry_computation()->GetInstructionWithName("fusion.2"); auto fusion = HloFusionAdaptor::ForProducerConsumer(producer, consumer); std::vector<std::string> nodes; HloBfsConsumersFirstTraversal(fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }); std::vector<std::string> params; absl::c_for_each(fusion->GetParameters(), [&](const HloInstruction* param) { params.emplace_back(param->name()); }); EXPECT_THAT(nodes, ElementsAre("reduce.2", "reduce.1", "mul")); EXPECT_THAT(params, ElementsAre("negate", "p0")); } TEST_F(HloTraversalTest, FuseNonFusionConsumerAndProducer) { auto module = ParseAndReturnVerifiedModule(kTestModule).value(); auto producer = module->entry_computation()->GetInstructionWithName("log"); auto consumer = module->entry_computation()->GetInstructionWithName("negate"); auto fusion = HloFusionAdaptor::ForProducerConsumer(producer, consumer); std::vector<std::string> nodes; HloBfsConsumersFirstTraversal(fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }); EXPECT_THAT(nodes, ElementsAre("negate", "log")); } TEST_F(HloTraversalTest, SingleInstructionFusionOfFusion) { auto module = ParseAndReturnVerifiedModule(kTwoFusions).value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion.1")); std::vector<std::string> nodes; HloBfsConsumersFirstTraversal(fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }); EXPECT_THAT(nodes, ElementsAre("reduce.1", "mul")); } TEST_F(HloTraversalTest, SingleInstructionFusionOfInstruction) { auto module = ParseAndReturnVerifiedModule(kTwoFusions).value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("negate")); std::vector<std::string> nodes; HloBfsConsumersFirstTraversal(fusion->GetRoots(), *fusion, [&](HloInstructionAdaptor node) { nodes.emplace_back(node.name()); return TraversalResult::kAdvance; }); EXPECT_THAT(nodes, ElementsAre("negate")); } TEST_F(HloTraversalTest, MultiOutputFusionDuplicateRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test fused_computation { p0.1 = f32[128] parameter(0) p1.1 = f32[128] parameter(1) mul = f32[128] multiply(p0.1, p1.1) ROOT res = (f32[128], f32[128]) tuple(mul, mul) } ENTRY entry { p0 = f32[128] parameter(0) p1 = f32[128] parameter(1) ROOT fusion = (f32[128], f32[128]) fusion(p0, p1), kind=kLoop, calls=fused_computation })") .value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("fusion")); EXPECT_THAT(fusion->GetRoots(), ElementsAre(InstructionAdaptorName("mul"), InstructionAdaptorName("mul"))); } TEST_F(HloTraversalTest, MakeInstructionsPostOrder_SingleInstruction) { auto module = ParseAndReturnVerifiedModule(kTwoFusions).value(); auto fusion = HloFusionAdaptor::ForInstruction( module->entry_computation()->GetInstructionWithName("negate")); auto nodes = fusion->MakeInstructionPostOrder(); EXPECT_THAT(nodes, ElementsAre(InstructionAdaptorName("negate"))); } TEST_F(HloTraversalTest, MakeInstructionsPostOrder_TwoFusions) { auto module = ParseAndReturnVerifiedModule(kTwoFusions).value(); auto fusion = HloFusionAdaptor::ForProducerConsumer( module->entry_computation()->GetInstructionWithName("fusion.1"), module->entry_computation()->GetInstructionWithName("fusion.2")); auto nodes = fusion->MakeInstructionPostOrder(); EXPECT_THAT(nodes, ElementsAre(InstructionAdaptorName("mul"), InstructionAdaptorName("reduce.1"), InstructionAdaptorName("reduce.2"))); } TEST_F(HloTraversalTest, MakeInstructionsPostOrder_TwoMultiOutputFusions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test scalar_add_computation { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) ROOT add.0 = f32[] add(scalar_lhs.0, scalar_rhs.0) } fused_computation_1 { p0.1 = f32[] parameter(0) p1.1 = f32[128] parameter(1) mul = f32[128] multiply(p1.1, p1.1) reduce.1 = f32[] reduce(mul, p0.1), dimensions={0}, to_apply=scalar_add_computation ROOT t = (f32[128], f32[]) tuple(mul, reduce.1) } fused_computation_2 { p0.2 = f32[] parameter(0) p1.2 = f32[128] parameter(1) neg = f32[128] negate(p1.2) reduce.2 = f32[] reduce(neg, p0.2), dimensions={0}, to_apply=scalar_add_computation ROOT t2 = (f32[], f32[128]) tuple(reduce.2, neg) } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128] parameter(1) sum = f32[128] add(p1, p1) negate = f32[128] negate(sum) fusion.1 = (f32[128], f32[]) fusion(p0, negate), kind=kLoop, calls=fused_computation_1 gte1 = f32[128] get-tuple-element(fusion.1), index=0 gte2 = f32[] get-tuple-element(fusion.1), index=1 fusion.2 = (f32[], f32[128]) fusion(p0, gte1), kind=kLoop, calls=fused_computation_2 gte3 = f32[] get-tuple-element(fusion.2), index=0 gte4 = f32[128] get-tuple-element(fusion.2), index=1 difference = f32[] subtract(gte3, p0) ROOT res = (f32[], f32[128]) tuple(difference, gte4) })") .value(); auto fusion = HloFusionAdaptor::ForProducerConsumer( module->entry_computation()->GetInstructionWithName("fusion.1"), module->entry_computation()->GetInstructionWithName("fusion.2")); auto nodes = fusion->MakeInstructionPostOrder(); EXPECT_THAT(nodes, ElementsAre(InstructionAdaptorName("mul"), InstructionAdaptorName("reduce.1"), InstructionAdaptorName("neg"), InstructionAdaptorName("reduce.2"))); } const char kTwoMultiOutputFusions[] = R"( HloModule mof mof_producer { param0 = f32[10]{0} parameter(0) param1 = f32[10]{0} parameter(1) param2 = f32[10]{0} parameter(2) add = f32[10]{0} add(param0, param1) sub = f32[10]{0} subtract(param0, param1) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(param1, add, sub, param0, param2) } mof_consumer { param0.0 = f32[10]{0} parameter(0) param1.0 = f32[10]{0} parameter(1) param2.0 = f32[10]{0} parameter(2) mul = f32[10]{0} multiply(param0.0, param1.0) div = f32[10]{0} divide(param0.0, param1.0) ROOT res = (f32[10]{0}, f32[10]{0}, f32[10]{0}) tuple(mul, div, param2.0) } ENTRY main { p0 = f32[10]{0} parameter(0) p1 = f32[10]{0} parameter(1) p2 = f32[10]{0} parameter(2) producer = (f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(p0, p1, p2), kind=kLoop, calls=mof_producer gte0 = f32[10]{0} get-tuple-element(producer), index=0 gte1 = f32[10]{0} get-tuple-element(producer), index=1 gte2 = f32[10]{0} get-tuple-element(producer), index=2 gte3 = f32[10]{0} get-tuple-element(producer), index=3 gte4 = f32[10]{0} get-tuple-element(producer), index=4 consumer = (f32[10]{0}, f32[10]{0}, f32[10]{0}) fusion(gte1, gte2, gte3), kind=kLoop, calls=mof_consumer gte5 = f32[10]{0} get-tuple-element(consumer), index=0 gte6 = f32[10]{0} get-tuple-element(consumer), index=1 gte7 = f32[10]{0} get-tuple-element(consumer), index=2 ROOT res = tuple(gte0, gte1, gte3, gte4, gte5, gte6, gte7) })"; TEST_F(HloTraversalTest, GetParametersMultiOutputFusion) { auto module = ParseAndReturnVerifiedModule(kTwoMultiOutputFusions).value(); auto producer = module->entry_computation()->GetInstructionWithName("producer"); auto consumer = module->entry_computation()->GetInstructionWithName("consumer"); auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer(producer, consumer); auto p0 = module->entry_computation()->GetInstructionWithName("p0"); auto p1 = module->entry_computation()->GetInstructionWithName("p1"); EXPECT_THAT(fusion_adaptor->GetParameters(), ElementsAre(p0, p1)); consumer->MergeFusionInstructionIntoMultiOutput(producer); EXPECT_THAT(consumer->operands(), ElementsAre(p0, p1)); } TEST_F(HloTraversalTest, GetRootsMultiOutputFusion) { auto module = ParseAndReturnVerifiedModule(kTwoMultiOutputFusions).value(); auto consumer_fusion_instr = module->entry_computation()->GetInstructionWithName("consumer"); auto producer_fusion_instr = module->entry_computation()->GetInstructionWithName("producer"); auto fusion_adaptor = HloFusionAdaptor::ForProducerConsumer( producer_fusion_instr, consumer_fusion_instr); auto producer_computation = module->GetComputationWithName("mof_producer"); auto producer = HloFusionAdaptor::ForComputation(producer_computation); auto consumer_computation = module->GetComputationWithName("mof_consumer"); auto consumer = HloFusionAdaptor::ForComputation(consumer_computation); EXPECT_THAT(fusion_adaptor->GetRoots(), ElementsAre( HloInstructionAdaptor{ *consumer_computation->GetInstructionWithName("mul"), consumer.get()}, HloInstructionAdaptor{ *consumer_computation->GetInstructionWithName("div"), consumer.get()}, HloInstructionAdaptor{ *producer_computation->GetInstructionWithName("param0"), producer.get()}, HloInstructionAdaptor{ *producer_computation->GetInstructionWithName("add"), producer.get()})); consumer_fusion_instr->MergeFusionInstructionIntoMultiOutput( producer_fusion_instr); EXPECT_THAT(consumer_fusion_instr->fused_expression_root(), GmockMatch(m::Tuple( m::Multiply(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Divide(m::Add(m::Parameter(0), m::Parameter(1)), m::Subtract(m::Parameter(0), m::Parameter(1))), m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); } TEST_F(HloTraversalTest, HloFindUseChain) { auto module = ParseAndReturnVerifiedModule(R"( fusion { p0 = f32[] parameter(0) p1 = f32[] parameter(1) negate = f32[] negate(p0) log = f32[] log(p0) sum = f32[] add(p0, log) exp = f32[] exponential(p1) ROOT call = f32[] custom-call(negate, exp, sum), custom_call_target="it" } ENTRY main { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT fusion = f32[] fusion(p0, p1), kind=kLoop, calls=fusion } )") .value(); auto* fusion_computation = module->GetComputationWithName("fusion"); auto fusion = HloFusionAdaptor::ForComputation(fusion_computation); auto get = [&](absl::string_view name) { return HloInstructionAdaptor{ *fusion_computation->GetInstructionWithName(name), fusion.get()}; }; auto p0 = get("p0"); auto p1 = get("p1"); auto log = get("log"); auto sum = get("sum"); auto negate = get("negate"); auto exp = get("exp"); auto call = get("call"); EXPECT_THAT(HloFindUseChain(p0, p0), ElementsAre(p0)); EXPECT_THAT(HloFindUseChain(p0, p1), IsEmpty()); EXPECT_THAT(HloFindUseChain(p0, call), ElementsAre(p0, negate, call)); EXPECT_THAT(HloFindUseChain(p0, sum), ElementsAre(p0, log, sum)); EXPECT_THAT(HloFindUseChain(p1, exp), ElementsAre(p1, exp)); EXPECT_THAT(HloFindUseChain(negate, exp), IsEmpty()); EXPECT_THAT(HloFindUseChain(call, p0), IsEmpty()); } } } }
2,042
cpp
tensorflow/tensorflow
gemm_fusion
third_party/xla/xla/service/gpu/transforms/gemm_fusion.cc
third_party/xla/xla/service/gpu/transforms/gemm_fusion_test.cc
#ifndef XLA_SERVICE_GPU_GEMM_FUSION_H_ #define XLA_SERVICE_GPU_GEMM_FUSION_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/hlo_pass_interface.h" #include "xla/service/instruction_fusion.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { bool ShouldTritonHandleGEMM(HloDotInstruction&, const se::GpuComputeCapability&); class GemmFusion : public HloModulePass { public: explicit GemmFusion(const se::GpuComputeCapability& gpu_version) : gpu_version_(gpu_version) {} absl::string_view name() const override { return "triton-gemm-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: se::GpuComputeCapability gpu_version_; }; } } #endif #include "xla/service/gpu/gemm_fusion.h" #include <array> #include <cstddef> #include <cstdint> #include <optional> #include <queue> #include <string> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_padding_requirements.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/gpu/triton_support.h" #include "xla/service/gpu/triton_tiling_propagation.h" #include "xla/service/instruction_fusion.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using triton_fusion::CombineDotRequirements; using triton_fusion::DimensionOrder; using triton_fusion::DimOrderMap; using triton_fusion::DimOrdersAndReqs; using triton_fusion::DimOrdersAndReqsOrError; using triton_fusion::DotProperties; using triton_fusion::DotRequirements; using triton_fusion::DotRequirementsOrError; using triton_fusion::FusionContext; using triton_fusion::GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible; using triton_fusion::TransformDirection; class AdjacencyList { public: using NodeId = int64_t; NodeId AddNode() { adj_.emplace_back(); return adj_.size() - 1; } const std::vector<NodeId>& GetOutNeighbors(NodeId node_id) const { return adj_.at(node_id); } void ReserveSpaceForOutNeighbors(NodeId node_id, size_t count) { adj_.at(node_id).reserve(count); } void AddArc(NodeId from, NodeId to) { adj_.at(from).push_back(to); } NodeId GetRoot() const { CHECK(!adj_.empty()); return 0; } private: std::vector<std::vector<NodeId>> adj_; }; struct HloAndDimOrder { const HloInstruction* original_hlo = nullptr; DimensionOrder dim_order; }; struct HloAndIterSpec { const HloInstruction* original_hlo; TensorIterationSpec iter_spec; auto ToTuple() const { return std::make_tuple(original_hlo, iter_spec); } bool operator==(const HloAndIterSpec& other) const { return ToTuple() == other.ToTuple(); } template <typename H> friend H AbslHashValue(H h, const HloAndIterSpec& key) { return H::combine(std::move(h), key.ToTuple()); } }; struct NodeFusionPlan { const HloInstruction* original_hlo = nullptr; bool should_fuse = false; }; struct FusionPlan { AdjacencyList graph; absl::flat_hash_map<AdjacencyList::NodeId, NodeFusionPlan> map; }; struct FusionPlanAndRequirements { FusionPlan fusion_plan; DotRequirements requirements; }; struct HlosAndRequirements { const HloInstruction* original_hlo = nullptr; const HloInstruction* fused_hlo = nullptr; DotRequirements requirements; }; HloInstruction& FuseDot(const HloDotInstruction& dot, const HloInstruction& fused_lhs, const HloInstruction& fused_rhs, std::optional<const HloInstruction*> fused_meta, HloComputation::Builder& builder ) { VLOG(3) << "Fusing " << dot.ToString(); std::vector<HloInstruction*> hlo_new_operands = { const_cast<HloInstruction*>(&fused_lhs), const_cast<HloInstruction*>(&fused_rhs)}; if (fused_meta.has_value()) { hlo_new_operands.push_back(const_cast<HloInstruction*>(fused_meta.value())); } return *builder.AddInstruction( dot.CloneWithNewOperands(dot.shape(), hlo_new_operands)); } int64_t NumAddedParameters(const HloInstruction& hlo) { if (hlo.opcode() == HloOpcode::kParameter || (hlo.opcode() == HloOpcode::kConstant && !ShapeUtil::IsScalar(hlo.shape()))) { return 0; } return hlo.operand_count() - 1; } std::optional<DimOrdersAndReqs> GetOperandDimOrdersAndCombinedReqs( const HloInstruction& hlo, const DimensionOrder& dim_order, const DotProperties& properties, const se::GpuComputeCapability& gpu_version, const DotRequirements& requirements) { DimOrdersAndReqsOrError dim_orders_and_new_reqs = GetPropagatedDimOrdersAndRequirements( hlo, dim_order, TransformDirection::kOutputToInput, properties); if (!std::holds_alternative<DimOrdersAndReqs>(dim_orders_and_new_reqs)) { return std::nullopt; } DotRequirementsOrError combined_reqs = CombineDotRequirements( requirements, std::get<DimOrdersAndReqs>(dim_orders_and_new_reqs).requirements); if (!std::holds_alternative<DotRequirements>(combined_reqs)) { return std::nullopt; } return DimOrdersAndReqs{ std::get<DimOrdersAndReqs>(dim_orders_and_new_reqs).dim_orders, std::get<DotRequirements>(combined_reqs)}; } std::optional<DimOrdersAndReqs> GetOperandDimOrdersAndCombinedReqsIfProfitable( const HloInstruction& hlo, const DimensionOrder& dim_order, const DotProperties& properties, const se::GpuComputeCapability& gpu_version, const DotRequirements& requirements) { DimOrdersAndReqsOrError dim_orders_and_new_reqs = GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible( hlo, TransformDirection::kOutputToInput, std::nullopt, dim_order, gpu_version, properties); if (!std::holds_alternative<DimOrdersAndReqs>(dim_orders_and_new_reqs)) { return std::nullopt; } DotRequirementsOrError combined_reqs = CombineDotRequirements( requirements, std::get<DimOrdersAndReqs>(dim_orders_and_new_reqs).requirements); if (!std::holds_alternative<DotRequirements>(combined_reqs)) { return std::nullopt; } return DimOrdersAndReqs{ std::get<DimOrdersAndReqs>(dim_orders_and_new_reqs).dim_orders, std::get<DotRequirements>(combined_reqs)}; } std::optional<DimOrdersAndReqs> GetUserDimOrdersAndCombinedReqsIfProfitable( const HloInstruction& hlo, const DimensionOrder& hlo_dim_order, const HloInstruction& user, const DotProperties& properties, const se::GpuComputeCapability& gpu_version, const DotRequirements& requirements) { DimOrdersAndReqsOrError dim_orders_and_new_reqs = GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible( user, TransformDirection::kInputToOutput, user.operand_index(&hlo), hlo_dim_order, gpu_version, properties); if (!std::holds_alternative<DimOrdersAndReqs>(dim_orders_and_new_reqs)) { return std::nullopt; } DotRequirementsOrError combined_reqs = CombineDotRequirements( requirements, std::get<DimOrdersAndReqs>(dim_orders_and_new_reqs).requirements); if (!std::holds_alternative<DotRequirements>(combined_reqs)) { return std::nullopt; } return DimOrdersAndReqs{ std::get<DimOrdersAndReqs>(dim_orders_and_new_reqs).dim_orders, std::get<DotRequirements>(combined_reqs)}; } FusionPlanAndRequirements BuildFusionPlanTowardOperands( const HloInstruction& root_hlo, const DimensionOrder& root_dim_order, const std::optional<int>& max_params, const se::GpuComputeCapability& gpu_version, const DotProperties& properties, const DotRequirements& requirements_so_far) { CHECK(!max_params.has_value() || max_params.value() >= 1); AdjacencyList graph; absl::flat_hash_map<AdjacencyList::NodeId, HloAndDimOrder> hlo_and_dim_order_map; absl::flat_hash_map<AdjacencyList::NodeId, NodeFusionPlan> fusion_plan_map; absl::flat_hash_map<HloAndIterSpec, AdjacencyList::NodeId> node_reuse_map; DotRequirements combined_reqs = requirements_so_far; auto get_or_create_fusion_node = [&](const HloInstruction& hlo, const DimensionOrder& dim_order, bool* is_new_node = nullptr) -> AdjacencyList::NodeId { HloAndIterSpec reuse_key = {&hlo, dim_order.ToTensorIterationSpec()}; if (auto it = node_reuse_map.find(reuse_key); it != node_reuse_map.end()) { if (is_new_node != nullptr) { *is_new_node = false; } return it->second; } AdjacencyList::NodeId node_id = graph.AddNode(); CHECK(hlo_and_dim_order_map.insert({node_id, {&hlo, dim_order}}).second); CHECK(node_reuse_map.insert({reuse_key, node_id}).second); if (is_new_node != nullptr) { *is_new_node = true; } return node_id; }; AdjacencyList::NodeId root = get_or_create_fusion_node(root_hlo, root_dim_order); absl::flat_hash_set<AdjacencyList::NodeId> inputs({root}); std::queue<AdjacencyList::NodeId> queue({root}); int64_t num_requeued = 0; while (queue.size() > num_requeued) { AdjacencyList::NodeId node_id = queue.front(); queue.pop(); const HloAndDimOrder& hlo_and_dim_order = hlo_and_dim_order_map.at(node_id); const HloInstruction& original_hlo = *hlo_and_dim_order.original_hlo; const DimensionOrder& dim_order = hlo_and_dim_order.dim_order; if (max_params.has_value() && inputs.size() + NumAddedParameters(original_hlo) > max_params.value()) { queue.push(node_id); ++num_requeued; continue; } num_requeued = 0; if (original_hlo.opcode() == HloOpcode::kParameter) { CHECK(fusion_plan_map .insert({node_id, {&original_hlo, false}}) .second); continue; } auto opt_result = GetOperandDimOrdersAndCombinedReqsIfProfitable( original_hlo, dim_order, properties, gpu_version, combined_reqs); if (!opt_result.has_value()) { CHECK(fusion_plan_map .insert({node_id, {&original_hlo, false}}) .second); continue; } const DimOrderMap operand_dim_orders = std::move(opt_result->dim_orders); combined_reqs = std::move(opt_result->requirements); inputs.erase(node_id); graph.ReserveSpaceForOutNeighbors(node_id, original_hlo.operand_count()); for (int64_t i = 0; i < original_hlo.operand_count(); ++i) { const HloInstruction& operand = *original_hlo.operand(i); const DimensionOrder& operand_dim_order = operand_dim_orders.at(&operand); bool is_new_node = false; AdjacencyList::NodeId operand_node_id = get_or_create_fusion_node(operand, operand_dim_order, &is_new_node); graph.AddArc(node_id, operand_node_id); if (is_new_node) { VLOG(6) << "Enqueueing " << operand.ToString() << ":" << operand_dim_order.ToString(); inputs.insert(operand_node_id); queue.push(operand_node_id); } } CHECK( fusion_plan_map.insert({node_id, {&original_hlo, true}}) .second); } while (!queue.empty()) { AdjacencyList::NodeId node_id = queue.front(); queue.pop(); const HloAndDimOrder& hlo_and_dim_order = hlo_and_dim_order_map.at(node_id); CHECK(fusion_plan_map .insert({node_id, {hlo_and_dim_order.original_hlo, false}}) .second); } return {{std::move(graph), std::move(fusion_plan_map)}, std::move(combined_reqs)}; } HloInstruction& BuildFusionTowardOperandsImpl( AdjacencyList::NodeId node_id, const FusionPlan& fusion_plan, absl::flat_hash_map<AdjacencyList::NodeId, HloInstruction*>& fused_hlo_map, HloComputation::Builder& builder, std::vector<HloInstruction*>& fusion_params ) { if (auto it = fused_hlo_map.find(node_id); it != fused_hlo_map.end()) { return *it->second; } const NodeFusionPlan& node_fusion_plan = fusion_plan.map.at(node_id); const bool should_fuse = node_fusion_plan.should_fuse; const HloInstruction& original_hlo = *node_fusion_plan.original_hlo; HloInstruction* fused_hlo = nullptr; if (should_fuse) { HloInstruction::InstructionVector new_operands; for (AdjacencyList::NodeId operand_id : fusion_plan.graph.GetOutNeighbors(node_id)) { new_operands.push_back(&BuildFusionTowardOperandsImpl( operand_id, fusion_plan, fused_hlo_map, builder, fusion_params)); } fused_hlo = builder.AddInstruction( original_hlo.CloneWithNewOperands(original_hlo.shape(), new_operands)); } else { fusion_params.push_back(const_cast<HloInstruction*>(&original_hlo)); fused_hlo = builder.AddInstruction(HloInstruction::CreateParameter( fusion_params.size() - 1, original_hlo.shape(), absl::StrCat("parameter_", fusion_params.size() - 1))); } CHECK(fused_hlo_map.insert({node_id, fused_hlo}).second); return *fused_hlo; } HloInstruction& BuildFusionTowardOperands( const FusionPlan& fusion_plan, HloComputation::Builder& builder, std::vector<HloInstruction*>& fusion_params ) { absl::flat_hash_map<AdjacencyList::NodeId, HloInstruction*> fused_hlo_map; return BuildFusionTowardOperandsImpl(fusion_plan.graph.GetRoot(), fusion_plan, fused_hlo_map, builder, fusion_params); } HlosAndRequirements FuseTowardOperands( const HloInstruction& root_hlo, const DimensionOrder& root_dim_order, const std::optional<int>& max_params, const se::GpuComputeCapability& gpu_version, const DotProperties& properties, const DotRequirements& requirements_so_far, HloComputation::Builder& builder, std::vector<HloInstruction*>& fusion_params ) { FusionPlanAndRequirements fusion_plan_and_reqs = BuildFusionPlanTowardOperands(root_hlo, root_dim_order, max_params, gpu_version, properties, requirements_so_far); HloInstruction& fused_hlo_or_param = BuildFusionTowardOperands( fusion_plan_and_reqs.fusion_plan, builder, fusion_params); return HlosAndRequirements{&root_hlo, &fused_hlo_or_param, fusion_plan_and_reqs.requirements}; } absl::StatusOr<HlosAndRequirements> FuseDotOperand( const HloInstruction& dot, int operand_index, const se::GpuComputeCapability& gpu_version, HloComputation::Builder& builder, std::vector<HloInstruction*>& fusion_params ) { TF_ASSIGN_OR_RETURN(const FusionContext context, FusionContext::FromDotOperand(dot, operand_index)); const HloInstruction& operand = *dot.operand(operand_index); return FuseTowardOperands(operand, context.dim_orders().at(&operand), TritonFusionAnalysis::kMaxParameterPerDotOperand, gpu_version, context.dot_properties(), context.requirements(), builder, fusion_params); } HlosAndRequirements FuseTowardUsers( const HloInstruction& hlo, const HloInstruction& fused_hlo, const DimensionOrder& hlo_dim_order, const se::GpuComputeCapability& gpu_version, const DotProperties& properties, const DotRequirements& requirements, HloComputation::Builder& builder, std::vector<HloInstruction*>& fusion_params ) { const HlosAndRequirements existing_hlos_and_requirements = {&hlo, &fused_hlo, requirements}; if (hlo.user_count() != 1) { return existing_hlos_and_requirements; } const HloInstruction& user = *hlo.users()[0]; if (!legacy_triton::IsDistributiveOverAddition(user)) { return existing_hlos_and_requirements; } auto opt_user_result = GetUserDimOrdersAndCombinedReqsIfProfitable( hlo, hlo_dim_order, user, properties, gpu_version, requirements); if (!opt_user_result.has_value()) { return existing_hlos_and_requirements; } DimensionOrder user_dim_order = opt_user_result->dim_orders.at(&user); DotRequirements combined_requirements = opt_user_result->requirements; HloInstruction::InstructionVector new_operands; if (user.operand_count() == 1) { new_operands.push_back(const_cast<HloInstruction*>(&fused_hlo)); } else { auto opt_operand_result = GetOperandDimOrdersAndCombinedReqs( user, user_dim_order, properties, gpu_version, combined_requirements); if (!opt_operand_result.has_value()) { return existing_hlos_and_requirements; } DimOrderMap operand_dim_orders = opt_operand_result->dim_orders; combined_requirements = opt_operand_result->requirements; for (int i = 0; i < user.operand_count(); ++i) { const HloInstruction& operand = *user.operand(i); if (&operand == &hlo) { new_operands.push_back(const_cast<HloInstruction*>(&fused_hlo)); } else { HlosAndRequirements hlos_and_requirements = FuseTowardOperands( operand, operand_dim_orders.at(&operand), std::nullopt, gpu_version, properties, combined_requirements, builder, fusion_params); new_operands.push_back( const_cast<HloInstruction*>(hlos_and_requirements.fused_hlo)); combined_requirements = hlos_and_requirements.requirements; } } } const HloInstruction& fused_user = *builder.AddInstruction( user.CloneWithNewOperands(user.shape(), new_operands)); return FuseTowardUsers(user, fused_user, user_dim_order, gpu_version, properties, combined_requirements, builder, fusion_params); } HlosAndRequirements FuseDotOutput( const HloInstruction& dot, const HloInstruction& fused_dot, const se::GpuComputeCapability& gpu_version, const DotRequirements& requirements, HloComputation::Builder& builder, std::vector<HloInstruction*>& fusion_params ) { const auto context = FusionContext::FromDotOutput(dot, 1, requirements); return FuseTowardUsers(dot, fused_dot, context.dim_orders().at(&dot), gpu_version, context.dot_properties(), context.requirements(), builder, fusion_params); } absl::StatusOr<FusionDecision> CreateDotFusion( const HloDotInstruction& dot, const se::GpuComputeCapability gpu_version, HloComputation::Builder& builder, std::vector<HloInstruction*>& fusion_inputs, HloInstruction** fusion_output_ptr) { VLOG(5) << dot.ToString(); if (CodegenDecision is_supported = legacy_triton::IsTritonSupportedInstruction(dot, gpu_version); !is_supported) { VLOG(3) << is_supported.Explain(); return is_supported; } if (dot.sparse_operands()) { const SparsityDescriptor& descriptor = dot.sparsity().front(); if (dot.sparse_operands() != 1 || descriptor.index() != 0) { return InvalidArgument("Sparsity is only supported on left operand"); } if (descriptor.type() != SparsityType::SPARSITY_STRUCTURED_N_M || descriptor.n() != 2 || descriptor.m() != 4) { return InvalidArgument("Only 2:4 structured sparsity is supported"); } CHECK_EQ(descriptor.dimension(), dot.operand(0)->shape().rank() - 1); } TF_ASSIGN_OR_RETURN(HlosAndRequirements lhs_hlos_and_reqs, FuseDotOperand(dot, 0, gpu_version, builder, fusion_inputs)); TF_ASSIGN_OR_RETURN(HlosAndRequirements rhs_hlos_and_reqs, FuseDotOperand(dot, 1, gpu_version, builder, fusion_inputs)); std::optional<const HloInstruction*> meta_hlo; if (dot.sparse_operands()) { TF_ASSIGN_OR_RETURN(HlosAndRequirements meta_hlos_and_reqs, FuseDotOperand(dot, 2, gpu_version, builder, fusion_inputs)); meta_hlo.emplace(meta_hlos_and_reqs.fused_hlo); } HloInstruction& fused_dot = FuseDot(dot, *lhs_hlos_and_reqs.fused_hlo, *rhs_hlos_and_reqs.fused_hlo, meta_hlo, builder); HlosAndRequirements fused_output_and_reqs = FuseDotOutput(dot, fused_dot, gpu_version, lhs_hlos_and_reqs.requirements, builder, fusion_inputs); if (fusion_output_ptr != nullptr) { *fusion_output_ptr = const_cast<HloInstruction*>(fused_output_and_reqs.original_hlo); } const PrecisionConfig::Algorithm algorithm = dot.precision_config().algorithm(); if (algorithm == PrecisionConfig::ALG_DOT_BF16_BF16_F32_X6 || algorithm == PrecisionConfig::ALG_DOT_BF16_BF16_F32_X3 || dot.GetModule()->config().debug_options().xla_gpu_triton_gemm_any() || dot.sparse_operands()) { return FusionDecision{}; } bool is_pure_matmul = true; (void)builder.ForEachInstruction([&](const HloInstruction* fused_hlo) { static constexpr std::array<HloOpcode, 4> kPureOpcodes = { HloOpcode::kBitcast, HloOpcode::kDot, HloOpcode::kParameter, HloOpcode::kReshape}; if (absl::c_find(kPureOpcodes, fused_hlo->opcode()) == kPureOpcodes.end()) { is_pure_matmul = false; return absl::CancelledError(); } return absl::OkStatus(); }); if (!is_pure_matmul) { return FusionDecision{}; } return "No profitable operations to fuse."; } class GemmFusionVisitor : public DfsHloRewriteVisitor { public: explicit GemmFusionVisitor(const se::GpuComputeCapability& gpu_version) : gpu_version_(gpu_version) {} absl::Status HandleDot(HloInstruction* dot) override { CHECK_EQ(dot->opcode(), HloOpcode::kDot); int64_t gemm_rewrite_size_threshold = dot->GetModule() ->config() .debug_options() .xla_gpu_gemm_rewrite_size_threshold(); TF_ASSIGN_OR_RETURN(bool is_matmul_tiny, IsMatrixMultiplicationTooSmallForRewriting( *dot, gemm_rewrite_size_threshold)); if (is_matmul_tiny && IsDotSupportedByClassicalEmitters(*dot)) { return absl::OkStatus(); } std::string fusion_name = absl::StrCat("gemm_fusion_", dot->name()); HloComputation::Builder builder(absl::StrCat(fusion_name, "_computation")); std::vector<HloInstruction*> fusion_inputs; HloInstruction* fusion_output = nullptr; TF_ASSIGN_OR_RETURN( const FusionDecision should_fuse, CreateDotFusion(*Cast<HloDotInstruction>(dot), gpu_version_, builder, fusion_inputs, &fusion_output)); if (builder.last_added_instruction() == nullptr) { return absl::OkStatus(); } if (std::holds_alternative<se::CudaComputeCapability>(gpu_version_)) { if (!CublasRequiresPadding( *Cast<HloDotInstruction>(dot), std::get<se::CudaComputeCapability>(gpu_version_)) && !should_fuse) { return absl::OkStatus(); } } HloComputation* computation = dot->GetModule()->AddComputationAndUnifyNamesAndIds(builder.B
#include "xla/service/gpu/gemm_fusion.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/cublas_padding_requirements.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::FieldsAre; namespace m = ::xla::match; class GemmFusionTest : public HloTestBase { public: GemmFusionTest() : HloTestBase(true, false) {} DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_gemm_any(false); debug_options.set_xla_gpu_gemm_rewrite_size_threshold(0); return debug_options; } se::GpuComputeCapability gpu_version_{ se::CudaComputeCapability{se::CudaComputeCapability::AMPERE, 0}}; void MatchHloModule(HloModule& module, absl::string_view pattern) { TF_ASSERT_OK_AND_ASSIGN(bool filecheck_result, RunFileCheck(module.ToString(), pattern)); EXPECT_TRUE(filecheck_result); } }; TEST_F(GemmFusionTest, TransposeSubdimensionGroup) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m ENTRY e { p0 = f32[32,3] parameter(0) t1 = f32[3,32] transpose(p0), dimensions={1,0} r1 = f32[3,8,4] reshape(t1) r0 = f32[3,32] reshape(r1) p1 = f16[32,7] parameter(1) c1 = f32[32,7] convert(p1) ROOT d = f32[3,7] dot(r0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionTest, UnsupportedTransposeIsNotFused) { auto module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f16[1,512,8,1024]{3,1,0,2} parameter(0) c = f16[1,512,8,1024]{3,2,1,0} copy(p0) b = f16[4096,1024]{1,0} bitcast(c) p1 = f16[128,1024]{1,0} parameter(1) ROOT d = f16[4096,128]{1,0} dot(b, p1), lhs_contracting_dims={1}, rhs_contracting_dims={1} })") .value(); EXPECT_FALSE(GemmFusion(gpu_version_).Run(module.get()).value()); } TEST_F(GemmFusionTest, BitcastChain) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m ENTRY e { p0 = s8[60,5] parameter(0) r0 = s8[3,20,5] reshape(p0) c0 = f16[3,20,5] convert(r0) p1 = f16[3,200] parameter(1) r12 = f16[600] reshape(p1) r11 = f16[30,20] reshape(r12) r1 = f16[3,10,20] reshape(r11) ROOT d = f16[3,5,10] dot(c0, r1), lhs_contracting_dims={1}, rhs_contracting_dims={2}, lhs_batch_dims={0}, rhs_batch_dims={0} })") .value(); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionTest, SplitDimensionTwice) { auto module = ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = s8[4,2,32,4,2] parameter(0) r1 = s8[8,32,8] reshape(p0) t1 = s8[32,8,8] transpose(r1), dimensions={1,0,2} r0 = s8[32,64] reshape(t1) p1 = s8[32,32] parameter(1) c0 = f16[32,32] convert(p1) ROOT d = f16[64,32] dot(r0, c0), lhs_contracting_dims={0}, rhs_contracting_dims={1} })") .value(); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionTest, DoNotTriggerOnUnsupportedOutputConversions) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f16[128,256] parameter(0) p1 = f16[256,512] parameter(1) r = f16[128,512] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT c = u8[128,512] convert(r) })")); EXPECT_FALSE(GemmFusion(gpu_version_).Run(module.get()).value()); } TEST_F(GemmFusionTest, FuseDotWithTrivialNoncontractingDim) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m ENTRY e { p0 = s8[60,5] parameter(0) r0 = s8[3,20,5] reshape(p0) c0 = f16[3,20,5] convert(r0) p1 = f16[3,1,20] parameter(1) ROOT d = f16[3,5,1] dot(c0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={2}, lhs_batch_dims={0}, rhs_batch_dims={0} })") .value(); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionTest, HandleDotIfCublasRequiresPadding) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m ENTRY e { p0 = f16[5,3] parameter(0) p1 = f16[5,7] parameter(1) ROOT d = f16[3,7] dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_TRUE(CublasRequiresPadding( *xla::Cast<HloDotInstruction>( module->entry_computation()->root_instruction()), cc)); EXPECT_TRUE(GemmFusion(cc).Run(module.get()).value()); } TEST_F(GemmFusionTest, FuseSliceOfParameterWithOtherUsers) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[97,121] parameter(0) s0 = f32[7,101] slice(p0), slice={[3:10], [10:111]} p1 = f32[101,16] parameter(1) d = f32[16,7] dot(p1, s0), lhs_contracting_dims={0}, rhs_contracting_dims={1} s1 = f32[3,33] slice(p0), slice={[10:13], [20:53]} ROOT t = tuple(d, s1) })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_TRUE(GemmFusion(cc).Run(module.get()).value()); } TEST_F(GemmFusionTest, DoNotFuseSliceOfMixedDimensions) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = bf16[768,64] parameter(0) s0 = bf16[768,32] slice(p0), slice={[0:768], [0:32]} b0 = bf16[256,3,32] reshape(s0) b1 = bf16[256,96] reshape(b0) p1 = bf16[256,96] parameter(1) ROOT d = bf16[96,96] dot(b1, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_FALSE(GemmFusion(cc).Run(module.get()).value()); } TEST_F(GemmFusionTest, DoNotFuseSlicesOfNonMajorFragments) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[2,2,256,256] parameter(0) s0 = f32[1,1,256,256] slice(p0), slice={[0:1], [0:1], [0:256], [0:256]} r0 = f32[256,256] reshape(s0) p1 = f16[2,2,256,256] parameter(1) s1 = f16[1,1,256,256] slice(p1), slice={[0:1], [0:1], [0:256], [0:256]} r1 = f16[256,256] reshape(s1) ROOT d = f32[256,256] dot(r0, r1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_FALSE(GemmFusion(cc).Run(module.get()).value()); } TEST_F(GemmFusionTest, DynamicSliceIsFused) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { dot_lhs = f32[2,18] parameter(0) dynamic_slice_input = f32[2,64,2] parameter(1) start_index0 = s32[] parameter(2) start_index1_2 = s32[] constant(0) dynamic_slice = f32[1,64,2] dynamic-slice(dynamic_slice_input, start_index0, start_index1_2, start_index1_2), dynamic_slice_sizes={1,64,2} reshape = f32[64,2] reshape(dynamic_slice) ROOT dot = f16[18,64] dot(dot_lhs, reshape), lhs_contracting_dims={0}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(se::CudaComputeCapability{ se::CudaComputeCapability::AMPERE, 0}) .Run(module.get()) .value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch((m::Fusion(m::Parameter(), m::Parameter(), m::Parameter(), m::Constant())))); } TEST_F(GemmFusionTest, DynamicSlicesAreFusedEvenIfTheyShareIndices) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = f32[2,64,2] parameter(0) p1 = s32[] parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) ds0 = f32[1,64,2] dynamic-slice(p0, p1, p2, p3), dynamic_slice_sizes={1,64,2} a = f32[64,2] reshape(ds0) ds1 = f32[1,64,2] dynamic-slice(p0, p3, p2, p1), dynamic_slice_sizes={1,64,2} b = f32[64,2] reshape(ds1) ROOT d = f16[64,64] dot(a, b), lhs_contracting_dims={1}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(se::CudaComputeCapability{ se::CudaComputeCapability::AMPERE, 0}) .Run(module.get()) .value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch((m::Fusion(m::Parameter(), m::Parameter(), m::Parameter(), m::Parameter(), m::Parameter(), m::Parameter(), m::Parameter(), m::Parameter())))); } TEST_F(GemmFusionTest, DoNotFuseDynamicSliceOfNonMajorFragments) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { dot_lhs = f32[2,4]{1,0} parameter(0) dynamic_slice_input = f32[4,5,2]{2,1,0} parameter(1) c0 = s32[] constant(0) c2 = s32[] constant(2) dynamic_slice = f32[4,1,2]{2,1,0} dynamic-slice(dynamic_slice_input, c0, c2, c0), dynamic_slice_sizes={4,1,2} reshape = f32[4,2]{1,0} reshape(dynamic_slice) ROOT dot = f32[4,4]{1,0} dot(dot_lhs, reshape), lhs_contracting_dims={0}, rhs_contracting_dims={1} })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_FALSE(GemmFusion(cc).Run(module.get()).value()); } TEST_F(GemmFusionTest, CanFuseDynamicSliceOfContractingDimIfItIsMajor) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { dot_lhs = f32[2,4]{1,0} parameter(0) dynamic_slice_input = f32[5,5]{1,0} parameter(1) start_index0 = s32[] constant(2) start_index1 = s32[] constant(0) dynamic_slice = f32[2,5]{1,0} dynamic-slice(dynamic_slice_input, start_index0, start_index1), dynamic_slice_sizes={2,5} ROOT d = f32[4,5]{1,0} dot(dot_lhs, dynamic_slice), lhs_contracting_dims={0}, rhs_contracting_dims={0} })")); EXPECT_TRUE(GemmFusion(se::CudaComputeCapability{ se::CudaComputeCapability::AMPERE, 0}) .Run(module.get()) .value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch((m::Fusion(m::Parameter(), m::Parameter(), m::Constant(), m::Constant())))); } TEST_F(GemmFusionTest, SliceToDegenerateIsSkipped) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p = f32[3] parameter(0) s = f32[1] slice(p), slice={[2:3]} r = f32[] reshape(s) b = f32[3,3] broadcast(r), dimensions={} ROOT d = f32[3,3] dot(b, b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; ASSERT_TRUE(GemmFusion(cc).Run(module.get()).value()); MatchHloModule(*module, R"( ; CHECK-NOT: slice ; CHECK: ENTRY ; CHECK: slice )"); } TEST_F(GemmFusionTest, MultipleUsesAreHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { c = f32[] constant(1) b = f32[6,8] broadcast(c), dimensions={} p0 = f32[6,8] parameter(0) a1 = f32[6,8] add(p0, b) e = f32[6,8] exponential(a1) a2 = f32[6,8] add(e, b) d = f32[6,8] divide(b, a2) p2 = f16[8,6] parameter(1) cv = f32[8,6] convert(p2) ROOT r = f32[6,6] dot(d, cv), lhs_contracting_dims={1}, rhs_contracting_dims={0} })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_TRUE(GemmFusion(cc).Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionTest, BinaryElementwiseOfBroadcastIsFused) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p2 = f32[3072] parameter(2) b = f32[8192,3072] broadcast(p2), dimensions={1} p0 = f16[8192,3072] parameter(0) p0c = f32[8192,3072] convert(p0) a = f32[8192,3072] add(p0c, b) p1 = f32[3072,768] parameter(1) ROOT r = f32[8192,768] dot(a, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_TRUE(GemmFusion(cc).Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionTest, BinaryElementwiseOfUnsupportedBroadcastIsNotFused) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p2 = f32[768] parameter(2) b = f32[8192,768,4] broadcast(p2), dimensions={1} s = f32[8192,3072] bitcast(b) p0 = f16[8192,3072] parameter(0) p0c = f32[8192,3072] convert(p0) a = f32[8192,3072] add(p0c, s) p1 = f32[3072,768] parameter(1) ROOT r = f32[8192,768] dot(a, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })")); const se::CudaComputeCapability cc{se::CudaComputeCapability::AMPERE, 0}; EXPECT_FALSE(GemmFusion(cc).Run(module.get()).value()); } class GemmFusionLevel2Test : public GemmFusionTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GemmFusionTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_fusion_level(2); return debug_options; } }; TEST_F(GemmFusionLevel2Test, ReshapeToScalarIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p0 = s8[5,3] parameter(0) c = f16[5,3] convert(p0) p1 = f16[1] parameter(1) r = f16[] reshape(p1) b = f16[5,7] broadcast(r) ROOT d = f16[3,7] dot(c, b), lhs_contracting_dims={0}, rhs_contracting_dims={0} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionLevel2Test, DoNotFuseIncompatibleDimensionSplits) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { p1 = s8[5,7,2,3]{3,2,1,0} parameter(1) t1 = s8[7,5,2,3]{3,2,1,0} transpose(p1), dimensions={1,0,2,3} r1 = s8[7,30]{1,0} reshape(t1) cvt = f16[7,30]{1,0} convert(r1) p2 = f16[2,7,5,3]{3,2,1,0} parameter(2) t2 = f16[7,2,5,3]{3,2,1,0} transpose(p2), dimensions={1,0,2,3} r2 = f16[7,30]{1,0} reshape(t2) a = f16[7,30]{1,0} add(cvt, r2) p0 = f16[7,79]{1,0} parameter(0) ROOT dot = f16[30,79]{1,0} dot(a, p0), lhs_contracting_dims={0}, rhs_contracting_dims={0} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Transpose(), m::Parameter(), m::Parameter()))); } TEST_F(GemmFusionLevel2Test, DoNotFuseTooManyParameters) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { tmp_0 = f32[] constant(1) tmp_1 = f32[3,49]{1,0} broadcast(tmp_0), dimensions={} tmp_2 = f32[3,49]{1,0} parameter(6) tmp_3 = f32[] constant(0) tmp_4 = f32[3,49]{1,0} broadcast(tmp_3), dimensions={} tmp_5 = pred[3,49]{1,0} compare(tmp_2, tmp_4), direction=GT tmp_6 = f32[3,49]{1,0} convert(tmp_5) tmp_7 = f32[3,49]{1,0} subtract(tmp_1, tmp_6) tmp_8 = s32[] parameter(13) tmp_9 = f32[] convert(tmp_8) tmp_10 = f32[] maximum(tmp_9, tmp_0) tmp_11 = f32[] divide(tmp_3, tmp_10) tmp_12 = f32[3,49]{1,0} broadcast(tmp_11), dimensions={} tmp_13 = pred[3,49]{1,0} parameter(7) tmp_14 = pred[3,49]{1,0} parameter(10) tmp_15 = pred[3,49]{1,0} and(tmp_13, tmp_14) tmp_16 = f32[3,49]{1,0} convert(tmp_15) tmp_17 = f32[3,49]{1,0} multiply(tmp_12, tmp_16) tmp_18 = f32[3,49]{1,0} negate(tmp_17) tmp_19 = f32[3,49]{1,0} multiply(tmp_7, tmp_18) tmp_20 = f32[3,49]{1,0} parameter(19) tmp_21 = f32[3,49]{1,0} subtract(tmp_1, tmp_20) tmp_22 = f32[3,49]{1,0} divide(tmp_19, tmp_21) tmp_23 = f32[3,49]{1,0} negate(tmp_22) tmp_24 = f32[3,49]{1,0} negate(tmp_6) tmp_25 = f32[3,49]{1,0} multiply(tmp_24, tmp_17) tmp_26 = f32[3,49]{1,0} divide(tmp_25, tmp_20) tmp_27 = f32[3,49]{1,0} add(tmp_23, tmp_26) tmp_28 = f32[3,49]{1,0} parameter(18) tmp_29 = f32[3,49]{1,0} multiply(tmp_27, tmp_28) tmp_30 = f32[3,49]{1,0} parameter(17) tmp_31 = f32[3,49]{1,0} multiply(tmp_29, tmp_30) tmp_32 = f32[3,49]{1,0} parameter(16) tmp_33 = f32[3,49]{1,0} multiply(tmp_31, tmp_32) tmp_34 = f32[3,49]{1,0} parameter(15) tmp_35 = f32[3,49]{1,0} add(tmp_33, tmp_34) tmp_36 = f32[3,49]{1,0} parameter(14) tmp_37 = f32[3,49]{1,0} add(tmp_35, tmp_36) tmp_38 = f32[1,1]{1,0} constant({ {0} }) tmp_39 = f32[1,1]{1,0} broadcast(tmp_38), dimensions={0,1} tmp_40 = f32[] reshape(tmp_39) tmp_41 = f32[3,32]{1,0} broadcast(tmp_40), dimensions={} tmp_42 = u32[48]{0} parameter(11) tmp_43 = u32[48]{0} parameter(5) tmp_44 = u32[96]{0} concatenate(tmp_42, tmp_43), dimensions={0} tmp_45 = u32[3,32]{1,0} reshape(tmp_44) tmp_46 = u32[96]{0} reshape(tmp_45) tmp_47 = u32[] constant(1) tmp_48 = u32[3,32]{1,0} broadcast(tmp_47), dimensions={} tmp_49 = u32[96]{0} reshape(tmp_48) tmp_50 = u32[96]{0} shift-right-logical(tmp_46, tmp_49) tmp_51 = u32[3,32]{1,0} reshape(tmp_50) tmp_52 = u32[3,32]{1,0} or(tmp_51, tmp_48) tmp_53 = f32[3,32]{1,0} bitcast-convert(tmp_52) tmp_54 = f32[3,32]{1,0} broadcast(tmp_0), dimensions={} tmp_55 = f32[3,32]{1,0} subtract(tmp_53, tmp_54) tmp_56 = f32[1,1]{1,0} constant({ {1} }) tmp_57 = f32[1,1]{1,0} broadcast(tmp_56), dimensions={0,1} tmp_58 = f32[] reshape(tmp_57) tmp_59 = f32[3,32]{1,0} broadcast(tmp_58), dimensions={} tmp_60 = f32[3,32]{1,0} multiply(tmp_55, tmp_59) tmp_61 = f32[3,32]{1,0} add(tmp_60, tmp_41) tmp_62 = f32[3,32]{1,0} maximum(tmp_41, tmp_61) tmp_63 = f32[3,32]{1,0} broadcast(tmp_3), dimensions={} tmp_64 = pred[3,32]{1,0} compare(tmp_62, tmp_63), direction=LT tmp_65 = f32[3,32]{1,0} convert(tmp_64) tmp_66 = f32[3,49]{1,0} parameter(9) tmp_67 = f32[49]{0} parameter(4) tmp_68 = f32[3,49]{1,0} broadcast(tmp_67), dimensions={1} tmp_69 = f32[3,49]{1,0} add(tmp_66, tmp_68) tmp_70 = f32[1,49]{1,0} parameter(12) tmp_71 = f32[1,49]{1,0} broadcast(tmp_0), dimensions={} tmp_72 = f32[1,49]{1,0} divide(tmp_70, tmp_71) tmp_73 = f32[1,49]{1,0} broadcast(tmp_72), dimensions={0,1} tmp_74 = f32[49]{0} reshape(tmp_73) tmp_75 = f32[3,49]{1,0} broadcast(tmp_74), dimensions={1} tmp_76 = f32[3,49]{1,0} subtract(tmp_69, tmp_75) tmp_77 = f32[1,49]{1,0} parameter(3) tmp_78 = f32[1,49]{1,0} parameter(8) tmp_79 = f32[1,49]{1,0} divide(tmp_78, tmp_71) tmp_80 = f32[1,49]{1,0} multiply(tmp_72, tmp_72) tmp_81 = f32[1,49]{1,0} subtract(tmp_79, tmp_80) tmp_82 = f32[1,49]{1,0} add(tmp_81, tmp_71) tmp_83 = f32[1,49]{1,0} rsqrt(tmp_82) tmp_84 = f32[1,49]{1,0} multiply(tmp_77, tmp_83) tmp_85 = f32[1,49]{1,0} broadcast(tmp_84), dimensions={0,1} tmp_86 = f32[49]{0} reshape(tmp_85) tmp_87 = f32[3,49]{1,0} broadcast(tmp_86), dimensions={1} tmp_88 = f32[3,49]{1,0} multiply(tmp_76, tmp_87) tmp_89 = f32[1,49]{1,0} parameter(2) tmp_90 = f32[1,49]{1,0} broadcast(tmp_89), dimensions={0,1} tmp_91 = f32[49]{0} reshape(tmp_90) tmp_92 = f32[3,49]{1,0} broadcast(tmp_91), dimensions={1} tmp_93 = f32[3,49]{1,0} add(tmp_88, tmp_92) tmp_94 = f32[49,32]{1,0} parameter(1) tmp_95 = f32[3,32]{1,0} dot(tmp_93, tmp_94), lhs_contracting_dims={1}, rhs_contracting_dims={0} tmp_96 = f32[32]{0} parameter(0) tmp_97 = f32[3,32]{1,0} broadcast(tmp_96), dimensions={1} tmp_98 = f32[3,32]{1,0} add(tmp_95, tmp_97) tmp_99 = f32[3,32]{1,0} multiply(tmp_65, tmp_98) tmp_100 = f32[3,32]{1,0} divide(tmp_99, tmp_63) tmp_101 = f32[3,32]{1,0} maximum(tmp_100, tmp_63) ROOT tmp_102 = f32[49,32]{1,0} dot(tmp_37, tmp_101), lhs_contracting_dims={0}, rhs_contracting_dims={0} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kFusion); EXPECT_EQ(module->entry_computation()->root_instruction()->fusion_kind(), HloInstruction::FusionKind::kCustom); EXPECT_LE(module->entry_computation()->root_instruction()->operand_count(), TritonFusionAnalysis::kMaxParameterPerDotOperand * 2); } TEST_F(GemmFusionLevel2Test, DoNotFuseTooManyParametersWhenAnInstructionWouldAddMultipleParameters) { static_assert(TritonFusionAnalysis::kMaxParameterPerDotOperand == 4, "We have to update this test."); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { a = f32[3,49]{1,0} parameter(0) b = f32[3,49]{1,0} parameter(1) c = pred[3,49]{1,0} parameter(2) d = f32[3,49]{1,0} parameter(3) e = f32[3,49]{1,0} parameter(4) add0 = f32[3,49]{1,0} add(a, b) select = f32[3,49]{1,0} select(c, d, e) add1 = f32[3,49]{1,0} add(add0, select) f = f32[3,32]{1,0} parameter(5) ROOT tmp_102 = f32[49,32]{1,0} dot(add1, f), lhs_contracting_dims={0}, rhs_contracting_dims={0} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kFusion); EXPECT_EQ(module->entry_computation()->root_instruction()->fusion_kind(), HloInstruction::FusionKind::kCustom); EXPECT_LE(module->entry_computation()->root_instruction()->operand_count(), TritonFusionAnalysis::kMaxParameterPerDotOperand + 1); } TEST_F(GemmFusionLevel2Test, DoNotFuseTooManyParametersForConcat) { static_assert(TritonFusionAnalysis::kMaxParameterPerDotOperand == 4, "We have to update this test."); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { a = f32[3,3]{1,0} parameter(0) b = f32[3,3]{1,0} parameter(1) c = f32[3,3]{1,0} parameter(2) d = f32[3,3]{1,0} parameter(3) e = f32[3,3]{1,0} parameter(4) f = f16[3,3]{1,0} parameter(5) concat = f32[15,3]{1,0} concatenate(a, b, c, d, e), dimensions={0} convert = f32[3,3]{1,0} convert(f) ROOT dot = f32[15,3]{1,0} dot(concat, convert), lhs_contracting_dims={1}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kFusion); EXPECT_EQ(module->entry_computation()->root_instruction()->fusion_kind(), HloInstruction::FusionKind::kCustom); EXPECT_LE(module->entry_computation()->root_instruction()->operand_count(), TritonFusionAnalysis::kMaxParameterPerDotOperand + 1); } TEST_F(GemmFusionLevel2Test, InstructionsReachableFromMultipleOperandsAreHandledCorrectly) { static_assert(TritonFusionAnalysis::kMaxParameterPerDotOperand == 4, "We have to update this test."); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { a = f32[2,4]{1,0} parameter(0) b = f32[2,4]{1,0} parameter(1) c = f32[2,4]{1,0} parameter(2) d = f32[2,4]{1,0} parameter(3) e = f32[2,4]{1,0} parameter(4) add0 = f32[2,4]{1,0} add(a, b) add1 = f32[2,4]{1,0} add(add0, c) add2 = f32[2,4]{1,0} add(add1, d) add3 = f32[2,4]{1,0} add(add2, e) ROOT r = f32[2,2]{1,0} dot(add3, add0), lhs_contracting_dims={1}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); } TEST_F(GemmFusionLevel2Test, EachScopeIsFusedToASeparateSubgraph) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { a = f32[2,4]{1,0} parameter(0) b = f32[2,4]{1,0} parameter(1) add = f32[2,4]{1,0} add(a, b) ROOT r = f32[2,2]{1,0} dot(add, add), lhs_contracting_dims={1}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); MatchHloModule(*module, R"( CHECK-DAG: %[[P0:.*]] = f32[2,4]{1,0} parameter(0) CHECK-DAG: %[[P1:.*]] = f32[2,4]{1,0} parameter(1) CHECK-DAG: %[[ADD0:.*]] = f32[2,4]{1,0} add(f32[2,4]{1,0} %[[P0]], f32[2,4]{1,0} %[[P1]]) CHECK-DAG: %[[P2:.*]] = f32[2,4]{1,0} parameter(2) CHECK-DAG: %[[P3:.*]] = f32[2,4]{1,0} parameter(3) CHECK-DAG: %[[ADD1:.*]] = f32[2,4]{1,0} add(f32[2,4]{1,0} %[[P2]], f32[2,4]{1,0} %[[P3]]) CHECK-DAG: ROOT {{.*}} = f32[2,2]{1,0} dot(f32[2,4]{1,0} %[[ADD0]], f32[2,4]{1,0} %[[ADD1]]) CHECK: ENTRY CHECK-DAG: %[[P0:.*]] = f32[2,4]{1,0} parameter(0) CHECK-DAG: %[[P1:.*]] = f32[2,4]{1,0} parameter(1) CHECK-DAG: ROOT {{.*}} = f32[2,2]{1,0} CHECK-SAME: fusion(f32[2,4]{1,0} %[[P0]], f32[2,4]{1,0} %[[P1]], f32[2,4]{1,0} %[[P0]], f32[2,4]{1,0} %[[P1]]), CHECK-SAME: kind=kCustom CHECK-SAME: __triton_gemm })"); } TEST_F(GemmFusionLevel2Test, ParamNodesAreReusedIfTheyHaveTheSameIterSpec) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { a = f32[2,4]{1,0} parameter(0) add = f32[2,4]{1,0} add(a, a) ROOT r = f32[2,2]{1,0} dot(add, add), lhs_contracting_dims={1}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); MatchHloModule(*module, R"( CHECK-DAG: %[[P0:.*]] = f32[2,4]{1,0} parameter(0) CHECK-DAG: %[[ADD0:.*]] = f32[2,4]{1,0} add(f32[2,4]{1,0} %[[P0]], f32[2,4]{1,0} %[[P0]]) CHECK-DAG: %[[P1:.*]] = f32[2,4]{1,0} parameter(1) CHECK-DAG: %[[ADD1:.*]] = f32[2,4]{1,0} add(f32[2,4]{1,0} %[[P1]], f32[2,4]{1,0} %[[P1]]) CHECK-DAG: ROOT {{.*}} = f32[2,2]{1,0} dot(f32[2,4]{1,0} %[[ADD0]], f32[2,4]{1,0} %[[ADD1]]) CHECK: ENTRY CHECK-DAG: %[[P0:.*]] = f32[2,4]{1,0} parameter(0) CHECK-DAG: ROOT {{.*}} = f32[2,2]{1,0} CHECK-SAME: fusion(f32[2,4]{1,0} %[[P0]], f32[2,4]{1,0} %[[P0]]) CHECK-SAME: kind=kCustom CHECK-SAME: __triton_gemm })"); } TEST_F(GemmFusionLevel2Test, NonParamNodesAreReusedIfTheyHaveTheSameIterSpec) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { a = f32[4,4]{1,0} parameter(0) b = f32[4,4]{1,0} parameter(1) negate = f32[4,4]{1,0} negate(a) sine = f32[4,4]{1,0} sine(negate) add = f32[4,4]{1,0} add(negate, sine) ROOT r = f32[4,4]{1,0} dot(add, b), lhs_contracting_dims={1}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); MatchHloModule(*module, R"( CHECK-DAG: %[[P0:.*]] = f32[4,4]{1,0} parameter(0) CHECK-DAG: %[[P1:.*]] = f32[4,4]{1,0} parameter(1) CHECK-DAG: %[[NEGATE:.*]] = f32[4,4]{1,0} negate(f32[4,4]{1,0} %[[P0]]) CHECK-DAG: %[[SINE:.*]] = f32[4,4]{1,0} sine(f32[4,4]{1,0} %[[NEGATE]]) CHECK-DAG: %[[ADD:.*]] = f32[4,4]{1,0} add(f32[4,4]{1,0} %[[NEGATE]], f32[4,4]{1,0} %[[SINE]]) CHECK-DAG: ROOT {{.*}} = f32[4,4]{1,0} dot(f32[4,4]{1,0} %[[ADD]], f32[4,4]{1,0} %[[P1]]) CHECK: ENTRY CHECK-DAG: %[[P0:.*]] = f32[4,4]{1,0} parameter(0) CHECK-DAG: %[[P1:.*]] = f32[4,4]{1,0} parameter(1) CHECK-DAG: ROOT {{.*}} = f32[4,4]{1,0} CHECK-SAME: fusion(f32[4,4]{1,0} %[[P0]], f32[4,4]{1,0} %[[P1]]) CHECK-SAME: kind=kCustom CHECK-SAME: __triton_gemm })"); } TEST_F(GemmFusionLevel2Test, NodesAreNotReusedIfTheyHaveDifferentIterSpecs) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( ENTRY e { a = f32[4,4]{1,0} parameter(0) b = f32[4,4]{1,0} parameter(1) tr_a = f32[4,4]{1,0} transpose(a), dimensions={1,0} add = f32[4,4]{1,0} add(a, tr_a) ROOT r = f32[4,4]{1,0} dot(add, b), lhs_contracting_dims={1}, rhs_contracting_dims={1} })")); EXPECT_TRUE(GemmFusion(gpu_version_).Run(module.get()).value()); MatchHloModule(*module, R"( CHECK-DAG: %[[P0:.*]] = f32[4,4]{1,0} parameter(0) CHECK-DAG: %[[P1:.*]] = f32[4,4]{1,0} parameter(1) CHECK-DAG: %[[P2:.*]] = f32[4,4]{1,0} parameter(2) CHECK-DAG: %[[TRANSPOSE:.*]] = f32[4,4]{1,
2,043
cpp
tensorflow/tensorflow
double_buffer_loop_unrolling
third_party/xla/xla/service/gpu/transforms/double_buffer_loop_unrolling.cc
third_party/xla/xla/service/gpu/transforms/double_buffer_loop_unrolling_test.cc
#ifndef XLA_SERVICE_GPU_DOUBLE_BUFFER_LOOP_UNROLLING_H_ #define XLA_SERVICE_GPU_DOUBLE_BUFFER_LOOP_UNROLLING_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class DoubleBufferLoopUnrolling : public HloModulePass { public: enum class UnrollStrategy { kDoubleBuffer, kFullUnroll }; explicit DoubleBufferLoopUnrolling( UnrollStrategy unroll_strategy = UnrollStrategy::kDoubleBuffer) : unroll_strategy_(unroll_strategy) {}; ~DoubleBufferLoopUnrolling() override = default; absl::string_view name() const override { return "loop-double-buffer-transformer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: UnrollStrategy unroll_strategy_; }; } } #endif #include "xla/service/gpu/double_buffer_loop_unrolling.h" #include <cstdint> #include <iterator> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instruction_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/flatten_call_graph.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { void SetChannelIdForNewCollective(HloInstruction* new_instr, const HloModule* module) { absl::flat_hash_map<int64_t, int64_t> old_to_new_channel_id_map; absl::flat_hash_map<int64_t, HloComputation*> channel_id_comp_map; if (new_instr->IsAsynchronous() && hlo_query::IsCollectiveCommunicationOp( new_instr->async_wrapped_opcode())) { HloInstruction* wrapped_instr = DynCast<HloAsyncInstruction>(new_instr)->async_wrapped_instruction(); int64_t old_channel_id = *wrapped_instr->channel_id(); int64_t new_channel_id = old_to_new_channel_id_map[old_channel_id]; if (old_to_new_channel_id_map.find(old_channel_id) == old_to_new_channel_id_map.end()) { new_channel_id = hlo_query::NextChannelId(*module); VLOG(2) << "Generated new channel id " << new_channel_id; old_to_new_channel_id_map[old_channel_id] = new_channel_id; } VLOG(2) << "Setting channel id to " << new_channel_id; wrapped_instr->set_channel_id(new_channel_id); if (channel_id_comp_map.find(new_channel_id) == channel_id_comp_map.end()) { channel_id_comp_map[new_channel_id] = new_instr->async_wrapped_computation(); } else { channel_id_comp_map[new_channel_id]->AddAsyncStart(new_instr); } } else if (hlo_query::IsCollectiveCommunicationOp(new_instr->opcode()) || hlo_query::IsAsyncCollectiveStartOp(new_instr)) { new_instr->set_channel_id(hlo_query::NextChannelId(*module)); } } using Interval = std::pair<int64_t, int64_t>; absl::StatusOr<std::vector<Interval>> ParseVectorOfPairs( absl::string_view str) { TF_ASSIGN_OR_RETURN(std::vector<ReplicaGroup> replica_groups, ParseReplicaGroupsOnly(str)); std::vector<Interval> res; res.reserve(replica_groups.size()); for (const ReplicaGroup& replica_group : replica_groups) { TF_RET_CHECK(replica_group.replica_ids_size() == 2); int64_t a = replica_group.replica_ids(0); int64_t b = replica_group.replica_ids(1); res.emplace_back(a, b); } return res; } absl::Status SetSendRecvValidationForPeeledInstr(HloInstruction* new_instr, HloInstruction* old_instr) { TF_RET_CHECK( new_instr->opcode() == old_instr->opcode() && "cloned instruction and original instruction have different opcodes"); if (!HloPredicateIsOp<HloOpcode::kCollectivePermute, HloOpcode::kCollectivePermuteStart, HloOpcode::kSend, HloOpcode::kRecv>(old_instr)) { return absl::OkStatus(); } const auto& attribute_map = new_instr->frontend_attributes().map(); if (!attribute_map.contains(kSendRecvValidationAttr)) { return absl::OkStatus(); } VLOG(3) << "Original send-recv iterations: " << attribute_map.at(kSendRecvValidationAttr); TF_ASSIGN_OR_RETURN( auto send_recv_validation_attr, ParseVectorOfPairs(attribute_map.at(kSendRecvValidationAttr))); uint64_t n_pairs = send_recv_validation_attr.size(); if (n_pairs == 0) { return absl::OkStatus(); } std::vector<Interval> send_recv_validation_attr_updated(n_pairs, {1, 0}); for (std::uint64_t i = 0; i < send_recv_validation_attr.size(); i++) { if (send_recv_validation_attr[i].first <= 0 && send_recv_validation_attr[i].second >= 0) { send_recv_validation_attr_updated[i] = {0, 0}; } } hlo_instruction_utils::AddOrUpdateVectorOfPairsAsAttribute( new_instr, kSendRecvValidationAttr, send_recv_validation_attr_updated); return absl::OkStatus(); } absl::Status SetSendRecvValidation(HloInstruction* cp1, HloInstruction* cp2, bool is_peeled) { TF_RET_CHECK( cp2->opcode() == cp1->opcode() && "cloned instruction and original instruction have different opcodes"); if (!HloPredicateIsOp<HloOpcode::kCollectivePermute, HloOpcode::kCollectivePermuteStart, HloOpcode::kSend, HloOpcode::kRecv>(cp1)) { return absl::OkStatus(); } const auto& attribute_map = cp2->frontend_attributes().map(); if (!attribute_map.contains(kSendRecvValidationAttr)) { return absl::OkStatus(); } VLOG(3) << "Original send-recv iterations: " << attribute_map.at(kSendRecvValidationAttr); TF_ASSIGN_OR_RETURN( auto send_recv_validation_attr, ParseVectorOfPairs(attribute_map.at(kSendRecvValidationAttr))); if (send_recv_validation_attr.size() == 0) { return absl::OkStatus(); } std::vector<Interval> send_recv_iterations_new_instr1, send_recv_iterations_new_instr2; send_recv_iterations_new_instr1.reserve(send_recv_validation_attr.size()); send_recv_iterations_new_instr2.reserve(send_recv_validation_attr.size()); for (const Interval& pair : send_recv_validation_attr) { int64_t a = pair.first; int64_t b = pair.second; if (is_peeled) { send_recv_iterations_new_instr1.emplace_back( std::floor(a / 2.0), std::max(0.0, std::floor((b - 1) / 2.0))); send_recv_iterations_new_instr2.emplace_back( std::max(0.0, std::floor((a - 1) / 2.0)), std::max(0.0, std::floor((b - 2) / 2.0))); } else { send_recv_iterations_new_instr1.emplace_back(std::floor((a + 1) / 2.0), std::floor(b / 2.0)); send_recv_iterations_new_instr2.emplace_back( std::floor(a / 2.0), std::max(0.0, std::floor((b - 1) / 2.0))); } } hlo_instruction_utils::AddOrUpdateVectorOfPairsAsAttribute( cp1, kSendRecvValidationAttr, send_recv_iterations_new_instr1); hlo_instruction_utils::AddOrUpdateVectorOfPairsAsAttribute( cp2, kSendRecvValidationAttr, send_recv_iterations_new_instr2); VLOG(3) << "Updated send-recv iterations for " << cp1->name() << " : " << cp1->frontend_attributes().map().at(kSendRecvValidationAttr); VLOG(3) << "Updated send-recv iterations for " << cp2->name() << " : " << cp2->frontend_attributes().map().at(kSendRecvValidationAttr); return absl::OkStatus(); } absl::Status HandleControlDependencies( const HloComputation* while_body, const absl::flat_hash_map<HloInstruction*, HloInstruction*>& old_to_new_map, HloInstruction::InstructionVector* old_loop_roots, HloInstruction* input_parameter, const absl::flat_hash_set<HloInstruction*>& skip_control_dep_injection) { for (HloInstruction* old_instr : while_body->MakeInstructionPostOrder()) { if (old_to_new_map.find(old_instr) != old_to_new_map.end()) { HloInstruction* new_instr = old_to_new_map.at(old_instr); VLOG(2) << "Processing control predecessors for " << new_instr->ToString(); std::vector<HloInstruction*> new_control_pred; new_control_pred.reserve(old_instr->control_predecessors().size()); for (HloInstruction* pred : old_instr->control_predecessors()) { if (!old_to_new_map.contains(pred)) { continue; } new_control_pred.push_back(old_to_new_map.at(pred)); } TF_RETURN_IF_ERROR(new_instr->DropAllControlDeps()); for (HloInstruction* new_pred : new_control_pred) { TF_RETURN_IF_ERROR(new_pred->AddControlDependencyTo(new_instr)); VLOG(2) << "Adding " << new_pred->ToString() << " to control dependency of " << new_instr->ToString(); } } } for (HloInstruction* input_consumer : input_parameter->users()) { for (HloInstruction* old_input : input_consumer->users()) { if (old_to_new_map.find(old_input) != old_to_new_map.end()) { HloInstruction* new_input = old_to_new_map.at(old_input); if (skip_control_dep_injection.find(old_input) == skip_control_dep_injection.end() && !IsCollective(old_input)) { for (HloInstruction* old_root : *old_loop_roots) { TF_RETURN_IF_ERROR(old_root->AddControlDependencyTo(new_input)); } } } } } return absl::OkStatus(); } absl::StatusOr<bool> FullyUnroll(HloInstruction* while_instr, HloModule* module) { HloComputation* while_body = while_instr->while_body(); bool changed = false; VLOG(2) << "Processing root " << while_body->root_instruction()->ToString(); auto loop_roots = while_body->root_instruction()->mutable_operands(); HloInstruction* input_parameter = while_body->parameter_instruction(0); VLOG(2) << "Processing input parameter " << input_parameter->ToString(); absl::flat_hash_map<HloInstruction*, HloInstruction*> old_to_new_map; absl::flat_hash_set<HloInstruction*> skip_control_dep_injection; std::string clone_suffix = "full_unroll_clone"; TF_ASSIGN_OR_RETURN(WhileLoopBackendConfig config, while_instr->backend_config<WhileLoopBackendConfig>()); std::vector<HloInstruction*> ops_to_clone; ops_to_clone.reserve(while_body->MakeInstructionPostOrder().size()); HloInstruction* old_input_parameter = input_parameter; HloInstruction* new_input_parameter = while_body->root_instruction(); absl::flat_hash_set<HloInstruction*> seen_ops; for (HloInstruction* old_instr : while_body->MakeInstructionPostOrder()) { if (seen_ops.contains(old_instr)) { continue; } ops_to_clone.push_back(old_instr); seen_ops.insert(old_instr); } int n = config.known_trip_count().n(); while (--n) { std::vector<HloInstruction*> new_ops_to_clone; old_to_new_map[old_input_parameter] = new_input_parameter; for (HloInstruction* old_instr : ops_to_clone) { if (old_to_new_map.contains(old_instr)) { continue; } VLOG(2) << "Cloning instruction " << old_instr->ToString(); std::vector<HloInstruction*> new_operands; for (HloInstruction* old_operand : old_instr->mutable_operands()) { new_operands.push_back(old_to_new_map[old_operand]); } HloInstruction* new_instr = while_body->AddInstruction(old_instr->CloneWithNewOperands( old_instr->shape(), new_operands, clone_suffix)); if (old_instr->IsElementwiseBinary() && old_instr->HasConstantOperand()) { skip_control_dep_injection.insert(old_instr); } SetChannelIdForNewCollective(new_instr, module); old_to_new_map[old_instr] = new_instr; new_ops_to_clone.push_back(new_instr); VLOG(2) << "Added instruction " << new_instr->ToString(); } while_body->set_root_instruction( old_to_new_map[while_body->root_instruction()]); VLOG(2) << "Replaced with new root " << while_body->root_instruction()->ToString(); TF_RETURN_IF_ERROR(HandleControlDependencies( while_body, old_to_new_map, &loop_roots, old_input_parameter, skip_control_dep_injection)); old_to_new_map.clear(); skip_control_dep_injection.clear(); loop_roots = while_body->root_instruction()->mutable_operands(); old_input_parameter = new_input_parameter; new_input_parameter = while_body->root_instruction(); ops_to_clone = std::move(new_ops_to_clone); changed = true; } WhileLoopBackendConfig new_config; new_config.mutable_known_trip_count()->set_n(1); TF_RETURN_IF_ERROR(while_instr->set_backend_config(new_config)); return changed; } absl::Status PeelInstructionsForOddTripCount(HloModule* module, HloInstruction* while_instr) { std::string suffix = "peeled_double_buffer"; absl::flat_hash_map<HloInstruction*, HloInstruction*> old_to_new_map; HloComputation* while_body = while_instr->while_body(); HloInstruction* input_parameter = while_body->parameter_instruction(0); HloInstruction* input_tuple = while_instr->mutable_operand(0); auto old_loop_roots = while_body->root_instruction()->mutable_operands(); HloComputation* parent_comp = while_instr->parent(); old_to_new_map[input_parameter] = input_tuple; for (HloInstruction* old_instr : while_body->MakeInstructionPostOrder()) { if (old_to_new_map.find(old_instr) != old_to_new_map.end()) { continue; } VLOG(2) << "Peeling instruction " << old_instr->ToString(); std::vector<HloInstruction*> new_operands(old_instr->operand_count()); for (int64_t i = 0; i < old_instr->operand_count(); i++) { new_operands[i] = old_to_new_map[old_instr->mutable_operand(i)]; } HloInstruction* new_instr = parent_comp->AddInstruction(old_instr->CloneWithNewOperands( old_instr->shape(), new_operands, suffix)); SetChannelIdForNewCollective(new_instr, module); TF_CHECK_OK(SetSendRecvValidationForPeeledInstr(new_instr, old_instr)); old_to_new_map[old_instr] = new_instr; VLOG(2) << "Added instruction " << new_instr->ToString() << " to parent computation."; } std::vector<HloInstruction*> new_roots; for (HloInstruction* instr : old_loop_roots) { new_roots.push_back(old_to_new_map[instr]); } TF_RETURN_IF_ERROR(while_instr->ReplaceOperandWith( 0, old_to_new_map[while_body->root_instruction()])); VLOG(2) << "Replaced with new input tuple " << while_instr->operand(0)->ToString(); for (HloInstruction* old_instr : while_body->MakeInstructionPostOrder()) { if (old_to_new_map.find(old_instr) != old_to_new_map.end()) { HloInstruction* new_instr = old_to_new_map[old_instr]; VLOG(2) << "Processing control predecessors for peeled instruction " << new_instr->ToString(); std::vector<HloInstruction*> new_control_pred( old_instr->control_predecessors().size()); for (HloInstruction* pred : old_instr->control_predecessors()) { new_control_pred.push_back(old_to_new_map[pred]); } TF_RETURN_IF_ERROR(new_instr->DropAllControlDeps()); for (HloInstruction* new_pred : new_control_pred) { TF_RETURN_IF_ERROR(new_pred->AddControlDependencyTo(new_instr)); VLOG(2) << "Adding " << new_pred->ToString() << " to control dependency of peeled instruction: " << new_instr->ToString(); } } } return absl::OkStatus(); } absl::StatusOr<bool> DoubleBufferingUnroll(HloInstruction* while_instr, HloModule* module) { TF_ASSIGN_OR_RETURN(auto config, while_instr->backend_config<WhileLoopBackendConfig>()); CHECK(config.has_known_trip_count()) << "Only loops with known trip count are supported."; int64_t exact_trip_count = config.known_trip_count().n(); VLOG(2) << "Processing while loop " << while_instr->ToString() << " with trip count: " << exact_trip_count; HloComputation* while_body = while_instr->while_body(); VLOG(2) << "Processing root " << while_body->root_instruction()->ToString(); auto old_loop_roots = while_body->root_instruction()->mutable_operands(); HloInstruction* input_parameter = while_body->parameter_instruction(0); VLOG(2) << "Processing input parameter " << input_parameter->ToString(); absl::flat_hash_map<HloInstruction*, HloInstruction*> old_to_new_map; absl::flat_hash_set<HloInstruction*> skip_control_dep_injection; bool is_peeled = exact_trip_count % 2; if (is_peeled) { VLOG(2) << "Found loops with odd trip count, 1 iteration will be peeled " "outside of the main body."; TF_RETURN_IF_ERROR(PeelInstructionsForOddTripCount(module, while_instr)); exact_trip_count -= 1; } std::string suffix = "double_buffer_clone"; old_to_new_map[input_parameter] = while_body->root_instruction(); for (HloInstruction* old_instr : while_body->MakeInstructionPostOrder()) { if (old_to_new_map.find(old_instr) != old_to_new_map.end()) { continue; } VLOG(2) << "Cloning instruction " << old_instr->ToString(); std::vector<HloInstruction*> new_operands; for (HloInstruction* old_operand : old_instr->mutable_operands()) { new_operands.push_back(old_to_new_map[old_operand]); } HloInstruction* new_instr = while_body->AddInstruction(old_instr->CloneWithNewOperands( old_instr->shape(), new_operands, suffix)); if (old_instr->IsElementwiseBinary() && old_instr->HasConstantOperand()) { skip_control_dep_injection.insert(old_instr); } SetChannelIdForNewCollective(new_instr, module); TF_CHECK_OK(SetSendRecvValidation(old_instr, new_instr, is_peeled)); old_to_new_map[old_instr] = new_instr; VLOG(2) << "Added instruction " << new_instr->ToString(); } while_body->set_root_instruction( old_to_new_map[while_body->root_instruction()]); VLOG(2) << "Replaced with new root " << while_body->root_instruction()->ToString(); TF_RETURN_IF_ERROR(HandleControlDependencies(while_body, old_to_new_map, &old_loop_roots, input_parameter, skip_control_dep_injection)); WhileLoopBackendConfig new_config; new_config.mutable_known_trip_count()->set_n(exact_trip_count / 2); TF_RETURN_IF_ERROR(while_instr->set_backend_config(new_config)); return true; } } absl::StatusOr<bool> DoubleBufferLoopUnrolling::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloInstruction*> while_instrs; for (auto comp : module->MakeNonfusionComputations()) { absl::c_copy_if(comp->instructions(), std::back_inserter(while_instrs), HloPredicateIsOp<HloOpcode::kWhile>); } VLOG(2) << "Processing " << while_instrs.size() << " while loops."; for (HloInstruction* while_instr : while_instrs) { TF_ASSIGN_OR_RETURN(WhileLoopBackendConfig config, while_instr->backend_config<WhileLoopBackendConfig>()); if (!config.has_known_trip_count()) { VLOG(2) << while_instr->ToString() << " doesn't have exact trip count, skipping loop unrolling " "for now"; continue; } if (unroll_strategy_ == UnrollStrategy::kFullUnroll) { TF_ASSIGN_OR_RETURN(changed, FullyUnroll(while_instr, module)); } else if (unroll_strategy_ == UnrollStrategy::kDoubleBuffer) { TF_ASSIGN_OR_RETURN(changed, DoubleBufferingUnroll(while_instr, module)); } else { LOG(FATAL) << absl::StrCat("Unhandled unrolling strategy: ", unroll_strategy_); } } VLOG(2) << "LoopDoubleBufferTransformer output: " << module->ToString(); if (changed) { TF_RETURN_IF_ERROR( FlattenCallGraph().Run(module, execution_threads).status()); } return changed; } } }
#include "xla/service/gpu/double_buffer_loop_unrolling.h" #include <cstdint> #include <memory> #include <optional> #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/tuple_simplifier.h" #include "xla/test.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using tsl::testing::IsOkAndHolds; int64_t CountInstructions(const HloComputation& computation, HloOpcode opcode) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { if (instruction->opcode() == opcode) { count++; } } return count; } int64_t CountInstructions(const HloModule& module, HloOpcode opcode) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountInstructions((*computation), opcode); } return count; } class GpuLoopDoubleBufferTransformerTest : public HloTestBase { DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_while_loop_double_buffering(true); return debug_options; } }; TEST_F(GpuLoopDoubleBufferTransformerTest, FullUnrollOddTripCountTest) { const char* const kModuleString = R"( HloModule all_gather_overlapping condition { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=3 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[2,128] get-tuple-element(input_tuple), index=2 cond = s32[] get-tuple-element(input_tuple), index=3 c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} add = f32[1,128] add(splat_c0, param_0) all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-done = f32[2,128] all-gather-done(all-gather-start) ROOT output_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, dynamic-slice, all-gather-done, cond_plus_1) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = s32[] constant(0) tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, param_0, param_1, param_2) ROOT while = (f32[1,128], f32[1,128], f32[2,128], s32[]) while(tuple), condition=condition, body=body, backend_config={"known_trip_count":{"n":"11"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer( DoubleBufferLoopUnrolling::UnrollStrategy::kFullUnroll); TupleSimplifier tuple_simp; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, double_buffer.Run(module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(changed, tuple_simp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* while_instruction = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, while_instruction->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 1); EXPECT_EQ(CountInstructions((*while_instruction->while_body()), HloOpcode::kAllGatherStart), 11); EXPECT_EQ(CountInstructions((*module), HloOpcode::kAllGatherStart), 11); } TEST_F(GpuLoopDoubleBufferTransformerTest, FullUnrollEvenTripCountTest) { const char* const kModuleString = R"( HloModule all_gather_overlapping condition { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=3 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[2,128] get-tuple-element(input_tuple), index=2 cond = s32[] get-tuple-element(input_tuple), index=3 c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} add = f32[1,128] add(splat_c0, param_0) all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-done = f32[2,128] all-gather-done(all-gather-start) ROOT output_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, dynamic-slice, all-gather-done, cond_plus_1) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = s32[] constant(0) tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, param_0, param_1, param_2) ROOT while = (f32[1,128], f32[1,128], f32[2,128], s32[]) while(tuple), condition=condition, body=body, backend_config={"known_trip_count":{"n":"10"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer( DoubleBufferLoopUnrolling::UnrollStrategy::kFullUnroll); TupleSimplifier tuple_simp; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, double_buffer.Run(module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(changed, tuple_simp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* while_instruction; for (auto instr : module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kWhile) { while_instruction = instr; } } TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, while_instruction->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 1); EXPECT_EQ(CountInstructions((*while_instruction->while_body()), HloOpcode::kAllGatherStart), 10); EXPECT_EQ(CountInstructions((*module), HloOpcode::kAllGatherStart), 10); } TEST_F(GpuLoopDoubleBufferTransformerTest, UnrolledLoopEvenTripCount) { const char* const kModuleString = R"( HloModule all_gather_overlapping condition { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=3 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[2,128] get-tuple-element(input_tuple), index=2 cond = s32[] get-tuple-element(input_tuple), index=3 c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} add = f32[1,128] add(splat_c0, param_0) all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-done = f32[2,128] all-gather-done(all-gather-start) ROOT output_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, dynamic-slice, all-gather-done, cond_plus_1) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = s32[] constant(0) tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, param_0, param_1, param_2) ROOT while = (f32[1,128], f32[1,128], f32[2,128], s32[]) while(tuple), condition=condition, body=body, backend_config={"known_trip_count":{"n":"10"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer; TupleSimplifier tuple_simp; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, double_buffer.Run(module.get())); EXPECT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN(changed, tuple_simp.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* while_instruction = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, while_instruction->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 5); EXPECT_EQ(CountInstructions((*while_instruction->while_body()), HloOpcode::kAllGatherStart), 2); EXPECT_EQ(CountInstructions((*module), HloOpcode::kAllGatherStart), 2); } TEST_F(GpuLoopDoubleBufferTransformerTest, UnrolledLoopOddTripCount) { const char* const kModuleString = R"( HloModule all_gather_overlapping condition { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=3 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[2,128] get-tuple-element(input_tuple), index=2 cond = s32[] get-tuple-element(input_tuple), index=3 c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} add = f32[1,128] add(splat_c0, param_0) all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-done = f32[2,128] all-gather-done(all-gather-start) ROOT output_tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, dynamic-slice, all-gather-done, cond_plus_1) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = s32[] constant(0) tuple = (f32[1,128], f32[1,128], f32[2,128], s32[]) tuple(param_0, param_0, param_1, param_2) ROOT while = (f32[1,128], f32[1,128], f32[2,128], s32[]) while(tuple), condition=condition, body=body, backend_config={"known_trip_count":{"n":"11"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer; TupleSimplifier tuple_simp; EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(tuple_simp.Run(module.get()), IsOkAndHolds(true)); HloInstruction* while_instruction = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, while_instruction->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 5); EXPECT_EQ(CountInstructions((*while_instruction->while_body()), HloOpcode::kAllGatherStart), 2); EXPECT_EQ(CountInstructions((*module), HloOpcode::kAllGatherStart), 3); EXPECT_EQ(while_instruction->operand(0)->operand(2)->opcode(), HloOpcode::kAllGatherDone); } TEST_F(GpuLoopDoubleBufferTransformerTest, UnrolledLoopNoControlDepsForConstantAdd) { const char* const kModuleString = R"( HloModule loop_unrolling_no_deps condition { input_tuple = (f32[], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=1 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (f32[], s32[]) parameter(0) param_0 = f32[] get-tuple-element(input_tuple), index=0 cond = s32[] get-tuple-element(input_tuple), index=1 c2 = f32[] constant(2) add = f32[] add(c2, param_0) one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) ROOT output_tuple = (f32[], s32[]) tuple(add, cond_plus_1) } ENTRY main { param_0 = f32[] parameter(0) param_2 = s32[] constant(0) tuple = (f32[], s32[]) tuple(param_0, param_2) ROOT while = (f32[], s32[]) while(tuple), condition=condition, body=body, backend_config={"known_trip_count":{"n":"11"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer; TupleSimplifier tuple_simp; EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(tuple_simp.Run(module.get()), IsOkAndHolds(true)); HloInstruction* while_instruction = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, while_instruction->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 5); EXPECT_EQ( CountInstructions((*while_instruction->while_body()), HloOpcode::kAdd), 4); EXPECT_EQ(while_instruction->while_body() ->root_instruction() ->operand(0) ->control_predecessors() .size(), 0); } TEST_F(GpuLoopDoubleBufferTransformerTest, UnrolledLoopNoControlDepsForCollective) { const char* const kModuleString = R"( HloModule loop_unrolling_no_deps condition { input_tuple = (f32[], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=1 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } ar_add { Arg_1 = f32[] parameter(1) Arg_0 = f32[] parameter(0) ROOT add_ar = f32[] add(Arg_1, Arg_0) } body { input_tuple = (f32[], s32[]) parameter(0) param_0 = f32[] get-tuple-element(input_tuple), index=0 cond = s32[] get-tuple-element(input_tuple), index=1 all-reduce-start = f32[] all-reduce-start(param_0), channel_id=8, replica_groups={{0}}, to_apply=ar_add, backend_config="{\"is_sync\":false}" one = s32[] constant(1) all-reduce-done = f32[] all-reduce-done(all-reduce-start) cond_plus_1 = s32[] add(cond, one) ROOT output_tuple = (f32[], s32[]) tuple(all-reduce-done, cond_plus_1) } ENTRY main { param_0 = f32[] parameter(0) param_2 = s32[] constant(0) tuple = (f32[], s32[]) tuple(param_0, param_2) ROOT while = (f32[], s32[]) while(tuple), condition=condition, body=body, backend_config={"known_trip_count":{"n":"10"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer; TupleSimplifier tuple_simp; EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(tuple_simp.Run(module.get()), IsOkAndHolds(true)); HloInstruction* while_instruction = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, while_instruction->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 5); EXPECT_EQ(CountInstructions((*while_instruction->while_body()), HloOpcode::kAllReduceStart), 2); absl::flat_hash_set<int64_t> channel_ids; hlo_query::ForEachInstructionWithOpcode( *while_instruction->while_body(), HloOpcode::kAllReduceStart, [&channel_ids](HloInstruction* ar) { EXPECT_EQ(ar->control_predecessors().size(), 0); channel_ids.insert(*(ar->channel_id())); }); EXPECT_EQ(channel_ids.size(), 2); } TEST_F(GpuLoopDoubleBufferTransformerTest, FullyUnrolledLoopNoControlDepsForCollective) { const char* const kModuleString = R"( HloModule loop_unrolling_no_deps condition { input_tuple = (f32[], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=1 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } ar_add { Arg_1 = f32[] parameter(1) Arg_0 = f32[] parameter(0) ROOT add_ar = f32[] add(Arg_1, Arg_0) } body { input_tuple = (f32[], s32[]) parameter(0) param_0 = f32[] get-tuple-element(input_tuple), index=0 cond = s32[] get-tuple-element(input_tuple), index=1 all-reduce-start = f32[] all-reduce-start(param_0), channel_id=8, replica_groups={{0}}, to_apply=ar_add, backend_config="{\"is_sync\":false}" one = s32[] constant(1) all-reduce-done = f32[] all-reduce-done(all-reduce-start) cond_plus_1 = s32[] add(cond, one) ROOT output_tuple = (f32[], s32[]) tuple(all-reduce-done, cond_plus_1) } ENTRY main { param_0 = f32[] parameter(0) param_2 = s32[] constant(0) tuple = (f32[], s32[]) tuple(param_0, param_2) ROOT while = (f32[], s32[]) while(tuple), condition=condition, body=body, backend_config={"known_trip_count":{"n":"10"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer( DoubleBufferLoopUnrolling::UnrollStrategy::kFullUnroll); TupleSimplifier tuple_simp; EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); EXPECT_THAT(tuple_simp.Run(module.get()), IsOkAndHolds(true)); HloInstruction* while_instruction = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, while_instruction->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 1); EXPECT_EQ(CountInstructions((*while_instruction->while_body()), HloOpcode::kAllReduceStart), 10); absl::flat_hash_set<int64_t> channel_ids; hlo_query::ForEachInstructionWithOpcode( *while_instruction->while_body(), HloOpcode::kAllReduceStart, [&channel_ids](HloInstruction* ar) { EXPECT_EQ(ar->control_predecessors().size(), 0); channel_ids.insert(*(ar->channel_id())); }); EXPECT_EQ(channel_ids.size(), 10); } TEST_F(GpuLoopDoubleBufferTransformerTest, NestedWhileLoopRemainsFlattened) { const char* const kModuleString = R"( HloModule loop_unrolling_nested_while_loop_remains_flattened condition_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) ROOT output = (s32[]) tuple(cond_plus_1) } condition { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (s32[]) parameter(0) ROOT output = (s32[]) while(input_tuple), condition=condition_nested, body=body_nested } ENTRY main { param_0 = (s32[]) parameter(0) ROOT while = (s32[]) while(param_0), condition=condition, body=body, backend_config={"known_trip_count":{"n":"10"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer; EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); absl::flat_hash_set<const HloComputation*> while_loops_callees; hlo_query::ForEachInstructionWithOpcode( *module, HloOpcode::kWhile, [&while_loops_callees](HloInstruction* instr) { EXPECT_TRUE( while_loops_callees.insert(instr->while_condition()).second); EXPECT_TRUE(while_loops_callees.insert(instr->while_body()).second); }); EXPECT_EQ(while_loops_callees.size(), 6); } TEST_F(GpuLoopDoubleBufferTransformerTest, NestedWhileLoopRemainsFlattenedOddTripCount) { const char* const kModuleString = R"( HloModule loop_unrolling_nested_while_loop_remains_flattened condition_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) ROOT output = (s32[]) tuple(cond_plus_1) } condition { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (s32[]) parameter(0) ROOT output = (s32[]) while(input_tuple), condition=condition_nested, body=body_nested } ENTRY main { param_0 = (s32[]) parameter(0) ROOT while = (s32[]) while(param_0), condition=condition, body=body, backend_config={"known_trip_count":{"n":"11"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer; EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); absl::flat_hash_set<const HloComputation*> while_loops_callees; hlo_query::ForEachInstructionWithOpcode( *module, HloOpcode::kWhile, [&while_loops_callees](HloInstruction* instr) { EXPECT_TRUE( while_loops_callees.insert(instr->while_condition()).second); EXPECT_TRUE(while_loops_callees.insert(instr->while_body()).second); }); EXPECT_EQ(while_loops_callees.size(), 8); } TEST_F(GpuLoopDoubleBufferTransformerTest, NestedWhileLoopRemainsFlattenedWhenFullyUnrolled) { const char* const kModuleString = R"( HloModule loop_unrolling_nested_while_loop_remains_flattened condition_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) ROOT output = (s32[]) tuple(cond_plus_1) } condition { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (s32[]) parameter(0) ROOT output = (s32[]) while(input_tuple), condition=condition_nested, body=body_nested } ENTRY main { param_0 = (s32[]) parameter(0) ROOT while = (s32[]) while(param_0), condition=condition, body=body, backend_config={"known_trip_count":{"n":"10"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer( DoubleBufferLoopUnrolling::UnrollStrategy::kFullUnroll); EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); absl::flat_hash_set<const HloComputation*> while_loops_callees; hlo_query::ForEachInstructionWithOpcode( *module, HloOpcode::kWhile, [&while_loops_callees](HloInstruction* instr) { EXPECT_TRUE( while_loops_callees.insert(instr->while_condition()).second); EXPECT_TRUE(while_loops_callees.insert(instr->while_body()).second); }); hlo_query::ForEachInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile, [](HloInstruction* instr) { TF_ASSERT_OK_AND_ASSIGN( WhileLoopBackendConfig config, instr->backend_config<WhileLoopBackendConfig>()); int64_t exact_trip_count = config.known_trip_count().n(); EXPECT_EQ(exact_trip_count, 1); }); EXPECT_EQ(while_loops_callees.size(), 22); } TEST_F(GpuLoopDoubleBufferTransformerTest, NestedWhileLoopAreUnrolled) { const char* const kModuleString = R"( HloModule loop_unrolling_nested_are_unrolled condition_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) ROOT output = (s32[]) tuple(cond_plus_1) } condition { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (s32[]) parameter(0) ROOT output = (s32[]) while(input_tuple), condition=condition_nested, body=body_nested, backend_config={"known_trip_count":{"n":"11"}} } ENTRY main { param_0 = (s32[]) parameter(0) ROOT while = (s32[]) while(param_0), condition=condition, body=body, backend_config={"known_trip_count":{"n":"11"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer; EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); int64_t num_whiles = 0; hlo_query::ForEachInstructionWithOpcode( *module, HloOpcode::kWhile, [&num_whiles](HloInstruction* instr) { EXPECT_EQ(instr->backend_config<WhileLoopBackendConfig>() ->known_trip_count() .n(), 5); ++num_whiles; }); EXPECT_EQ(num_whiles, 4); } TEST_F(GpuLoopDoubleBufferTransformerTest, NestedWhileLoopAreFullyUnrolled) { const char* const kModuleString = R"( HloModule loop_unrolling_nested_are_unrolled condition_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body_nested { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 one = s32[] constant(1) cond_plus_1 = s32[] add(cond, one) ROOT output = (s32[]) tuple(cond_plus_1) } condition { input_tuple = (s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=0 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } body { input_tuple = (s32[]) parameter(0) ROOT output = (s32[]) while(input_tuple), condition=condition_nested, body=body_nested, backend_config={"known_trip_count":{"n":"11"}} } ENTRY main { param_0 = (s32[]) parameter(0) ROOT while = (s32[]) while(param_0), condition=condition, body=body, backend_config={"known_trip_count":{"n":"11"}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); DoubleBufferLoopUnrolling double_buffer( DoubleBufferLoopUnrolling::UnrollStrategy::kFullUnroll); EXPECT_THAT(double_buffer.Run(module.get()), IsOkAndHolds(true)); int64_t num_whiles = 0; hlo_query::ForEachInstructionWithOpcode( *module, HloOpcode::kWhile, [&num_whiles](HloInstruction* instr) { EXPECT_EQ(instr->backend_config<WhileLoopBackendConfig>() ->known_trip_count() .n(), 1); ++num_whiles; }); EXPECT_EQ(num_whiles, 12); } TEST_F(GpuLoopDoubleBufferTransformerTest, WhileLoopWithCollectivePermute) { const char* kModuleString = R"( HloModule loop_unrolling_no_deps condition { input_tuple = (f32[], s32[]) parameter(0) cond = s32[] get-tuple-element(input_tuple), index=1 trip_count = s32[] constant(10) ROOT done = pred[] compare(cond, trip_count), direction=LT } ar_add { Arg_1 = f32[] parameter(1) Arg_0 = f32[] parameter(0) ROOT add_ar = f32[] add(Arg_1, Arg_0) } body { input_tuple = (f32[], s32[]) parameter(0) param_0 = f32[] get-tuple-element(input_tuple), index=0 cond = s32[] get-tuple-element(input_tuple), index=1 collective-permute = f32[] collective-permu
2,044
cpp
tensorflow/tensorflow
gpu_all_gather_optimizer
null
null
#ifndef XLA_SERVICE_GPU_GPU_ALL_GATHER_OPTIMIZER_H_ #define XLA_SERVICE_GPU_GPU_ALL_GATHER_OPTIMIZER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class AllGatherOptimizer : public HloModulePass { public: AllGatherOptimizer() = default; absl::string_view name() const override { return "all-gather-optimizer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/gpu_all_gather_optimizer.h" #include <cstdint> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/collective_ops_utils.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { absl::StatusOr<bool> AllGatherOptimizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (!HloOpcodeIsBinaryCommutative(instruction->opcode())) { continue; } HloInstruction* left_op = instruction->mutable_operand(0); HloInstruction* right_op = instruction->mutable_operand(1); if (right_op->opcode() != HloOpcode::kAllGather || left_op->opcode() != HloOpcode::kAllGather) { VLOG(2) << "Binary op's operands are not all-gather deduced types."; continue; } auto* left_all_gather = Cast<HloAllGatherInstruction>(left_op); auto* right_all_gather = Cast<HloAllGatherInstruction>(right_op); if (right_all_gather->constrain_layout() != left_all_gather->constrain_layout() || right_all_gather->use_global_device_ids() != left_all_gather->use_global_device_ids() || !ReplicaGroupsEqual(right_all_gather->replica_groups(), left_all_gather->replica_groups())) { VLOG(2) << "The right and left all-gather ops are not compatible " "to merge. "; continue; } if (!ShapeUtil::Equal(left_all_gather->operand(0)->shape(), right_all_gather->operand(0)->shape())) { VLOG(2) << "all-gather operands have different shapes"; continue; } if (right_all_gather->user_count() != 1 || left_all_gather->user_count() != 1) { VLOG(2) << "all-gather user_count > 1 "; continue; } auto index_in_full_shape = computation->AddInstruction(HloInstruction::CreateBinary( right_all_gather->operand(0)->shape(), instruction->opcode(), left_all_gather->mutable_operand(0), right_all_gather->mutable_operand(0))); int64_t all_gather_dimension = Cast<HloAllGatherInstruction>(right_all_gather) ->all_gather_dimension(); auto combined = HloInstruction::CreateAllGather( left_all_gather->shape(), {index_in_full_shape}, all_gather_dimension, left_all_gather->device_list(), false, left_all_gather->channel_id(), Cast<HloAllGatherInstruction>(left_all_gather) ->use_global_device_ids()); TF_RETURN_IF_ERROR(computation->ReplaceWithNewInstruction( instruction, std::move(combined))); changed = true; } } return changed; } } }
#include "xla/service/gpu/gpu_all_gather_optimizer.h" #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_module_config.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { class GpuAllGatherOptimizerTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, int64_t num_replicas, int64_t num_partitions, bool expect_change) { HloModuleConfig config = GetModuleConfigForTest( num_replicas, num_partitions); config.set_use_spmd_partitioning(num_partitions > 1); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); auto changed = AllGatherOptimizer().Run(module.get()); if (!changed.ok()) { return changed.status(); } EXPECT_EQ(changed.value(), expect_change); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } template <HloOpcode oc> size_t CollectiveCount(std::unique_ptr<HloModule> &module) { return absl::c_count_if(module->entry_computation()->instructions(), HloPredicateIsOp<oc>); } }; TEST_F(GpuAllGatherOptimizerTest, BranchesOptimized) { absl::string_view hlo_string = R"( HloModule ReduceScatter add { x = bf16[] parameter(0) y = bf16[] parameter(1) ROOT add = bf16[] add(x, y) } ENTRY main { param.1 = bf16[8,128,1024]{2,1,0} parameter(0) param.2 = bf16[8,128,1024]{2,1,0} parameter(1) reduce-scatter.1 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.1), channel_id=8, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add all-gather.1 = bf16[8,128,1024]{2,1,0} all-gather(reduce-scatter.1), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true reduce-scatter.2 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.2), channel_id=9, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add all-gather.2 = bf16[8,128,1024]{2,1,0} all-gather(reduce-scatter.2), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true add.1 = bf16[8,128,1024]{2,1,0} add(all-gather.1, all-gather.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, true)); EXPECT_EQ(CollectiveCount<HloOpcode::kAllGather>(module), 3); EXPECT_EQ(CollectiveCount<HloOpcode::kReduceScatter>(module), 2); } TEST_F(GpuAllGatherOptimizerTest, DisbledSPMDPartitioningJAXBug) { absl::string_view hlo_string = R"( HloModule pjit_f, entry_computation_layout={(f32[4,8]{1,0}, f32[4,8]{1,0})->f32[8,8]{1,0}} ENTRY %main.6_spmd (param: f32[4,8], param.1: f32[4,8]) -> f32[8,8] { %param = f32[4,8]{1,0} parameter(0), sharding={devices=[2,1]<=[2]} %all-gather = f32[8,8]{1,0} all-gather(f32[4,8]{1,0} %param), channel_id=1, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true, metadata={op_name="pjit(f)/jit(main)/add" source_file="third_party/py/jax/tests/pjit_test.py" source_line=207} %param.1 = f32[4,8]{1,0} parameter(1), sharding={devices=[2,1]<=[2]} %all-gather.1 = f32[8,8]{1,0} all-gather(f32[4,8]{1,0} %param.1), channel_id=2, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true, metadata={op_name="pjit(f)/jit(main)/add" source_file="third_party/py/jax/tests/pjit_test.py" source_line=207} ROOT %add.0 = f32[8,8]{1,0} add(f32[8,8]{1,0} %all-gather, f32[8,8]{1,0} %all-gather.1), metadata={op_name="pjit(f)/jit(main)/add" source_file="third_party/py/jax/tests/pjit_test.py" source_line=207} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 1, 2, true)); EXPECT_EQ(CollectiveCount<HloOpcode::kAllGather>(module), 1); } TEST_F(GpuAllGatherOptimizerTest, MoreThanSingleUserForAllGather) { absl::string_view hlo_string = R"( HloModule ReduceScatter add { x = bf16[] parameter(0) y = bf16[] parameter(1) ROOT add = bf16[] add(x, y) } ENTRY main { param.1 = bf16[8,128,1024]{2,1,0} parameter(0) param.2 = bf16[8,128,1024]{2,1,0} parameter(1) param.3 = bf16[8,128,1024]{2,1,0} parameter(2) reduce-scatter.1 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.1), channel_id=8, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add all-gather.1 = bf16[8,128,1024]{2,1,0} all-gather(reduce-scatter.1), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true reduce-scatter.2 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.2), channel_id=9, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add all-gather.2 = bf16[8,128,1024]{2,1,0} all-gather(reduce-scatter.2), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true reduce-scatter.3 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.3), channel_id=9, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add all-gather.3 = bf16[8,128,1024]{2,1,0} all-gather(reduce-scatter.3), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true add.1 = bf16[8,128,1024]{2,1,0} add(all-gather.1, all-gather.3) add.2 = bf16[8,128,1024]{2,1,0} add(all-gather.1, all-gather.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, false)); EXPECT_EQ(CollectiveCount<HloOpcode::kAllGather>(module), 3); EXPECT_EQ(CollectiveCount<HloOpcode::kReduceScatter>(module), 3); } TEST_F(GpuAllGatherOptimizerTest, AllGatherWithOpInBetweenOnRightBranch) { absl::string_view hlo_string = R"( HloModule ReduceScatter add { x = bf16[] parameter(0) y = bf16[] parameter(1) ROOT add = bf16[] add(x, y) } ENTRY main { param.1 = bf16[8,128,1024]{2,1,0} parameter(0) param.2 = bf16[8,128,1024]{2,1,0} parameter(1) param.3 = bf16[8,128,1024]{2,1,0} parameter(2) reduce-scatter.1 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.1), channel_id=8, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add reduce-scatter.2 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.2), channel_id=9, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add add.1 = bf16[8,64,1024]{2,1,0} add(reduce-scatter.1, reduce-scatter.2) all-gather.1 = bf16[8,128,1024]{2,1,0} all-gather(add.1), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true reduce-scatter.3 = bf16[8,64,1024]{2,1,0} reduce-scatter(param.3), channel_id=9, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add all-gather.3 = bf16[8,128,1024]{2,1,0} all-gather(reduce-scatter.3), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true add.2 = bf16[8,128,1024]{2,1,0} add(all-gather.1, all-gather.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, true)); EXPECT_EQ(CollectiveCount<HloOpcode::kAllGather>(module), 3); EXPECT_EQ(CollectiveCount<HloOpcode::kReduceScatter>(module), 3); } TEST_F(GpuAllGatherOptimizerTest, AllGatherOneSided) { absl::string_view hlo_string = R"( HloModule ReduceScatter add { x = bf16[] parameter(0) y = bf16[] parameter(1) ROOT add = bf16[] add(x, y) } ENTRY main { param.1 = bf16[8,128,1024]{2,1,0} parameter(0) param.2 = bf16[8,128,1024]{2,1,0} parameter(1) param.3 = bf16[8,128,1024]{2,1,0} parameter(2) add.1 = bf16[8,128,1024]{2,1,0} add(param.1, param.2) reduce-scatter = bf16[8,64,1024]{2,1,0} reduce-scatter(param.3), channel_id=9, replica_groups={{0,1},{2,3},{4,5},{6,7}}, use_global_device_ids=true, dimensions={1}, to_apply=add all-gather = bf16[8,128,1024]{2,1,0} all-gather(reduce-scatter), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true add.2 = bf16[8,128,1024]{2,1,0} add(all-gather, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, false)); EXPECT_EQ(CollectiveCount<HloOpcode::kAllGather>(module), 1); EXPECT_EQ(CollectiveCount<HloOpcode::kReduceScatter>(module), 1); } TEST_F(GpuAllGatherOptimizerTest, DifferentOperandShapes) { absl::string_view hlo_string = R"( HloModule TestModule ENTRY main { param.1 = bf16[8,64,128]{2,1,0} parameter(0) param.2 = bf16[8,128,64]{2,1,0} parameter(1) all-gather.1 = bf16[8,128,128]{2,1,0} all-gather(param.1), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={1}, use_global_device_ids=true all-gather.2 = bf16[8,128,128]{2,1,0} all-gather(param.2), channel_id=5, replica_groups={{0,1},{2,3},{4,5},{6,7}}, dimensions={2}, use_global_device_ids=true add.1 = bf16[8,128,128]{2,1,0} add(all-gather.1, all-gather.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, false)); } } } }
2,045
cpp
tensorflow/tensorflow
triton_fusion_analysis
third_party/xla/xla/service/gpu/triton_fusion_analysis.cc
third_party/xla/xla/service/gpu/triton_fusion_analysis_test.cc
#ifndef XLA_SERVICE_GPU_TRITON_FUSION_ANALYSIS_H_ #define XLA_SERVICE_GPU_TRITON_FUSION_ANALYSIS_H_ #include <map> #include <optional> #include <string> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/triton_tiling_propagation.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { class TritonFusionAnalysis { absl::Status ExecuteForDotFusion(const HloInstruction& dot, int split_k); public: static absl::StatusOr<TritonFusionAnalysis> Execute( const HloComputation& computation, int split_k = 1); static absl::Status ExecuteForProducerConsumer(const HloInstruction& producer, const HloInstruction& consumer, int split_k = 1); enum class Scope { LHS = 0, RHS = 1, META = 2, OUTPUT = 3 }; using IterationSpecByInstructionMap = ConstHloInstructionMap<TensorIterationSpec>; using IterationSpecByInstructionByScopeMap = std::map<Scope, IterationSpecByInstructionMap>; static constexpr int kMaxParameterPerDotOperand = 4; const TensorIterationSpec::DimIterationSpec* IterSpec(Scope scope, const HloInstruction*, int dimension) const; const ConstHloInstructionSet& ScopeParameters(const Scope scope) const { return parameters_.at(scope); } std::optional<Scope> QueryInstructionScope(const HloInstruction& hlo) const; std::string ToString() const; private: IterationSpecByInstructionByScopeMap iter_specs_; std::map<Scope, ConstHloInstructionSet> parameters_; }; namespace triton_fusion { class FusionContext { FusionContext(DotProperties properties, DotRequirements requirements) : properties_(properties), requirements_(requirements) {} public: static absl::StatusOr<FusionContext> FromDotOperand(const HloInstruction& dot, int operand_number, int split_k = 1); static FusionContext FromDotOutput(const HloInstruction& dot, int split_k, DotRequirements requirements); bool CombineDimOrdersAndReqs(const DimOrdersAndReqs& update); absl::Status PropagateDimensionOrdersToParameters( const HloInstruction& origin, ConstHloInstructionSet& parameters, ConstHloInstructionMap<TensorIterationSpec>& iter_specs); const DotProperties& dot_properties() const { return properties_; } const DimOrderMap& dim_orders() const { return dim_orders_; } const DotRequirements& requirements() const { return requirements_; } private: const DotProperties properties_; DotRequirements requirements_; DimOrderMap dim_orders_; }; } } } #endif #include "xla/service/gpu/triton_fusion_analysis.h" #include <cstdint> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <variant> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/cudnn_support_utils.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/triton_tiling_propagation.h" #include "xla/service/instruction_fusion.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tools/hlo_decomposer.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using triton_fusion::DimOrdersAndReqs; using triton_fusion::DimOrdersAndReqsOrError; using triton_fusion::DotRequirements; using triton_fusion::FusionContext; using triton_fusion::GetPropagatedDimOrdersAndRequirements; using triton_fusion::kNoSplitRequirement; using triton_fusion::TransformDirection; } namespace triton_fusion { absl::StatusOr<FusionContext> FusionContext::FromDotOperand( const HloInstruction& dot, const int operand_number, const int split_k) { const int num_split_k_batch_dims = split_k > 1; int split_k_dimension_index = kNoDimensionIndex; TF_ASSIGN_OR_RETURN(int contracting_dimension_index, ContractingDimensionIndex(dot, operand_number)); TF_ASSIGN_OR_RETURN(int non_contracting_dimension_index, NonContractingDimensionIndex(dot, operand_number)); if (split_k > 1) { split_k_dimension_index = contracting_dimension_index - 1; } int splittable_dimension_index = kNoDimensionIndex; if (operand_number == 0 && dot.dot_dimension_numbers().lhs_batch_dimensions_size() - num_split_k_batch_dims == 0) { splittable_dimension_index = non_contracting_dimension_index; } FusionContext context(DotProperties{non_contracting_dimension_index, splittable_dimension_index}, DotRequirements(kNoSplitRequirement)); context.dim_orders_[dot.operand(operand_number)] = DimensionOrder::FromDotOperandOrOutput(*dot.operand(operand_number), split_k_dimension_index); return context; } FusionContext FusionContext::FromDotOutput( const HloInstruction& dot, const int split_k, DotRequirements requirements) { int splittable_dimension_index = kNoDimensionIndex; if (requirements.splittable_dimension_major_part_size > 1) { splittable_dimension_index = (split_k > 1) ? 1 : 0; } FusionContext context(DotProperties{-1, splittable_dimension_index}, std::move(requirements)); context.dim_orders_[&dot] = DimensionOrder::FromDotOperandOrOutput(dot); return context; } namespace { int64_t NumAddedParameters(const HloInstruction& hlo) { if (hlo.opcode() == HloOpcode::kConstant && !ShapeUtil::IsScalar(hlo.shape())) { return 0; } return hlo.operand_count() - 1; } } bool FusionContext::CombineDimOrdersAndReqs(const DimOrdersAndReqs& update) { for (const auto& [key, value] : update.dim_orders) { auto it = dim_orders_.find(key); if (it != dim_orders_.cend() && !it->second.IsPhysicallyEquivalent(value)) { return false; } } DotRequirementsOrError requirements_or_error = CombineDotRequirements(requirements_, update.requirements); if (std::holds_alternative<FusionDecision>(requirements_or_error)) { return false; } requirements_ = std::move(std::get<DotRequirements>(requirements_or_error)); dim_orders_.insert(update.dim_orders.begin(), update.dim_orders.end()); return true; } absl::Status FusionContext::PropagateDimensionOrdersToParameters( const HloInstruction& origin, ConstHloInstructionSet& parameters, ConstHloInstructionMap<TensorIterationSpec>& iter_specs) { absl::flat_hash_set<const HloInstruction*> visited; std::queue<const HloInstruction*> to_process; visited.insert(&origin); to_process.push(&origin); while (!to_process.empty()) { const HloInstruction* hlo = to_process.front(); to_process.pop(); if (hlo->opcode() == HloOpcode::kParameter) { if (!parameters.insert(hlo).second) { return FailedPrecondition( "A parameter is read differently by different users. hlo: %s", hlo->ToString()); } VLOG(5) << hlo->ToString(); } DimOrdersAndReqsOrError result = GetPropagatedDimOrdersAndRequirements( *hlo, dim_orders_.at(hlo), TransformDirection::kOutputToInput, properties_); if (!std::holds_alternative<DimOrdersAndReqs>(result)) { return FailedPrecondition( "Can not propagate dim orders and requirements."); } if (!CombineDimOrdersAndReqs(std::get<DimOrdersAndReqs>(result))) { return FailedPrecondition("Can not combine dim orders and requirements."); } iter_specs[hlo] = dim_orders_.at(hlo).ToTensorIterationSpec(); for (const HloInstruction* operand : hlo->operands()) { if (!visited.insert(operand).second) { continue; } if (operand->opcode() == HloOpcode::kDot) { continue; } to_process.push(operand); } } return absl::OkStatus(); } } absl::StatusOr<TritonFusionAnalysis> TritonFusionAnalysis::Execute( const HloComputation& computation, const int split_k) { VLOG(5) << computation.ToString(HloPrintOptions::ShortParsable()); TritonFusionAnalysis analysis; const HloInstruction* dot = hlo_query::GetFirstInstructionWithOpcode(computation, HloOpcode::kDot); TF_RET_CHECK(dot != nullptr); TF_RETURN_IF_ERROR(analysis.ExecuteForDotFusion(*dot, split_k)); return analysis; } absl::Status TritonFusionAnalysis::ExecuteForProducerConsumer( const HloInstruction& producer, const HloInstruction& consumer, int split_k) { std::unique_ptr<HloModule> new_module = ExtractProducerConsumerIntoNewModule(producer, consumer); auto* new_producer = new_module->entry_computation()->GetInstructionWithName(producer.name()); auto* new_consumer = new_module->entry_computation()->GetInstructionWithName(consumer.name()); std::unique_ptr<HloInstruction> fusion_instruction_holder; HloInstruction* fusion_instruction; if (new_consumer->opcode() == HloOpcode::kFusion) { fusion_instruction = new_consumer; } else { fusion_instruction_holder = HloInstruction::CreateFusion( new_consumer->shape(), new_producer->fusion_kind(), new_consumer); fusion_instruction = fusion_instruction_holder.get(); } if (new_producer->opcode() == HloOpcode::kFusion) { fusion_instruction->MergeFusionInstruction(new_producer); } else { fusion_instruction->FuseInstruction(new_producer); } auto* fused_computation = fusion_instruction->fused_instructions_computation(); return Execute(*fused_computation, split_k).status(); } absl::Status TritonFusionAnalysis::ExecuteForDotFusion( const HloInstruction& dot, const int split_k) { DotRequirements lhs_requirements(kNoSplitRequirement); for (const Scope scope : {Scope::LHS, Scope::RHS, Scope::META}) { const int operand_number = static_cast<int>(scope); if (dot.operand_count() < operand_number + 1) { continue; } TF_ASSIGN_OR_RETURN(auto context, FusionContext::FromDotOperand( dot, operand_number, split_k)); TF_RETURN_IF_ERROR(context.PropagateDimensionOrdersToParameters( *dot.operand(operand_number), parameters_[scope], iter_specs_[scope])); if (scope == Scope::LHS) { lhs_requirements = context.requirements(); } } auto context = FusionContext::FromDotOutput(dot, split_k, lhs_requirements); const HloInstruction* output = &dot; while (!output->IsRoot()) { TF_RET_CHECK(output->user_count() == 1); const HloInstruction* input = output; if (IsWorkspaceAllocationRoot(*output->users()[0])) { break; } output = output->users()[0]; DimOrdersAndReqsOrError result = GetPropagatedDimOrdersAndRequirements( *output, context.dim_orders().at(input), TransformDirection::kInputToOutput, context.dot_properties()); TF_RET_CHECK(std::holds_alternative<DimOrdersAndReqs>(result)); TF_RET_CHECK( context.CombineDimOrdersAndReqs(std::get<DimOrdersAndReqs>(result))); } TF_RET_CHECK( iter_specs_[Scope::OUTPUT] .insert( {output, context.dim_orders().at(output).ToTensorIterationSpec()}) .second); parameters_[Scope::OUTPUT] = {}; if (output != &dot) { TF_RETURN_IF_ERROR(context.PropagateDimensionOrdersToParameters( *output, parameters_[Scope::OUTPUT], iter_specs_[Scope::OUTPUT])); } return absl::OkStatus(); } std::optional<TritonFusionAnalysis::Scope> TritonFusionAnalysis::QueryInstructionScope(const HloInstruction& hlo) const { for (const Scope& scope : {Scope::LHS, Scope::RHS, Scope::OUTPUT}) { if (iter_specs_.at(scope).count(&hlo) > 0) { return scope; } } LOG(WARNING) << "No scope for hlo: " << hlo.ToString(); return std::nullopt; } const TensorIterationSpec::DimIterationSpec* TritonFusionAnalysis::IterSpec( const TritonFusionAnalysis::Scope scope, const HloInstruction* hlo, const int dimension) const { auto hlo_spec = iter_specs_.at(scope).find(hlo); if (hlo_spec != iter_specs_.at(scope).cend()) { return hlo_spec->second.Find(dimension); } return nullptr; } namespace { std::string IterationSpecByInstructionMapToString( const TritonFusionAnalysis::IterationSpecByInstructionMap& m) { return absl::StrCat("IterSpec{", absl::StrJoin(m, ", ", [&](std::string* s, const auto& kv) { absl::StrAppend(s, kv.first->name(), ": ", kv.second.ToString()); }), "}"); } std::string ScopeToString(TritonFusionAnalysis::Scope s) { switch (s) { case TritonFusionAnalysis::Scope::LHS: return "LHS"; case TritonFusionAnalysis::Scope::RHS: return "RHS"; case TritonFusionAnalysis::Scope::META: return "META"; case TritonFusionAnalysis::Scope::OUTPUT: return "OUTPUT"; } } } std::string TritonFusionAnalysis::ToString() const { return absl::StrCat( "TritonFusionAnalysis{\n", absl::StrJoin(iter_specs_, ",\n", [&](std::string* s, const auto& kv) { absl::StrAppend( s, ScopeToString(kv.first), ": ", IterationSpecByInstructionMapToString(kv.second)); }), "\n}"); } } }
#include "xla/service/gpu/triton_fusion_analysis.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gemm_fusion.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::FieldsAre; using TritonDotAnalysisTest = HloTestBase; TEST_F(TritonDotAnalysisTest, QueryingOutputScopeParametersAlwaysWorks) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_dot { p0 = f32[8,8] parameter(0) ROOT dot = f32[8,8] dot(p0, p0), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[8,8] parameter(0) ROOT r = f32[8,8] fusion(p0), kind=kCustom, calls=triton_dot })")); TF_ASSERT_OK_AND_ASSIGN( const auto analysis, TritonFusionAnalysis::Execute(*module->entry_computation() ->root_instruction() ->called_computations()[0])); EXPECT_TRUE( analysis.ScopeParameters(TritonFusionAnalysis::Scope::OUTPUT).empty()); } TEST_F(TritonDotAnalysisTest, NopBitcasts) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[48,4]{1,0} parameter(0) bitcast.18 = s8[1,48,4]{2,1,0} bitcast(param_0.1) bitcast.19 = s8[48,4]{1,0} bitcast(bitcast.18) convert.4 = bf16[48,4]{1,0} convert(bitcast.19) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[48,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(4, 48, 0, 48, ElementsAre(48)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, DoNotRemoveTrivialDimensionForDot) { const std::string hlo_text = R"( HloModule t, is_scheduled=true triton_dot { param_0.1 = f32[137,115]{1,0} parameter(0) param_1.1 = f32[1,115]{1,0} parameter(1) ROOT dot = f32[137,1]{1,0} dot(param_0.1, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = f32[137,115]{1,0} parameter(0) p1 = f32[1,115]{1,0} parameter(1) ROOT custom-call = f32[137,1]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot, backend_config={"fusion_backend_config": {kind: "__triton_gemm", triton_gemm_config: {"block_m":16,"block_n":64,"block_k":32, "split_k":1,"num_stages":1,"num_warps":2, "num_ctas":1}}} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(115, 137, 0, 137, ElementsAre(137)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 115, 0, 115, ElementsAre(115)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(115, 1, 0, 1, ElementsAre(1)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 115, 0, 115, ElementsAre(115)))); } TEST_F(TritonDotAnalysisTest, Merge) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[1,8,6,4]{3,2,1,0} parameter(0) bitcast.18 = s8[48,4]{1,0} bitcast(param_0.1) convert.4 = bf16[48,4]{1,0} convert(bitcast.18) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[1,8,6,4]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(4, 6 * 8, 0, 6 * 8, ElementsAre(6, 8)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, Split) { const std::string hlo_text = R"( HloModule t triton_dot { %parameter_1 = f32[24000,2]{1,0} parameter(1) %convert.15 = f16[24000,2]{1,0} convert(%parameter_1) %parameter_0 = f16[4]{0} parameter(0) %bitcast.45 = f16[2,2]{1,0} bitcast(%parameter_0) ROOT %dot.26 = f16[24000,2]{1,0} dot(%convert.15, %bitcast.45), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f16[4]{0} parameter(0) p1 = f32[24000,2]{1,0} parameter(1) ROOT r = f16[24000,2]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p1); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p0); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p1, 0), ElementsAre(FieldsAre(2, 24000, 0, 24000, ElementsAre(24000)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p1, 1), ElementsAre(FieldsAre(1, 2, 0, 2, ElementsAre(2)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p0, 0), ElementsAre(FieldsAre(2, 2, 0, 2, ElementsAre(2)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p0, 1), ElementsAre(FieldsAre(1, 2, 0, 2, ElementsAre(2)))); } TEST_F(TritonDotAnalysisTest, TransposeMerge) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[1,4,8,6]{3,2,1,0} parameter(0) transpose.3 = s8[1,8,6,4]{3,2,1,0} transpose(param_0.1), dimensions={0,2,3,1} bitcast.18 = s8[48,4]{1,0} bitcast(transpose.3) convert.4 = bf16[48,4]{1,0} convert(bitcast.18) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[1,4,8,6]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(1, 8 * 6, 0, 8 * 6, ElementsAre(6, 8)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(8 * 6, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, CopyMerge) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = s8[1,4,8,6]{3,2,1,0} parameter(0) bitcast.99 = s8[1,8,6,4]{2,1,3,0} bitcast(param_0.1) copy.3 = s8[1,8,6,4]{3,2,1,0} copy(bitcast.99) bitcast.18 = s8[48,4]{1,0} bitcast(copy.3) convert.4 = bf16[48,4]{1,0} convert(bitcast.18) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[48,3]{1,0} dot(convert.4, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = s8[1,4,8,6]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[48,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[1,8,6,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(1, 8 * 6, 0, 8 * 6, ElementsAre(6, 8)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(8 * 6, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, TransposeMergeNCN) { const std::string hlo_text = R"( HloModule t triton_dot { param_0.1 = bf16[3,4,8,1]{3,2,1,0} parameter(0) transpose.3 = bf16[3,8,1,4]{3,2,1,0} transpose(param_0.1), dimensions={0,2,3,1} bitcast.18 = bf16[24,4]{1,0} bitcast(transpose.3) param_1.1 = bf16[4,3]{1,0} parameter(1) ROOT dot = bf16[24,3]{1,0} dot(bitcast.18, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[3,4,8,1]{3,2,1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) custom-call = bf16[24,3]{1,0} custom-call(p0, p1), custom_call_target="__triton", called_computations={triton_dot} ROOT bitcast.2 = bf16[3,8,1,3]{3,2,1,0} bitcast(custom-call) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation() ->root_instruction() ->operand(0) ->called_computations()[0]; const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(1, 8, 0, 8, ElementsAre(8)), FieldsAre(4 * 8, 3, 0, 3, ElementsAre(3)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(8, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(3, 4, 0, 4, ElementsAre(4)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 1), ElementsAre(FieldsAre(1, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, TransposeOutput) { const std::string hlo_text = R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) dot = bf16[24,3]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} bc = bf16[12,2,3]{2,1,0} bitcast(dot) ROOT t = bf16[3,12,2]{2,1,0} transpose(bc), dimensions={2,0,1} } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) ROOT r = bf16[3,12,2]{2,1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_text)); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* dot_output = dot_computation->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, dot_output, 0), ElementsAre(FieldsAre(1, 24, 0, 24, ElementsAre(2, 12)))); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, dot_output, 1), ElementsAre(FieldsAre(24, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, OutputParameterIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) dot = bf16[24,3]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} p2 = f16[3,24]{1,0} parameter(2) p2t = f16[24,3]{1,0} transpose(p2), dimensions={1,0} p2tc = bf16[24,3]{1,0} convert(p2t) ROOT r = bf16[24,3]{1,0} divide(p2tc, dot) } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4,3]{1,0} parameter(1) p2 = f16[3,24]{1,0} parameter(2) ROOT r = bf16[24,3]{1,0} fusion(p0, p1, p2), kind=kCustom, calls=triton_dot })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* output_param = dot_computation->parameter_instruction(2); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ( analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 0) ->size(), 1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 0), ElementsAre(FieldsAre(1, 24, 0, 24, ElementsAre(24)))); EXPECT_EQ( analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 1) ->size(), 1); EXPECT_THAT( *analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, output_param, 1), ElementsAre(FieldsAre(24, 3, 0, 3, ElementsAre(3)))); } TEST_F(TritonDotAnalysisTest, InputBroadcastFromScalarIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[] parameter(1) p1b = bf16[4,3] broadcast(p1) ROOT dot = bf16[24,3]{1,0} dot(p0, p1b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[] parameter(1) ROOT r = bf16[24,3]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* scalar = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ(analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, scalar, 0), nullptr); EXPECT_EQ(analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, scalar, 1), nullptr); } TEST_F(TritonDotAnalysisTest, InputBroadcastFromVectorIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t triton_dot { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4] parameter(1) p1b = bf16[4,3] broadcast(p1), dimensions={0} ROOT dot = bf16[24,3]{1,0} dot(p0, p1b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[24,4]{1,0} parameter(0) p1 = bf16[4] parameter(1) ROOT r = bf16[24,3]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; const HloInstruction* vector = dot_computation->parameter_instruction(1); TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_EQ( analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, vector, 0)->size(), 1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, vector, 0), ElementsAre(FieldsAre(1, 4, 0, 4, ElementsAre(4)))); } TEST_F(TritonDotAnalysisTest, OutputBroadcastIsNotAccepted) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( HloModule t ENTRY e { p0 = f16[2,35] parameter(0) p0c = bf16[2,35] convert(p0) p1 = bf16[35,2] parameter(1) dot = bf16[2,2] dot(p0c, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT bc = bf16[2,2,100] broadcast(dot), dimensions={0,1} })")); EXPECT_TRUE(GemmFusion(se::CudaComputeCapability{ se::CudaComputeCapability::AMPERE, 0}) .Run(module.get()) .value()); EXPECT_EQ(module->entry_computation()->root_instruction()->opcode(), HloOpcode::kBroadcast); } TEST_F(TritonDotAnalysisTest, DegenerateSplitFragmentIsHandled) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm_r { Arg_0.1 = s8[30,913,8,21]{3,2,1,0} parameter(0) bitcast.6 = s8[30,8,21,913]{2,1,3,0} bitcast(Arg_0.1) copy.7 = s8[30,8,21,913]{3,2,1,0} copy(bitcast.6) bitcast.8 = s8[5040,913]{1,0} bitcast(copy.7) convert.9 = bf16[5040,913]{1,0} convert(bitcast.8) bitcast.32 = bf16[58,913]{1,0} parameter(1) dot.33 = bf16[5040,58]{1,0} dot(convert.9, bitcast.32), lhs_contracting_dims={1}, rhs_contracting_dims={1} bitcast.34 = bf16[30,8,21,58]{3,2,1,0} bitcast(dot.33) copy.35 = bf16[30,8,21,58]{2,1,3,0} copy(bitcast.34) ROOT bitcast.41 = bf16[30,1,58,8,21]{4,3,2,1,0} bitcast(copy.35) } ENTRY e { Arg_0.1 = s8[30,913,8,21]{3,2,1,0} parameter(0) Arg_1.2 = bf16[58,913]{1,0} parameter(1) ROOT r = bf16[30,1,58,8,21]{4,3,2,1,0} fusion(Arg_0.1, Arg_1.2), kind=kCustom, calls=triton_gemm_r, backend_config={kind: "__triton_gemm"} })")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::OUTPUT, dot_computation->root_instruction(), 0), ElementsAre(FieldsAre(1, 8 * 21, 0, 8 * 21, ElementsAre(21, 8)), FieldsAre(8 * 21 * 58, 30, 0, 30, ElementsAre(30)))); } TEST_F(TritonDotAnalysisTest, HandlesFurtherPropagationFromTrivialSizedTensorGracefully) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm_r { a = f32[3,3]{1,0} parameter(0) constant = f32[1,1]{1,0} constant({ {0} }) broadcast = f32[1,1]{1,0} broadcast(constant), dimensions={0,1} reshape = f32[] reshape(broadcast) broadcast2 = f32[3,3]{1,0} broadcast(reshape), dimensions={} ROOT dot = f32[3,3]{1,0} dot(a, broadcast2), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY e { a = f32[3,3]{1,0} parameter(0) ROOT dot = f32[3,3]{1,0} fusion(a), kind=kCustom, calls=triton_gemm_r, backend_config={kind: "__triton_gemm"} } )")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; absl::StatusOr<TritonFusionAnalysis> analysis = TritonFusionAnalysis::Execute(*dot_computation); (void)analysis; } TEST_F(TritonDotAnalysisTest, DynamicSliceIsSupported) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(R"( triton_gemm { dot_lhs = f32[2,18]{1,0} parameter(0) dynamic_slice_input = f32[96,2]{1,0} parameter(1) start_index0 = s32[] parameter(2) start_index1 = s32[] parameter(3) dynamic_slice = f32[64,2]{1,0} dynamic-slice(dynamic_slice_input, start_index0, start_index1), dynamic_slice_sizes={64,2} ROOT dot = f32[18,64]{1,0} dot(dot_lhs, dynamic_slice), lhs_contracting_dims={0}, rhs_contracting_dims={1} } ENTRY e { dot_lhs = f32[2,18]{1,0} parameter(0) dynamic_slice_input = f32[96,2]{1,0} parameter(1) start_index0 = s32[] parameter(2) start_index1 = s32[] parameter(3) ROOT triton_gemm_d = f32[18,64]{1,0} fusion(dot_lhs, dynamic_slice_input, start_index0, start_index1), kind=kCustom, calls=triton_gemm, backend_config={"kind":"__triton_gemm"} } )")); const HloComputation* dot_computation = module->entry_computation()->root_instruction()->called_computations()[0]; TF_ASSERT_OK_AND_ASSIGN(const auto analysis, TritonFusionAnalysis::Execute(*dot_computation)); const HloInstruction* p0 = dot_computation->parameter_instruction(0); const HloInstruction* p1 = dot_computation->parameter_instruction(1); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::LHS).begin(), p0); EXPECT_EQ(*analysis.ScopeParameters(TritonFusionAnalysis::Scope::RHS).begin(), p1); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 0), ElementsAre(FieldsAre(18, 2, 0, 2, ElementsAre(2)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::LHS, p0, 1), ElementsAre(FieldsAre(1, 18, 0, 18, ElementsAre(18)))); EXPECT_THAT(*analysis.IterSpec(TritonFusionAnalysis::Scope::RHS, p1, 0), ElementsAre(FieldsAre(2,
2,046
cpp
tensorflow/tensorflow
cudnn_vectorize_convolutions
third_party/xla/xla/service/gpu/transforms/cudnn_vectorize_convolutions.cc
third_party/xla/xla/service/gpu/transforms/cudnn_vectorize_convolutions_test.cc
#ifndef XLA_SERVICE_GPU_CUDNN_VECTORIZE_CONVOLUTIONS_H_ #define XLA_SERVICE_GPU_CUDNN_VECTORIZE_CONVOLUTIONS_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" namespace xla { namespace gpu { class CudnnVectorizeConvolutions : public HloModulePass { public: explicit CudnnVectorizeConvolutions( se::CudaComputeCapability compute_capability, se::dnn::VersionInfo cudnn_version) : compute_capability_(compute_capability), cudnn_version_(cudnn_version) {} absl::string_view name() const override { return "cudnn_vectorize_convolutions"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const se::CudaComputeCapability compute_capability_; const se::dnn::VersionInfo cudnn_version_; }; } } #endif #include "xla/service/gpu/cudnn_vectorize_convolutions.h" #include <cstdint> #include <optional> #include <string> #include <tuple> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/cudnn_support_utils.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { static std::vector<HloCustomCallInstruction*> GetRelevantConvs( HloComputation* comp) { std::vector<HloCustomCallInstruction*> convs; for (HloInstruction* instr : comp->instructions()) { if (instr->opcode() != HloOpcode::kCustomCall || (instr->custom_call_target() != kCudnnConvForwardCallTarget && instr->custom_call_target() != kCudnnConvBiasActivationForwardCallTarget) || instr->operand_count() < 2) { continue; } PrimitiveType input_ty = instr->operand(0)->shape().element_type(); PrimitiveType output_ty = instr->shape().tuple_shapes(0).element_type(); if (input_ty == output_ty && (input_ty == S8 || input_ty == U8)) { convs.push_back(Cast<HloCustomCallInstruction>(instr)); } } return convs; } static absl::StatusOr<HloComputation*> BuilderToHloComputation( XlaBuilder& b, XlaOp root, HloComputation* sibling_computation) { TF_ASSIGN_OR_RETURN(XlaComputation comp, b.Build(root)); TF_ASSIGN_OR_RETURN(ProgramShape program_shape, comp.GetProgramShape()); HloModuleConfig config(program_shape); TF_ASSIGN_OR_RETURN(auto new_module, HloModule::CreateFromProto(comp.proto(), config)); HloModule* dest_module = sibling_computation->parent(); HloCloneContext context(dest_module); return dest_module->DeepCloneComputation(new_module->entry_computation(), &context); } static XlaOp SplitAtDim(XlaOp instr, int64_t dim, int64_t vect_size) { XlaBuilder& b = *instr.builder(); Shape shape = b.GetShape(instr).value(); DimensionVector new_dims(shape.dimensions().begin(), shape.dimensions().end()); CHECK_EQ(new_dims[dim] % vect_size, 0); new_dims[dim] /= vect_size; new_dims.insert(new_dims.begin() + dim + 1, vect_size); return Reshape(instr, new_dims); } static Shape SplitShapeAtDim(Shape shape, int64_t dim, int64_t vect_size) { DimensionVector new_dims(shape.dimensions().begin(), shape.dimensions().end()); CHECK_EQ(new_dims[dim] % vect_size, 0); new_dims[dim] /= vect_size; new_dims.insert(new_dims.begin() + dim + 1, vect_size); return ShapeUtil::MakeShape(shape.element_type(), new_dims); } static XlaOp MoveDim(XlaOp instr, int64_t src, int64_t dst) { XlaBuilder& b = *instr.builder(); int64_t rank = b.GetShape(instr)->dimensions_size(); DimensionVector idxs(rank); absl::c_iota(idxs, 0); if (src < dst) { idxs.insert(idxs.begin() + dst, src); idxs.erase(idxs.begin() + src); } else { idxs.erase(idxs.begin() + src); idxs.insert(idxs.begin() + dst, src); } return Transpose(instr, idxs); } static XlaOp RevectorizeInstr(XlaOp instr, int64_t dim, int64_t vect_dim, int64_t vect_size) { XlaBuilder& b = *instr.builder(); Shape shape = b.GetShape(instr).value(); auto size = [&](int64_t d) { return shape.dimensions(d); }; CHECK_LE(size(vect_dim), vect_size); CHECK_EQ(vect_size % size(vect_dim), 0); int64_t split_factor = vect_size / size(vect_dim); CHECK_EQ(size(dim) % split_factor, 0); instr = SplitAtDim(instr, dim, split_factor); if (vect_dim > dim) { vect_dim++; } instr = MoveDim(instr, dim + 1, vect_dim); if (vect_dim > dim) { vect_dim--; } return Collapse(instr, {vect_dim, vect_dim + 1}); } static XlaOp UnrevectorizeInstr(XlaOp instr, int64_t dim, int64_t vect_dim, int64_t orig_vect_size) { XlaBuilder& b = *instr.builder(); Shape shape = b.GetShape(instr).value(); auto size = [&](int64_t d) { return shape.dimensions(d); }; CHECK_GE(size(vect_dim), orig_vect_size); CHECK_EQ(size(vect_dim) % orig_vect_size, 0); instr = SplitAtDim(instr, vect_dim, orig_vect_size); if (dim > vect_dim) { dim++; } instr = MoveDim(instr, vect_dim, dim + 1); if (dim > vect_dim) { dim--; } return Collapse(instr, {dim, dim + 1}); } static ConvolutionDimensionNumbers VectorizeDnums( ConvolutionDimensionNumbers dnums, bool reordered_filter) { int64_t input_vect_dim = dnums.input_feature_dimension(); if (dnums.input_batch_dimension() > input_vect_dim) { dnums.set_input_batch_dimension(dnums.input_batch_dimension() + 1); } for (int64_t& d : *dnums.mutable_input_spatial_dimensions()) { if (d > input_vect_dim) { ++d; } } if (!reordered_filter) { int64_t kernel_vect_dim = dnums.kernel_input_feature_dimension(); if (dnums.kernel_output_feature_dimension() > kernel_vect_dim) { dnums.set_kernel_output_feature_dimension( dnums.kernel_output_feature_dimension() + 1); } for (int64_t& d : *dnums.mutable_kernel_spatial_dimensions()) { if (d > kernel_vect_dim) { ++d; } } } int64_t output_vect_dim = dnums.output_feature_dimension(); if (dnums.output_batch_dimension() > output_vect_dim) { dnums.set_output_batch_dimension(dnums.output_batch_dimension() + 1); } for (int64_t& d : *dnums.mutable_output_spatial_dimensions()) { if (d > output_vect_dim) { ++d; } } return dnums; } absl::Status ReorderInt8NchwVect(HloCustomCallInstruction* conv, XlaOp* operands) { bool has_bias = conv->operand_count() > 2; VLOG(1) << "Reordering filter" << (has_bias ? " and bias" : "") << " (replacement for cudnnReorderFilterAndBias)"; auto builder = operands->builder(); ConvolutionDimensionNumbers dnums = conv->convolution_dimension_numbers(); TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, conv->backend_config<GpuBackendConfig>()); CudnnConvBackendConfig& config = *gpu_config.mutable_cudnn_conv_backend_config(); config.set_reordered_int8_nchw_vect(true); TF_RETURN_IF_ERROR(conv->set_backend_config(gpu_config)); TF_ASSIGN_OR_RETURN(Shape filter_shape, builder->GetShape(operands[1])); TF_ASSIGN_OR_RETURN(auto reorder, CudnnInferTransposeForFilterReordering( filter_shape, dnums)); XlaOp reshape = Reshape(reorder.transpose_shape, operands[1]); XlaOp transpose = Transpose(reshape, reorder.permutation); operands[1] = Reshape(reorder.result_shape, transpose); dnums.set_kernel_output_feature_dimension(0); dnums.set_kernel_input_feature_dimension(1); dnums.set_kernel_spatial_dimensions(0, 2); dnums.set_kernel_spatial_dimensions(1, 3); conv->set_convolution_dimension_numbers(dnums); if (has_bias) { TF_ASSIGN_OR_RETURN(Shape bias_shape, builder->GetShape(operands[2])); TF_ASSIGN_OR_RETURN(reorder, CudnnInferTransposeForBiasReordering(bias_shape)); reshape = Reshape(reorder.transpose_shape, operands[2]); transpose = Transpose(reshape, reorder.permutation); operands[2] = Reshape(reorder.result_shape, transpose); } return absl::OkStatus(); } static absl::StatusOr<bool> TryRevectorizeConv( const se::CudaComputeCapability& compute_capability, const se::dnn::VersionInfo& cudnn_version, HloCustomCallInstruction* conv, int vect_size) { const Shape& input_shape = conv->operand(0)->shape(); const Shape& kernel_shape = conv->operand(1)->shape(); const Shape& output_shape = conv->shape().tuple_shapes(0); const ConvolutionDimensionNumbers* dnums = &conv->convolution_dimension_numbers(); std::optional<int64_t> input_vect_dim; std::optional<int64_t> kernel_vect_dim; std::optional<int64_t> output_vect_dim; std::tie(input_vect_dim, kernel_vect_dim, output_vect_dim) = FindVectorizedFeatureDims(*dnums, input_shape, kernel_shape, output_shape); if (!input_vect_dim.has_value() || !kernel_vect_dim.has_value() || !output_vect_dim.has_value()) { return false; } int64_t input_feat_size = input_shape.dimensions(dnums->input_feature_dimension()); int64_t output_feat_size = output_shape.dimensions(dnums->output_feature_dimension()); int64_t input_vect_size = input_shape.dimensions(*input_vect_dim); int64_t output_vect_size = output_shape.dimensions(*output_vect_dim); if (vect_size % input_vect_size != 0 || vect_size % output_vect_size != 0 || input_feat_size % (vect_size / input_vect_size) != 0 || output_feat_size % (vect_size / output_vect_size) != 0) { return false; } if (primitive_util::IsIntegralType(input_shape.element_type())) { TF_ASSIGN_OR_RETURN(bool supported_target_vectorization, CudnnSupportsOptimizedIntegerConvolution( compute_capability, *conv, vect_size)); if (!supported_target_vectorization) { VLOG(3) << "Skipping re-vectorization of conv to vector size: " << vect_size << ": " << conv->ToString(); return false; } } VLOG(1) << "Re-vectorizing conv channels from " << input_shape.dimensions(*input_vect_dim) << " to " << vect_size << ": " << conv->ToString(); XlaBuilder b(absl::StrCat(conv->name(), ".revectorized")); b.SetOpMetadata(conv->metadata()); XlaOp filter = Parameter(&b, 1, conv->operand(1)->shape(), "filter"); absl::InlinedVector<XlaOp, 4> new_operands = { RevectorizeInstr(Parameter(&b, 0, conv->operand(0)->shape(), "input"), dnums->input_feature_dimension(), *input_vect_dim, vect_size), RevectorizeInstr(filter, dnums->kernel_input_feature_dimension(), *kernel_vect_dim, vect_size), }; if (conv->operand_count() > 2) { new_operands.push_back(Parameter(&b, 2, conv->operand(2)->shape(), "bias")); } if (conv->operand_count() > 3) { new_operands.push_back(RevectorizeInstr( Parameter(&b, 3, conv->operand(3)->shape(), "side_input"), dnums->input_feature_dimension(), *input_vect_dim, vect_size)); } if (conv->operand_count() > 4) { return InvalidArgument( "Don't understand a conv with more than 4 arguments: %s", conv->ToString()); } const auto& debug_options = conv->GetModule()->config().debug_options(); bool use_reordering = input_shape.element_type() == xla::S8 && vect_size == 32 && debug_options.xla_gpu_enable_cudnn_int8x32_convolution_reordering() && cudnn_version >= se::dnn::VersionInfo{8, 3, 0}; if (use_reordering) { int64_t kernel_vect_size = kernel_shape.dimensions(*kernel_vect_dim); if (kernel_vect_size == 4 || kernel_vect_size == 32) { new_operands[1] = filter; } TF_RETURN_IF_ERROR(ReorderInt8NchwVect(conv, new_operands.data())); dnums = &conv->convolution_dimension_numbers(); } DimensionVector new_output_dims(output_shape.dimensions().begin(), output_shape.dimensions().end()); new_output_dims[dnums->output_feature_dimension()] /= (vect_size / output_vect_size); new_output_dims[*output_vect_dim] = vect_size; XlaOp new_conv = CustomCallWithConvDnums( &b, conv->custom_call_target(), new_operands, ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(output_shape.element_type(), new_output_dims), ShapeUtil::MakeShape(U8, {0})}), {}, conv->raw_backend_config_string(), false, {}, nullptr, conv->window(), *dnums); XlaOp new_conv_result = GetTupleElement(new_conv, 0); XlaOp new_conv_scratch = GetTupleElement(new_conv, 1); XlaOp new_conv_result_unrevectorized = UnrevectorizeInstr( new_conv_result, dnums->output_feature_dimension(), *output_vect_dim, output_shape.dimensions(*output_vect_dim)); TF_ASSIGN_OR_RETURN( HloComputation * new_conv_comp, BuilderToHloComputation( b, Tuple(&b, {new_conv_result_unrevectorized, new_conv_scratch}), conv->parent())); auto new_conv_comp_instrs = new_conv_comp->instructions(); auto new_conv_it = absl::c_find_if(new_conv_comp_instrs, [](HloInstruction* instr) { return instr->opcode() == HloOpcode::kCustomCall; }); if (new_conv_it != new_conv_comp_instrs.end()) { new_conv_comp->parent()->SetAndUniquifyInstrName(*new_conv_it, conv->name()); } VLOG(1) << "Re-vectorized conv to " << new_conv_comp->ToString(); TF_RETURN_IF_ERROR(conv->parent()->ReplaceWithNewInstruction( conv, HloInstruction::CreateCall(conv->shape(), conv->operands(), new_conv_comp))); return true; } static absl::StatusOr<bool> TryVectorizeConv( const se::CudaComputeCapability& compute_capability, const se::dnn::VersionInfo& cudnn_version, HloCustomCallInstruction* conv, int64_t vect_size) { const Shape& input_shape = conv->operand(0)->shape(); const Shape& output_shape = conv->shape().tuple_shapes(0); const ConvolutionDimensionNumbers* dnums = &conv->convolution_dimension_numbers(); int64_t in_channels = input_shape.dimensions(dnums->input_feature_dimension()); int64_t out_channels = output_shape.dimensions(dnums->output_feature_dimension()); if (in_channels % vect_size != 0 || out_channels % vect_size != 0) { return false; } if (input_shape.dimensions_size() > 2 + dnums->input_spatial_dimensions_size()) { return false; } if (primitive_util::IsIntegralType(input_shape.element_type())) { TF_ASSIGN_OR_RETURN(bool supported_target_vectorization, CudnnSupportsOptimizedIntegerConvolution( compute_capability, *conv, vect_size)); if (!supported_target_vectorization) { VLOG(3) << "Skipping vectorization of conv to vector size: " << vect_size << ": " << conv->ToString(); return false; } } VLOG(1) << "Vectorizing conv channels by " << vect_size << ": " << conv->ToString(); XlaBuilder b(absl::StrCat(conv->name(), ".revectorized")); b.SetOpMetadata(conv->metadata()); XlaOp filter = Parameter(&b, 1, conv->operand(1)->shape(), "filter"); absl::InlinedVector<XlaOp, 4> new_operands = { SplitAtDim(Parameter(&b, 0, conv->operand(0)->shape(), "input"), dnums->input_feature_dimension(), vect_size), SplitAtDim(filter, dnums->kernel_input_feature_dimension(), vect_size), }; if (conv->operand_count() > 2) { new_operands.push_back(Parameter(&b, 2, conv->operand(2)->shape(), "bias")); } if (conv->operand_count() > 3) { new_operands.push_back( SplitAtDim(Parameter(&b, 3, conv->operand(3)->shape(), "side_input"), dnums->output_feature_dimension(), vect_size)); } if (conv->operand_count() > 4) { return InvalidArgument( "Don't understand a conv with more than 4 arguments: %s", conv->ToString()); } const auto& debug_options = conv->GetModule()->config().debug_options(); bool use_reordering = input_shape.element_type() == xla::S8 && vect_size == 32 && debug_options.xla_gpu_enable_cudnn_int8x32_convolution_reordering() && cudnn_version >= se::dnn::VersionInfo{8, 3, 0}; if (use_reordering) { new_operands[1] = filter; TF_RETURN_IF_ERROR(ReorderInt8NchwVect(conv, new_operands.data())); dnums = &conv->convolution_dimension_numbers(); } Shape new_output_shape = SplitShapeAtDim( output_shape, dnums->output_feature_dimension(), vect_size); XlaOp new_conv = CustomCallWithConvDnums( &b, conv->custom_call_target(), new_operands, ShapeUtil::MakeTupleShape( {new_output_shape, ShapeUtil::MakeShape(U8, {0})}), {}, conv->raw_backend_config_string(), false, {}, nullptr, conv->window(), VectorizeDnums(*dnums, use_reordering)); XlaOp new_conv_result = GetTupleElement(new_conv, 0); XlaOp new_conv_scratch = GetTupleElement(new_conv, 1); XlaOp conv_result_collapsed = Collapse(new_conv_result, {dnums->output_feature_dimension(), dnums->output_feature_dimension() + 1}); TF_ASSIGN_OR_RETURN( HloComputation * new_conv_comp, BuilderToHloComputation( b, Tuple(&b, {conv_result_collapsed, new_conv_scratch}), conv->parent())); VLOG(1) << "Vectorized conv to: " << new_conv_comp->ToString(); TF_RETURN_IF_ERROR(conv->parent()->ReplaceWithNewInstruction( conv, HloInstruction::CreateCall(conv->shape(), conv->operands(), new_conv_comp))); return true; } } absl::StatusOr<bool> CudnnVectorizeConvolutions::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloCustomCallInstruction* conv : GetRelevantConvs(comp)) { bool local_changed = false; if (compute_capability_.IsAtLeast(7, 5)) { TF_ASSIGN_OR_RETURN( local_changed, TryRevectorizeConv(compute_capability_, cudnn_version_, conv, 32)); if (!local_changed) { TF_ASSIGN_OR_RETURN( local_changed, TryVectorizeConv(compute_capability_, cudnn_version_, conv, 32)); } } if (!local_changed) { TF_ASSIGN_OR_RETURN( local_changed, TryVectorizeConv(compute_capability_, cudnn_version_, conv, 4)); } changed |= local_changed; } } return changed; } } }
#include "xla/service/gpu/cudnn_vectorize_convolutions.h" #include <cstdint> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "xla/service/call_inliner.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class CudnnVectorizeConvolutionsTest : public HloTestBase { protected: absl::StatusOr<bool> Run(std::pair<int, int> compute_capability, HloModule* module) { CudnnVectorizeConvolutions pass( se::CudaComputeCapability{compute_capability.first, compute_capability.second}, se::dnn::VersionInfo(8, 3, 0)); TF_ASSIGN_OR_RETURN(bool changed, RunHloPass(&pass, module)); CallInliner inliner; TF_RETURN_IF_ERROR(RunHloPass(&inliner, module).status()); return changed; } }; TEST_F(CudnnVectorizeConvolutionsTest, VectorizeTo4) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,40] parameter(0) filter = s8[2,2,40,44] parameter(1) ROOT result = (s8[10,20,30,44], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward", backend_config="{bar: 0}" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape(m::GetTupleElement( m::CustomCall(&conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 10, 4}), m::Reshape(m::Parameter(1)) .WithShape(S8, {2, 2, 10, 4, 44})) .WithConvDnums("b01f?_01i?o->b01f?")) .WithShape(S8, {10, 20, 30, 11, 4})), m::Op()))); EXPECT_EQ(conv->raw_backend_config_string(), "{bar: 0}"); } TEST_F(CudnnVectorizeConvolutionsTest, NoVectorizeTo4UnsupportedFilterType) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,40] parameter(0) filter = f32[2,2,40,44] parameter(1) ROOT result = (s8[10,20,30,44], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward", backend_config="{bar: 0}" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnVectorizeConvolutionsTest, VectorizeTo4NCHW) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,48,20,30] parameter(0) filter = s8[48,44,2,2] parameter(1) ROOT result = (s8[10,44,20,30], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=bf01_io01->bf01, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape(m::GetTupleElement( m::CustomCall(&conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 12, 4, 20, 30}), m::Reshape(m::Parameter(1)) .WithShape(S8, {12, 4, 44, 2, 2})) .WithConvDnums("bf?01_i?o01->bf?01")) .WithShape(S8, {10, 11, 4, 20, 30})), m::Op()))); } TEST_F(CudnnVectorizeConvolutionsTest, IncrementAllDnums) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[16,16,16,16] parameter(0) filter = s8[16,16,3,3] parameter(1) ROOT result = (s8[16,16,16,16], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=fb01_i01o->fb01, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape(m::GetTupleElement( m::CustomCall(&conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {4, 4, 16, 16, 16}), m::Reshape(m::Parameter(1)) .WithShape(S8, {4, 4, 16, 3, 3})) .WithConvDnums("f?b01_i?01o->f?b01")) .WithShape(S8, {4, 4, 16, 16, 16})), m::Op()))); } TEST_F(CudnnVectorizeConvolutionsTest, FilterDnums) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[1,20,9,9] parameter(0) filter = s8[3,3,20,32] parameter(1) ROOT result = (s8[1,32,9,9], u8[0]) custom-call(s8[1,20,9,9] input, s8[3,3,20,32] filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape(m::GetTupleElement( m::CustomCall(&conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {1, 5, 4, 9, 9}), m::Reshape(m::Parameter(1)) .WithShape(S8, {3, 3, 5, 4, 32})) .WithConvDnums("bf?01_01i?o->bf?01")) .WithShape(S8, {1, 8, 4, 9, 9})), m::Op()))); } TEST_F(CudnnVectorizeConvolutionsTest, NoVectorizeTo4) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,41] parameter(0) filter = s8[2,2,41,44] parameter(1) ROOT result = (s8[10,20,30,44], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); CudnnVectorizeConvolutions pass( {7, 5}, se::dnn::VersionInfo{8, 3, 0}); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(CudnnVectorizeConvolutionsTest, NoVectorizeTo4IfOutputIsS32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,41] parameter(0) filter = s8[2,2,41,44] parameter(1) ROOT result = (s32[10,20,30,44], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(CudnnVectorizeConvolutionsTest, NoVectorizeTo4IfOutputIsF32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,41] parameter(0) filter = s8[2,2,41,44] parameter(1) ROOT result = (f32[10,20,30,44], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(CudnnVectorizeConvolutionsTest, VectorizeTo32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[10,20,30,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape( m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 2, 32}), m::Reshape( m::Transpose( m::Reshape(m::Parameter(1)) .WithShape(S8, {2, 2, 2, 8, 4, 16, 4, 2})) .WithShape(S8, {2, 2, 2, 16, 2, 8, 4, 4}) .WithPredicate([](const HloInstruction* instr) { return absl::c_equal( instr->dimensions(), std::vector<int64_t>{2, 0, 1, 5, 7, 3, 6, 4}); })) .WithShape(S8, {128, 2, 2, 2, 32}))) .WithShape(S8, {10, 20, 30, 4, 32})), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, BiasAndSideInput) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,64] parameter(0) filter = s8[2,2,64,128] parameter(1) bias = f32[128] parameter(2) side_input = s8[10,20,30,64] parameter(3) ROOT result = (s8[10,20,30,128], u8[0]) custom-call(input, filter, bias, side_input), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape( m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 2, 32}), m::Reshape(m::Transpose(m::Reshape(m::Parameter(1)))) .WithShape(S8, {128, 2, 2, 2, 32}), m::Reshape( m::Transpose(m::Reshape(m::Parameter(2)) .WithShape(F32, {4, 4, 2, 4})) .WithShape(F32, {4, 2, 4, 4}) .WithPredicate([](const HloInstruction* instr) { return absl::c_equal( instr->dimensions(), std::vector<int64_t>{0, 2, 1, 3}); })) .WithShape(F32, {128}), m::Reshape(m::Parameter(3)) .WithShape(S8, {10, 20, 30, 2, 32}))) .WithShape(S8, {10, 20, 30, 4, 32})), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, InputNHWC_OutputNCHW) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,64] parameter(0) filter = s8[2,2,64,128] parameter(1) bias = f32[128] parameter(2) side_input = s8[10,128,20,30] parameter(3) ROOT result = (s8[10,128,20,30], u8[0]) custom-call(input, filter, bias, side_input), window={size=2x2}, dim_labels=b01f_01io->bf01, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape( m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 2, 32}), m::Reshape(m::Transpose(m::Reshape(m::Parameter(1)))) .WithShape(S8, {128, 2, 2, 2, 32}), m::Reshape( m::Transpose(m::Reshape(m::Parameter(2)) .WithShape(F32, {4, 4, 2, 4})) .WithShape(F32, {4, 2, 4, 4}) .WithPredicate([](const HloInstruction* instr) { return absl::c_equal( instr->dimensions(), std::vector<int64_t>{0, 2, 1, 3}); })) .WithShape(F32, {128}), m::Reshape(m::Parameter(3)) .WithShape(S8, {10, 4, 32, 20, 30}))) .WithShape(S8, {10, 4, 32, 20, 30})), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, NoVectorizeTo32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[10,20,30,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 0}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; ASSERT_THAT( root, GmockMatch(m::Tuple( m::Reshape(m::GetTupleElement( m::CustomCall(&conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 16, 4}), m::Reshape(m::Parameter(1)) .WithShape(S8, {2, 2, 16, 4, 128}))) .WithShape(S8, {10, 20, 30, 32, 4})), m::Op()))); EXPECT_FALSE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, Vectorize4To32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,16,4] parameter(0) filter = s8[3,5,16,192,4] parameter(1) bias = f32[64] parameter(2) side_input = s8[10,20,30,16,4] parameter(3) ROOT result = (s8[10,20,30,48,4], u8[0]) custom-call(input, filter, bias, side_input), window={size=3x5}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; auto conv_pat = m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Transpose(m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 2, 8, 4})) .WithShape(S8, {10, 20, 30, 2, 8, 4})) .WithShape(S8, {10, 20, 30, 2, 32}), m::Reshape( m::Transpose(m::Reshape(m::Parameter(1)) .WithShape(S8, {3, 5, 2, 8, 24, 4, 2, 4})) .WithShape(S8, {2, 3, 5, 24, 2, 8, 4, 4}) .WithPredicate([](const HloInstruction* instr) { return absl::c_equal( instr->dimensions(), std::vector<int64_t>{2, 0, 1, 4, 6, 3, 5, 7}); })) .WithShape(S8, {192, 2, 3, 5, 32}), m::Reshape(m::Transpose(m::Reshape(m::Parameter(2)))), m::Reshape(m::Transpose(m::Reshape(m::Parameter(3)) .WithShape(S8, {10, 20, 30, 2, 8, 4})) .WithShape(S8, {10, 20, 30, 2, 8, 4})) .WithShape(S8, {10, 20, 30, 2, 32})) .WithConvDnums("b01f?_oi01?->b01f?")) .WithShape(S8, {10, 20, 30, 6, 32}); ASSERT_THAT(root, GmockMatch(m::Tuple( m::Reshape(m::Transpose(m::Reshape(conv_pat).WithShape( S8, {10, 20, 30, 6, 8, 4})) .WithShape(S8, {10, 20, 30, 6, 8, 4})) .WithShape(S8, {10, 20, 30, 48, 4}), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, Vectorize4To32NCHW) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,16,20,30,4] parameter(0) filter = s8[16,128,2,2,4] parameter(1) bias = f32[64] parameter(2) side_input = s8[10,16,20,30,4] parameter(3) ROOT result = (s8[10,32,20,30,4], u8[0]) custom-call(input, filter, bias, side_input), window={size=2x2}, dim_labels=bf01_io01->bf01, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; auto conv_pat = m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Transpose(m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 2, 8, 20, 30, 4})) .WithShape(S8, {10, 2, 20, 30, 8, 4})) .WithShape(S8, {10, 2, 20, 30, 32}), m::Reshape( m::Transpose(m::Reshape(m::Parameter(1)) .WithShape(S8, {2, 8, 16, 4, 2, 2, 2, 4})) .WithShape(S8, {2, 2, 2, 16, 2, 8, 4, 4}) .WithPredicate([](const HloInstruction* instr) { return absl::c_equal( instr->dimensions(), std::vector<int64_t>{0, 5, 6, 2, 4, 1, 3, 7}); })) .WithShape(S8, {128, 2, 2, 2, 32}), m::Reshape(m::Transpose(m::Reshape(m::Parameter(2)))), m::Reshape(m::Transpose(m::Reshape(m::Parameter(3)) .WithShape(S8, {10, 2, 8, 20, 30, 4})) .WithShape(S8, {10, 2, 20, 30, 8, 4})) .WithShape(S8, {10, 2, 20, 30, 32})) .WithConvDnums("bf01_oi01->bf01")) .WithShape(S8, {10, 4, 20, 30, 32}); ASSERT_THAT(root, GmockMatch(m::Tuple( m::Reshape(m::Transpose(m::Reshape(conv_pat).WithShape( S8, {10, 4, 20, 30, 8, 4})) .WithShape(S8, {10, 4, 8, 20, 30, 4})) .WithShape(S8, {10, 32, 20, 30, 4}), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, Vectorize4To32VectorDimFirst) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[4,10,20,30,16] parameter(0) filter = s8[4,3,5,16,192] parameter(1) bias = f32[64] parameter(2) side_input = s8[4,10,20,30,16] parameter(3) ROOT result = (s8[4,10,20,30,48], u8[0]) custom-call(input, filter, bias, side_input), window={size=3x5}, dim_labels=?b01f_?01io->?b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; auto conv_pat = m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Transpose(m::Reshape(m::Parameter(0)) .WithShape(S8, {4, 10, 20, 30, 2, 8})) .WithShape(S8, {8, 4, 10, 20, 30, 2})) .WithShape(S8, {32, 10, 20, 30, 2}), m::Reshape( m::Transpose(m::Reshape(m::Parameter(1)) .WithShape(S8, {4, 3, 5, 2, 8, 24, 4, 2})) .WithShape(S8, {2, 3, 5, 24, 2, 8, 4, 4}) .WithPredicate([](const HloInstruction* instr) { return absl::c_equal( instr->dimensions(), std::vector<int64_t>{3, 1, 2, 5, 7, 4, 6, 0}); })) .WithShape(S8, {192, 2, 3, 5, 32}), m::Reshape(m::Transpose(m::Reshape(m::Parameter(2)))), m::Reshape(m::Transpose(m::Reshape(m::Parameter(3)) .WithShape(S8, {4, 10, 20, 30, 2, 8})) .WithShape(S8, {8, 4, 10, 20, 30, 2})) .WithShape(S8, {32, 10, 20, 30, 2})) .WithConvDnums("?b01f_oi01->?b01f")) .WithShape(S8, {32, 10, 20, 30, 6}); ASSERT_THAT(root, GmockMatch(m::Tuple( m::Reshape(m::Transpose(m::Reshape(conv_pat).WithShape( S8, {8, 4, 10, 20, 30, 6})) .WithShape(S8, {4, 10, 20, 30, 6, 8})) .WithShape(S8, {4, 10, 20, 30, 48}), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, NoVectorize4To32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,16,4] parameter(0) filter = s8[2,2,16,128,4] parameter(1) bias = f32[10] parameter(2) side_input = s8[10,20,30,16,4] parameter(3) ROOT result = (s8[10,20,30,32,4], u8[0]) custom-call(input, filter, bias, side_input), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 0}, module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnVectorizeConvolutionsTest, Vectorize16To32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,4,16] parameter(0) filter = s8[3,5,4,192,16] parameter(1) ROOT result = (s8[10,20,30,12,16], u8[0]) custom-call(input, filter), window={size=3x5}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; auto filter_pat = m::Reshape( m::Transpose( m::Reshape(m::Parameter(1)).WithShape(S8, {3, 5, 2, 2, 192, 16})) .WithShape(S8, {3, 5, 2, 192, 2, 16})) .WithShape(S8, {3, 5, 2, 192, 32}); auto conv_pat = m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape( m::Transpose(m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 2, 2, 16})) .WithShape(S8, {10, 20, 30, 2, 2, 16})) .WithShape(S8, {10, 20, 30, 2, 32}), m::Reshape( m::Transpose(m::Reshape(filter_pat) .WithShape(S8, {3, 5, 2, 24, 4, 2, 8, 4})) .WithShape(S8, {2, 3, 5, 24, 2, 8, 4, 4})) .WithShape(S8, {192, 2, 3, 5, 32})) .WithConvDnums("b01f_oi01->b01f")) .WithShape(S8, {10, 20, 30, 6, 32}); ASSERT_THAT(root, GmockMatch(m::Tuple( m::Reshape(m::Transpose(m::Reshape(conv_pat).WithShape( S8, {10, 20, 30, 6, 2, 16})) .WithShape(S8, {10, 20, 30, 6, 2, 16})) .WithShape(S8, {10, 20, 30, 12, 16}), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } TEST_F(CudnnVectorizeConvolutionsTest, VectorizeMixedTo32) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[10,20,30,8,8] parameter(0) filter = s8[3,5,2,192,32] parameter(1) ROOT result = (s8[10,20,30,96,2], u8[0]) custom-call(input, filter), window={size=3x5}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, Run({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* conv = nullptr; auto conv_pat = m::GetTupleElement( m::CustomCall( &conv, {kCudnnConvForwardCallTarget}, m::Reshape(m::Transpose(m::Reshape(m::Parameter(0)) .WithShape(S8, {10, 20, 30, 2, 4, 8})) .WithShape(S8, {10, 20, 30, 2, 4, 8})) .WithShape(S8, {10, 20, 30, 2, 32}), m::Reshape( m::Transpose(m::Reshape(m::Parameter(1)) .WithShape(S8, {3, 5, 2, 24, 4, 2, 8, 4})) .WithShape(S8, {2, 3, 5, 24, 2, 8, 4, 4})) .WithShape(S8, {192, 2, 3, 5, 32})) .WithConvDnums("b01f_oi01->b01f")) .WithShape(S8, {10, 20, 30, 6, 32}); ASSERT_THAT(root, GmockMatch(m::Tuple( m::Reshape(m::Transpose(m::Reshape(conv_pat).WithShape( S8, {10, 20, 30, 6, 16, 2})) .WithShape(S8, {10, 20, 30, 6, 16, 2})) .WithShape(S8, {10, 20, 30, 96, 2}), m::Op()))); EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .reordered_int8_nchw_vect()); } } } }
2,047
cpp
tensorflow/tensorflow
triton_support
third_party/xla/xla/service/gpu/fusions/triton/triton_support.cc
third_party/xla/xla/service/gpu/fusions/triton/triton_support_test.cc
#ifndef XLA_SERVICE_GPU_TRITON_SUPPORT_H_ #define XLA_SERVICE_GPU_TRITON_SUPPORT_H_ #include <vector> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/instruction_fusion.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { using CodegenDecision = FusionDecision; namespace legacy_triton { bool IsDistributiveOverAddition(const HloInstruction& hlo); std::vector<HloOpcode> TritonSupportedUnaryElementwiseUpToFloatNormalization( PrimitiveType); std::vector<HloOpcode> TritonSupportedBinaryElementwiseUpToFloatNormalization( PrimitiveType); std::vector<HloOpcode> TritonSupportedTernaryElementwiseUpToFloatNormalization( PrimitiveType); bool IsTritonSupportedDataType(PrimitiveType, const se::GpuComputeCapability&); bool IsTritonSupportedElementwiseUpToFloatNormalization(HloOpcode, PrimitiveType); CodegenDecision CanTritonHandleGEMM( const HloDotInstruction& dot, const se::GpuComputeCapability& gpu_version); CodegenDecision IsTritonSupportedInstruction( const HloInstruction& instr, const se::GpuComputeCapability& gpu_version); CodegenDecision IsTritonSupportedDynamicSlice( const HloDynamicSliceInstruction& instr); } CodegenDecision IsTritonSupportedInstruction( const HloInstruction& instr, const se::GpuComputeCapability& gpu_version); } } #endif #include "xla/service/gpu/triton_support.h" #include <cstdint> #include <iterator> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" #include "tsl/platform/tensor_float_32_utils.h" namespace xla { namespace gpu { namespace legacy_triton { bool IsDistributiveOverAddition(const HloInstruction& hlo) { if (hlo.opcode() == HloOpcode::kMultiply || hlo.opcode() == HloOpcode::kNegate || hlo.opcode() == HloOpcode::kBitcast || hlo.opcode() == HloOpcode::kReshape || hlo.opcode() == HloOpcode::kCopy || hlo.opcode() == HloOpcode::kTranspose || hlo.opcode() == HloOpcode::kConvert || hlo.opcode() == HloOpcode::kBroadcast || hlo.opcode() == HloOpcode::kSlice) { return true; } return false; } bool IsTritonSupportedDotOutputType( const PrimitiveType t, const se::GpuComputeCapability& gpu_version) { switch (t) { case F16: case F32: return true; case F8E5M2: return std::visit(VariantVisitor{[](const se::CudaComputeCapability& cc) { return cc.IsAtLeastAmpere(); }, [](const se::RocmComputeCapability& cc) { return false; }}, gpu_version); case F8E4M3FN: return std::visit(VariantVisitor{[](const se::CudaComputeCapability& cc) { return cc.IsAtLeastHopper(); }, [](const se::RocmComputeCapability& cc) { return false; }}, gpu_version); case BF16: return std::visit(VariantVisitor{[](const se::CudaComputeCapability& cc) { return true; }, [](const se::RocmComputeCapability& cc) { return cc.has_bf16_dtype_support(); }}, gpu_version); default: return false; } }; bool IsTritonSupportedDataType(PrimitiveType type, const se::GpuComputeCapability& gpu_version) { if (IsTritonSupportedDotOutputType(type, gpu_version)) { return true; } switch (type) { case PRED: case S8: case S16: case S32: return true; default: return false; } } std::vector<HloOpcode> TritonSupportedUnaryElementwiseUpToFloatNormalization( PrimitiveType element_type) { std::vector<HloOpcode> ret = {HloOpcode::kConvert}; if (element_type == PrimitiveType::PRED) { ret.push_back(HloOpcode::kNot); return ret; } ret.push_back(HloOpcode::kAbs); ret.push_back(HloOpcode::kNegate); if (element_type == PrimitiveType::F32 || element_type == PrimitiveType::BF16 || element_type == PrimitiveType::F64) { absl::c_copy(std::vector<HloOpcode>{HloOpcode::kCos, HloOpcode::kExp, HloOpcode::kExpm1, HloOpcode::kFloor, HloOpcode::kCeil, HloOpcode::kLog, HloOpcode::kLog1p, HloOpcode::kRsqrt, HloOpcode::kSin, HloOpcode::kSqrt, HloOpcode::kCbrt, HloOpcode::kTan, HloOpcode::kTanh, HloOpcode::kErf}, std::back_inserter(ret)); } return ret; } std::vector<HloOpcode> TritonSupportedBinaryElementwiseUpToFloatNormalization( PrimitiveType element_type) { if (element_type == PrimitiveType::PRED) { return {HloOpcode::kAnd, HloOpcode::kOr, HloOpcode::kXor, HloOpcode::kCompare}; } std::vector<HloOpcode> ret = {HloOpcode::kAdd, HloOpcode::kCompare, HloOpcode::kMaximum, HloOpcode::kMinimum, HloOpcode::kMultiply, HloOpcode::kSubtract}; if (element_type == PrimitiveType::F32 || element_type == PrimitiveType::BF16 || element_type == PrimitiveType::F64) { ret.push_back(HloOpcode::kAtan2); ret.push_back(HloOpcode::kDivide); ret.push_back(HloOpcode::kPower); } return ret; } std::vector<HloOpcode> TritonSupportedTernaryElementwiseUpToFloatNormalization( PrimitiveType element_type) { return {HloOpcode::kSelect, HloOpcode::kClamp}; } bool IsTritonSupportedElementwiseUpToFloatNormalization( HloOpcode opcode, PrimitiveType element_type) { return absl::c_linear_search( TritonSupportedUnaryElementwiseUpToFloatNormalization( element_type), opcode) || absl::c_linear_search( TritonSupportedBinaryElementwiseUpToFloatNormalization( element_type), opcode) || absl::c_linear_search( TritonSupportedTernaryElementwiseUpToFloatNormalization( element_type), opcode); } CodegenDecision CanTritonHandleElementwise( const HloInstruction& instr, const se::GpuComputeCapability& gpu_version) { if (!IsTritonSupportedDataType(instr.shape().element_type(), gpu_version)) { return "Unsupported output data type."; } for (const HloInstruction* operand : instr.operands()) { if (!IsTritonSupportedDataType(operand->shape().element_type(), gpu_version)) { return "Unsupported input data type."; } } if (instr.opcode() == HloOpcode::kConstant) { return CodegenDecision{}; } else if (!IsTritonSupportedElementwiseUpToFloatNormalization( instr.opcode(), instr.operand(0)->shape().element_type())) { return "Unsupported elementwise operation."; } return CodegenDecision{}; } bool IsDotAlgorithmSupportedByTriton( PrecisionConfig::Algorithm algorithm, const se::GpuComputeCapability& gpu_version) { auto cuda_compute_capability = std::get_if<se::CudaComputeCapability>(&gpu_version); auto rocm_compute_capability = std::get_if<se::RocmComputeCapability>(&gpu_version); switch (algorithm) { case PrecisionConfig::ALG_DOT_TF32_TF32_F32: if (cuda_compute_capability) { return true; } return false; case PrecisionConfig::ALG_DOT_BF16_BF16_F32: case PrecisionConfig::ALG_DOT_BF16_BF16_F32_X3: case PrecisionConfig::ALG_DOT_BF16_BF16_F32_X6: if (cuda_compute_capability) { return true; } if (rocm_compute_capability) { return rocm_compute_capability->has_bf16_dtype_support(); } return false; case PrecisionConfig::ALG_DOT_F16_F16_F32: case PrecisionConfig::ALG_DOT_F32_F32_F32: default: return false; } } CodegenDecision CanTritonHandleGEMM( const HloDotInstruction& dot, const se::GpuComputeCapability& gpu_version) { auto cuda_compute_capability = std::get_if<se::CudaComputeCapability>(&gpu_version); auto rocm_compute_capability = std::get_if<se::RocmComputeCapability>(&gpu_version); CHECK(cuda_compute_capability || rocm_compute_capability); if (dot.precision_config().algorithm() == PrecisionConfig::ALG_UNSET) { if (!tsl::tensor_float_32_execution_enabled() || absl::c_any_of(dot.precision_config().operand_precision(), [](int x) { return x != PrecisionConfig::DEFAULT; })) { return "Having non-default operand precisions or TensorFloat-32 disabled " "for Dot op with unset algorithm."; } } else { if (!IsDotAlgorithmSupportedByTriton(dot.precision_config().algorithm(), gpu_version)) { return "Unsupported algorithm on the current device(s)."; } } if (!IsTritonSupportedDotOutputType(dot.shape().element_type(), gpu_version)) { return "Unsupported output data type for Dot op."; } if (!IsTritonSupportedDataType(dot.operand(0)->shape().element_type(), gpu_version) || !IsTritonSupportedDataType(dot.operand(1)->shape().element_type(), gpu_version)) { return "Unsupported input data type for Dot op."; } const DotDimensionNumbers& dim_numbers = dot.dot_dimension_numbers(); if (dim_numbers.lhs_batch_dimensions().size() > 1) { return "Multiple batch dimensions."; } return CodegenDecision{}; } CodegenDecision CanTritonHandleReduce( const HloReduceInstruction& reduce, const se::GpuComputeCapability& gpu_version) { if (!IsTritonSupportedDataType(reduce.shape().element_type(), gpu_version)) { return "Unsupported output data type for Reduce op."; } for (const HloInstruction* operand : reduce.operands()) { if (!IsTritonSupportedDataType(operand->shape().element_type(), gpu_version)) { return "Unsupported input data type for Reduce op."; } } bool is_triton_supported_reduction_computation = [&]() { return absl::c_all_of( reduce.to_apply()->instructions(), [&](const HloInstruction* instr) { return IsTritonSupportedInstruction(*instr, gpu_version); }); }(); if (!is_triton_supported_reduction_computation) { return "Unsupported reduction computation by Triton."; } if (reduce.dimensions().size() == 1 && reduce.dimensions().front() == reduce.operand(0)->shape().rank() - 1 && reduce.operand_count() == 2) { const HloInstruction* operand = reduce.operand(1); if (operand->opcode() == HloOpcode::kConvert) { if (operand->operand(0)->opcode() == HloOpcode::kConstant && operand->operand(0)->shape().element_type() == BF16 && operand->shape().element_type() == F32) { return CodegenDecision{}; } } else if (operand->opcode() == HloOpcode::kConstant) { return CodegenDecision{}; } return "Reduction init value should be a constant or a convert of a " "constant."; } return "Reduction is not a row-reduction of a single operand."; } bool NoNonContractingDimension(const HloDotInstruction& dot) { const DotDimensionNumbers& dim_numbers = dot.dot_dimension_numbers(); if (dim_numbers.lhs_batch_dimensions().size() + dim_numbers.lhs_contracting_dimensions().size() == dot.operand(0)->shape().rank() || dim_numbers.rhs_batch_dimensions().size() + dim_numbers.rhs_contracting_dimensions().size() == dot.operand(1)->shape().rank()) { return true; } return false; } CodegenDecision IsTritonSupportedDynamicSlice( const HloDynamicSliceInstruction& instr) { for (const HloInstruction* index_operand : instr.index_operands()) { switch (index_operand->shape().element_type()) { case S8: case S16: case S32: break; default: return CodegenDecision( "Dynamic slice is only supported with S8, S16, or S32 indices."); } } const HloInstruction* input = instr.operand(0); Layout in_layout = input->shape().layout(); int64_t majormost_dim_id = in_layout.minor_to_major(in_layout.minor_to_major_size() - 1); for (int i = 0; i < input->shape().dimensions_size(); ++i) { if (i == majormost_dim_id) { continue; } else if (input->shape().dimensions(i) != instr.slice_sizes(i)) { return CodegenDecision( "Unsupported dynamic slice on non-major-most dimension."); } } return CodegenDecision{}; } CodegenDecision IsTritonSupportedInstruction( const HloInstruction& instr, const se::GpuComputeCapability& gpu_version) { if (instr.IsElementwise()) { return CanTritonHandleElementwise(instr, gpu_version); } switch (instr.opcode()) { case HloOpcode::kDot: { auto* dot = Cast<HloDotInstruction>(&instr); if (NoNonContractingDimension(*dot)) { return "No non-contracting dimensions."; } return CanTritonHandleGEMM(*dot, gpu_version); } case HloOpcode::kReduce: { return CanTritonHandleReduce(*Cast<HloReduceInstruction>(&instr), gpu_version); } case HloOpcode::kTuple: { if (instr.IsRoot()) { return CodegenDecision{}; } return "Only supports root tuples."; } case HloOpcode::kDynamicSlice: { return IsTritonSupportedDynamicSlice( *Cast<HloDynamicSliceInstruction>(&instr)); } case HloOpcode::kBitcast: case HloOpcode::kTranspose: case HloOpcode::kSlice: case HloOpcode::kReshape: case HloOpcode::kPad: case HloOpcode::kConcatenate: case HloOpcode::kParameter: case HloOpcode::kBroadcast: return CodegenDecision{}; default: break; } return "Unsupported opcode."; } } namespace { absl::flat_hash_set<HloOpcode> TritonSupportedUnaryElementwiseOps( PrimitiveType element_type) { if (element_type == PrimitiveType::PRED) { return {HloOpcode::kConvert, HloOpcode::kNot}; } absl::flat_hash_set<HloOpcode> ret = {HloOpcode::kConvert, HloOpcode::kAbs, HloOpcode::kNegate}; if (element_type == PrimitiveType::F32 || element_type == PrimitiveType::F64) { absl::flat_hash_set<HloOpcode> additional_opcodes{ HloOpcode::kCos, HloOpcode::kExp, HloOpcode::kExpm1, HloOpcode::kFloor, HloOpcode::kCeil, HloOpcode::kLog, HloOpcode::kLog1p, HloOpcode::kRsqrt, HloOpcode::kSin, HloOpcode::kSqrt, HloOpcode::kCbrt, HloOpcode::kTan, HloOpcode::kTanh, HloOpcode::kErf}; ret.insert(additional_opcodes.begin(), additional_opcodes.end()); } if (element_type == PrimitiveType::BF16 || element_type == PrimitiveType::F16) { absl::flat_hash_set<HloOpcode> additional_opcodes{HloOpcode::kFloor, HloOpcode::kCeil}; ret.insert(additional_opcodes.begin(), additional_opcodes.end()); } return ret; } absl::flat_hash_set<HloOpcode> TritonSupportedBinaryElementwiseOps( PrimitiveType element_type) { if (element_type == PrimitiveType::PRED) { return {HloOpcode::kAnd, HloOpcode::kOr, HloOpcode::kXor, HloOpcode::kCompare}; } absl::flat_hash_set<HloOpcode> ret = { HloOpcode::kAdd, HloOpcode::kCompare, HloOpcode::kMaximum, HloOpcode::kMinimum, HloOpcode::kMultiply, HloOpcode::kSubtract}; if (element_type == PrimitiveType::F32 || element_type == PrimitiveType::F64) { absl::flat_hash_set<HloOpcode> additional_opcodes{ HloOpcode::kAtan2, HloOpcode::kDivide, HloOpcode::kPower}; ret.insert(additional_opcodes.begin(), additional_opcodes.end()); } return ret; } absl::flat_hash_set<HloOpcode> TritonSupportedTernaryElementwiseOps( PrimitiveType element_type) { return {HloOpcode::kSelect, HloOpcode::kClamp}; } bool IsTritonSupportedElementwise(HloOpcode opcode, PrimitiveType element_type) { return TritonSupportedUnaryElementwiseOps(element_type).contains(opcode) || TritonSupportedBinaryElementwiseOps(element_type).contains(opcode) || TritonSupportedTernaryElementwiseOps(element_type).contains(opcode); } } CodegenDecision IsTritonSupportedInstruction( const HloInstruction& instr, const se::GpuComputeCapability& gpu_version) { bool output_type_is_supported = legacy_triton::IsTritonSupportedDataType( instr.shape().element_type(), gpu_version); if (!output_type_is_supported) { return "Unsupported output data type."; } bool input_types_are_supported = absl::c_all_of(instr.operands(), [&](const HloInstruction* operand) { return legacy_triton::IsTritonSupportedDataType( operand->shape().element_type(), gpu_version); }); if (!input_types_are_supported) { return "Unsupported input data type."; } if (instr.IsElementwise()) { if (!IsTritonSupportedElementwise(instr.opcode(), instr.shape().element_type())) { return "Unsupported elementwise operation."; } return CodegenDecision{}; } switch (instr.opcode()) { case HloOpcode::kReduce: { return legacy_triton::CanTritonHandleReduce( *Cast<HloReduceInstruction>(&instr), gpu_version); } case HloOpcode::kTranspose: case HloOpcode::kSlice: case HloOpcode::kParameter: case HloOpcode::kBroadcast: return CodegenDecision{}; default: VLOG(1) << "Unsupported instruction: " << instr.ToString(); break; } return "Unsupported opcode."; } } }
#include "xla/service/gpu/triton_support.h" #include <cstdint> #include <string> #include <tuple> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/ir_emitter_triton.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/triton_test_utils.h" #include "xla/stream_executor/device_description.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::Not; using ::testing::status::IsOk; auto AllXlaDataTypes() { std::vector<xla::PrimitiveType> xla_data_types; std::vector<xla::PrimitiveType> to_filter_out = {PRIMITIVE_TYPE_INVALID, TUPLE, OPAQUE_TYPE, TOKEN}; const tsl::protobuf::EnumDescriptor* xla_type_descriptor = tsl::protobuf::GetEnumDescriptor<xla::PrimitiveType>(); for (int enum_ix = 0; enum_ix < xla_type_descriptor->value_count(); ++enum_ix) { xla::PrimitiveType xla_type = static_cast<xla::PrimitiveType>( xla_type_descriptor->value(enum_ix)->number()); if (!absl::c_linear_search(to_filter_out, xla_type)) { xla_data_types.push_back(xla_type); } } return ::testing::ValuesIn(xla_data_types); } auto AllDevicesToTest() { using cc = se::GpuComputeCapability; #ifdef TENSORFLOW_USE_ROCM se::RocmComputeCapability example_rocm_compute_capability = TestGpuDeviceInfo::AMDMI210DeviceInfo().rocm_compute_capability(); return ::testing::Values(cc(example_rocm_compute_capability)); #else return ::testing::Values(cc(se::CudaComputeCapability::Ampere()), cc(se::CudaComputeCapability::Hopper())); #endif } auto AllTestCombinationsForOpcodes(std::vector<HloOpcode>&& opcodes) { return ::testing::Combine(AllXlaDataTypes(), ::testing::ValuesIn(opcodes), AllDevicesToTest()); } class TritonSupportTest : public TritonSupportTestBase { public: void RunSupportTest(TestedInstruction ti, std::vector<int64_t> output_tile_sizes, se::GpuComputeCapability cc, bool skip_failure_branch_to_avoid_crash = false) { BlockLevelParameters block_level_parameters = FromOutputTileSizes(std::move(output_tile_sizes)); const se::DeviceDescription dev_info = std::holds_alternative<se::CudaComputeCapability>(cc) ? TestGpuDeviceInfo::RTXA6000DeviceInfo(cc) : TestGpuDeviceInfo::AMDMI210DeviceInfo(); if (IsTritonSupportedInstruction(ti.Instruction(), cc)) { EXPECT_THAT( TritonWrapper("test_fn", &ti.TritonFusion(), cc, dev_info, block_level_parameters, &llvm_module_, mlir_context_), IsOk()); } else { if (!skip_failure_branch_to_avoid_crash) { EXPECT_THAT( TritonWrapper("test_fn", &ti.TritonFusion(), cc, dev_info, block_level_parameters, &llvm_module_, mlir_context_), Not(IsOk())); } } } }; class TritonSupportTestWithParam : public TritonSupportTest, public ::testing::WithParamInterface< std::tuple<PrimitiveType, HloOpcode, se::GpuComputeCapability>> {}; using BitcastOrReshapeTest = TritonSupportTestWithParam; TEST_P(BitcastOrReshapeTest, IsTritonSupportedBitcastOrReshape) { auto [data_type, opcode, cc] = GetParam(); const std::string kHloTestTemplate = R"( ENTRY triton_computation { parameter_0 = $0[1,16,4]{2,1,0} parameter(0) ROOT bitcast_or_reshape = $0[64]{0} $1(parameter_0) })"; TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); RunSupportTest(std::move(ti), {16}, cc); } INSTANTIATE_TEST_SUITE_P(BitcastOrReshapeTestSuite, BitcastOrReshapeTest, AllTestCombinationsForOpcodes({HloOpcode::kBitcast, HloOpcode::kReshape}), TritonSupportTestTypeOpcodeAndDeviceToString); using UnaryElementwiseTest = TritonSupportTestWithParam; TEST_P(UnaryElementwiseTest, IsTritonSupportedUnaryElementwise) { auto [data_type, opcode, cc] = GetParam(); const std::string kHloTestTemplate = R"( ENTRY triton_computation { parameter_0 = $0[33,68]{1,0} parameter(0) unary = $0[33,68]{1,0} $1(parameter_0) ROOT convert = f32[33,68]{1,0} convert(unary) })"; TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); RunSupportTest(std::move(ti), {1, 32}, cc); } INSTANTIATE_TEST_SUITE_P( UnaryElementwiseTestSuite, UnaryElementwiseTest, ::testing::Combine(::testing::Values(S8, S16, S32, F16, F32, BF16), ::testing::Values(HloOpcode::kConvert, HloOpcode::kAbs, HloOpcode::kNegate), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); INSTANTIATE_TEST_SUITE_P( UnaryPREDTestSuite, UnaryElementwiseTest, ::testing::Combine(::testing::Values(PRED), ::testing::Values(HloOpcode::kConvert, HloOpcode::kNot), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); INSTANTIATE_TEST_SUITE_P( UnaryMathTestSuite, UnaryElementwiseTest, ::testing::Combine(::testing::Values(F16, F32, BF16), ::testing::Values(HloOpcode::kCeil, HloOpcode::kCos, HloOpcode::kExp, HloOpcode::kExpm1, HloOpcode::kFloor, HloOpcode::kLog, HloOpcode::kLog1p, HloOpcode::kRsqrt, HloOpcode::kSin, HloOpcode::kSqrt, HloOpcode::kCbrt, HloOpcode::kTan, HloOpcode::kTanh, HloOpcode::kErf), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); using BinaryElementwiseTest = TritonSupportTestWithParam; TEST_P(BinaryElementwiseTest, IsTritonSupportedBinaryElementwise) { auto [data_type, opcode, cc] = GetParam(); const std::string kHloTestTemplate = R"( ENTRY triton_computation { parameter_0 = $0[11,63]{1,0} parameter(0) parameter_1 = $0[11,63]{1,0} parameter(1) ROOT binary = $0[11,63]{1,0} $1(parameter_0, parameter_1) })"; TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); bool skip_failure_branch_to_avoid_crash = false; if (primitive_util::BitWidth(data_type) == 16 && opcode == HloOpcode::kDivide) { skip_failure_branch_to_avoid_crash = true; } RunSupportTest(std::move(ti), {1, 32}, cc, skip_failure_branch_to_avoid_crash); } INSTANTIATE_TEST_SUITE_P( BinaryElementwiseTestSuite, BinaryElementwiseTest, ::testing::Combine(::testing::Values(S8, S16, S32, F16, F32, BF16), ::testing::Values(HloOpcode::kAdd, HloOpcode::kMultiply, HloOpcode::kMaximum, HloOpcode::kMinimum, HloOpcode::kSubtract), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); INSTANTIATE_TEST_SUITE_P(BinaryPREDTestSuite, BinaryElementwiseTest, ::testing::Combine(::testing::Values(PRED), ::testing::Values(HloOpcode::kAnd, HloOpcode::kOr, HloOpcode::kXor), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); INSTANTIATE_TEST_SUITE_P( BinaryMathTestSuite, BinaryElementwiseTest, ::testing::Combine(::testing::Values(F16, F32, BF16), ::testing::Values(HloOpcode::kAtan2, HloOpcode::kDivide, HloOpcode::kPower), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); using CompareTest = TritonSupportTestWithParam; TEST_P(CompareTest, IsTritonSupportedCompare) { auto [data_type, opcode, cc] = GetParam(); const std::string kHloTestTemplate = R"( ENTRY triton_computation { parameter_0 = $0[11,63]{1,0} parameter(0) parameter_1 = $0[11,63]{1,0} parameter(1) compare = pred[11,63]{1,0} $1(parameter_0, parameter_1), direction=GE ROOT convert = f32[11,63]{1,0} convert(compare) })"; TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); RunSupportTest(std::move(ti), {1, 32}, cc); } INSTANTIATE_TEST_SUITE_P( CompareTestSuite, CompareTest, ::testing::Combine(::testing::Values(PRED, S8, S16, S32, F16, F32, BF16), ::testing::Values(HloOpcode::kCompare), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); using TernaryElementwiseTest = TritonSupportTestWithParam; TEST_P(TernaryElementwiseTest, IsTritonSupportedTernaryElementwise) { auto [data_type, opcode, cc] = GetParam(); const std::string kHloTestTemplate = R"( ENTRY triton_computation { parameter_0 = $0[13,63]{1,0} parameter(0) parameter_1 = $0[13,63]{1,0} parameter(1) parameter_2 = pred[13,63]{1,0} parameter(2) ternary = $0[13,63]{1,0} $1(parameter_2, parameter_0, parameter_1) ROOT convert = f32[13,63]{1,0} convert(ternary) })"; TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); RunSupportTest(std::move(ti), {1, 32}, cc); } INSTANTIATE_TEST_SUITE_P( TernaryElementwiseTestSuite, TernaryElementwiseTest, ::testing::Combine(::testing::Values(PRED, S8, S16, S32, F16, F32, BF16), ::testing::Values(HloOpcode::kSelect), AllDevicesToTest()), TritonSupportTestTypeOpcodeAndDeviceToString); using ReduceTest = TritonSupportTestWithParam; TEST_P(ReduceTest, IsTritonSupportedReduction) { GTEST_SKIP() << "TODO(b/348565795): this test is currently broken."; auto [data_type, opcode, cc] = GetParam(); bool dtype_is_complex = data_type == C64 || data_type == C128; const std::string kHloTestTemplate = absl::Substitute(R"( add { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT add = $0[] add(Arg_0, Arg_1) } ENTRY triton_computation { parameter_0 = $0[125,127]{1,0} parameter(0) constant_0 = $0[] constant($1) ROOT reduce = $0[125]{0} reduce(parameter_0, constant_0), dimensions={1}, to_apply=add })", "$0", dtype_is_complex ? "(0, 0)" : "0"); TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); RunSupportTest(std::move(ti), {1}, cc); } TEST_P( ReduceTest, UnsupportedReduceWithMoreThanOneReduceDimensionsFailsGracefullyWithTriton) { auto [data_type, opcode, cc] = GetParam(); bool dtype_is_complex = data_type == C64 || data_type == C128; const std::string kHloTestTemplate = absl::Substitute(R"( add { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT add = $0[] add(Arg_0, Arg_1) } ENTRY triton_computation { parameter_0 = $0[2,125,127]{2,1,0} parameter(0) constant_0 = $0[] constant($1) ROOT reduce = $0[2]{0} reduce(parameter_0, constant_0), dimensions={1,2}, to_apply=add })", "$0", dtype_is_complex ? "(0, 0)" : "0"); TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); EXPECT_FALSE(IsTritonSupportedInstruction(ti.Instruction(), cc)); RunSupportTest(std::move(ti), {1}, cc); } TEST_P(ReduceTest, UnsupportedReduceWithNonLastReduceDimensionFailsGracefullyWithTriton) { auto [data_type, opcode, cc] = GetParam(); bool dtype_is_complex = data_type == C64 || data_type == C128; const std::string kHloTestTemplate = absl::Substitute(R"( add { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT add = $0[] add(Arg_0, Arg_1) } ENTRY triton_computation { parameter_0 = $0[125,127]{1,0} parameter(0) constant_0 = $0[] constant($1) ROOT reduce = $0[127]{0} reduce(parameter_0, constant_0), dimensions={0}, to_apply=add })", "$0", dtype_is_complex ? "(0, 0)" : "0"); TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); EXPECT_FALSE(IsTritonSupportedInstruction(ti.Instruction(), cc)); RunSupportTest(std::move(ti), {1}, cc); } TEST_P(ReduceTest, UnsupportedReduceWithMoreThanOneOperandsFailsGracefullyWithTriton) { auto [data_type, opcode, cc] = GetParam(); bool dtype_is_complex = data_type == C64 || data_type == C128; const std::string kHloTestTemplate = absl::Substitute(R"( add { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) Arg_2 = $0[] parameter(2) Arg_3 = $0[] parameter(3) add_0 = $0[] add(Arg_0, Arg_2) add_1 = $0[] add(Arg_1, Arg_3) ROOT pair = ($0[], $0[]) tuple(add_0, add_1) } ENTRY triton_computation { parameter_0 = $0[125,127] parameter(0) constant_0 = $0[] constant($1) tuple = ($0[125]{0}, $0[125]{0}) reduce( parameter_0, parameter_0, constant_0, constant_0), dimensions={1}, to_apply=add ROOT reduce = $0[125]{0} get-tuple-element(tuple), index=0 })", "$0", dtype_is_complex ? "(0, 0)" : "0"); TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); EXPECT_FALSE(IsTritonSupportedInstruction(ti.Instruction(), cc)); RunSupportTest(std::move(ti), {1}, cc); } TEST_P(ReduceTest, UnsupportedReduceWithNonConstReduceValueFailsGracefullyWithTriton) { auto [data_type, opcode, cc] = GetParam(); const std::string kHloTestTemplate = R"( add { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT add = $0[] add(Arg_0, Arg_1) } ENTRY triton_computation { parameter_0 = $0[125,127]{1,0} parameter(0) init = $0[] parameter(1) ROOT reduce = $0[125]{0} reduce(parameter_0, init), dimensions={1}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); EXPECT_FALSE(IsTritonSupportedInstruction(ti.Instruction(), cc)); RunSupportTest(std::move(ti), {1}, cc); } TEST_P(ReduceTest, UnsupportedReductionComputationFailsGracefullyWithTriton) { auto [data_type, opcode, cc] = GetParam(); bool dtype_is_complex = data_type == C64 || data_type == C128; const std::string kHloTestTemplate = absl::Substitute(R"( custom_call { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT custom_call = $0[] custom-call(Arg_0, Arg_1), custom_call_target="foo" } ENTRY triton_computation { parameter_0 = $0[125,127]{1,0} parameter(0) constant_0 = $0[] constant($1) ROOT reduce = $0[125]{0} reduce(parameter_0, constant_0), dimensions={1}, to_apply=custom_call })", "$0", dtype_is_complex ? "(0, 0)" : "0"); TF_ASSERT_OK_AND_ASSIGN( TestedInstruction ti, ParseTemplateAndGetInstruction(kHloTestTemplate, data_type, opcode)); EXPECT_FALSE(IsTritonSupportedInstruction(ti.Instruction(), cc)); RunSupportTest(std::move(ti), {1}, cc); } INSTANTIATE_TEST_SUITE_P(ReduceTestSuite, ReduceTest, AllTestCombinationsForOpcodes({HloOpcode::kReduce}), TritonSupportTestTypeOpcodeAndDeviceToString); } } }
2,048
cpp
tensorflow/tensorflow
ir_emitter_triton
null
null
#ifndef XLA_SERVICE_GPU_IR_EMITTER_TRITON_H_ #define XLA_SERVICE_GPU_IR_EMITTER_TRITON_H_ #include <cstdint> #include <functional> #include <optional> #include <string> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Module.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/Value.h" #include "mlir/Pass/PassManager.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/model/tiled_hlo_instruction.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/launch_dim.h" #include "triton/Dialect/Triton/IR/Dialect.h" #include "triton/Dialect/TritonNvidiaGPU/Transforms/Passes.h" namespace xla { namespace gpu { namespace mt = ::mlir::triton; struct TritonWrapperResult { int64_t shmem_bytes = 0; std::optional<se::ClusterDim> cluster_dim; }; absl::Status EmitGeneric(mlir::OpBuilder b, absl::string_view libdevice_path, const se::DeviceDescription& device_info, const HloFusionInstruction* fusion, mlir::triton::FuncOp fn, const BlockLevelParameters& block_level_parameters); absl::StatusOr<LaunchDimensions> GetMatMulLaunchDimensions( const TritonFusionAnalysis& analysis, const HloFusionAdaptor& fusion, const TritonGemmConfig& config); absl::Status EmitMatMul(mlir::OpBuilder b, absl::string_view libdevice_path, const se::DeviceDescription& device_info, const HloFusionInstruction* fusion, mlir::triton::FuncOp fn, const BlockLevelParameters& block_level_parameters); absl::Status EmitSoftMax(mlir::OpBuilder b, absl::string_view libdevice_path, const se::DeviceDescription& device_info, const HloFusionInstruction* fusion, mlir::triton::FuncOp fn, const BlockLevelParameters& block_level_parameters); using TritonIrEmitter = std::function<absl::Status( mlir::OpBuilder, absl::string_view, const se::DeviceDescription&, const HloFusionInstruction*, mlir::triton::FuncOp, const BlockLevelParameters&)>; void LoadMlirDialectsForTriton(mlir::MLIRContext& mlir_context); absl::StatusOr<TritonWrapperResult> TritonWrapper( absl::string_view fn_name, const HloFusionInstruction* fusion, const se::GpuComputeCapability& cc, const se::DeviceDescription& device_info, const BlockLevelParameters& block_level_parameters, llvm::Module* llvm_module, mlir::MLIRContext& mlir_context); absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> CreateTritonModule( absl::string_view fn_name, const HloFusionInstruction* fusion, const se::DeviceDescription& device_info, const BlockLevelParameters& block_level_parameters, mlir::MLIRContext& mlir_context); absl::StatusOr<TritonWrapperResult> CompileTritonToLLVM( const HloModuleConfig& hlo_config, absl::string_view hlo_module_name, const se::GpuComputeCapability& cc, const se::DeviceDescription& device_info, const BlockLevelParameters& block_level_parameters, mlir::ModuleOp triton_module, llvm::Module* llvm_module, mlir::MLIRContext& mlir_context); absl::Status CreateTritonPipeline( mlir::OpPassManager& pm, const se::GpuComputeCapability& cc, const BlockLevelParameters& block_level_parameters, mt::nvidia_gpu::ClusterInfo& out_cluster_info); std::string GetLibdevicePath(const HloModuleConfig& hlo_config, const se::DeviceDescription& device_info); namespace ir_emitter_triton_internal { struct MakeTensorPtrOpAndBoundaryChecks { mt::MakeTensorPtrOp op; llvm::SmallVector<int32_t> boundary_checks; }; MakeTensorPtrOpAndBoundaryChecks CreateMakeTensorPtrOp( mlir::ImplicitLocOpBuilder& b, mlir::Value pid, const TiledHloInstruction& tiled_hlo, mlir::Value argument_block); } } } #endif #include "xla/service/gpu/ir_emitter_triton.h" #include <array> #include <climits> #include <cstddef> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <optional> #include <queue> #include <string> #include <system_error> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Linker/Linker.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include "mlir/Conversion/AffineToStandard/AffineToStandard.h" #include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h" #include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h" #include "mlir/Conversion/IndexToLLVM/IndexToLLVM.h" #include "mlir/Conversion/SCFToControlFlow/SCFToControlFlow.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/Extensions/InlinerExtension.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/LLVMIR/LLVMTypes.h" #include "mlir/Dialect/LLVMIR/NVVMDialect.h" #include "mlir/Dialect/Math/IR/Math.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/ExecutionEngine/OptUtils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/IR/Verifier.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Support/TypeID.h" #include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Dialect/NVVM/NVVMToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Dialect/ROCDL/ROCDLToLLVMIRTranslation.h" #include "mlir/Target/LLVMIR/Export.h" #include "mlir/Transforms/Passes.h" #include "xla/autotuning.pb.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/mlir_hlo/mhlo/transforms/map_mhlo_to_scalar_op.h" #include "xla/primitive_util.h" #include "xla/service/algorithm_util.h" #include "xla/service/dump.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusions/mlir/elemental_hlo_to_mlir.h" #include "xla/service/gpu/fusions/mlir/ir/xla_gpu_ops.h" #include "xla/service/gpu/fusions/mlir/passes.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/model/tiled_hlo_instruction.h" #include "xla/service/gpu/target_util.h" #include "xla/service/gpu/triton_fusion_analysis.h" #include "xla/service/gpu/triton_tiling_propagation.h" #include "xla/service/hlo_module_config.h" #include "xla/service/instruction_fusion.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/launch_dim.h" #include "xla/translate/hlo_to_mhlo/hlo_function_importer.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/tensor_float_32_utils.h" #include "triton/Conversion/TritonGPUToLLVM/Passes.h" #include "triton/Conversion/TritonToTritonGPU/TritonToTritonGPUPass.h" #include "triton/Dialect/Triton/IR/Dialect.h" #include "triton/Dialect/Triton/IR/Types.h" #include "triton/Dialect/TritonGPU/IR/Dialect.h" #include "triton/Dialect/TritonNvidiaGPU/Transforms/Passes.h" namespace xla { namespace gpu { namespace ma = ::mlir::arith; namespace mm = ::mlir::math; namespace ml = ::mlir::LLVM; namespace mn = ::mlir::NVVM; namespace mt = ::mlir::triton; using ::llvm::SmallVector; using mlir::ArrayRef; using mlir::ImplicitLocOpBuilder; using ::mlir::ShapedType; using ::mlir::Type; using ::mlir::Value; using mlir::ValueRange; namespace { absl::StatusOr<Type> TritonType(mlir::OpBuilder b, PrimitiveType t) { switch (t) { case F64: return b.getF64Type(); case F32: return b.getF32Type(); case F16: return b.getF16Type(); case BF16: return b.getBF16Type(); case S64: return b.getI64Type(); case S32: return b.getI32Type(); case S16: return b.getI16Type(); case PRED: return b.getI1Type(); case S8: return b.getI8Type(); case F8E5M2: return b.getFloat8E5M2Type(); case F8E4M3FN: return b.getFloat8E4M3FNUZType(); default: return absl::UnimplementedError( absl::StrCat("This type is not supported yet: ", primitive_util::LowercasePrimitiveTypeName(t))); } } Type StorageType(mlir::OpBuilder b, Type t) { if (t.isInteger(1)) { return b.getI8Type(); } return t; } template <typename T> T ScalarConstantValue(const HloInstruction& instr, PrimitiveType dst_type) { CHECK(hlo_query::IsScalarConstant(&instr)); absl::StatusOr<Literal> converted = instr.literal().Convert(dst_type); TF_CHECK_OK(converted.status()); return converted.value().GetFirstElement<T>(); } template <typename T> ma::ConstantOp CreateConst(ImplicitLocOpBuilder b, Type type, T value) { if (mlir::isa<mlir::IntegerType>(type)) { return b.create<ma::ConstantOp>(b.getIntegerAttr(type, value)); } if (mlir::isa<mlir::FloatType>(type)) { return b.create<ma::ConstantOp>( b.getFloatAttr(type, static_cast<double>(value))); } LOG(FATAL) << "Constant type not supported: " << llvm_ir::DumpToString(type); } template <typename T> ma::ConstantOp CreateConst(ImplicitLocOpBuilder& b, Type type, T value, ArrayRef<int64_t> shape) { auto tensor_type = mlir::RankedTensorType::get(shape, type); if (auto int_type = mlir::dyn_cast<mlir::IntegerType>(type)) { return b.create<ma::ConstantOp>(mlir::DenseElementsAttr::get( tensor_type, mlir::APInt(int_type.getIntOrFloatBitWidth(), value))); } if (auto float_type = mlir::dyn_cast<mlir::FloatType>(type)) { return b.create<ma::ConstantOp>(mlir::DenseElementsAttr::get( tensor_type, b.getFloatAttr(type, static_cast<double>(value)))); } LOG(FATAL) << "Constant type not supported: " << llvm_ir::DumpToString(type); } Value ZerosLike(ImplicitLocOpBuilder& b, Value x) { if (auto src_shaped_ty = mlir::dyn_cast<ShapedType>(x.getType())) { Type src_ty = src_shaped_ty.getElementType(); return CreateConst(b, src_ty, 0, src_shaped_ty.getShape()); } return CreateConst(b, x.getType(), 0); } Value OnesLike(ImplicitLocOpBuilder& b, Value x) { if (auto src_shaped_ty = mlir::dyn_cast<ShapedType>(x.getType())) { Type src_ty = src_shaped_ty.getElementType(); return CreateConst(b, src_ty, 1, src_shaped_ty.getShape()); } return CreateConst(b, x.getType(), 1); } bool IsFp8Type(Type t) { return t.isFloat8E5M2() || t.isFloat8E4M3FN() || t.isFloat8E5M2FNUZ() || t.isFloat8E4M3FNUZ() || t.isFloat8E4M3B11FNUZ(); } Value Cast(ImplicitLocOpBuilder& b, Value value, Type dst_element_ty) { Type src_ty = value.getType(); Type src_element_ty = src_ty; Type fp32_ty = b.getF32Type(); Type dst_ty = dst_element_ty; if (auto src_shaped_ty = mlir::dyn_cast<ShapedType>(src_ty)) { src_element_ty = src_shaped_ty.getElementType(); dst_ty = src_shaped_ty.clone(src_shaped_ty.getShape(), dst_element_ty); fp32_ty = src_shaped_ty.clone(src_shaped_ty.getShape(), b.getF32Type()); } if (src_ty == dst_ty) { return value; } if (src_element_ty.isBF16()) { return Cast(b, b.create<ma::ExtFOp>(fp32_ty, value), dst_element_ty); } if (dst_element_ty.isBF16()) { if (!src_element_ty.isInteger(8)) { return b.create<ma::TruncFOp>(dst_ty, Cast(b, value, b.getF32Type())); } } auto src_fp_element_ty = mlir::dyn_cast<mlir::FloatType>(src_element_ty); auto dst_fp_element_ty = mlir::dyn_cast<mlir::FloatType>(dst_element_ty); if (src_fp_element_ty && dst_fp_element_ty) { if (IsFp8Type(src_element_ty)) { return b.create<mt::FpToFpOp>(dst_ty, value); } if (IsFp8Type(dst_element_ty)) { return b.create<mt::FpToFpOp>( dst_ty, value, mt::RoundingModeAttr::get(b.getContext(), mt::RoundingMode::RTNE)); } if (src_fp_element_ty.getFPMantissaWidth() > dst_fp_element_ty.getFPMantissaWidth()) { return b.create<ma::TruncFOp>(dst_ty, value); } else { return b.create<ma::ExtFOp>(dst_ty, value); } } if (mlir::isa<mlir::IntegerType>(src_element_ty) && mlir::isa<mlir::IntegerType>(dst_element_ty)) { if (src_element_ty.getIntOrFloatBitWidth() < dst_element_ty.getIntOrFloatBitWidth()) { if (src_element_ty.isInteger(1)) { return b.create<ma::ExtUIOp>(dst_ty, value); } return b.create<ma::ExtSIOp>(dst_ty, value); } return b.create<ma::TruncIOp>(dst_ty, value); } if (mlir::isa<mlir::IntegerType>(src_element_ty) && dst_fp_element_ty) { if (src_element_ty.isInteger(1)) { return b.create<ma::UIToFPOp>(dst_ty, value); } return b.create<ma::SIToFPOp>(dst_ty, value); } if (src_fp_element_ty && mlir::isa<mlir::IntegerType>(dst_element_ty)) { if (dst_element_ty.isInteger(1)) { return b.create<ma::CmpFOp>(ma::CmpFPredicate::UNE, value, ZerosLike(b, value)); } return b.create<ma::FPToSIOp>(dst_ty, value); } LOG(FATAL) << "Type conversion not supported: " << llvm_ir::DumpToString(src_element_ty) << " -> " << llvm_ir::DumpToString(dst_element_ty); } Value Subtract(ImplicitLocOpBuilder& b, ValueRange values) { if (mlir::isa<mlir::IntegerType>(mlir::getElementTypeOrSelf(values[0]))) { return b.create<ma::SubIOp>(values[0], values[1]); } else { return b.create<ma::SubFOp>(values[0], values[1]); } } Value Compare(ImplicitLocOpBuilder& b, ValueRange values, mlir::mhlo::ComparisonDirection direction) { const Type type = mlir::getElementTypeOrSelf(values[0]); if (mlir::isa<mlir::IntegerType>(type)) { return b.create<ma::CmpIOp>( mlir::mhlo::impl::getCmpPredicate<ma::CmpIPredicate>( direction, !type.isInteger(1)) .value(), values[0], values[1]); } return b.create<ma::CmpFOp>( mlir::mhlo::impl::getCmpPredicate<ma::CmpFPredicate>(direction, true) .value(), values[0], values[1]); } Value Maximum(ImplicitLocOpBuilder& b, const se::DeviceDescription& device_info, ValueRange values) { if (mlir::isa<mlir::FloatType>(mlir::getElementTypeOrSelf(values[0]))) { return b.create<ma::MaximumFOp>(values); } Value lhs_is_nan = Compare(b, {values[0], values[0]}, mlir::mhlo::ComparisonDirection::NE); Value rhs_is_not_nan = Compare(b, {values[1], values[1]}, mlir::mhlo::ComparisonDirection::EQ); Value lhs_is_ge = Compare(b, values, mlir::mhlo::ComparisonDirection::GE); return b.create<ma::SelectOp>( b.create<ma::OrIOp>(lhs_is_nan, b.create<ma::AndIOp>(rhs_is_not_nan, lhs_is_ge)), values[0], values[1]); } Value Minimum(ImplicitLocOpBuilder& b, const se::DeviceDescription& device_info, ValueRange values) { if (mlir::isa<mlir::FloatType>(mlir::getElementTypeOrSelf(values[0]))) { return b.create<ma::MinimumFOp>(values); } Value lhs_is_nan = Compare(b, {values[0], values[0]}, mlir::mhlo::ComparisonDirection::NE); Value rhs_is_not_nan = Compare(b, {values[1], values[1]}, mlir::mhlo::ComparisonDirection::EQ); Value lhs_is_le = Compare(b, values, mlir::mhlo::ComparisonDirection::LE); return b.create<ma::SelectOp>( b.create<ma::OrIOp>(lhs_is_nan, b.create<ma::AndIOp>(rhs_is_not_nan, lhs_is_le)), values[0], values[1]); } Value Splat(ImplicitLocOpBuilder& b, Value value, ArrayRef<int64_t> shape) { auto type = mlir::RankedTensorType::get(shape, value.getType()); return b.create<mt::SplatOp>(type, value); } using TensorValue = mlir::TypedValue<mlir::RankedTensorType>; Value Broadcast(ImplicitLocOpBuilder& b, TensorValue value, ArrayRef<int64_t> shape) { return b.create<mt::BroadcastOp>(value.getType().clone(shape), value); } Value Range(ImplicitLocOpBuilder& b, int32_t limit) { auto type = mlir::RankedTensorType::get(limit, b.getI32Type()); return b.create<mt::MakeRangeOp>(type, 0, limit); } Value AddPtr(ImplicitLocOpBuilder& b, Value ptr, Value offset) { return b.create<mt::AddPtrOp>(ptr.getType(), ptr, offset); } absl::StatusOr<Value> EmitElementwise(ImplicitLocOpBuilder& b, absl::string_view libdevice_path, const se::DeviceDescription& device_info, const HloInstruction& hlo, ValueRange inputs) { if (mlir::getElementTypeOrSelf(inputs[0]).isF32() || mlir::getElementTypeOrSelf(inputs[0]).isF64()) { auto dev_fn_id = GetTargetDeviceFunctionID(hlo.opcode()); if (dev_fn_id.ok()) { llvm::Triple triple("nvptx64-unknown-unknown"); if (std::holds_alternative<se::RocmComputeCapability>( device_info.gpu_compute_capability())) { triple.setTriple("amdgcn-unknown-unknown"); } return b.create<mt::ExternElementwiseOp>( inputs[0].getType(), inputs, "libdevice", libdevice_path, ObtainDeviceFunctionName(dev_fn_id.value(), hlo.shape().element_type(), triple), true); } } const bool is_integer = mlir::isa<mlir::IntegerType>(mlir::getElementTypeOrSelf(inputs[0])); switch (hlo.opcode()) { case HloOpcode::kCopy: return inputs[0]; case HloOpcode::kAbs: if (is_integer) { return b.create<mm::AbsIOp>(inputs[0]); } return b.create<mm::AbsFOp>(inputs[0]); case HloOpcode::kCeil: return b.create<mm::CeilOp>(inputs[0]); case HloOpcode::kFloor: return b.create<mm::FloorOp>(inputs[0]); case HloOpcode::kNot: return b.create<ma::XOrIOp>(inputs[0], OnesLike(b, inputs[0])); case HloOpcode::kNegate: return Subtract(b, {ZerosLike(b, inputs[0]), inputs[0]}); case HloOpcode::kConvert: { TF_ASSIGN_OR_RETURN(Type dst_ty, TritonType(b, hlo.shape().element_type())); return Cast(b, inputs[0], dst_ty); } case HloOpcode::kAdd: if (is_integer) { return b.create<ma::AddIOp>(inputs[0], inputs[1]); } return b.create<ma::AddFOp>(inputs[0], inputs[1]); case HloOpcode::kSubtract: return Subtract(b, inputs); case HloOpcode::kMultiply: if (is_integer) { return b.create<ma::MulIOp>(inputs[0], inputs[1]); } return b.create<ma::MulFOp>(inputs[0], inputs[1]); case HloOpcode::kMaximum: return Maximum(b, device_info, inputs); case HloOpcode::kMinimum: return Minimum(b, device_info, inputs); case HloOpcode::kClamp: return Maximum( b, device_info, {Minimum(b, device_info, {inputs[1], inputs[2]}), inputs[0]}); case HloOpcode::kAnd: return b.create<ma::AndIOp>(inputs[0], inputs[1]); case HloOpcode::kOr: return b.create<ma::OrIOp>(inputs[0], inputs[1]); case HloOpcode::kXor: return b.create<ma::XOrIOp>(inputs[0], inputs[1]); case HloOpcode::kDivide: if (is_integer) { return b.create<ma::DivSIOp>(inputs[0], inputs[1]); } return b.create<ma::DivFOp>(inputs[0], inputs[1]); case HloOpcode::kCompare: return Compare( b, inputs, mlir::mhlo::symbolizeComparisonDirection( ComparisonDirectionToString(hlo.comparison_direction())) .value()); case HloOpcode::kSelect: return b.create<ma::SelectOp>( Compare(b, {inputs[0], ZerosLike(b, inputs[0])}, mlir::mhlo::ComparisonDirection::NE), inputs[1], inputs[2]); default: return absl::InvalidArgumentError( absl::StrCat("Unsupported elementwise operation ", hlo.ToString())); } } Value EmitParameterLoad(ImplicitLocOpBuilder& b, Value pointer, ArrayRef<int32_t> boundary_checks) { if (auto make_tensor_ptr = pointer.getDefiningOp<mt::MakeTensorPtrOp>()) { if (make_tensor_ptr.getOffsets().empty()) { return Splat(b, b.create<mt::LoadOp>(make_tensor_ptr.getBase(), mt::CacheModifier::NONE, mt::EvictionPolicy::NORMAL, false), {}); } } if (mt::isTensorPointerType(pointer.getType())) { std::optional<mt::PaddingOption> padding; if (!boundary_checks.empty()) { padding = mt::PaddingOption::PAD_ZERO; } return b.create<mt::LoadOp>(pointer, boundary_checks, padding, mt::CacheModifier::NONE, mt::EvictionPolicy::NORMAL, false); } return Splat(b, b.create<mt::LoadOp>(pointer, mt::CacheModifier::NONE, mt::EvictionPolicy::NORMAL, false), {}); } absl::StatusOr<Value> EmitConstant(ImplicitLocOpBuilder& b, const HloInstruction& constant) { TF_ASSIGN_OR_RETURN(Type ty, TritonType(b, constant.shape().element_type())); if (constant.shape().IsInteger()) { if (constant.shape().element_type() == U64) { return CreateConst(b, ty, ScalarConstantValue<uint64_t>(constant, U64)); } else { return CreateConst(b, ty, ScalarConstantValue<int64_t>(constant, S64)); } } return CreateConst(b, ty, ScalarConstantValue<double>(constant, F64)); } struct DimProperties { DimProperties(int64_t index, Value pid, int block_size, int split_value) : index(index), pid(pid), block_size(block_size), split_value(split_value) {} int64_t index; Value pid; int block_size; int split_value; }; absl::StatusOr<Value> EmitBroadcast( ImplicitLocOpBuilder& b, const TritonFusionAnalysis* analysis, TritonFusionAnalysis::Scope scope, absl::Span<const DimProperties> tiled_dimensions, const HloInstruction& broadcast, Value input) { TF_RET_CHECK(analysis != nullptr); std::vector<int64_t> out_shape; for (const DimProperties& dim : tiled_dimensions) { const TensorIterationSpec::DimIterationSpec* spec = analysis->IterSpec(scope, &broadcast, dim.index); if (spec != nullptr && spec->at(0).stride > 0) { out_shape.push_back(dim.block_size); } } auto tensor_input = mlir::dyn_cast<TensorValue>(input); if (!tensor_input) { return Splat(b, input, out_shape); } if (tensor_input.getType().getRank() == out_shape.size()) { return input; } Value expanded_input = tensor_input; int dim_idx = 0; for (const DimProperties& dim : tiled_dimensions) { if (analysis->IterSpec(scope, &broadcast, dim.index) != nullptr && analysis->IterSpec(scope, &broadcast, dim.index)->at(0).stride > 0) { if (analysis->IterSpec(scope, broadcast.operand(0), dim.index) == nullptr) { expanded_input = b.create<mt::ExpandDimsOp>(expanded_input, dim_idx); } ++dim_idx; } } return Broadcast(b, mlir::cast<TensorValue>(expanded_input), out_shape); } absl::StatusOr<Value> EmitScope( ImplicitLocOpBuilder& b, absl::string_view libdevice_path, const se::DeviceDescription& device_info, const TritonFusionAnalysis* analysis, TritonFusionAnalysis::Scope scope,
#include "xla/service/gpu/ir_emitter_triton.h" #include <cstdlib> #include <iterator> #include <limits> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/types/span.h" #include "llvm/IR/LLVMContext.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Pass/PassManager.h" #include "xla/autotuning.pb.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/service/gpu/triton_test_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/verified_hlo_module.h" #include "xla/xla.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class TritonTest : public GpuCodegenTest { public: stream_executor::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } const stream_executor::GpuComputeCapability& GpuComputeComp() { return device_desc().gpu_compute_capability(); } stream_executor::GpuComputeCapability CudaAmpereOrRocm() { if (std::holds_alternative<stream_executor::RocmComputeCapability>( GpuComputeComp())) { return stream_executor::GpuComputeCapability{ device_desc().rocm_compute_capability()}; } else { return stream_executor::GpuComputeCapability{ stream_executor::CudaComputeCapability{ stream_executor::CudaComputeCapability::AMPERE, 0}}; } } protected: const stream_executor::DeviceDescription& device_desc() { return backend().default_stream_executor()->GetDeviceDescription(); } }; class TritonGemmTest : public TritonTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = TritonTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_cublas_fallback(false); debug_options.set_xla_gpu_enable_split_k_autotuning(false); debug_options.set_xla_gpu_gemm_rewrite_size_threshold(0); return debug_options; } void MatchHloModule(HloModule& module, absl::string_view pattern) { TF_ASSERT_OK_AND_ASSIGN(bool filecheck_result, RunFileCheck(module.ToString(), pattern)); EXPECT_TRUE(filecheck_result); } }; class TritonGemmTestWithSplitK : public TritonGemmTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = TritonGemmTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_split_k_autotuning(true); return debug_options; } }; class TritonGemmTestWithoutTritonGemmAny : public TritonGemmTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = TritonGemmTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_gemm_any(false); return debug_options; } }; TEST_F(TritonTest, TestGemm) { const std::string kHloText = R"( HloModule t, is_scheduled=true triton_gemm_r { parameter_0 = s8[80,115]{1,0} parameter(0) convert.3 = f32[80,115]{1,0} convert(parameter_0) parameter_1 = f32[137,115]{1,0} parameter(1) ROOT r.1 = f32[80,137]{1,0} dot(convert.3, parameter_1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p1 = f32[137,115]{1,0} parameter(1) p0 = s8[80,115]{1,0} parameter(0) ROOT triton_gemm_r = f32[80,137]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_gemm_r, backend_config={"fusion_backend_config": {kind: "__triton_gemm", triton_gemm_config: {"block_m":16,"block_n":64,"block_k":32, "split_k":1,"num_stages":1,"num_warps":2, "num_ctas":1}}} })"; TF_EXPECT_OK( CreateTritonIrAndFileCheckForDot(this, kHloText, "triton_gemm_r", R"( CHECK: tt.func @triton_fn(%[[LHS:.*]]: !tt.ptr<i8> {tt.divisibility = 16 : i32}, %[[RHS:.*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[OUT:.*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK-DAG: %[[ZERO_KN:.*]] = arith.constant dense<0.000000e+00> : tensor<32x64xf32> CHECK-DAG: %[[ZERO_MK:.*]] = arith.constant dense<0.000000e+00> : tensor<16x32xf32> CHECK-DAG: %[[ZERO_MN:.*]] = arith.constant dense<0.000000e+00> : tensor<16x64xf32> CHECK-DAG: %[[SIZE_K:.*]] = arith.constant 115 : i32 CHECK-DAG: %[[SIZE_M:.*]] = arith.constant 137 : i64 CHECK-DAG: %[[C1:.*]] = arith.constant 1 : i64 CHECK-DAG: %[[C0:.*]] = arith.constant 0 : i32 CHECK-DAG: %[[C80:.*]] = arith.constant 80 : i64 CHECK-DAG: %[[TILE_SIZE_K:.*]] = arith.constant 32 : i32 CHECK-DAG: %[[TILE_SIZE_N:.*]] = arith.constant 64 : i32 CHECK-DAG: %[[TILE_SIZE_M:.*]] = arith.constant 16 : i32 CHECK-DAG: %[[NUM_TILES_M:.*]] = arith.constant 5 : i32 CHECK-DAG: %[[GROUP_M:.*]] = arith.constant 8 : i32 CHECK-DAG: %[[WIDTH:.*]] = arith.constant 24 : i32 CHECK: %[[PID_NC:.*]] = tt.get_program_id x CHECK: %[[GROUP_ID:.*]] = arith.divsi %[[PID_NC]], %[[WIDTH]] CHECK: %[[FIRST_PID_M:.*]] = arith.muli %[[GROUP_ID]], %[[GROUP_M]] CHECK: %[[MAX_M:.*]] = arith.subi %[[NUM_TILES_M]], %[[FIRST_PID_M]] CHECK: %[[CMP:.*]] = arith.cmpi slt, %[[MAX_M]], %[[GROUP_M]] CHECK: %[[GROUP_SIZE:.*]] = arith.select %[[CMP]], %[[MAX_M]], %[[GROUP_M]] CHECK: %[[PID_M:.*]] = arith.remsi %[[PID_NC]], %[[GROUP_SIZE]] CHECK: %[[TILE_INDEX_M:.*]] = arith.addi %[[FIRST_PID_M]], %[[PID_M]] : i32 CHECK: %[[TMP:.*]] = arith.remsi %[[PID_NC]], %[[WIDTH]] : i32 CHECK: %[[TILE_INDEX_N:.*]] = arith.divsi %[[TMP]], %[[GROUP_SIZE]] : i32 CHECK: %[[TILE_OFFSET_M_LHS:.*]] = arith.muli %[[TILE_INDEX_M]], %[[TILE_SIZE_M]] CHECK: %[[LHS_PTR:.*]] = tt.make_tensor_ptr %[[LHS]] CHECK: %[[LHS_TILE_PTR:.*]] = tt.advance %[[LHS_PTR]], [%[[TILE_OFFSET_M_LHS]], %[[C0]]] CHECK: %[[TILE_OFFSET_N_RHS:.*]] = arith.muli %[[TILE_INDEX_N]], %[[TILE_SIZE_N]] CHECK: %[[RHS_PTR:.*]] = tt.make_tensor_ptr %[[RHS]] CHECK: %[[RHS_TILE_PTR:.*]] = tt.advance %[[RHS_PTR]], [%[[C0]], %[[TILE_OFFSET_N_RHS]]] CHECK: %[[FOR:.*]]:3 = scf.for %[[BLOCK_K:.*]] = %[[C0]] to %[[SIZE_K]] step %[[TILE_SIZE_K]] CHECK-SAME: iter_args(%[[LHS_ITER_PTR:.*]] = %[[LHS_TILE_PTR]], %[[RHS_ITER_PTR:.*]] = %[[RHS_TILE_PTR]], %[[ACC:.*]] = %[[ZERO_MN]]) CHECK: %[[LHS_TILE:.*]] = tt.load %[[LHS_ITER_PTR]] {boundaryCheck = array<i32: 1> CHECK: %[[LHS_ITER_PTR_NEXT:.*]] = tt.advance %[[LHS_ITER_PTR]], [%[[C0]], %[[TILE_SIZE_K]]] CHECK: %[[RHS_TILE:.*]] = tt.load %[[RHS_ITER_PTR]] {boundaryCheck = array<i32: 0, 1> CHECK: %[[RHS_ITER_PTR_NEXT:.*]] = tt.advance %[[RHS_ITER_PTR]], [%[[TILE_SIZE_K]], %[[C0]]] CHECK: %[[CONVERTED:.*]] = arith.sitofp %[[LHS_TILE]] : tensor<16x32xi8> to tensor<16x32xf32> CHECK: %[[TILE_K_LIMIT:.*]] = arith.subi %[[SIZE_K]], %[[BLOCK_K]] : i32 CHECK: %[[K_TILE_IOTA:.*]] = tt.make_range {end = 32 : i32, start = 0 : i32} : tensor<32xi32> CHECK: %[[K_OFFSETS_1K:.*]] = tt.expand_dims %[[K_TILE_IOTA]] {axis = 0 : i32} : tensor<32xi32> -> tensor<1x32xi32> CHECK: %[[TILE_K_LIMIT_1K:.*]] = tt.splat %[[TILE_K_LIMIT]] : i32 -> tensor<1x32xi32> CHECK: %[[LHS_INBOUNDS_1K:.*]] = arith.cmpi slt, %[[K_OFFSETS_1K]], %[[TILE_K_LIMIT_1K]] : tensor<1x32xi32> CHECK: %[[LHS_INBOUNDS_MK:.*]] = tt.broadcast %[[LHS_INBOUNDS_1K]] : tensor<1x32xi1> -> tensor<16x32xi1> CHECK: %[[LHS_MASKED:.*]] = arith.select %[[LHS_INBOUNDS_MK]], %[[CONVERTED]], %[[ZERO_MK]] CHECK: %[[K_OFFSETS_K1:.*]] = tt.expand_dims %[[K_TILE_IOTA]] {axis = 1 : i32} : tensor<32xi32> -> tensor<32x1xi32> CHECK: %[[TILE_K_LIMIT_K1:.*]] = tt.splat %[[TILE_K_LIMIT]] : i32 -> tensor<32x1xi32> CHECK: %[[RHS_INBOUNDS_K1:.*]] = arith.cmpi slt, %[[K_OFFSETS_K1]], %[[TILE_K_LIMIT_K1]] : tensor<32x1xi32> CHECK: %[[RHS_INBOUNDS_KN:.*]] = tt.broadcast %[[RHS_INBOUNDS_K1]] : tensor<32x1xi1> -> tensor<32x64xi1> CHECK: %[[RHS_MASKED:.*]] = arith.select %[[RHS_INBOUNDS_KN]], %[[RHS_TILE]], %[[ZERO_KN]] : tensor<32x64xi1>, tensor<32x64xf32> CHECK: %[[ACC_NEXT:.*]] = tt.dot %[[LHS_MASKED]], %[[RHS_MASKED]], %[[ACC]] CHECK: scf.yield %[[LHS_ITER_PTR_NEXT]], %[[RHS_ITER_PTR_NEXT]], %[[ACC_NEXT]] : !tt.ptr<tensor<16x32xi8>>, !tt.ptr<tensor<32x64xf32>>, tensor<16x64xf32> CHECK: } CHECK: %[[OUT_PTR:.*]] = tt.make_tensor_ptr %[[OUT]], [%[[C80]], %[[SIZE_M]]], [%[[SIZE_M]], %[[C1]]], [%[[C0]], %[[C0]]] {order = array<i32: 1, 0>} : <tensor<16x64xf32>> CHECK: %[[OUT_OFFSET:.*]] = tt.advance %[[OUT_PTR]], [%[[TILE_OFFSET_M_LHS]], %[[TILE_OFFSET_N_RHS]]] : <tensor<16x64xf32>> CHECK: tt.store %[[OUT_OFFSET]], %[[FOR]]#2 {boundaryCheck = array<i32: 1>} : !tt.ptr<tensor<16x64xf32>> CHECK: tt.return CHECK: } )")); } TEST_F(TritonTest, TestGemmWithTrivialNonContractingDimension) { const std::string kHloText = R"( HloModule t, is_scheduled=true triton_dot { param_0.1 = f32[137,115]{1,0} parameter(0) param_1.1 = f32[1,115]{1,0} parameter(1) ROOT dot = f32[137,1]{1,0} dot(param_0.1, param_1.1), lhs_contracting_dims={1}, rhs_contracting_dims={1} } ENTRY e { p0 = f32[137,115]{1,0} parameter(0) p1 = f32[1,115]{1,0} parameter(1) ROOT custom-call = f32[137,1]{1,0} fusion(p0, p1), kind=kCustom, calls=triton_dot, backend_config={"fusion_backend_config": {kind: "__triton_gemm", triton_gemm_config: {"block_m":16,"block_n":16,"block_k":32, "split_k":1,"num_stages":1,"num_warps":2, "num_ctas":1}}} })"; TF_EXPECT_OK( CreateTritonIrAndFileCheckForDot(this, kHloText, "triton_dot", R"( CHECK: tt.func @triton_fn(%[[LHS:.*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[RHS:.*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[OUT:.*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK-DAG: %[[ZERO_KN:.*]] = arith.constant dense<0.000000e+00> : tensor<32x16xf32> CHECK-DAG: %[[ZERO_MK:.*]] = arith.constant dense<0.000000e+00> : tensor<16x32xf32> CHECK-DAG: %[[ZERO_MN:.*]] = arith.constant dense<0.000000e+00> : tensor<16x16xf32> CHECK-DAG: %[[SIZE_K:.*]] = arith.constant 115 : i32 CHECK-DAG: %[[SIZE_M:.*]] = arith.constant 137 : i64 CHECK-DAG: %[[C1:.*]] = arith.constant 1 : i64 CHECK-DAG: %[[C0:.*]] = arith.constant 0 : i32 CHECK-DAG: %[[C115:.*]] = arith.constant 115 : i64 CHECK-DAG: %[[TILE_SIZE_K:.*]] = arith.constant 32 : i32 CHECK-DAG: %[[TILE_SIZE_M:.*]] = arith.constant 16 : i32 CHECK-DAG: %[[C8:.*]] = arith.constant 8 : i32 CHECK-DAG: %[[NUM_TILES_M:.*]] = arith.constant 9 : i32 CHECK: %[[PID_NC:.*]] = tt.get_program_id x : i32 CHECK: %[[GROUP_ID:.*]] = arith.divsi %[[PID_NC]], %[[C8]] CHECK: %[[FIRST_PID_M:.*]] = arith.muli %[[GROUP_ID]], %[[C8]] CHECK: %[[MAX_M:.*]] = arith.subi %[[NUM_TILES_M]], %[[FIRST_PID_M]] CHECK: %[[CMP:.*]] = arith.cmpi slt, %[[MAX_M]], %[[C8]] CHECK: %[[GROUP_SIZE:.*]] = arith.select %[[CMP]], %[[MAX_M]], %[[C8]] CHECK: %[[PID_M:.*]] = arith.remsi %[[PID_NC]], %[[GROUP_SIZE]] CHECK: %[[TILE_INDEX_M:.*]] = arith.addi %[[FIRST_PID_M]], %[[PID_M]] CHECK: %[[TMP:.*]] = arith.remsi %[[PID_NC]], %[[C8]] CHECK: %[[TILE_INDEX_N:.*]] = arith.divsi %[[TMP]], %[[GROUP_SIZE]] CHECK: %[[TILE_OFFSET_M_LHS:.*]] = arith.muli %[[TILE_INDEX_M]], %[[TILE_SIZE_M]] CHECK: %[[LHS_PTR:.*]] = tt.make_tensor_ptr %[[LHS]] CHECK: %[[LHS_TILE_PTR:.*]] = tt.advance %[[LHS_PTR]], [%[[TILE_OFFSET_M_LHS]], %[[C0]]] CHECK: %[[TILE_OFFSET_N_RHS:.*]] = arith.muli %[[TILE_INDEX_N]], %[[TILE_SIZE_M]] CHECK: %[[RHS_PTR:.*]] = tt.make_tensor_ptr %[[RHS]] CHECK: %[[RHS_TILE_PTR:.*]] = tt.advance %[[RHS_PTR]], [%[[C0]], %[[TILE_OFFSET_N_RHS]]] CHECK: %[[FOR:.*]]:3 = scf.for %[[BLOCK_K:.*]] = %[[C0]] to %[[SIZE_K]] step %[[TILE_SIZE_K]] CHECK-SAME: iter_args(%[[LHS_ITER_PTR:.*]] = %[[LHS_TILE_PTR]], %[[RHS_ITER_PTR:.*]] = %[[RHS_TILE_PTR]], %[[ACC:.*]] = %[[ZERO_MN]]) CHECK: %[[LHS_TILE:.*]] = tt.load %[[LHS_ITER_PTR]] {boundaryCheck = array<i32: 0, 1> CHECK: %[[LHS_ITER_PTR_NEXT:.*]] = tt.advance %[[LHS_ITER_PTR]], [%[[C0]], %[[TILE_SIZE_K]]] CHECK: %[[RHS_TILE:.*]] = tt.load %[[RHS_ITER_PTR]] {boundaryCheck = array<i32: 0, 1> CHECK: %[[RHS_ITER_PTR_NEXT:.*]] = tt.advance %[[RHS_ITER_PTR]], [%[[TILE_SIZE_K]], %[[C0]]] CHECK: %[[TILE_K_LIMIT:.*]] = arith.subi %[[SIZE_K]], %[[BLOCK_K]] : i32 CHECK: %[[K_TILE_IOTA:.*]] = tt.make_range {end = 32 : i32, start = 0 : i32} : tensor<32xi32> CHECK: %[[K_OFFSETS_1K:.*]] = tt.expand_dims %[[K_TILE_IOTA]] {axis = 0 : i32} : tensor<32xi32> -> tensor<1x32xi32> CHECK: %[[TILE_K_LIMIT_1K:.*]] = tt.splat %[[TILE_K_LIMIT]] : i32 -> tensor<1x32xi32> CHECK: %[[LHS_INBOUNDS_1K:.*]] = arith.cmpi slt, %[[K_OFFSETS_1K]], %[[TILE_K_LIMIT_1K]] : tensor<1x32xi32> CHECK: %[[LHS_INBOUNDS_MK:.*]] = tt.broadcast %[[LHS_INBOUNDS_1K]] : tensor<1x32xi1> -> tensor<16x32xi1> CHECK: %[[LHS_MASKED:.*]] = arith.select %[[LHS_INBOUNDS_MK]], %[[LHS_TILE]], %[[ZERO_MK]] CHECK: %[[K_OFFSETS_K1:.*]] = tt.expand_dims %[[K_TILE_IOTA]] {axis = 1 : i32} : tensor<32xi32> -> tensor<32x1xi32> CHECK: %[[TILE_K_LIMIT_K1:.*]] = tt.splat %[[TILE_K_LIMIT]] : i32 -> tensor<32x1xi32> CHECK: %[[RHS_INBOUNDS_K1:.*]] = arith.cmpi slt, %[[K_OFFSETS_K1]], %[[TILE_K_LIMIT_K1]] : tensor<32x1xi32> CHECK: %[[RHS_INBOUNDS_KN:.*]] = tt.broadcast %[[RHS_INBOUNDS_K1]] : tensor<32x1xi1> -> tensor<32x16xi1> CHECK: %[[RHS_MASKED:.*]] = arith.select %[[RHS_INBOUNDS_KN]], %[[RHS_TILE]], %[[ZERO_KN]] : tensor<32x16xi1>, tensor<32x16xf32> CHECK: %[[ACC_NEXT:.*]] = tt.dot %[[LHS_MASKED]], %[[RHS_MASKED]], %[[ACC]] CHECK: scf.yield %[[LHS_ITER_PTR_NEXT]], %[[RHS_ITER_PTR_NEXT]], %[[ACC_NEXT]] : !tt.ptr<tensor<16x32xf32>>, !tt.ptr<tensor<32x16xf32>>, tensor<16x16xf32> CHECK: } CHECK: %[[OUT_PTR:.*]] = tt.make_tensor_ptr %[[OUT]], [%[[SIZE_M]], %[[C1]]], [%[[C1]], %[[C1]]], [%[[C0]], %[[C0]]] {order = array<i32: 1, 0>} : <tensor<16x16xf32>> CHECK: %[[OUT_OFFSET:.*]] = tt.advance %[[OUT_PTR]], [%[[TILE_OFFSET_M_LHS]], %[[TILE_OFFSET_N_RHS]]] : <tensor<16x16xf32>> CHECK: tt.store %[[OUT_OFFSET]], %[[FOR]]#2 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<16x16xf32>> CHECK: tt.return CHECK: } )")); } TEST_F(TritonTest, TestSoftmaxEmitterWithSingleParameter) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { parameter_0 = f32[125,127]{1,0} parameter(0) multiply_0 = f32[125,127]{1,0} multiply(parameter_0, parameter_0) constant_0 = f32[] constant(0) reduce_0 = f32[125]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[125,127]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[125,127]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[125,127]{1,0} parameter(0) ROOT triton_softmax = f32[125,127]{1,0} fusion(param_0), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} })"; TF_EXPECT_OK(CreateTritonIrAndFileCheck(this, kHloText, FromOutputTileSizes({1, 127}), "triton_softmax_computation", R"( CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0 * 127)> CHECK: tt.func @triton_fn(%[[P0:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P1:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK: %[[PID:.*]] = tt.get_program_id x : i32 CHECK: arith.index_castui %[[PID]] : i32 to index CHECK: tt.addptr %[[P0]] CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: tt.reduce CHECK-NEXT: ^bb0(%[[ARG2:[^:]*]]: f32, %[[ARG3:[^:]*]]: f32): CHECK-NEXT: %[[ADD:.*]] = arith.addf %[[ARG2]], %[[ARG3]] : f32 CHECK-NEXT: tt.reduce.return %[[ADD]] : f32 CHECK-NEXT: }) : (tensor<128xf32>) -> f32 CHECK: tt.splat CHECK: arith.mulf CHECK-SAME: tensor<128xf32> CHECK: tt.addptr %[[P1]] CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.store CHECK-SAME: {boundaryCheck = array<i32: 0>} : !tt.ptr<tensor<128xf32>> CHECK: tt.return CHECK: } )")); } TEST_F(TritonTest, TestSoftmaxEmitterWithSingleScalarParameter) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { parameter_0 = f32[] parameter(0) broadcast_1 = f32[125,127]{1,0} broadcast(parameter_0), dimensions={} multiply_0 = f32[125,127]{1,0} multiply(broadcast_1, broadcast_1) constant_0 = f32[] constant(0) reduce_0 = f32[125]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[125,127]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[125,127]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[] constant(42) ROOT triton_softmax = f32[125,127]{1,0} fusion(param_0), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} })"; TF_EXPECT_OK(CreateTritonIrAndFileCheck(this, kHloText, FromOutputTileSizes({1, 127}), "triton_softmax_computation", R"( CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0 * 127)> CHECK: tt.func @triton_fn(%[[P0:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P1:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK-DAG: %[[PID:.*]] = tt.get_program_id x : i32 CHECK-DAG: arith.index_castui %[[PID]] : i32 to index CHECK-DAG: %[[ZERO_OFFSET:.*]] = arith.constant 0 : i64 CHECK-DAG: %[[ARG_0:.*]] = tt.addptr %[[P0]], %[[ZERO_OFFSET]] : !tt.ptr<f32>, i64 CHECK: tt.load %[[ARG_0]] : !tt.ptr<f32> CHECK-NEXT: tt.splat CHECK: tt.reduce CHECK-NEXT: ^bb0(%[[ARG2:[^:]*]]: f32, %[[ARG3:[^:]*]]: f32): CHECK-NEXT: %[[ADD:.*]] = arith.addf %[[ARG2]], %[[ARG3]] : f32 CHECK-NEXT: tt.reduce.return %[[ADD]] : f32 CHECK-NEXT: }) : (tensor<128xf32>) -> f32 CHECK: tt.splat CHECK: arith.mulf CHECK-SAME: tensor<128xf32> CHECK: tt.addptr %[[P1]] CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.store CHECK-SAME: {boundaryCheck = array<i32: 0>} : !tt.ptr<tensor<128xf32>> CHECK: tt.return CHECK: } )")); } TEST_F(TritonTest, TestSoftmaxEmitterWithMultipleParameters) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[125,127]{1,0} parameter(0) param_1 = f32[127]{0} parameter(1) broadcast_0 = f32[125,127]{1,0} broadcast(param_1), dimensions={1} multiply_0 = f32[125,127]{1,0} multiply(param_0, broadcast_0) constant_0 = f32[] constant(0) reduce_0 = f32[125]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[125,127]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[125,127]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[125,127]{1,0} parameter(0) param_1 = f32[127]{0} parameter(1) ROOT triton_softmax = f32[125,127]{1,0} fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )"; TF_EXPECT_OK(CreateTritonIrAndFileCheck(this, kHloText, FromOutputTileSizes({1, 127}), "triton_softmax_computation", R"( CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0 * 127)> CHECK: tt.func @triton_fn(%[[P0:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P1:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P2:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK-DAG: %[[PID:.*]] = tt.get_program_id x : i32 CHECK-DAG: %[[PID_INDEX:.*]] = arith.index_castui %[[PID]] : i32 to index CHECK-DAG: %[[C127_i64:.*]] = arith.constant 127 : i64 CHECK-DAG: %[[ZERO_OFFSET:.*]] = arith.constant 0 : i64 CHECK: %[[ROW_OFFSET_INDEX:.*]] = xla_gpu.apply_indexing #[[MAP]](%[[PID_INDEX]] CHECK: %[[ROW_OFFSET:.*]] = arith.index_castui %[[ROW_OFFSET_INDEX]] : index to i64 CHECK: %[[ARG0:.*]] = tt.addptr %[[P0]], %[[ROW_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: %[[ARG1:.*]] = tt.addptr %[[P1]], %[[ZERO_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: tt.reduce CHECK-NEXT: ^bb0(%[[ARG3:[^:]*]]: f32, %[[ARG4:[^:]*]]: f32): CHECK-NEXT: %[[ADD:.*]] = arith.addf %[[ARG3]], %[[ARG4]] : f32 CHECK-NEXT: tt.reduce.return %[[ADD]] : f32 CHECK-NEXT: }) : (tensor<128xf32>) -> f32 CHECK: tt.addptr %[[P2]] CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.store CHECK-SAME: {boundaryCheck = array<i32: 0>} : !tt.ptr<tensor<128xf32>> CHECK: tt.return CHECK: } )")); } TEST_F(TritonTest, TestSoftmaxEmitterWithMultipleParametersOrderSwapped) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[125,127]{1,0} parameter(1) param_1 = f32[127]{0} parameter(0) broadcast_0 = f32[125,127]{1,0} broadcast(param_1), dimensions={1} multiply_0 = f32[125,127]{1,0} multiply(param_0, broadcast_0) constant_0 = f32[] constant(0) reduce_0 = f32[125]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[125,127]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[125,127]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[125,127]{1,0} parameter(1) param_1 = f32[127]{0} parameter(0) ROOT triton_softmax = f32[125,127]{1,0} fusion(param_1, param_0), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )"; TF_EXPECT_OK(CreateTritonIrAndFileCheck(this, kHloText, FromOutputTileSizes({1, 127}), "triton_softmax_computation", R"( CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0 * 127)> CHECK: tt.func @triton_fn(%[[P0:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P1:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P2:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK-DAG: %[[PID:.*]] = tt.get_program_id x : i32 CHECK-DAG: %[[PID_INDEX:.*]] = arith.index_castui %[[PID]] : i32 to index CHECK-DAG: %[[C127_i64:.*]] = arith.constant 127 : i64 CHECK-DAG: %[[ZERO_OFFSET:.*]] = arith.constant 0 : i64 CHECK: %[[ROW_OFFSET_INDEX:.*]] = xla_gpu.apply_indexing #[[MAP]](%[[PID_INDEX]] CHECK: %[[ROW_OFFSET:.*]] = arith.index_castui %[[ROW_OFFSET_INDEX]] : index to i64 CHECK: %[[ARG1:.*]] = tt.addptr %[[P1]], %[[ROW_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: %[[ARG0:.*]] = tt.addptr %[[P0]], %[[ZERO_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: tt.reduce CHECK-NEXT: ^bb0(%[[ARG3:[^:]*]]: f32, %[[ARG4:[^:]*]]: f32): CHECK-NEXT: %[[ADD:.*]] = arith.addf %[[ARG3]], %[[ARG4]] : f32 CHECK-NEXT: tt.reduce.return %[[ADD]] : f32 CHECK-NEXT: }) : (tensor<128xf32>) -> f32 CHECK: tt.splat CHECK: tt.addptr %[[P2]] CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.store CHECK-SAME: {boundaryCheck = array<i32: 0>} : !tt.ptr<tensor<128xf32>> CHECK: tt.return CHECK: } )")); } TEST_F(TritonTest, TestSoftmaxEmitterWithAdditionalParameterEnteringAfterDiamond) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[125,127]{1,0} parameter(0) constant_0 = f32[] constant(0) reduce_0 = f32[125]{0} reduce(param_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[125,127]{1,0} broadcast(reduce_0), dimensions={0} param_1 = f32[127]{0} parameter(1) broadcast_0 = f32[125,127]{1,0} broadcast(param_1), dimensions={1} ROOT multiply_0 = f32[125,127]{1,0} multiply(broadcast_4, broadcast_0) } ENTRY main { param_0 = f32[125,127]{1,0} parameter(0) param_1 = f32[127]{0} parameter(1) ROOT triton_softmax = f32[125,127]{1,0} fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )"; TF_EXPECT_OK(CreateTritonIrAndFileCheck(this, kHloText, FromOutputTileSizes({1, 127}), "triton_softmax_computation", R"( CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0 * 127)> CHECK: tt.func @triton_fn(%[[P0:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P1:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P2:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK-DAG: %[[PID:.*]] = tt.get_program_id x : i32 CHECK-DAG: %[[PID_INDEX:.*]] = arith.index_castui %[[PID]] : i32 to index CHECK-DAG: %[[C127_i64:.*]] = arith.constant 127 : i64 CHECK-DAG: %[[ZERO_OFFSET:.*]] = arith.constant 0 : i64 CHECK: %[[ROW_OFFSET_INDEX:.*]] = xla_gpu.apply_indexing #[[MAP]](%[[PID_INDEX]] CHECK: %[[ROW_OFFSET:.*]] = arith.index_castui %[[ROW_OFFSET_INDEX]] : index to i64 CHECK: %[[ARG0:.*]] = tt.addptr %[[P0]], %[[ROW_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: tt.reduce CHECK-NEXT: ^bb0(%[[ARG3:[^:]*]]: f32, %[[ARG4:[^:]*]]: f32): CHECK-NEXT: %[[ADD:.*]] = arith.addf %[[ARG3]], %[[ARG4]] : f32 CHECK-NEXT: tt.reduce.return %[[ADD]] : f32 CHECK-NEXT: }) : (tensor<128xf32>) -> f32 CHECK: %[[ARG1:.*]] = tt.addptr %[[P1]], %[[ZERO_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: tt.addptr %[[P2]] CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.store CHECK-SAME: {boundaryCheck = array<i32: 0>} : !tt.ptr<tensor<128xf32>> CHECK: tt.return CHECK: } )")); } TEST_F(TritonTest, TestSoftmaxEmitterWithMultipleParametersAlongTiledDimension) { const std::string kHloText = R"( HloModule t add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[125,127]{1,0} parameter(0) param_1 = f32[127]{0} parameter(1) param_2 = f32[125]{0} parameter(2) broadcast_0 = f32[125,127]{1,0} broadcast(param_1), dimensions={1} multiply_0 = f32[125,127]{1,0} multiply(param_0, broadcast_0) broadcast_1 = f32[125,127]{1,0} broadcast(param_2), dimensions={0} multiply_1 = f32[125,127]{1,0} multiply(multiply_0, broadcast_1) constant_0 = f32[] constant(0) reduce_0 = f32[125]{0} reduce(multiply_1, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[125,127]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[125,127]{1,0} multiply(multiply_1, broadcast_4) } ENTRY main { param_0 = f32[125,127]{1,0} parameter(1) param_1 = f32[127]{0} parameter(0) param_2 = f32[125]{0} parameter(2) ROOT triton_softmax = f32[125,127]{1,0} fusion(param_0, param_1, param_2), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )"; TF_EXPECT_OK(CreateTritonIrAndFileCheck(this, kHloText, FromOutputTileSizes({1, 127}), "triton_softmax_computation", R"( CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0 * 127)> CHECK: tt.func @triton_fn(%[[P0:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P1:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P2:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %[[P3:[^:]*]]: !tt.ptr<f32> {tt.divisibility = 16 : i32}) { CHECK-DAG: %[[C127_i64:.*]] = arith.constant 127 : i64 CHECK-DAG: %[[ZERO_OFFSET:.*]] = arith.constant 0 : i64 CHECK-DAG: %[[PID:.*]] = tt.get_program_id x : i32 CHECK-DAG: %[[PID_INDEX:.*]] = arith.index_castui %[[PID]] : i32 to index CHECK: %[[ROW_OFFSET_INDEX:.*]] = xla_gpu.apply_indexing #[[MAP]](%[[PID_INDEX]] CHECK: %[[ROW_OFFSET:.*]] = arith.index_castui %[[ROW_OFFSET_INDEX]] : index to i64 CHECK: %[[ARG0:.*]] = tt.addptr %[[P0]], %[[ROW_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT: tt.load CHECK-SAME: {boundaryCheck = array<i32: 0>, padding = 1 : i32} : !tt.ptr<tensor<128xf32>> CHECK: %[[ARG1:.*]] = tt.addptr %[[P1]], %[[ZERO_OFFSET]] : !tt.ptr<f32>, i64 CHECK-NEXT: tt.make_tensor_ptr CHECK-SAME: <tensor<128xf32>> CHECK-NEXT:
2,049
cpp
tensorflow/tensorflow
triton_tiling_propagation
third_party/xla/xla/service/gpu/triton_tiling_propagation.cc
third_party/xla/xla/service/gpu/triton_tiling_propagation_test.cc
#ifndef XLA_SERVICE_GPU_TRITON_TILING_PROPAGATION_H_ #define XLA_SERVICE_GPU_TRITON_TILING_PROPAGATION_H_ #include <cstdint> #include <optional> #include <string> #include <tuple> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/instruction_fusion.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class TensorIterationSpec { public: struct IterationSpecFragment { int64_t stride; int64_t count; int64_t slice_start; int64_t sliced_count; std::vector<int64_t> subfragments; bool is_sliced() const { return count != sliced_count; } auto ToTuple() const { return std::make_tuple(stride, count, slice_start, sliced_count, subfragments); } bool operator==(const IterationSpecFragment& other) const { return ToTuple() == other.ToTuple(); } template <typename H> friend H AbslHashValue(H h, const IterationSpecFragment& fragment) { return H::combine(std::move(h), fragment.ToTuple()); } bool IsPhysicallyEquivalent(const IterationSpecFragment& other) const { return stride == other.stride && count == other.count && slice_start == other.slice_start && sliced_count == other.sliced_count; } std::string ToString() const; }; using DimIterationSpec = std::vector<IterationSpecFragment>; const DimIterationSpec& operator[](const int dimension) const { return dim_iteration_specs_.at(dimension); } DimIterationSpec& operator[](const int dimension) { return dim_iteration_specs_[dimension]; } const DimIterationSpec* Find(int dimension) const; std::vector<int> GetDimensions() const; void RemoveEmptyDimensions() { absl::erase_if(dim_iteration_specs_, [](const auto& it) { return it.second.empty(); }); } bool operator==(const TensorIterationSpec& other) const { return dim_iteration_specs_ == other.dim_iteration_specs_; } template <typename H> friend H AbslHashValue(H h, const TensorIterationSpec& spec) { return H::combine(std::move(h), spec.dim_iteration_specs_); } bool IsPhysicallyEquivalent(const TensorIterationSpec& other) const; std::string ToString() const; private: absl::flat_hash_map<int, DimIterationSpec> dim_iteration_specs_; }; namespace triton_fusion { class DimensionOrder { public: static DimensionOrder FromDotOperandOrOutput( const HloInstruction& hlo, int split_k_dimension_index = -1); class Fragment { public: explicit Fragment(int dst_dim_number, int64_t count) : dst_dim_number_(dst_dim_number), count_(count), slice_start_(0), sliced_count_(count) {} std::string ToString() const; int dst_dim_number() const { return dst_dim_number_; } int64_t full_count() const { return count_; } int64_t slice_start() const { return slice_start_; } int64_t sliced_count() const { return sliced_count_; } bool is_sliced() const { return count_ != sliced_count_; } void set_slice(int64_t start, int64_t count) { slice_start_ = start; sliced_count_ = count; } void set_count(int64_t count) { count_ = count; } private: const int dst_dim_number_; int64_t count_; int64_t slice_start_; int64_t sliced_count_; }; using Fragments = std::vector<Fragment>; using FragmentOrders = absl::flat_hash_map<int, std::vector<int>>; const Fragments& TensorFragmentsOrder() const { return tensor_fragments_order_; } Fragments& TensorFragmentsOrder() { return tensor_fragments_order_; } const FragmentOrders& DimFragmentsOrders() const { return dim_fragments_orders_; } FragmentOrders& DimFragmentsOrders() { return dim_fragments_orders_; } std::string ToString() const; TensorIterationSpec ToTensorIterationSpec() const; bool IsPhysicallyEquivalent(const DimensionOrder& other) const { return ToTensorIterationSpec().IsPhysicallyEquivalent( other.ToTensorIterationSpec()); } private: Fragments tensor_fragments_order_; FragmentOrders dim_fragments_orders_; }; inline constexpr int kNoDimensionIndex = -1; struct DotProperties { const int noncontracting_dimension; const int splittable_dimension_index; }; inline constexpr int kNoSplitRequirement = 1; struct DotRequirements { explicit DotRequirements(int64_t splittable_dimension_major_part_size) : splittable_dimension_major_part_size( splittable_dimension_major_part_size) { CHECK_GE(splittable_dimension_major_part_size, 1); } int64_t splittable_dimension_major_part_size; }; using DotRequirementsOrError = std::variant<DotRequirements, FusionDecision>; DotRequirementsOrError CombineDotRequirements( DotRequirements a, DotRequirementsOrError b_or_error); enum class TransformDirection { kInputToOutput, kOutputToInput }; using DimOrderMap = absl::flat_hash_map<const HloInstruction*, DimensionOrder>; using DimOrderMapOrError = std::variant<DimOrderMap, FusionDecision>; struct DimOrdersAndReqs { DimOrderMap dim_orders; DotRequirements requirements; }; using DimOrdersAndReqsOrError = std::variant<DimOrdersAndReqs, FusionDecision>; DimOrdersAndReqsOrError GetPropagatedDimOrdersAndRequirements( const HloInstruction& hlo, const DimensionOrder& src_dim_order, TransformDirection direction, const DotProperties& properties); DimOrdersAndReqsOrError GetPropagatedDimOrdersAndRequirementsIfProfitablyFusible( const HloInstruction& hlo, TransformDirection transform_direction, const std::optional<int>& src_operand_index, const DimensionOrder& src_dim_order, const se::GpuComputeCapability& gpu_version, const DotProperties& properties); } } } #endif #include "xla/service/gpu/triton_tiling_propagation.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <list> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout.h" #include "xla/permutation_util.h" #include "xla/service/gpu/triton_support.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { namespace { absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec> FilterTrivialDims( const absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec>& dim_iter_specs) { absl::flat_hash_map<int, TensorIterationSpec::DimIterationSpec> non_trivial_dim_iteration_specs; for (const auto& [dim, dim_spec] : dim_iter_specs) { if (dim_spec.size() == 1 && dim_spec[0].count == 1) { continue; } non_trivial_dim_iteration_specs[dim] = dim_spec; } return non_trivial_dim_iteration_specs; } } const TensorIterationSpec::DimIterationSpec* TensorIterationSpec::Find( const int dimension) const { if (auto it = dim_iteration_specs_.find(dimension); it != dim_iteration_specs_.end()) { return &it->second; } return nullptr; } std::vector<int> TensorIterationSpec::GetDimensions() const { std::vector<int> result; result.reserve(dim_iteration_specs_.size()); for (const auto& [dim, _] : dim_iteration_specs_) { result.push_back(dim); } return result; } bool TensorIterationSpec::IsPhysicallyEquivalent( const TensorIterationSpec& other) const { const absl::flat_hash_map<int, DimIterationSpec> non_trivial_dim_iteration_specs = FilterTrivialDims(dim_iteration_specs_); const absl::flat_hash_map<int, DimIterationSpec> other_non_trivial_dim_iteration_specs = FilterTrivialDims(other.dim_iteration_specs_); if (non_trivial_dim_iteration_specs.size() != other_non_trivial_dim_iteration_specs.size()) { return false; } for (const auto& pair : non_trivial_dim_iteration_specs) { int dimension = pair.first; const DimIterationSpec& dim_iter_spec = pair.second; auto other_it = other_non_trivial_dim_iteration_specs.find(dimension); if (other_it == other_non_trivial_dim_iteration_specs.end()) { return false; } const DimIterationSpec& other_dim_iter_spec = other_it->second; if (dim_iter_spec.size() != other_dim_iter_spec.size()) { return false; } for (size_t i = 0; i < dim_iter_spec.size(); i++) { if (!dim_iter_spec[i].IsPhysicallyEquivalent(other_dim_iter_spec[i])) { return false; } } } return true; } std::string TensorIterationSpec::IterationSpecFragment::ToString() const { return absl::StrCat("{stride=", stride, ", count=", count, ", slice_start=", slice_start, ", sliced_count=", sliced_count, ", subfragments=[", absl::StrJoin(subfragments, ", "), "]}"); } std::string TensorIterationSpec::ToString() const { return absl::StrCat( "{", absl::StrJoin(dim_iteration_specs_, ", ", [&](std::string* s, const auto& kv) { absl::StrAppend( s, kv.first, ": ", "[", absl::StrJoin(kv.second, ", ", [&](std::string* ss, const auto& v) { absl::StrAppend(ss, v.ToString()); }), "]"); }), "}"); } namespace triton_fusion { using Fragment = DimensionOrder::Fragment; using Fragments = DimensionOrder::Fragments; using FragmentOrders = DimensionOrder::FragmentOrders; DimensionOrder DimensionOrder::FromDotOperandOrOutput( const HloInstruction& hlo, const int split_k_dimension_index) { DimensionOrder dim_order; dim_order.tensor_fragments_order_.reserve(hlo.shape().rank()); for (const int i : hlo.shape().layout().minor_to_major()) { int target_dim_number = i; if (i == split_k_dimension_index) { CHECK(!dim_order.tensor_fragments_order_.empty()) << "The split-K batch dimension has be preceded by the contracting " "dimension it originates from by construction."; target_dim_number = dim_order.tensor_fragments_order_.back().dst_dim_number(); } dim_order.dim_fragments_orders_[target_dim_number].push_back( dim_order.tensor_fragments_order_.size()); dim_order.tensor_fragments_order_.push_back( Fragment{target_dim_number, hlo.shape().dimensions(i)}); } return dim_order; } std::string DimensionOrder::Fragment::ToString() const { return absl::StrCat(dst_dim_number_, ":", count_, ":", slice_start_, "-", sliced_count_); } std::string DimensionOrder::ToString() const { std::string ret = absl::StrJoin(tensor_fragments_order_, " - ", [](std::string* out, const Fragment& f) { absl::StrAppend(out, f.ToString(), " "); }); absl::StrAppend(&ret, "|"); for (const auto& [dim, fragments] : dim_fragments_orders_) { absl::StrAppend(&ret, dim, ":", absl::StrJoin(fragments, ","), " "); } return ret; } TensorIterationSpec DimensionOrder::ToTensorIterationSpec() const { const Fragments& dim_fragments = TensorFragmentsOrder(); TensorIterationSpec tensor_spec; int64_t accumulated_stride = 1; int last_dim = -1; for (int dim_order_index = 0; dim_order_index < dim_fragments.size(); ++dim_order_index) { const DimensionOrder::Fragment& fragment = dim_fragments[dim_order_index]; VLOG(6) << fragment.ToString(); TensorIterationSpec::DimIterationSpec& dim_spec = tensor_spec[fragment.dst_dim_number()]; if (last_dim == fragment.dst_dim_number()) { if (!dim_spec.empty() && !dim_spec.back().subfragments.empty() && dim_spec.back().subfragments.back() == 1) { dim_spec.back().subfragments.pop_back(); } if (fragment.full_count() > 1) { CHECK(!dim_spec.empty()); CHECK(!dim_spec.back().is_sliced()) << "Only the major-most fragment can have an offset."; dim_spec.back().slice_start = fragment.slice_start() * dim_spec.back().count; dim_spec.back().sliced_count = fragment.sliced_count() * dim_spec.back().count; dim_spec.back().count *= fragment.full_count(); dim_spec.back().subfragments.push_back(fragment.sliced_count()); } } else { dim_spec.push_back(TensorIterationSpec::IterationSpecFragment{ accumulated_stride, fragment.full_count(), fragment.slice_start(), fragment.sliced_count(), {fragment.sliced_count()}}); } accumulated_stride *= fragment.full_count(); last_dim = fragment.dst_dim_number(); } for (int dim_idx : tensor_spec.GetDimensions()) { TensorIterationSpec::DimIterationSpec& dim_spec = tensor_spec[dim_idx]; if (dim_spec.size() <= 1) continue; TensorIterationSpec::DimIterationSpec filtered_dim_spec; absl::c_copy_if(dim_spec, std::back_inserter(filtered_dim_spec), [](const TensorIterationSpec::IterationSpecFragment& f) { return f.count != 1; }); tensor_spec[dim_idx] = filtered_dim_spec; } tensor_spec.RemoveEmptyDimensions(); return tensor_spec; } namespace { std::optional<int> LogicalIndexOfLabeledDimension( const Shape& shape, const DimensionOrder& dim_order, const int label) { auto fragment_it = dim_order.TensorFragmentsOrder().cbegin(); for (int dim : shape.layout().minor_to_major()) { const int64_t dim_size = shape.dimensions()[dim]; int64_t fragments_size = 1; while (fragments_size < dim_size) { fragments_size *= fragment_it->full_count(); if (fragment_it->dst_dim_number() == label) { return dim; } ++fragment_it; } } return std::nullopt; } using Int64OrError = std::variant<int64_t, FusionDecision>; Int64OrError CombineSplitDimMajorPartSizeReqs(int64_t a, int64_t b) { if (a == b || b == kNoSplitRequirement) { return a; } if (a == kNoSplitRequirement) { return b; } return FusionDecision("Conflicting splits of splittable dimension"); } } DotRequirementsOrError CombineDotRequirements( DotRequirements a, DotRequirementsOrError b_or_error) { if (std::holds_alternative<FusionDecision>(b_or_error)) { return b_or_error; } const DotRequirements& b = std::get<DotRequirements>(b_or_error); Int64OrError combined_size_req = CombineSplitDimMajorPartSizeReqs(a.splittable_dimension_major_part_size, b.splittable_dimension_major_part_size); if (std::holds_alternative<FusionDecision>(combined_size_req)) { return std::get<FusionDecision>(combined_size_req); } return DotRequirements(std::get<int64_t>(combined_size_req)); } namespace { DotRequirementsOrError GetRequirementsIfSupportedOrder( const DimensionOrder& order, const DotProperties& properties) { VLOG(8) << order.ToString(); int64_t split_dim_major_part = kNoSplitRequirement; const Fragments& tensor_dim_fragments = order.TensorFragmentsOrder(); for (const auto& [dim_index, dim_fragments] : order.DimFragmentsOrders()) { CHECK(!dim_fragments.empty()); for (int i = 0; i < dim_fragments.size() - 1; ++i) { if (tensor_dim_fragments[dim_fragments[i]].is_sliced()) { return "Sliced non-major-most fragment."; } } int group_counter = 0; int last_seen_group_last_fragment_index = -1; auto fragment_it = dim_fragments.cbegin(); while (true) { if (fragment_it == dim_fragments.cend()) { break; } int64_t grouped_size = tensor_dim_fragments[*fragment_it].full_count(); while ((fragment_it + 1) != dim_fragments.cend() && *(fragment_it + 1) == *fragment_it + 1) { ++fragment_it; grouped_size *= tensor_dim_fragments[*fragment_it].full_count(); } if (grouped_size == 1) { ++fragment_it; continue; } if (last_seen_group_last_fragment_index > *fragment_it) { return "Transpose within a dimension."; } ++group_counter; if (group_counter > 1) { const int splittable_dimension_index = properties.splittable_dimension_index; if (dim_index == splittable_dimension_index) { if (group_counter == 2) { if (split_dim_major_part != kNoSplitRequirement && split_dim_major_part != grouped_size) { return "Conflicting splits of splittable dimension"; } split_dim_major_part = grouped_size; } else if (group_counter > 2) { return "2nd split of a splittable dimension."; } } else { return "Unsupported split of a dimension."; } } last_seen_group_last_fragment_index = *fragment_it; ++fragment_it; } } return DotRequirements(split_dim_major_part); } DotRequirementsOrError GetRequirementsIfSupportedOrders( const HloInstruction& hlo, const DimOrderMap& dim_orders, const DotProperties& properties) { const DotRequirements empty_requirements(kNoSplitRequirement); auto get_requirements = [&](const HloInstruction& instr) -> DotRequirementsOrError { if (auto it = dim_orders.find(&instr); it != dim_orders.end()) { return GetRequirementsIfSupportedOrder(it->second, properties); } return empty_requirements; }; DotRequirements requirements = empty_requirements; for (const HloInstruction* operand : hlo.operands()) { DotRequirementsOrError requirements_or_error = CombineDotRequirements(requirements, get_requirements(*operand)); if (std::holds_alternative<FusionDecision>(requirements_or_error)) { return requirements_or_error; } requirements = std::get<DotRequirements>(requirements_or_error); } return CombineDotRequirements(requirements, get_requirements(hlo)); } DimOrderMap GetPropagatedDimOrdersForElementwise( const HloInstruction& hlo, TransformDirection direction, const DimensionOrder& src_dim_order) { if (direction == TransformDirection::kOutputToInput) { DimOrderMap map; for (const HloInstruction* operand : hlo.operands()) { map.insert({operand, src_dim_order}); } return map; } return {{&hlo, src_dim_order}}; } const HloInstruction& GetSourceHlo(const HloInstruction& hlo, TransformDirection direction) { CHECK_GE(hlo.operand_count(), 1); if (direction == TransformDirection::kOutputToInput) { return hlo; } return *hlo.operand(0); } using ConstInstructionVector = absl::InlinedVector<const HloInstruction*, 2>; ConstInstructionVector GetDestHlos(const HloInstruction& hlo, TransformDirection direction) { if (direction == TransformDirection::kInputToOutput) { return {&hlo}; } ConstInstructionVector hlos; hlos.reserve(hlo.operands().size()); for (const HloInstruction* operand : hlo.operands()) { hlos.push_back(operand); } return hlos; } const HloInstruction& GetDestHlo(const HloInstruction& hlo, TransformDirection direction) { CHECK_EQ(hlo.operand_count(), 1); if (direction == TransformDirection::kInputToOutput) { return hlo; } return *hlo.operand(0); } DimOrderMapOrError GetPropagatedDimOrdersForBitcast( const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { const HloInstruction& dst = GetDestHlo(hlo, direction); const Shape& dst_shape = dst.shape(); const Fragments& src_fragments_order = src_dim_order.TensorFragmentsOrder(); DimOrderMap dst_dim_orders; DimensionOrder& dst_dim_order = dst_dim_orders.insert({&dst, DimensionOrder()}).first->second; Fragments& dst_fragments_order = dst_dim_order.TensorFragmentsOrder(); int64_t dst_remaining_size = 1; absl::flat_hash_map<const Fragment*, std::vector<int>> src_to_dst; auto dst_dim_it = dst_shape.layout().minor_to_major().cbegin(); const auto dst_dim_end = dst_shape.layout().minor_to_major().cend(); for (auto src_dim = src_fragments_order.cbegin(); src_dim != src_fragments_order.cend(); ++src_dim) { auto add_new_fragment = [&](const Fragment& fragment) { dst_fragments_order.push_back(fragment); src_to_dst[&*src_dim].push_back(dst_fragments_order.size() - 1); }; if (dst_remaining_size >= src_dim->full_count()) { if (dst_remaining_size % src_dim->full_count()) { return "Unsupported bitcast"; } add_new_fragment(*src_dim); dst_remaining_size /= src_dim->full_count(); } else { int64_t src_remaining_size = src_dim->full_count(); if (dst_remaining_size > 1) { if (src_remaining_size % dst_remaining_size || (src_dim->is_sliced())) { return "Unsupported bitcast"; } add_new_fragment( Fragment{src_dim->dst_dim_number(), dst_remaining_size}); src_remaining_size /= dst_remaining_size; dst_remaining_size = 1; } while (src_remaining_size > 1) { CHECK(dst_dim_it != dst_dim_end); int64_t dst_dim_size = dst_shape.dimensions(*dst_dim_it); int64_t new_fragment_size = dst_dim_size; if (dst_dim_size > src_remaining_size) { if (dst_dim_size % src_remaining_size) { return "Unsupported bitcast"; } dst_remaining_size = dst_dim_size / src_remaining_size; new_fragment_size = src_remaining_size; } if (src_dim->is_sliced()) { return "Unsupported bitcast"; } add_new_fragment( Fragment{src_dim->dst_dim_number(), new_fragment_size}); src_remaining_size /= new_fragment_size; ++dst_dim_it; } } } CHECK_EQ(dst_remaining_size, 1); while (dst_dim_it != dst_dim_end) { if (dst_shape.dimensions(*dst_dim_it) != 1) { return "Unsupported bitcast"; } if (!dst_fragments_order.empty()) { dst_fragments_order.push_back( Fragment{dst_fragments_order.back().dst_dim_number(), 1}); src_to_dst[&src_fragments_order.back()].push_back( dst_fragments_order.size() - 1); } ++dst_dim_it; } FragmentOrders& dst_dim_fragment_orders = dst_dim_order.DimFragmentsOrders(); for (const auto& [dim_index, dim_sequence] : src_dim_order.DimFragmentsOrders()) { std::vector<int>& dst = dst_dim_fragment_orders[dim_index]; dst.reserve(dim_sequence.size()); for (const int src : dim_sequence) { std::copy(src_to_dst[&src_fragments_order[src]].cbegin(), src_to_dst[&src_fragments_order[src]].cend(), std::back_inserter(dst)); } } return dst_dim_orders; } DimOrderMapOrError GetPropagatedDimOrdersForDimAlteringOp( const HloInstruction& hlo, const TransformDirection direction, const DimensionOrder& src_dim_order, const DotProperties& properties) { std::list<Fragment> new_fragments; const HloInstruction& src = GetSourceHlo(hlo, direction); Fragments src_fragments_order = src_dim_order.TensorFragmentsOrder(); if (hlo.opcode() == HloOpcode::kSlice && ShapeUtil::IsEffectiveScalar(hlo.shape())) { return FusionDecision("Slice to scalar is not implemented yet."); } std::vector<std::vector<Fragment*>> src_physical; src_physical.reserve(src.shape().rank()); if (src_fragments_order.size() < src.shape().rank()) {
#include "xla/service/gpu/triton_tiling_propagation.h" #include <vector> #include <gtest/gtest.h> #include "xla/tests/hlo_test_base.h" namespace xla::gpu { namespace { using TritonTilingPropagationTest = HloTestBase; using triton_fusion::DimensionOrder; DimensionOrder FromFragments(DimensionOrder::Fragments fragments) { DimensionOrder dim_order; DimensionOrder::Fragments& tensor_fragments_order = dim_order.TensorFragmentsOrder(); DimensionOrder::FragmentOrders& dim_fragments_orders = dim_order.DimFragmentsOrders(); for (const DimensionOrder::Fragment& fragment : fragments) { tensor_fragments_order.push_back(fragment); dim_fragments_orders[fragment.dst_dim_number()].push_back( tensor_fragments_order.size()); } return dim_order; } TEST_F( TritonTilingPropagationTest, DimensionOrdersRemainPhysicallyEquivalentAfterInsertingTrivialDimensions) { DimensionOrder::Fragment fragment_1(0, 97); DimensionOrder::Fragment fragment_2(0, 1); DimensionOrder dimension_order_1 = FromFragments({fragment_1, fragment_2}); DimensionOrder::Fragment fragment_3(0, 97); DimensionOrder::Fragment fragment_4(1, 1); DimensionOrder dimension_order_2 = FromFragments({fragment_3, fragment_4}); EXPECT_TRUE(dimension_order_1.IsPhysicallyEquivalent(dimension_order_2)); } TEST_F( TritonTilingPropagationTest, IterationSpecsRemainPhysicallyEquivalentAfterInsertingTrivialDimensions) { TensorIterationSpec::IterationSpecFragment fragment_1 = { 1, 97, 0, 97, {97}}; TensorIterationSpec spec_1; spec_1[0].push_back(fragment_1); TensorIterationSpec::IterationSpecFragment fragment_2 = { 1, 97, 0, 97, {97}}; TensorIterationSpec::IterationSpecFragment fragment_3 = { 97, 1, 0, 1, {1}}; TensorIterationSpec spec_2; spec_2[0].push_back(fragment_2); spec_2[1].push_back(fragment_3); EXPECT_TRUE(spec_1.IsPhysicallyEquivalent(spec_2)); } TEST_F(TritonTilingPropagationTest, DimensionsShouldNotBeRemovedByToTensorIterationSpec) { DimensionOrder::Fragment fragment_0(0, 97); DimensionOrder::Fragment fragment_1(1, 1); DimensionOrder dimension_order = FromFragments({fragment_0, fragment_1}); TensorIterationSpec spec = dimension_order.ToTensorIterationSpec(); const TensorIterationSpec::DimIterationSpec* dim_spec_0 = spec.Find(0); EXPECT_NE(dim_spec_0, nullptr); EXPECT_EQ(dim_spec_0->size(), 1); EXPECT_EQ(dim_spec_0->at(0).count, 97); const TensorIterationSpec::DimIterationSpec* dim_spec_1 = spec.Find(1); EXPECT_NE(dim_spec_1, nullptr); EXPECT_EQ(dim_spec_1->size(), 1); EXPECT_EQ(dim_spec_1->at(0).count, 1); } } }
2,050
cpp
tensorflow/tensorflow
reduction_degenerate_dim_remover
third_party/xla/xla/service/gpu/transforms/reduction_degenerate_dim_remover.cc
third_party/xla/xla/service/gpu/transforms/reduction_degenerate_dim_remover_test.cc
#ifndef XLA_SERVICE_GPU_REDUCTION_DEGENERATE_DIM_REMOVER_H_ #define XLA_SERVICE_GPU_REDUCTION_DEGENERATE_DIM_REMOVER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class ReductionDegenerateDimRemover : public HloModulePass { public: absl::string_view name() const override { return "reduction-degenerate-dim-remover"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/reduction_degenerate_dim_remover.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class ReductionDegenerateDimRemoverVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleReduce(HloInstruction *hlo) override { auto instr = Cast<HloReduceInstruction>(hlo); absl::InlinedVector<HloInstruction *, 2> input_reshapes; absl::InlinedVector<Shape, 2> canonical_reduce_shapes; int idx = -1; std::vector<int64_t> updated_reduced_dimensions; for (HloInstruction *reduced_op : instr->inputs()) { idx++; const Shape &input_shape = reduced_op->shape(); const Shape &reduce_shape = instr->shape().IsTuple() ? instr->shape().tuple_shapes(idx) : instr->shape(); if (!ShapeUtil::HasDegenerateDimensions(reduced_op->shape())) { return absl::OkStatus(); } Shape canonical_input_shape = ShapeUtil::DropDegenerateDimensions(input_shape); Shape canonical_reduce_shape = ShapeUtil::DropDegenerateDimensions(reduce_shape); auto reduced_dimensions = instr->dimensions(); int64_t shift = 0; for (int dim = 0; dim < input_shape.rank(); dim++) { if (input_shape.dimensions(dim) == 1) { shift++; } else { if (absl::c_linear_search(reduced_dimensions, dim) && idx == 0) { updated_reduced_dimensions.push_back(dim - shift); } } } if (updated_reduced_dimensions.empty()) { std::unique_ptr<HloInstruction> reshape = HloInstruction::CreateBitcast(reduce_shape, reduced_op); return ReplaceWithNewInstruction(instr, std::move(reshape)); } input_reshapes.push_back(instr->parent()->AddInstruction( HloInstruction::CreateBitcast(canonical_input_shape, reduced_op))); canonical_reduce_shapes.push_back(canonical_reduce_shape); } Shape canonical_reduce_shape = ShapeUtil::MakeMaybeTupleShape(canonical_reduce_shapes); const Shape &orig_reduce_shape = instr->shape(); std::unique_ptr<HloInstruction> new_reduce = HloInstruction::CreateReduce( canonical_reduce_shape, input_reshapes, instr->init_values(), updated_reduced_dimensions, instr->to_apply()); instr->SetupDerivedInstruction(new_reduce.get()); if (canonical_reduce_shape != instr->shape()) { HloInstruction *wrapped_reduce = instr->parent()->AddInstruction(std::move(new_reduce)); absl::InlinedVector<HloInstruction *, 2> out; if (!canonical_reduce_shape.IsTuple()) { new_reduce = HloInstruction::CreateBitcast(orig_reduce_shape, wrapped_reduce); } else { for (int oidx = 0; oidx < instr->input_count(); oidx++) { HloInstruction *gte = instr->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(wrapped_reduce, oidx)); out.push_back( instr->parent()->AddInstruction(HloInstruction::CreateBitcast( orig_reduce_shape.tuple_shapes(oidx), gte))); } new_reduce = HloInstruction::CreateTuple(out); } } return ReplaceWithNewInstruction(instr, std::move(new_reduce)); } }; absl::StatusOr<bool> ReductionDegenerateDimRemover::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { TF_ASSIGN_OR_RETURN(bool changed, ReductionDegenerateDimRemoverVisitor().RunOnModule( module, execution_threads)); return changed; } } }
#include "xla/service/gpu/reduction_degenerate_dim_remover.h" #include <optional> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace { class ReductionDegenerateDimRemoverTest : public HloTestBase { public: void CheckDegenerateDimRemover(absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite(hlo, gpu::ReductionDegenerateDimRemover{}, expected); } }; TEST_F(ReductionDegenerateDimRemoverTest, ReductionWithDegenerateDimensions) { const char* hlo = R"( HloModule ReduceWithDegenerateDimensions add { accum = f32[] parameter(0) op = f32[] parameter(1) ROOT out = f32[] add(accum, op) } ENTRY main { input = f32[1,3,1,4,1,5,1] parameter(0) zero = f32[] constant(0) ROOT out = f32[1,1,1,1] reduce(input, zero), dimensions={1,3,5}, to_apply=add } )"; CheckDegenerateDimRemover(hlo, R"( )"); } TEST_F(ReductionDegenerateDimRemoverTest, ReductionWithDegenerateDimensionsVariadic) { const char* hlo = R"( HloModule ReduceWithDegenerateDimensions argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { input = f32[1,3,1,4,1,5,1] parameter(0) idxs = u32[1,3,1,4,1,5,1] parameter(1) zero = f32[] constant(0) zero_idx = u32[] constant(0) ROOT out = (f32[1,1,1,1], u32[1,1,1,1]) reduce(input, idxs, zero, zero_idx), dimensions={1,3,5}, to_apply=argmax } )"; CheckDegenerateDimRemover(hlo, R"( )"); } TEST_F(ReductionDegenerateDimRemoverTest, DegenerateWithEmptyDimension) { const char* hlo = R"( HloModule ReduceWithDegenerateDimensions add { accum = f32[] parameter(0) op = f32[] parameter(1) ROOT out = f32[] add(accum, op) } ENTRY main { input = f32[1,3,1,4,1,5,1] parameter(0) zero = f32[] constant(0) ROOT out = f32[3,4,5,1] reduce(input, zero), dimensions={0,2,4}, to_apply=add } )"; CheckDegenerateDimRemover(hlo, R"( )"); } } }
2,051
cpp
tensorflow/tensorflow
gpu_windowed_einsum_handler
null
null
#ifndef XLA_SERVICE_GPU_GPU_WINDOWED_EINSUM_HANDLER_H_ #define XLA_SERVICE_GPU_GPU_WINDOWED_EINSUM_HANDLER_H_ #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla::gpu { class GpuWindowedEinsumHandler : public HloModulePass { public: absl::string_view name() const override { return "gpu-windowed-einsum-handler"; } struct WindowedEinsumAgLoops { explicit WindowedEinsumAgLoops(HloInstruction* loop) : loop(loop) {} HloInstruction* loop; bool consumed = false; }; using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; constexpr static const char* kWindowedEinsumRsLoopName = "windowed_dot_general_body_rs"; constexpr static const char* kWindowedEinsumAgLoopName = "windowed_dot_general_body_ag"; private: std::vector<WindowedEinsumAgLoops> all_ag_loops_; }; } #endif #include "xla/service/gpu/gpu_windowed_einsum_handler.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { namespace m = match; absl::Status ShiftDequantizationF8(const HloComputation* comp, const std::array<HloInstruction*, 2>& gte) { HloInstruction* while_instr = comp->WhileCallInstruction(); if (!while_instr) { return absl::OkStatus(); } HloInstruction* param_tuple = while_instr->mutable_operand(0); std::array<HloInstruction*, 2> binaries, operands, scales; for (int k = 0; k < 2; ++k) { if (!Match(param_tuple->mutable_operand(k), m::AnyOf<HloInstruction>( m::Divide(&binaries[k], m::Convert(m::Op(&operands[k])), m::Broadcast(m::Op(&scales[k]))), m::MultiplyAnyOrder(&binaries[k], m::Convert(m::Op(&operands[k])), m::Broadcast(m::Op(&scales[k])))))) { VLOG(5) << "Unable to identify FP8 dequantization pattern."; return absl::OkStatus(); } } std::array<PrimitiveType, 2> operand_types{ operands[0]->shape().element_type(), operands[1]->shape().element_type()}; if (!((operand_types[0] == F8E4M3FN && operand_types[1] == F8E4M3FN) || (operand_types[0] == F8E4M3FN && operand_types[1] == F8E5M2) || (operand_types[0] == F8E5M2 && operand_types[1] == F8E4M3FN))) { VLOG(5) << "Unsupported types."; return absl::OkStatus(); } for (int k = 0; k < 2; ++k) { if (binaries[k]->shape().element_type() != BF16 && binaries[k]->shape().element_type() != F16 && binaries[k]->shape().element_type() != F32) { VLOG(5) << "Unsupported types."; return absl::OkStatus(); } } if (!ShapeUtil::IsScalar(scales[0]->shape()) || !ShapeUtil::IsScalar(scales[1]->shape())) { VLOG(5) << "Scaling factors must be scalars."; return absl::OkStatus(); } HloComputation* while_body = while_instr->while_body(); HloComputation* while_condition = while_instr->while_condition(); HloInstruction* while_root = while_body->root_instruction(); std::array<HloInstruction*, 2> dots, dyn_slices{nullptr, nullptr}, coll_perms{nullptr, nullptr}; if (Match( while_root, m::Tuple(m::CollectivePermute( &coll_perms[1], m::CollectivePermute( &coll_perms[0], m::Op().Is(gte[0]))), m::Op().Is(gte[1]), m::DynamicUpdateSlice( m::DynamicUpdateSlice().WithOperand( 1, m::Dot(&dots[0], m::Op().Is(gte[0]), m::Op().Is(gte[1]))), m::Dot(&dots[1], m::Op(), m::Op().Is(gte[1])), m::Op(), m::Op(), m::Op()), m::Op(), m::Op()))) { VLOG(5) << "Identified all-gather windowed einsum pattern."; } else if (Match( while_root, m::Tuple(m::Op().Is(gte[0]), m::Op().Is(gte[1]), m::AddAnyOrder( m::Dot(&dots[0], m::DynamicSlice(&dyn_slices[0]), m::Op().Is(gte[1])), m::Op()), m::CollectivePermute(m::AddAnyOrder( m::Dot(&dots[1], m::DynamicSlice(&dyn_slices[1]), m::Op().Is(gte[1])), m::Op())), m::Op()))) { VLOG(5) << "Identified reduce-scatter windowed einsum pattern."; } else { VLOG(5) << "Unable to identify valid windowed einsum pattern."; return absl::OkStatus(); } for (int k = 0; k < 2; ++k) { TF_RETURN_IF_ERROR( param_tuple->ReplaceOperandWithDifferentShape(k, operands[k])); ShapeUtil::UpdateTupleShape(operands[k]->shape(), k, param_tuple->mutable_shape()); param_tuple->AppendOperand(scales[k]); ShapeUtil::AppendShapeToTuple(scales[k]->shape(), param_tuple->mutable_shape()); } for (HloComputation* while_comp : {while_body, while_condition}) { while_comp->ReplaceParameter( 0, HloInstruction::CreateParameter( 0, param_tuple->shape(), while_comp->parameter_instruction(0)->name())); } HloInstruction* body_param = while_body->parameter_instruction(0); for (int k = 0; k < 2; ++k) { TF_ASSIGN_OR_RETURN(HloInstruction * operand_f8, MakeGetTupleElementHlo(body_param, k)); if (while_root->operand(k) == gte[k]) { TF_RETURN_IF_ERROR( while_root->ReplaceOperandWithDifferentShape(k, operand_f8)); ShapeUtil::UpdateTupleShape(operand_f8->shape(), k, while_root->mutable_shape()); } TF_ASSIGN_OR_RETURN( HloInstruction * operand_scale, MakeGetTupleElementHlo( body_param, body_param->shape().tuple_shapes_size() - 2 + k)); while_root->AppendOperand(operand_scale); ShapeUtil::AppendShapeToTuple(operand_scale->shape(), while_root->mutable_shape()); HloInstruction* operand_f32 = MakeConvertToHlo(operand_f8, gte[k]->shape().element_type()); HloInstruction* broadcast_scale = MakeBroadcastHlo(operand_scale, {}, operand_f32->shape()); TF_ASSIGN_OR_RETURN( HloInstruction * operand_scaled, MakeBinaryHlo(binaries[k]->opcode(), operand_f32, broadcast_scale)); for (int l = 0; l < 2; ++l) { if (dots[l]->operand(k) == gte[k]) { TF_RETURN_IF_ERROR(dots[l]->ReplaceOperandWith(k, operand_scaled)); } if (dyn_slices[l] && dyn_slices[l]->operand(0) == gte[k]) { TF_RETURN_IF_ERROR( dyn_slices[l]->ReplaceOperandWith(0, operand_scaled)); } } if (coll_perms[0] && coll_perms[0]->operand(0) == gte[k]) { std::array<HloInstruction*, 2> coll_perms_f8{nullptr, nullptr}; coll_perms_f8[0] = while_body->AddInstruction(coll_perms[0]->CloneWithNewOperands( operand_f8->shape(), {operand_f8})); coll_perms_f8[1] = while_body->AddInstruction(coll_perms[1]->CloneWithNewOperands( coll_perms_f8[0]->shape(), {coll_perms_f8[0]})); HloInstruction* coll_perm0_f32 = MakeConvertToHlo(coll_perms_f8[0], gte[k]->shape().element_type()); TF_ASSIGN_OR_RETURN(HloInstruction * x_scaled, MakeBinaryHlo(binaries[k]->opcode(), coll_perm0_f32, broadcast_scale)); TF_RETURN_IF_ERROR(dots[1]->ReplaceOperandWith(0, x_scaled)); TF_RETURN_IF_ERROR( while_root->ReplaceOperandWithDifferentShape(0, coll_perms_f8[1])); ShapeUtil::UpdateTupleShape(coll_perms_f8[1]->shape(), 0, while_root->mutable_shape()); } } TF_RETURN_IF_ERROR( while_instr->ReplaceAllUsesWithDifferentShape(while_instr->AddInstruction( while_instr->CloneWithNewShape(while_root->shape())))); TF_RETURN_IF_ERROR(while_instr->parent()->RemoveInstruction(while_instr)); if (coll_perms[0]) { TF_RETURN_IF_ERROR(while_body->RemoveInstruction(coll_perms[1])); TF_RETURN_IF_ERROR(while_body->RemoveInstruction(coll_perms[0])); } TF_RETURN_IF_ERROR(while_body->RemoveInstruction(gte[0])); TF_RETURN_IF_ERROR(while_body->RemoveInstruction(gte[1])); VLOG(5) << "FP8 dequantization moved into while loop."; return absl::OkStatus(); } int64_t NumberOfInstructionsInComp(const HloComputation* comp, HloOpcode op) { int64_t total_count = 0; for (const HloInstruction* inst : comp->instructions()) { if (inst->opcode() == op) { ++total_count; } } return total_count; } absl::Status UpdateDotAndConsumerConfig(HloInstruction* dot, int64_t stream_id) { auto dot_gpu_config = dot->backend_config<gpu::GpuBackendConfig>(); HloInstruction* updater = dot->users()[0]; auto updater_gpu_config = updater->backend_config<gpu::GpuBackendConfig>(); dot_gpu_config->set_operation_queue_id(stream_id); updater_gpu_config->mutable_wait_on_operation_queues()->Add(stream_id); TF_RETURN_IF_ERROR(dot->set_backend_config(dot_gpu_config.value())); TF_RETURN_IF_ERROR(updater->set_backend_config(updater_gpu_config.value())); return absl::OkStatus(); } absl::Status SetForceDelayForInstruction(HloInstruction* instr, bool force_delay) { auto gpu_config = instr->backend_config<gpu::GpuBackendConfig>(); gpu_config->set_force_earliest_schedule(force_delay); TF_RETURN_IF_ERROR(instr->set_backend_config(gpu_config.value())); return absl::OkStatus(); } absl::StatusOr<bool> HandleRsWindowedEinsumLoop(HloComputation* comp, int64_t stream_id) { bool changed = false; if (NumberOfInstructionsInComp(comp, HloOpcode::kDot) <= 1) { return changed; } for (auto inst : comp->MakeInstructionPostOrder()) { HloInstruction* matched_dot; std::array<HloInstruction*, 2> gte; if (Match(inst, m::Dot(&matched_dot, m::DynamicSlice().WithOperand( 0, m::GetTupleElement(&gte[0], m::Parameter(), 0)), m::GetTupleElement(&gte[1], m::Parameter(), 1)))) { TF_RETURN_IF_ERROR(ShiftDequantizationF8(comp, gte)); TF_RETURN_IF_ERROR(UpdateDotAndConsumerConfig(matched_dot, stream_id)); ++stream_id; changed = true; } HloInstruction* matched_cp; if (Match(inst, m::CollectivePermute( &matched_cp, m::GetTupleElement(m::Parameter(), 2)))) { TF_RETURN_IF_ERROR( SetForceDelayForInstruction(matched_cp, true)); changed = true; } } return changed; } absl::StatusOr<bool> HandleAgWindowedEinsumLoop(HloComputation* comp, int64_t stream_id) { bool changed = false; if (NumberOfInstructionsInComp(comp, HloOpcode::kDot) <= 1) { return changed; } for (auto inst : comp->MakeInstructionPostOrder()) { HloInstruction* matched_dot; std::array<HloInstruction*, 2> gte; if (Match(inst, m::Dot(&matched_dot, m::GetTupleElement(&gte[0], m::Parameter(), 0), m::GetTupleElement(&gte[1], m::Parameter(), 1)))) { TF_RETURN_IF_ERROR(ShiftDequantizationF8(comp, gte)); TF_RETURN_IF_ERROR(UpdateDotAndConsumerConfig(matched_dot, stream_id)); ++stream_id; TF_RETURN_IF_ERROR( SetForceDelayForInstruction(matched_dot, true)); changed = true; } HloInstruction* matched_cp; if (Match(inst, m::CollectivePermute( &matched_cp, m::GetTupleElement(m::Parameter(), 0)))) { TF_RETURN_IF_ERROR( SetForceDelayForInstruction(matched_cp, true)); changed = true; } } return changed; } static int64_t GetAgActivationCacheIndex(const HloInstruction* while_loop) { const HloInstruction* loop_tuple = while_loop->operand(0); const Shape& tuple_shape = loop_tuple->shape(); CHECK(tuple_shape.IsTuple()); return tuple_shape.tuple_shapes_size(); } absl::Status ProcessWindowedEinsumLoopForActivationCaching( GpuWindowedEinsumHandler::WindowedEinsumAgLoops& ag_loop, HloInstruction* ag_with_shared_operand) { HloInstruction* loop = ag_loop.loop; HloComputation* while_body = loop->while_body(); HloInstruction* input_gte; for (HloInstruction* gte : while_body->parameter_instruction(0)->users()) { if (gte->tuple_index() == 0) { input_gte = gte; } } HloInstruction* root = while_body->root_instruction(); HloInstruction* input_tuple = while_body->parameter_instruction(0); const Shape& input_shape = input_tuple->shape(); int64_t full_cache_buffer_index = GetAgActivationCacheIndex(loop); std::vector<Shape> new_input_shapes(input_shape.tuple_shapes().begin(), input_shape.tuple_shapes().end()); new_input_shapes.push_back(ag_with_shared_operand->shape()); Shape new_input_shape = ShapeUtil::MakeTupleShape(new_input_shapes); *input_tuple->mutable_shape() = new_input_shape; HloInstruction* full_buffer_output_gte = while_body->AddInstruction(HloInstruction::CreateGetTupleElement( ag_with_shared_operand->shape(), input_tuple, full_cache_buffer_index)); HloComputation* cond_comp = loop->while_condition(); HloInstruction* cond_input_tuple = cond_comp->parameter_instruction(0); *cond_input_tuple->mutable_shape() = new_input_shape; HloInstruction* original_while_input = loop->mutable_operand(0); HloComputation* parent_comp = loop->parent(); std::vector<HloInstruction*> new_operands( original_while_input->operands().begin(), original_while_input->operands().end()); new_operands.push_back( parent_comp->AddInstruction(HloInstruction::CreateBroadcast( ag_with_shared_operand->shape(), parent_comp->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(new_input_shapes[0].element_type()))), {}))); HloInstruction* new_while_input = parent_comp->AddInstruction(HloInstruction::CreateTuple(new_operands)); TF_RETURN_IF_ERROR( loop->ReplaceOperandWithDifferentShape(0, new_while_input)); TF_RETURN_IF_ERROR(parent_comp->ReplaceInstructionWithDifferentShape( original_while_input, new_while_input)); *loop->mutable_shape() = new_input_shape; HloInstruction* new_full_buffer_output = nullptr; HloInstruction* dus_boundary_constant; HloInstruction* first_cp_output; for (HloInstruction* gte_user : input_gte->users()) { if (gte_user->opcode() == HloOpcode::kCollectivePermute) { first_cp_output = gte_user; break; } } for (HloInstruction* inst : while_body->MakeInstructionPostOrder()) { HloInstruction* slice_indices; if (Match(inst, m::DynamicUpdateSlice( m::GetTupleElement(m::Parameter()), m::Op(), m::Constant(&dus_boundary_constant), m::Reshape(m::DynamicSlice(&slice_indices, m::Op(), m::Op())), m::Op()))) { slice_indices = while_body->AddInstruction(HloInstruction::CreateReshape( dus_boundary_constant->shape(), slice_indices)); VLOG(5) << "Created slice op for first slice: " << slice_indices->ToString(); full_buffer_output_gte = while_body->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( full_buffer_output_gte->shape(), full_buffer_output_gte, input_gte, {dus_boundary_constant, slice_indices, dus_boundary_constant})); } if (Match(inst, m::DynamicUpdateSlice( m::DynamicUpdateSlice(), m::Op(), m::Constant(), m::Reshape(m::DynamicSlice(&slice_indices, m::Op(), m::Op())), m::Op()))) { slice_indices = while_body->AddInstruction(HloInstruction::CreateReshape( dus_boundary_constant->shape(), slice_indices)); VLOG(5) << "Created slice op for second slice: " << slice_indices->ToString(); new_full_buffer_output = while_body->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( full_buffer_output_gte->shape(), full_buffer_output_gte, first_cp_output, {dus_boundary_constant, slice_indices, dus_boundary_constant})); } HloInstruction* slice_index; HloInstruction* ds_index_constant; HloInstruction* remainder; HloInstruction* ds_param; if (Match(inst, m::Dot(m::Op(), m::DynamicSlice(&ds_param))) && Match(ds_param->operand(0), m::GetTupleElement(m::Parameter(), 1))) { for (int64_t ds_op_i = 1; ds_op_i < ds_param->operands().size(); ds_op_i++) { if (!Match( ds_param->mutable_operand(ds_op_i), m::Reshape(&slice_index, m::DynamicSlice(m::Constant(), m::Op(&remainder)))) && !Match(ds_param->mutable_operand(ds_op_i), m::Constant(&ds_index_constant))) { return absl::OkStatus(); } } if (Match(remainder, m::Remainder(m::Add(m::GetTupleElement(), m::Op()), m::Op()))) { full_buffer_output_gte = while_body->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( full_buffer_output_gte->shape(), full_buffer_output_gte, input_gte, {ds_index_constant, ds_index_constant, slice_index})); } if (Match(remainder, m::Remainder( m::Add(m::Add(m::GetTupleElement(), m::Op()), m::Op()), m::Op()))) { new_full_buffer_output = while_body->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( full_buffer_output_gte->shape(), full_buffer_output_gte, first_cp_output, {ds_index_constant, ds_index_constant, slice_index})); } } } std::vector<HloInstruction*> original_operands(root->operands().begin(), root->operands().end()); original_operands.push_back(new_full_buffer_output); HloInstruction* new_output_tuple = while_body->AddInstruction( HloInstruction::CreateTuple(original_operands)); TF_RETURN_IF_ERROR( while_body->ReplaceInstructionWithDifferentShape(root, new_output_tuple)); return absl::OkStatus(); } bool HasReplicaGroups(const HloInstruction* inst) { return inst->replica_groups().size() > 0; } bool ShouldAddToChain(const HloInstruction* inst) { switch (inst->opcode()) { case HloOpcode::kTranspose: case HloOpcode::kReshape: case HloOpcode::kCopy: return inst->user_count() == 1; default: return false; } } struct MatchedGemmA2aResult { HloInstruction* producer_gemm; HloInstruction* lhs; HloInstruction* rhs; HloInstruction* a2a_replacement = nullptr; bool matched = false; }; class WindowedEinsumVisitor : public DfsHloRewriteVisitor { public: explicit WindowedEinsumVisitor( std::vector<GpuWindowedEinsumHandler::WindowedEinsumAgLoops>& all_ag_loops) : all_ag_loops_(all_ag_loops) {} absl::StatusOr<bool> MatchA2aGemmWithIntermediateReshapes( HloInstruction* dot, HloInstruction** lhs, HloInstruction** rhs) { if (Match(dot, m::Dot(m::AllToAll(lhs).WithOneUse().WithPredicate( HasReplicaGroups), m::Op(rhs))) && !DynCast<HloAllToAllInstruction>((*lhs))->constrain_layout() && !(*lhs)->shape().IsTuple()) { return true; } std::vector<HloInstruction*> allowed_intermediate_ops( {dot->mutable_operand(0)}); HloAllToAllInstruction* matched_a2a = nullptr; while (true) { HloInstruction* curr = allowed_intermediate_ops.back(); if (ShouldAddToChain(curr)) { allowed_intermediate_ops.insert(allowed_intermediate_ops.end(), std::begin(curr->operands()), std::end(curr->operands())); } else if (curr->opcode() == HloOpcode::kAllToAll && curr->user_count() == 1) { matched_a2a = DynCast<HloAllToAllInstruction>(curr); allowed_intermediate_ops.pop_back(); break; } else { return false; } } CHECK(matched_a2a != nullptr); if (matched_a2a->constrain_layout() || matched_a2a->shape().IsTuple() || !HasReplicaGroups(matched_a2a) || !matched_a2a->split_dimension()) { return false; } int64_t split_dimension = *matched_a2a->split_dimension(); for (int64_t i = allowed_intermediate_ops.size() - 1; i >= 0; i--) { HloInstruction* current_op = allowed_intermediate_ops[i]; if (current_op->opcode() == HloOpcode::kReshape) { std::vector<std::pair<int64_t, int64_t>> unmodified_dims = ShapeUtil::DimensionsUnmodifiedByReshape( current_op->operand(0)->shape(), current_op->shape()); auto it = absl::c_find_if( unmodified_dims, [&split_dimension](std::pair<int64_t, int64_t>& dim_pair) { return dim_pair.first == split_dimension; }); if (it == unmodified_dims.end()) { VLOG(5) << "Split dimension of: " << matched_a2a->ToShortString() << " has been modified by reshapes. Skip process it for " "decomposition."; return false; } split_dimension = it->second; } else if (current_op->opcode() == HloOpcode::kTranspose) { const auto& transpose_dims = current_op->dimensions(); for (int64_t j = 0; j < transpose_dims.size(); j++) { if ((int64_t)transpose_dims[j] == split_dimension) { split_dimension = j; break; } } } } TF_RETURN_IF_ERROR(allowed_intermediate_ops.back()->ReplaceOperandWith( 0, matched_a2a->mutable_operand(0))); HloInstruction* new_a2a = matched_a2a->parent()->AddInstruction(HloInstruction::CreateAllToAll( allowed_intermediate_ops.front()->shape(), {allowed_intermediate_ops.front()}, matched_a2a->replica_groups(), false, hlo_query::NextChannelId(*matched_a2a->GetModule()), split_dimension)); TF_RETURN_IF_ERROR(dot->ReplaceOperandWith(0, new_a2a)); TF_RETURN_IF_ERROR( matched_a2a->parent()->RemoveInstructionAndUnusedOperands(matched_a2a)); MarkAsChanged(); *lhs = new_a2a; *rhs = dot->mutable_operand(1); return true; } absl::Status HandleDot(HloInstruction* dot) override { CHECK_EQ(dot->opcode(), HloOpcode::kDot); HloComputation* comp = dot->parent(); for (GpuWindowedEinsumHandler::WindowedEinsumAgLoops ag_loop :
#include "xla/service/gpu/gpu_windowed_einsum_handler.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { namespace m = ::xla::match; using GpuWindowedEinsumHanlderTest = HloTestBase; HloInstruction* FindInstructionByName(HloComputation* comp, std::string name) { for (auto inst : comp->instructions()) { if (inst->name() == name) { return inst; } } return nullptr; } TEST_F(GpuWindowedEinsumHanlderTest, AgLoopsHaveStreamIds) { constexpr absl::string_view kHloString = R"( HloModule pjit__unnamed_wrapped_function_, entry_computation_layout={(bf16[1,512,24576]{2,1,0}, bf16[24576,24576]{1,0})->bf16[2048,24576]{1,0}}, num_partitions=4 windowed_dot_general_body_ag.1 { param = (bf16[512,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[2048,24576]{1,0}, bf16[2048,24576]{1,0}, u32[]) parameter(0) get-tuple-element = bf16[512,24576]{1,0} get-tuple-element(param), index=0 collective-permute = bf16[512,24576]{1,0} collective-permute(get-tuple-element), channel_id=2, source_target_pairs={{0,3},{1,0},{2,1},{3,2}}, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} get-tuple-element.1 = bf16[24576,24576]{1,0} get-tuple-element(param), index=1 get-tuple-element.2 = bf16[2048,24576]{1,0} get-tuple-element(param), index=2 dot.2 = bf16[512,24576]{1,0} dot(get-tuple-element, get-tuple-element.1), lhs_contracting_dims={1}, rhs_contracting_dims={0}, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} constant.1 = s32[4]{0} constant({0, 512, 1024, 1536}) get-tuple-element.4 = u32[] get-tuple-element(param), index=4 partition-id = u32[] partition-id() add = u32[] add(get-tuple-element.4, partition-id) constant = u32[] constant(4) remainder = u32[] remainder(add, constant) dynamic-slice = s32[1]{0} dynamic-slice(constant.1, remainder), dynamic_slice_sizes={1} reshape.4 = s32[] reshape(dynamic-slice) constant.2 = s32[] constant(0) dynamic-update-slice = bf16[2048,24576]{1,0} dynamic-update-slice(get-tuple-element.2, dot.2, reshape.4, constant.2), backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} dot.3 = bf16[512,24576]{1,0} dot(collective-permute, get-tuple-element.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} constant.3 = u32[] constant(1) add.1 = u32[] add(get-tuple-element.4, constant.3) add.2 = u32[] add(add.1, partition-id) remainder.1 = u32[] remainder(add.2, constant) dynamic-slice.1 = s32[1]{0} dynamic-slice(constant.1, remainder.1), dynamic_slice_sizes={1} reshape.5 = s32[] reshape(dynamic-slice.1) dynamic-update-slice.1 = bf16[2048,24576]{1,0} dynamic-update-slice(dynamic-update-slice, dot.3, reshape.5, constant.2) get-tuple-element.3 = bf16[2048,24576]{1,0} get-tuple-element(param), index=3 add.3 = u32[] add(add.1, constant.3) ROOT tuple = (bf16[512,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[2048,24576]{1,0}, bf16[2048,24576]{1,0}, u32[]) tuple(collective-permute, get-tuple-element.1, dynamic-update-slice.1, get-tuple-element.3, add.3) } windowed_dot_general_cond_ag { param.1 = (bf16[512,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[2048,24576]{1,0}, bf16[2048,24576]{1,0}, u32[]) parameter(0) get-tuple-element.5 = u32[] get-tuple-element(param.1), index=4 constant.8 = u32[] constant(4) ROOT compare = pred[] compare(get-tuple-element.5, constant.8), direction=LT } ENTRY test_main { param.4 = bf16[1,512,24576]{2,1,0} parameter(0), sharding={devices=[1,4,1]<=[4]} reshape.8 = bf16[512,24576]{1,0} reshape(param.4) param.5 = bf16[24576,24576]{1,0} parameter(1), sharding={devices=[1,4]<=[4]} constant.18 = bf16[] constant(0) broadcast = bf16[2048,24576]{1,0} broadcast(constant.18), dimensions={} constant.20 = u32[] constant(0) tuple.2 = (bf16[512,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[2048,24576]{1,0}, bf16[2048,24576]{1,0}, u32[]) tuple(reshape.8, param.5, broadcast, broadcast, constant.20) while = (bf16[512,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[2048,24576]{1,0}, bf16[2048,24576]{1,0}, u32[]) while(tuple.2), condition=windowed_dot_general_cond_ag, body=windowed_dot_general_body_ag.1 ROOT get-tuple-element.13 = bf16[2048,24576]{1,0} get-tuple-element(while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); GpuWindowedEinsumHandler gpu_handler; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, gpu_handler.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* ag_loop = module->entry_computation()->root_instruction()->mutable_operand(0); HloComputation* ag_loop_body = ag_loop->while_body(); HloInstruction* inst = FindInstructionByName(ag_loop_body, "dot.2"); EXPECT_GT(inst->backend_config<GpuBackendConfig>()->operation_queue_id(), 0); EXPECT_TRUE( inst->backend_config<GpuBackendConfig>()->force_earliest_schedule()); HloInstruction* cp1 = FindInstructionByName(ag_loop_body, "collective-permute"); EXPECT_TRUE( cp1->backend_config<GpuBackendConfig>()->force_earliest_schedule()); } TEST_F(GpuWindowedEinsumHanlderTest, RsLoopsHaveStreamIds) { constexpr absl::string_view kHloString = R"( HloModule pjit__unnamed_wrapped_function_, entry_computation_layout={(bf16[24576,24576]{1,0}, bf16[512,24576]{1,0}, bf16[2048,24576]{1,0})->bf16[512,24576]{1,0}}, num_partitions=4 windowed_dot_general_body_rs_clone.1 { param.2 = (bf16[2048,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[512,24576]{1,0}, bf16[512,24576]{1,0}, u32[]) parameter(0) get-tuple-element.6 = bf16[2048,24576]{1,0} get-tuple-element(param.2), index=0 get-tuple-element.7 = bf16[24576,24576]{1,0} get-tuple-element(param.2), index=1 get-tuple-element.9 = bf16[512,24576]{1,0} get-tuple-element(param.2), index=2 collective-permute.1 = bf16[512,24576]{1,0} collective-permute(get-tuple-element.9), channel_id=4, source_target_pairs={{0,2},{1,3},{2,0},{3,1}}, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} constant.10 = s32[4]{0} constant({0, 512, 1024, 1536}) get-tuple-element.11 = u32[] get-tuple-element(param.2), index=4 constant.12 = u32[] constant(2) add.8 = u32[] add(get-tuple-element.11, constant.12) constant.13 = u32[] constant(1) add.9 = u32[] add(add.8, constant.13) partition-id.3 = u32[] partition-id() add.10 = u32[] add(add.9, partition-id.3) constant.9 = u32[] constant(4) remainder.3 = u32[] remainder(add.10, constant.9) dynamic-slice.4 = s32[1]{0} dynamic-slice(constant.10, remainder.3), dynamic_slice_sizes={1} reshape.7 = s32[] reshape(dynamic-slice.4) constant.11 = s32[] constant(0) dynamic-slice.5 = bf16[512,24576]{1,0} dynamic-slice(get-tuple-element.6, reshape.7, constant.11), dynamic_slice_sizes={512,24576} dot.7 = bf16[512,24576]{1,0} dot(dynamic-slice.5, get-tuple-element.7), lhs_contracting_dims={1}, rhs_contracting_dims={0}, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} add.11 = bf16[512,24576]{1,0} add(collective-permute.1, dot.7), backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} get-tuple-element.10 = bf16[512,24576]{1,0} get-tuple-element(param.2), index=3 add.6 = u32[] add(get-tuple-element.11, partition-id.3) remainder.2 = u32[] remainder(add.6, constant.9) dynamic-slice.2 = s32[1]{0} dynamic-slice(constant.10, remainder.2), dynamic_slice_sizes={1} reshape.6 = s32[] reshape(dynamic-slice.2) dynamic-slice.3 = bf16[512,24576]{1,0} dynamic-slice(get-tuple-element.6, reshape.6, constant.11), dynamic_slice_sizes={512,24576} dot.5 = bf16[512,24576]{1,0} dot(dynamic-slice.3, get-tuple-element.7), lhs_contracting_dims={1}, rhs_contracting_dims={0}, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} add.7 = bf16[512,24576]{1,0} add(get-tuple-element.10, dot.5), backend_config={"operation_queue_id":"0","wait_on_operation_queues":[]} collective-permute.2 = bf16[512,24576]{1,0} collective-permute(add.7), channel_id=5, source_target_pairs={{0,2},{1,3},{2,0},{3,1}} ROOT tuple.1 = (bf16[2048,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[512,24576]{1,0}, bf16[512,24576]{1,0}, u32[]) tuple(get-tuple-element.6, get-tuple-element.7, add.11, collective-permute.2, add.8) } windowed_dot_general_cond_rs { param.3 = (bf16[2048,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[512,24576]{1,0}, bf16[512,24576]{1,0}, u32[]) parameter(0) get-tuple-element.12 = u32[] get-tuple-element(param.3), index=4 constant.17 = u32[] constant(4) ROOT compare.1 = pred[] compare(get-tuple-element.12, constant.17), direction=LT } ENTRY main.9_spmd { param.6 = bf16[24576,24576]{1,0} parameter(0), sharding={devices=[4,1]<=[4]} param.7 = bf16[512,24576]{1,0} parameter(1) param.8 = bf16[2048,24576]{1,0} parameter(2) constant.20 = u32[] constant(0) tuple.3 = (bf16[2048,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[512,24576]{1,0}, bf16[512,24576]{1,0}, u32[]) tuple(param.8, param.6, param.7, param.7, constant.20) while.1 = (bf16[2048,24576]{1,0}, bf16[24576,24576]{1,0}, bf16[512,24576]{1,0}, bf16[512,24576]{1,0}, u32[]) while(tuple.3), condition=windowed_dot_general_cond_rs, body=windowed_dot_general_body_rs_clone.1 ROOT get-tuple-element.14 = bf16[512,24576]{1,0} get-tuple-element(while.1), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); GpuWindowedEinsumHandler gpu_handler; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, gpu_handler.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* rs_loop = module->entry_computation()->root_instruction()->mutable_operand(0); HloComputation* rs_loop_body = rs_loop->while_body(); HloInstruction* inst = FindInstructionByName(rs_loop_body, "dot.7"); EXPECT_TRUE(inst->backend_config<GpuBackendConfig>()->operation_queue_id() > 0); HloInstruction* cp1 = FindInstructionByName(rs_loop_body, "collective-permute.1"); EXPECT_TRUE( cp1->backend_config<GpuBackendConfig>()->force_earliest_schedule()); } TEST_F(GpuWindowedEinsumHanlderTest, AgLoopsMultipleConsumersAreChained) { constexpr absl::string_view kHloString = R"( HloModule pjit__unnamed_wrapped_function_, entry_computation_layout={(bf16[2,512,24576]{2,1,0}, bf16[24576,24576]{1,0}, bf16[24576,24576]{1,0})->bf16[2,2048,24576]{2,1,0}}, num_partitions=4 windowed_dot_general_body_ag { param.1 = (bf16[2,512,24576]{2,1,0}, bf16[24576,24576]{1,0}, bf16[2,2048,24576]{2,1,0}, bf16[2,2048,24576]{2,1,0}, u32[]) parameter(0) get-tuple-element.1 = bf16[2,512,24576]{2,1,0} get-tuple-element(param.1), index=0 collective-permute = bf16[2,512,24576]{2,1,0} collective-permute(get-tuple-element.1), channel_id=2, source_target_pairs={{0,3},{1,0},{2,1},{3,2}} collective-permute.1 = bf16[2,512,24576]{2,1,0} collective-permute(collective-permute), channel_id=3, source_target_pairs={{0,3},{1,0},{2,1},{3,2}} get-tuple-element.2 = bf16[24576,24576]{1,0} get-tuple-element(param.1), index=1 get-tuple-element.3 = bf16[2,2048,24576]{2,1,0} get-tuple-element(param.1), index=2 dot = bf16[2,512,24576]{2,1,0} dot(get-tuple-element.1, get-tuple-element.2), lhs_contracting_dims={2}, rhs_contracting_dims={0} constant.2 = s32[] constant(0) constant.3 = s32[4]{0} constant({0, 512, 1024, 1536}) get-tuple-element.5 = u32[] get-tuple-element(param.1), index=4 partition-id = u32[] partition-id() add = u32[] add(get-tuple-element.5, partition-id) constant.1 = u32[] constant(4) remainder = u32[] remainder(add, constant.1) dynamic-slice = s32[1]{0} dynamic-slice(constant.3, remainder), dynamic_slice_sizes={1} reshape = s32[] reshape(dynamic-slice) dynamic-update-slice = bf16[2,2048,24576]{2,1,0} dynamic-update-slice(get-tuple-element.3, dot, constant.2, reshape, constant.2) dot.1 = bf16[2,512,24576]{2,1,0} dot(collective-permute, get-tuple-element.2), lhs_contracting_dims={2}, rhs_contracting_dims={0} constant.5 = u32[] constant(1) add.1 = u32[] add(get-tuple-element.5, constant.5) add.2 = u32[] add(add.1, partition-id) remainder.1 = u32[] remainder(add.2, constant.1) dynamic-slice.1 = s32[1]{0} dynamic-slice(constant.3, remainder.1), dynamic_slice_sizes={1} reshape.1 = s32[] reshape(dynamic-slice.1) dynamic-update-slice.1 = bf16[2,2048,24576]{2,1,0} dynamic-update-slice(dynamic-update-slice, dot.1, constant.2, reshape.1, constant.2) get-tuple-element.4 = bf16[2,2048,24576]{2,1,0} get-tuple-element(param.1), index=3 add.3 = u32[] add(add.1, constant.5) ROOT tuple = (bf16[2,512,24576]{2,1,0}, bf16[24576,24576]{1,0}, bf16[2,2048,24576]{2,1,0}, bf16[2,2048,24576]{2,1,0}, u32[]) tuple(collective-permute.1, get-tuple-element.2, dynamic-update-slice.1, get-tuple-element.4, add.3) } windowed_dot_general_cond_ag { param = (bf16[2,512,24576]{2,1,0}, bf16[24576,24576]{1,0}, bf16[2,2048,24576]{2,1,0}, bf16[2,2048,24576]{2,1,0}, u32[]) parameter(0) get-tuple-element = u32[] get-tuple-element(param), index=4 constant = u32[] constant(4) ROOT compare = pred[] compare(get-tuple-element, constant), direction=LT } ENTRY main.12_spmd { param.4 = bf16[2,512,24576]{2,1,0} parameter(0), sharding={devices=[1,4,1]<=[4]} param.5 = bf16[24576,24576]{1,0} parameter(1), sharding={devices=[1,4]<=[4]} constant.22 = bf16[] constant(0) broadcast = bf16[2,2048,24576]{2,1,0} broadcast(constant.22), dimensions={} constant.24 = u32[] constant(0) tuple.2 = (bf16[2,512,24576]{2,1,0}, bf16[24576,24576]{1,0}, bf16[2,2048,24576]{2,1,0}, bf16[2,2048,24576]{2,1,0}, u32[]) tuple(param.4, param.5, broadcast, broadcast, constant.24) while = (bf16[2,512,24576]{2,1,0}, bf16[24576,24576]{1,0}, bf16[2,2048,24576]{2,1,0}, bf16[2,2048,24576]{2,1,0}, u32[]) while(tuple.2), condition=windowed_dot_general_cond_ag, body=windowed_dot_general_body_ag get-tuple-element.13 = bf16[2,2048,24576]{2,1,0} get-tuple-element(while), index=2 copy.1 = bf16[2,2048,24576]{2,1,0} copy(get-tuple-element.13) all-gather = bf16[2,2048,24576]{2,1,0} all-gather(param.4), channel_id=1, replica_groups={{0,1,2,3}}, dimensions={1}, use_global_device_ids=true param.6 = bf16[24576,24576]{1,0} parameter(2), sharding={devices=[1,4]<=[4]} ROOT dot.7 = bf16[2,2048,24576]{2,1,0} dot(all-gather, param.6), lhs_contracting_dims={2}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); GpuWindowedEinsumHandler gpu_handler; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, gpu_handler.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* ag_loop = FindInstructionByName(module->entry_computation(), "while"); HloInstruction* inst = FindInstructionByName(module->entry_computation(), "dot.7"); EXPECT_EQ(inst->operand(0)->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(inst->operand(0)->tuple_index(), 5); EXPECT_EQ(inst->operand(0)->operand(0), ag_loop); HloInstruction* ag_while_root = ag_loop->while_body()->root_instruction(); EXPECT_THAT(ag_while_root, GmockMatch(m::Tuple( m::Op(), m::Op(), m::Op(), m::Op(), m::Op(), m::DynamicUpdateSlice( m::DynamicUpdateSlice( m::GetTupleElement(m::Parameter()) .WithPredicate([](const HloInstruction* instr) { return instr->tuple_index() == 5; }), m::Op(), m::Op(), m::Op(), m::Op()), m::Op(), m::Op(), m::Op(), m::Op())))); } TEST_F(GpuWindowedEinsumHanlderTest, A2aGemmHaveStreamIds) { constexpr absl::string_view kHloString = R"( HloModule pjit__unnamed_wrapped_function_, entry_computation_layout={(bf16[1,8192,32768]{2,1,0}, bf16[1,4,2048,8192]{3,2,1,0})->bf16[1,4,2048,32768]{3,2,1,0}}, num_partitions=8 ENTRY main.9_spmd { param0 = bf16[1,8192,32768]{2,1,0} parameter(0) param1 = bf16[1,4,2048,8192]{3,2,1,0} parameter(1) all-to-all = bf16[1,4,2048,8192]{3,2,1,0} all-to-all(param1), channel_id=4, replica_groups={{0,1,2,3},{4,5,6,7}}, dimensions={1} ROOT dot.12 = bf16[1,4,2048,32768]{3,2,1,0} dot(all-to-all, param0), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1} } )"; const char* kExpected = R"( CHECK: ENTRY CHECK-DAG: %[[P1:.*]] = bf16[1,4,2048,8192]{3,2,1,0} parameter(1) CHECK-DAG: %[[SLICE0:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [6144:8192]} CHECK: %[[A2A0:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE0]]), CHECK: replica_groups={ CHECK: {0,1,2,3},{4,5,6,7} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[P0:.*]] = bf16[1,8192,32768]{2,1,0} parameter(0) CHECK-DAG: %[[SLICE4:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [6144:8192], [0:32768]} CHECK-DAG: %[[DOT0:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A0:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE4:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1}, backend_config={"operation_queue_id":"8","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK-DAG: %[[SLICE1:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [4096:6144]} CHECK: %[[A2A1:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE1]]), CHECK: replica_groups={ CHECK: {0,1,2,3},{4,5,6,7} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE5:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [4096:6144], [0:32768]} CHECK-DAG: %[[DOT1:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A1:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE5:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1}, backend_config={"operation_queue_id":"7","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK-DAG: %[[SLICE2:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [2048:4096]} CHECK: %[[A2A2:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE2]]), CHECK: replica_groups={ CHECK: {0,1,2,3},{4,5,6,7} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE6:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [2048:4096], [0:32768]} CHECK-DAG: %[[DOT2:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A2:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE6:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1}, backend_config={"operation_queue_id":"6","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK-DAG: %[[SLICE3:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [0:2048]} CHECK: %[[A2A2:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE3]]), CHECK: replica_groups={ CHECK: {0,1,2,3},{4,5,6,7} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE7:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [0:2048], [0:32768]} CHECK-DAG: %[[DOT3:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A3:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE7:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1}, backend_config={"operation_queue_id":"5","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK-DAG: %[[CONSTANT:.*]] = bf16[] constant(0) CHECK-DAG: %[[BROADCAST:.*]] = bf16[1,4,2048,32768]{3,2,1,0} broadcast(bf16[] %[[CONSTANT:.*]]), dimensions={} CHECK-DAG: %[[ADD0:.*]] = bf16[1,4,2048,32768]{3,2,1,0} add(bf16[1,4,2048,32768]{3,2,1,0} %[[DOT0:.*]], bf16[1,4,2048,32768]{3,2,1,0} %[[BROADCAST:.*]]), backend_config={"operation_queue_id":"0","wait_on_operation_queues":["5"],"force_earliest_schedule":false} CHECK-DAG: %[[ADD1:.*]] = bf16[1,4,2048,32768]{3,2,1,0} add(bf16[1,4,2048,32768]{3,2,1,0} %[[DOT1:.*]], bf16[1,4,2048,32768]{3,2,1,0} %[[ADD0:.*]]), backend_config={"operation_queue_id":"0","wait_on_operation_queues":["6"],"force_earliest_schedule":false} CHECK-DAG: %[[ADD2:.*]] = bf16[1,4,2048,32768]{3,2,1,0} add(bf16[1,4,2048,32768]{3,2,1,0} %[[DOT2:.*]], bf16[1,4,2048,32768]{3,2,1,0} %[[ADD1:.*]]), backend_config={"operation_queue_id":"0","wait_on_operation_queues":["7"],"force_earliest_schedule":false} CHECK: ROOT {{.*}} = bf16[1,4,2048,32768]{3,2,1,0} add(bf16[1,4,2048,32768]{3,2,1,0} %[[DOT3:.*]], bf16[1,4,2048,32768]{3,2,1,0} %[[ADD2:.*]]) )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); GpuWindowedEinsumHandler gpu_handler; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, gpu_handler.Run(module.get())); TF_ASSERT_OK_AND_ASSIGN(bool filecheck_matched, RunFileCheck(module->ToString(), kExpected)); EXPECT_TRUE(filecheck_matched); } TEST_F(GpuWindowedEinsumHanlderTest, GemmA2aHaveStreamIds) { constexpr absl::string_view kHloString = R"( HloModule pjit__unnamed_wrapped_function_, entry_computation_layout={(bf16[1,8192,32768]{2,1,0}, bf16[1,4,2048,32768]{3,2,1,0})->bf16[1,4,2048,8192]{3,2,1,0}}, num_partitions=4 ENTRY main.9_spmd { param.9 = bf16[1,8192,32768]{2,1,0} parameter(0) param.10 = bf16[1,4,2048,32768]{3,2,1,0} parameter(1) dot.12 = bf16[1,4,2048,8192]{3,2,1,0} dot(param.10, param.9), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={2} ROOT all-to-all = bf16[1,4,2048,8192]{3,2,1,0} all-to-all(dot.12), channel_id=4, replica_groups={{0,1,2,3}}, dimensions={1} } )"; const char* kExpected = R"( CHECK: ENTRY CHECK-DAG: %[[P1:.*]] = bf16[1,4,2048,32768]{3,2,1,0} parameter(1) CHECK-DAG: %[[SLICE0:.*]] = bf16[1,4,2048,8192]{3,2,1,0} slice(bf16[1,4,2048,32768]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [24576:32768]} CHECK-DAG: %[[P0:.*]] = bf16[1,8192,32768]{2,1,0} parameter(0) CHECK-DAG: %[[SLICE4:.*]] = bf16[1,8192,8192]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [0:8192], [24576:32768]} CHECK-DAG: %[[DOT0:.*]] = bf16[1,4,2048,8192]{3,2,1,0} dot(bf16[1,4,2048,8192]{3,2,1,0} %[[SLICE0:.*]], bf16[1,8192,8192]{2,1,0} %[[SLICE4:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={2}, backend_config={"operation_queue_id":"8","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK: %[[A2A0:.*]] = bf16[1,4,2048,8192]{3,2,1,0} all-to-all(bf16[1,4,2048,8192]{3,2,1,0} %[[DOT0:.*]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE1:.*]] = bf16[1,4,2048,8192]{3,2,1,0} slice(bf16[1,4,2048,32768]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [16384:24576]} CHECK-DAG: %[[SLICE5:.*]] = bf16[1,8192,8192]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [0:8192], [16384:24576]} CHECK-DAG: %[[DOT1:.*]] = bf16[1,4,2048,8192]{3,2,1,0} dot(bf16[1,4,2048,8192]{3,2,1,0} %[[SLICE1:.*]], bf16[1,8192,8192]{2,1,0} %[[SLICE5:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={2}, backend_config={"operation_queue_id":"7","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK: %[[A2A1:.*]] = bf16[1,4,2048,8192]{3,2,1,0} all-to-all(bf16[1,4,2048,8192]{3,2,1,0} %[[DOT1:.*]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE2:.*]] = bf16[1,4,2048,8192]{3,2,1,0} slice(bf16[1,4,2048,32768]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [8192:16384]} CHECK-DAG: %[[SLICE6:.*]] = bf16[1,8192,8192]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [0:8192], [8192:16384]} CHECK-DAG: %[[DOT2:.*]] = bf16[1,4,2048,8192]{3,2,1,0} dot(bf16[1,4,2048,8192]{3,2,1,0} %[[SLICE2:.*]], bf16[1,8192,8192]{2,1,0} %[[SLICE6:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={2}, backend_config={"operation_queue_id":"6","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK: %[[A2A2:.*]] = bf16[1,4,2048,8192]{3,2,1,0} all-to-all(bf16[1,4,2048,8192]{3,2,1,0} %[[DOT2:.*]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE3:.*]] = bf16[1,4,2048,8192]{3,2,1,0} slice(bf16[1,4,2048,32768]{3,2,1,0} %[[P1]]), slice={[0:1], [0:4], [0:2048], [0:8192]} CHECK-DAG: %[[SLICE7:.*]] = bf16[1,8192,8192]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [0:8192], [0:8192]} CHECK-DAG: %[[DOT3:.*]] = bf16[1,4,2048,8192]{3,2,1,0} dot(bf16[1,4,2048,8192]{3,2,1,0} %[[SLICE3:.*]], bf16[1,8192,8192]{2,1,0} %[[SLICE7:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={2}, backend_config={"operation_queue_id":"5","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK: %[[A2A2:.*]] = bf16[1,4,2048,8192]{3,2,1,0} all-to-all(bf16[1,4,2048,8192]{3,2,1,0} %[[DOT3:.*]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[CONSTANT:.*]] = bf16[] constant(0) CHECK-DAG: %[[BROADCAST:.*]] = bf16[1,4,2048,8192]{3,2,1,0} broadcast(bf16[] %[[CONSTANT:.*]]), dimensions={} CHECK-DAG: %[[ADD0:.*]] = bf16[1,4,2048,8192]{3,2,1,0} add(bf16[1,4,2048,8192]{3,2,1,0} %[[A2A0:.*]], bf16[1,4,2048,8192]{3,2,1,0} %[[BROADCAST:.*]]) CHECK-DAG: %[[ADD1:.*]] = bf16[1,4,2048,8192]{3,2,1,0} add(bf16[1,4,2048,8192]{3,2,1,0} %[[A2A1:.*]], bf16[1,4,2048,8192]{3,2,1,0} %[[ADD0:.*]]) CHECK-DAG: %[[ADD2:.*]] = bf16[1,4,2048,8192]{3,2,1,0} add(bf16[1,4,2048,8192]{3,2,1,0} %[[A2A2:.*]], bf16[1,4,2048,8192]{3,2,1,0} %[[ADD1:.*]]) CHECK: ROOT {{.*}} = bf16[1,4,2048,8192]{3,2,1,0} add(bf16[1,4,2048,8192]{3,2,1,0} %[[A2A3:.*]], bf16[1,4,2048,8192]{3,2,1,0} %[[ADD2:.*]]) )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); GpuWindowedEinsumHandler gpu_handler; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, gpu_handler.Run(module.get())); TF_ASSERT_OK_AND_ASSIGN(bool filecheck_matched, RunFileCheck(module->ToString(), kExpected)); EXPECT_TRUE(filecheck_matched); } TEST_F(GpuWindowedEinsumHanlderTest, A2aTransposeLoopsHaveStreamIds) { constexpr absl::string_view kHloString = R"( HloModule pjit__unnamed_wrapped_function_, entry_computation_layout={(bf16[1,8192,32768]{2,1,0}, bf16[1,1,8192,4,1,2048]{5,4,3,2,1,0})->bf16[1,4,2048,32768]{3,2,1,0}}, num_partitions=4 ENTRY main.9_spmd { param.9 = bf16[1,8192,32768]{2,1,0} parameter(0) param.10 = bf16[1,1,8192,4,1,2048]{5,4,3,2,1,0} parameter(1) all-to-all = bf16[1,1,8192,4,1,2048]{5,4,3,2,1,0} all-to-all(param.10), channel_id=4, replica_groups={{0,1,2,3}}, dimensions={3} transpose.15 = bf16[1,4,1,8192,1,2048]{5,4,1,3,2,0} transpose(all-to-all), dimensions={0,3,1,2,4,5} reshape.2170 = bf16[1,4,8192,1,2048]{4,3,2,1,0} reshape(transpose.15) reshape.2173 = bf16[4,8192,1,2048]{3,2,1,0} reshape(reshape.2170) transpose.16 = bf16[1,4,2048,8192]{2,0,3,1} transpose(reshape.2173), dimensions={2,0,3,1} copy.53 = bf16[1,4,2048,8192]{3,2,1,0} copy(transpose.16) ROOT dot.12 = bf16[1,4,2048,32768]{3,2,1,0} dot(copy.53, param.9), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1} } )"; const char* kExpected = R"( CHECK: ENTRY CHECK-DAG: %[[P1:.*]] = bf16[1,1,8192,4,1,2048]{5,4,3,2,1,0} parameter(1) CHECK-DAG: %[[TRANSPOSE0:.*]] = bf16[1,4,1,8192,1,2048]{5,4,1,3,2,0} transpose(bf16[1,1,8192,4,1,2048]{5,4,3,2,1,0} %[[P1:.*]]), dimensions={0,3,1,2,4,5} CHECK-DAG: %[[RESHAPE0:.*]] = bf16[1,4,8192,1,2048]{4,3,2,1,0} reshape(bf16[1,4,1,8192,1,2048]{5,4,1,3,2,0} %[[TRANSPOSE0:.*]]) CHECK-DAG: %[[RESHAPE1:.*]] = bf16[4,8192,1,2048]{3,2,1,0} reshape(bf16[1,4,8192,1,2048]{4,3,2,1,0} %[[RESHAPE0:.*]]) CHECK-DAG: %[[TRANSPOSE1:.*]] = bf16[1,4,2048,8192]{2,0,3,1} transpose(bf16[4,8192,1,2048]{3,2,1,0} %[[RESHAPE1:.*]]), dimensions={2,0,3,1} CHECK-DAG: %[[COPY:.*]] = bf16[1,4,2048,8192]{3,2,1,0} copy(bf16[1,4,2048,8192]{2,0,3,1} %[[TRANSPOSE1:.*]]) CHECK-DAG: %[[SLICE0:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[COPY:.*]]), slice={[0:1], [0:4], [0:2048], [6144:8192]} CHECK: %[[A2A0:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE0]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[P0:.*]] = bf16[1,8192,32768]{2,1,0} parameter(0) CHECK-DAG: %[[SLICE4:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [6144:8192], [0:32768]} CHECK-DAG: %[[DOT0:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A0:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE4:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1}, backend_config={"operation_queue_id":"9","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK-DAG: %[[SLICE1:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[COPY:.*]]), slice={[0:1], [0:4], [0:2048], [4096:6144]} CHECK: %[[A2A1:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE1]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE5:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [4096:6144], [0:32768]} CHECK-DAG: %[[DOT1:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A1:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE5:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1}, backend_config={"operation_queue_id":"8","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK-DAG: %[[SLICE2:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[COPY:.*]]), slice={[0:1], [0:4], [0:2048], [2048:4096]} CHECK: %[[A2A2:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE2]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE6:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [2048:4096], [0:32768]} CHECK-DAG: %[[DOT2:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A2:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE6:.*]]), lhs_batch_dims={0}, lhs_contracting_dims={3}, rhs_batch_dims={0}, rhs_contracting_dims={1}, backend_config={"operation_queue_id":"7","wait_on_operation_queues":[],"force_earliest_schedule":false} CHECK-DAG: %[[SLICE3:.*]] = bf16[1,4,2048,2048]{3,2,1,0} slice(bf16[1,4,2048,8192]{3,2,1,0} %[[COPY:.*]]), slice={[0:1], [0:4], [0:2048], [0:2048]} CHECK: %[[A2A2:.*]] = bf16[1,4,2048,2048]{3,2,1,0} all-to-all(bf16[1,4,2048,2048]{3,2,1,0} %[[SLICE3]]), CHECK: replica_groups={ CHECK: {0,1,2,3} CHECK: } CHECK: dimensions={1} CHECK-DAG: %[[SLICE7:.*]] = bf16[1,2048,32768]{2,1,0} slice(bf16[1,8192,32768]{2,1,0} %[[P0:.*]]), slice={[0:1], [0:2048], [0:32768]} CHECK-DAG: %[[DOT3:.*]] = bf16[1,4,2048,32768]{3,2,1,0} dot(bf16[1,4,2048,2048]{3,2,1,0} %[[A2A3:.*]], bf16[1,2048,32768]{2,1,0} %[[SLICE7:.*]]),
2,052
cpp
tensorflow/tensorflow
cudnn_norm_rewriter
third_party/xla/xla/service/gpu/transforms/cudnn_norm_rewriter.cc
third_party/xla/xla/service/gpu/transforms/cudnn_norm_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_CUDNN_NORM_REWRITER_H_ #define XLA_SERVICE_GPU_CUDNN_NORM_REWRITER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class CudnnNormRewriter : public HloModulePass { public: explicit CudnnNormRewriter(se::CudaComputeCapability cuda_compute_capability); absl::string_view name() const override { return "norm-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: se::CudaComputeCapability cuda_compute_capability_; }; } } #endif #include "xla/service/gpu/cudnn_norm_rewriter.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <functional> #include <iterator> #include <limits> #include <optional> #include <utility> #include <vector> #include "google/protobuf/wrappers.pb.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/protobuf/dnn.pb.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cudnn/cudnn.h" #include "third_party/gpus/cudnn/cudnn_version.h" #endif namespace xla { namespace gpu { namespace { namespace m = match; const HloInstruction* SkipUnaryOps(const HloInstruction* instr) { while (instr->opcode() == HloOpcode::kConvert || instr->opcode() == HloOpcode::kBitcast || instr->opcode() == HloOpcode::kReshape) { instr = instr->operand(0); } return instr; } void SkipUnaryOpsTopDownRecursive(HloInstruction* instr, std::vector<HloInstruction*>& instrs) { if (instr->opcode() == HloOpcode::kConvert || instr->opcode() == HloOpcode::kBitcast || instr->opcode() == HloOpcode::kReshape) { for (HloInstruction* user : instr->users()) { SkipUnaryOpsTopDownRecursive(user, instrs); } } else { instrs.emplace_back(instr); } } struct NormMetadata { HloInstruction *x_transpose, *y_transpose; std::vector<int64_t> norm_dims_adjusted, non_norm_dims_adjusted; }; using NormMetadataMap = absl::flat_hash_map<HloInstruction*, NormMetadata>; class UniqueHloInstruction { public: UniqueHloInstruction() : is_set_(false), instr_(nullptr), capture_or_verify_() {} HloInstruction* Instr() const { return instr_; } void SetInstr(HloInstruction* instr) { is_set_ = true; instr_ = instr; } bool CaptureOrVerify(HloInstruction* instr) { if (is_set_ && instr != instr_) { instr_ = nullptr; } if (!is_set_) { is_set_ = true; instr_ = instr; } return instr_; } std::function<bool(const HloInstruction*)> GetCaptureOrVerifyFn() { if (!capture_or_verify_) { capture_or_verify_ = [this](const HloInstruction* instr) -> bool { return CaptureOrVerify(const_cast<HloInstruction*>(instr)); }; } return capture_or_verify_; } private: bool is_set_; HloInstruction* instr_; std::function<bool(const HloInstruction*)> capture_or_verify_; }; absl::StatusOr<int64_t> CConstant( se::CudaComputeCapability cuda_compute_capability) { if (cuda_compute_capability.major == se::CudaComputeCapability::AMPERE) { return 32 * 128; } else if (cuda_compute_capability.major == se::CudaComputeCapability::HOPPER) { return 32 * 144; } return xla::Internal("Norm kernels require Ampere or Hopper architecture."); } bool CompatibleElementType(const HloInstruction* instr) { PrimitiveType element_type = instr->shape().element_type(); return element_type == BF16 || element_type == F16 || element_type == F32; } std::vector<int64_t> AdjustedDimensions(const Shape& shape, absl::Span<const int64_t> dimensions) { absl::flat_hash_map<int64_t, int64_t> dimension_map; for (int64_t dimension = 0, non_degen_dimension = 0; dimension < shape.rank(); ++dimension) { if (shape.dimensions(dimension) > 1) { dimension_map.insert({dimension, non_degen_dimension}); non_degen_dimension++; } } std::vector<int64_t> adjusted_dimensions; for (int64_t dimension : dimensions) { auto non_degenerate_dimension = dimension_map.find(dimension); if (non_degenerate_dimension != dimension_map.end()) { adjusted_dimensions.emplace_back(non_degenerate_dimension->second); } } return adjusted_dimensions; } std::vector<int64_t> AdjustedDimensions(const HloInstruction* instr) { Shape shape; if (instr->opcode() == HloOpcode::kBroadcast) { shape = instr->shape(); } else if (instr->opcode() == HloOpcode::kReduce) { shape = instr->operand(0)->shape(); } else { return {}; } return AdjustedDimensions(shape, instr->dimensions()); } bool AppliesAddReduce(const HloInstruction* instr, absl::Span<const int64_t> reduce_dims = {}) { if (instr->opcode() != HloOpcode::kReduce) { return false; } if (!reduce_dims.empty() && AdjustedDimensions(instr) != reduce_dims) { return false; } HloComputation* reduce_comp = instr->to_apply(); HloInstruction* reduce_comp_root = reduce_comp->root_instruction(); return instr->operand_count() == 2 && instr->operand(1)->opcode() == HloOpcode::kConstant && ShapeUtil::IsScalar(instr->operand(1)->shape()) && instr->operand(1)->literal().GetAsDouble({}) == 0. && reduce_comp_root->opcode() == HloOpcode::kAdd && reduce_comp_root->operand(0)->opcode() == HloOpcode::kParameter && reduce_comp_root->operand(1)->opcode() == HloOpcode::kParameter; } bool CalculatesExpectation(const HloInstruction* instr) { instr = SkipUnaryOps(instr); if (instr->opcode() != HloOpcode::kMultiply) { return false; } bool bcast_operand = instr->operand(0)->opcode() != HloOpcode::kBroadcast; const HloInstruction *broadcast = instr->operand(bcast_operand), *reduce = SkipUnaryOps(instr->operand(!bcast_operand)); if (reduce->opcode() != HloOpcode::kReduce || broadcast->opcode() != HloOpcode::kBroadcast || broadcast->operand(0)->opcode() != HloOpcode::kConstant) { return false; } float actual_r_nelems = broadcast->operand(0)->literal().GetAsDouble({}).value(); int64_t nelems = 1; for (int64_t norm_dim : reduce->dimensions()) { nelems *= reduce->operand(0)->shape().dimensions()[norm_dim]; } float r_nelems = 1. / static_cast<float>(nelems); float numerical_epsilon = std::numeric_limits<bfloat16>::epsilon(); return abs(actual_r_nelems - r_nelems) < ((actual_r_nelems + r_nelems) * numerical_epsilon); } bool FindTargetRecursive( const HloInstruction* instr, const HloInstruction* target, absl::flat_hash_set<const HloInstruction*>& visited_instrs, const HloInstruction* transpose) { visited_instrs.emplace(instr); const absl::flat_hash_set<HloOpcode> supported_ops = { HloOpcode::kConvert, HloOpcode::kBitcast, HloOpcode::kReshape}; if (instr == target) { return true; } for (HloInstruction* user : instr->users()) { if ((supported_ops.contains(user->opcode()) || user == transpose) && !visited_instrs.contains(user)) { return FindTargetRecursive(user, target, visited_instrs, transpose); } } if (supported_ops.contains(instr->opcode())) { return FindTargetRecursive(instr->operand(0), target, visited_instrs, transpose); } return false; } bool FindTarget(const HloInstruction* custom_call, const HloInstruction* instr, const HloInstruction* target, const NormMetadataMap& norm_metadata) { absl::flat_hash_set<const HloInstruction*> visited_instrs; auto custom_call_metadata = norm_metadata.find(custom_call); if (custom_call_metadata == norm_metadata.end()) { return false; } return FindTargetRecursive(instr, target, visited_instrs, custom_call_metadata->second.x_transpose); } std::vector<int64_t> MapDimensions(const Shape& original_shape, const Shape& reshaped_shape, const absl::Span<const int64_t> dimensions) { auto dimension_product = [](const Shape& shape, absl::Span<const int64_t> product_dimensions) -> int64_t { int64_t product = 1; for (int64_t product_dimension : product_dimensions) { product *= shape.dimensions(product_dimension); } return product; }; absl::flat_hash_map<int64_t, std::vector<int64_t>> dimensions_map; std::vector<int64_t> original_dimensions, reshaped_dimensions; for (int64_t original_dimension = 0, reshaped_dimension = 0; original_dimension < original_shape.rank(); ++original_dimension) { original_dimensions.emplace_back(original_dimension); while ((reshaped_dimensions.empty() || dimension_product(reshaped_shape, reshaped_dimensions) < dimension_product(original_shape, original_dimensions)) && reshaped_dimension < reshaped_shape.rank()) { reshaped_dimensions.emplace_back(reshaped_dimension++); } if (original_dimensions.size() > 1 && reshaped_dimensions.size() > 1) { return {}; } if (dimension_product(original_shape, original_dimensions) == dimension_product(reshaped_shape, reshaped_dimensions)) { std::vector<int64_t> original_dimensions_in_dimensions; std::set_intersection( original_dimensions.begin(), original_dimensions.end(), dimensions.begin(), dimensions.end(), std::back_inserter(original_dimensions_in_dimensions)); if (!original_dimensions_in_dimensions.empty() && original_dimensions_in_dimensions.size() != original_dimensions.size()) { return {}; } for (int64_t dimension : original_dimensions) { dimensions_map.insert({dimension, reshaped_dimensions}); } original_dimensions.clear(); reshaped_dimensions.clear(); } } std::vector<int64_t> mapped_dimensions; for (int64_t dimension : dimensions) { auto mapped_dimension = dimensions_map.find(dimension); if (mapped_dimension == dimensions_map.end()) { return {}; } mapped_dimensions.insert(mapped_dimensions.end(), mapped_dimension->second.begin(), mapped_dimension->second.end()); } mapped_dimensions.erase( std::unique(mapped_dimensions.begin(), mapped_dimensions.end()), mapped_dimensions.end()); return mapped_dimensions; } HloInstruction* FindAddReduceRecursive( HloInstruction* instr, const Shape& orig_instr_shape, const absl::Span<const int64_t> reduce_dims, absl::flat_hash_set<HloInstruction*>& visited_instrs) { visited_instrs.emplace(instr); const absl::flat_hash_set<HloOpcode> supported_ops = { HloOpcode::kConvert, HloOpcode::kBitcast, HloOpcode::kReshape}; for (HloInstruction* user : instr->users()) { if (user->opcode() == HloOpcode::kReduce) { std::vector<int64_t> mapped_reduce_dims = MapDimensions(orig_instr_shape, instr->shape(), reduce_dims); if (!mapped_reduce_dims.empty() && AppliesAddReduce(user, mapped_reduce_dims)) { return user; } } if (supported_ops.contains(user->opcode()) && !visited_instrs.contains(user)) { return FindAddReduceRecursive(user, orig_instr_shape, reduce_dims, visited_instrs); } } if (supported_ops.contains(instr->opcode())) { return FindAddReduceRecursive(instr->mutable_operand(0), orig_instr_shape, reduce_dims, visited_instrs); } return nullptr; } HloInstruction* FindAddReduce(HloInstruction* instr, const absl::Span<const int64_t> reduce_dims) { absl::flat_hash_set<HloInstruction*> visited_instrs; return FindAddReduceRecursive(instr, instr->shape(), reduce_dims, visited_instrs); } template <typename Pattern> auto SupportedConvert(Pattern pattern) { auto supported_convert = [](const HloInstruction* instr) -> bool { return CompatibleElementType(instr) && CompatibleElementType(instr->operand(0)); }; return m::Convert(pattern).WithPredicate(supported_convert); } template <typename Pattern> auto SupportedBitcastOrReshape(Pattern pattern) { auto supported_bitcast_or_reshape = [](const HloInstruction* instr) -> bool { return ShapeUtil::Equal( ShapeUtil::DropDegenerateDimensions(instr->shape()), ShapeUtil::DropDegenerateDimensions(instr->operand(0)->shape())); }; return m::AnyOf<HloInstruction>( m::Bitcast(pattern).WithPredicate(supported_bitcast_or_reshape), m::Reshape(pattern).WithPredicate(supported_bitcast_or_reshape)); } template <typename Pattern> auto OptionalSupportedTransform(Pattern pattern) { auto shared_subpattern = m::SharedSubpattern(pattern); return m::AnyOf<HloInstruction>( SupportedConvert(SupportedBitcastOrReshape(shared_subpattern)), SupportedBitcastOrReshape(SupportedConvert(shared_subpattern)), SupportedConvert(shared_subpattern), SupportedBitcastOrReshape(shared_subpattern), shared_subpattern); } template <typename Pattern> auto BitcastOrReshape(Pattern pattern) { return OptionalSupportedTransform( m::AnyOf<HloInstruction>(m::Bitcast(pattern), m::Reshape(pattern))); } template <typename Pattern> auto Transpose(Pattern pattern) { return OptionalSupportedTransform(m::Transpose(pattern)); } template <typename Pattern> auto Rsqrt(HloInstruction** rsqrt, Pattern pattern) { return OptionalSupportedTransform(m::Rsqrt(rsqrt, pattern)); } template <typename Pattern0, typename Pattern1> auto AddAnyOrder(Pattern0 pattern0, Pattern1 pattern1) { return OptionalSupportedTransform(m::AddAnyOrder(pattern0, pattern1)); } template <typename Pattern0, typename Pattern1> auto Subtract(Pattern0 pattern0, Pattern1 pattern1) { return OptionalSupportedTransform(m::Subtract(pattern0, pattern1)); } template <typename Pattern0, typename Pattern1> auto Subtract(HloInstruction** subtract, Pattern0 pattern0, Pattern1 pattern1) { return OptionalSupportedTransform(m::Subtract(subtract, pattern0, pattern1)); } template <typename Pattern0, typename Pattern1> auto MultiplyAnyOrder(Pattern0 pattern0, Pattern1 pattern1) { return OptionalSupportedTransform(m::MultiplyAnyOrder(pattern0, pattern1)); } template <typename Pattern0, typename Pattern1> auto MultiplyAnyOrder(HloInstruction** multiply, Pattern0 pattern0, Pattern1 pattern1) { return OptionalSupportedTransform( m::MultiplyAnyOrder(multiply, pattern0, pattern1)); } template <typename Pattern> auto Square(Pattern pattern) { return MultiplyAnyOrder(pattern, pattern) .WithPredicate([](const HloInstruction* instr) { return instr->unique_operands().size() == 1; }); } template <typename Pattern> auto Cube(Pattern pattern) { auto unique_cube = [](const HloInstruction* instr) -> bool { bool square_operand = instr->operand(0)->opcode() != HloOpcode::kMultiply; return instr->operand(!square_operand)->opcode() != HloOpcode::kMultiply && instr->operand(square_operand)->operand(0) == instr->operand(!square_operand); }; return MultiplyAnyOrder(Square(pattern), pattern).WithPredicate(unique_cube); } template <typename Pattern> auto AddReduce(Pattern pattern) { return OptionalSupportedTransform( m::Reduce(pattern, m::Op()) .WithPredicate([](const HloInstruction* instr) { return AppliesAddReduce(instr); })); } template <typename Pattern> auto AddReduce(HloInstruction** reduction, Pattern pattern) { return OptionalSupportedTransform( m::Reduce(reduction, pattern, m::Op()) .WithPredicate([](const HloInstruction* instr) { return AppliesAddReduce(instr); })); } template <typename Pattern> auto NegateAddReduce(HloInstruction** reduction, Pattern pattern) { return m::AnyOf<HloInstruction>(AddReduce(reduction, m::Negate(pattern)), m::Negate(AddReduce(reduction, pattern))); } template <typename Pattern> auto Expectation(Pattern pattern) { auto shared_subpattern = MultiplyAnyOrder(m::Broadcast(m::ConstantScalar()), AddReduce(pattern)) .WithPredicate([](const HloInstruction* instr) { return CalculatesExpectation(instr); }); return m::AnyOf<HloInstruction>(m::Broadcast(shared_subpattern), shared_subpattern); } template <typename Pattern> auto Expectation(UniqueHloInstruction* expectation, Pattern pattern) { auto shared_subpattern = OptionalSupportedTransform( m::MultiplyAnyOrder(m::Broadcast(m::ConstantScalar()), AddReduce(pattern)) .WithPredicate([](const HloInstruction* instr) { return CalculatesExpectation(instr); }) .WithPredicate(expectation->GetCaptureOrVerifyFn())); return m::AnyOf<HloInstruction>(m::Broadcast(shared_subpattern), shared_subpattern); } template <typename Pattern> auto Expectation(UniqueHloInstruction* expectation, HloInstruction** reduce, Pattern pattern) { auto shared_subpattern = OptionalSupportedTransform( m::MultiplyAnyOrder(m::Broadcast(m::ConstantScalar()), AddReduce(reduce, pattern)) .WithPredicate([](const HloInstruction* instr) { return CalculatesExpectation(instr); }) .WithPredicate(expectation->GetCaptureOrVerifyFn())); return m::AnyOf<HloInstruction>(m::Broadcast(shared_subpattern), shared_subpattern); } auto Variance(UniqueHloInstruction* variance, UniqueHloInstruction* expectation, UniqueHloInstruction* x) { return m::AnyOf<HloInstruction>( Subtract( Expectation(Square(OptionalSupportedTransform( m::Op().WithPredicate(x->GetCaptureOrVerifyFn())))), Square(Expectation(expectation, OptionalSupportedTransform(m::Op().WithPredicate( x->GetCaptureOrVerifyFn()))))) .WithPredicate(variance->GetCaptureOrVerifyFn()), Expectation( Square(Subtract( OptionalSupportedTransform( m::Op().WithPredicate(x->GetCaptureOrVerifyFn())), Expectation(expectation, OptionalSupportedTransform(m::Op().WithPredicate( x->GetCaptureOrVerifyFn())))))) .WithPredicate(variance->GetCaptureOrVerifyFn())); } auto NormFactor(HloInstruction** norm_factor, UniqueHloInstruction* x, UniqueHloInstruction* variance, UniqueHloInstruction* expectation, UniqueHloInstruction* epsilon) { auto shared_subpattern = m::SharedSubpattern(Rsqrt( norm_factor, AddAnyOrder(Variance(variance, expectation, x), m::Broadcast(m::ConstantScalar().WithPredicate( epsilon->GetCaptureOrVerifyFn()))))); return m::AnyOf<HloInstruction>(m::Broadcast(shared_subpattern), shared_subpattern); } template <typename P0, typename P1, typename P2> auto MultiplyMultiplyAnyOrder(P0 p0, P1 p1, P2 p2) { return m::AnyOf<HloInstruction>( MultiplyAnyOrder(p0, MultiplyAnyOrder(p1, p2)), MultiplyAnyOrder(p1, MultiplyAnyOrder(p0, p2)), MultiplyAnyOrder(p2, MultiplyAnyOrder(p0, p1))); } template <typename P0, typename P1, typename P2> auto AddAddAnyOrder(P0 p0, P1 p1, P2 p2) { return m::AnyOf<HloInstruction>(AddAnyOrder(p0, AddAnyOrder(p1, p2)), AddAnyOrder(p1, AddAnyOrder(p0, p2)), AddAnyOrder(p2, AddAnyOrder(p0, p1))); } template <typename P0, typename P1, typename P2> auto MultiplyAddAnyOrder(P0 p0, P1 p1, P2 p2) { return m::AnyOf<HloInstruction>( MultiplyAnyOrder(p0, AddAnyOrder(p1, p2)), AddAnyOrder(MultiplyAnyOrder(p0, p1), MultiplyAnyOrder(p0, p2))); } template <typename P0, typename P1, typename P2> auto SubtractAddAnyOrder(P0 p0, P1 p1, P2 p2) { return m::AnyOf<HloInstruction>(AddAnyOrder(Subtract(p0, p1), p2), AddAnyOrder(Subtract(p2, p1), p0), Subtract(AddAnyOrder(p0, p2), p1)); } template <typename P0, typename P1, typename P2, typename P3, typename P4> auto SubtractMultiplyAddAnyOrder(P0 p0, P1 p1, P2 p2, P3 p3, P4 p4) { return m::AnyOf<HloInstruction>( SubtractAddAnyOrder(MultiplyMultiplyAnyOrder(p0, p2, p3), MultiplyMultiplyAnyOrder(p1, p2, p3), p4), AddAnyOrder(MultiplyMultiplyAnyOrder(Subtract(p0, p1), p2, p3), p4)); } auto FusedExpectation(UniqueHloInstruction* custom_call) { auto shared_subpattern = m::SharedSubpattern(m::GetTupleElement( m::CustomCall({kCudnnNormCallTarget}) .WithPredicate(custom_call->GetCaptureOrVerifyFn()), 1)); return m::AnyOf<HloInstruction>(shared_subpattern, BitcastOrReshape(shared_subpattern)); } auto FusedExpectation(UniqueHloInstruction* fused_expectation, UniqueHloInstruction* custom_call) { auto shared_subpattern = m::SharedSubpattern( m::GetTupleElement( m::CustomCall({kCudnnNormCallTarget}) .WithPredicate(custom_call->GetCaptureOrVerifyFn()), 1) .WithPredicate(fused_expectation->GetCaptureOrVerifyFn())); return m::AnyOf<HloInstruction>(shared_subpattern, BitcastOrReshape(shared_subpattern)); } auto FusedNormFactor(UniqueHloInstruction* custom_call) { auto shared_subpattern = m::SharedSubpattern(m::GetTupleElement( m::CustomCall({kCudnnNormCallTarget}) .WithPredicate(custom_call->GetCaptureOrVerifyFn()), 2)); return m::AnyOf<HloInstruction>(shared_subpattern, BitcastOrReshape(shared_subpattern)); } auto FusedNormFactor(UniqueHloInstruction* fused_norm_factor, UniqueHloInstruction* custom_call) { auto shared_subpattern = m::SharedSubpattern( m::GetTupleElement( m::CustomCall({kCudnnNormCallTarget}) .WithPredicate(custom_call->GetCaptureOrVerifyFn()), 2) .WithPredicate(fused_norm_factor->GetCaptureOrVerifyFn())); return m::AnyOf<HloInstruction>(shared_subpattern, BitcastOrReshape(shared_subpattern)); } auto DNormFactor(UniqueHloInstruction* custom_call) { return MultiplyAnyOrder(m::Broadcast(m::ConstantScalar(-0.5)), Cube(FusedNormFactor(custom_call))); } auto XCenter(UniqueHloInstruction* x, UniqueHloInstruction* custom_call, const NormMetadataMap& norm_metadata) { auto capture_or_verify_x = [x,
#include <string> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/stream_executor/device_description.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cudnn/cudnn.h" #include "third_party/gpus/cudnn/cudnn_version.h" #endif #include "xla/service/gpu/tests/gpu_codegen_test.h" namespace xla { namespace gpu { namespace { class CudnnNormRewriterTest : public GpuCodegenTest { public: se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GpuCodegenTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_cudnn_layer_norm(true); return debug_options; } protected: void TestNorm(std::string hlo_text, std::string optimized_hlo) { EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-3, 1e-3})); MatchOptimizedHlo(hlo_text, optimized_hlo); } }; TEST_F(CudnnNormRewriterTest, LayerNorm2D1) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,4] parameter(0) input_square = f32[2,4] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2] reduce(input_square, c0), dimensions={1}, to_apply=apply r_nelems = f32[] constant(0.25) r_nelems_bcast = f32[2] broadcast(r_nelems), dimensions={} input_square_mean = f32[2] multiply(input_square_sum, r_nelems_bcast) input_sum = f32[2] reduce(input, c0),dimensions={1}, to_apply=apply input_mean = f32[2] multiply(input_sum, r_nelems_bcast) input_mean_square = f32[2] multiply(input_mean, input_mean) variance = f32[2] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2] add(variance, epsilon_bcast) norm_factor = f32[2] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,4] broadcast(norm_factor), dimensions={0} input_mean_bcast = f32[2,4] broadcast(input_mean), dimensions={0} input_center = f32[2,4] subtract(input, input_mean_bcast) norm = f32[2,4] multiply(norm_factor_bcast, input_center) scale = f32[4] parameter(1) scale_bcast = f32[2,4] broadcast(scale), dimensions={1} norm_scale = f32[2,4] multiply(norm, scale_bcast) bias = f32[4] parameter(2) bias_broadcast = f32[2,4] broadcast(bias), dimensions={1} ROOT out = f32[2,4] add(norm_scale, bias_broadcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,4], {{.*}}: f32[4], {{.*}}: f32[4]) -> f32[2,4] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,4]{1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[2,4,1,1]{3,2,1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4]{0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,4,1,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,4,1,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[2,4,1,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE:%[^ ]+]] = f32[2,4,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: ROOT [[GTE_BITCAST:%[^ ]+]] = f32[2,4]{1,0} bitcast([[GTE]]) )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNorm4D3) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,4,6,8] parameter(0) input_square = f32[2,4,6,8] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2,4,6] reduce(input_square, c0), dimensions={3}, to_apply=apply r_nelems = f32[] constant(0.125) r_nelems_bcast = f32[2,4,6] broadcast(r_nelems), dimensions={} input_square_mean = f32[2,4,6] multiply(input_square_sum, r_nelems_bcast) input_sum = f32[2,4,6] reduce(input, c0), dimensions={3}, to_apply=apply input_mean = f32[2,4,6] multiply(input_sum, r_nelems_bcast) input_mean_square = f32[2,4,6] multiply(input_mean, input_mean) variance = f32[2,4,6] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2,4,6] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2,4,6] add(variance, epsilon_bcast) norm_factor = f32[2,4,6] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,4,6,8] broadcast(norm_factor), dimensions={0,1,2} input_mean_bcast = f32[2,4,6,8] broadcast(input_mean), dimensions={0,1,2} input_center = f32[2,4,6,8] subtract(input, input_mean_bcast) norm = f32[2,4,6,8] multiply(norm_factor_bcast, input_center) scale = f32[8] parameter(1) scale_bcast = f32[2,4,6,8] broadcast(scale), dimensions={3} norm_scale = f32[2,4,6,8] multiply(norm, scale_bcast) bias = f32[8] parameter(2) bias_bcast = f32[2,4,6,8] broadcast(bias), dimensions={3} ROOT out = f32[2,4,6,8] add(norm_scale, bias_bcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,4,6,8], {{.*}}: f32[8], {{.*}}: f32[8]) -> f32[2,4,6,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,4,6,8]{3,2,1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[48,8,1,1]{3,2,1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[8]{0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,8,1,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[8]{0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,8,1,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[48,8,1,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE:%[^ ]+]] = f32[48,8,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: ROOT [[GTE_BITCAST:%[^ ]+]] = f32[2,4,6,8]{3,2,1,0} bitcast([[GTE]]) )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNorm4D3Degenerate0) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[1,4,6,8] parameter(0) input_square = f32[1,4,6,8] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[1,4,6] reduce(input_square, c0), dimensions={3}, to_apply=apply r_nelems = f32[] constant(0.125) r_nelems_bcast = f32[1,4,6] broadcast(r_nelems), dimensions={} input_square_mean = f32[1,4,6] multiply(input_square_sum, r_nelems_bcast) input_sum = f32[1,4,6] reduce(input, c0), dimensions={3}, to_apply=apply input_mean = f32[1,4,6] multiply(input_sum, r_nelems_bcast) input_mean_square = f32[1,4,6] multiply(input_mean, input_mean) variance = f32[1,4,6] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[1,4,6] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[1,4,6] add(variance, epsilon_bcast) norm_factor = f32[1,4,6] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[1,4,6,8] broadcast(norm_factor), dimensions={0,1,2} input_mean_bcast = f32[1,4,6,8] broadcast(input_mean), dimensions={0,1,2} input_center = f32[1,4,6,8] subtract(input, input_mean_bcast) norm = f32[1,4,6,8] multiply(norm_factor_bcast, input_center) scale = f32[8] parameter(1) scale_bcast = f32[1,4,6,8] broadcast(scale), dimensions={3} norm_scale = f32[1,4,6,8] multiply(norm, scale_bcast) bias = f32[8] parameter(2) bias_bcast = f32[1,4,6,8] broadcast(bias), dimensions={3} ROOT out = f32[1,4,6,8] add(norm_scale, bias_bcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[1,4,6,8], {{.*}}: f32[8], {{.*}}: f32[8]) -> f32[1,4,6,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[1,4,6,8]{3,2,1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[24,8,1,1]{3,2,1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[8]{0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,8,1,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[8]{0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,8,1,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[24,8,1,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE:%[^ ]+]] = f32[24,8,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: ROOT [[GTE_BITCAST:%[^ ]+]] = f32[1,4,6,8]{3,2,1,0} bitcast([[GTE]]) )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNorm4D2) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,4,6,8] parameter(0) input_square = f32[2,4,6,8] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2,4,8] reduce(input_square, c0), dimensions={2}, to_apply=apply r_nelems = f32[] constant(0.166667) r_nelems_bcast = f32[2,4,8] broadcast(r_nelems), dimensions={} input_square_mean = f32[2,4,8] multiply(input_square_sum, r_nelems_bcast) reduce = f32[2,4,8] reduce(input, c0), dimensions={2}, to_apply=apply input_mean = f32[2,4,8] multiply(reduce, r_nelems_bcast) input_mean_square = f32[2,4,8] multiply(input_mean, input_mean) variance = f32[2,4,8] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2,4,8] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2,4,8] add(variance, epsilon_bcast) norm_factor = f32[2,4,8] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,4,6,8] broadcast(norm_factor), dimensions={0,1,3} input_mean_bcast = f32[2,4,6,8] broadcast(input_mean), dimensions={0,1,3} input_center = f32[2,4,6,8] subtract(input, input_mean_bcast) norm = f32[2,4,6,8] multiply(norm_factor_bcast, input_center) scale = f32[6] parameter(1) scale_bcast = f32[2,4,6,8] broadcast(scale), dimensions={2} norm_scale = f32[2,4,6,8] multiply(norm, scale_bcast) bias = f32[6] parameter(2) bias_broadcast = f32[2,4,6,8] broadcast(bias), dimensions={2} ROOT out = f32[2,4,6,8] add(norm_scale, bias_broadcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,4,6,8], {{.*}}: f32[6], {{.*}}: f32[6]) -> f32[2,4,6,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,4,6,8]{3,2,1,0} parameter(0) ; CHECK-NEXT: [[TRANSPOSE:%[^ ]+]] = f32[2,4,8,6]{3,2,1,0} transpose([[P0]]), dimensions={0,1,3,2} ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[64,6,1,1]{3,2,1,0} bitcast([[TRANSPOSE]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[6]{0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,6,1,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[6]{0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,6,1,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[64,6,1,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE:%[^ ]+]] = f32[64,6,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: ROOT [[FUSION:%[^ ]+]] = f32[2,4,6,8]{3,2,1,0} fusion([[GTE]]), kind=kLoop, calls=[[FUSED_COMPUTATION:%[^ ]+]] )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNorm4D2Degenerate1) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,1,6,8] parameter(0) input_square = f32[2,1,6,8] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2,1,8] reduce(input_square, c0), dimensions={2}, to_apply=apply r_nelems = f32[] constant(0.166667) r_nelems_bcast = f32[2,1,8] broadcast(r_nelems), dimensions={} input_square_mean = f32[2,1,8] multiply(input_square_sum, r_nelems_bcast) reduce = f32[2,1,8] reduce(input, c0), dimensions={2}, to_apply=apply input_mean = f32[2,1,8] multiply(reduce, r_nelems_bcast) input_mean_square = f32[2,1,8] multiply(input_mean, input_mean) variance = f32[2,1,8] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2,1,8] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2,1,8] add(variance, epsilon_bcast) norm_factor = f32[2,1,8] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,1,6,8] broadcast(norm_factor), dimensions={0,1,3} input_mean_bcast = f32[2,1,6,8] broadcast(input_mean), dimensions={0,1,3} input_center = f32[2,1,6,8] subtract(input, input_mean_bcast) norm = f32[2,1,6,8] multiply(norm_factor_bcast, input_center) scale = f32[6] parameter(1) scale_bcast = f32[2,1,6,8] broadcast(scale), dimensions={2} norm_scale = f32[2,1,6,8] multiply(norm, scale_bcast) bias = f32[6] parameter(2) bias_broadcast = f32[2,1,6,8] broadcast(bias), dimensions={2} ROOT out = f32[2,1,6,8] add(norm_scale, bias_broadcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,1,6,8], {{.*}}: f32[6], {{.*}}: f32[6]) -> f32[2,1,6,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,1,6,8]{3,2,1,0} parameter(0) ; CHECK-NEXT: [[TRANSPOSE:%[^ ]+]] = f32[1,2,8,6]{3,2,1,0} transpose([[P0]]), dimensions={1,0,3,2} ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[16,6,1,1]{3,2,1,0} bitcast([[TRANSPOSE]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[6]{0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,6,1,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[6]{0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,6,1,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[16,6,1,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE:%[^ ]+]] = f32[16,6,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: ROOT [[FUSION:%[^ ]+]] = f32[2,1,6,8]{3,2,1,0} fusion([[GTE]]), kind=kLoop, calls=[[FUSED_COMPUTATION:%[^ ]+]] )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNorm4D12) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,4,6,8] parameter(0) input_square = f32[2,4,6,8] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2,8] reduce(input_square, c0), dimensions={1,2}, to_apply=apply r_nelems = f32[] constant(0.041667) r_nelems_bcast = f32[2,8] broadcast(r_nelems), dimensions={} input_square_mean = f32[2,8] multiply(input_square_sum, r_nelems_bcast) reduce = f32[2,8] reduce(input, c0), dimensions={1,2}, to_apply=apply input_mean = f32[2,8] multiply(reduce, r_nelems_bcast) input_mean_square = f32[2,8] multiply(input_mean, input_mean) variance = f32[2,8] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2,8] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2,8] add(variance, epsilon_bcast) norm_factor = f32[2,8] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,4,6,8] broadcast(norm_factor), dimensions={0,3} input_mean_bcast = f32[2,4,6,8] broadcast(input_mean), dimensions={0,3} input_center = f32[2,4,6,8] subtract(input, input_mean_bcast) norm = f32[2,4,6,8] multiply(norm_factor_bcast, input_center) scale = f32[4,6] parameter(1) scale_bcast = f32[2,4,6,8] broadcast(scale), dimensions={1,2} norm_scale = f32[2,4,6,8] multiply(norm, scale_bcast) bias = f32[4,6] parameter(2) bias_broadcast = f32[2,4,6,8] broadcast(bias), dimensions={1,2} ROOT out = f32[2,4,6,8] add(norm_scale, bias_broadcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,4,6,8], {{.*}}: f32[4,6], {{.*}}: f32[4,6]) -> f32[2,4,6,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,4,6,8]{3,2,1,0} parameter(0) ; CHECK-NEXT: [[TRANSPOSE:%[^ ]+]] = f32[2,8,4,6]{3,2,1,0} transpose([[P0]]), dimensions={0,3,1,2} ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[16,4,6,1]{3,2,1,0} bitcast([[TRANSPOSE]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4,6]{1,0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,4,6,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4,6]{1,0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,4,6,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[16,4,6,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE:%[^ ]+]] = f32[16,4,6,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: ROOT [[FUSION:%[^ ]+]] = f32[2,4,6,8]{3,2,1,0} fusion([[GTE]]), kind=kLoop, calls=[[FUSED_COMPUTATION:%[^ ]+]] )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNorm4D12Degenerate2) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,4,1,8] parameter(0) input_square = f32[2,4,1,8] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2,8] reduce(input_square, c0), dimensions={1,2}, to_apply=apply r_nelems = f32[] constant(0.25) r_nelems_bcast = f32[2,8] broadcast(r_nelems), dimensions={} input_square_mean = f32[2,8] multiply(input_square_sum, r_nelems_bcast) reduce = f32[2,8] reduce(input, c0), dimensions={1,2}, to_apply=apply input_mean = f32[2,8] multiply(reduce, r_nelems_bcast) input_mean_square = f32[2,8] multiply(input_mean, input_mean) variance = f32[2,8] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2,8] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2,8] add(variance, epsilon_bcast) norm_factor = f32[2,8] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,4,1,8] broadcast(norm_factor), dimensions={0,3} input_mean_bcast = f32[2,4,1,8] broadcast(input_mean), dimensions={0,3} input_center = f32[2,4,1,8] subtract(input, input_mean_bcast) norm = f32[2,4,1,8] multiply(norm_factor_bcast, input_center) scale = f32[4,1] parameter(1) scale_bcast = f32[2,4,1,8] broadcast(scale), dimensions={1,2} norm_scale = f32[2,4,1,8] multiply(norm, scale_bcast) bias = f32[4,1] parameter(2) bias_broadcast = f32[2,4,1,8] broadcast(bias), dimensions={1,2} ROOT out = f32[2,4,1,8] add(norm_scale, bias_broadcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,4,1,8], {{.*}}: f32[4,1], {{.*}}: f32[4,1]) -> f32[2,4,1,8] { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,4,1,8]{3,2,1,0} parameter(0) ; CHECK-NEXT: [[TRANSPOSE:%[^ ]+]] = f32[1,2,8,4]{3,2,1,0} transpose([[P0]]), dimensions={2,0,3,1} ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[16,4,1,1]{3,2,1,0} bitcast([[TRANSPOSE]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4,1]{1,0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,4,1,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4,1]{1,0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,4,1,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[16,4,1,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE:%[^ ]+]] = f32[16,4,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: ROOT [[FUSION:%[^ ]+]] = f32[2,4,1,8]{3,2,1,0} fusion([[GTE]]), kind=kLoop, calls=[[FUSED_COMPUTATION:%[^ ]+]] )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNorm4D3IncorrectScaleBroadcast) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,2,2,2] parameter(0) input_square = f32[2,2,2,2] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2,2,2] reduce(input_square, c0), dimensions={3}, to_apply=apply r_nelems = f32[] constant(0.5) r_nelems_bcast = f32[2,2,2] broadcast(r_nelems), dimensions={} input_square_mean = f32[2,2,2] multiply(input_square_sum, r_nelems_bcast) input_sum = f32[2,2,2] reduce(input, c0), dimensions={3}, to_apply=apply input_mean = f32[2,2,2] multiply(input_sum, r_nelems_bcast) input_mean_square = f32[2,2,2] multiply(input_mean, input_mean) variance = f32[2,2,2] subtract(input_square_mean, input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2,2,2] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2,2,2] add(variance, epsilon_bcast) norm_factor = f32[2,2,2] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,2,2,2] broadcast(norm_factor), dimensions={0,1,2} input_mean_bcast = f32[2,2,2,2] broadcast(input_mean), dimensions={0,1,2} input_center = f32[2,2,2,2] subtract(input, input_mean_bcast) norm = f32[2,2,2,2] multiply(norm_factor_bcast, input_center) scale = f32[2] parameter(1) scale_bcast = f32[2,2,2,2] broadcast(scale), dimensions={2} norm_scale = f32[2,2,2,2] multiply(norm, scale_bcast) bias = f32[2] parameter(2) bias_bcast = f32[2,2,2,2] broadcast(bias), dimensions={3} ROOT out = f32[2,2,2,2] add(norm_scale, bias_bcast) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,2,2,2], {{.*}}: f32[2], {{.*}}: f32[2]) -> f32[2,2,2,2] { ; CHECK-NOT: custom_call_target="__cudnn$norm" )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNormTrain2D1) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,4] parameter(0) input_square = f32[2,4] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2] reduce(input_square, c0), dimensions={1}, to_apply=apply r_nelems = f32[] constant(0.25) r_nelems_bcast = f32[2] broadcast(r_nelems), dimensions={} input_square_mean = f32[2] multiply(input_square_sum,r_nelems_bcast) reduce = f32[2] reduce(input, c0), dimensions={1}, to_apply=apply input_mean = f32[2] multiply(reduce,r_nelems_bcast) input_mean_square = f32[2] multiply(input_mean,input_mean) variance = f32[2] subtract(input_square_mean,input_mean_square) epsilon = f32[] constant(0.001) epsilon_bcast = f32[2] broadcast(epsilon), dimensions={} variance_plus_epsilon = f32[2] add(variance, epsilon_bcast) norm_factor = f32[2] rsqrt(variance_plus_epsilon) norm_factor_bcast = f32[2,4] broadcast(norm_factor), dimensions={0} input_mean_bcast = f32[2,4] broadcast(input_mean), dimensions={0} input_center = f32[2,4] subtract(input,input_mean_bcast) norm = f32[2,4] multiply(norm_factor_bcast,input_center) scale = f32[4] parameter(1) scale_bcast = f32[2,4] broadcast(scale), dimensions={1} norm_scale = f32[2,4] multiply(norm,scale_bcast) bias = f32[4] parameter(2) bias_broadcast = f32[2,4] broadcast(bias), dimensions={1} norm_scale_bias = f32[2,4] add(norm_scale, bias_broadcast) norm_factor_cube = f32[2] divide(norm_factor, variance_plus_epsilon) ROOT out = (f32[2,4], f32[2], f32[2], f32[2]) tuple(norm_scale_bias, input_mean, norm_factor, norm_factor_cube) })"; const char* optimized_hlo = R"( ; CHECK-LABEL: ENTRY %test ({{.*}}: f32[2,4], {{.*}}: f32[4], {{.*}}: f32[4]) -> (f32[2,4], f32[2], f32[2], f32[2]) { ; CHECK-NEXT: [[P0:%[^ ]+]] = f32[2,4]{1,0} parameter(0) ; CHECK-NEXT: [[P0_BITCAST:%[^ ]+]] = f32[2,4,1,1]{3,2,1,0} bitcast([[P0]]) ; CHECK-NEXT: [[P1:%[^ ]+]] = f32[4]{0} parameter(1) ; CHECK-NEXT: [[P1_BITCAST:%[^ ]+]] = f32[1,4,1,1]{3,2,1,0} bitcast([[P1]]) ; CHECK-NEXT: [[P2:%[^ ]+]] = f32[4]{0} parameter(2) ; CHECK-NEXT: [[P2_BITCAST:%[^ ]+]] = f32[1,4,1,1]{3,2,1,0} bitcast([[P2]]) ; CHECK-NEXT: [[CC:%[^ ]+]] = (f32[2,4,1,1]{3,2,1,0}, f32[2,1,1,1]{3,2,1,0}, f32[2,1,1,1]{3,2,1,0}, u8[{{.*}}]{0}) custom-call([[P0_BITCAST]], [[P1_BITCAST]], [[P2_BITCAST]]), ; CHECK: custom_call_target="__cudnn$norm", ; CHECK: backend_config={ ; CHECK-DAG: "epsilon":0.001 ; CHECK: } ; CHECK-NEXT: [[GTE0:%[^ ]+]] = f32[2,4,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=0 ; CHECK-NEXT: [[GTE0_BITCAST:%[^ ]+]] = f32[2,4]{1,0} bitcast([[GTE0]]) ; CHECK-NEXT: [[GTE1:%[^ ]+]] = f32[2,1,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=1 ; CHECK-NEXT: [[GTE1_BITCAST:%[^ ]+]] = f32[2]{0} bitcast([[GTE1]]) ; CHECK-NEXT: [[GTE2:%[^ ]+]] = f32[2,1,1,1]{3,2,1,0} get-tuple-element([[CC]]), index=2 ; CHECK-NEXT: [[GTE2_BITCAST:%[^ ]+]] = f32[2]{0} bitcast([[GTE2]]) ; CHECK-NEXT: [[FUSION:%[^ ]+]] = f32[2]{0} fusion([[GTE2]]), kind=kLoop, calls=[[FUSED_COMPUTATION:%[^ ]+]] ; CHECK-NEXT: ROOT [[OUT:%[^ ]+]] = (f32[2,4]{1,0}, f32[2]{0}, f32[2]{0}, f32[2]{0}) tuple([[GTE0_BITCAST]], [[GTE1_BITCAST]], [[GTE2_BITCAST]], [[FUSION]]) )"; TestNorm(hlo_text, optimized_hlo); } TEST_F(CudnnNormRewriterTest, LayerNormTrain4D3) { #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8905) GTEST_SKIP() << "Layer norm kernels require CUDA 12 and cuDNN 8.9.5."; #endif if (!(GetCudaComputeCapability().major == se::CudaComputeCapability::AMPERE) && !(GetCudaComputeCapability().major == se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "Layer norm kernels require Ampere or Hopper architectures."; } const char* hlo_text = R"( HloModule test apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a,b) } ENTRY test { input = f32[2,4,6,8] parameter(0) input_square = f32[2,4,6,8] multiply(input, input) c0 = f32[] constant(0) input_square_sum = f32[2,4,6] reduce(input_square,
2,053
cpp
tensorflow/tensorflow
pipelined_p2p_rewriter
third_party/xla/xla/service/gpu/transforms/pipelined_p2p_rewriter.cc
third_party/xla/xla/service/gpu/transforms/pipelined_p2p_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_PIPELINED_P2P_REWRITER_H_ #define XLA_SERVICE_GPU_PIPELINED_P2P_REWRITER_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class PipelinedP2PRewriter : public HloModulePass { public: absl::string_view name() const override { return "pipelined-p2p-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/pipelined_p2p_rewriter.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using CollectiveInComputation = absl::flat_hash_map<const HloComputation*, bool>; using InstructionVector = HloInstruction::InstructionVector; struct PipelinedP2PInfo { int64_t opnd_start; int64_t opnd_end; }; bool IsCollectiveOp(const HloInstruction* op) { HloOpcode opcode = op->opcode(); if (opcode == HloOpcode::kCustomCall) { return true; } return hlo_query::IsCollectiveCommunicationOp(opcode) || opcode == HloOpcode::kSend || opcode == HloOpcode::kRecv; } bool MayInvokeCollectiveOp( const HloInstruction* hlo, const CollectiveInComputation& collective_in_computation) { if (IsCollectiveOp(hlo)) { return true; } for (HloComputation* callee : hlo->called_computations()) { auto collective_in_comp = collective_in_computation.find(callee); CHECK(collective_in_comp != collective_in_computation.end()); if (collective_in_comp->second) { return true; } } return false; } HloInstruction* FindUniqueGTEUserWithIndex(const HloInstruction* op, int64_t idx) { CHECK(op->shape().IsTuple()); HloInstruction* gte = nullptr; for (auto user : op->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { continue; } if (user->tuple_index() == idx) { if (gte == nullptr) { gte = user; } else { return nullptr; } } } return gte; } bool HasGTEUserWithIndex(const HloInstruction* op, int64_t idx) { CHECK(op->shape().IsTuple()); for (auto user : op->users()) { if (user->opcode() != HloOpcode::kGetTupleElement) { continue; } if (user->tuple_index() == idx) { return true; } } return false; } HloInstruction* MaySkipTrivialTuple(HloInstruction* op) { if (op->opcode() != HloOpcode::kTuple) { return op; } HloInstruction* hidden_op = nullptr; for (auto opnd : op->mutable_operands()) { if (opnd->opcode() != HloOpcode::kGetTupleElement) { return op; } if (hidden_op == nullptr) { hidden_op = opnd->mutable_operand(0); } else if (opnd->mutable_operand(0) != hidden_op) { return op; } } return hidden_op; } const HloInstruction* MaySkipTrivialTuple(const HloInstruction* op) { return MaySkipTrivialTuple(const_cast<HloInstruction*>(op)); } std::optional<PipelinedP2PInfo> FindConsecutiveAndBalanceBlockOfSendDoneRecvDone( const HloInstruction* while_init) { PipelinedP2PInfo pipelined_p2p_info{0, 0}; auto has_started = [&]() { return pipelined_p2p_info.opnd_start != pipelined_p2p_info.opnd_end; }; int difference = 0; for (int64_t i = 0; i < while_init->operand_count(); ++i) { const HloInstruction* op = while_init->operand(i); if ((op->opcode() == HloOpcode::kRecvDone || op->opcode() == HloOpcode::kSendDone) && op->frontend_attributes().map().count(kSendRecvPipelineAttr) > 0) { if (op->opcode() == HloOpcode::kRecvDone) { difference++; } else { difference--; } if (!has_started()) { pipelined_p2p_info.opnd_start = i; } pipelined_p2p_info.opnd_end = i + 1; } else { if (has_started()) { VLOG(10) << "End a consecutive block"; break; } } } if (difference != 0) { VLOG(10) << "Mismatch number of SendDone and RecvDone: " << difference; return std::nullopt; } if (has_started()) { for (int64_t i = pipelined_p2p_info.opnd_end; i < while_init->operand_count(); ++i) { const HloInstruction* op = while_init->operand(i); if (op->opcode() == HloOpcode::kRecvDone || op->opcode() == HloOpcode::kSendDone) { VLOG(10) << "SendDone/RecvDone outside the consecutive block"; return std::nullopt; break; } } } if (!has_started()) { VLOG(10) << "No SendDone/RecvDone in while-init "; return std::nullopt; } return pipelined_p2p_info; } std::optional<PipelinedP2PInfo> FindPipelinedP2P( const HloInstruction* while_op) { VLOG(10) << "while_op: " << while_op->ToString(); const HloInstruction* while_init = while_op->while_init(); if (while_init->opcode() != HloOpcode::kTuple || while_init->user_count() != 1) { return std::nullopt; } const HloComputation* while_body = while_op->while_body(); const HloComputation* while_condition = while_op->while_condition(); if (while_body->num_parameters() != 1 || while_condition->num_parameters() != 1) { return std::nullopt; } std::optional<PipelinedP2PInfo> pipelined_p2p_info = FindConsecutiveAndBalanceBlockOfSendDoneRecvDone(while_init); if (!pipelined_p2p_info.has_value()) { return std::nullopt; } VLOG(10) << "opnd_start " << pipelined_p2p_info->opnd_start << " opnd_end " << pipelined_p2p_info->opnd_end; for (int64_t i = pipelined_p2p_info->opnd_start; i < pipelined_p2p_info->opnd_end; ++i) { const HloInstruction* op = while_init->operand(i); if (op->opcode() == HloOpcode::kRecvDone) { if (!FindUniqueGTEUserWithIndex(while_op, i)) { VLOG(10) << "While result get-tuple-element user with index " << i << " not unique"; return std::nullopt; } if (!FindUniqueGTEUserWithIndex(while_body->parameter_instruction(0), i)) { VLOG(10) << "While-body parameter get-tuple-element user with index " << i << " not unique"; return std::nullopt; } } else { CHECK(op->opcode() == HloOpcode::kSendDone); if (HasGTEUserWithIndex(while_op, i) || HasGTEUserWithIndex(while_body->parameter_instruction(0), i)) { VLOG(10) << "SendDone with index " << i << " has unexpected users"; return std::nullopt; } } } const HloInstruction* root = while_body->root_instruction(); for (int64_t i = pipelined_p2p_info->opnd_start; i < pipelined_p2p_info->opnd_end; ++i) { const HloInstruction* op_init = while_init->operand(i); const HloInstruction* op_root = root->operand(i); op_root = MaySkipTrivialTuple(op_root); if (op_init->opcode() != op_root->opcode()) { VLOG(10) << "Mismatching opcode, op_init: " << op_init->ToString() << " op_root: " << op_root->ToString(); return std::nullopt; } } return pipelined_p2p_info.value(); } absl::Status RemoveOpFromParent(HloInstruction* op) { TF_RETURN_IF_ERROR(op->DropAllControlDeps()); TF_RETURN_IF_ERROR(op->parent()->RemoveInstruction(op)); return absl::OkStatus(); } absl::Status ReplaceOpInSequence(HloInstruction* old_op, HloInstruction* new_op, HloInstructionSequence& instruction_sequence) { VLOG(10) << "old_op: " << old_op->ToString(); VLOG(10) << "new_op: " << new_op->ToString(); instruction_sequence.replace_instruction(old_op, new_op); return RemoveOpFromParent(old_op); } absl::Status ReplaceUsesAndUpdateSequence( HloInstruction* old_op, HloInstruction* new_op, HloInstructionSequence& instruction_sequence, bool diff_shape = false) { VLOG(10) << "old_op: " << old_op->ToString(); VLOG(10) << "new_op: " << new_op->ToString(); if (diff_shape) { TF_RETURN_IF_ERROR(old_op->ReplaceAllUsesWithDifferentShape(new_op)); } else { TF_RETURN_IF_ERROR(old_op->ReplaceAllUsesWith(new_op)); } return ReplaceOpInSequence(old_op, new_op, instruction_sequence); } absl::Status ReplaceUsesAndUpdateSequence( const InstructionVector& old_ops, const InstructionVector& new_ops, HloInstructionSequence& instruction_sequence) { CHECK(old_ops.size() == new_ops.size()); for (int64_t i = 0; i < old_ops.size(); ++i) { TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence(old_ops[i], new_ops[i], instruction_sequence)); } return absl::OkStatus(); } absl::Status RemoveDoneOpsAndUpdateSequence( const InstructionVector& ops, HloInstructionSequence& instruction_sequence) { auto remove_op = [&](HloInstruction* op) { VLOG(10) << "op: " << op->ToString(); TF_RETURN_IF_ERROR(RemoveOpFromParent(op)); instruction_sequence.remove_instruction(op); return absl::OkStatus(); }; for (auto op : ops) { if (op->opcode() == HloOpcode::kTuple) { InstructionVector to_remove; HloInstruction* tuple_op = op; op = MaySkipTrivialTuple(tuple_op); to_remove.push_back(tuple_op); for (auto opnd : tuple_op->mutable_operands()) { to_remove.push_back(opnd); } for (auto opnd : to_remove) { TF_RETURN_IF_ERROR(remove_op(opnd)); } } TF_RETURN_IF_ERROR(remove_op(op)); } return absl::OkStatus(); } bool InsertBeforeFirstCollectiveOp( const InstructionVector& ops, const CollectiveInComputation& collective_in_computation, HloInstructionSequence& instruction_sequence, int64_t& idx, int64_t& idx_tot) { bool inserted = false; while (idx < idx_tot) { HloInstruction* hlo = instruction_sequence.instructions()[idx]; if (MayInvokeCollectiveOp(hlo, collective_in_computation)) { for (auto op : ops) { instruction_sequence.insert_instruction(op, idx); idx++; idx_tot++; } inserted = true; break; } idx++; } return inserted; } void CopyInstructionInfo(const HloInstruction* old_op, HloInstruction* new_op) { new_op->set_metadata(old_op->metadata()); new_op->add_frontend_attributes(old_op->frontend_attributes()); new_op->CopyBackendConfigFrom(old_op); } HloInstruction* CreateRecvDoneFrom(const HloInstruction* old_recv_done, HloInstruction* recv, HloComputation* computation) { HloInstruction* recv_done = computation->AddInstruction(HloInstruction::CreateRecvDone( recv, old_recv_done->channel_id().value())); CopyInstructionInfo(old_recv_done, recv_done); return recv_done; } HloInstruction* CreateSendDoneFrom(const HloInstruction* old_send_done, HloInstruction* send, HloComputation* computation) { HloInstruction* send_done = computation->AddInstruction(HloInstruction::CreateSendDone( send, old_send_done->channel_id().value())); CopyInstructionInfo(old_send_done, send_done); return send_done; } absl::Status RewritePipelinedP2PWhileBody( const CollectiveInComputation& collective_in_computation, const std::vector<Shape>& new_parameter_shapes, HloInstruction* while_op, int64_t opnd_start, int64_t opnd_end) { HloComputation* computation = while_op->while_body(); HloInstruction* while_init = while_op->while_init(); HloInstruction* root = computation->root_instruction(); HloInstructionSequence& instruction_sequence = computation->parent()->schedule().GetOrCreateSequence(computation); HloInstruction* param = computation->parameter_instruction(0); *param->mutable_shape() = ShapeUtil::MakeTupleShape(new_parameter_shapes); InstructionVector recv_dones; InstructionVector new_recv_dones; InstructionVector new_send_dones; for (int64_t i = opnd_start; i < opnd_end; ++i) { const HloInstruction* op = root->operand(i); op = MaySkipTrivialTuple(op); if (op->opcode() == HloOpcode::kRecvDone) { HloInstruction* gte = FindUniqueGTEUserWithIndex(param, i); CHECK(gte != nullptr); recv_dones.push_back(gte); HloInstruction* recv = computation->AddInstruction( HloInstruction::CreateGetTupleElement(param, i)); HloInstruction* recv_done = CreateRecvDoneFrom(op, recv, computation); new_recv_dones.push_back(recv_done); continue; } CHECK(op->opcode() == HloOpcode::kSendDone); HloInstruction* send = computation->AddInstruction( HloInstruction::CreateGetTupleElement(param, i)); HloInstruction* send_done = CreateSendDoneFrom(op, send, computation); new_send_dones.push_back(send_done); } TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence(recv_dones, new_recv_dones, instruction_sequence)); InstructionVector done_ops; InstructionVector new_opnds; for (int64_t i = 0; i < while_init->operand_count(); ++i) { HloInstruction* op = root->mutable_operand(i); if (i >= opnd_start && i < opnd_end) { new_opnds.push_back(MaySkipTrivialTuple(op)->mutable_operand(0)); done_ops.push_back(op); } else { new_opnds.push_back(op); } } HloInstruction* new_root = computation->AddInstruction(HloInstruction::CreateTuple(new_opnds)); computation->set_root_instruction(new_root, true); TF_RETURN_IF_ERROR(computation->RemoveInstruction(root)); instruction_sequence.replace_instruction(root, new_root); TF_RETURN_IF_ERROR( RemoveDoneOpsAndUpdateSequence(done_ops, instruction_sequence)); int64_t idx = 0; int64_t idx_end = instruction_sequence.size(); bool inserted = InsertBeforeFirstCollectiveOp(new_send_dones, collective_in_computation, instruction_sequence, idx, idx_end); CHECK(inserted); CHECK(idx_end == instruction_sequence.size()); return absl::OkStatus(); } void RewritePipelinedP2PWhileCond( const std::vector<Shape>& new_parameter_shapes, HloInstruction* while_op) { HloComputation* computation = while_op->while_condition(); HloInstruction* param = computation->parameter_instruction(0); *param->mutable_shape() = ShapeUtil::MakeTupleShape(new_parameter_shapes); VLOG(10) << computation->ToString(); } absl::Status TransformLoop( const PipelinedP2PInfo& pipelined_info, const CollectiveInComputation& collective_in_computation, int64_t& idx, int64_t& idx_end, HloInstructionSequence& instruction_sequence, HloInstruction* while_op) { HloComputation* computation = while_op->parent(); int64_t opnd_start = pipelined_info.opnd_start; int64_t opnd_end = pipelined_info.opnd_end; VLOG(10) << "Transform pipelined while-op " << while_op->ToString(); HloInstruction* while_init = while_op->while_init(); InstructionVector new_while_init_opnds; std::vector<Shape> new_parameter_shapes; for (int64_t i = 0; i < while_init->operand_count(); ++i) { HloInstruction* op = while_init->mutable_operand(i); if (i >= opnd_start && i < opnd_end) { new_while_init_opnds.push_back(op->mutable_operand(0)); } else { new_while_init_opnds.push_back(op); } new_parameter_shapes.push_back(new_while_init_opnds.back()->shape()); } RewritePipelinedP2PWhileCond(new_parameter_shapes, while_op); TF_RETURN_IF_ERROR(RewritePipelinedP2PWhileBody( collective_in_computation, new_parameter_shapes, while_op, opnd_start, opnd_end)); HloInstruction* new_while_init = computation->AddInstruction( HloInstruction::CreateTuple(new_while_init_opnds), "while-init"); VLOG(10) << "new_while_init: " << new_while_init->ToString(); HloInstruction* new_while_op = computation->AddInstruction( HloInstruction::CreateWhile( while_op->while_body()->root_instruction()->shape(), while_op->while_condition(), while_op->while_body(), new_while_init), "while-result"); CopyInstructionInfo(while_op, new_while_op); VLOG(10) << "new_while_op: " << new_while_op->ToString(); InstructionVector recv_dones; InstructionVector new_recv_dones; InstructionVector new_send_dones; InstructionVector done_ops; for (int64_t i = opnd_start; i < opnd_end; ++i) { HloInstruction* op = while_init->mutable_operand(i); done_ops.push_back(op); if (op->opcode() == HloOpcode::kRecvDone) { HloInstruction* gte = FindUniqueGTEUserWithIndex(while_op, i); CHECK(gte != nullptr); recv_dones.push_back(gte); HloInstruction* recv = computation->AddInstruction( HloInstruction::CreateGetTupleElement(new_while_op, i)); HloInstruction* recv_done = computation->AddInstruction( HloInstruction::CreateRecvDone(recv, op->channel_id().value())); new_recv_dones.push_back(recv_done); CopyInstructionInfo(op, recv_done); continue; } CHECK(op->opcode() == HloOpcode::kSendDone); HloInstruction* send = computation->AddInstruction( HloInstruction::CreateGetTupleElement(new_while_op, i)); HloInstruction* send_done = computation->AddInstruction( HloInstruction::CreateSendDone(send, op->channel_id().value())); new_send_dones.push_back(send_done); CopyInstructionInfo(op, send_done); } TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence( while_op, new_while_op, instruction_sequence, true)); TF_RETURN_IF_ERROR( ReplaceOpInSequence(while_init, new_while_init, instruction_sequence)); TF_RETURN_IF_ERROR(ReplaceUsesAndUpdateSequence(recv_dones, new_recv_dones, instruction_sequence)); TF_RETURN_IF_ERROR( RemoveDoneOpsAndUpdateSequence(done_ops, instruction_sequence)); int64_t opnd_tot = opnd_end - opnd_start; CHECK(idx_end == instruction_sequence.size() + opnd_tot); CHECK(instruction_sequence.instructions()[idx - opnd_tot] == new_while_op); idx_end -= opnd_tot; idx = idx - opnd_tot + 1; bool inserted = InsertBeforeFirstCollectiveOp(new_send_dones, collective_in_computation, instruction_sequence, idx, idx_end); CHECK(idx_end == instruction_sequence.size()); if (!inserted) { CHECK(idx_end == idx); idx--; for (auto send_done : new_send_dones) { instruction_sequence.insert_instruction(send_done, idx++); } } return absl::OkStatus(); } absl::StatusOr<bool> ProcessComputation( HloModule* module, HloComputation* computation, CollectiveInComputation& collective_in_computation) { VLOG(10) << "Process compuation " << computation->name(); bool changed = false; HloInstructionSequence& instruction_sequence = module->schedule().GetOrCreateSequence(computation); int64_t idx = 0; int64_t idx_end = instruction_sequence.size(); while (idx < idx_end) { HloInstruction* hlo = instruction_sequence.instructions()[idx]; if (MayInvokeCollectiveOp(hlo, collective_in_computation)) { collective_in_computation[computation] = true; } if (hlo->opcode() != HloOpcode::kWhile) { idx++; continue; } std::optional<PipelinedP2PInfo> pipelined_info = FindPipelinedP2P(hlo); if (!pipelined_info.has_value()) { idx++; continue; } TF_RETURN_IF_ERROR(TransformLoop(pipelined_info.value(), collective_in_computation, idx, idx_end, instruction_sequence, hlo)); changed = true; } return changed; } } absl::StatusOr<bool> PipelinedP2PRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; if (!module->has_schedule()) return changed; CollectiveInComputation collective_in_computation; for (auto* computation : module->MakeComputationPostOrder(execution_threads)) { if (computation->IsFusionComputation()) { collective_in_computation[computation] = false; continue; } TF_ASSIGN_OR_RETURN( bool cur_changed, ProcessComputation(module, computation, collective_in_computation)); changed |= cur_changed; } if (changed) { TF_RETURN_IF_ERROR(module->schedule().Update()); } return changed; } } }
#include "xla/service/gpu/pipelined_p2p_rewriter.h" #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class PipelinedP2pRewriterTest : public HloTestBase { protected: void DoFileCheck(const HloModule* module, absl::string_view expected) { HloPrintOptions options; options.set_print_operand_shape(false); options.set_print_result_shape(false); TF_ASSERT_OK_AND_ASSIGN(bool filecheck_matched, RunFileCheck(module->ToString(options), expected)); EXPECT_TRUE(filecheck_matched); } }; TEST_F(PipelinedP2pRewriterTest, SendRecUnpipelinedNotTransform) { const char* kModuleStr = R"( HloModule test cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(11) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = u32[2] get-tuple-element(param), index=1 after-all.0.n = token[] after-all() recv.0 = (u32[2], u32[], token[]) recv(after-all.0.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } send.0 = (u32[2], u32[], token[]) send(send-data, after-all.0.n), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.0 = token[] send-done(send.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } recv-data = u32[2] get-tuple-element(recv-done.0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond, backend_config={"known_trip_count":{"n":"11"}} ROOT recv-data = u32[2] get-tuple-element(while_result), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(PipelinedP2pRewriterTest, SendRecvPipelined1) { const char* kModuleStr = R"( HloModule test, is_scheduled=true while-cond { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done.q), index=0 c1 = u32[] constant(1) new-count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} send-data = f32[1, 1024, 1024] add(c, s) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } gte.0 = f32[1,1024,1024] get-tuple-element(recv-done.p), index=0 gte.1 = token[] get-tuple-element(recv-done.p), index=1 recv-done-tuple = (f32[1,1024,1024], token[]) tuple(gte.0, gte.1) ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done-tuple, send-done.p) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.1 = token[] after-all() recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send.1 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.1.p = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.1.p = token[] send-done(send.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } while-init.p = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.1.p, send-done.1.p) while-result.p = (u32[], (f32[1,1024,1024], token[]), token[]) while(while-init.p), body=while-body, condition=while-cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=1 ROOT entry-result = f32[1, 1024, 1024] get-tuple-element(recv-done.1.q), index=0 } )"; const char* kExpected = R"( CHECK: %while-body (param.1: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[])) { CHECK: %param.1 = parameter(0) CHECK: %get-tuple-element = get-tuple-element(%param.1), index=1 CHECK: %get-tuple-element.1 = get-tuple-element(%param.1), index=2 CHECK: %count.1 = get-tuple-element(%param.1), index=0 CHECK: %recv-done = recv-done(%get-tuple-element), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %recv-data = get-tuple-element(%recv-done), index=0 CHECK: %c1 = constant(1) CHECK: %new-count = add(%count.1, %c1) CHECK: %replica = replica-id() CHECK: %c10 = constant(10) CHECK: %sum = add(%replica, %c10) CHECK: %sum2 = add(%sum, %count.1) CHECK: %conv = convert(%sum2) CHECK: %p = broadcast(%conv), dimensions={} CHECK: %b = add(%p, %recv-data) CHECK: %c = multiply(%b, %b) CHECK: %d = tan(%c) CHECK: %s = dot(%c, %d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} CHECK: %send-data = add(%c, %s) CHECK: %after-all = after-all() CHECK: %send-done = send-done(%get-tuple-element.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK{LITERAL}: %recv = recv(%after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}"} CHECK{LITERAL}: %send = send(%send-data, %after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}"} CHECK: ROOT %tuple = tuple(%new-count, %recv, %send) CHECK: } CHECK: %while-cond (param: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> pred[] { CHECK: %param = parameter(0) CHECK: %count = get-tuple-element(%param), index=0 CHECK: %ub = constant(25) CHECK: ROOT %cond-result = compare(%count, %ub), direction=LT CHECK: } CHECK: ENTRY %main () -> f32[1,1024,1024] { CHECK: %c0 = constant(0) CHECK: %f0 = constant(0) CHECK: %init = broadcast(%f0), dimensions={} CHECK: %after-all.1 = after-all() CHECK{LITERAL}: %recv.1 = recv(%after-all.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}"} CHECK{LITERAL}: %send.1 = send(%init, %after-all.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}"} CHECK: %while-init = tuple(%c0, %recv.1, %send.1) CHECK: %while-result = while(%while-init), condition=%while-cond, body=%while-body, CHECK-SAME{LITERAL}: backend_config={"known_trip_count":{"n":"25"}} CHECK: %get-tuple-element.2 = get-tuple-element(%while-result), index=1 CHECK: %get-tuple-element.3 = get-tuple-element(%while-result), index=2 CHECK: %recv-done.1 = recv-done(%get-tuple-element.2), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %send-done.1 = send-done(%get-tuple-element.3), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: ROOT %entry-result = get-tuple-element(%recv-done.1), index=0 CHECK: })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_TRUE(changed); DoFileCheck(module.get(), kExpected); } TEST_F(PipelinedP2pRewriterTest, SendRecvTwoPipelinedWhileLoops) { const char* kModuleStr = R"( HloModule test, is_scheduled=true while-cond { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 send-data = f32[1, 1024, 1024] get-tuple-element(recv-done.q), index=0 c1 = u32[] constant(1) new-count = u32[] add(count, c1) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } gte.0 = f32[1,1024,1024] get-tuple-element(recv-done.p), index=0 gte.1 = token[] get-tuple-element(recv-done.p), index=1 recv-done-tuple = (f32[1,1024,1024], token[]) tuple(gte.0, gte.1) ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done-tuple, send-done.p) } while-cond-2 { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body-2 { param = (u32[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 send-data = f32[1, 1024, 1024] get-tuple-element(recv-done.q), index=0 c1 = u32[] constant(1) new-count = u32[] add(count, c1) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } gte.0 = f32[1,1024,1024] get-tuple-element(recv-done.p), index=0 gte.1 = token[] get-tuple-element(recv-done.p), index=1 recv-done-tuple = (f32[1,1024,1024], token[]) tuple(gte.0, gte.1) ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done-tuple, send-done.p) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.1 = token[] after-all() recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send.1 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.1), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done.1.p = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.1.p = token[] send-done(send.1), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } while-init.p = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.1.p, send-done.1.p) while-result.p = (u32[], (f32[1,1024,1024], token[]), token[]) while(while-init.p), body=while-body, condition=while-cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=1 after-all-2.1 = token[] after-all() recv-2.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } send-2.1 = (f32[1, 1024, 1024], u32[], token[]) send(recv-done.1.q, after-all-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}, {3,4}}", _xla_send_recv_pipeline="0" } recv-done-2.1.p = (f32[1,1024,1024], token[]) recv-done(recv-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done-2.1.p = token[] send-done(send-2.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="0" } while-init-2.p = (u32[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done-2.1.p, send-done-2.1.p) while-result-2.p = (u32[], (f32[1,1024,1024], token[]), token[]) while(while-init-2.p), body=while-body-2, condition=while-cond-2, backend_config={"known_trip_count":{"n":"25"}} recv-done-2.1.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result-2.p), index=1 ROOT entry-result = f32[1, 1024, 1024] get-tuple-element(recv-done-2.1.q), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_TRUE(changed); } TEST_F(PipelinedP2pRewriterTest, SendRecvPipelined2) { const char* kModuleStr = R"( HloModule test, is_scheduled=true while-cond { param = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(25) ROOT cond-result = pred[] compare(count, ub), direction=LT } while-body { param = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) parameter(0) count = get-tuple-element(param), index=0 recv-done.0.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=1 recv-data.0 = f32[1, 1024, 1024] get-tuple-element(recv-done.0.q), index=0 recv-done.1.q = (f32[1,1024,1024], token[]) get-tuple-element(param), index=3 recv-data.1 = f32[1, 1024, 1024] get-tuple-element(recv-done.1.q), index=0 replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[1, 1024, 1024] broadcast(compare0), dimensions={} recv-data = f32[1, 1024, 1024] select(compare, recv-data.0, recv-data.1) c1 = u32[] constant(1) new-count = u32[] add(count, c1) c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} send-data = f32[1, 1024, 1024] add(c, s) after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } send = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.p = (f32[1,1024,1024], token[]) recv-done(recv), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.p = token[] send-done(send), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.1 = token[] after-all() recv.1 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } send.1 = (f32[1, 1024, 1024], u32[], token[]) send(send-data, after-all.1), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } recv-done.1.p = (f32[1,1024,1024], token[]) recv-done(recv.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } send-done.1.p = token[] send-done(send.1), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } ROOT body-result = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) tuple(new-count, recv-done.p, send-done.p, recv-done.1.p, send-done.1.p) } ENTRY main { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all.2 = token[] after-all() recv.2 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } send.2 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.2), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{3,0}}", _xla_send_recv_pipeline="0" } recv-done.2.p = (f32[1,1024,1024], token[]) recv-done(recv.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } send-done.2.p = token[] send-done(send.2), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } after-all.3 = token[] after-all() recv.3 = (f32[1, 1024, 1024], u32[], token[]) recv(after-all.3), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } send.3 = (f32[1, 1024, 1024], u32[], token[]) send(init, after-all.3), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}", _xla_send_recv_pipeline="1" } recv-done.3.p = (f32[1,1024,1024], token[]) recv-done(recv.3), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } send-done.3.p = token[] send-done(send.3), channel_id=2, frontend_attributes={ _xla_send_recv_pipeline="1" } while-init.p = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) tuple(c0, recv-done.2.p, send-done.2.p, recv-done.3.p, send-done.3.p) while-result.p = (u32[], (f32[1,1024,1024], token[]), token[], (f32[1,1024,1024], token[]), token[]) while(while-init.p), body=while-body, condition=while-cond, backend_config={"known_trip_count":{"n":"25"}} recv-done.2.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=1 recv-data.2 = f32[1, 1024, 1024] get-tuple-element(recv-done.2.q), index=0 recv-done.3.q = (f32[1,1024,1024], token[]) get-tuple-element(while-result.p), index=3 recv-data.3 = f32[1, 1024, 1024] get-tuple-element(recv-done.3.q), index=0 replica = u32[] replica-id() constant0 = u32[] constant(0) compare0 = pred[] compare(replica, constant0), direction=EQ compare = pred[1, 1024, 1024] broadcast(compare0), dimensions={} ROOT entry-result = f32[1, 1024, 1024] select(compare, recv-data.2, recv-data.3) } )"; const char* kExpected = R"( CHECK: %while-body (param.1: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[])) { CHECK: %param.1 = parameter(0) CHECK: %get-tuple-element = get-tuple-element(%param.1), index=1 CHECK: %get-tuple-element.1 = get-tuple-element(%param.1), index=2 CHECK: %get-tuple-element.2 = get-tuple-element(%param.1), index=3 CHECK: %get-tuple-element.3 = get-tuple-element(%param.1), index=4 CHECK: %count.1 = get-tuple-element(%param.1), index=0 CHECK: %recv-done = recv-done(%get-tuple-element), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %recv-data.0 = get-tuple-element(%recv-done), index=0 CHECK: %recv-done.1 = recv-done(%get-tuple-element.2), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %recv-data.1 = get-tuple-element(%recv-done.1), index=0 CHECK: %replica = replica-id() CHECK: %constant0 = constant(0) CHECK: %compare0 = compare(%replica, %constant0), direction=EQ CHECK: %compare = broadcast(%compare0), dimensions={} CHECK: %recv-data.2 = select(%compare, %recv-data.0, %recv-data.1) CHECK: %c1 = constant(1) CHECK: %new-count = add(%count.1, %c1) CHECK: %c10 = constant(10) CHECK: %sum = add(%replica, %c10) CHECK: %sum2 = add(%sum, %count.1) CHECK: %conv = convert(%sum2) CHECK: %p = broadcast(%conv), dimensions={} CHECK: %b = add(%p, %recv-data.2) CHECK: %c = multiply(%b, %b) CHECK: %d = tan(%c) CHECK: %s = dot(%c, %d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} CHECK: %send-data = add(%c, %s) CHECK: %after-all = after-all() CHECK: %send-done = send-done(%get-tuple-element.1), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %send-done.1 = send-done(%get-tuple-element.3), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK{LITERAL}: %recv = recv(%after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{3,0}}"} CHECK{LITERAL}: %send = send(%send-data, %after-all), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{3,0}}"} CHECK: %after-all.1 = after-all() CHECK{LITERAL}: %recv.1 = recv(%after-all.1), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}"} CHECK{LITERAL}: %send.1 = send(%send-data, %after-all.1), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}"} CHECK: ROOT %tuple = tuple(%new-count, %recv, %send, %recv.1, %send.1) CHECK: } CHECK: %while-cond (param: (u32[], (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]), (f32[1,1024,1024], u32[], token[]))) -> pred[] { CHECK: %param = parameter(0) CHECK: %count = get-tuple-element(%param), index=0 CHECK: %ub = constant(25) CHECK: ROOT %cond-result = compare(%count, %ub), direction=LT CHECK: } CHECK: ENTRY %main () -> f32[1,1024,1024] { CHECK: %c0 = constant(0) CHECK: %f0 = constant(0) CHECK: %init = broadcast(%f0), dimensions={} CHECK: %after-all.2 = after-all() CHECK{LITERAL}: %recv.2 = recv(%after-all.2), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{3,0}}"} CHECK{LITERAL}: %send.2 = send(%init, %after-all.2), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0",_xla_send_recv_source_target_pairs="{{3,0}}"} CHECK: %after-all.3 = after-all() CHECK{LITERAL}: %recv.3 = recv(%after-all.3), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}"} CHECK{LITERAL}: %send.3 = send(%init, %after-all.3), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1",_xla_send_recv_source_target_pairs="{{0,1}, {1,2}, {2,3}}"} CHECK: %while-init = tuple(%c0, %recv.2, %send.2, %recv.3, %send.3) CHECK{LITERAL}: %while-result = while(%while-init), condition=%while-cond, body=%while-body, backend_config={"known_trip_count":{"n":"25"}} CHECK: %get-tuple-element.4 = get-tuple-element(%while-result), index=1 CHECK: %get-tuple-element.5 = get-tuple-element(%while-result), index=2 CHECK: %get-tuple-element.6 = get-tuple-element(%while-result), index=3 CHECK: %get-tuple-element.7 = get-tuple-element(%while-result), index=4 CHECK: %recv-done.2 = recv-done(%get-tuple-element.4), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %recv-data.3 = get-tuple-element(%recv-done.2), index=0 CHECK: %recv-done.3 = recv-done(%get-tuple-element.6), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: %recv-data.4 = get-tuple-element(%recv-done.3), index=0 CHECK: %replica.1 = replica-id() CHECK: %constant0.1 = constant(0) CHECK: %compare0.1 = compare(%replica.1, %constant0.1), direction=EQ CHECK: %compare.1 = broadcast(%compare0.1), dimensions={} CHECK: %send-done.2 = send-done(%get-tuple-element.5), channel_id=1, frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %send-done.3 = send-done(%get-tuple-element.7), channel_id=2, frontend_attributes={_xla_send_recv_pipeline="1"} CHECK: ROOT %entry-result = select(%compare.1, %recv-data.3, %recv-data.4) CHECK: })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); PipelinedP2PRewriter rewriter; TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); EXPECT_TRUE(changed); DoFileCheck(module.get(), kExpected); } } } }
2,054
cpp
tensorflow/tensorflow
runtime_intrinsics
third_party/xla/xla/service/gpu/runtime_intrinsics.cc
third_party/xla/xla/service/gpu/runtime_intrinsics_test.cc
#ifndef XLA_SERVICE_GPU_RUNTIME_INTRINSICS_H_ #define XLA_SERVICE_GPU_RUNTIME_INTRINSICS_H_ #include "absl/strings/string_view.h" namespace xla { inline constexpr absl::string_view kXlaGpuAssertCustomCallTag = "__xla_gpu_assert"; } #endif #include "xla/service/gpu/runtime_intrinsics.h" #include <cstdint> #include <string> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/custom_call_status.h" #include "xla/service/custom_call_target_registry.h" #include "xla/service/platform_util.h" #include "xla/shape_util.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { std::string GetGpuPlatformName() { return absl::AsciiStrToUpper( PlatformUtil::CanonicalPlatformName("gpu").value()); } absl::Status AssertOnGpu(void* stream_handle, void* buffer, absl::string_view error_msg) { TF_ASSIGN_OR_RETURN( se::Platform * platform, se::PlatformManager::PlatformWithName(GetGpuPlatformName())); se::StreamExecutorConfig config; config.gpu_stream = stream_handle; TF_ASSIGN_OR_RETURN(se::StreamExecutor * executor, platform->GetExecutor(config)); se::Stream* stream = executor->FindAllocatedStream(stream_handle); if (!stream) { return Internal("Stream not found for: %p", stream_handle); } int8_t expected = false; int64_t byte_size = sizeof(int8_t); CHECK_EQ(byte_size, ShapeUtil::ByteSizeOfPrimitiveType(PrimitiveType::PRED)); TF_RETURN_IF_ERROR(stream->Memcpy( &expected, se::DeviceMemoryBase{buffer, static_cast<uint64_t>(byte_size)}, byte_size)); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); if (!static_cast<bool>(expected)) { return Internal("%s", error_msg); } return absl::OkStatus(); } void AssertionCustomCall(void* stream_handle, void** buffers, const char* opaque, int opaque_len, XlaCustomCallStatus* status) { absl::Status s = AssertOnGpu(stream_handle, buffers[0], absl::string_view{opaque, static_cast<uint64_t>(opaque_len)}); if (!s.ok()) { auto msg = s.message(); XlaCustomCallStatusSetFailure(status, msg.data(), msg.size()); } } void NopReturnTokenCustomCall(void* stream_handle, void** buffers, const char* opaque, int opaque_len, XlaCustomCallStatus* status) { VLOG(1) << "NopReturnTokenCustomCall called."; } } XLA_REGISTER_CUSTOM_CALL_TARGET_WITH_SYM( std::string(kXlaGpuAssertCustomCallTag), AssertionCustomCall, GetGpuPlatformName()); XLA_REGISTER_CUSTOM_CALL_TARGET_WITH_SYM( std::string(kNopReturnTokenCustomCallTarget), NopReturnTokenCustomCall, GetGpuPlatformName()); }
#include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using RuntimeIntrinsicsTest = HloTestBase; TEST_F(RuntimeIntrinsicsTest, NopReturnTokenWorks) { constexpr absl::string_view kHloText = R"( HloModule m ENTRY e { constant = u32[2]{0} constant({0, 1}) ROOT nop_return_token = token[] custom-call(constant), custom_call_target="NopReturnToken", custom_call_has_side_effect=true })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, GetOptimizedModule(kHloText)); EXPECT_EQ(module->entry_computation()->instruction_count(), 2); EXPECT_TRUE(Run(std::move(module), false)); } } } }
2,055
cpp
tensorflow/tensorflow
reduction_layout_normalizer
third_party/xla/xla/service/gpu/transforms/reduction_layout_normalizer.cc
third_party/xla/xla/service/gpu/transforms/reduction_layout_normalizer_test.cc
#ifndef XLA_SERVICE_GPU_REDUCTION_LAYOUT_NORMALIZER_H_ #define XLA_SERVICE_GPU_REDUCTION_LAYOUT_NORMALIZER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class ReductionLayoutNormalizer : public HloModulePass { public: absl::string_view name() const override { return "reduction-layout-normalizer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/reduction_layout_normalizer.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class EnforceMinorToMajorReduceOpVisitor : public DfsHloRewriteVisitor { absl::Status HandleReduce(HloInstruction *hlo) override { auto reduce = Cast<HloReduceInstruction>(hlo); VLOG(5) << "Input: " << reduce->ToString(); int operand_idx = -1; absl::InlinedVector<HloInstruction *, 2> canonical_reduce_inputs; absl::InlinedVector<Shape, 2> new_reduce_shapes; DimensionVector out_reduce_dimensions; const Shape &first_instruction_shape = reduce->inputs()[0]->shape(); for (HloInstruction *operand : reduce->inputs()) { operand_idx++; if (operand_idx != 0 && operand->shape().layout() != first_instruction_shape.layout()) { HloInstruction *copy = reduce->parent()->AddInstruction(HloInstruction::CreateUnary( operand->shape(), HloOpcode::kCopy, operand)); LayoutUtil::ClearLayout(copy->mutable_shape()); TF_RETURN_IF_ERROR(LayoutUtil::CopyLayoutBetweenShapes( first_instruction_shape, copy->mutable_shape())); copy->set_metadata(operand->metadata()); operand = copy; VLOG(3) << "Copying to establish consistent inputs layout: " << copy->ToString(); } const Shape &operand_shape = operand->shape(); const Layout &operand_layout = operand_shape.layout(); const Shape &reduce_shape = reduce->shape().IsTuple() ? reduce->shape().tuple_shapes(operand_idx) : reduce->shape(); DimensionVector new_reduce_dimensions; DimensionVector new_operand_shape_data; DimensionVector new_reduce_shape_data; DimensionVector new_reduce_shape_layout(reduce_shape.rank()); std::vector<int64_t> reduce_shape_logical_to_physical = LayoutUtil::MakeLogicalToPhysical(reduce_shape.layout()); auto to_reduce_logical_dim = [&](int64_t op_logical_dim) { return op_logical_dim - absl::c_count_if(reduce->dimensions(), [&](int64_t dim) { CHECK(dim != op_logical_dim); return dim < op_logical_dim; }); }; for (int i = 0; i < operand_shape.rank(); i++) { int64_t major_to_minor_dim_idx = operand_shape.rank() - i - 1; int64_t logical_dim = operand_layout.minor_to_major(major_to_minor_dim_idx); int64_t dim_size = operand_shape.dimensions(logical_dim); VLOG(5) << "Processing logical dimension " << logical_dim << " of size " << dim_size; new_operand_shape_data.push_back(dim_size); if (absl::c_linear_search(reduce->dimensions(), logical_dim)) { new_reduce_dimensions.push_back(i); } else { new_reduce_shape_data.push_back(dim_size); int64_t logical_reduce_dim = to_reduce_logical_dim(logical_dim); int64_t physical_reduce_dim = reduce_shape_logical_to_physical[logical_reduce_dim]; VLOG(5) << "logical_reduce_dim = " << logical_reduce_dim << ", " << "physical_reduce_dim = " << physical_reduce_dim; new_reduce_shape_layout[reduce_shape.rank() - physical_reduce_dim - 1] = new_reduce_shape_data.size() - 1; } } Shape new_operand_shape = ShapeUtil::MakeShape( operand_shape.element_type(), new_operand_shape_data); Shape new_reduce_shape = ShapeUtil::MakeShapeWithDenseLayout( reduce_shape.element_type(), new_reduce_shape_data, new_reduce_shape_layout); if (new_operand_shape == operand_shape && reduce->inputs().size() == 1) { return absl::OkStatus(); } HloInstruction *canonical_reduce_input = new_operand_shape != operand_shape ? reduce->parent()->AddInstruction( HloInstruction::CreateBitcast(new_operand_shape, operand)) : operand; canonical_reduce_input->set_metadata(operand->metadata()); VLOG(5) << "Reduction input: " << canonical_reduce_input->ToString(); new_reduce_shapes.push_back(new_reduce_shape); canonical_reduce_inputs.push_back(canonical_reduce_input); if (out_reduce_dimensions.empty()) { out_reduce_dimensions = new_reduce_dimensions; } else { TF_RET_CHECK(out_reduce_dimensions == new_reduce_dimensions); } } Shape new_reduce_shape = ShapeUtil::MakeMaybeTupleShape(new_reduce_shapes); std::unique_ptr<HloInstruction> new_reduce = HloInstruction::CreateReduce( new_reduce_shape, canonical_reduce_inputs, reduce->init_values(), out_reduce_dimensions, reduce->to_apply()); VLOG(5) << "Generated new reduction: " << new_reduce->ToString(); const Shape &orig_reduce_shape = reduce->shape(); if (new_reduce_shape != orig_reduce_shape) { HloInstruction *wrapped_reduce = reduce->parent()->AddInstruction(std::move(new_reduce)); if (!new_reduce_shape.IsTuple()) { new_reduce = HloInstruction::CreateBitcast(reduce->shape(), wrapped_reduce); } else { absl::InlinedVector<HloInstruction *, 2> out; for (int oidx = 0; oidx < reduce->input_count(); oidx++) { HloInstruction *gte = reduce->parent()->AddInstruction( HloInstruction::CreateGetTupleElement(wrapped_reduce, oidx)); out.push_back( reduce->parent()->AddInstruction(HloInstruction::CreateBitcast( orig_reduce_shape.tuple_shapes(oidx), gte))); } new_reduce = HloInstruction::CreateTuple(out); } } VLOG(5) << "Generated output: " << new_reduce->ToString(); return ReplaceWithNewInstruction(reduce, std::move(new_reduce)); } }; absl::StatusOr<bool> ReductionLayoutNormalizer::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { TF_ASSIGN_OR_RETURN(bool changed, EnforceMinorToMajorReduceOpVisitor().RunOnModule( module, execution_threads)); return changed; } } }
#include "xla/service/gpu/reduction_layout_normalizer.h" #include <optional> #include "absl/strings/string_view.h" #include "xla/error_spec.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace { class ReductionLayoutNormalizerTest : public HloTestBase { public: void CheckReductionLayoutNormalizer( absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite(hlo, gpu::ReductionLayoutNormalizer{}, expected); } }; TEST_F(ReductionLayoutNormalizerTest, LayoutCanonicalizerTest) { const char* hlo = R"( HloModule ReduceWithLayoutChange add { x0 = f32[] parameter(0) y0 = f32[] parameter(1) ROOT add0 = f32[] add(x0, y0) } ENTRY main { arg0 = f32[4,5,5,16,12,12,3,3]{2,3,5,4,0,7,6,1} parameter(0) constant0 = f32[] constant(0) ROOT reduce0 = f32[4,5,16,12,12]{4,3,2,1,0} reduce(arg0, constant0), dimensions={1,6,7}, to_apply=add } )"; CheckReductionLayoutNormalizer(hlo, R"( )"); } TEST_F(ReductionLayoutNormalizerTest, LayoutCanonicalizerTestVariadic) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadic argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[4,5,5,16,12,12,3,3]{2,3,5,4,0,7,6,1} parameter(0) idxs = u32[4,5,5,16,12,12,3,3]{2,3,5,4,0,7,6,1} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[4,5,16,12,12]{4,3,2,1,0}, u32[4,5,16,12,12]{4,3,2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={1,6,7}, to_apply=argmax } )"; CheckReductionLayoutNormalizer(hlo, R"( )"); } TEST_F(ReductionLayoutNormalizerTest, LayoutCanonicalizerTestVariadicDifferentLayouts) { const char* hlo = R"( HloModule ReduceWithLayoutChangeVariadicDifferent argmax { running_max = f32[] parameter(0) running_max_idx = u32[] parameter(1) current_value = f32[] parameter(2) current_value_idx = u32[] parameter(3) current = (f32[], u32[]) tuple(running_max, running_max_idx) potential = (f32[], u32[]) tuple(current_value, current_value_idx) cmp_code = pred[] compare(current_value, running_max), direction=GT new_max = f32[] select(cmp_code, current_value, running_max) new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx) ROOT out = (f32[], u32[]) tuple(new_max, new_idx) } ENTRY main { arg0 = f32[2,3,4,7]{2,1,0,3} parameter(0) idxs = u32[2,3,4,7]{3,2,1,0} parameter(1) constant0 = f32[] constant(0) constant1 = u32[] constant(0) ROOT reduce0 = ( f32[2,3,4]{2,1,0}, u32[2,3,4]{2,1,0} ) reduce(arg0, idxs, constant0,constant1), dimensions={3}, to_apply=argmax } )"; CheckReductionLayoutNormalizer(hlo, R"( )"); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{1e-5, 1e-5})); } } }
2,056
cpp
tensorflow/tensorflow
gpu_sanitize_constant_names
null
null
#ifndef XLA_SERVICE_GPU_GPU_SANITIZE_CONSTANT_NAMES_H_ #define XLA_SERVICE_GPU_GPU_SANITIZE_CONSTANT_NAMES_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class GpuSanitizeConstantNames : public HloModulePass { public: absl::string_view name() const override { return "sanitize-constant-names"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/gpu_sanitize_constant_names.h" #include <string> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/llvm_ir/buffer_assignment_util.h" #include "xla/service/name_uniquer.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { absl::StatusOr<bool> GpuSanitizeConstantNames::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; NameUniquer instr_name_uniquer("_"); for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instr : computation->instructions()) { if (instr->opcode() == HloOpcode::kConstant) { continue; } instr_name_uniquer.GetUniqueName(instr->name()); } } for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instr : computation->instructions()) { if (instr->opcode() != HloOpcode::kConstant) { continue; } std::string sanitized_name = llvm_ir::SanitizeConstantName(*instr); instr->SetAndSanitizeName(sanitized_name); instr->UniquifyName(&instr_name_uniquer); module->instruction_name_uniquer().GetUniqueName(instr->name()); changed = true; } } return changed; } } }
#include "xla/service/gpu/gpu_sanitize_constant_names.h" #include <cstdint> #include <memory> #include <utility> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using SanitizeConstantNamesTest = HloTestBase; TEST_F(SanitizeConstantNamesTest, InstructionNameWithHyphenSanitized) { const char *const kHloString = R"( HloModule HyphenInInstructionName ENTRY kernelEntry { ROOT equal-to = s32[2]{0} constant({42, 73}) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_TRUE(GpuSanitizeConstantNames().Run(module.get()).value()); HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->name(), "equal_to"); } TEST_F(SanitizeConstantNamesTest, InstructionNameWithDotSanitized) { const char *const kHloString = R"( HloModule HyphenInInstructionName ENTRY kernelEntry { ROOT equal.to = s32[2]{0} constant({42, 73}) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_TRUE(GpuSanitizeConstantNames().Run(module.get()).value()); HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->name(), "equal_to"); } TEST_F(SanitizeConstantNamesTest, NewInstructionNameRegisteredWithModule) { const char *const kHloString = R"( HloModule HyphenInInstructionName ENTRY kernelEntry { ROOT equal.to = s32[2]{0} constant({42, 73}) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_TRUE(GpuSanitizeConstantNames().Run(module.get()).value()); HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_EQ(root->name(), "equal_to"); auto constant_instr = HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1)); constant_instr->SetAndSanitizeName("equal_to"); module->entry_computation()->AddInstruction(std::move(constant_instr)); EXPECT_THAT(FindInstruction(module.get(), "equal_to.1"), GmockMatch(m::Constant())); } TEST_F(SanitizeConstantNamesTest, BufferSanitizedNameCollisionResolved) { const char *const kHloString = R"( HloModule BufferSanitizedName ENTRY kernelEntry { equal.to = s32[2]{0} constant({42, 73}) equal-to = s32[2]{0} constant({67, 3}) ROOT equal_to = s32[2]{0} add(equal.to, equal-to) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_TRUE(GpuSanitizeConstantNames().Run(module.get()).value()); EXPECT_THAT(FindInstruction(module.get(), "equal_to_1"), GmockMatch(m::Constant())); EXPECT_THAT(FindInstruction(module.get(), "equal_to_2"), GmockMatch(m::Constant())); } } } }
2,057
cpp
tensorflow/tensorflow
dot_dimension_sorter
third_party/xla/xla/service/gpu/transforms/dot_dimension_sorter.cc
third_party/xla/xla/service/gpu/transforms/dot_dimension_sorter_test.cc
#ifndef XLA_SERVICE_GPU_DOT_DIMENSION_SORTER_H_ #define XLA_SERVICE_GPU_DOT_DIMENSION_SORTER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class DotDimensionSorter : public HloModulePass { public: absl::string_view name() const override { return "dot_dimension_sorter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/dot_dimension_sorter.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/permutation_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { absl::Status SortDotDimensions(HloDotInstruction* dot) { const DotDimensionNumbers& dims = dot->dot_dimension_numbers(); DotDimensionNumbers new_dims(dims); new_dims.clear_lhs_contracting_dimensions(); new_dims.clear_rhs_contracting_dimensions(); const bool sort_by_lhs = DistinctNumbersAreConsecutiveIfSorted(dims.lhs_contracting_dimensions()); const absl::Span<const int64_t>& sort_key = sort_by_lhs ? dims.lhs_contracting_dimensions() : dims.rhs_contracting_dimensions(); std::vector<int64_t> permutation; for (const int64_t a : sort_key) { permutation.push_back(a - *absl::c_min_element(sort_key)); } const std::vector<int64_t> sorted_lhs = Permute(dims.lhs_contracting_dimensions(), permutation); *new_dims.mutable_lhs_contracting_dimensions() = {sorted_lhs.begin(), sorted_lhs.end()}; const std::vector<int64_t> sorted_rhs = Permute(dims.rhs_contracting_dimensions(), permutation); *new_dims.mutable_rhs_contracting_dimensions() = {sorted_rhs.begin(), sorted_rhs.end()}; std::unique_ptr<HloInstruction> new_dot = HloInstruction::CreateDot( dot->shape(), dot->mutable_operand(0), dot->mutable_operand(1), new_dims, dot->precision_config(), {dot->sparsity().begin(), dot->sparsity().end()}, absl::MakeSpan(dot->operands()).subspan(HloDotInstruction::kOperands)); dot->SetupDerivedInstruction(new_dot.get()); VLOG(3) << "Sorted dot() dimensions:\n" << "\t before: " << dot->ToString() << "\n" << "\t after: " << new_dot->ToString(); return dot->parent()->ReplaceWithNewInstruction(dot, std::move(new_dot)); } } absl::StatusOr<bool> DotDimensionSorter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<HloInstruction*> dots_to_process; for (const HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instr : computation->instructions()) { if (instr->opcode() != HloOpcode::kDot) { continue; } if ((instr->operand(0)->shape().has_layout() && !LayoutUtil::IsMonotonicWithDim0Major( instr->operand(0)->shape().layout())) || (instr->operand(1)->shape().has_layout() && !LayoutUtil::IsMonotonicWithDim0Major( instr->operand(1)->shape().layout()))) { continue; } const DotDimensionNumbers& dims = instr->dot_dimension_numbers(); if (dims.lhs_contracting_dimensions_size() == 0) { continue; } const bool cons_lhs = DistinctNumbersAreConsecutiveIfSorted( dims.lhs_contracting_dimensions()); const bool cons_rhs = DistinctNumbersAreConsecutiveIfSorted( dims.rhs_contracting_dimensions()); const bool sorted_lhs = absl::c_is_sorted(dims.lhs_contracting_dimensions()); const bool sorted_rhs = absl::c_is_sorted(dims.rhs_contracting_dimensions()); if ((cons_lhs && !sorted_lhs && !cons_rhs) || (cons_rhs && !sorted_rhs && !cons_lhs) || (cons_lhs && !sorted_lhs && cons_rhs && !sorted_rhs)) { dots_to_process.push_back(instr); } } } if (dots_to_process.empty()) { return false; } for (HloInstruction* dot : dots_to_process) { TF_RETURN_IF_ERROR(SortDotDimensions(Cast<HloDotInstruction>(dot))); } return true; } } }
#include "xla/service/gpu/dot_dimension_sorter.h" #include <memory> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class WithoutDotDimensionSorterTest : public GpuCodegenTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GpuCodegenTest::GetDebugOptionsForTest(); debug_options.add_xla_disable_hlo_passes("dot_dimension_sorter"); return debug_options; } }; TEST_F(WithoutDotDimensionSorterTest, UnsortedDimsCreateTransposes) { const char* hlo_text = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK: transpose )"); } TEST_F(WithoutDotDimensionSorterTest, SortedDimsDoNotCreateTransposes) { const char* hlo_text = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: transpose )"); } TEST_F(WithoutDotDimensionSorterTest, DimOrderCanBeChanged) { const char* hlo_text_ref = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; const char* hlo_text_modified = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} } )"; EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_ref, hlo_text_modified, ErrorSpec{1e-5, 1e-3}, true)); } using DotDimensionSorterTest = GpuCodegenTest; TEST_F(DotDimensionSorterTest, SortContractingDims) { const char* module_string = R"( HloModule m ENTRY e { p0 = f16[1,144,96,32] parameter(0) p1 = f16[122,96,32] parameter(1) ROOT _ = f16[1,144,122] dot(p0, p1), lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); const auto& dims = module->entry_computation()->root_instruction()->dot_dimension_numbers(); EXPECT_EQ(dims.lhs_contracting_dimensions(0), 3); EXPECT_EQ(dims.lhs_contracting_dimensions(1), 2); EXPECT_EQ(dims.rhs_contracting_dimensions(0), 2); EXPECT_EQ(dims.rhs_contracting_dimensions(1), 1); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionSorter().Run(module.get())); EXPECT_TRUE(modified); const auto& dims2 = module->entry_computation()->root_instruction()->dot_dimension_numbers(); EXPECT_EQ(dims2.lhs_contracting_dimensions(0), 2); EXPECT_EQ(dims2.lhs_contracting_dimensions(1), 3); EXPECT_EQ(dims2.rhs_contracting_dimensions(0), 1); EXPECT_EQ(dims2.rhs_contracting_dimensions(1), 2); } TEST_F(DotDimensionSorterTest, NothingToReorder) { const char* module_string = R"( HloModule m ENTRY e { p0 = f16[1,144,96,32] parameter(0) p1 = f16[122,96,32] parameter(1) ROOT _ = f16[1,144,122] dot(p0, p1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionSorter().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionSorterTest, SparseDotSortContractingDims) { const char* module_string = R"( HloModule m ENTRY e { p0 = f16[1,144,96,16] parameter(0) p1 = f16[122,96,32] parameter(1) meta = u16[1,144,96,2] parameter(2) ROOT _ = f16[1,144,122] dot(p0, p1, meta), sparsity=L.3@2:4, lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionSorter().Run(module.get())); EXPECT_TRUE(modified); HloDotInstruction* dot = DynCast<HloDotInstruction>( module->entry_computation()->root_instruction()); EXPECT_TRUE(dot != nullptr && dot->sparse_operands() == 1); } } } }
2,058
cpp
tensorflow/tensorflow
nvptx_compiler
third_party/xla/xla/service/gpu/nvptx_compiler.cc
third_party/xla/xla/service/gpu/nvptx_compiler_test.cc
#ifndef XLA_SERVICE_GPU_NVPTX_COMPILER_H_ #define XLA_SERVICE_GPU_NVPTX_COMPILER_H_ #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/node_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "llvm/IR/Module.h" #include "xla/autotune_results.pb.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/dnn.h" #include "xla/xla.pb.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { void WarnIfBadDriverJITVersion(); class NVPTXCompiler : public GpuCompiler { public: NVPTXCompiler(); int32_t GetToolkitVersion() const override; absl::Status OptimizeHloConvolutionCanonicalization( HloModule* hlo_module, se::GpuComputeCapability gpu_version, se::dnn::VersionInfo dnn_version, se::DeviceMemoryAllocator* device_allocator) override; absl::Status OptimizeHloPostLayoutAssignment( HloModule* hlo_module, se::StreamExecutor* stream_exec, const CompileOptions& options, const TargetConfig& gpu_target_config, tsl::thread::ThreadPool* thread_pool) override; bool RequiresCollectiveScheduleLinearizer( const HloModule* module, se::StreamExecutor* stream_exec) override; absl::Status AddConvAndGemmAutotuningPasses( HloPassPipeline* pipeline, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool) override; absl::Status AddGemmFusionAutotuningPasses( HloPassPipeline* pipeline, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool, const MultiProcessKeyValueStore& key_value_store) override; absl::Status AddCustomKernelReplacementPasses( HloPassPipeline* pipeline, const DebugOptions& debug_options) override; absl::Status RunCudnnFusionCompilerPass( HloModule* module, se::StreamExecutor* stream_exec, Thunk::BinaryMap* dnn_compiled_graphs) override; HloDataflowAnalysis::CanShareBuffer GetCanShareBuffer() const override; absl::StatusOr<BackendCompileResult> CompileTargetBinary( const HloModuleConfig& module_config, llvm::Module* llvm_module, se::GpuComputeCapability gpu_version, bool relocatable, const HloModule* debug_module, const CompileOptions& options) override; enum class LinkingMethod { kNone, kNvLink, kDriver, }; absl::StatusOr<bool> CanUseLinkModules( const HloModuleConfig& module_config) override; private: absl::StatusOr<std::vector<uint8_t>> LinkModules( se::StreamExecutor* stream_exec, std::vector<std::vector<uint8_t>> modules, const DebugOptions& debug_options) override; absl::Mutex mutex_; absl::flat_hash_map<std::string, LinkingMethod> linking_methods_ ABSL_GUARDED_BY(mutex_); absl::StatusOr<LinkingMethod> ChooseLinkingMethod( const DebugOptions& debug_options); absl::StatusOr<std::vector<uint8_t>> CompileGpuAsmOrGetCachedResult( const std::string& ptx, se::CudaComputeCapability cc, const HloModuleConfig& hlo_module_config, absl::string_view module_name, bool relocatable, const CompileOptions& options); struct CompilationCacheFlags { template <typename H> friend H AbslHashValue(H h, const CompilationCacheFlags& flags) { return H::combine(std::move(h), flags.filter_kernels_spilling_registers_on_autotuning); } friend bool operator==(const CompilationCacheFlags& a, const CompilationCacheFlags& b) { return a.filter_kernels_spilling_registers_on_autotuning == b.filter_kernels_spilling_registers_on_autotuning; } bool filter_kernels_spilling_registers_on_autotuning; }; struct CompilationCacheKey { CompilationCacheKey(std::string ptx, int cc_major, int cc_minor, bool relocatable, CompilationCacheFlags flags) : ptx(std::move(ptx)), cc_major(cc_major), cc_minor(cc_minor), relocatable(relocatable), flags(std::move(flags)) {} template <typename H> friend H AbslHashValue(H h, const CompilationCacheKey& key) { return H::combine(std::move(h), key.ptx, key.cc_major, key.cc_minor, key.relocatable, key.flags); } friend bool operator==(const CompilationCacheKey& a, const CompilationCacheKey& b) { return a.cc_major == b.cc_major && a.cc_minor == b.cc_minor && a.ptx == b.ptx && a.relocatable == b.relocatable && a.flags == b.flags; } std::string ptx; int cc_major; int cc_minor; bool relocatable; CompilationCacheFlags flags; }; struct CompilationCacheValue { bool compilation_done = false; absl::StatusOr<std::vector<uint8_t>> maybe_cubin; absl::Mutex mutex; absl::CondVar compilation_done_cv; }; absl::node_hash_map<CompilationCacheKey, CompilationCacheValue> compilation_cache_ ABSL_GUARDED_BY(mutex_); NVPTXCompiler(const NVPTXCompiler&) = delete; NVPTXCompiler& operator=(const NVPTXCompiler&) = delete; }; } } #endif #include "xla/service/gpu/nvptx_compiler.h" #include <array> #include <cstdint> #include <fstream> #include <iterator> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/call_once.h" #include "absl/cleanup/cleanup.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "third_party/gpus/cuda/include/cuda.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/pjrt/distributed/key_value_store_interface.h" #include "xla/service/call_inliner.h" #include "xla/service/convert_mover.h" #include "xla/service/dot_dimension_merger.h" #include "xla/service/dump.h" #include "xla/service/float_normalization.h" #include "xla/service/float_support.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/buffer_sharing.h" #include "xla/service/gpu/conv_algorithm_picker.h" #include "xla/service/gpu/cublas_pad_for_gemms.h" #include "xla/service/gpu/cublas_padding_requirements.h" #include "xla/service/gpu/cudnn_fused_conv_rewriter.h" #include "xla/service/gpu/cudnn_fused_mha_rewriter.h" #include "xla/service/gpu/cudnn_fused_mha_transpose_fusion.h" #include "xla/service/gpu/cudnn_fusion_compiler.h" #include "xla/service/gpu/cudnn_norm_rewriter.h" #include "xla/service/gpu/cudnn_pad_for_convolutions.h" #include "xla/service/gpu/cudnn_simplify_padding.h" #include "xla/service/gpu/cudnn_vectorize_convolutions.h" #include "xla/service/gpu/cudnn_workspace_rewriter.h" #include "xla/service/gpu/cusolver_rewriter.h" #include "xla/service/gpu/dot_sparsity_rewriter.h" #include "xla/service/gpu/gemm_algorithm_picker.h" #include "xla/service/gpu/gemm_fusion_autotuner.h" #include "xla/service/gpu/gpu_algebraic_simplifier.h" #include "xla/service/gpu/gpu_asm_opts_util.h" #include "xla/service/gpu/gpu_compiler.h" #include "xla/service/gpu/gpu_conv_padding_legalization.h" #include "xla/service/gpu/gpu_conv_rewriter.h" #include "xla/service/gpu/gpu_sort_rewriter.h" #include "xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.h" #include "xla/service/gpu/metrics.h" #include "xla/service/gpu/move_copy_to_users.h" #include "xla/service/gpu/target_constants.h" #include "xla/service/gpu/triangular_solve_rewriter.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/service/layout_normalization.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/reshape_decomposer.h" #include "xla/service/reshape_mover.h" #include "xla/service/tuple_simplifier.h" #include "xla/stream_executor/cuda/cuda_asm_compiler.h" #include "xla/stream_executor/cuda/cuda_diagnostics.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #include "xla/stream_executor/cuda/ptx_compiler.h" #include "xla/stream_executor/cuda/ptx_compiler_support.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/gpu/asm_compiler.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_executor.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/util/env_var.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace gpu { namespace { class ConvBfloat16Support : public FloatSupport { public: explicit ConvBfloat16Support( se::dnn::VersionInfo cudnn_version, se::CudaComputeCapability cuda_compute_capability) : FloatSupport(BF16), is_conv_bf16_supported_((cudnn_version.major_version() > 8 || (cudnn_version.major_version() == 8 && cudnn_version.minor_version() >= 2)) && cuda_compute_capability.IsAtLeast( se::CudaComputeCapability::AMPERE)) {} bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { return (hlo.opcode() != HloOpcode::kConvolution) || is_conv_bf16_supported_; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { return (hlo.opcode() != HloOpcode::kConvolution) || is_conv_bf16_supported_; } bool SupportsMixedPrecisions(const HloInstruction& hlo) const override { return (hlo.opcode() != HloOpcode::kConvolution); } private: bool is_conv_bf16_supported_; }; class MatmulBfloat16Support : public FloatSupport { public: explicit MatmulBfloat16Support( se::CudaComputeCapability cuda_compute_capability) : FloatSupport(BF16), is_matmul_bf16_supported_(cuda_compute_capability.IsAtLeast( se::CudaComputeCapability::AMPERE)) {} bool SupportsLowPrecisionOperand(const HloInstruction& hlo, int64_t operand_index) const override { return (hlo.opcode() != HloOpcode::kDot) || is_matmul_bf16_supported_; } bool SupportsLowPrecisionOutput(const HloInstruction& hlo) const override { return (hlo.opcode() != HloOpcode::kDot) || is_matmul_bf16_supported_; } bool SupportsMixedPrecisions(const HloInstruction& hlo) const override { return true; } private: bool is_matmul_bf16_supported_; }; } int32_t NVPTXCompiler::GetToolkitVersion() const { return CUDA_VERSION; } absl::Status NVPTXCompiler::OptimizeHloConvolutionCanonicalization( HloModule* hlo_module, se::GpuComputeCapability gpu_version, se::dnn::VersionInfo dnn_version, se::DeviceMemoryAllocator* device_allocator) { auto cuda_compute_capability = std::get<se::CudaComputeCapability>(gpu_version); HloPassPipeline pipeline("conv_canonicalization"); pipeline.AddInvariantCheckerDebug<HloVerifier>( false, false); ConvBfloat16Support conv_bf16_support(dnn_version, cuda_compute_capability); pipeline.AddPass<FloatNormalization>(&conv_bf16_support); MatmulBfloat16Support matmul_bf16_support(cuda_compute_capability); pipeline.AddPass<FloatNormalization>(&matmul_bf16_support); pipeline.AddPass<GpusolverRewriter>(); pipeline.AddPass<GpuConvRewriter>(cuda_compute_capability); pipeline.AddPass<CudnnFusedConvRewriter>(cuda_compute_capability, dnn_version, GetToolkitVersion()); pipeline.AddPass<GpuConvPaddingLegalization>(); pipeline.AddPass<CudnnPadForConvolutions>(cuda_compute_capability); pipeline.AddPass<CudnnVectorizeConvolutions>(cuda_compute_capability, dnn_version); pipeline.AddPass<CallInliner>(); pipeline.AddPass<TupleSimplifier>(); AlgebraicSimplifierOptions algsimp_options = GetAlgebraicSimplifierOptions(hlo_module->config()); algsimp_options.set_enable_conv_operand_swap(false); algsimp_options.set_enable_unconditional_reduce_of_concat_replacement(false); pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>(algsimp_options, gpu_version); pipeline.AddPass<CudnnSimplifyPadding>(); [&, &pipeline = pipeline.AddPass<HloPassFix<HloPassPipeline>>( "reshape_mover_after_conv_canonicalization")] { ReshapeMoverOptions reshape_mover_options; reshape_mover_options.reshape_of_1d_broadcast_is_cheap = true; pipeline.AddPass<ReshapeMover>(reshape_mover_options); pipeline.AddPass<GpuAlgebraicSimplifier>(algsimp_options, gpu_version); }(); [&, &pipeline = pipeline.AddPass<HloPassFix<HloPassPipeline>>( "simplify_after_conv_canonicalization")] { pipeline.AddPass<ConvertMover>(); pipeline.AddPass<GpuAlgebraicSimplifier>(algsimp_options, gpu_version); }(); pipeline.AddPass<HloConstantFolding>(); TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status()); return absl::OkStatus(); } absl::Status NVPTXCompiler::OptimizeHloPostLayoutAssignment( HloModule* hlo_module, se::StreamExecutor* stream_exec, const CompileOptions& options, const TargetConfig& gpu_target_config, tsl::thread::ThreadPool* thread_pool) { auto cuda_compute_capability = std::get<se::CudaComputeCapability>( gpu_target_config.device_description.gpu_compute_capability()); if (hlo_module->config().debug_options().xla_gpu_enable_cudnn_fmha()) { HloPassPipeline mha_fusion_pipeline( "nvptx cudnn multi-headed attention fusion"); AlgebraicSimplifierOptions alg_sim_options = GetAlgebraicSimplifierOptions(hlo_module->config()); alg_sim_options.set_supports_non_canonical_dots(false); alg_sim_options.set_is_layout_sensitive(true); alg_sim_options.set_enable_conv_operand_swap(false); alg_sim_options.set_minmax_propagate_nan( !hlo_module->config().debug_options().xla_gpu_enable_fast_min_max()); alg_sim_options.set_enable_unconditional_reduce_of_concat_replacement( false); mha_fusion_pipeline.AddPass<HloCSE>(true); se::GpuComputeCapability gpu_version = gpu_target_config.device_description.gpu_compute_capability(); mha_fusion_pipeline.AddPass<HloPassFix<GpuAlgebraicSimplifier>>( alg_sim_options, gpu_version); mha_fusion_pipeline.AddPass<HloCSE>(true); if (stream_exec) { mha_fusion_pipeline.AddPass<CudnnFusedMHARewriter>( cuda_compute_capability, stream_exec); } else { mha_fusion_pipeline.AddPass<CudnnFusedMHARewriter>( cuda_compute_capability, gpu_target_config.dnn_version_info); } mha_fusion_pipeline.AddPass<GpuAlgebraicSimplifier>(alg_sim_options, gpu_version); mha_fusion_pipeline.AddPass<CudnnFusedMHATransposeFusion>(); mha_fusion_pipeline.AddPass<HloDCE>(); mha_fusion_pipeline.AddPass<HloCSE>(true); TF_RETURN_IF_ERROR(mha_fusion_pipeline.Run(hlo_module).status()); } HloPassPipeline pre_pipeline("nvptx post-layout_assignment part 1"); if (hlo_module->config().debug_options().xla_gpu_enable_cudnn_layer_norm()) { pre_pipeline.AddPass<CudnnNormRewriter>(cuda_compute_capability); } pre_pipeline.AddPass<DotDimensionMerger>(); pre_pipeline.AddPass<DotSparsityRewriter>(); for (const CublasPaddingRequirement& requirement : CublasPaddingRequirements) { if (cuda_compute_capability.IsAtLeast(requirement.min_compute_capability)) { pre_pipeline.AddPass<CublasPadForGemms>(cuda_compute_capability, requirement.data_type, requirement.multiple_of); } } pre_pipeline.AddPass<HloConstantFolding>(); TF_RETURN_IF_ERROR(pre_pipeline.Run(hlo_module).status()); TF_RETURN_IF_ERROR(GpuCompiler::OptimizeHloPostLayoutAssignment( hlo_module, stream_exec, options, gpu_target_config, thread_pool)); HloPassPipeline post_pipeline("nvptx post-layout_assignment part 2"); post_pipeline.AddPass<TriangularSolveRewriter>(); if (stream_exec) { post_pipeline.AddPass<CuDnnWorkspaceRewriter>(*stream_exec); } TF_RETURN_IF_ERROR(post_pipeline.Run(hlo_module).status()); return absl::OkStatus(); } bool NVPTXCompiler::RequiresCollectiveScheduleLinearizer( const HloModule* module, se::StreamExecutor* stream_exec) { if (stream_exec == nullptr || !GpuConvAlgorithmPicker::IsEnabled(module)) { return false; } for (const HloComputation* comp : module->MakeNonfusionComputations()) { for (const HloInstruction* inst : comp->instructions()) { if (GpuConvAlgorithmPicker::IsCandidate(inst)) { return true; } } } return false; } absl::Status NVPTXCompiler::AddConvAndGemmAutotuningPasses( HloPassPipeline* pipeline, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool) { if (GpuConvAlgorithmPicker::IsEnabled(hlo_module)) { pipeline->AddPass<GpuConvAlgorithmPicker>(autotune_config); } pipeline->AddPass<GemmAlgorithmPicker>(autotune_config); return absl::OkStatus(); } absl::Status NVPTXCompiler::AddGemmFusionAutotuningPasses( HloPassPipeline* pipeline, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool, const MultiProcessKeyValueStore& key_value_store) { pipeline->AddPass<GemmFusionAutotuner>(autotune_config, GetToolkitVersion(), thread_pool, key_value_store); return absl::OkStatus(); } absl::Status NVPTXCompiler::AddCustomKernelReplacementPasses( HloPassPipeline* pipeline, const DebugOptions& debug_options) { if (debug_options.xla_gpu_enable_cub_radix_sort()) { pipeline->AddPass<GpuSortRewriter>(); } return absl::OkStatus(); } absl::Status NVPTXCompiler::RunCudnnFusionCompilerPass( HloModule* module, se::StreamExecutor* stream_exec, Thunk::BinaryMap* dnn_compiled_graphs) { tsl::profiler::ScopedAnnotation annotation([&] { return absl::StrFormat("XlaCompileCudnnFusion:#module=%s,program_id=%d#", module->name(), module->unique_id()); }); CuDnnFusionCompiler cudnn_compiler(*stream_exec, *dnn_compiled_graphs); return cudnn_compiler.Run(module).status(); } namespace { bool MaybeLoadPtxFromFile(const HloModuleConfig module_config, const HloModule* module, std::string* ptx) { std::string prefix = xla::FilenameFor(*module, "", *ptx); std::string matched_filename; for (const std::string& full_filename : module_config.debug_options().xla_gpu_ptx_file()) { auto filename = tsl::io::Basename(full_filename); if (absl::StartsWith(filename, prefix)) { matched_filename = full_filename; VLOG(1) << "RunBackend() - Will load PTX from file: " << full_filename; break; } } if (!module_config.debug_options().xla_gpu_ptx_file().empty() && matched_filename.empty()) { VLOG(1) << "RunBackend() - For module with prefix '" << prefix << "', we did not found a PTX file to load."; } if (!matched_filename.empty()) { std::ifstream ifs(matched_filename, std::ifstream::in); *ptx = std::string(std::istreambuf_iterator<char>(ifs), std::istreambuf_iterator<char>()); CHECK(!ptx->empty()) << "Empty or non existing PTX file: " << matched_filename; return true; } return false; } std::unique_ptr<llvm::Module> MaybeLoadLLVMFromFile(const HloModule* module, llvm::Module* llvm_module) { if (module == nullptr) { return nullptr; } std::string prefix = xla::FilenameFor(*module, "", ""); auto xla_gpu_llvm_ir_file = module->config().debug_options().xla_gpu_llvm_ir_file(); auto matched_filename = absl::c_find_if( xla_gpu_llvm_ir_file, [prefix](const std::string& full_filename) { return absl::StartsWith(tsl::io::Basename(full_filename), prefix); }); if (!xla_gpu_llvm_ir_file.empty() && matched_filename == std::end(xla_gpu_llvm_ir_file)) { VLOG(1) << "RunBackend() - For module with prefix '" << prefix << "', we did not found a LLVM file to load."; } if (matched_filename != std::end(xla_gpu_llvm_ir_file)) { VLOG(1) << "RunBackend() - Will load LLVM from file: " << *matched_filename; llvm::LLVMContext& context = llvm_module->getContext(); llvm::SMDiagnostic err; std::unique_ptr<llvm::Module> loaded_module = llvm::parseIRFile(*matched_filename, err, context); if (!loaded_module) { err.print("ERR", llvm::errs()); LOG(FATAL) << "Failed to load an LLVM file. It is probably invalid LLVM."; } llvm_ir::DumpIrIfEnabled(*module, *loaded_module, false); return loaded_module; } return nullptr; } } void WarnIfBadDriverJITVersion() { static absl::once_flag run_once; absl::call_once(run_once, [] { auto version_or_status = se::cuda::Diagnostician::FindKernelDriverVersion(); if (!version_or_status.ok()) { LOG(WARNING) << "Couldn't read CUDA driver version."; return; } se::cuda::DriverVersion version = version_or_status.value(); if (version < std::make_tuple(396, 20, 0)) { LOG(WARNING) << "*** WARNING *** Invoking the PTX->SASS JIT from driver version " << se::cuda::DriverVersionToString(version) << ", which is older than 396.20.0. These versions are known to " "miscompile XLA code, leading to incorrect results or " "invalid-address errors.\nXLA only uses the driver JIT if it " "cannot find ptxas; you don't need to update your driver if " "you can point XLA to ptxas 9.2.88 or newer."; } }); } NVPTXCompiler::NVPTXCompiler() : GpuCompiler(stream_executor::cuda::kCudaPlatformId, nvptx::TargetTriple(), nvptx::DataLayout()) {} HloDataflowAnalysis::CanShareBuffer NVPTXCompiler::GetCanShareBuffer() const { return &CanShareBufferHint; } absl::StatusOr<GpuCompiler::BackendCompileResult> NVPTXCompiler::CompileTargetBinary(const HloModuleConfig& module_config, llvm::Module* llvm_module, se::GpuComputeCapability gpu_version, bool relocatable, const HloModule* debug_module, const CompileOptions& options) { std::unique_ptr<llvm::Module> loaded_module = MaybeLoadLLVMFromFile(debug_module, llvm_module); llvm::Module* selected_module = nullptr; if (loaded_module) { selected_module = loaded_module.get(); } else { selected_module = llvm_module; } std::string ptx; if (!(debug_module && MaybeLoadPtxFromFile(module_config, debug_module, &ptx))) { XLA_SCOPED_LOGGING_TIMER_IF( absl::StrCat( "NVPTXCompiler::CompileTargetBinary - CompileToPtx for ", (debug_module != nullptr ? debug_module->name() : "(unknown")), !options.is_autotuning_compilation); uint64_t start_usecs = tsl::Env::Default()->NowMicros(); TF_ASSIGN_OR_RETURN(ptx, nvptx::CompileToPtx(selected_module, gpu_version, module_config.debug_options())); uint64_t end_usecs = tsl::Env::Default()->NowMicros(); RecordLlvmPassesAndLlvmToPtxDuration(end_usecs - start_usecs); } absl::StatusOr<std::vector<uint8_t>> maybe_cubin = CompileGpuAsmOrGetCachedResult( ptx, std::get<se::CudaComputeCapability>(gpu_version), module_config, (debug_module != nullptr ? debug_module->name() : "(unknown)"), relocatable, options); if (!maybe_cubin.ok()) { return maybe_cubin.status(); } return BackendCompileResult{std::move(ptx), std::move(maybe_cubin.value())}; } static absl::StatusOr<std::vector<uint8_t>> AssembleOptionsAndCompile( const std::string& ptx, se::CudaComputeCapability cc, const HloModuleConfig& hlo_module_config, GpuCompiler::CompileOptions options, bool relocatable) { if (ptx.empty()) { return std::vector<uint8_t>(); } se::GpuAsmOpts ptxas_config = PtxOptsFromDebugOptions(hlo_module_config.debug_options()); if (relocatable) { ptxas_config.extra_flags.push_back("-c"); } uint64_t start_usecs = tsl::Env::Default()->NowMicros(); bool cancel_if_reg_spill = hlo_module_config.debug_options() .xla_gpu_filter_kernels_spilling_registers_on_autotuning() && options.is_autotuning_compilat
#include "xla/service/gpu/nvptx_compiler.h" #include <cstdint> #include <memory> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/backend.h" #include "xla/service/buffer_assignment.h" #include "xla/service/buffer_value.h" #include "xla/service/gpu/gpu_constants.h" #include "xla/service/gpu/gpu_hlo_schedule.h" #include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include "xla/service/hlo_ordering.h" #include "xla/service/logical_buffer.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { int64_t CountCopies(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { count++; } } return count; } int64_t CountCopies(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountCopies(*computation); } return count; } class NVPTXCompilerTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<BufferAssignment>> AssignBuffers( HloModule* module) { constexpr uint64_t pointer_size = 4; const se::DeviceDescription& gpu_device_info = backend().default_stream_executor()->GetDeviceDescription(); TF_RETURN_IF_ERROR( ScheduleGpuModule(module, pointer_size, gpu_device_info).status()); auto buffer_size_bytes_function = [](const BufferValue& buffer_value) -> int64_t { return GetSizeOfShape(buffer_value.shape(), pointer_size); }; return BufferAssigner::Run( module, std::make_unique<SequentialHloOrdering>(module->schedule()), buffer_size_bytes_function, [](LogicalBuffer::Color) { return kXlaAllocatedBufferAlignBytes; }); } }; class NVPTXCompilerTestTriton : public NVPTXCompilerTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_cublas_fallback(false); return debug_options; } }; TEST_F(NVPTXCompilerTest, AllReducePerformedInplace) { const absl::string_view hlo_string = R"( HloModule Module, input_output_alias={ {}: (0, {}, may-alias) } summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0) ROOT allreduce = f32[128] all-reduce(param0), replica_groups={}, to_apply=summit } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto buffer_assignment, AssignBuffers(module.get())); HloInstruction* all_reduce = module->entry_computation()->root_instruction(); EXPECT_TRUE(buffer_assignment->SharesTopLevelSlice(all_reduce, all_reduce->operand(0))); } TEST_F(NVPTXCompilerTest, AllReducePerformedInplaceTwoOperands) { const absl::string_view hlo_string = R"( HloModule Module, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias) } summit { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param0 = f32[128] parameter(0) param1 = f32[128] parameter(1) ROOT allreduce = (f32[128], f32[128]) all-reduce(param0, param1), replica_groups={}, to_apply=summit } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto buffer_assignment, AssignBuffers(module.get())); HloInstruction* all_reduce = module->entry_computation()->root_instruction(); EXPECT_TRUE(buffer_assignment->SharesSliceAtIndex( all_reduce, {0}, all_reduce->operand(0), {})); EXPECT_TRUE(buffer_assignment->SharesSliceAtIndex( all_reduce, {1}, all_reduce->operand(1), {})); } TEST_F(NVPTXCompilerTestTriton, DotDimensionAreSortedBeforePaddingForCublasEnablingTritonFusion) { const absl::string_view hlo_string = R"( ENTRY e { p0 = f16[11,22,33,44] parameter(0) p1 = s8[11,22,33,44] parameter(1) p1c = f16[11,22,33,44] convert(p1) ROOT d = f16[11,22,44,44] dot(p0, p1c), lhs_batch_dims={0,1}, lhs_contracting_dims={2}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} })"; se::CudaComputeCapability cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); if (cc.IsAtLeastAmpere()) { MatchOptimizedHlo(hlo_string, R"( ; CHECK: ENTRY ; CHECK-NEXT: parameter ; CHECK-NEXT: parameter ; CHECK-NEXT: __triton_gemm )"); } else { MatchOptimizedHlo(hlo_string, R"( ; CHECK-NOT: triton )"); } } TEST_F(NVPTXCompilerTest, RemovesUnnecessaryCopyInPostSchedulingPipelines) { const absl::string_view hlo_text = R"( HloModule all_gather_overlapping, is_scheduled=true condition { input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=2 } body { c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 add = f32[1,128] add(splat_c0, param_0) param_1 = f32[2,128] get-tuple-element(input_tuple), index=1 c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true all-gather-done = f32[2,128] all-gather-done(all-gather-start) copy = f32[2,128] copy(all-gather-done) cond = pred[] get-tuple-element(input_tuple), index=2 ROOT output_tuple = (f32[1,128], f32[2,128], pred[]) tuple(dynamic-slice, copy, cond) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = pred[] parameter(2) copy_param_0 = f32[1,128] copy(param_0) copy_param_1 = f32[2,128] copy(param_1) tuple = (f32[1,128], f32[2,128], pred[]) tuple(copy_param_0, copy_param_1, param_2) while = (f32[1,128], f32[2,128], pred[]) while(tuple), condition=condition, body=body get-tuple-element = f32[1,128]{1,0} get-tuple-element((f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) while), index=0 get-tuple-element.1 = f32[2,128]{1,0} get-tuple-element((f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) while), index=1 get-tuple-element.2 = pred[] get-tuple-element((f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) while), index=2 copy.3 = pred[] copy(pred[] get-tuple-element.2) ROOT tuple.2 = (f32[1,128]{1,0}, f32[2,128]{1,0}, pred[]) tuple(f32[1,128]{1,0} get-tuple-element, f32[2,128]{1,0} get-tuple-element.1, pred[] copy.3) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); EXPECT_EQ(CountCopies(*module), 4); const HloInstruction* while_op = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kCopy); NVPTXCompiler compiler; TF_EXPECT_OK(compiler.RunPostSchedulingPipelines( module.get(), 100000, backend().default_stream_executor()->GetDeviceDescription())); EXPECT_EQ(CountCopies(*module), 3); while_op = hlo_query::GetFirstInstructionWithOpcode( *module->entry_computation(), HloOpcode::kWhile); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kAllGatherDone); } } } }
2,059
cpp
tensorflow/tensorflow
horizontal_input_fusion
third_party/xla/xla/service/gpu/transforms/horizontal_input_fusion.cc
third_party/xla/xla/service/gpu/transforms/horizontal_input_fusion_test.cc
#ifndef XLA_SERVICE_GPU_HORIZONTAL_INPUT_FUSION_H_ #define XLA_SERVICE_GPU_HORIZONTAL_INPUT_FUSION_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class GpuHorizontalInputFusion : public HloModulePass { public: explicit GpuHorizontalInputFusion(const se::DeviceDescription& d) : device_info_(d) {} absl::string_view name() const override { return "gpu_horizontal_input_fusion"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> RunOnComputation(HloComputation*); const se::DeviceDescription& device_info_; }; } } #endif #include "xla/service/gpu/horizontal_input_fusion.h" #include <algorithm> #include <cstddef> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { Shape GetInputShapeForMultiOutputFusion(const HloInstruction& instr) { const HloInstruction* real_hero = GetRealHeroForMultiOutputFusion(instr); if (real_hero->operands().empty()) { return Shape(); } else { return real_hero->operand(0)->shape(); } } class HorizontalInputFusionImpl { public: explicit HorizontalInputFusionImpl(HloComputation* computation, const se::DeviceDescription& d) : computation_(computation), device_info_(d) {} ~HorizontalInputFusionImpl() = default; absl::StatusOr<bool> Run(); private: HloComputation* computation_; const se::DeviceDescription& device_info_; }; bool CompareShapeDimsFromLeftToRight(const Shape& shape_a, const Shape& shape_b) { if (shape_a.rank() != shape_b.rank()) { return shape_a.rank() < shape_b.rank(); } auto dims_a = shape_a.dimensions(); auto dims_b = shape_b.dimensions(); for (size_t i = 0; i < dims_a.size(); ++i) { if (dims_a[i] != dims_b[i]) { return dims_a[i] < dims_b[i]; } } return true; } std::vector<HloInstruction*> FindAndSortFusionCandidates( HloInstruction* consumer) { absl::flat_hash_set<HloInstruction*> fusion_instr_set; std::vector<HloInstruction*> fusion_instrs; for (HloInstruction* opnd : consumer->operands()) { HloInstruction* predecessor = opnd->LatestNonGteAncestor(); if (IsInputFusibleReduction(*predecessor) && IsConsumerTheOnlyNonRootUser(*predecessor, *consumer)) { if (fusion_instr_set.insert(predecessor).second) { fusion_instrs.push_back(predecessor); } } } std::sort(fusion_instrs.begin(), fusion_instrs.end(), [&](const HloInstruction* a, const HloInstruction* b) { Shape shape_a = GetInputShapeForMultiOutputFusion(*a); Shape shape_b = GetInputShapeForMultiOutputFusion(*b); if (!ShapeUtil::EqualIgnoringElementType(shape_a, shape_b)) { return CompareShapeDimsFromLeftToRight(shape_a, shape_b); } return GetInstrCountOfFusible(*a) < GetInstrCountOfFusible(*b); }); return fusion_instrs; } absl::StatusOr<bool> HorizontalInputFusionImpl::Run() { bool changed = false; XLA_VLOG_LINES(3, computation_->ToString()); std::vector<HloInstruction*> def_to_use_order = computation_->MakeInstructionPostOrder(); for (HloInstruction* consumer : def_to_use_order) { auto candidates = FindAndSortFusionCandidates(consumer); if (candidates.size() <= 1) { continue; } for (size_t j = 0; j < candidates.size(); ++j) { if (candidates[j]->opcode() != HloOpcode::kFusion) { TF_ASSIGN_OR_RETURN( HloInstruction * fusion_instr, MakeFusionInstruction(candidates[j], HloInstruction::FusionKind::kInput)); candidates[j] = fusion_instr; changed = true; } } size_t fusion_anchor_id = 0; for (size_t j = 1; j < candidates.size(); ++j) { HloInstruction* fusion_anchor = candidates[fusion_anchor_id]; HloInstruction* fused = candidates[j]; if (ShapesCompatibleForMultiOutputFusion(*fusion_anchor, *fused) && FusionFitsInBudget(*fusion_anchor, *fused, device_info_)) { VLOG(3) << "Fuse " << fused->ToString() << " into " << fusion_anchor->ToString(); fusion_anchor->MergeFusionInstructionIntoMultiOutput(fused); changed = true; } else { VLOG(3) << j - fusion_anchor_id - 1 << " instructions are fused."; fusion_anchor_id = j; } } } return changed; } } absl::StatusOr<bool> GpuHorizontalInputFusion::RunOnComputation( HloComputation* computation) { HorizontalInputFusionImpl horizontal_fusion_impl(computation, device_info_); return horizontal_fusion_impl.Run(); } absl::StatusOr<bool> GpuHorizontalInputFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; VLOG(2) << "Run horizontal input fusion."; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(changed, RunOnComputation(comp)); } return changed; } } }
#include "xla/service/gpu/horizontal_input_fusion.h" #include <cstdint> #include <utility> #include <vector> #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class HorizontalInputFusionTest : public GpuCodegenTest { public: se::DeviceDescription device_description_{ TestGpuDeviceInfo::RTXA6000DeviceInfo()}; GpuHorizontalInputFusion horizontal_input_fusion_{device_description_}; }; TEST_F(HorizontalInputFusionTest, BasicTest) { auto module = ParseAndReturnVerifiedModule(R"( HloModule BasicTest %add_f16 { %x = f16[] parameter(0) %y = f16[] parameter(1) ROOT %add = f16[] add(%x, %y) } fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) ROOT reduce1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 } fused_computation.2 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) ROOT reduce1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) fusion.1 = f16[] fusion(arg.1), kind=kInput, calls=fused_computation.1 fusion.2 = f16[] fusion(arg.2), kind=kInput, calls=fused_computation.2 ROOT tuple.1 = (f16[], f16[]) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_TRUE(horizontal_input_fusion_.Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple((m::GetTupleElement(m::Fusion(&fusion))), (m::GetTupleElement(m::Fusion()))))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(HorizontalInputFusionTest, ManyInputFusions) { auto module = CreateNewVerifiedModule(); HloComputation* reduce_computation; { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); reduce_computation = module->AddEmbeddedComputation(embedded_builder.Build()); } HloComputation::Builder builder(TestName()); std::vector<HloInstruction*> var_outs; auto input_shape = ShapeUtil::MakeShape(F32, {1024, 1024}); auto output_shape = ShapeUtil::MakeShape(F32, {1024}); for (int64_t i = 0; i < 130; ++i) { HloInstruction* param_var_in = builder.AddInstruction( HloInstruction::CreateParameter(i * 2 + 0, input_shape, "var.in")); HloInstruction* param_alpha = builder.AddInstruction(HloInstruction::CreateParameter( i * 2 + 1, ShapeUtil::MakeShape(F32, {}), "alpha")); auto alpha_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(input_shape, param_alpha, {})); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( input_shape, HloOpcode::kMultiply, param_var_in, alpha_broadcasted)); HloInstruction* const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( output_shape, mul, const0, {1}, reduce_computation)); var_outs.push_back(reduce); } builder.AddInstruction(HloInstruction::CreateTuple(var_outs)); module->AddEntryComputation(builder.Build()); CompileAndVerifyIr(module->Clone(), R"(CHECK: reduce-group-6)", false); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{1e-5, 1e-5})); } TEST_F(HorizontalInputFusionTest, MultiOutputFusionTest) { auto module = ParseAndReturnVerifiedModule(R"( HloModule MultiOutputFusionTest %add_f16 { %x = f16[] parameter(0) %y = f16[] parameter(1) ROOT %add = f16[] add(%x, %y) } fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) reduce.1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 add.0 = f16[1024] add(arg.1, arg.1) ROOT tuple.1 = (f16[], f16[1024]) tuple(reduce.1, add.0) } fused_computation.2 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) reduce.1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 add.0 = f16[1024] add(arg.1, arg.1) ROOT tuple.1 = (f16[], f16[1024]) tuple(reduce.1, add.0) } fused_computation.3 { arg.0 = f16[1024]{0} parameter(0) arg.1 = f16[1024]{0} parameter(1) add.0 = f16[1024] add(arg.0, arg.1) mul.0 = f16[1024] multiply(arg.0, arg.1) ROOT tuple.1 = (f16[1024], f16[1024]) tuple(add.0, mul.0) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) fusion.1 = (f16[],f16[1024]) fusion(arg.1), kind=kInput, calls=fused_computation.1 fusion.2 = (f16[],f16[1024]) fusion(arg.2), kind=kInput, calls=fused_computation.2 gte.3 = f16[] get-tuple-element(fusion.1), index=0 gte.1 = f16[1024]{0} get-tuple-element(fusion.1), index=1 gte.2 = f16[1024]{0} get-tuple-element(fusion.2), index=1 gte.6 = f16[] get-tuple-element(fusion.2), index=0 fusion.3 = (f16[1024],f16[1024]) fusion(gte.1, gte.2), kind=kLoop, calls=fused_computation.3 gte.4 = f16[1024] get-tuple-element(fusion.3), index=0 gte.5 = f16[1024]{0} get-tuple-element(fusion.3), index=1 ROOT tuple.1 = (f16[], f16[1024], f16[1024]{0}, f16[]) tuple(gte.3, gte.4, gte.5, gte.6) } )") .value(); EXPECT_TRUE(horizontal_input_fusion_.Run(module.get()).value()); } TEST_F(HorizontalInputFusionTest, NonfusionInstrs) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NonfusionInstrs %add_f16 { %x = f16[] parameter(0) %y = f16[] parameter(1) ROOT %add = f16[] add(%x, %y) } ENTRY entry_computation { arg.0 = f16[1024]{0} parameter(0) arg.1 = f16[1024]{0} parameter(1) constant0 = f16[] constant(0) reduce.0 = f16[] reduce(arg.0, constant0), dimensions={0}, to_apply=%add_f16 reduce.1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 ROOT tuple.0 = (f16[], f16[]) tuple(reduce.0, reduce.1) } )") .value(); EXPECT_TRUE(horizontal_input_fusion_.Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple((m::GetTupleElement(m::Fusion(&fusion))), (m::GetTupleElement(m::Fusion()))))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } } } }
2,060
cpp
tensorflow/tensorflow
autotuner_util
third_party/xla/xla/service/gpu/autotuning/autotuner_util.cc
third_party/xla/xla/service/gpu/autotuning/autotuner_util_test.cc
#ifndef XLA_SERVICE_GPU_AUTOTUNER_UTIL_H_ #define XLA_SERVICE_GPU_AUTOTUNER_UTIL_H_ #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <variant> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/xla.pb.h" namespace xla { namespace gpu { struct DeviceConfig { se::StreamExecutor* stream_exec; se::DeviceMemoryAllocator* allocator = nullptr; }; struct DevicelessConfig { std::string model_str; se::GpuComputeCapability gpu_compute_capability{ se::CudaComputeCapability{0, 0}}; }; class AutotuneCacheKey { public: AutotuneCacheKey(absl::string_view model_str, const HloInstruction& instruction); explicit AutotuneCacheKey(absl::string_view model_str, absl::string_view hlo_canonical) : model_str_(model_str), hlo_canonical_(hlo_canonical) {} absl::string_view GetModelStr() const { return model_str_; } absl::string_view GetHlo() const { return hlo_canonical_; } template <typename H> friend H AbslHashValue(H h, const AutotuneCacheKey& w) { return H::combine(std::move(h), w.model_str_, w.hlo_canonical_); } bool operator==(const AutotuneCacheKey& w) const { return model_str_ == w.model_str_ && hlo_canonical_ == w.hlo_canonical_; } std::string ToString() const { return absl::StrFormat("<key model='%s', hlo='%s'>", model_str_, hlo_canonical_); } private: std::string model_str_; std::string hlo_canonical_; }; class AutotuneConfig { public: bool should_init_buffers() const { return autotune_level_ >= 2; } bool should_reinit_output_buffer() const { return autotune_level_ >= 3; } bool should_check_correctness() const { return autotune_level_ >= 4; } bool should_crash_on_check_failure() const { return should_crash_on_check_failure_; } bool should_require_complete_aot_autotune_results() const { return require_complete_aot_autotune_results_; } const std::string& autotune_cache_dir() const { return autotune_cache_dir_; } AutotuneConfig(const AutotuneConfig& right) : config_(right.config_), autotune_level_(right.autotune_level_), should_crash_on_check_failure_(right.should_crash_on_check_failure_), exhaustive_tiling_search_(right.exhaustive_tiling_search_), require_complete_aot_autotune_results_( right.require_complete_aot_autotune_results_), autotune_cache_dir_(right.autotune_cache_dir_) {} AutotuneConfig(const std::variant<DeviceConfig, DevicelessConfig>& config, const DebugOptions& debug_options) : config_(config), autotune_level_(debug_options.xla_gpu_autotune_level()), should_crash_on_check_failure_( debug_options.xla_gpu_crash_on_verification_failures()), exhaustive_tiling_search_( debug_options.xla_gpu_exhaustive_tiling_search()), require_complete_aot_autotune_results_( debug_options.xla_gpu_require_complete_aot_autotune_results()), autotune_cache_dir_( debug_options.xla_gpu_per_fusion_autotune_cache_dir()) {} absl::string_view GetModelStr() const { if (auto deviceless_config = std::get_if<DevicelessConfig>(&config_)) { return deviceless_config->model_str; } const auto& device_config = std::get<DeviceConfig>(config_); return device_config.stream_exec->GetDeviceDescription().model_str(); } se::StreamExecutor* GetExecutor() const { CHECK(std::holds_alternative<DeviceConfig>(config_)); return std::get<DeviceConfig>(config_).stream_exec; } se::DeviceMemoryAllocator* GetAllocator() const { CHECK(std::holds_alternative<DeviceConfig>(config_)); auto& cf = std::get<DeviceConfig>(config_); if (cf.allocator != nullptr) { return cf.allocator; } if (allocator_ == nullptr) { allocator_ = std::make_unique<se::StreamExecutorMemoryAllocator>(GetExecutor()); } return allocator_.get(); } absl::StatusOr<se::Stream*> GetStream() const { CHECK(std::holds_alternative<DeviceConfig>(config_)); return GetAllocator()->GetStream(GetExecutor()->device_ordinal()); } const se::GpuComputeCapability& GetGpuComputeCapability() const { if (auto c = std::get_if<DeviceConfig>(&config_)) { return c->stream_exec->GetDeviceDescription().gpu_compute_capability(); } return std::get<DevicelessConfig>(config_).gpu_compute_capability; } bool IsDeviceless() const { return std::holds_alternative<DevicelessConfig>(config_); } bool ExhaustiveTilingSearch() const { return exhaustive_tiling_search_; } private: std::variant<DeviceConfig, DevicelessConfig> config_; int32_t autotune_level_; bool should_crash_on_check_failure_; bool exhaustive_tiling_search_; bool require_complete_aot_autotune_results_; mutable std::unique_ptr<se::DeviceMemoryAllocator> allocator_; std::string autotune_cache_dir_; }; using AutotuneNoCacheFn = std::function<absl::StatusOr<AutotuneResult>()>; struct AutotunerUtil { static absl::StatusOr<se::DeviceMemoryBase> CreateBuffer( se::RedzoneAllocator& allocator, const Shape& shape, const AutotuneConfig& config, int64_t& rng_state); static absl::StatusOr<AutotuneResult> Autotune( const HloInstruction* instr, const AutotuneConfig& config, const AutotuneNoCacheFn& autotune_fn); static AutotuneCacheKey GetKey(const HloInstruction* instr, const AutotuneConfig& config); static absl::StatusOr<bool> IsInCache(const AutotuneCacheKey& key, const AutotuneConfig& config); static absl::StatusOr<bool> AddResult(const AutotuneCacheKey& key, AutotuneResult result, const AutotuneConfig& config); static absl::StatusOr<se::RedzoneAllocator> CreateRedzoneAllocator( const AutotuneConfig& config, const DebugOptions& opts); static absl::StatusOr<std::string> SerializeAutotuneResults( bool as_textproto = false); static absl::Status SerializeAutotuneResults(AutotuneResults* results); static absl::Status LoadAutotuneResults(absl::string_view data, bool as_textproto = false); static absl::Status LoadAutotuneResults(const AutotuneResults& results); static absl::Status SerializeAutotuneResultsToFile( absl::string_view file_path); static absl::Status SerializeAutotuneResultsToFile( const AutotuneResults& results, absl::string_view file_path); static absl::Status LoadAutotuneResultsFromFile(absl::string_view file_path); static void ClearAutotuneResults(); static bool ResultCacheIsEmpty(); }; absl::StatusOr<std::string> AutotuneResultsToString( const AutotuneResults& results, bool as_textproto); absl::StatusOr<std::string> GetBase64EncodedSha256Hash(absl::string_view s); } } #endif #include "xla/service/gpu/autotuner_util.h" #include <algorithm> #include <array> #include <cstdint> #include <limits> #include <optional> #include <string> #include <utility> #include "absl/base/const_init.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/SHA256.h" #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_asm_opts_util.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/util.h" #include "tsl/platform/base64.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { constexpr int kVersion = 3; } using AutotuneCacheMap = absl::flat_hash_map<AutotuneCacheKey, AutotuneResult>; static absl::Mutex autotune_cache_mu(absl::kConstInit); static auto& autotune_cache ABSL_GUARDED_BY(autotune_cache_mu) = *new AutotuneCacheMap(); absl::StatusOr<std::string> GetBase64EncodedSha256Hash(absl::string_view s) { llvm::SHA256 sha256; sha256.update(llvm::StringRef(s)); std::array<uint8_t, 32> hash = sha256.final(); absl::string_view hash_view(reinterpret_cast<const char*>(hash.data()), hash.size()); std::string base64_encoded_hash; TF_RETURN_IF_ERROR(tsl::Base64Encode(hash_view, &base64_encoded_hash)); return base64_encoded_hash; } namespace { absl::StatusOr<std::string> GetCacheFilePath(absl::string_view cache_dir, const AutotuneCacheKey& key) { if (cache_dir.empty()) { return absl::InvalidArgumentError("autotune_cache_dir should not be empty"); } TF_ASSIGN_OR_RETURN(std::string key_hash, GetBase64EncodedSha256Hash(key.ToString())); return tsl::io::JoinPath(cache_dir, absl::StrCat(key_hash, ".textproto")); } struct ResultAndInserted { AutotuneResult result; bool inserted; }; ResultAndInserted AddResultToInMemoryCache(const AutotuneCacheKey& key, AutotuneResult result) ABSL_LOCKS_EXCLUDED(autotune_cache_mu) { absl::MutexLock lock(&autotune_cache_mu); auto [it, inserted] = autotune_cache.emplace(key, std::move(result)); return {it->second, inserted}; } absl::Status AddResultToFileBasedCacheIfEnabled(const AutotuneCacheKey& key, AutotuneResult result, std::string_view cache_dir) ABSL_LOCKS_EXCLUDED(autotune_cache_mu) { if (cache_dir.empty()) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(const std::string file_path, GetCacheFilePath(cache_dir, key)); VLOG(1) << "Writing autotune result to file: " << file_path; std::string result_str; if (!tsl::protobuf::TextFormat::PrintToString(result, &result_str)) { return absl::InternalError("Failed to serialize autotune result."); } std::string temp_file_path = tsl::io::GetTempFilename(".textproto"); tsl::Env* default_env = tsl::Env::Default(); TF_RETURN_IF_ERROR( tsl::WriteStringToFile(default_env, temp_file_path, result_str)); return default_env->RenameFile(temp_file_path, file_path); } absl::StatusOr<ResultAndInserted> AddResultToCaches(const AutotuneCacheKey& key, AutotuneResult result, std::string_view cache_dir) ABSL_LOCKS_EXCLUDED(autotune_cache_mu) { ResultAndInserted result_and_inserted = AddResultToInMemoryCache(key, result); if (result_and_inserted.inserted) { TF_RETURN_IF_ERROR(AddResultToFileBasedCacheIfEnabled( key, result_and_inserted.result, cache_dir)); } return result_and_inserted; } std::optional<AutotuneResult> TryToFindInInMemoryCache( const AutotuneCacheKey& key) ABSL_LOCKS_EXCLUDED(autotune_cache_mu) { absl::MutexLock lock(&autotune_cache_mu); auto it = autotune_cache.find(key); if (it == autotune_cache.end()) { return std::nullopt; } return it->second; } absl::StatusOr<std::optional<AutotuneResult>> TryToFindInFileBasedCacheIfEnabled(const AutotuneCacheKey& key, absl::string_view cache_dir) ABSL_LOCKS_EXCLUDED(autotune_cache_mu) { if (cache_dir.empty()) { return std::nullopt; } TF_ASSIGN_OR_RETURN(const std::string file_path, GetCacheFilePath(cache_dir, key)); if (!tsl::Env::Default()->FileExists(file_path).ok()) { VLOG(1) << "Autotune result file not found: " << file_path; return std::nullopt; } VLOG(1) << "Autotune result file found: " << file_path; std::string autotune_result_str; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), file_path, &autotune_result_str)); AutotuneResult result; if (!tsl::protobuf::TextFormat::ParseFromString(autotune_result_str, &result)) { return absl::InvalidArgumentError("Failed to parse autotune result."); } return result; } void SortAutotuneResults(AutotuneResults* results) { std::sort(results->mutable_results()->pointer_begin(), results->mutable_results()->pointer_end(), [](const auto* a, const auto* b) { return std::make_pair(absl::string_view(a->device()), absl::string_view(a->hlo())) < std::make_pair(absl::string_view(b->device()), absl::string_view(b->hlo())); }); } } absl::StatusOr<std::string> AutotuneResultsToString( const AutotuneResults& results, bool as_textproto) { if (as_textproto) { std::string textproto; if (tsl::protobuf::TextFormat::PrintToString(results, &textproto)) { return textproto; } else { return Internal("Failed to serialize autotune results."); } } return results.SerializeAsString(); } namespace { void SerializeAutotuneEntry(AutotuneResults* results, const AutotuneCacheKey& k, const AutotuneResult* res) { auto& entry = *results->add_results(); entry.set_device(std::string(k.GetModelStr())); entry.set_hlo(std::string(k.GetHlo())); *entry.mutable_result() = *res; } } absl::Status AutotunerUtil::SerializeAutotuneResults( AutotuneResults* results) { absl::MutexLock lock(&autotune_cache_mu); for (const auto& [k, result] : autotune_cache) { SerializeAutotuneEntry(results, k, &result); } results->set_version(kVersion); SortAutotuneResults(results); return absl::OkStatus(); } absl::Status AutotunerUtil::LoadAutotuneResults( const AutotuneResults& results) { absl::MutexLock lock(&autotune_cache_mu); for (const AutotuneResults::Entry& result : results.results()) { if (auto [it, inserted] = autotune_cache.emplace( AutotuneCacheKey(result.device(), result.hlo()), result.result()); !inserted) { return absl::InternalError(absl::StrCat( "Duplicate autotuning result for ", it->first.ToString())); } } return absl::OkStatus(); } void AutotunerUtil::ClearAutotuneResults() { absl::MutexLock lock(&autotune_cache_mu); autotune_cache.clear(); } bool AutotunerUtil::ResultCacheIsEmpty() { absl::MutexLock lock(&autotune_cache_mu); return autotune_cache.empty(); } absl::StatusOr<se::DeviceMemoryBase> AutotunerUtil::CreateBuffer( se::RedzoneAllocator& allocator, const Shape& shape, const AutotuneConfig& config, int64_t& rng_state) { TF_ASSIGN_OR_RETURN(se::DeviceMemoryBase buffer, allocator.AllocateBytes(ShapeUtil::ByteSizeOf(shape))); if (config.should_init_buffers()) { InitializeBuffer(allocator.stream(), shape.element_type(), &rng_state, buffer); } return buffer; } namespace { std::string ToCanonicalString(const HloInstruction* instr) { auto options = HloPrintOptions::Canonical(); if (instr->opcode() != HloOpcode::kFusion) { options.set_print_backend_config(true); return instr->ToString(options); } options.set_print_subcomputation_mode( HloPrintOptions::PrintSubcomputationMode::kOff); options.set_print_infeed_outfeed_config(false); options.set_print_only_essential_constants(true); options.set_print_operand_shape(true); options.set_print_ids(false); options.set_canonicalize_computations(true); return instr->called_computations()[0]->ToString(options); } } AutotuneCacheKey::AutotuneCacheKey(absl::string_view model_str, const HloInstruction& instr) : AutotuneCacheKey(model_str, ToCanonicalString(&instr)) {} namespace { absl::StatusOr<std::optional<AutotuneResult>> TryFindInCache( const AutotuneCacheKey& key, absl::string_view cache_dir) ABSL_LOCKS_EXCLUDED(autotune_cache_mu) { std::optional<AutotuneResult> opt_result = TryToFindInInMemoryCache(key); if (opt_result.has_value()) { if (VLOG_IS_ON(1)) { LOG(INFO) << "In-memory autotune cache hit"; } else if (VLOG_IS_ON(2)) { LOG(INFO) << "In-memory autotune cache hit: key = " << key.ToString(); } return opt_result; } TF_ASSIGN_OR_RETURN(opt_result, TryToFindInFileBasedCacheIfEnabled(key, cache_dir)); if (opt_result.has_value()) { AddResultToInMemoryCache(key, opt_result.value()); if (VLOG_IS_ON(1)) { LOG(INFO) << "File-based autotune cache hit"; } else if (VLOG_IS_ON(2)) { LOG(INFO) << "File-based autotune cache hit: key = " << key.ToString(); } return opt_result; } if (VLOG_IS_ON(1)) { LOG(INFO) << "Autotune cache miss"; } else if (VLOG_IS_ON(2)) { LOG(INFO) << "Autotune cache miss: key = " << key.ToString(); } return std::nullopt; } } AutotuneCacheKey AutotunerUtil::GetKey( const HloInstruction* instr, const AutotuneConfig& config) { return AutotuneCacheKey(config.GetModelStr(), *instr); } absl::StatusOr<bool> AutotunerUtil::IsInCache( const AutotuneCacheKey& key, const AutotuneConfig& config) { TF_ASSIGN_OR_RETURN(std::optional<AutotuneResult> opt_res, TryFindInCache(key, config.autotune_cache_dir())); return opt_res.has_value(); } absl::StatusOr<bool> AutotunerUtil::AddResult( const AutotuneCacheKey& key, AutotuneResult result, const AutotuneConfig& config) { TF_ASSIGN_OR_RETURN( ResultAndInserted result_and_inserted, AddResultToCaches(key, std::move(result), config.autotune_cache_dir())); return result_and_inserted.inserted; } absl::StatusOr<AutotuneResult> AutotunerUtil::Autotune( const HloInstruction* instr, const AutotuneConfig& config, const AutotuneNoCacheFn& autotune_fn) { const AutotuneCacheKey key = GetKey(instr, config); TF_ASSIGN_OR_RETURN(std::optional<AutotuneResult> opt_res, TryFindInCache(key, config.autotune_cache_dir())); if (opt_res.has_value()) { return opt_res.value(); } if (config.should_require_complete_aot_autotune_results()) { return NotFound( "Complete XLA AOT autotuning results are required, but no AOT result " "was found for key: %s", key.ToString()); } TF_ASSIGN_OR_RETURN(AutotuneResult autotune_result, autotune_fn()); TF_ASSIGN_OR_RETURN(ResultAndInserted result_and_inserted, AddResultToCaches(key, std::move(autotune_result), config.autotune_cache_dir())); return result_and_inserted.result; } namespace { bool IsTextProtoPath(absl::string_view file_path) { return absl::EndsWith(file_path, ".txt") || absl::EndsWith(file_path, ".textproto") || absl::EndsWith(file_path, ".prototxt") || absl::EndsWith(file_path, ".pbtxt"); } } absl::Status AutotunerUtil::LoadAutotuneResults( absl::string_view data, bool as_textproto) { AutotuneResults results; bool parse_success = as_textproto ? tsl::protobuf::TextFormat::ParseFromString( std::string(data), &results) : results.ParseFromString(std::string(data)); if (!parse_success) { return absl::InvalidArgumentError( "Failed to parse autotune results string."); } if (results.version() != kVersion) { return absl::InvalidArgumentError(absl::StrFormat( "Version mismatch in autotune results. Expected %d but was %d", kVersion, results.version())); } TF_RETURN_IF_ERROR(LoadAutotuneResults(results)); return absl::OkStatus(); } absl::StatusOr<std::string> AutotunerUtil::SerializeAutotuneResults( bool as_textproto) { AutotuneResults results; TF_RETURN_IF_ERROR(SerializeAutotuneResults(&results)); return AutotuneResultsToString(results, as_textproto); } absl::Status AutotunerUtil::SerializeAutotuneResultsToFile( const AutotuneResults& results, absl::string_view file_path) { TF_RET_CHECK(!file_path.empty()); TF_RET_CHECK(results.version() > 0) << "Did you call SerializeAutotuneResults to get this AutotuneResults?"; std::string resolved_path; if (!tsl::io::ResolveTestPrefixes(file_path, resolved_path)) { return FailedPrecondition("File path can not be resolved: %s", file_path); } TF_ASSIGN_OR_RETURN( std::string autotune_results_str, AutotuneResultsToString(results, IsTextProtoPath(resolved_path))); TF_RETURN_IF_ERROR(tsl::WriteStringToFile(tsl::Env::Default(), resolved_path, autotune_results_str)); LOG(INFO) << "Autotune results serialized to file: " << resolved_path; return absl::OkStatus(); } absl::Status AutotunerUtil::SerializeAutotuneResultsToFile( absl::string_view file_path) { AutotuneResults results; TF_RETURN_IF_ERROR(SerializeAutotuneResults(&results)); return SerializeAutotuneResultsToFile(results, file_path); } absl::Status AutotunerUtil::LoadAutotuneResultsFromFile( absl::string_view file_path) { TF_RET_CHECK(!file_path.empty()); std::string resolved_path; if (!tsl::io::ResolveTestPrefixes(file_path, resolved_path)) { return FailedPrecondition("File path can not be resolved: %s", file_path); } if (!tsl::Env::Default()->FileExists(resolved_path).ok()) { return FailedPrecondition("Autotune results file does not exist: %s", resolved_path); } std::string autotune_results_str; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), resolved_path, &autotune_results_str)); TF_RETURN_IF_ERROR(LoadAutotuneResults(autotune_results_str, IsTextProtoPath(resolved_path))); LOG(INFO) << "Autotune results loaded from file: " << resolved_path; return absl::OkStatus(); } absl::StatusOr<se::RedzoneAllocator> AutotunerUtil::CreateRedzoneAllocator(const AutotuneConfig& config, const DebugOptions& opts) { TF_ASSIGN_OR_RETURN(se::Stream * stream, config.GetStream()); return se::RedzoneAllocator( stream, config.GetAllocator(), PtxOptsFromDebugOptions(opts), std::numeric_limits<int64_t>::max(), config.should_check_correctness() ? opts.xla_gpu_redzone_padding_bytes() : 0); } } }
#include "xla/service/gpu/autotuner_util.h" #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::Not; using ::testing::TempDir; using ::tsl::testing::StatusIs; class AutotunerUtilTest : public HloTestBase { protected: static constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { p0 = f16[1,16,17,3] parameter(0) p1 = s8[16,17,3] parameter(1) cp1 = f16[16,17,3] convert(p1) ROOT _ = f16[1,16,16] dot(p0, cp1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} })"; static constexpr absl::string_view kResultText = R"( version: 3 results { device: "sm_8.0 with 42331013120B RAM, 108 cores, 1410000KHz clock, 1215000KHz mem clock, 41943040B L2$" hlo: "{\n tmp_0 = f16[1,16,17,3]{3,2,1,0} parameter(0)\n tmp_1 = f16[16,51]{1,0} bitcast(f16[1,16,17,3]{3,2,1,0} tmp_0)\n tmp_2 = s8[16,17,3]{2,1,0} parameter(1)\n tmp_3 = s8[51,16]{0,1} bitcast(s8[16,17,3]{2,1,0} tmp_2)\n tmp_4 = f16[51,16]{0,1} convert(s8[51,16]{0,1} tmp_3)\n tmp_5 = f16[16,16]{1,0} dot(f16[16,51]{1,0} tmp_1, f16[51,16]{0,1} tmp_4), lhs_contracting_dims={1}, rhs_contracting_dims={0}\n ROOT tmp_6 = f16[1,16,16]{2,1,0} bitcast(f16[16,16]{1,0} tmp_5)\n}" result { run_time { nanos: 31744 } triton { block_m: 32 block_n: 32 block_k: 32 split_k: 1 num_stages: 1 num_warps: 4 num_ctas: 1 } } })"; void SetUp() override { AutotunerUtil::ClearAutotuneResults(); } std::string GetUniqueTempFilePath(absl::string_view suffix) { std::string filename = TempDir(); CHECK(tsl::Env::Default()->CreateUniqueFileName(&filename, std::string(suffix))); return filename; } std::string ExpectToReadNonEmptyFile(absl::string_view file_path) { std::string str; tsl::Env* env = tsl::Env::Default(); TF_EXPECT_OK(tsl::ReadFileToString(env, std::string(file_path), &str)); EXPECT_THAT(str, Not(IsEmpty())); return str; } static std::unique_ptr<stream_executor::StreamExecutor> NewStreamExecutor() { stream_executor::Platform* platform = stream_executor::PlatformManager::PlatformWithName("Host").value(); stream_executor::StreamExecutorConfig config(0); return platform->GetUncachedExecutor(config).value(); } absl::Status PopulateResultCache() { EXPECT_TRUE(AutotunerUtil::ResultCacheIsEmpty()); TF_RETURN_IF_ERROR(AutotunerUtil::LoadAutotuneResults(kResultText, true)); EXPECT_FALSE(AutotunerUtil::ResultCacheIsEmpty()); return absl::OkStatus(); } }; TEST_F(AutotunerUtilTest, SerializeAutotuneResultsToFile_TextProto1) { TF_EXPECT_OK(PopulateResultCache()); std::string kFilePath = GetUniqueTempFilePath(".txt"); TF_EXPECT_OK(AutotunerUtil::SerializeAutotuneResultsToFile(kFilePath)); std::string autotune_results_str = ExpectToReadNonEmptyFile(kFilePath); AutotuneResults results; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString(autotune_results_str, &results)); EXPECT_GT(results.results_size(), 0); } TEST_F(AutotunerUtilTest, SerializeAutotuneResultsToFile_TextProto2) { TF_EXPECT_OK(PopulateResultCache()); std::string kFilePath = GetUniqueTempFilePath(".textproto"); TF_EXPECT_OK(AutotunerUtil::SerializeAutotuneResultsToFile(kFilePath)); std::string autotune_results_str = ExpectToReadNonEmptyFile(kFilePath); AutotuneResults results; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString(autotune_results_str, &results)); } TEST_F(AutotunerUtilTest, SerializeAutotuneResultsToFile_Protobuf) { TF_EXPECT_OK(PopulateResultCache()); std::string kFilePath = GetUniqueTempFilePath(".pb"); TF_EXPECT_OK(AutotunerUtil::SerializeAutotuneResultsToFile(kFilePath)); std::string autotune_results_str = ExpectToReadNonEmptyFile(kFilePath); AutotuneResults results; EXPECT_TRUE(results.ParseFromString(autotune_results_str)); } TEST_F(AutotunerUtilTest, LoadAutotuneResultsFromFile_TextProto1) { TF_EXPECT_OK(PopulateResultCache()); std::string kFilePath = GetUniqueTempFilePath(".txt"); TF_EXPECT_OK(AutotunerUtil::SerializeAutotuneResultsToFile(kFilePath)); AutotunerUtil::ClearAutotuneResults(); EXPECT_TRUE(AutotunerUtil::ResultCacheIsEmpty()); TF_EXPECT_OK(AutotunerUtil::LoadAutotuneResultsFromFile(kFilePath)); EXPECT_FALSE(AutotunerUtil::ResultCacheIsEmpty()); } TEST_F(AutotunerUtilTest, LoadAutotuneResultsFromFile_TextProto2) { TF_EXPECT_OK(PopulateResultCache()); std::string kFilePath = GetUniqueTempFilePath(".textproto"); TF_EXPECT_OK(AutotunerUtil::SerializeAutotuneResultsToFile(kFilePath)); AutotunerUtil::ClearAutotuneResults(); EXPECT_TRUE(AutotunerUtil::ResultCacheIsEmpty()); TF_EXPECT_OK(AutotunerUtil::LoadAutotuneResultsFromFile(kFilePath)); EXPECT_FALSE(AutotunerUtil::ResultCacheIsEmpty()); } TEST_F(AutotunerUtilTest, LoadAutotuneResultsFromFile_Protobuf) { TF_EXPECT_OK(PopulateResultCache()); std::string kFilePath = GetUniqueTempFilePath(".pb"); TF_EXPECT_OK(AutotunerUtil::SerializeAutotuneResultsToFile(kFilePath)); AutotunerUtil::ClearAutotuneResults(); EXPECT_TRUE(AutotunerUtil::ResultCacheIsEmpty()); TF_EXPECT_OK(AutotunerUtil::LoadAutotuneResultsFromFile(kFilePath)); EXPECT_FALSE(AutotunerUtil::ResultCacheIsEmpty()); } TEST_F(AutotunerUtilTest, ResultConflictsAreDetected) { TF_EXPECT_OK(PopulateResultCache()); std::string kFilePath = GetUniqueTempFilePath(".pb"); TF_EXPECT_OK(AutotunerUtil::SerializeAutotuneResultsToFile(kFilePath)); EXPECT_THAT(AutotunerUtil::LoadAutotuneResultsFromFile(kFilePath), StatusIs(absl::StatusCode::kInternal, HasSubstr("Duplicate autotuning result"))); } TEST_F(AutotunerUtilTest, FailIfRequireCompleteAotAutotuning) { std::string kFilePath = GetUniqueTempFilePath(".txt"); auto hlo_module = GetOptimizedModule(kHloText); TF_EXPECT_OK(hlo_module.status()); std::vector<HloComputation*> computations = (*hlo_module) ->MakeNonfusionComputations(absl::flat_hash_set<absl::string_view>()); EXPECT_THAT(computations, Not(IsEmpty())); const HloInstruction* instruction = *computations[0]->instructions().begin(); std::unique_ptr<stream_executor::StreamExecutor> executor = NewStreamExecutor(); auto options = DebugOptions(); options.set_xla_gpu_require_complete_aot_autotune_results(true); AutotuneConfig config(DeviceConfig{executor.get()}, options); EXPECT_THAT( AutotunerUtil::Autotune(instruction, config, [&] { return AutotuneResult(); }), StatusIs( absl::StatusCode::kNotFound, HasSubstr("Complete XLA AOT autotuning results are required, but " "no AOT result was found for key: <key model"))); } TEST_F(AutotunerUtilTest, OkIfJitAutotuningDisabledButAlreadyLoadedAOT) { auto hlo_module = GetOptimizedModule(kHloText); std::vector<HloComputation*> computations = (*hlo_module) ->MakeNonfusionComputations(absl::flat_hash_set<absl::string_view>()); EXPECT_THAT(computations, Not(IsEmpty())); const HloInstruction* instruction = *computations[0]->instructions().begin(); std::unique_ptr<stream_executor::StreamExecutor> executor = NewStreamExecutor(); { AutotuneConfig config(DeviceConfig{executor.get()}, DebugOptions()); TF_EXPECT_OK(AutotunerUtil::Autotune(instruction, config, [&] { return AutotuneResult(); }).status()); } auto options = DebugOptions(); options.set_xla_gpu_require_complete_aot_autotune_results(true); AutotuneConfig config(DeviceConfig{executor.get()}, options); TF_EXPECT_OK(AutotunerUtil::Autotune(instruction, config, [&] { return AutotuneResult(); }).status()); } class FileBasedCacheTest : public AutotunerUtilTest { public: static std::string ToString(const proto2::Message& message) { std::string textproto; CHECK(tsl::protobuf::TextFormat::PrintToString(message, &textproto)); return textproto; } static std::vector<std::string> GetFilesInDir( const absl::string_view cache_dir) { std::vector<std::string> files_in_cache; TF_CHECK_OK(tsl::Env::Default()->GetChildren(std::string(cache_dir), &files_in_cache)); return files_in_cache; } static std::string Read(const absl::string_view filepath) { std::string file_content; TF_CHECK_OK(tsl::ReadFileToString(tsl::Env::Default(), std::string(filepath), &file_content)); return file_content; } static void Write(const absl::string_view filepath, const absl::string_view content) { TF_CHECK_OK(tsl::WriteStringToFile(tsl::Env::Default(), std::string(filepath), content)); } std::unique_ptr<stream_executor::StreamExecutor> executor_ = NewStreamExecutor(); std::unique_ptr<HloModule> module_ = ParseAndReturnVerifiedModule(kHloText).value(); const HloInstruction* dot_ = hlo_query::GetFirstInstructionWithOpcode( *module_->entry_computation(), HloOpcode::kDot); std::string cache_dir_ = [] { tsl::Env* default_env = tsl::Env::Default(); std::string cache_dir; CHECK(default_env->LocalTempFilename(&cache_dir)); CHECK_OK(default_env->CreateDir(cache_dir)); return cache_dir; }(); AutotuneConfig config_ = AutotuneConfig(DeviceConfig{executor_.get()}, [&] { DebugOptions options; options.set_xla_gpu_per_fusion_autotune_cache_dir(cache_dir_); return options; }()); AutotuneCacheKey cache_key_ = AutotunerUtil::GetKey(dot_, config_); std::string cache_filename_ = [&] { absl::StatusOr<std::string> key_hash = GetBase64EncodedSha256Hash(cache_key_.ToString()); CHECK_OK(key_hash.status()); return absl::StrCat(key_hash.value(), ".textproto"); }(); std::string cache_file_path_ = tsl::io::JoinPath(cache_dir_, cache_filename_); const AutotuneResult result1_ = [] { AutotuneResult result; result.set_scratch_bytes(1); return result; }(); const AutotuneResult result2_ = [] { AutotuneResult result; result.set_scratch_bytes(2); return result; }(); }; TEST_F(FileBasedCacheTest, AutotuneWritesResultToTheCacheDir) { TF_ASSERT_OK_AND_ASSIGN( AutotuneResult result, AutotunerUtil::Autotune(dot_, config_, [&] { return result1_; })); EXPECT_EQ(ToString(result), ToString(result1_)); ASSERT_THAT(GetFilesInDir(cache_dir_), ElementsAre(cache_filename_)); EXPECT_EQ(Read(cache_file_path_), ToString(result1_)); } TEST_F(FileBasedCacheTest, AutotuneReadsResultFromTheCacheDir) { Write(cache_file_path_, ToString(result1_)); bool cache_hit = true; TF_ASSERT_OK_AND_ASSIGN(AutotuneResult result, AutotunerUtil::Autotune(dot_, config_, [&] { cache_hit = false; return result2_; })); EXPECT_TRUE(cache_hit); EXPECT_EQ(ToString(result), ToString(result1_)); } TEST_F(FileBasedCacheTest, RepeatedAutotuneCallsDontReadOrWriteTheCacheFileAgain) { auto check_autotune_cache_hit = [](const HloInstruction* instr, const AutotuneConfig& config, const AutotuneResult& expected_result) { bool cache_hit = true; TF_ASSERT_OK_AND_ASSIGN(AutotuneResult result, AutotunerUtil::Autotune(instr, config, [&] { cache_hit = false; AutotuneResult new_result; new_result.set_scratch_bytes(2); return new_result; })); EXPECT_TRUE(cache_hit); EXPECT_EQ(ToString(result), ToString(expected_result)); }; Write(cache_file_path_, ToString(result1_)); check_autotune_cache_hit(dot_, config_, result1_); constexpr absl::string_view kPlaceholderContent = "placeholder content"; Write(cache_file_path_, kPlaceholderContent); check_autotune_cache_hit(dot_, config_, result1_); EXPECT_EQ(Read(cache_file_path_), kPlaceholderContent); } TEST_F(FileBasedCacheTest, IsInCacheReturnsTrueIfTheResultIsInTheFileBasedCache) { Write(cache_file_path_, ToString(result1_)); TF_ASSERT_OK_AND_ASSIGN(bool is_in_cache, AutotunerUtil::IsInCache(cache_key_, config_)); EXPECT_TRUE(is_in_cache); } TEST_F(FileBasedCacheTest, IsInCacheReturnsFalseIfTheResultIsNotInEitherCache) { TF_ASSERT_OK_AND_ASSIGN(bool is_in_cache, AutotunerUtil::IsInCache(cache_key_, config_)); EXPECT_FALSE(is_in_cache); } TEST_F(FileBasedCacheTest, AddResultAddsTheResultToTheFileBasedCache) { TF_ASSERT_OK_AND_ASSIGN( bool added, AutotunerUtil::AddResult(cache_key_, result1_, config_)); EXPECT_TRUE(added); ASSERT_THAT(GetFilesInDir(cache_dir_), ElementsAre(cache_filename_)); EXPECT_EQ(Read(cache_file_path_), ToString(result1_)); } TEST_F(FileBasedCacheTest, RepeatedAddResultDoesNotWriteTheFileAgain) { { TF_ASSERT_OK_AND_ASSIGN( bool added, AutotunerUtil::AddResult(cache_key_, result1_, config_)); EXPECT_TRUE(added); } ASSERT_THAT(GetFilesInDir(cache_dir_), ElementsAre(cache_filename_)); EXPECT_EQ(Read(cache_file_path_), ToString(result1_)); constexpr absl::string_view kPlaceholderContent = "placeholder content"; Write(cache_file_path_, kPlaceholderContent); { TF_ASSERT_OK_AND_ASSIGN( bool added, AutotunerUtil::AddResult(cache_key_, result1_, config_)); EXPECT_FALSE(added); } EXPECT_EQ(Read(cache_file_path_), kPlaceholderContent); } } } }
2,061
cpp
tensorflow/tensorflow
buffer_comparator
third_party/xla/xla/service/gpu/buffer_comparator.cc
third_party/xla/xla/service/gpu/buffer_comparator_test.cc
#ifndef XLA_SERVICE_GPU_BUFFER_COMPARATOR_H_ #define XLA_SERVICE_GPU_BUFFER_COMPARATOR_H_ #include "absl/status/statusor.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" #if TENSORFLOW_USE_ROCM #include "rocm/rocm_config.h" #endif namespace xla::gpu { class BufferComparator { public: BufferComparator(const BufferComparator&) = delete; BufferComparator(BufferComparator&&) = default; BufferComparator(const Shape& shape, const HloModuleConfig& config, double tolerance = 0.1); absl::StatusOr<bool> CompareEqual(se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected) const; private: template <typename ElementT, typename ComparisonT> absl::StatusOr<bool> CompareEqualParameterized(se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected, std::string_view kernel_name, void* kernel_symbol) const; template <typename ElementType, typename ComparisonType> absl::StatusOr<bool> HostCompare(se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected) const; template <typename ElementT> absl::StatusOr<bool> DeviceCompare(se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected, std::string_view kernel_name, void* kernel_symbol) const; Shape shape_; HloModuleConfig config_; double tolerance_; }; namespace buffer_comparator { void* fp8_e4m3fn_comparison(); void* fp8_e5m2_comparison(); #if TENSORFLOW_USE_ROCM && TF_ROCM_VERSION >= 60200 void* fp8_e4m3fnuz_comparison(); void* fp8_e5m2fnuz_comparison(); #endif void* fp16_comparison(); void* bf16_comparison(); void* fp32_comparison(); void* fp64_comparison(); void* int8_comparison(); void* int32_comparison(); } } #endif #include "xla/service/gpu/buffer_comparator.h" #include <algorithm> #include <cmath> #include <cstdint> #include <string_view> #include <type_traits> #include <vector> #include "Eigen/Core" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { template <typename ElementT> using ComparisonKernelT = se::TypedKernel<se::DeviceMemory<ElementT>, se::DeviceMemory<ElementT>, float, uint64_t, se::DeviceMemory<uint64_t>>; template <typename ElementT> absl::StatusOr<bool> BufferComparator::DeviceCompare( se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected, std::string_view kernel_name, void* kernel_symbol) const { se::StreamExecutor* executor = stream->parent(); se::DeviceMemoryHandle out_param(executor, executor->AllocateScalar<uint64_t>()); TF_RETURN_IF_ERROR(stream->MemZero(out_param.memory_ptr(), sizeof(uint64_t))); if (current.size() != expected.size()) { return Internal("Mismatched buffer size: %d bytes vs. %d bytes", current.size(), expected.size()); } se::DeviceMemory<ElementT> current_typed(current); se::DeviceMemory<ElementT> expected_typed(expected); uint64_t buffer_size = current_typed.ElementCount(); TF_ASSIGN_OR_RETURN( ComparisonKernelT<ElementT> comparison_kernel, (se::TypedKernelFactory< se::DeviceMemory<ElementT>, se::DeviceMemory<ElementT>, float, uint64_t, se::DeviceMemory<uint64_t>>::Create(executor, kernel_name, kernel_symbol))); const se::DeviceDescription& gpu_device_info = executor->GetDeviceDescription(); LaunchDimensions dim = CalculateLaunchDimensions(shape_, gpu_device_info); se::DeviceMemory<uint64_t> as_uint64(out_param.memory()); TF_RETURN_IF_ERROR(stream->ThenLaunch( dim.thread_counts_per_block(), dim.block_counts(), comparison_kernel, current_typed, expected_typed, static_cast<float>(tolerance_), buffer_size, as_uint64)); uint64_t result = -1; CHECK_EQ(out_param.memory().size(), sizeof(result)); TF_RETURN_IF_ERROR( stream->Memcpy(&result, out_param.memory(), sizeof(result))); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); return result == 0; } template <typename ElementType, typename ComparisonType> absl::StatusOr<bool> BufferComparator::HostCompare( se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected) const { int64_t n = current.size() / sizeof(ElementType); std::vector<ElementType> host_current(n), host_expected(n); TF_RETURN_IF_ERROR( stream->Memcpy(host_current.data(), current, current.size())); TF_RETURN_IF_ERROR( stream->Memcpy(host_expected.data(), expected, expected.size())); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); const auto canonicalize = [](ComparisonType a) -> ComparisonType { if (std::is_same<ElementType, Eigen::half>::value && a) { constexpr ComparisonType kMaxFp16Value = 65505; if (std::isnan(a)) { return a; } return std::max(-kMaxFp16Value, std::min(a, kMaxFp16Value)); } return a; }; int differences_seen = 0; for (int64_t i = 0; i < n && differences_seen < 10; ++i) { auto current_value = static_cast<ComparisonType>(host_current[i]); auto expected_value = static_cast<ComparisonType>(host_expected[i]); ComparisonType current_value_canonical = canonicalize(current_value); ComparisonType expected_value_canonical = canonicalize(expected_value); if (std::isnan(current_value_canonical) && std::isnan(expected_value_canonical)) { continue; } if (std::isinf(current_value_canonical) && std::isinf(expected_value_canonical) && current_value_canonical == expected_value_canonical) { continue; } if (std::isfinite(current_value_canonical) != std::isfinite(expected_value_canonical) || !(std::abs(current_value_canonical - expected_value_canonical) / (std::max(std::abs(current_value_canonical), std::abs(expected_value_canonical)) + 1) < tolerance_)) { ++differences_seen; LOG(ERROR) << "Difference at " << i << ": " << current_value << ", expected " << expected_value; } } return differences_seen == 0; } template <typename ElementT, typename ComparisonT> absl::StatusOr<bool> BufferComparator::CompareEqualParameterized( se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected, std::string_view kernel_name, void* kernel_symbol) const { XLA_SCOPED_LOGGING_TIMER("BufferComparator::CompareEqual"); TF_ASSIGN_OR_RETURN(bool result, DeviceCompare<ElementT>(stream, current, expected, kernel_name, kernel_symbol)); if (result) { return true; } TF_ASSIGN_OR_RETURN(bool host_return, (HostCompare<ElementT, ComparisonT>( stream, current, expected))); CHECK_EQ(host_return, result) << "Host comparison succeeded even though GPU comparison failed."; return false; } absl::StatusOr<bool> BufferComparator::CompareEqual( se::Stream* stream, se::DeviceMemoryBase current, se::DeviceMemoryBase expected) const { switch (shape_.element_type()) { #if GOOGLE_CUDA case xla::F8E4M3FN: return CompareEqualParameterized<tsl::float8_e4m3fn, float>( stream, current, expected, "fp8_e4m3fn_comparison", buffer_comparator::fp8_e4m3fn_comparison()); case xla::F8E5M2: return CompareEqualParameterized<tsl::float8_e5m2, float>( stream, current, expected, "fp8_e5m2_comparison", buffer_comparator::fp8_e5m2_comparison()); #endif #if TENSORFLOW_USE_ROCM && TF_ROCM_VERSION >= 60200 case xla::F8E4M3FNUZ: return CompareEqualParameterized<tsl::float8_e4m3fnuz, float>( stream, current, expected, "fp8_e4m3fnuz_comparison", buffer_comparator::fp8_e4m3fnuz_comparison()); case xla::F8E5M2FNUZ: return CompareEqualParameterized<tsl::float8_e5m2fnuz, float>( stream, current, expected, "fp8_e5m2fnuz_comparison", buffer_comparator::fp8_e5m2fnuz_comparison()); #endif case xla::F16: return CompareEqualParameterized<Eigen::half, float>( stream, current, expected, "fp16_comparison", buffer_comparator::fp16_comparison()); case xla::BF16: return CompareEqualParameterized<Eigen::bfloat16, float>( stream, current, expected, "bf16_comparison", buffer_comparator::bf16_comparison()); case xla::F32: return CompareEqualParameterized<float, float>( stream, current, expected, "fp32_comparison", buffer_comparator::fp32_comparison()); case xla::F64: return CompareEqualParameterized<double, double>( stream, current, expected, "fp64_comparison", buffer_comparator::fp64_comparison()); case xla::S8: return CompareEqualParameterized<int8_t, float>( stream, current, expected, "int8_comparison", buffer_comparator::int8_comparison()); case xla::S32: return CompareEqualParameterized<int32_t, float>( stream, current, expected, "int32_comparison", buffer_comparator::int32_comparison()); default: return Unimplemented("Unimplemented element type"); } } BufferComparator::BufferComparator(const Shape& shape, const HloModuleConfig& config, double tolerance) : shape_(shape), config_(config), tolerance_(tolerance) { auto double_dim_size = [&]() { int64_t prev_zero_dim_size = shape_.dimensions(0); shape_.set_dimensions(0, prev_zero_dim_size * 2); }; if (shape_.element_type() == PrimitiveType::C64) { shape_.set_element_type(PrimitiveType::F32); double_dim_size(); } else if (shape_.element_type() == PrimitiveType::C128) { shape_.set_element_type(PrimitiveType::F64); double_dim_size(); } } } }
#include "xla/service/gpu/buffer_comparator.h" #include <cmath> #include <complex> #include <cstdint> #include <limits> #include <vector> #include "xla/primitive_util.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/types.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { constexpr double kDefaultTolerance = 0.1; class BufferComparatorTest : public testing::Test { protected: BufferComparatorTest() #if GOOGLE_CUDA : platform_(se::PlatformManager::PlatformWithName("CUDA").value()), #elif TENSORFLOW_USE_ROCM : platform_(se::PlatformManager::PlatformWithName("ROCM").value()), #endif stream_exec_(platform_->ExecutorForDevice(0).value()) { } template <typename ElementType> bool CompareEqualBuffers(const std::vector<ElementType>& current, const std::vector<ElementType>& expected, double tolerance) { auto stream = stream_exec_->CreateStream().value(); se::DeviceMemoryHandle current_buffer( stream_exec_, stream_exec_->AllocateArray<ElementType>(current.size())); se::DeviceMemoryHandle expected_buffer( stream_exec_, stream_exec_->AllocateArray<ElementType>(expected.size())); TF_CHECK_OK(stream->Memcpy(current_buffer.memory_ptr(), current.data(), current_buffer.memory().size())); TF_CHECK_OK(stream->Memcpy(expected_buffer.memory_ptr(), expected.data(), expected_buffer.memory().size())); TF_CHECK_OK(stream->BlockHostUntilDone()); BufferComparator comparator( ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<ElementType>(), {static_cast<int64_t>(current.size())}), HloModuleConfig(), tolerance); return comparator .CompareEqual(stream.get(), current_buffer.memory(), expected_buffer.memory()) .value(); } template <typename ElementType> bool CompareEqualFloatBuffers(const std::vector<float>& lhs_float, const std::vector<float>& rhs_float, double tolerance = kDefaultTolerance) { std::vector<ElementType> lhs(lhs_float.begin(), lhs_float.end()); std::vector<ElementType> rhs(rhs_float.begin(), rhs_float.end()); return CompareEqualBuffers(lhs, rhs, tolerance); } template <typename ElementType> bool CompareEqualComplex(const std::vector<std::complex<ElementType>>& lhs, const std::vector<std::complex<ElementType>>& rhs) { return CompareEqualBuffers<std::complex<ElementType>>(lhs, rhs, kDefaultTolerance); } se::Platform* platform_; se::StreamExecutor* stream_exec_; }; TEST_F(BufferComparatorTest, TestComplex) { EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 7}})); EXPECT_TRUE(CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2.2, 3.3}})); EXPECT_TRUE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2, 3}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 3}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {6, 7}})); EXPECT_FALSE( CompareEqualComplex<float>({{0.1, 0.2}, {2, 3}}, {{0.1, 6}, {2, 3}})); EXPECT_TRUE(CompareEqualComplex<double>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2.2, 3.3}})); EXPECT_FALSE( CompareEqualComplex<double>({{0.1, 0.2}, {2, 3}}, {{0.1, 0.2}, {2, 7}})); } TEST_F(BufferComparatorTest, TestNaNs) { EXPECT_TRUE( CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({std::nanf("")}, {1.})); EXPECT_TRUE( CompareEqualFloatBuffers<float>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE( CompareEqualFloatBuffers<float>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({std::nanf("")}, {1.})); EXPECT_TRUE( CompareEqualFloatBuffers<double>({std::nanf("")}, {std::nanf("")})); EXPECT_TRUE( CompareEqualFloatBuffers<double>({std::nanf("")}, {std::nanf("1234")})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({std::nanf("")}, {1.})); } TEST_F(BufferComparatorTest, TestInfs) { const auto inf = std::numeric_limits<float>::infinity(); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({inf}, {inf})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({inf}, {65504})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({-inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({-inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {-65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {65504})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({-inf}, {-20})); #if GOOGLE_CUDA EXPECT_TRUE( CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {inf})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {448})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-448})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({inf}, {-20})); EXPECT_FALSE( CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {std::nanf("")})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {-inf})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {57344})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {-57344})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({inf}, {-20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {20})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({-inf}, {-20})); #endif } TEST_F(BufferComparatorTest, TestNumbers) { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<float>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<float>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<float>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<double>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<double>({10}, {9})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {101})); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({100}, {120})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {120}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({90}, {120}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({0}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({90}, {100})); EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({100}, {90})); EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>({-128}, {127})); #if GOOGLE_CUDA EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({20}, {26.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>({9}, {10})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {20.1})); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {23.0})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {23.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({20}, {30.0}, 0.2)); EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>({0}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({0.9}, {1})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({11}, {12})); EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>({12}, {11})); #endif } TEST_F(BufferComparatorTest, TestMultiple) { { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<Eigen::half>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<Eigen::half>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<float>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<float>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<float>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<double>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<double>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<double>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>({20, 30, 40, 50, 60}, {21, 31, 41, 51, 61})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<int8_t>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<int8_t>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } #if GOOGLE_CUDA { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e4m3fn>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>( {20, 30, 40, 50, 60}, {20.1, 30.1, 40.1, 50.1, 60.1})); std::vector<float> lhs(200); std::vector<float> rhs(200); for (int i = 0; i < 200; i++) { EXPECT_TRUE(CompareEqualFloatBuffers<tsl::float8_e5m2>(lhs, rhs)) << "should be the same at index " << i; lhs[i] = 3; rhs[i] = 5; EXPECT_FALSE(CompareEqualFloatBuffers<tsl::float8_e5m2>(lhs, rhs)) << "should be the different at index " << i; lhs[i] = 0; rhs[i] = 0; } } #endif } TEST_F(BufferComparatorTest, BF16) { const int element_count = 3123; int64_t rng_state = 0; auto stream = stream_exec_->CreateStream().value(); se::DeviceMemoryHandle lhs( stream_exec_, stream_exec_->AllocateArray<Eigen::bfloat16>(element_count)); InitializeBuffer(stream.get(), BF16, &rng_state, lhs.memory()); se::DeviceMemoryHandle rhs( stream_exec_, stream_exec_->AllocateArray<Eigen::bfloat16>(element_count)); InitializeBuffer(stream.get(), BF16, &rng_state, rhs.memory()); BufferComparator comparator(ShapeUtil::MakeShape(BF16, {element_count}), HloModuleConfig()); EXPECT_FALSE(comparator.CompareEqual(stream.get(), lhs.memory(), rhs.memory()) .value()); } } } }
2,062
cpp
tensorflow/tensorflow
gpu_async_collective_annotator
null
null
#ifndef XLA_SERVICE_GPU_GPU_ASYNC_COLLECTIVE_ANNOTATOR_H_ #define XLA_SERVICE_GPU_GPU_ASYNC_COLLECTIVE_ANNOTATOR_H_ #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/util.h" namespace xla { namespace gpu { class GpuAsyncCollectiveAnnotator : public HloModulePass { public: explicit GpuAsyncCollectiveAnnotator(HloPredicate is_collective_async) : is_collective_async_(std::move(is_collective_async)) {} absl::string_view name() const override { return "gpu-async-collective-annotator"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: HloPredicate is_collective_async_; }; } } #endif #include "xla/service/gpu/gpu_async_collective_annotator.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<bool> GpuAsyncCollectiveAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (!hlo_query::IsAsyncCollectiveStartOp(instruction)) { continue; } CollectiveBackendConfig config; config.set_is_sync(!is_collective_async_(instruction)); TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, instruction->backend_config<GpuBackendConfig>()); *gpu_config.mutable_collective_backend_config() = config; TF_RETURN_IF_ERROR(instruction->set_backend_config(gpu_config)); changed = true; } } return changed; } } }
#include "xla/service/gpu/gpu_async_collective_annotator.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync addf32 { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } addf16 { p0 = f16[] parameter(0) p1 = f16[] parameter(1) ROOT add = f16[] add(p0, p1) } reduce_scatterf32 { p0 = f32[2] parameter(0) ROOT result = f32[1] reduce-scatter(p0), replica_groups={}, dimensions={0}, to_apply=addf32 } ENTRY entry { pf32 = f32[1] parameter(0) pf16 = f16[1] parameter(1) arf32-start = f32[1] all-reduce-start(pf32), to_apply=addf32 arf32-done = f32[1] all-reduce-done(arf32-start) arf16-start = f16[1] all-reduce-start(pf16), to_apply=addf16 arf16-done = f16[1] all-reduce-done(arf16-start) agf32-start = (f32[1], f32[2]) all-gather-start(pf32), dimensions={0} agf32-done = f32[2] all-gather-done(agf32-start) agf16-start = (f16[1], f16[2]) all-gather-start(pf16), dimensions={0} agf16-done = f16[2] all-gather-done(agf16-start) cpf32-start = (f32[1], f32[1], u32[], u32[]) collective-permute-start(pf32), source_target_pairs={{0,1}, {1,0}} cpf32-done = f32[1] collective-permute-done(cpf32-start) cpf16-start = (f16[1], f16[1], u32[], u32[]) collective-permute-start(pf16), source_target_pairs={{0,1}, {1,0}} cpf16-done = f16[1] collective-permute-done(cpf16-start) rsf32-start = ((f32[2]), f32[1]) async-start(agf32-done), calls=reduce_scatterf32 rsf32-done = f32[1] async-done(rsf32-start), calls=reduce_scatterf32 ROOT tuple = (f32[1], f16[1], f32[2], f16[2], f32[1], f16[1], f32[1]) tuple(arf32-done, arf16-done, agf32-done, agf16-done, cpf32-done, cpf16-done, rsf32-done) } )"; struct TestCase { std::string test_name; HloPredicate is_async_predicate; absl::flat_hash_set<absl::string_view> expected_async; absl::flat_hash_set<absl::string_view> expected_sync; }; class GpuAsyncCollectiveAnnotatorTest : public HloTestBase, public ::testing::WithParamInterface<TestCase> {}; XLA_TEST_P(GpuAsyncCollectiveAnnotatorTest, Test) { const TestCase& test_case = GetParam(); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString, 2)); TF_ASSERT_OK_AND_ASSIGN( bool changed, GpuAsyncCollectiveAnnotator(test_case.is_async_predicate) .Run(module.get())); EXPECT_TRUE(changed); for (const HloInstruction* hlo : module->entry_computation()->instructions()) { if (!hlo_query::IsAsyncCollectiveStartOp(hlo)) { continue; } auto gpu_config = hlo->backend_config<GpuBackendConfig>(); ASSERT_TRUE(gpu_config.ok()); const CollectiveBackendConfig& backend_config = gpu_config.value().collective_backend_config(); if (test_case.expected_async.contains(hlo->name())) { EXPECT_FALSE(backend_config.is_sync()); } if (test_case.expected_sync.contains(hlo->name())) { EXPECT_TRUE(backend_config.is_sync()); } } } std::vector<TestCase> TestCases() { HloPredicate is_f16 = [](const HloInstruction* hlo) { return hlo->operand(0)->shape().element_type() == PrimitiveType::F16; }; return { {"all_async", HloPredicateTrue, {"arf32-start", "arf16-start", "agf32-start", "agf16-start", "cpf32-start", "cpf16-start", "rsf32-start"}, {}}, {"all_sync", HloPredicateFalse, {}, {"arf32-start", "arf16-start", "agf32-start", "agf16-start", "cpf32-start", "cpf16-start", "rsf32-start"}}, {"ar_async", HloPredicateIsOp<HloOpcode::kAllReduceStart>, {"arf32-start", "arf16-start"}, {"agf32-start", "agf16-start", "cpf32-start", "cpf16-start", "rsf32-start"}}, {"cp_async", HloPredicateIsOp<HloOpcode::kCollectivePermuteStart>, {"cpf32-start", "cpf16-start"}, {"arf32-start", "arf16-start", "agf32-start", "agf16-start", "rsf32-start"}}, {"f16_async", is_f16, {"arf16-start", "agf16-start", "cpf16-start"}, {"arf32-start", "agf32-start", "cpf32-start", "rsf32-start"}}, }; } std::string TestCaseName(const ::testing::TestParamInfo<TestCase>& test_case) { return test_case.param.test_name; } INSTANTIATE_TEST_SUITE_P(GpuAsyncCollectiveAnnotatorTest, GpuAsyncCollectiveAnnotatorTest, ::testing::ValuesIn(TestCases()), TestCaseName); } } }
2,063
cpp
tensorflow/tensorflow
buffer_allocations
third_party/xla/xla/service/gpu/buffer_allocations.cc
third_party/xla/xla/backends/cpu/runtime/buffer_allocations_test.cc
#ifndef XLA_SERVICE_GPU_BUFFER_ALLOCATIONS_H_ #define XLA_SERVICE_GPU_BUFFER_ALLOCATIONS_H_ #include <cstddef> #include <set> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" namespace xla { namespace gpu { class BufferAllocations { public: BufferAllocations(absl::Span<se::DeviceMemoryBase const> buffers, int device_ordinal, se::DeviceMemoryAllocator* memory_allocator) : buffers_(buffers.begin(), buffers.end()), device_ordinal_(device_ordinal), memory_allocator_(memory_allocator) {} BufferAllocations(BufferAllocations&& other) = default; BufferAllocations& operator=(BufferAllocations&& other) = default; BufferAllocations(const BufferAllocations&) = delete; BufferAllocations& operator=(const BufferAllocations&) = delete; se::DeviceMemoryAllocator* memory_allocator() const { return memory_allocator_; } int device_ordinal() const { return device_ordinal_; } se::DeviceMemoryBase GetDeviceAddress( BufferAllocation::Index buffer_index) const; se::DeviceMemoryBase& GetMutableDeviceAddress( BufferAllocation::Index buffer_index); se::DeviceMemoryBase GetDeviceAddress( const BufferAllocation::Slice& buffer_slice) const; absl::Status TearDown(const std::set<se::DeviceMemoryBase>& live_addresses, absl::Span<const BufferAllocation> allocations); std::string ToString() const { std::string out; for (BufferAllocation::Index i = 0; i < buffers_.size(); ++i) { const auto& buf = buffers_[i]; absl::StrAppendFormat(&out, "Buffer %d -> %p (%d B)", i, buf.opaque(), buf.size()); } return out; } size_t size() const { return buffers_.size(); } private: std::vector<se::DeviceMemoryBase> buffers_; int device_ordinal_; se::DeviceMemoryAllocator* memory_allocator_; }; } } #endif #include "xla/service/gpu/buffer_allocations.h" #include <cstdint> #include <set> #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #include "xla/stream_executor/device_memory.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { absl::Status BufferAllocations::TearDown( const std::set<se::DeviceMemoryBase>& live_addresses, absl::Span<const BufferAllocation> allocations) { absl::Status status; const int64_t num_buffers = allocations.size(); for (BufferAllocation::Index i = 0; i < num_buffers; ++i) { const BufferAllocation& allocation = allocations[i]; se::DeviceMemoryBase buffer_address = GetDeviceAddress(allocation.index()); if ((allocation.maybe_live_out() && !live_addresses.count(buffer_address)) || allocation.IsPreallocatedTempBuffer()) { auto dealloc_result = memory_allocator_->Deallocate(device_ordinal_, buffer_address); if (!dealloc_result.ok() && status.ok()) { status = dealloc_result; } } } return status; } se::DeviceMemoryBase BufferAllocations::GetDeviceAddress( BufferAllocation::Index buffer_index) const { CHECK_GE(buffer_index, 0); CHECK_LT(buffer_index, buffers_.size()); return buffers_[buffer_index]; } se::DeviceMemoryBase& BufferAllocations::GetMutableDeviceAddress( BufferAllocation::Index buffer_index) { CHECK_GE(buffer_index, 0); CHECK_LT(buffer_index, buffers_.size()); return buffers_[buffer_index]; } se::DeviceMemoryBase BufferAllocations::GetDeviceAddress( const BufferAllocation::Slice& buffer_slice) const { int64_t index = buffer_slice.index(); se::DeviceMemoryBase base = GetDeviceAddress(index); int64_t offset = buffer_slice.offset(); CHECK_LE(buffer_slice.offset(), base.size()) << "slice offset " << offset << " must be smaller than buffer #" << index << " size " << base.size(); int64_t extent = offset + buffer_slice.size(); CHECK_LE(extent, base.size()) << "slice extent " << extent << " must be smaller than buffer #" << index << " size " << base.size(); return base.GetByteSlice(buffer_slice.offset(), buffer_slice.size()); } } }
#include "xla/service/cpu/runtime/buffer_allocations.h" #include <cstddef> #include <vector> #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/stream_executor/device_memory.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(BufferAllocationsTest, GetDeviceAddress) { std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {1.0, 2.0, 3.0, 4.0}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc(0, size_in_bytes, 0); BufferAllocation::Slice slice(&alloc, 2 * sizeof(float), sizeof(float)); TF_ASSERT_OK_AND_ASSIGN(se::DeviceMemoryBase alloc_mem, allocations.GetDeviceAddress(0)); EXPECT_EQ(alloc_mem.opaque(), &data[0]); TF_ASSERT_OK_AND_ASSIGN(se::DeviceMemoryBase slice_mem, allocations.GetDeviceAddress(slice)); EXPECT_EQ(slice_mem.opaque(), &data[2]); } } }
2,064
cpp
tensorflow/tensorflow
stream_executor_util
third_party/xla/xla/service/gpu/stream_executor_util.cc
third_party/xla/xla/service/gpu/stream_executor_util_test.cc
#ifndef XLA_SERVICE_GPU_STREAM_EXECUTOR_UTIL_H_ #define XLA_SERVICE_GPU_STREAM_EXECUTOR_UTIL_H_ #include <cstdint> #include <memory> #include <optional> #include <string_view> #include <tuple> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/layout.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/hlo_module_config.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream_executor.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { absl::StatusOr<se::dnn::VersionInfo> GetDnnVersionInfo( stream_executor::StreamExecutor* stream_exec); se::dnn::VersionInfo GetDnnVersionInfoOrDefault( stream_executor::StreamExecutor* stream_exec, se::dnn::VersionInfo fallback_version = se::dnn::VersionInfo{0, 0, 0}); absl::StatusOr<std::tuple<Layout, Layout, Layout>> StreamExecutorConvLayoutsToXlaLayouts(const ConvolutionDimensionNumbers& dnums, se::dnn::DataLayout input, se::dnn::FilterLayout filter, se::dnn::DataLayout output); absl::StatusOr< std::tuple<se::dnn::DataLayout, se::dnn::FilterLayout, se::dnn::DataLayout>> XlaConvShapesToStreamExecutorLayouts(const ConvolutionDimensionNumbers& dnums, const Shape& input, const Shape& filter, const Shape& output); std::tuple<std::optional<int64_t>, std::optional<int64_t>, std::optional<int64_t>> FindVectorizedFeatureDims(const ConvolutionDimensionNumbers& dnums, const Shape& input, const Shape& filter, const Shape& output); absl::Mutex& GetGpuMutex(const se::StreamExecutor* stream_exec); absl::StatusOr<std::unique_ptr<se::Kernel>> CreateKernel( absl::string_view kernel_name, uint64_t num_args, absl::string_view ptx, absl::Span<const uint8_t> cubin_data, se::StreamExecutor* stream_exec, uint32_t shared_mem_bytes = 0); absl::Status ExecuteKernelOnStream(const se::Kernel& kernel, absl::Span<const se::DeviceMemoryBase> args, const LaunchDimensions& dims, se::Stream* stream); absl::Status ExecuteKernelOnStream(const se::Kernel& kernel, absl::Span<const se::DeviceMemoryBase> args, const LaunchDimensions& dims, const se::ClusterDim& cluster_dim, se::Stream* stream); void InitializeBuffer(se::Stream* stream, PrimitiveType buffer_type, int64_t* rng_state, se::DeviceMemoryBase buffer); absl::StatusOr<se::dnn::ConvolutionKind> GetDNNConvKindFromCudnnConvKind( CudnnConvKind kind); absl::StatusOr<se::dnn::NormKind> GetDNNNormKindFromCudnnNormKind( CudnnNormKind kind); absl::StatusOr<se::dnn::FMHAMaskKind> GetDNNFmhaMaskKindFromCudnnFmhaMaskKind( CudnnfMHAMaskKind kind); absl::StatusOr<se::dnn::DataType> GetDNNDataTypeFromPrimitiveType( PrimitiveType type); absl::StatusOr<AutotuneResult> PickBestResult( absl::Span<AutotuneResult const> profile_results, std::optional<std::string_view> instr_str, HloModuleConfig hlo_module_config); bool RequireDeterminism(const HloModuleConfig& config); } } #endif #include "xla/service/gpu/stream_executor_util.h" #include <cstdint> #include <iterator> #include <limits> #include <map> #include <memory> #include <optional> #include <random> #include <sstream> #include <string_view> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/const_init.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/primitive_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/hlo_module_config.h" #include "xla/shape_util.h" #include "xla/stream_executor/data_type.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_factory.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "xla/tsl/util/env_var.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<se::dnn::VersionInfo> GetDnnVersionInfo( stream_executor::StreamExecutor* stream_exec) { if (!stream_exec) { return absl::InvalidArgumentError("StreamExecutor is null"); } stream_executor::dnn::DnnSupport* dnn = stream_exec->AsDnn(); if (!dnn) { return absl::FailedPreconditionError( "DNN library initialization failed. Look at the errors above for more " "details."); } return dnn->GetVersion(); } se::dnn::VersionInfo GetDnnVersionInfoOrDefault( stream_executor::StreamExecutor* stream_exec, se::dnn::VersionInfo fallback_version) { return GetDnnVersionInfo(stream_exec).value_or(fallback_version); } namespace { using se::dnn::DataLayout; using se::dnn::DataLayoutString; using se::dnn::FilterLayout; using se::dnn::FilterLayoutString; int64_t FindMissingDnum(absl::Span<const int64_t> vals) { for (int i = 0; i < vals.size(); i++) { if (!absl::c_linear_search(vals, i)) { return i; } } return vals.size(); } absl::StatusOr<Layout> DataLayoutToXlaLayout( DataLayout data_layout, int64_t batch_dimension, int64_t feature_dimension, absl::Span<int64_t const> spatial_dimensions) { std::vector<int64_t> layout; switch (data_layout) { case DataLayout::kBatchDepthYX: layout.push_back(batch_dimension); layout.push_back(feature_dimension); layout.insert(layout.end(), spatial_dimensions.begin(), spatial_dimensions.end()); break; case DataLayout::kBatchDepthYX4: case DataLayout::kBatchDepthYX32: layout.push_back(batch_dimension); layout.push_back(feature_dimension); layout.insert(layout.end(), spatial_dimensions.begin(), spatial_dimensions.end()); layout.push_back(FindMissingDnum(layout)); break; case DataLayout::kBatchYXDepth: layout.push_back(batch_dimension); layout.insert(layout.end(), spatial_dimensions.begin(), spatial_dimensions.end()); layout.push_back(feature_dimension); break; default: return Internal("Invalid layout %s", DataLayoutString(data_layout)); } return LayoutUtil::MakeLayoutFromMajorToMinor(layout); } } absl::StatusOr<std::tuple<Layout, Layout, Layout>> StreamExecutorConvLayoutsToXlaLayouts(const ConvolutionDimensionNumbers& dnums, DataLayout input, FilterLayout filter, DataLayout output) { TF_ASSIGN_OR_RETURN( Layout input_layout, DataLayoutToXlaLayout(input, dnums.input_batch_dimension(), dnums.input_feature_dimension(), dnums.input_spatial_dimensions())); TF_ASSIGN_OR_RETURN( Layout output_layout, DataLayoutToXlaLayout(input, dnums.output_batch_dimension(), dnums.output_feature_dimension(), dnums.output_spatial_dimensions())); std::vector<int64_t> filter_layout; switch (filter) { case FilterLayout::kOutputInputYX: filter_layout.push_back(dnums.kernel_output_feature_dimension()); filter_layout.push_back(dnums.kernel_input_feature_dimension()); filter_layout.insert(filter_layout.end(), dnums.kernel_spatial_dimensions().begin(), dnums.kernel_spatial_dimensions().end()); break; case FilterLayout::kOutputInputYX4: filter_layout.push_back(dnums.kernel_output_feature_dimension()); filter_layout.push_back(dnums.kernel_input_feature_dimension()); filter_layout.insert(filter_layout.end(), dnums.kernel_spatial_dimensions().begin(), dnums.kernel_spatial_dimensions().end()); filter_layout.push_back(FindMissingDnum(filter_layout)); break; case FilterLayout::kOutputYXInput: filter_layout.push_back(dnums.kernel_output_feature_dimension()); filter_layout.insert(filter_layout.end(), dnums.kernel_spatial_dimensions().begin(), dnums.kernel_spatial_dimensions().end()); filter_layout.push_back(dnums.kernel_input_feature_dimension()); break; default: return Internal("Invalid filter layout %s for conv with dnums %s,", FilterLayoutString(filter), ConvolutionDimensionNumbersToString(dnums)); } return std::make_tuple(input_layout, LayoutUtil::MakeLayoutFromMajorToMinor(filter_layout), output_layout); } absl::StatusOr<std::tuple<DataLayout, FilterLayout, DataLayout>> XlaConvShapesToStreamExecutorLayouts(const ConvolutionDimensionNumbers& dnums, const Shape& input, const Shape& filter, const Shape& output) { CHECK(input.has_layout()); CHECK(filter.has_layout()); CHECK(output.has_layout()); Layout nchw_input, nchw_filter, nchw_output; std::tie(nchw_input, nchw_filter, nchw_output) = StreamExecutorConvLayoutsToXlaLayouts(dnums, DataLayout::kBatchDepthYX, FilterLayout::kOutputInputYX, DataLayout::kBatchDepthYX) .value(); Layout nchw_vect_input, nchw_vect_filter, nchw_vect_output; std::tie(nchw_vect_input, nchw_vect_filter, nchw_vect_output) = StreamExecutorConvLayoutsToXlaLayouts(dnums, DataLayout::kBatchDepthYX4, FilterLayout::kOutputInputYX4, DataLayout::kBatchDepthYX4) .value(); Layout nhwc_input, nhwc_filter, nhwc_output; std::tie(nhwc_input, nhwc_filter, nhwc_output) = StreamExecutorConvLayoutsToXlaLayouts(dnums, DataLayout::kBatchYXDepth, FilterLayout::kOutputYXInput, DataLayout::kBatchYXDepth) .value(); DataLayout input_layout; if (LayoutUtil::Equal(input.layout(), nchw_input)) { input_layout = DataLayout::kBatchDepthYX; } else if (LayoutUtil::Equal(input.layout(), nchw_vect_input)) { int64_t vect_size = input.dimensions(input.layout().minor_to_major(0)); if (vect_size == 4) { input_layout = DataLayout::kBatchDepthYX4; } else if (vect_size == 32) { input_layout = DataLayout::kBatchDepthYX32; } else { return Internal( "Invalid input shape %s for conv with dnums %s. Most-minor dim " "should be 4 or 32, but was %d.", ShapeUtil::HumanStringWithLayout(input), ConvolutionDimensionNumbersToString(dnums), vect_size); } } else if (LayoutUtil::Equal(input.layout(), nhwc_input)) { input_layout = DataLayout::kBatchYXDepth; } else { return Internal( "Invalid input layout %s for conv with dnums %s; expected one of (%s, " "%s, %s)", LayoutUtil::HumanString(input.layout()), ConvolutionDimensionNumbersToString(dnums), nchw_input.ToString(), nchw_vect_input.ToString(), nhwc_input.ToString()); } FilterLayout filter_layout; if (LayoutUtil::Equal(filter.layout(), nchw_filter)) { filter_layout = FilterLayout::kOutputInputYX; } else if (LayoutUtil::Equal(filter.layout(), nchw_vect_filter)) { int64_t vect_size = filter.dimensions(filter.layout().minor_to_major(0)); if (vect_size == 4) { filter_layout = FilterLayout::kOutputInputYX4; } else if (vect_size == 32) { filter_layout = FilterLayout::kOutputInputYX32; } else { return Internal( "Invalid filter shape %s for conv with dnums %s. Most-minor dim " "should be 4 or 32, but was %d.", ShapeUtil::HumanStringWithLayout(filter), ConvolutionDimensionNumbersToString(dnums), vect_size); } } else if (LayoutUtil::Equal(filter.layout(), nhwc_filter)) { filter_layout = FilterLayout::kOutputYXInput; } else { return Internal( "Invalid filter layout %s for conv with dnums %s, expected one of (%s, " "%s, %s)", LayoutUtil::HumanString(filter.layout()), ConvolutionDimensionNumbersToString(dnums), nchw_filter.ToString(), nchw_vect_filter.ToString(), nhwc_filter.ToString()); } DataLayout output_layout; if (LayoutUtil::Equal(output.layout(), nchw_output)) { output_layout = DataLayout::kBatchDepthYX; } else if (LayoutUtil::Equal(output.layout(), nchw_vect_output)) { int64_t vect_size = output.dimensions(output.layout().minor_to_major(0)); if (vect_size == 4) { output_layout = DataLayout::kBatchDepthYX4; } else if (vect_size == 32) { output_layout = DataLayout::kBatchDepthYX32; } else { return Internal( "Invalid output shape %s for conv with dnums %s. Most-minor dim " "should be 4 or 32, but was %d.", ShapeUtil::HumanStringWithLayout(output), ConvolutionDimensionNumbersToString(dnums), vect_size); } } else if (LayoutUtil::Equal(output.layout(), nhwc_output)) { output_layout = DataLayout::kBatchYXDepth; } else { return Internal("Invalid output layout %s for conv with dnums %s", LayoutUtil::HumanString(output.layout()), ConvolutionDimensionNumbersToString(dnums)); } return std::make_tuple(input_layout, filter_layout, output_layout); } static std::optional<int64_t> FindVectorizedDim(int64_t rank, int64_t d0, int64_t d1, absl::Span<const int64_t> ds) { for (int64_t i = 0; i < rank; i++) { if (i == d0 || i == d1 || absl::c_linear_search(ds, i)) { continue; } return i; } return std::nullopt; } std::tuple<std::optional<int64_t>, std::optional<int64_t>, std::optional<int64_t>> FindVectorizedFeatureDims(const ConvolutionDimensionNumbers& dnums, const Shape& input, const Shape& filter, const Shape& output) { return { FindVectorizedDim(input.dimensions_size(), dnums.input_batch_dimension(), dnums.input_feature_dimension(), dnums.input_spatial_dimensions()), FindVectorizedDim(filter.dimensions_size(), dnums.kernel_input_feature_dimension(), dnums.kernel_output_feature_dimension(), dnums.kernel_spatial_dimensions()), FindVectorizedDim( output.dimensions_size(), dnums.output_batch_dimension(), dnums.output_feature_dimension(), dnums.output_spatial_dimensions()), }; } absl::Mutex& GetGpuMutex(const se::StreamExecutor* stream_exec) { static absl::Mutex mu(absl::kConstInit); static auto* mutexes = new std::map<std::pair<const se::Platform*, int64_t>, absl::Mutex>(); absl::MutexLock global_lock(&mu); auto it = mutexes ->emplace(std::piecewise_construct, std::make_tuple(stream_exec->GetPlatform(), stream_exec->device_ordinal()), std::make_tuple()) .first; return it->second; } absl::StatusOr<std::unique_ptr<se::Kernel>> CreateKernel( absl::string_view kernel_name, uint64_t num_args, absl::string_view ptx, absl::Span<const uint8_t> cubin_data, se::StreamExecutor* stream_exec, uint32_t shared_mem_bytes) { se::MultiKernelLoaderSpec loader_spec(num_args); loader_spec.AddCudaPtxInMemory(ptx, kernel_name); if (!cubin_data.empty()) { loader_spec.AddCudaCubinInMemory(cubin_data, kernel_name); } TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Kernel> kernel, se::KernelFactory::Create(stream_exec, loader_spec)); se::KernelMetadata m; m.set_shared_memory_bytes(shared_mem_bytes); kernel->set_metadata(m); return kernel; } absl::Status ExecuteKernelOnStream(const se::Kernel& kernel, absl::Span<const se::DeviceMemoryBase> args, const LaunchDimensions& dims, se::Stream* stream) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::KernelArgsPackedArrayBase> kernel_args, se::PackKernelArgs(args, kernel.metadata())); return stream->Launch(dims.thread_counts_per_block(), dims.block_counts(), kernel, *kernel_args); } absl::Status ExecuteKernelOnStream(const se::Kernel& kernel, absl::Span<const se::DeviceMemoryBase> args, const LaunchDimensions& dims, const se::ClusterDim& cluster_dim, se::Stream* stream) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::KernelArgsPackedArrayBase> kernel_args, se::PackKernelArgs(args, kernel.metadata())); return stream->Launch(dims.thread_counts_per_block(), dims.block_counts(), cluster_dim, kernel, *kernel_args); } template <typename T, typename Generator> typename std::enable_if<std::is_integral<T>::value, T>::type static UniformDistribution(T lhs, T rhs, Generator* gen) = delete; template <typename T, typename Generator> typename std::enable_if<std::is_floating_point<T>::value, T>::type static UniformDistribution(T lhs, T rhs, Generator* gen) { return std::uniform_real_distribution<T>(lhs, rhs)(*gen); } namespace repeat_buffer_kernel { void* kernel(); } template <typename T> static void InitializeTypedBuffer(se::Stream* stream, se::DeviceMemoryBase buffer, int64_t* rng_state) { constexpr int host_buffer_size = 10069; static std::vector<T>* host_buffer = [] { auto* ret = new std::vector<T>(host_buffer_size); std::mt19937 gen; for (auto& element : *ret) { constexpr bool kIsIntegral = std::numeric_limits<T>::is_integer; constexpr bool kIsLowRange = !kIsIntegral && std::numeric_limits<T>::max_exponent <= std::numeric_limits<Eigen::half>::max_exponent; using RandomType = typename std::conditional<std::is_same_v<T, double>, double, float>::type; auto upper_bound = RandomType(kIsLowRange ? 0.1 : 1.0); auto rand_val = UniformDistribution(RandomType(0), upper_bound, &gen); element = T(kIsIntegral ? rand_val + 0.5 : rand_val); } return ret; }(); CHECK_EQ(0, buffer.size() % sizeof(T)); int64_t elements_to_fill = buffer.size() / sizeof(T); int64_t host_index = *rng_state; CHECK_LT(host_index, host_buffer_size); *rng_state = (*rng_state + elements_to_fill) % host_buffer_size; int64_t first_size = std::min<int64_t>(host_buffer_size - host_index, elements_to_fill); TF_CHECK_OK(stream->Memcpy(&buffer, host_buffer->data() + host_index, first_size * sizeof(T))); elements_to_fill -= first_size; if (elements_to_fill == 0) { return; } int64_t second_size = std::min<int64_t>(host_index, elements_to_fill); CHECK_LE(first_size + second_size, host_buffer_size); se::DeviceMemoryBase mem = buffer.GetByteSlice(first_size * sizeof(T), second_size * sizeof(T)); TF_CHECK_OK(stream->Memcpy(&mem, host_buffer->data(), mem.size())); elements_to_fill -= second_size; if (elements_to_fill == 0) { return; } #ifdef GOOGLE_CUDA CHECK_EQ(elements_to_fill, buffer.size() / sizeof(T) - host_buffer_size); se::StreamExecutor* executor = stream->parent(); auto kernel = se::TypedKernelFactory<se::DeviceMemoryBase, int64_t, int64_t>::Create( executor, "RepeatBufferKernel", repeat_buffer_kernel::kernel()); if (!kernel.ok()) { LOG(FATAL) << "Could not create RepeatBufferKernel: " << kernel.status(); } constexpr int64_t host_buffer_bytes = host_buffer_size * sizeof(T); constexpr int threads_per_block = 256; constexpr int blocks_per_grid = (host_buffer_bytes + threads_per_block - 1) / threads_per_block; TF_CHECK_OK(stream->ThenLaunch(se::ThreadDim(threads_per_block, 1, 1), se::BlockDim(blocks_per_grid, 1, 1), *kernel, buffer, host_buffer_bytes, static_cast<int64_t>(buffer.size()))); #endif } void InitializeBuffer(se::Stream* stream, PrimitiveType buffer_type, int64_t* rng_state, se::DeviceMemoryBase buffer) { return primitive_util::PrimitiveTypeSwitch<void>( [&](auto primitive_type_constant) -> void { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant) || primitive_util::IsIntegralType(primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return InitializeTypedBuffer<NativeT>(stream, buffer, rng_state); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return InitializeTypedBuffer<typename NativeT::value_type>( stream, buffer, rng_state); } if constexpr (primitive_type_constant == PRED) { return InitializeTypedBuffer<int8_t>(stream, buffer, rng_state); } LOG(FATAL) << "Unexpected type: " << primitive_util::LowercasePrimitiveTypeName(buffer_type); }, buffer_type); } absl::StatusOr<se::dnn::ConvolutionKind> GetDNNConvKindFromCudnnConvKind( CudnnConvKind kind) { switch (kind) { case CudnnConvKind::kBackwardFilter: return se::dnn::BACKWARD_FILTER; case CudnnConvKind::kBackwardInput: return se::dnn::BACKWARD_DATA; case CudnnConvKind::kForward: return se::dnn::FORWARD; case CudnnConvKind::kForwardActivation: return se::dnn::FORWARD_BIAS_ACTIVATION; case CudnnConvKind::kForwardGraph: return se::dnn::FORWARD_GRAPH; default: break; } return Internal("Unexpected convolution kind"); } absl::StatusOr<se::dnn::NormKind> GetDNNNormKindFromCudnnNormKind( CudnnNormKind kind) { switch (kind) { case CudnnNormKind::kLayerForwardInfer: return se::dnn::LAYER_FWD_INFER; case CudnnNormKind::kLayerForwardTrain: return se::dnn::LAYER_FWD_TRAIN; case CudnnNormKind::kLayerBackward: return se::dnn::LAYER_BWD; default: return Internal("Unexpected norm kind"); } } absl::StatusOr<se::dnn::FMHAMaskKind> GetDNNFmhaMaskKindFromCudnnFmhaMaskKind( CudnnfMHAMaskKind kind) { switch (kind) { case CudnnfMHAMaskKind::kNoMask: return se::dnn::NO_MASK; case CudnnfMHAMaskKind::kPadding: return se::dnn::PADDING; case CudnnfMHAMaskKind::kCausal: return se::dnn::CAUSAL; case CudnnfMHAMaskKind::kPaddingCausal: return se::dnn::PADDING_CAUSAL; case CudnnfMHAMaskKind::kAlibi: return se::dnn::ALIBI; default: return Internal("Unexpected fmha mask kind"); } } absl::StatusOr<se::dnn::DataType> GetDNNDataTypeFromPrimitiveType( PrimitiveType type) { switch (type) { case F16: return se::dnn::ToDataType<Eigen::half>::value; case F32: return se::dnn::ToDataType<float>::value; case F64: return se::dnn::ToDataType<double>::value; case S8: return se::dnn::ToDataType<int8_t>::value; case S32: return se::dnn::ToDataType<int32_t>::value; case BF16: return se::dnn::ToDataType<Eigen::bfloat16>::value; case F8E4M3FN: return se::dnn::ToDataType<tsl::float8_e4m3fn>::value; case F8E5M2: return se::dnn::ToDataType<tsl::float8_e5m2>::value; default: break; } return Internal("Unsupported datatype"); } bool RequireDeterminism(const HloModuleConfig& config) { static bool require_cudnn_determinism = [] { bool cudnn_deterministic = false; TF_CHECK_OK(tsl::ReadBoolFromEnvVar("TF_CUDNN_DETERMINISTIC", false, &cudnn_deterministic)); return cudnn_deterministic; }(); return require_cudnn_determinism || config.debug_options().xla_gpu_deterministic_ops(); } namespace { std::vector<AutotuneResult> KeepNonFailures( absl::Span<AutotuneResult const> profile_results) {
#include "xla/service/gpu/stream_executor_util.h" #include <cstdint> #include <vector> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/time/time.h" #include "xla/autotuning.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/tsl/util/proto/proto_utils.h" namespace xla::gpu { namespace { struct Result { int64_t run_time_ns; int64_t scratch_bytes; bool operator==(const Result& other) const { return other.run_time_ns == run_time_ns && other.scratch_bytes == scratch_bytes; }; explicit operator AutotuneResult() const { AutotuneResult result; *result.mutable_run_time() = tsl::proto_utils::ToDurationProto(absl::Nanoseconds(run_time_ns)); result.set_scratch_bytes(scratch_bytes); return result; } }; static Result ATRToResult(AutotuneResult atr) { return Result{.run_time_ns = absl::ToInt64Nanoseconds( tsl::proto_utils::FromDurationProto(atr.run_time())), .scratch_bytes = atr.scratch_bytes()}; } std::vector<AutotuneResult> Results(const std::vector<Result>& stats) { std::vector<AutotuneResult> results; for (const auto& s : stats) results.push_back(AutotuneResult(s)); return results; } TEST(StreamExecutorTest, PickBestResult) { absl::StatusOr<AutotuneResult> atr; atr = PickBestResult(Results({{9000, 0}, {1000, 0}, {16000, 0}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({1000, 0})); atr = PickBestResult(Results({{4700, 0}, {4600, 0}, {4500, 0}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({4500, 0})); atr = PickBestResult(Results({{4700, 0}, {4600, 2}, {4500, 1}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({4700, 0})); atr = PickBestResult(Results({{5000, 1}, {6000, 0}, {7500, 0}}), "", {}); EXPECT_EQ(ATRToResult(atr.value()), Result({6000, 0})); } } }
2,065
cpp
tensorflow/tensorflow
autotuner_compile_util
third_party/xla/xla/service/gpu/autotuning/autotuner_compile_util.cc
third_party/xla/xla/service/gpu/autotuning/autotuner_compile_util_test.cc
#ifndef XLA_SERVICE_GPU_AUTOTUNER_COMPILE_UTIL_H_ #define XLA_SERVICE_GPU_AUTOTUNER_COMPILE_UTIL_H_ #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/compiler.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/util.h" #include "xla/xla.pb.h" namespace xla { namespace gpu { class AutotunerCompileUtil { public: using GenerateModuleFn = absl::AnyInvocable<absl::StatusOr<std::unique_ptr<HloModule>>( const DebugOptions&)>; static absl::StatusOr<std::optional<AutotunerCompileUtil>> Create( const AutotuneConfig& config, const DebugOptions& opts); struct ProfilingOutput { ProfilingOutput(absl::Duration duration, ScopedShapedBuffer&& buffer) : duration(duration), output(std::move(buffer)) {} absl::Duration duration; ScopedShapedBuffer output; }; absl::StatusOr<std::optional<ProfilingOutput>> ProfileExecutable( Executable* executable, se::Stream* stream, absl::Span<se::DeviceMemoryBase const> input_buffers, absl::Span<Shape const> input_shapes); absl::StatusOr<std::unique_ptr<Executable>> Compile( GenerateModuleFn extractor); absl::StatusOr<std::unique_ptr<HloModule>> ExtractModule( GenerateModuleFn extractor); private: AutotunerCompileUtil(const AutotuneConfig& config, Compiler* compiler, se::StreamExecutor& stream_executor, se::Stream& stream, se::DeviceMemoryAllocator& allocator, const DebugOptions& opts); absl::StatusOr<ExecutionOutput> Execute(Executable& executable, std::vector<ExecutionInput> arguments, ExecutionProfile* profile = nullptr); AutotuneConfig config_; Compiler* compiler_; se::StreamExecutor& stream_executor_; se::Stream& stream_; se::DeviceMemoryAllocator& allocator_; DebugOptions opts_; }; class RedzoneBuffers { public: enum BuffersToCreate { kAllInputs = 0, kAllInputsAllOutputs = 1, kAllInputsOutputsNoScratch = 2, }; static absl::StatusOr<RedzoneBuffers> FromInstruction( const HloInstruction& instruction, const AutotuneConfig& config, const DebugOptions& debug_options, BuffersToCreate buffers_to_create); const std::vector<se::DeviceMemoryBase>& input_buffers() const { return input_buffers_; } const std::vector<Shape>& input_shapes() const { return input_shapes_; } const std::vector<se::DeviceMemoryBase>& output_buffers() const { return output_buffers_; } const Shape& output_shape() const { return output_shape_; } se::RedzoneAllocator& RedzoneAllocator() const { return *redzone_allocator_; } private: absl::Status CreateInputs(const HloInstruction& instruction, const AutotuneConfig& config, const DebugOptions& debug_options, int64_t& rng_state); absl::Status CreateOutputs(const HloInstruction& instruction, const AutotuneConfig& config, const DebugOptions& debug_options, BuffersToCreate buffers_to_create, int64_t& rng_state); std::unique_ptr<se::RedzoneAllocator> redzone_allocator_; std::vector<se::DeviceMemoryBase> input_buffers_; std::vector<Shape> input_shapes_; std::vector<se::DeviceMemoryBase> output_buffers_; Shape output_shape_; }; } } #endif #include "xla/service/gpu/autotuner_compile_util.h" #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/executable_run_options.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/compiler.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/gpu_executable_run_options.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/service/service_executable_run_options.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { std::vector<ExecutionInput> ExecutionInputsFromBuffers( absl::Span<se::DeviceMemoryBase const> buffers, absl::Span<Shape const> shapes) { CHECK_EQ(buffers.size(), shapes.size()); std::vector<ExecutionInput> inputs; for (int i = 0; i < buffers.size(); ++i) { inputs.emplace_back(shapes.at(i)); inputs.back().SetUnownedBuffer( {}, MaybeOwningDeviceMemory(buffers.at(i))); } return inputs; } } AutotunerCompileUtil::AutotunerCompileUtil(const AutotuneConfig& config, Compiler* compiler, se::StreamExecutor& stream_executor, se::Stream& stream, se::DeviceMemoryAllocator& allocator, const DebugOptions& opts) : config_(config), compiler_(compiler), stream_executor_(stream_executor), stream_(stream), allocator_(allocator), opts_(opts) { opts_.set_xla_enable_dumping(false); opts_.set_xla_gpu_dump_autotune_results_to(""); opts_.set_xla_gpu_load_autotune_results_from(""); opts_.set_xla_gpu_dump_llvmir(false); opts_.set_xla_gpu_dump_autotune_logs_to(""); opts_.set_xla_gpu_force_compilation_parallelism(1); opts_.set_xla_gpu_enable_llvm_module_compilation_parallelism(false); opts_.clear_xla_gpu_enable_command_buffer(); opts_.set_xla_embed_ir_in_executable(false); opts_.set_xla_gpu_kernel_cache_file(""); } absl::StatusOr<std::optional<AutotunerCompileUtil::ProfilingOutput>> AutotunerCompileUtil::ProfileExecutable( Executable* executable, se::Stream* stream, absl::Span<se::DeviceMemoryBase const> input_buffers, absl::Span<Shape const> input_shapes) { { std::vector<ExecutionInput> execution_inputs = ExecutionInputsFromBuffers(input_buffers, input_shapes); absl::StatusOr<ExecutionOutput> execution_output = Execute(*executable, std::move(execution_inputs)); if (!execution_output.ok()) { if (execution_output.status().code() == absl::StatusCode::kResourceExhausted) { return {std::nullopt}; } return execution_output.status(); } TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); } std::vector<ExecutionInput> execution_inputs = ExecutionInputsFromBuffers(input_buffers, input_shapes); ExecutionProfile profile; profile.set_warmup_run_executed(true); TF_ASSIGN_OR_RETURN( ExecutionOutput execution_output, Execute(*executable, std::move(execution_inputs), &profile)); return std::make_optional<ProfilingOutput>( absl::Nanoseconds(profile.compute_time_ns()), execution_output.Commit().ConsumeResult()); } absl::StatusOr<std::unique_ptr<Executable>> AutotunerCompileUtil::Compile( GenerateModuleFn extractor) { absl::StatusOr<std::unique_ptr<HloModule>> new_hlo_module = extractor(opts_); if (new_hlo_module.status().GetPayload(kUncompilableFusion).has_value()) { return std::unique_ptr<Executable>(); } else if (!new_hlo_module.status().ok()) { return new_hlo_module.status(); } absl::StatusOr<std::unique_ptr<Executable>> out = compiler_->RunBackend( std::move(*new_hlo_module), &stream_executor_, Compiler::CompileOptions{&allocator_, nullptr, {}, true}); if (out.status().code() == absl::StatusCode::kResourceExhausted || out.status().code() == absl::StatusCode::kCancelled) { return std::unique_ptr<Executable>(); } return out; } absl::StatusOr<std::unique_ptr<HloModule>> AutotunerCompileUtil::ExtractModule( GenerateModuleFn extractor) { return extractor(opts_); } absl::StatusOr<std::optional<AutotunerCompileUtil>> AutotunerCompileUtil::Create(const AutotuneConfig& config, const DebugOptions& opts) { if (config.IsDeviceless()) { return std::nullopt; } se::StreamExecutor* stream_exec = config.GetExecutor(); se::DeviceMemoryAllocator* allocator = config.GetAllocator(); TF_ASSIGN_OR_RETURN(se::Stream* const stream, config.GetStream()); TF_ASSIGN_OR_RETURN(Compiler * compiler, Compiler::GetForPlatform(stream_exec->GetPlatform())); return AutotunerCompileUtil(config, compiler, *stream_exec, *stream, *allocator, opts); } absl::StatusOr<ExecutionOutput> AutotunerCompileUtil::Execute( Executable& executable, std::vector<ExecutionInput> arguments, ExecutionProfile* profile) { GpuExecutableRunOptions gpu_opts; gpu_opts.set_requires_exclusive_lock_on_gpu(); ExecutableRunOptions run_options; run_options.set_device_ordinal(stream_executor_.device_ordinal()); run_options.set_stream(&stream_); run_options.set_allocator(&allocator_); run_options.set_gpu_executable_run_options(&gpu_opts); run_options.set_execution_profile(profile); ServiceExecutableRunOptions service_run_options(run_options); TF_ASSIGN_OR_RETURN(ExecutionOutput output, executable.ExecuteAsyncOnStreamWrapper( &service_run_options, std::move(arguments))); return std::move(output); } absl::StatusOr<RedzoneBuffers> RedzoneBuffers::FromInstruction( const HloInstruction& instruction, const AutotuneConfig& config, const DebugOptions& debug_options, BuffersToCreate buffers_to_create) { RedzoneBuffers buffers; TF_ASSIGN_OR_RETURN(auto rz_allocator, AutotunerUtil::CreateRedzoneAllocator( config, debug_options)); buffers.redzone_allocator_ = std::make_unique<se::RedzoneAllocator>(std::move(rz_allocator)); int64_t rng_state = 0; TF_RETURN_IF_ERROR( buffers.CreateInputs(instruction, config, debug_options, rng_state)); if (buffers_to_create == BuffersToCreate::kAllInputsAllOutputs || buffers_to_create == BuffersToCreate::kAllInputsOutputsNoScratch) { TF_RETURN_IF_ERROR(buffers.CreateOutputs(instruction, config, debug_options, buffers_to_create, rng_state)); } return buffers; } absl::Status RedzoneBuffers::CreateInputs(const HloInstruction& instruction, const AutotuneConfig& config, const DebugOptions& debug_options, int64_t& rng_state) { for (const auto* operand : instruction.operands()) { TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase buf, AutotunerUtil::CreateBuffer(*redzone_allocator_, operand->shape(), config, rng_state)); input_buffers_.push_back(buf); input_shapes_.push_back(operand->shape()); } return absl::OkStatus(); } absl::Status RedzoneBuffers::CreateOutputs(const HloInstruction& instruction, const AutotuneConfig& config, const DebugOptions& debug_options, BuffersToCreate buffers_to_create, int64_t& rng_state) { if (!instruction.shape().IsTuple()) { TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase buf, AutotunerUtil::CreateBuffer(*redzone_allocator_, instruction.shape(), config, rng_state)); output_buffers_.push_back(buf); output_shape_ = instruction.shape(); return absl::OkStatus(); } auto current_shape_it = instruction.shape().tuple_shapes().begin(); auto end = instruction.shape().tuple_shapes().end(); end -= buffers_to_create == kAllInputsAllOutputs ? 0 : 1; output_shape_ = std::distance(current_shape_it, end) == 1 ? output_shape_ = *current_shape_it : ShapeUtil::MakeTupleShape( std::vector<Shape>{current_shape_it, end}); for (; current_shape_it < end; current_shape_it++) { if (current_shape_it->IsTuple()) { return Unimplemented("Nested tuples are unsupported by RedzoneBuffers."); } TF_ASSIGN_OR_RETURN( se::DeviceMemoryBase buf, AutotunerUtil::CreateBuffer(*redzone_allocator_, *current_shape_it, config, rng_state)); output_buffers_.push_back(buf); } return absl::OkStatus(); } } }
#include "xla/service/gpu/autotuner_compile_util.h" #include <vector> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/platform.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { using AutotunerCompileUtilTest = HloTestBase; TEST_F(AutotunerCompileUtilTest, VerifyOutputNotATuple) { constexpr absl::string_view kHlo = R"( HloModule hlo ENTRY main { p0 = f32[2,2] parameter(0) p1 = f32[4,4] parameter(1) p2 = f32[6,6] parameter(2) ROOT root = f32[1,2,3] custom-call(p0, p1, p2), custom_call_target="fake" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, GetOptimizedModule(kHlo)); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); AutotuneConfig autotune_config{DeviceConfig{executors.at(0), nullptr}, GetDebugOptionsForTest()}; auto& root = *module->entry_computation()->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputs)); EXPECT_EQ(rzb.input_shapes().size(), 3); EXPECT_EQ(rzb.input_buffers().size(), 3); EXPECT_EQ(rzb.output_buffers().size(), 0); EXPECT_NE(rzb.output_shape(), root.shape()); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb2, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputsAllOutputs)); EXPECT_EQ(rzb2.input_shapes().size(), 3); EXPECT_EQ(rzb2.input_buffers().size(), 3); EXPECT_EQ(rzb2.output_buffers().size(), 1); EXPECT_EQ(rzb2.output_shape(), root.shape()); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb3, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputsOutputsNoScratch)); EXPECT_EQ(rzb3.input_shapes().size(), 3); EXPECT_EQ(rzb3.input_buffers().size(), 3); EXPECT_EQ(rzb3.output_buffers().size(), 1); EXPECT_EQ(rzb3.output_shape(), root.shape()); } TEST_F(AutotunerCompileUtilTest, VerifyOutputTupleOneElement) { constexpr absl::string_view kHlo = R"( HloModule hlo ENTRY main { p0 = f32[2,2] parameter(0) p1 = f32[4,4] parameter(1) p2 = f32[6,6] parameter(2) ROOT root = (f32[1,2,3]) custom-call(p0, p1, p2), custom_call_target="fake" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, GetOptimizedModule(kHlo)); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); AutotuneConfig autotune_config{DeviceConfig{executors.at(0), nullptr}, GetDebugOptionsForTest()}; auto& root = *module->entry_computation()->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputs)); EXPECT_EQ(rzb.input_shapes().size(), 3); EXPECT_EQ(rzb.input_buffers().size(), 3); EXPECT_EQ(rzb.output_buffers().size(), 0); EXPECT_NE(rzb.output_shape(), root.shape()); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb2, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputsAllOutputs)); EXPECT_EQ(rzb2.input_shapes().size(), 3); EXPECT_EQ(rzb2.input_buffers().size(), 3); EXPECT_EQ(rzb2.output_buffers().size(), 1); EXPECT_FALSE(rzb2.output_shape().IsTuple()); EXPECT_EQ(rzb2.output_shape(), root.shape().tuple_shapes(0)); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb3, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputsOutputsNoScratch)); EXPECT_EQ(rzb3.input_shapes().size(), 3); EXPECT_EQ(rzb3.input_buffers().size(), 3); EXPECT_EQ(rzb3.output_buffers().size(), 0); } TEST_F(AutotunerCompileUtilTest, VerifyOutputTupleTwoElements) { constexpr absl::string_view kHlo = R"( HloModule hlo ENTRY main { p0 = f32[2,2] parameter(0) p1 = f32[4,4] parameter(1) p2 = f32[6,6] parameter(2) ROOT root = (f32[1,2,3], u8[1,2]) custom-call(p0, p1, p2), custom_call_target="fake" } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, GetOptimizedModule(kHlo)); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); AutotuneConfig autotune_config{DeviceConfig{executors.at(0), nullptr}, GetDebugOptionsForTest()}; auto& root = *module->entry_computation()->root_instruction(); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputs)); EXPECT_EQ(rzb.input_shapes().size(), 3); EXPECT_EQ(rzb.input_buffers().size(), 3); EXPECT_EQ(rzb.output_buffers().size(), 0); EXPECT_NE(rzb.output_shape(), root.shape()); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb2, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputsAllOutputs)); EXPECT_EQ(rzb2.input_shapes().size(), 3); EXPECT_EQ(rzb2.input_buffers().size(), 3); EXPECT_EQ(rzb2.output_buffers().size(), 2); EXPECT_TRUE(rzb2.output_shape().IsTuple()); EXPECT_EQ(rzb2.output_shape(), root.shape()); TF_ASSERT_OK_AND_ASSIGN(RedzoneBuffers rzb3, RedzoneBuffers::FromInstruction( root, autotune_config, GetDebugOptionsForTest(), RedzoneBuffers::kAllInputsOutputsNoScratch)); EXPECT_EQ(rzb3.input_shapes().size(), 3); EXPECT_EQ(rzb3.input_buffers().size(), 3); EXPECT_EQ(rzb3.output_buffers().size(), 1); EXPECT_FALSE(rzb3.output_shape().IsTuple()); EXPECT_EQ(rzb3.output_shape(), root.shape().tuple_shapes(0)); } } }
2,066
cpp
tensorflow/tensorflow
fusion_merger
third_party/xla/xla/service/gpu/transforms/fusion_merger.cc
third_party/xla/xla/service/gpu/transforms/fusion_merger_test.cc
#ifndef XLA_SERVICE_GPU_FUSION_MERGER_H_ #define XLA_SERVICE_GPU_FUSION_MERGER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class FusionMerger : public HloModulePass { public: explicit FusionMerger(const se::DeviceDescription& d, HloCostAnalysis::ShapeSizeFunction f) : gpu_device_info_(d), shape_size_function_(f) {} absl::string_view name() const override { return "fusion_merger"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: se::DeviceDescription gpu_device_info_; HloCostAnalysis::ShapeSizeFunction shape_size_function_; }; } } #endif #include "xla/service/gpu/fusion_merger.h" #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/instruction_fusion.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace xla { namespace gpu { class FusionInstructionMerger { public: explicit FusionInstructionMerger( HloComputation* computation, const se::DeviceDescription& gpu_device_info, HloCostAnalysis::ShapeSizeFunction shape_size_function) : computation_(computation), shape_size_function_(shape_size_function), gpu_device_info_(gpu_device_info), dump_fusion_visualization_(computation->parent() ->config() .debug_options() .xla_dump_fusion_visualization()) {} absl::Status Run(); bool changed() const { return changed_; } private: FusionDecision ShouldFuse(HloInstruction* producer); absl::Status FuseIntoAllUsers(HloInstruction* producer); HloComputation* computation_; HloCostAnalysis::ShapeSizeFunction shape_size_function_; std::optional<GpuHloCostAnalysis> cost_analysis_; FusionInfoCache fusion_info_cache_; const se::DeviceDescription& gpu_device_info_; bool changed_ = false; bool dump_fusion_visualization_ = false; int total_visited_ = 0; int total_merged_ = 0; int num_fail_no_users_ = 0; int num_fail_not_loop_fusion_ = 0; int num_fail_merge_all_users_ = 0; int num_fail_inefficient_fusion_emitter_ = 0; int num_fail_fusion_too_large_ = 0; int num_fail_uncoalesced_read_ = 0; int num_fail_slower_if_fused_ = 0; FusionInstructionMerger(const FusionInstructionMerger&) = delete; FusionInstructionMerger& operator=(const FusionInstructionMerger&) = delete; }; absl::Status FusionInstructionMerger::FuseIntoAllUsers( HloInstruction* producer) { std::vector<HloInstruction*> users = producer->users(); for (HloInstruction* user : users) { if (dump_fusion_visualization_) { RegisterFusionState( *computation_, absl::StrCat("About to fuse |", producer->name(), "| into |", user->name(), "| inside FusionMerger"), *user, producer); } TF_RETURN_IF_ERROR(cost_analysis_->RemoveInstruction(user)); HloInstruction* consumer = user; if (consumer->opcode() != HloOpcode::kFusion) { consumer = computation_->AddInstruction(HloInstruction::CreateFusion( user->shape(), ChooseFusionKind(*producer, *user), user)); TF_CHECK_OK(computation_->ReplaceInstruction(user, consumer)); } consumer->MergeFusionInstruction(producer); TF_RETURN_IF_ERROR(cost_analysis_->RevisitInstruction(consumer)); fusion_info_cache_.Invalidate(consumer); if (dump_fusion_visualization_) { RegisterFusionState(*computation_, absl::StrCat("Fused |", producer->name(), "| into |", user->name(), "| inside FusionMerger"), *consumer); } changed_ = true; } CHECK_EQ(0, producer->user_count()) << producer->ToString(); TF_RETURN_IF_ERROR(computation_->RemoveInstruction(producer)); TF_RETURN_IF_ERROR(cost_analysis_->RemoveInstruction(producer)); fusion_info_cache_.Invalidate(producer); VLOG(2) << "Merged fusion instruction: " << producer->name() << " into users { " << absl::StrJoin(users, ", ", [](std::string* out, HloInstruction* user) { absl::StrAppend(out, user->name()); }) << " }"; return absl::OkStatus(); } absl::Status FusionInstructionMerger::Run() { for (HloInstruction* producer : computation_->MakeInstructionPostOrder()) { if (producer->opcode() != HloOpcode::kFusion) { continue; } FusionDecision should_fuse = ShouldFuse(producer); if (should_fuse) { TF_RETURN_IF_ERROR(FuseIntoAllUsers(producer)); ++total_merged_; } else { VLOG(3) << "Not fusing fusion |" << producer->name() << "| with all of it's users due to: " << should_fuse.Explain(); if (dump_fusion_visualization_ && !producer->users().empty()) { RegisterFusionState( *computation_, absl::StrCat( "Not fusing fusion |", producer->name(), "| into all of its users due to: ", should_fuse.Explain()), *producer->users()[0], producer); } } } VLOG(1) << "FusionInstructionMerger EXIT" << " computation: " << computation_->name() << " total_visited: " << total_visited_ << " total_merged: " << total_merged_ << " merge failures { " << " no_users: " << num_fail_no_users_ << " not_loop_fusion: " << num_fail_not_loop_fusion_ << " merge_all_users: " << num_fail_merge_all_users_ << " uncoalesced_read: " << num_fail_uncoalesced_read_ << " inefficient_fusion_emitter: " << num_fail_inefficient_fusion_emitter_ << " slower_if_fused: " << num_fail_slower_if_fused_ << " fusion_too_large: " << num_fail_fusion_too_large_ << " }"; return absl::OkStatus(); } bool TransposesMostData(const HloInstruction& fusion) { float score = 0; for (const HloInstruction* instr : fusion.fused_instructions()) { if (IsPhysicallyTransposing(*instr)) { score += 1.0 * ShapeUtil::ElementsInRecursive(instr->shape()) / ShapeUtil::ElementsInRecursive(fusion.shape()); if (score >= 0.5) { VLOG(3) << fusion.ToString() << " transpose ratio exceeds " << score; return true; } } } return false; } FusionDecision FusionInstructionMerger::ShouldFuse(HloInstruction* producer) { ++total_visited_; VLOG(4) << "Considering producer " << producer->name(); if (producer->users().empty()) { ++num_fail_no_users_; return "fusion has no users"; } if (!producer->IsLoopFusion()) { ++num_fail_not_loop_fusion_; return "not a loop fusion"; } auto producer_hero = GetRealHeroForMultiOutputFusion(*producer); bool has_reduction_user = false; for (const HloInstruction* user : producer->users()) { if (user->opcode() == HloOpcode::kBitcast) { ++num_fail_merge_all_users_; return "not fusing bitcast ops"; } if (user->IsCustomFusion()) { ++num_fail_merge_all_users_; return "not fusing custom fusions"; } auto consumer_hero = GetRealHeroForMultiOutputFusion(*user); if (auto compatible = FusionHeroesAreCompatible(producer_hero, consumer_hero); !compatible) { return compatible; } FusionDecision fusible = IsProducerConsumerFusible(*producer, *user); if (!fusible) { ++num_fail_merge_all_users_; VLOG(9) << user->ToString(); return fusible; } if (IsInputFusibleReduction(*user)) { has_reduction_user = true; } } if (has_reduction_user && TransposesMostData(*producer)) { ++num_fail_uncoalesced_read_; return "would read mostly uncoalesced"; } for (const HloInstruction* user : producer->users()) { FusionDecision fits = FusionFitsInBudget( *user, *producer, gpu_device_info_, true, &fusion_info_cache_); if (!fits) { ++num_fail_fusion_too_large_; return fits; } } if (!cost_analysis_) { VLOG(2) << "Running full HLO cost analysis for " << computation_->name(); cost_analysis_.emplace( GpuHloCostAnalysis::Options{shape_size_function_, {}, true}, &gpu_device_info_); TF_CHECK_OK(computation_->Accept(&cost_analysis_.value())); } for (const HloInstruction* user : producer->users()) { if (cost_analysis_->ProducerConsumerMergedTooLarge(*producer, *user)) { ++num_fail_inefficient_fusion_emitter_; return FusionDecision{} << "if merged with " << user->name() << " will generate huge IR"; } } GpuPerformanceModel::RunTimes t = GpuPerformanceModel::EstimateRunTimes( producer, &*cost_analysis_, GpuPerformanceModelOptions::Default(), producer->users()); if (t.time_fused > t.time_unfused) { ++num_fail_slower_if_fused_; return "will execute slower if fused"; } return {}; } absl::StatusOr<bool> FusionMerger::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; VLOG(1) << "FusionMerger for module: " << module->name(); for (auto* computation : module->MakeNonfusionComputations(execution_threads)) { VLOG(9) << "Before running FusionInstructionMerger for computation: " << computation->name(); XLA_VLOG_LINES(9, computation->ToString()); FusionInstructionMerger fusion_merger(computation, gpu_device_info_, shape_size_function_); TF_RETURN_IF_ERROR(fusion_merger.Run()); changed |= fusion_merger.changed(); VLOG(9) << "After running FusionInstructionMerger for computation: " << computation->name() << " changed: " << changed; XLA_VLOG_LINES(9, computation->ToString()); } return changed; } } }
#include "xla/service/gpu/fusion_merger.h" #include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class FusionMergerTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: FusionMerger fusion_merger_{TestGpuDeviceInfo::RTXA6000DeviceInfo(), ShapeSizeBytesFunction()}; FusionMergerTest() : HloTestBase() {} }; TEST_F(FusionMergerTest, MergeSharedFusionInstruction) { auto module = ParseAndReturnVerifiedModule(R"( HloModule MergeSharedFusionInstruction comp.3 { constant.param_0 = f32[4]{0} parameter(0) param.param_1.2 = (f32[4]{0}, f32[4]{0}, f32[4]{0}) parameter(1) get-tuple-element.6 = f32[4]{0} get-tuple-element(param.param_1.2), index=0 ROOT add.7 = f32[4]{0} add(constant.param_0, get-tuple-element.6) } comp.2 { param.param_1.1 = (f32[4]{0}, f32[4]{0}, f32[4]{0}) parameter(0) get-tuple-element.4 = f32[4]{0} get-tuple-element(param.param_1.1), index=1 get-tuple-element.5 = f32[4]{0} get-tuple-element(param.param_1.1), index=2 ROOT add.6 = f32[4]{0} add(get-tuple-element.4, get-tuple-element.5) } comp.1 { add.1.param_1.1 = f32[4]{0} parameter(1) constant.param_1.3 = f32[4]{0} parameter(0) add.5 = f32[4]{0} add(add.1.param_1.1, constant.param_1.3) ROOT multiply.3 = f32[4]{0} multiply(add.5, constant.param_1.3) } comp { add.1.param_1 = f32[4]{0} parameter(1) constant.param_1.1 = f32[4]{0} parameter(0) multiply.2 = f32[4]{0} multiply(add.1.param_1, constant.param_1.1) ROOT add.4 = f32[4]{0} add(multiply.2, constant.param_1.1) } ENTRY MergeSharedFusionInstruction.Computation0 { constant = f32[4]{0} constant({1, 1, 1, 1}) param = (f32[4]{0}, f32[4]{0}, f32[4]{0}) parameter(0) fusion.3 = f32[4]{0} fusion(constant, param), kind=kLoop, calls=comp.3 fusion.4 = f32[4]{0} fusion(param), kind=kLoop, calls=comp.2 fusion.5 = f32[4]{0} fusion(constant, fusion.4), kind=kLoop, calls=comp.1 fusion.6 = f32[4]{0} fusion(constant, fusion.4), kind=kLoop, calls=comp ROOT tuple = (f32[4]{0}, f32[4]{0}, f32[4]{0}) tuple(fusion.3, fusion.5, fusion.6) })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); auto* root = module->entry_computation()->root_instruction(); EXPECT_EQ(HloOpcode::kTuple, root->opcode()); auto* operand0 = root->operand(0); EXPECT_EQ(HloOpcode::kFusion, operand0->opcode()); EXPECT_EQ(4, operand0->fused_instruction_count()); auto* operand1 = root->operand(1); EXPECT_EQ(HloOpcode::kFusion, operand1->opcode()); EXPECT_EQ(7, operand1->fused_instruction_count()); auto* operand2 = root->operand(2); EXPECT_EQ(HloOpcode::kFusion, operand2->opcode()); EXPECT_EQ(7, operand2->fused_instruction_count()); } TEST_F(FusionMergerTest, MoreMemoryAccessIfFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f32add { x = f32[] parameter(0) y = f32[] parameter(1) ROOT _ = f32[] add(x, y) } comp0 { p = (f32[100000000], f32[100000000], f32[100000000], f32[100000000]) parameter(0) gte0 = f32[100000000] get-tuple-element(p), index=0 gte1 = f32[100000000] get-tuple-element(p), index=1 add.9 = f32[100000000] add(gte0, gte1) gte2 = f32[100000000] get-tuple-element(p), index=2 add.10 = f32[100000000] add(add.9, gte2) gte3 = f32[100000000] get-tuple-element(p), index=3 add.11 = f32[100000000] add(add.10, gte3) p1 = (f32[100000000], f32[100000000], f32[100000000], f32[100000000]) parameter(1) gte4 = f32[100000000] get-tuple-element(p1), index=0 gte5 = f32[100000000] get-tuple-element(p1), index=1 add.12 = f32[100000000] add(gte4, gte5) gte6 = f32[100000000] get-tuple-element(p1), index=2 add.13 = f32[100000000] add(add.12, gte6) gte7 = f32[100000000] get-tuple-element(p1), index=3 add.14 = f32[100000000] add(add.13, gte7) ROOT r = f32[100000000] add(add.14, add.11) } comp1 { p = f32[100000000] parameter(0) c0 = f32[] constant(0) ROOT r = f32[] reduce(p, c0), dimensions={0}, to_apply=f32add } comp2 { p = f32[100000000] parameter(0) c0 = f32[] constant(0) r = f32[] reduce(p, c0), dimensions={0}, to_apply=f32add ROOT n = f32[] negate(r) } ENTRY m.Computation2 { p0 = (f32[100000000], f32[100000000], f32[100000000], f32[100000000]) parameter(0) p1 = (f32[100000000], f32[100000000], f32[100000000], f32[100000000]) parameter(1) fusion.0 = f32[100000000] fusion(p0, p1), kind=kLoop, calls=comp0 fusion.1 = f32[] fusion(fusion.0), kind=kLoop, calls=comp1 fusion.2 = f32[] fusion(fusion.0), kind=kLoop, calls=comp2 ROOT tuple = (f32[], f32[]) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_FALSE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, LessMemoryAccessIfFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m comp.2 { state.param_1.1 = (f32[4]{0}, f32[4]{0}, f32[4]{0}) parameter(0) get-tuple-element.5 = f32[4]{0} get-tuple-element(state.param_1.1), index=0 get-tuple-element.6 = f32[4]{0} get-tuple-element(state.param_1.1), index=1 add.7 = f32[4]{0} add(get-tuple-element.5, get-tuple-element.6) get-tuple-element.7 = f32[4]{0} get-tuple-element(state.param_1.1), index=2 ROOT add.8 = f32[4]{0} add(add.7, get-tuple-element.7) } comp.1 { add.1.param_1.1 = f32[4]{0} parameter(1) constant.param_1.3 = f32[4]{0} parameter(0) add.5 = f32[4]{0} add(add.1.param_1.1, constant.param_1.3) ROOT multiply.3 = f32[4]{0} multiply(add.5, constant.param_1.3) } comp { add.1.param_1 = f32[4]{0} parameter(1) constant.param_1.1 = f32[4]{0} parameter(0) multiply.2 = f32[4]{0} multiply(add.1.param_1, constant.param_1.1) ROOT add.4 = f32[4]{0} add(multiply.2, constant.param_1.1) } ENTRY m.Computation2 { constant = f32[4]{0} constant({1, 1, 1, 1}) state = (f32[4]{0}, f32[4]{0}, f32[4]{0}) parameter(0) fusion.2 = f32[4]{0} fusion(state), kind=kLoop, calls=comp.2 fusion.3 = f32[4]{0} fusion(constant, fusion.2), kind=kLoop, calls=comp.1 fusion.4 = f32[4]{0} fusion(constant, fusion.2), kind=kLoop, calls=comp ROOT tuple = (f32[4]{0}, f32[4]{0}) tuple(fusion.3, fusion.4) })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, WillMergeIntoInputFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f1_computation { f1_p0 = f32[32]{0} parameter(0) ROOT f1_root = f32[32]{0} add(f1_p0, f1_p0) } add_computation { add_lhs = f32[] parameter(0) add_rhs = f32[] parameter(1) ROOT add_root = f32[] add(add_lhs, add_rhs) } f2_computation { f2_p0 = f32[32]{0} parameter(0) f2_mul = f32[32]{0} multiply(f2_p0, f2_p0) f2_zero = f32[] constant(0) ROOT f2_root = f32[] reduce(f2_mul, f2_zero), dimensions={0}, to_apply=add_computation } ENTRY entry { p0 = f32[32]{0} parameter(0) f1 = f32[32]{0} fusion(p0), kind=kLoop, calls=f1_computation ROOT f2 = f32[] fusion(f1), kind=kInput, calls=f2_computation })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter()))); } TEST_F(FusionMergerTest, WillMergeIntoUnfusedConsumer) { auto module = ParseAndReturnVerifiedModule(R"( HloModule jit_matmul.36 max (parameter.13: f32[], parameter.14: f32[]) -> f32[] { parameter.13 = f32[] parameter(0) parameter.14 = f32[] parameter(1) ROOT maximum.15 = f32[] maximum(f32[] parameter.13, f32[] parameter.14) } add (parameter.29: f32[], parameter.30: f32[]) -> f32[] { parameter.29 = f32[] parameter(0) parameter.30 = f32[] parameter(1) ROOT add.31 = f32[] add(f32[] parameter.29, f32[] parameter.30) } fused_computation.1 (param_1.4: f32[200,200,200], param_2.1: f32[200,200]) -> f32[200,200] { param_1.4 = f32[200,200,200]{2,1,0} parameter(0) param_2.1 = f32[200,200]{1,0} parameter(1) broadcast.3 = f32[200,200,200]{2,1,0} broadcast(f32[200,200]{1,0} param_2.1), dimensions={0,2} subtract.0 = f32[200,200,200]{2,1,0} subtract(f32[200,200,200]{2,1,0} param_1.4, f32[200,200,200]{2,1,0} broadcast.3) exponential.0 = f32[200,200,200]{2,1,0} exponential(f32[200,200,200]{2,1,0} subtract.0) constant.27 = f32[] constant(0) ROOT reduce.0 = f32[200,200]{1,0} reduce(f32[200,200,200]{2,1,0} exponential.0, f32[] constant.27), dimensions={1}, to_apply=add } fused_computation.3 (param_0.7: f32[200,200], param_1.9: f32[200,200]) -> f32[200,200,200] { param_1.9 = f32[200,200]{1,0} parameter(1) broadcast.10 = f32[200,200,200]{2,1,0} broadcast(f32[200,200]{1,0} param_1.9), dimensions={0,1} param_0.7 = f32[200,200]{1,0} parameter(0) broadcast.8 = f32[200,200,200]{2,1,0} broadcast(f32[200,200]{1,0} param_0.7), dimensions={1,2} ROOT add.1 = f32[200,200,200]{2,1,0} add(f32[200,200,200]{2,1,0} broadcast.10, f32[200,200,200]{2,1,0} broadcast.8) } ENTRY entry (parameter.1: f32[200,200], parameter.2: f32[200,200]) -> f32[200,200] { parameter.2 = f32[200,200]{1,0} parameter(1) parameter.1 = f32[200,200]{1,0} parameter(0) fusion.3 = f32[200,200,200]{2,1,0} fusion(f32[200,200]{1,0} parameter.2, f32[200,200]{1,0} parameter.1), kind=kLoop, calls=fused_computation.3 constant.11 = f32[] constant(-inf) reduce.16 = f32[200,200]{1,0} reduce(f32[200,200,200]{2,1,0} fusion.3, f32[] constant.11), dimensions={1}, to_apply=max ROOT fusion.1 = f32[200,200]{1,0} fusion(f32[200,200,200]{2,1,0} fusion.3, f32[200,200]{1,0} reduce.16), kind=kInput, calls=fused_computation.1 })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Fusion(), m::Parameter(), m::Parameter()))); } TEST_F(FusionMergerTest, WillNotMergeReduceUnfriendlyLayouts) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f1_computation { f1_p0 = f32[16,16,256]{0,1,2} parameter(0) add = f32[16,16,256]{0,1,2} add(f1_p0, f1_p0) ROOT f1_root = f32[16,16,256]{2,1,0} copy(add) } add_computation { add_lhs = f32[] parameter(0) add_rhs = f32[] parameter(1) ROOT add_root = f32[] add(add_lhs, add_rhs) } f2_computation { f2_p0 = f32[16,16,256]{2,1,0} parameter(0) f2_zero = f32[] constant(0) ROOT f2_root = f32[] reduce(f2_p0, f2_zero), dimensions={0,1,2}, to_apply=add_computation } ENTRY entry { p0 = f32[16,16,256]{0,1,2} parameter(0) f1 = f32[16,16,256]{2,1,0} fusion(p0), kind=kLoop, calls=f1_computation ROOT f2 = f32[] fusion(f1), kind=kInput, calls=f2_computation })") .value(); EXPECT_FALSE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, WillMergeReduceNotTooUnfriendlyLayouts) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f1_computation { f1_p0 = f32[16,16,256]{0,1,2} parameter(0) slice1 = f32[5,16,256]{0,1,2} slice(f1_p0), slice={[0:5], [0:16], [0:256]} f1_copy = f32[5,16,256]{2,1,0} copy(slice1) slice2 = f32[11,16,256]{0,1,2} slice(f1_p0), slice={[0:11], [0:16], [0:256]} bitcast = f32[11,16,256]{2,1,0} bitcast(slice2) ROOT f1_root = f32[16,16,256]{2,1,0} concatenate(f1_copy, bitcast), dimensions={0} } add_computation { add_lhs = f32[] parameter(0) add_rhs = f32[] parameter(1) ROOT add_root = f32[] add(add_lhs, add_rhs) } f2_computation { f2_p0 = f32[16,16,256]{2,1,0} parameter(0) f2_zero = f32[] constant(0) ROOT f2_root = f32[] reduce(f2_p0, f2_zero), dimensions={0,1,2}, to_apply=add_computation } ENTRY entry { p0 = f32[16,16,256]{0,1,2} parameter(0) f1 = f32[16,16,256]{2,1,0} fusion(p0), kind=kLoop, calls=f1_computation ROOT f2 = f32[] fusion(f1), kind=kInput, calls=f2_computation })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, AvoidsLargeFusion) { constexpr int64_t kNumParams = MaxOperandsAndOutputsPerFusion() + 1; auto module = CreateNewVerifiedModule(); HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {10, 100}); std::vector<HloInstruction*> entry_params; for (int64_t i = 0; i < kNumParams; ++i) { entry_params.push_back( b.AddInstruction(HloInstruction::CreateParameter(i, shape, "p"))); } auto make_fusion = [&](absl::Span<HloInstruction* const> params) { HloComputation::Builder sub_builder("subcomp"); HloInstruction* sum = nullptr; for (int64_t i = 0; i < params.size(); ++i) { auto p = sub_builder.AddInstruction( HloInstruction::CreateParameter(i, shape, "p")); if (sum == nullptr) { sum = p; } else { sum = sub_builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, sum, p)); } } HloComputation* subcomp = module->AddEmbeddedComputation(sub_builder.Build()); return HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kLoop, params, subcomp); }; auto fusion = b.AddInstruction( make_fusion(absl::MakeSpan(entry_params) .subspan(0, MaxOperandsAndOutputsPerFusion()))); b.AddInstruction(make_fusion({entry_params.back(), fusion})); module->AddEntryComputation(b.Build()); EXPECT_FALSE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, WillNotMergeIfFusionEmitterIsInefficient) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f1 { Arg_0.5 = f32[200000] parameter(0) slice.7 = f32[100000] slice(Arg_0.5), slice={[0:199999:2]} slice.8 = f32[100000] slice(Arg_0.5), slice={[1:200000:2]} add.9 = f32[100000] add(slice.7, slice.8) slice.10 = f32[50000] slice(add.9), slice={[0:99999:2]} slice.11 = f32[50000] slice(add.9), slice={[1:100000:2]} add.12 = f32[50000] add(slice.10, slice.11) slice.13 = f32[25000] slice(add.12), slice={[0:49999:2]} slice.14 = f32[25000] slice(add.12), slice={[1:50000:2]} add.15 = f32[25000] add(slice.13, slice.14) slice.16 = f32[12500] slice(add.15), slice={[0:24999:2]} slice.17 = f32[12500] slice(add.15), slice={[1:25000:2]} add.18 = f32[12500] add(slice.16, slice.17) slice.19 = f32[6250] slice(add.18), slice={[0:12499:2]} slice.20 = f32[6250] slice(add.18), slice={[1:12500:2]} add.21 = f32[6250] add(slice.19, slice.20) slice.22 = f32[3125] slice(add.21), slice={[0:6249:2]} slice.23 = f32[3125] slice(add.21), slice={[1:6250:2]} ROOT add.24 = f32[3125] add(slice.22, slice.23) } f2 { Arg_0 = f32[3125] parameter(0) slice.25 = f32[1562] slice(Arg_0), slice={[0:3124:2]} slice.26 = f32[1562] slice(Arg_0), slice={[1:3125:2]} add.27 = f32[1562] add(slice.25, slice.26) slice.28 = f32[781] slice(add.27), slice={[0:1561:2]} slice.29 = f32[781] slice(add.27), slice={[1:1562:2]} add.30 = f32[781] add(slice.28, slice.29) slice.31 = f32[390] slice(add.30), slice={[0:780:2]} slice.32 = f32[390] slice(add.30), slice={[1:781:2]} add.33 = f32[390] add(slice.31, slice.32) slice.34 = f32[195] slice(add.33), slice={[0:389:2]} slice.35 = f32[195] slice(add.33), slice={[1:390:2]} add.36 = f32[195] add(slice.34, slice.35) slice.37 = f32[97] slice(add.36), slice={[0:194:2]} slice.38 = f32[97] slice(add.36), slice={[1:195:2]} add.39 = f32[97] add(slice.37, slice.38) slice.40 = f32[48] slice(add.39), slice={[0:96:2]} slice.41 = f32[48] slice(add.39), slice={[1:97:2]} ROOT add.42 = f32[48] add(slice.40, slice.41) } ENTRY e { p0 = f32[200000] parameter(0) f1 = f32[3125] fusion(p0), kind=kLoop, calls=f1 ROOT r = f32[48] fusion(f1), kind=kLoop, calls=f2 })") .value(); EXPECT_FALSE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, WillMergeSliceIntoReusingConsumer) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f1 { p01 = s8[1000000] parameter(0) ROOT s0 = s8[10] slice(p01), slice={[0:10]} } f2 { p02 = s8[10] parameter(0) ROOT b0 = s8[10,1000000] broadcast(p02), dimensions={0} } ENTRY e { p0 = s8[1000000] parameter(0) f1 = s8[10] fusion(p0), kind=kLoop, calls=f1 ROOT r = s8[10,1000000] fusion(f1), kind=kLoop, calls=f2 })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, WillMergeExpensiveFusionsIfSavesMemory) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m %f_a (p: f32[]) -> f32[1024,1024,1024] { %p = f32[] parameter(0) %b = f32[1024,1024,1024] broadcast(%p), dimensions={} ROOT %t = f32[1024,1024,1024] tanh(%b) } %f_b (p: f32[1024,1024,1024]) -> f32[1024,1024,1024] { %p = f32[1024,1024,1024] parameter(0) ROOT %t = f32[1024,1024,1024] tanh(%p) } %f_c (p: f32[1024,1024,1024]) -> f32[1024,1024,1024] { %p = f32[1024,1024,1024] parameter(0) ROOT %t = f32[1024,1024,1024] tanh(%p) } ENTRY entry { p0 = f32[] parameter(0) f1 = f32[1024,1024,1024] fusion(p0), kind=kLoop, calls=%f_a f2 = f32[1024,1024,1024] fusion(f1), kind=kLoop, calls=%f_b f3 = f32[1024,1024,1024] fusion(f1), kind=kLoop, calls=%f_c ROOT f4 = f32[1024,1024,1024] add(f2, f3) })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, WillMergeExpensiveFusionsWithSingleConsumer) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m %f_b (p: f32[1024,1024,1024]) -> f32[1024,1024,1024] { %p = f32[1024,1024,1024] parameter(0) ROOT %t = f32[1024,1024,1024] tanh(%p) } %f_c (p: f32[1024,1024,1024]) -> f32[1024,1024,1024] { %p = f32[1024,1024,1024] parameter(0) ROOT %t = f32[1024,1024,1024] add(%p, %p) } ENTRY entry { p0 = f32[1024,1024,1024] parameter(0) f1 = f32[1024,1024,1024] fusion(p0), kind=kLoop, calls=%f_b ROOT f2 = f32[1024,1024,1024] fusion(f1), kind=kLoop, calls=%f_c })") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, WillNotMergeExpensiveFusionsWithReusingConsumer) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m %f_b { %p = f32[1024,1024,1024] parameter(0) %t1 = f32[1024,1024,1024] tanh(%p) %t2 = f32[1024,1024,1024] tanh(%t1) %t3 = f32[1024,1024,1024] tanh(%t2) %t4 = f32[1024,1024,1024] tanh(%t3) %t5 = f32[1024,1024,1024] tanh(%t4) %t6 = f32[1024,1024,1024] tanh(%t5) %t7 = f32[1024,1024,1024] tanh(%t6) %t8 = f32[1024,1024,1024] tanh(%t7) ROOT %t9 = f32[1024,1024,1024] tanh(%t8) } %f_c { %p = f32[1024,1024,1024] parameter(0) ROOT %t = f32[1024,1024,1024,2048] broadcast(%p), dimensions={0,1,2} } ENTRY entry { p0 = f32[1024,1024,1024] parameter(0) f1 = f32[1024,1024,1024] fusion(p0), kind=kLoop, calls=%f_b ROOT f2 = f32[1024,1024,1024,2048] fusion(f1), kind=kLoop, calls=%f_c })") .value(); EXPECT_FALSE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, NoMergeWithBitcast) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m f32add { x.634 = f32[] parameter(0) y.635 = f32[] parameter(1) ROOT add.636 = f32[] add(x.634, y.635) } fused_computation.103 { param_0.310 = f16[1,8,512,1536]{2,3,1,0} parameter(0) param_1.420 = f32[8,512]{1,0} parameter(1) bitcast.1144 = f32[1,8,512]{2,1,0} bitcast(param_1.420) convert.252 = f16[1,8,512]{2,1,0} convert(bitcast.1144) bitcast.1143 = f16[8,512]{1,0} bitcast(convert.252) broadcast.481 = f16[1,8,512,1536]{2,3,1,0} broadcast(bitcast.1143), dimensions={1,2} divide.15 = f16[1,8,512,1536]{2,3,1,0} divide(param_0.310, broadcast.481) ROOT bitcast.1142 = f16[8,512,1536]{1,2,0} bitcast(divide.15) } fused_computation.105 { param_1.426 = f16[8,1536,512]{2,1,0} parameter(1) bitcast.1896 = f16[1,8,1536,512]{3,2,1,0} bitcast(param_1.426) transpose.238 = f16[1,8,512,1536]{2,3,1,0} transpose(bitcast.1896), dimensions={0,1,3,2} param_0.315 = f16[8,512]{1,0} parameter(0) broadcast.482 = f16[1,8,512,1536]{2,3,1,0} broadcast(param_0.315), dimensions={1,2} subtract.22 = f16[1,8,512,1536]{2,3,1,0} subtract(transpose.238, broadcast.482) ROOT exponential.15 = f16[1,8,512,1536]{2,3,1,0} exponential(subtract.22) } fused_computation.104 { param_0.1000 = f16[8,1536,512]{2,1,0} parameter(0) convert.652 = f32[8,1536,512]{2,1,0} convert(param_0.1000) constant_752 = f32[] constant(-0) ROOT reduce.232 = f32[8,512]{1,0} reduce(convert.652, constant_752), dimensions={1}, to_apply=f32add } ENTRY entry { p0 = f16[8,1536,512]{2,1,0} parameter(0) p1 = f16[8,512]{1,0} parameter(1) fusion.105 = f16[1,8,512,1536]{2,3,1,0} fusion(p1, p0), kind=kLoop, calls=fused_computation.105 bitcast.1787 = f16[8,1536,512]{2,1,0} bitcast(fusion.105) fusion.104 = f32[8,512]{1,0} fusion(bitcast.1787), kind=kInput, calls=fused_computation.104 ROOT fusion.103 = f16[8,512,1536]{1,2,0} fusion(fusion.105, fusion.104), kind=kLoop, calls=fused_computation.103 } )") .value(); EXPECT_FALSE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, CostBasedMerge) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m fused_computation.45 { param_1.194 = f16[8,1536,512]{2,1,0} parameter(1) bitcast.1042 = f16[1,8,512,1536]{2,3,1,0} bitcast(param_1.194) param_0.135 = f16[8,512]{1,0} parameter(0) broadcast.391 = f16[1,8,512,1536]{2,3,1,0} broadcast(param_0.135), dimensions={1,2} subtract.6 = f16[1,8,512,1536]{2,3,1,0} subtract(bitcast.1042, broadcast.391) ROOT exponential.11 = f16[1,8,512,1536]{2,3,1,0} exponential(subtract.6) } f32add { x.634 = f32[] parameter(0) y.635 = f32[] parameter(1) ROOT add.636 = f32[] add(x.634, y.635) } fused_computation.44 { param_0.869 = f16[1,8,512,1536]{2,3,1,0} parameter(0) convert.221 = f32[1,8,512,1536]{2,3,1,0} convert(param_0.869) transpose.212 = f32[1,8,1536,512]{3,2,1,0} transpose(convert.221), dimensions={0,1,3,2} bitcast.1041 = f32[8,1536,512]{2,1,0} bitcast(transpose.212) constant_429 = f32[] constant(0) ROOT reduce.149 = f32[8,512]{1,0} reduce(bitcast.1041, constant_429), dimensions={1}, to_apply=f32add } fused_computation.43 { param_0.130 = f16[1,8,512,1536]{2,3,1,0} parameter(0) param_1.188 = f32[8,512]{1,0} parameter(1) bitcast.1040 = f32[1,8,512]{2,1,0} bitcast(param_1.188) convert.220 = f16[1,8,512]{2,1,0} convert(bitcast.1040) bitcast.1039 = f16[8,512]{1,0} bitcast(convert.220) broadcast.390 = f16[1,8,512,1536]{2,3,1,0} broadcast(bitcast.1039), dimensions={1,2} divide.11 = f16[1,8,512,1536]{2,3,1,0} divide(param_0.130, broadcast.390) ROOT bitcast.1038 = f16[8,512,1536]{1,2,0} bitcast(divide.11) } ENTRY entry { p0 = f16[8,1536,512]{2,1,0} parameter(0) p1 = f16[8,512]{1,0} parameter(1) fusion.45 = f16[1,8,512,1536]{2,3,1,0} fusion(p1, p0), kind=kLoop, calls=fused_computation.45 fusion.44 = f32[8,512]{1,0} fusion(fusion.45), kind=kInput, calls=fused_computation.44 ROOT fusion.43 = f16[8,512,1536]{1,2,0} fusion(fusion.45, fusion.44), kind=kLoop, calls=fused_computation.43 } )") .value(); EXPECT_TRUE(fusion_merger_.Run(module.get()).value()); } TEST_F(FusionMergerTest, CostBasedNoMerge) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m add_float_.56 { x.57 = f32[] parameter(0) y.58 = f32[] parameter(1) ROOT add.59 = f32[] add(x.57, y.58) } fused_computation.66 { constant.635 = f32[] constant(0) broadcast.257 = f32[459,3]{1,0} broadcast(constant.635), dimensions={} constant.641 = f32[] constant(1) broadcast.256 = f32[459,3]{1,0} broadcast(constant.641), dimensions={} broadcast.255 = f32[459]{0} broadcast(constant.635), dimensions={} iota.28 = f32[459]{0} iota(), iota_dimension=0 constant.629 = f32[] constant(1.49891067) broadcast.253 = f32[459]{0} broadcast(constant.629), dimensions={} multiply.39 = f32[459]{0} multiply(iota.28, broadcast.253) constant.633 = f32[] constant(-1) broadcast.252 = f32[459]{0} broadcast(constant.633), dimensions={} add.31 = f32[459]{0} add(multiply.39, broadcast.252) ceil.11 = f32[459]{0} ceil(add.31) constant.630 = f32[] constant(685) broadcast.251 = f32[459]{0} broadcast(constant.630), dimensions={} clamp.49 = f32[459]{0} clamp(broadcast.255, ceil.11, broadcast.251) subtract.11 = f32[459]{0} subtract(clamp.49, multiply.39) broadcast.249 = f32[459,3]{1,0} broadcast(subtract.11), dimensions={0} iota.26 = f32[459,3]{1,0} iota(), iota_dimension=1 add.30 = f32[459,3]{1,0} add(broadcast.249, iota.26) abs.3 = f32[459,3]{1,0} abs(add.30) subtract.10 = f32[459,3]{1,0} subtract(broadcast.256, abs.3) maximum.6 = f32[459,3]{1,0} maximum(broadcast.257, subtract.10) ROOT reduce.3 = f32[459]{0} reduce(maximum.6, constant.635), dimensions={1}, to_apply=add_float_.56 } fused_computation.67 { constant.684 = f32[] constant(0) broadcast.296 = f32[1130,3]{1,0} broadcast(constant.684), dimensions={} constant.685 = f32[] constant(1) broadcast.295 = f32[1130,3]{1,0} broadcast(constant.685), dimensions={} broadcast.294 = f32[1130]{0} broadcast(constant.684), dimensions={} iota.41 = f32[1130]{0} iota(), iota_dimension=0 constant.675 = f32[] constant(1.34513271) broadcast.293 = f32[1130]{0} broadcast(constant.675), dimensions={} multiply.47 = f32[1130]{0} multiply(iota.41, broadcast.293) constant.677 = f32[] constant(-1) broadcast.290 = f32[1130]{0} broadcast(constant.677), dimensions={} add.39 = f32[1130]{0} add(multiply.47, broadcast.290) ceil.15 = f32[1130]{0} ceil(add.39) constant.676 = f32[] constant(1517) broadcast.289 = f32[1130]{0} broadcast(constant.676), dimensions={} clamp.53 = f32[1130]{0} clamp(broadcast.294, ceil.15, broadcast.289) subtract.19 = f32[1130]{0} subtract(clamp.53, multiply.47) broadcast.287 = f32[1130,3]{1,0} broadcast(subtract.19), dimensions={0} iota.39 = f32[1130,3]{1,0} iota(), iota_dimension=1 add.38 = f32[1130,3]{1,0} add(broadcast.287, iota.39) abs.7 = f32[1130,3]{1,0} abs(add.38) subtract.18 = f32[1130,3]{1,0} subtract(broadcast.295, abs.7) maximum.10 = f32[1130,3]{1,0} maximum(broadcast.296, subtract.18) ROOT reduce.4 = f32[1130]{0} reduce(maximum.10, constant.684), dimensions={1}, to_apply=add_float_.56 } fused_computation.59 { constant.532 = f32[] constant(0) broadcast.316 = f32[1130,3]{1,0} broadcast(constant.532), dimensions={} constant.663 = f32[] constant(1) broadcast.315 = f32[1130,3]{1,0} broadcast(constant.663), dimensions={} broadcast.314 = f32[1130]{0} broadcast(constant.532), dimensions={} iota.47 = f32[1130]{0} iota(), iota_dimension=0 constant.579 = f32[] constant(1.34513271) broadcast.311 = f32[1130]{0} broadcast(constant.579), dimensions={} multiply.51 = f32[1130]{0} multiply(iota.47, broadcast.311) constant.578 = f32[] constant(-1) broadcast.310 = f32[1130]{0} broadcast(constant.578), dimensions={} add.43 = f32[1130]{0} add(multiply.51, broadcast.310) ceil.17 = f32[1130]{0} ceil(add.43) constant.576 = f32[] constant(1517) broadcast.309 = f32[1130]{0} broadcast(constant.576), dimensions={} clamp.55 = f32[1130]{0} clamp(broadcast.314, ceil.17, broadcast.309) subtract.24 = f32[1130]{0} subtract(clamp.55, multiply.51) broadcast.306 = f32[1130,3]{1,0} broadcast(subtract.24), dimensions={0} iota.45 = f32[1130,3]{1,0} iota(), iota_dimension=1 add.42 = f32[1130,3]{1,0} add(broadcast.306, iota.45) abs.9 = f32[1130,3]{1,0} abs(add.42) subtract.23 = f32[1130,3]{1,0} subtract(broadcast.315, abs.9) maximum.12 = f32[1130,3]{1,0} maximum(broadcast.316, subtract.23) param_2.183 = f32[1130]{0} parameter(2) broadcast.172 = f32[1130,3]{1,0} broadcast(param_2.183), dimensions={0} divide.3 = f32[1130,3]{1,0} divide(maximum.12, broadcast.172) bitcast.53 = f32[3390]{0} bitcast(divide.3) broadcast.171 = f32[3390,1377]{1,0} broadcast(bitcast.53), dimensions={0} broadcast.276 = f32[459,3]{1,0} broadcast(constant.532), dimensions={} broadcast.275 = f32[459,3]{1,0} broadcast(constant.663), dimensions={} broadcast.274 = f32[459]{0} broadcast(constant.532), dimensions={} iota.35 = f32[459]{0} iota(), iota_dimension=0 constant.614 = f32[] constant(1.49891067) broadcast.273 = f32[459]{0} broadcast(constant.614), dimensions={} multiply.43 = f32[459]{0} multiply(iota.35, broadcast.273) broadcast.272 = f32[459]{0} broadcast(constant.578), dimensions={} add.35 = f32[459]{0} add(multiply.43, broadcast.272) ceil.13 = f32[459]{0} ceil(add.35) constant.611 = f32[] constant(685) broadcast.269 = f32[459]{0} broadcast(constant.611), dimensions={} clamp.51 = f32[459]{0} clamp(broadcast.274, ceil.13, broadcast.269) subtract.15 = f32[459]{0} subtract(clamp.51, multiply.43) broadcast.267 = f32[459,3]{1,0} broadcast(subtract.15), dimensions={0} iota.33 = f32[459,3]{1,0} iota(), iota_dimension=1 add.34 = f32[459,3]{1,0} add(broadcast.267, iota.33) abs.5 = f32[459,3]{1,0} abs(add.34) subtract.14 = f32[459,3]{1,0} subtract(broadcast.275, abs.5) maximum.8 = f32[459,3]{1,0} maximum(broadcast.276, subtract.14) param_1.177 = f32[459]{0} parameter(1) broadcast.170 = f32[459,3]{1,0} broadcast(param_1.177), dimensions={0} divide.2 = f32[459,3]{1,0} divide(maximum.8, broadcast.170) bitcast.52 = f32[1377]{0} bitcast(divide.2) broadcast.169 = f32[3390,1377]{1,0} broadcast(bitcast.52), dimensions={1} multiply.15 = f32[3390,1377]{1,0} multiply(broadcast.171, broadcast.169) bitcast.61 = f32[1130,3,459,3]{3,2,1,0} bitcast(multiply.15) transpose.68 = f32[459,1130,3,3]{2,0,3,1} transpose(bitcast.61), dimensions={2,0,3,1} copy.1 = f
2,067
cpp
tensorflow/tensorflow
cudnn_simplify_padding
third_party/xla/xla/service/gpu/transforms/cudnn_simplify_padding.cc
third_party/xla/xla/service/gpu/transforms/cudnn_simplify_padding_test.cc
#ifndef XLA_SERVICE_GPU_CUDNN_SIMPLIFY_PADDING_H_ #define XLA_SERVICE_GPU_CUDNN_SIMPLIFY_PADDING_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla::gpu { class CudnnSimplifyPadding : public HloModulePass { public: CudnnSimplifyPadding() = default; absl::string_view name() const override { return "cudnn_simplify_padding"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/gpu/cudnn_simplify_padding.h" #include <algorithm> #include <cstdint> #include <iterator> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { namespace m = ::xla::match; std::optional<int64_t> FindFalseIndex(absl::Span<const bool> vals) { std::optional<int64_t> missing_dim; for (int i = 0; i < vals.size(); i++) { if (vals[i]) { continue; } if (missing_dim.has_value()) { VLOG(2) << "Multiple dimensions are missing from conv dnums; can't " "determine which is vect_c dimension"; return std::nullopt; } missing_dim = i; } return missing_dim; } std::optional<int64_t> FindOutputVectCDim(HloInstruction* conv) { const ConvolutionDimensionNumbers& dnums = conv->convolution_dimension_numbers(); int64_t num_dims = conv->shape().tuple_shapes(0).dimensions_size(); absl::InlinedVector<bool, 5> seen_dims(num_dims); seen_dims[dnums.output_batch_dimension()] = true; seen_dims[dnums.output_feature_dimension()] = true; for (int64_t d : dnums.output_spatial_dimensions()) { seen_dims[d] = true; } return FindFalseIndex(seen_dims); } std::optional<int64_t> FindKernelVectCDim(HloInstruction* conv) { const ConvolutionDimensionNumbers& dnums = conv->convolution_dimension_numbers(); int64_t num_dims = conv->operand(1)->shape().dimensions_size(); absl::InlinedVector<bool, 5> seen_dims(num_dims); seen_dims[dnums.kernel_input_feature_dimension()] = true; seen_dims[dnums.kernel_output_feature_dimension()] = true; for (int64_t d : dnums.kernel_spatial_dimensions()) { seen_dims[d] = true; } return FindFalseIndex(seen_dims); } std::optional<int64_t> NumTrailingZeroOutputFeatures(HloInstruction* conv) { const ConvolutionDimensionNumbers& dnums = conv->convolution_dimension_numbers(); int64_t feature_dim = dnums.kernel_output_feature_dimension(); const HloInstruction* weights = conv->operand(1); auto backend_config = conv->backend_config<GpuBackendConfig>(); if (backend_config.ok() && backend_config->cudnn_conv_backend_config().reordered_int8_nchw_vect()) { VLOG(2) << "Matched int8x32 convolution with filter reordering"; const HloInstruction *reshape, *transpose; bool matched = Match(weights, m::Reshape(m::Transpose( &transpose, m::Reshape(&reshape, m::Op(&weights))))); if (!matched || feature_dim != 0 || transpose->shape().rank() != 8) { VLOG(2) << "The filter output feature dimension cannot be determined, as " "the reordering sequence is modified"; return std::nullopt; } const auto& transpose_dimensions = Cast<HloTransposeInstruction>(transpose)->dimensions(); int64_t preceding_size = 1; for (int64_t i = transpose_dimensions.at(3) - 1; i >= 0; --i) { preceding_size *= reshape->shape().dimensions(i); } int64_t accumulated_size = 1; for (int64_t size : weights->shape().dimensions()) { if (accumulated_size < preceding_size) { accumulated_size *= size; ++feature_dim; } else { break; } } if (accumulated_size != preceding_size) { VLOG(2) << "Something is really wrong here, I give up"; return std::nullopt; } VLOG(2) << "Computed output feature dimension: " << feature_dim; } VLOG(2) << "Computing NumTrailingZeroOutputFeatures of " << conv->ToString() << "\nwith weights " << weights->ToString(); if (Match(weights, m::Pad(m::Op(), m::ConstantEffectiveScalar(0)))) { const PaddingConfig::PaddingConfigDimension& padding_config = weights->padding_config().dimensions(feature_dim); VLOG(2) << "Success: Weights is a pad; padding on output feature dim is " << padding_config.edge_padding_high(); return padding_config.edge_padding_high(); } else if (const HloInstruction * pad; Match( weights, m::Reshape(m::Pad(&pad, m::Op(), m::ConstantEffectiveScalar(0))))) { std::optional<int64_t> vect_c_dim = FindKernelVectCDim(conv); if (!vect_c_dim.has_value()) { VLOG(2) << "fail: Can't find vect_c dimension in conv."; return std::nullopt; } if (*vect_c_dim != dnums.kernel_input_feature_dimension() + 1) { VLOG(2) << "fail: vect_c dim is in the wrong place; should be right " "after kernel input feature dims in conv."; return std::nullopt; } absl::InlinedVector<int64_t, 5> expected_pad_dim_sizes( weights->shape().dimensions().begin(), weights->shape().dimensions().end()); expected_pad_dim_sizes[dnums.kernel_input_feature_dimension()] *= weights->shape().dimensions(*vect_c_dim); expected_pad_dim_sizes.erase(expected_pad_dim_sizes.begin() + *vect_c_dim); if (pad->shape().dimensions() != expected_pad_dim_sizes) { VLOG(2) << "fail: Reshape doesn't simply merge vect_c dimension into " "input features dim " << weights->ToString() << " but expected dims " << absl::StrJoin(expected_pad_dim_sizes, ","); return std::nullopt; } int64_t feature_dim_before_reshape = feature_dim; if (dnums.kernel_output_feature_dimension() > dnums.kernel_input_feature_dimension()) { feature_dim_before_reshape--; } const PaddingConfig::PaddingConfigDimension& padding_config = pad->padding_config().dimensions(feature_dim_before_reshape); VLOG(2) << "Success: Weights is a reshape of a pad; padding on output " "feature dim is " << padding_config.edge_padding_high(); return padding_config.edge_padding_high(); } else if (Match(weights, m::Constant())) { const Literal& lit = weights->literal(); const auto& dims = weights->shape().dimensions(); absl::InlinedVector<int64_t, 5> multi_index; for (int64_t dim : dims) { multi_index.push_back(dim - 1); } auto decrement_multi_index = [&] { for (int i = 0; i < multi_index.size(); ++i) { if (i != feature_dim) { int64_t& idx = multi_index[i]; --idx; if (idx == -1) { idx = dims[i] - 1; } else { return true; } } } int64_t& idx = multi_index[feature_dim]; --idx; return idx != -1; }; do { if (!lit.IsZero(multi_index)) { break; } } while (decrement_multi_index()); int64_t first_trailing_zero_feature = multi_index[feature_dim] + 1; if (first_trailing_zero_feature == 0) { VLOG(2) << "Weights constant is entirely zero."; } else { VLOG(2) << "First nonzero index in weights constant is " << absl::StrJoin(multi_index, ","); } int64_t ret = std::max<int64_t>(0, weights->shape().dimensions(feature_dim) - first_trailing_zero_feature); VLOG(2) << "Success: weights is a constant; num zero trailing output " "features is " << ret; return ret; } return std::nullopt; } absl::StatusOr<bool> TrySimplifyPadding(HloInstruction* instr) { HloInstruction* conv; HloInstruction* transpose = nullptr; HloInstruction* reshape = nullptr; HloInstruction* slice; HloInstruction* pad; auto conv_matcher = m::GetTupleElement( m::CustomCall(&conv).WithPredicate([](const HloInstruction* instr) { return instr->custom_call_target() == kCudnnConvForwardCallTarget || instr->custom_call_target() == kCudnnConvBiasActivationForwardCallTarget; }), 0); auto pad_matcher = m::Pad(m::Op(), m::ConstantEffectiveScalar(0)); if (!MatchAndLogIfFailed(instr, "conv-slice-pad", m::Pad(&pad, m::Slice(&slice, conv_matcher), m::ConstantEffectiveScalar(0)), VLOG_IS_ON(3), pad_matcher) && !MatchAndLogIfFailed( instr, "conv-reshape-slice-pad", m::Pad(&pad, m::Slice(&slice, m::Reshape(&reshape, conv_matcher)), m::ConstantEffectiveScalar(0)), VLOG_IS_ON(3), pad_matcher) && !MatchAndLogIfFailed( instr, "conv-transpose-reshape-slice-pad", m::Pad(&pad, m::Slice(&slice, m::Reshape(&reshape, m::Transpose(&transpose, conv_matcher))), m::ConstantEffectiveScalar(0)), VLOG_IS_ON(3), pad_matcher)) { return false; } VLOG(2) << "Found pattern to attempt to simplify:\n" << "conv: " << conv->ToString() << "\ntranspose: " << (transpose != nullptr ? transpose->ToString() : "(null)") << "\nreshape: " << (reshape != nullptr ? reshape->ToString() : "(null)") << "\nslice: " << slice->ToString() << "\npad: " << pad->ToString(); std::optional<int64_t> num_known_zero_output_features = NumTrailingZeroOutputFeatures(conv); if (!num_known_zero_output_features.has_value() || *num_known_zero_output_features == 0) { VLOG(2) << "fail: Didn't find any known-zero output features"; return false; } const auto& dnums = conv->convolution_dimension_numbers(); int64_t output_feature_dim; if (reshape == nullptr) { CHECK_EQ(transpose, nullptr); output_feature_dim = dnums.output_feature_dimension(); } else { std::optional<int64_t> vect_c_dim_before_transpose = FindOutputVectCDim(conv); if (!vect_c_dim_before_transpose.has_value()) { VLOG(2) << "Couldn't find vect_c output dim in conv."; return false; } int64_t feature_dim_after_transpose; int64_t vect_c_dim_after_transpose; if (transpose == nullptr) { feature_dim_after_transpose = dnums.output_feature_dimension(); vect_c_dim_after_transpose = *vect_c_dim_before_transpose; } else { const auto& transpose_dims = transpose->dimensions(); feature_dim_after_transpose = std::distance( transpose->dimensions().begin(), absl::c_find(transpose_dims, dnums.output_feature_dimension())); vect_c_dim_after_transpose = std::distance( transpose->dimensions().begin(), absl::c_find(transpose_dims, *vect_c_dim_before_transpose)); } if (vect_c_dim_after_transpose != feature_dim_after_transpose + 1) { VLOG(2) << "fail: after transpose (if present), vect_c dim must appear " "immediately after output feature dim: Computed " "vect_d_dim_after_transpose to be " << vect_c_dim_after_transpose; return false; } absl::InlinedVector<int64_t, 5> expected_reshape_dim_sizes( reshape->operand(0)->shape().dimensions().begin(), reshape->operand(0)->shape().dimensions().end()); expected_reshape_dim_sizes[feature_dim_after_transpose] *= expected_reshape_dim_sizes[vect_c_dim_after_transpose]; expected_reshape_dim_sizes.erase(expected_reshape_dim_sizes.begin() + vect_c_dim_after_transpose); if (reshape->shape().dimensions() != expected_reshape_dim_sizes) { VLOG(2) << "fail: Reshape doesn't merge vect_c with feature dimension."; return false; } output_feature_dim = feature_dim_after_transpose; } if (!absl::c_all_of(slice->slice_starts(), [](auto v) { return v == 0; }) || !absl::c_all_of(slice->slice_strides(), [](auto v) { return v == 1; })) { VLOG(2) << "fail: Slice doesn't start at the front or has stride != 1."; return false; } for (int64_t dim = 0; dim < slice->slice_limits().size(); dim++) { if (slice->slice_starts(dim) != 0 || slice->slice_strides(dim) != 1 || (dim != output_feature_dim && slice->slice_limits(dim) != slice->operand(0)->shape().dimensions(dim))) { VLOG(2) << "fail: Slice removes something other than the features dim."; return false; } } int64_t num_sliced_from_feature_dim = slice->operand(0)->shape().dimensions(output_feature_dim) - slice->slice_limits(output_feature_dim); if (num_sliced_from_feature_dim > *num_known_zero_output_features) { VLOG(2) << "fail: Slice removes " << num_sliced_from_feature_dim << " features from the conv, but only " << *num_known_zero_output_features << " features in the conv are known to be zero."; return false; } if (pad->padding_config().dimensions(output_feature_dim).interior_padding() != 0) { VLOG(2) << "fail: Can't merge slice into pad because pad adds interior padding " "in feature dimension."; return false; } VLOG(1) << "Eliminating " << num_sliced_from_feature_dim << " elements of padding from conv " << conv->name(); PaddingConfig new_padding_config = pad->padding_config(); PaddingConfig::PaddingConfigDimension* new_pad_feature_dim = new_padding_config.mutable_dimensions(output_feature_dim); new_pad_feature_dim->set_edge_padding_high( new_pad_feature_dim->edge_padding_high() - num_sliced_from_feature_dim); TF_ASSIGN_OR_RETURN(HloInstruction * new_pad, MakePadHlo(slice->mutable_operand(0), pad->mutable_operand(1), new_padding_config)); TF_RETURN_IF_ERROR(pad->parent()->ReplaceInstruction(pad, new_pad)); return true; } } absl::StatusOr<bool> CudnnSimplifyPadding::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool c, TrySimplifyPadding(instr)); changed |= c; } } return changed; } }
#include "xla/service/gpu/cudnn_simplify_padding.h" #include <cstdint> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/functional/function_ref.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/literal.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/call_inliner.h" #include "xla/service/gpu/cudnn_pad_for_convolutions.h" #include "xla/service/gpu/cudnn_vectorize_convolutions.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/reshape_mover.h" #include "xla/service/tuple_simplifier.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { namespace m = ::xla::match; class CudnnSimplifyPaddingTest : public HloTestBase { protected: absl::StatusOr<bool> RunEndToEnd(std::pair<int, int> compute_capability, HloModule* module) { se::CudaComputeCapability cc{compute_capability.first, compute_capability.second}; TF_RETURN_IF_ERROR( RunHloPass(CudnnPadForConvolutions(cc), module).status()); TF_RETURN_IF_ERROR( RunHloPass(CudnnVectorizeConvolutions( cc, se::dnn::VersionInfo{8, 3, 0}), module) .status()); VLOG(1) << "after vectorizing convs:\n" << module->ToString(); TF_RETURN_IF_ERROR(RunHloPass(CallInliner(), module).status()); VLOG(1) << "after inliner:\n" << module->ToString(); TF_RETURN_IF_ERROR(RunHloPass(TupleSimplifier(), module).status()); VLOG(1) << "after tuple simplifier:\n" << module->ToString(); TF_ASSIGN_OR_RETURN(bool changed, RunHloPass(CudnnSimplifyPadding(), module)); VLOG(1) << "after simplify_padding:\n" << module->ToString(); { HloPassFix<HloPassPipeline> pipeline("reshape-mover and algsimp"); pipeline.AddPass<ReshapeMover>(); pipeline.AddPass<AlgebraicSimplifier>(AlgebraicSimplifierOptions()); TF_RETURN_IF_ERROR(RunHloPass(pipeline, module).status()); } VLOG(1) << "after reshape mover + algsimp:\n" << module->ToString(); return changed; } absl::StatusOr<bool> RunJustThisPass(HloModule* module) { TF_ASSIGN_OR_RETURN(bool changed, RunHloPass(CudnnSimplifyPadding(), module)); VLOG(1) << "after simplify_padding:\n" << module->ToString(); TF_RETURN_IF_ERROR(RunHloPass(HloPassFix<AlgebraicSimplifier>( AlgebraicSimplifierOptions()), module) .status()); return changed; } }; void ExpectOnlyPadsOneDim(int64_t dim, int64_t padding_high, const PaddingConfig& p) { SCOPED_TRACE(p.DebugString()); for (int i = 0; i < p.dimensions_size(); ++i) { SCOPED_TRACE(absl::StrCat("dimension ", i)); EXPECT_EQ(p.dimensions(i).edge_padding_low(), 0); if (i == dim) { EXPECT_EQ(p.dimensions(i).edge_padding_high(), padding_high); } else { EXPECT_EQ(p.dimensions(i).edge_padding_high(), 0); } } } template <typename NativeT> void SetConstantValue( HloInstruction* instr, absl::FunctionRef<NativeT(absl::Span<const int64_t>, NativeT)> value_fn) { Literal new_literal = instr->literal().Clone(); new_literal.MutableEachCell<int8_t>(value_fn); TF_EXPECT_OK(instr->parent()->ReplaceWithNewInstruction( instr, HloInstruction::CreateConstant(std::move(new_literal)))); } TEST_F(CudnnSimplifyPaddingTest, EndToEnd) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { conv1 = (s8[10,20,30,190], u8[0]) custom-call( s8[10,20,30,63] parameter(0), s8[3,5,63,190] parameter(1), f32[10] parameter(2), s8[10,20,30,190] parameter(3)), window={size=3x5}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBiasActivationForward" conv1_result = get-tuple-element(conv1), index=0 ROOT conv2 = (s8[10,20,30,29], u8[0]) custom-call( conv1_result, s8[3,5,190,29] parameter(4), f32[10] parameter(5), s8[10,20,30,29] parameter(6)), window={size=3x5}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBiasActivationForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunEndToEnd({7, 5}, module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch(m::Tuple( m::Slice(m::Reshape(m::GetTupleElement(m::CustomCall( {"__cudnn$convBiasActivationForward"}, m::GetTupleElement( m::CustomCall({"__cudnn$convBiasActivationForward"}), 0), m::Op(), m::Op(), m::Op())))), m::Op()))); } TEST_F(CudnnSimplifyPaddingTest, EndToEndNCHW) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { conv1 = (s8[1,64,480,400], u8[0]) custom-call( s8[1,112,480,400] parameter(0), s8[3,3,112,64] parameter(1), f32[64] parameter(2)), window={size=3x3}, dim_labels=bf01_01io->bf01, custom_call_target="__cudnn$convBiasActivationForward" conv1_result = get-tuple-element(conv1), index=0 convert = f32[1,64,480,400] convert(conv1_result) constant = f32[] constant(0.349002093) broadcast = f32[1,64,480,400] broadcast(constant) ROOT multiply = f32[1,64,480,400] multiply(convert, broadcast) })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunEndToEnd({7, 5}, module.get())); EXPECT_FALSE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Reshape(m::Multiply()))); } TEST_F(CudnnSimplifyPaddingTest, PaddedWeights) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights = pad(s8[3,3,10,10] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_4 conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,6] slice(conv_result), slice={[0:10], [0:10], [0:10], [0:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* pad = nullptr; ASSERT_THAT(root, GmockMatch(m::Pad(&pad, m::GetTupleElement(m::CustomCall(), 0), m::ConstantScalar(0)))); ExpectOnlyPadsOneDim(3, 1, pad->padding_config()); } TEST_F(CudnnSimplifyPaddingTest, PaddedWeightsNotPaddedEnough) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights = pad(s8[3,3,10,10] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_3 conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,6] slice(conv_result), slice={[0:10], [0:10], [0:10], [0:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, PaddedAndReshapedWeightsNCHW) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights_p = pad(s8[64,60,3,3] parameter(0), s8[] constant(0)), padding=0_0x0_4x0_0x0_0 weights = s8[2,32,64,3,3] reshape(weights_p) conv = (s8[10,2,32,10,10], u8[0]) custom-call( s8[10,2,32,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=bf?01_i?o01->bf?01, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,60,10,10] slice(s8[10,64,10,10] reshape(conv_result)), slice={[0:10], [0:60], [0:10], [0:10]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_5x0_0x0_0 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* pad = nullptr; ASSERT_THAT( root, GmockMatch( m::Pad(&pad, m::Reshape(m::GetTupleElement(m::CustomCall(), 0)), m::ConstantScalar(0)))); ExpectOnlyPadsOneDim(1, 1, pad->padding_config()); } TEST_F(CudnnSimplifyPaddingTest, PaddedAndReshapedWeightsNHWC) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights_p = pad(s8[3,3,64,60] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_4 weights = s8[3,3,2,32,64] reshape(weights_p) conv = (s8[10,10,10,2,32], u8[0]) custom-call( s8[10,10,10,2,32] parameter(1), weights ), window={size=3x3}, dim_labels=b01f?_01i?o->b01f?, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,60] slice(s8[10,10,10,64] reshape(conv_result)), slice={[0:10], [0:10], [0:10], [0:60]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* pad = nullptr; ASSERT_THAT( root, GmockMatch( m::Pad(&pad, m::Reshape(m::GetTupleElement(m::CustomCall(), 0)), m::ConstantScalar(0)))); ExpectOnlyPadsOneDim(3, 1, pad->padding_config()); } TEST_F(CudnnSimplifyPaddingTest, PaddedTransposedAndReshapedOutput) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights_p = pad(s8[64,60,3,3] parameter(0), s8[] constant(0)), padding=0_0x0_4x0_0x0_0 weights = s8[2,32,64,3,3] reshape(weights_p) conv = (s8[10,2,10,10,32], u8[0]) custom-call( s8[10,2,10,10,32] parameter(1), weights ), window={size=3x3}, dim_labels=bf01?_i?o01->bf01?, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 conv_transposed = s8[10,2,32,10,10] transpose(conv_result), dimensions={0,1,4,2,3} slice = s8[10,60,10,10] slice(s8[10,64,10,10] reshape(conv_transposed)), slice={[0:10], [0:60], [0:10], [0:10]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_6x0_0x0_0 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* pad = nullptr; ASSERT_THAT( root, GmockMatch(m::Pad( &pad, m::Reshape(m::Transpose(m::GetTupleElement(m::CustomCall(), 0))), m::ConstantScalar(0)))); ExpectOnlyPadsOneDim(1, 2, pad->padding_config()); } TEST_F(CudnnSimplifyPaddingTest, PaddedConstantWeight) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(0), s8[3,3,10,10] constant({...}) ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,6] slice(conv_result), slice={[0:10], [0:10], [0:10], [0:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); { HloInstruction* weights = nullptr; ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Pad(m::Slice(m::GetTupleElement(m::CustomCall( m::Op(), m::Constant(&weights)))), m::Op()))); SetConstantValue<int8_t>( weights, [](absl::Span<const int64_t> dims, int8_t old_val) -> int8_t { if (dims[3] < 6) return 1; return 0; }); } TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* pad = nullptr; ASSERT_THAT(root, GmockMatch(m::Pad(&pad, m::GetTupleElement(m::CustomCall(), 0), m::ConstantScalar(0)))); ExpectOnlyPadsOneDim(3, 1, pad->padding_config()); } TEST_F(CudnnSimplifyPaddingTest, PaddedConstantWeightIsNotLargeEnough) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(0), s8[3,3,10,10] constant({...}) ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,6] slice(conv_result), slice={[0:10], [0:10], [0:10], [0:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); { HloInstruction* weights = nullptr; ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Pad(m::Slice(m::GetTupleElement(m::CustomCall( m::Op(), m::Constant(&weights)))), m::Op()))); SetConstantValue<int8_t>( weights, [](absl::Span<const int64_t> dims, int8_t old_val) -> int8_t { if (dims[3] < 5 ) return 0; return 1; }); } TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, ReshapeDoesntMergeVectCDim) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights_p = pad(s8[64,60,3,3] parameter(0), s8[] constant(0)), padding=0_0x0_4x0_0x0_0 weights = s8[2,64,3,3,32] reshape(weights_p) conv = (s8[10,2,10,10,32], u8[0]) custom-call( s8[10,2,10,10,32] parameter(1), weights_p ), window={size=3x3}, dim_labels=bf01?_io01?->bf01?, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,60,10,10] slice(s8[10,64,10,10] reshape(conv_result)), slice={[0:10], [0:60], [0:10], [0:10]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_6x0_0x0_0 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, TwoVectCDimsInOutput) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights_p = pad(s8[64,60,3,3] parameter(0), s8[] constant(0)), padding=0_0x0_4x0_0x0_0 weights = s8[2,64,3,3,32] reshape(weights_p) conv = (s8[10,2,10,10,4,8], u8[0]) custom-call( s8[10,2,10,10,32] parameter(1), weights ), window={size=3x3}, dim_labels=bf01?_io01?->bf01??, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 conv_transposed = s8[10,2,4,8,10,10] transpose(conv_result), dimensions={0,1,4,5,2,3} slice = s8[10,60,10,10] slice(s8[10,64,10,10] reshape(conv_transposed)), slice={[0:10], [0:60], [0:10], [0:10]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_6x0_0x0_0 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, TwoVectCDimsInKernel) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights_p = pad(s8[64,60,3,3] parameter(0), s8[] constant(0)), padding=0_0x0_4x0_0x0_0 weights = s8[2,64,3,3,4,8] reshape(weights_p) conv = (s8[10,2,10,10,32], u8[0]) custom-call( s8[10,2,10,10,32] parameter(1), weights ), window={size=3x3}, dim_labels=bf01?_io01??->bf01?, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 conv_transposed = s8[10,2,32,10,10] transpose(conv_result), dimensions={0,1,4,2,3} slice = s8[10,60,10,10] slice(s8[10,64,10,10] reshape(conv_transposed)), slice={[0:10], [0:60], [0:10], [0:10]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_6x0_0x0_0 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, SliceDoesntStartAtBeginning) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights = pad(s8[3,3,10,10] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_4 conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,9,10,6] slice(conv_result), slice={[0:10], [1:10], [0:10], [0:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, SliceDoesntStartAtBeginningOfFeatureDim) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights = pad(s8[3,3,10,10] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_4 conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,5] slice(conv_result), slice={[0:10], [0:10], [0:10], [1:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, SliceHasStride) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights = pad(s8[3,3,10,10] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_4 conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,3] slice(conv_result), slice={[0:10], [0:10], [0:10], [0:6:2]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, PadAddsInteriorPadding) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights = pad(s8[3,3,10,10] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_4 conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,6] slice(conv_result), slice={[0:10], [0:10], [0:10], [0:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_5_1 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, SliceMoreElementsThanPad) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { weights = pad(s8[3,3,10,10] parameter(0), s8[] constant(0)), padding=0_0x0_0x0_0x0_4 conv = (s8[10,10,10,10], u8[0]) custom-call( s8[10,10,10,10] parameter(1), weights ), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" conv_result = get-tuple-element(conv), index=0 slice = s8[10,10,10,6] slice(conv_result), slice={[0:10], [0:10], [0:10], [0:6]} ROOT pad = pad(slice, s8[] constant(0)), padding=0_0x0_0x0_0x0_2 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_TRUE(changed); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* slice = nullptr; ASSERT_THAT(root, GmockMatch(m::Slice( &slice, m::GetTupleElement(m::CustomCall(), 0)))); for (int64_t i = 0; i < slice->shape().dimensions_size(); ++i) { SCOPED_TRACE(i); EXPECT_EQ(slice->slice_starts(i), 0); EXPECT_EQ(slice->slice_strides(i), 1); if (i != 3) { EXPECT_EQ(slice->slice_limits(i), 10); } else { EXPECT_EQ(slice->slice_limits(i), 8); } } } TEST_F(CudnnSimplifyPaddingTest, NoChangeOnNonTrivialConstants) { auto module = ParseAndReturnVerifiedModule(R"( HloModule jit_outer ENTRY main.26 { reshape.2 = f32[1,3,3,12]{3,2,1,0} parameter(0) constant.1 = f32[3,3,1,12]{3,2,1,0} constant({ { { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } }, { { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } }, { { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } } }) cudnn-conv = (f32[1,5,5,12]{3,2,1,0}, u8[0]{0}) custom-call(reshape.2, constant.1), window={size=3x3 pad=2_2x2_2}, dim_labels=b01f_01io->b01f, feature_group_count=12, custom_call_target="__cudnn$convForward" get-tuple-element = f32[1,5,5,12]{3,2,1,0} get-tuple-element(cudnn-conv), index=0 slice.2 = f32[1,5,1,12]{3,2,1,0} slice(get-tuple-element), slice={[0:1], [0:5], [0:1], [0:12]} constant.0 = f32[] constant(0) ROOT pad.1 = f32[1,5,3,12]{3,2,1,0} pad(slice.2, constant.0), padding=0_0x0_0x2_0x0_0 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, NoChangeOnComplexSlices) { auto module = ParseAndReturnVerifiedModule(R"( HloModule jit_outer ENTRY main.26 { reshape.2 = f32[1,3,3,12]{3,2,1,0} parameter(0) constant.1 = f32[3,3,1,12]{3,2,1,0} constant({ { { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } }, { { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } }, { { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } } }) cudnn-conv = (f32[1,5,5,12]{3,2,1,0}, u8[0]{0}) custom-call(reshape.2, constant.1), window={size=3x3 pad=2_2x2_2}, dim_labels=b01f_01io->b01f, feature_group_count=12, custom_call_target="__cudnn$convForward" get-tuple-element = f32[1,5,5,12]{3,2,1,0} get-tuple-element(cudnn-conv), index=0 slice.2 = f32[1,5,5,4]{3,2,1,0} slice(get-tuple-element), slice={[0:1], [0:5], [0:5], [2:6]} constant.0 = f32[] constant(0) ROOT pad.1 = f32[1,5,5,12]{3,2,1,0} pad(slice.2, constant.0), padding=0_0x0_0x0_0x0_8 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, ScanOrderFeatureDimLast) { auto module = ParseAndReturnVerifiedModule(R"( HloModule jit_outer ENTRY main.26 { reshape.2 = f32[1,3,3,12]{3,2,1,0} parameter(0) constant.1 = f32[3,3,1,12]{3,2,1,0} constant({ { { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } }, { { { 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } }, { { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } } }) cudnn-conv = (f32[1,5,5,12]{3,2,1,0}, u8[0]{0}) custom-call(reshape.2, constant.1), window={size=3x3 pad=2_2x2_2}, dim_labels=b01f_01io->b01f, feature_group_count=12, custom_call_target="__cudnn$convForward" get-tuple-element = f32[1,5,5,12]{3,2,1,0} get-tuple-element(cudnn-conv), index=0 slice.2 = f32[1,5,5,6]{3,2,1,0} slice(get-tuple-element), slice={[0:1], [0:5], [0:5], [0:6]} constant.0 = f32[] constant(0) ROOT pad.1 = f32[1,5,5,12]{3,2,1,0} pad(slice.2, constant.0), padding=0_0x0_0x0_0x0_6 } )") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunJustThisPass(module.get())); EXPECT_FALSE(changed); } TEST_F(CudnnSimplifyPaddingTest, Int8FilterReorderedOutputFirst) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { conv.1 = (s8[1,63,80,80], u8[0]) custom-call( s8[1,112,80,80] parameter(0), s8[63,112,3,3] parameter(1)), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target="__cudnn$convForward" gte.1 = s8[1,63,80,80] get-tuple-element(conv.1), index=0 const.0 = s8[] constant(0) ROOT pad.1 = s8[1,64,80,80] pad(gte.1, const.0), padding=0_0x0_1x0_0x0_0 })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunEndToEnd({7, 5}, module.get())); EXPECT_TRUE(changed); } TEST_F(CudnnSimplifyPaddingTest, Int8FilterReorderedOutputLast) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { conv.1 = (s8[1,63,80,80], u8[0]) custom-call( s8[1,112,80,80] parameter(0), s8[3,3,112,63] parameter(1)), window={size=3x3}, dim_labels=bf01_01io->bf01, custom_call_target="__cudnn$convForward" gte.1 = s8[1,63,80,80] get-tuple-element(conv.1), index=0 const.0 = s8[] constant(0) ROOT pad.1 = s8[1,64,80,80] pad(gte.1, const.0), padding=0_0x0_1x0_0x0_0 })") .value(); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunEndToEnd({7, 5}, module.get())); EXPECT_TRUE(changed); } } }
2,068
cpp
tensorflow/tensorflow
gpu_conv_padding_legalization
null
null
#ifndef XLA_SERVICE_GPU_GPU_CONV_PADDING_LEGALIZATION_H_ #define XLA_SERVICE_GPU_GPU_CONV_PADDING_LEGALIZATION_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class GpuConvPaddingLegalization : public HloModulePass { public: absl::string_view name() const override { return "gpu-conv-padding-legalization"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> RunOnComputation(HloComputation* computation); bool CanonicalizeForwardConvolution(HloInstruction* conv); bool CanonicalizeBackwardFilterConvolution(HloInstruction* backward_conv); bool CanonicalizeBackwardInputConvolution(HloInstruction* backward_conv); }; } } #endif #include "xla/service/gpu/gpu_conv_padding_legalization.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstdlib> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { bool IsForwardConvolutionCanonical(const HloInstruction& conv) { CHECK(conv.custom_call_target() == kCudnnConvForwardCallTarget || conv.custom_call_target() == kCudnnConvBiasActivationForwardCallTarget || conv.custom_call_target() == kCudnnConvForwardGraphCallTarget); return window_util::HasSymmetricPadding(conv.window()) && !window_util::HasNegativePadding(conv.window()) && !window_util::HasDilation(conv.window()); } HloInstruction* MaybePaddedAndSlicedInput( Window* conv_window, const ConvolutionDimensionNumbers& conv_dnums, HloInstruction* input) { HloComputation* computation = input->parent(); if (!window_util::HasSymmetricPadding(*conv_window) || window_util::HasBaseDilation(*conv_window)) { PaddingConfig padding_config = MakeNoPaddingConfig(input->shape().dimensions_size()); for (size_t i = 0; i < conv_dnums.input_spatial_dimensions().size(); ++i) { int64_t dim = conv_dnums.input_spatial_dimensions(i); if (conv_window->dimensions(i).padding_low() > 0) { padding_config.mutable_dimensions(dim)->set_edge_padding_low( conv_window->dimensions(i).padding_low()); conv_window->mutable_dimensions(i)->set_padding_low(0); } if (conv_window->dimensions(i).padding_high() > 0) { padding_config.mutable_dimensions(dim)->set_edge_padding_high( conv_window->dimensions(i).padding_high()); conv_window->mutable_dimensions(i)->set_padding_high(0); } if (conv_window->dimensions(i).base_dilation() != 1) { padding_config.mutable_dimensions(dim)->set_interior_padding( conv_window->dimensions(i).base_dilation() - 1); conv_window->mutable_dimensions(i)->set_base_dilation(1); } } PrimitiveType element_type = input->shape().element_type(); HloInstruction* padding = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(element_type))); input = MakePadHlo(input, padding, padding_config, &input->metadata()).value(); } if (window_util::HasNegativePadding(*conv_window)) { std::vector<int64_t> start_indices(input->shape().dimensions_size(), 0); std::vector<int64_t> limit_indices(input->shape().dimensions().begin(), input->shape().dimensions().end()); std::vector<int64_t> strides(input->shape().dimensions_size(), 1); for (size_t i = 0; i < conv_dnums.input_spatial_dimensions().size(); ++i) { int64_t dim = conv_dnums.input_spatial_dimensions(i); if (conv_window->dimensions(i).padding_low() < 0) { start_indices[dim] += -conv_window->dimensions(i).padding_low(); conv_window->mutable_dimensions(i)->set_padding_low(0); } if (conv_window->dimensions(i).padding_high() < 0) { limit_indices[dim] -= -conv_window->dimensions(i).padding_high(); conv_window->mutable_dimensions(i)->set_padding_high(0); } } input = MakeSliceHlo(input, start_indices, limit_indices, strides).value(); } return input; } HloInstruction* MaybePaddedKernel(const Window& conv_window, const ConvolutionDimensionNumbers& conv_dnums, HloInstruction* kernel) { if (!window_util::HasWindowDilation(conv_window)) { return kernel; } PaddingConfig padding_config; for (size_t i = 0; i < kernel->shape().dimensions_size(); ++i) { padding_config.add_dimensions(); } for (size_t i = 0; i < conv_dnums.kernel_spatial_dimensions().size(); ++i) { int64_t dim = conv_dnums.kernel_spatial_dimensions(i); padding_config.mutable_dimensions(dim)->set_interior_padding( conv_window.dimensions(i).window_dilation() - 1); } HloComputation* computation = kernel->parent(); PrimitiveType element_type = kernel->shape().element_type(); HloInstruction* padding = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(element_type))); return MakePadHlo(kernel, padding, padding_config, &kernel->metadata()) .value(); } } bool GpuConvPaddingLegalization::CanonicalizeForwardConvolution( HloInstruction* conv) { if (IsForwardConvolutionCanonical(*conv)) { return false; } Window new_conv_window = conv->window(); HloInstruction* new_input = MaybePaddedAndSlicedInput( &new_conv_window, conv->convolution_dimension_numbers(), conv->mutable_operand(0)); HloInstruction* new_kernel = MaybePaddedKernel(new_conv_window, conv->convolution_dimension_numbers(), conv->mutable_operand(1)); for (size_t i = 0; i < new_conv_window.dimensions_size(); ++i) { WindowDimension* dim = new_conv_window.mutable_dimensions(i); dim->set_size(new_kernel->shape().dimensions( conv->convolution_dimension_numbers().kernel_spatial_dimensions(i))); dim->set_window_dilation(1); } VLOG(1) << "Canonicalizing forward conv"; std::vector<HloInstruction*> operands(conv->operands().begin(), conv->operands().end()); operands[0] = new_input; operands[1] = new_kernel; auto new_conv = conv->parent()->AddInstruction( conv->CloneWithNewOperands(conv->shape(), operands)); new_conv->set_window(new_conv_window); VLOG(1) << "Replacing:\n " << conv->ToString() << "\nwith:\n " << new_conv->ToString(); TF_CHECK_OK(conv->parent()->ReplaceInstruction(conv, new_conv)); return true; } namespace { void IncreasePaddingLowBy(int64_t delta, WindowDimension* window_dim) { window_dim->set_padding_low(window_dim->padding_low() + delta); } void IncreasePaddingHighBy(int64_t delta, WindowDimension* window_dim) { window_dim->set_padding_high(window_dim->padding_high() + delta); } } bool GpuConvPaddingLegalization::CanonicalizeBackwardFilterConvolution( HloInstruction* backward_conv) { CHECK_EQ(backward_conv->custom_call_target(), kCudnnConvBackwardFilterCallTarget); if (window_util::HasSymmetricPadding(backward_conv->window())) { return false; } HloInstruction* input = backward_conv->mutable_operand(0); Window new_backward_conv_window = backward_conv->window(); PaddingConfig input_padding_config = MakeNoPaddingConfig(input->shape().rank()); ConvolutionDimensionNumbers backward_conv_dnums = backward_conv->convolution_dimension_numbers(); for (size_t i = 0; i < backward_conv->window().dimensions_size(); ++i) { int64_t padding_low = backward_conv->window().dimensions(i).padding_low(); int64_t padding_high = backward_conv->window().dimensions(i).padding_high(); if (padding_low < 0 || padding_high < 0) { return false; } int64_t new_conv_padding = std::min(padding_low, padding_high); int64_t dim = backward_conv_dnums.input_spatial_dimensions(i); input_padding_config.mutable_dimensions(dim)->set_edge_padding_low( padding_low - new_conv_padding); input_padding_config.mutable_dimensions(dim)->set_edge_padding_high( padding_high - new_conv_padding); auto* new_dim = new_backward_conv_window.mutable_dimensions(i); new_dim->set_padding_low(new_conv_padding); new_dim->set_padding_high(new_conv_padding); } HloComputation* computation = backward_conv->parent(); HloInstruction* output = backward_conv->mutable_operand(1); HloInstruction* padding = computation->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(input->shape().element_type()))); HloInstruction* padded_input = MakePadHlo(input, padding, input_padding_config).value(); HloInstruction* new_backward_conv = computation->AddInstruction(backward_conv->CloneWithNewOperands( backward_conv->shape(), {padded_input, output})); new_backward_conv->set_window(new_backward_conv_window); VLOG(1) << "Canonicalizing backward filter conv"; VLOG(1) << "Replacing:\n " << backward_conv->ToString() << "\nwith:\n " << new_backward_conv->ToString(); TF_CHECK_OK( computation->ReplaceInstruction(backward_conv, new_backward_conv)); return true; } bool GpuConvPaddingLegalization::CanonicalizeBackwardInputConvolution( HloInstruction* backward_conv) { if (window_util::HasSymmetricPadding(backward_conv->window())) { return false; } Window new_backward_conv_window = backward_conv->window(); ConvolutionDimensionNumbers backward_conv_dnums = backward_conv->convolution_dimension_numbers(); Shape backward_conv_shape = backward_conv->shape().tuple_shapes(0); Shape new_backward_conv_shape = backward_conv_shape; for (size_t i = 0; i < backward_conv->window().dimensions_size(); ++i) { int64_t padding_low = backward_conv->window().dimensions(i).padding_low(); int64_t padding_high = backward_conv->window().dimensions(i).padding_high(); if (padding_low < 0 || padding_high < 0) { return false; } if (padding_low > padding_high) { IncreasePaddingLowBy(padding_high - padding_low, new_backward_conv_window.mutable_dimensions(i)); } else if (padding_low < padding_high) { IncreasePaddingHighBy(padding_low - padding_high, new_backward_conv_window.mutable_dimensions(i)); } int64_t dim = backward_conv_dnums.input_spatial_dimensions(i); new_backward_conv_shape.set_dimensions( dim, new_backward_conv_shape.dimensions(dim) + std::abs(padding_low - padding_high)); } HloComputation* computation = backward_conv->parent(); HloInstruction* output = backward_conv->mutable_operand(0); HloInstruction* filter = backward_conv->mutable_operand(1); HloInstruction* new_backward_conv_call = computation->AddInstruction(backward_conv->CloneWithNewOperands( ShapeUtil::MakeTupleShape( {new_backward_conv_shape, ShapeUtil::MakeShape(U8, {0})}), {output, filter})); new_backward_conv_call->set_window(new_backward_conv_window); HloInstruction* new_backward_conv = computation->AddInstruction(HloInstruction::CreateGetTupleElement( new_backward_conv_shape, new_backward_conv_call, 0)); HloInstruction* new_backward_conv_scratch = computation->AddInstruction(HloInstruction::CreateGetTupleElement( new_backward_conv_call->shape().tuple_shapes(1), new_backward_conv_call, 1)); std::vector<int64_t> start_indices( new_backward_conv->shape().dimensions_size(), 0LL); std::vector<int64_t> limit_indices( new_backward_conv->shape().dimensions().begin(), new_backward_conv->shape().dimensions().end()); std::vector<int64_t> strides(new_backward_conv->shape().dimensions_size(), 1LL); for (size_t i = 0; i < backward_conv->window().dimensions_size(); ++i) { int64_t padding_low = backward_conv->window().dimensions(i).padding_low(); int64_t padding_high = backward_conv->window().dimensions(i).padding_high(); int64_t dim = backward_conv_dnums.input_spatial_dimensions(i); if (padding_low > padding_high) { start_indices[dim] += padding_low - padding_high; } else if (padding_low < padding_high) { limit_indices[dim] -= padding_high - padding_low; } } Shape slice_shape = ShapeInference::InferSliceShape(new_backward_conv->shape(), start_indices, limit_indices, strides) .value(); CHECK(ShapeUtil::Compatible(slice_shape, backward_conv_shape)) << ShapeUtil::HumanString(slice_shape) << " vs " << ShapeUtil::HumanString(backward_conv_shape); HloInstruction* slice = computation->AddInstruction( HloInstruction::CreateSlice(backward_conv_shape, new_backward_conv, start_indices, limit_indices, strides)); HloInstruction* new_tuple = computation->AddInstruction( HloInstruction::CreateTuple({slice, new_backward_conv_scratch})); VLOG(1) << "Canonicalizing backward input conv"; VLOG(1) << "Replacing:\n " << backward_conv->ToString() << "\nwith:\n " << new_tuple->ToString(); TF_CHECK_OK(computation->ReplaceInstruction(backward_conv, new_tuple)); return true; } absl::StatusOr<bool> GpuConvPaddingLegalization::RunOnComputation( HloComputation* computation) { bool changed = false; std::vector<HloCustomCallInstruction*> convs; for (auto* instr : computation->instructions()) { if (IsCustomCallToDnnConvolution(*instr)) { convs.push_back(Cast<HloCustomCallInstruction>(instr)); } } for (HloCustomCallInstruction* instruction : convs) { TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(instruction)); changed |= [&] { switch (kind) { case CudnnConvKind::kForward: case CudnnConvKind::kForwardActivation: case CudnnConvKind::kForwardGraph: return CanonicalizeForwardConvolution(instruction); case CudnnConvKind::kBackwardInput: return CanonicalizeBackwardInputConvolution(instruction); case CudnnConvKind::kBackwardFilter: return CanonicalizeBackwardFilterConvolution(instruction); } }(); } return changed; } absl::StatusOr<bool> GpuConvPaddingLegalization::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation)); changed |= result; } return changed; } } }
#include "xla/service/gpu/gpu_conv_padding_legalization.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using GpuConvPaddingLegalizationTest = HloTestBase; TEST_F(GpuConvPaddingLegalizationTest, BackwardInputConvolve) { auto module = ParseAndReturnVerifiedModule(R"( HloModule convolution_module ENTRY %convolution (operand f64[2,2,2,3]{3,2,1,0}) -> (f64[2,2,4,4]{3,2,1,0}, u8[0]) { %operand = f64[2,2,2,3]{3,2,1,0} parameter(0) %kernel = f64[2,3,2,3]{3,2,1,0} constant( { { { { 0.29629629629629628, 0.30246913580246915, 0.30864197530864196 }, { 0.31481481481481483, 0.32098765432098764, 0.3271604938271605 } }, { { 0.25925925925925924, 0.26543209876543211, 0.27160493827160492 }, { 0.27777777777777779, 0.2839506172839506, 0.29012345679012347 } }, { { 0.22222222222222221, 0.22839506172839505, 0.23456790123456789 }, { 0.24074074074074073, 0.24691358024691357, 0.25308641975308643 } } }, { { { 0.18518518518518517, 0.19135802469135801, 0.19753086419753085 }, { 0.20370370370370369, 0.20987654320987653, 0.21604938271604937 } }, { { 0.14814814814814814, 0.15432098765432098, 0.16049382716049382 }, { 0.16666666666666666, 0.1728395061728395, 0.17901234567901234 } }, { { 0.1111111111111111, 0.11728395061728394, 0.12345679012345678 }, { 0.12962962962962962, 0.13580246913580246, 0.1419753086419753 } } } }) %reverse = f64[2,3,2,3]{3,2,1,0} reverse(%kernel), dimensions={0,1} ROOT %custom-call = (f64[2,2,4,4]{3,2,1,0}, u8[0]{0}) custom-call(f64[2,2,2,3]{3,2,1,0} %operand, f64[2,3,2,3]{3,2,1,0} %reverse), window={size=2x3 stride=2x2 pad=0_0x0_1}, dim_labels=bf01_01io->b01f, custom_call_target="__cudnn$convBackwardInput", backend_config="{\"algorithm\":\"0\",\"tensor_ops_enabled\":false,\"conv_result_scale\":1,\"activation_mode\":\"0\",\"side_input_scale\":0}" } )") .value(); ASSERT_TRUE(GpuConvPaddingLegalization().Run(module.get()).value()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Tuple( m::Slice(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardInputCallTarget}, m::Op(), m::Reverse(m::Constant())), 0)), m::GetTupleElement()))); auto slice = root->operand(0); Shape expected_slice_shape = ShapeUtil::MakeShape(F64, {2, 2, 4, 4}); EXPECT_TRUE(ShapeUtil::Equal(slice->shape(), expected_slice_shape)); auto conv = slice->operand(0); Shape expected_conv_shape = ShapeUtil::MakeShape(F64, {2, 2, 4, 5}); EXPECT_TRUE(ShapeUtil::Equal(conv->shape(), expected_conv_shape)); } } } }
2,069
cpp
tensorflow/tensorflow
horizontal_loop_fusion
third_party/xla/xla/service/gpu/transforms/horizontal_loop_fusion.cc
third_party/xla/xla/service/gpu/transforms/horizontal_loop_fusion_test.cc
#ifndef XLA_SERVICE_GPU_HORIZONTAL_LOOP_FUSION_H_ #define XLA_SERVICE_GPU_HORIZONTAL_LOOP_FUSION_H_ #include <string> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class GpuHorizontalLoopFusion : public HloModulePass { public: GpuHorizontalLoopFusion() = default; explicit GpuHorizontalLoopFusion(absl::string_view prefix) : prefix_(prefix) {} absl::string_view name() const override { return "gpu_horizontal_loop_fusion"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> RunOnComputation(HloComputation*); std::string prefix_; }; } } #endif #include "xla/service/gpu/horizontal_loop_fusion.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/sub_byte_normalization.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { PrimitiveType GetUniqueOutputTypeOfFusible(const HloInstruction& fusible) { auto outputs = GetOutputsOfFusible(fusible); CHECK(!outputs.empty()); PrimitiveType first_output_type = outputs[0]->shape().element_type(); for (size_t i = 1; i < outputs.size(); ++i) { PrimitiveType cur_output_type = outputs[i]->shape().element_type(); CHECK(first_output_type == cur_output_type) << "Output types are expected to be unique, but see " << PrimitiveType_Name(first_output_type) << " and " << PrimitiveType_Name(cur_output_type); } return first_output_type; } class HorizontalLoopFusionImpl { public: explicit HorizontalLoopFusionImpl(HloComputation* computation, absl::string_view prefix) : computation_(computation), prefix_(prefix) {} ~HorizontalLoopFusionImpl() = default; absl::StatusOr<bool> Run(); private: absl::Status Fuse(absl::Span<HloInstruction*> fused_fusion_instrs, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates); absl::Status CreateFusedComputation( absl::Span<HloInstruction*> fused_fusion_instrs, std::unique_ptr<HloComputation>* uniq_computation, std::vector<HloInstruction*>* bound_operands, bool sliced_input_fusion); absl::StatusOr<bool> FuseConsumerOperands( HloInstruction* consumer, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates); class FusionCandidates { public: explicit FusionCandidates(HloInstruction* consumer, bool sliced_input_fusion) : fusible_instrs_(), pos_(0), sliced_input_fusion_(sliced_input_fusion) { Initialize(consumer); } absl::Span<HloInstruction*> GetNextSpanOfFusions(); private: void Initialize(HloInstruction*); std::vector<HloInstruction*> fusible_instrs_; size_t pos_; bool sliced_input_fusion_; }; HloComputation* computation_; std::string prefix_; }; bool IsFusibleCandidate(const HloInstruction& instr) { if (!instr.control_successors().empty() || !instr.control_predecessors().empty()) { return false; } if (IsNestableVariadicReduction(instr)) { return false; } if (instr.IsElementwise() && instr.operand_count() > 0) { return true; } if (!instr.IsLoopFusion()) { return false; } auto outputs = GetOutputsOfFusible(instr); CHECK(!outputs.empty()); const HloInstruction* first_output = outputs[0]; for (size_t i = 1; i < outputs.size(); ++i) { if (first_output->shape().element_type() != outputs[i]->shape().element_type()) { return false; } } return true; } bool IsProfitableFusionCandidate(const HloInstruction& instr, bool sliced_input_fusion) { const int64_t kShapeThreshold = sliced_input_fusion ? 128 * 2048 : 8192 * 8192; const int64_t kInstrCountThreshold = sliced_input_fusion ? 30 : 128; const HloInstruction* root = (instr.opcode() == HloOpcode::kFusion) ? instr.fused_expression_root() : &instr; if (root->opcode() == HloOpcode::kTuple) { Shape shape = root->operand(0)->shape(); if (ShapeUtil::ElementsIn(shape) > kShapeThreshold) { VLOG(2) << "Profitable check failed due to element count with " "sliced_input_fusion=" << sliced_input_fusion; return false; } } else { Shape shape = root->shape(); if (ShapeUtil::ElementsIn(shape) > kShapeThreshold) { VLOG(2) << "Profiltable check failed due to element size with " "sliced_input_fusion=" << sliced_input_fusion; return false; } } if (instr.opcode() == HloOpcode::kFusion && instr.fused_instruction_count() > kInstrCountThreshold) { return false; } return true; } bool HasOnlyRowMajorLayout(const HloInstruction& instr) { if (instr.opcode() != HloOpcode::kFusion) { return LayoutUtil::IsMonotonicWithDim0Major(instr.shape().layout()); } auto fused_instrs = instr.fused_instructions_computation()->instructions(); for (HloInstruction* i : fused_instrs) { if (!LayoutUtil::IsDenseArray(i->shape())) { continue; } if (!LayoutUtil::IsMonotonicWithDim0Major(i->shape().layout())) { return false; } } return true; } bool AnyOpndIsParamSharedAmongFusions( const HloInstruction* instr, const absl::flat_hash_set<HloInstruction*>& fusion_instrs) { return absl::c_any_of(instr->operands(), [&](const HloInstruction* opnd) { return opnd->opcode() == HloOpcode::kParameter && absl::c_any_of(opnd->users(), [&](const HloInstruction* user) { return user != instr && fusion_instrs.contains(user); }); }); } void HorizontalLoopFusionImpl::FusionCandidates::Initialize( HloInstruction* consumer) { absl::flat_hash_set<HloInstruction*> fusible_candidates; std::vector<HloInstruction*> ordered_fusible_candidates; for (HloInstruction* opnd : consumer->operands()) { HloInstruction* predecessor = opnd->LatestNonGteAncestor(); if (IsFusibleCandidate(*predecessor)) { if (fusible_candidates.insert(predecessor).second) { ordered_fusible_candidates.push_back(predecessor); } } } for (HloInstruction* instr : ordered_fusible_candidates) { if (!IsConsumerTheOnlyNonRootUser(*instr, *consumer)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects maybe illegal instr " << instr->ToString() << "; including it may create cycles in HLO."; continue; } else if (!IsProfitableFusionCandidate(*instr, sliced_input_fusion_)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects may-not-be profitable fusion instr" << instr->ToString(); continue; } else if (!HasOnlyRowMajorLayout(*instr)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects non-row-major fusion instr " << instr->ToString(); continue; } else if (AnyOpndIsParamSharedAmongFusions(instr, fusible_candidates)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects the fusion instr because it shares parameter with" << " other fusion candidates, instr: " << instr->ToString(); continue; } else { VLOG(2) << "Find a fusion candidate " << instr->ToString(); fusible_instrs_.push_back(instr); } } std::stable_sort( fusible_instrs_.begin(), fusible_instrs_.end(), [&](const HloInstruction* a, const HloInstruction* b) { if (GetUniqueOutputTypeOfFusible(*a) != GetUniqueOutputTypeOfFusible(*b)) { return GetUniqueOutputTypeOfFusible(*a) < GetUniqueOutputTypeOfFusible(*b); } else if (GetOutputSizeOfFusible(*a) != GetOutputSizeOfFusible(*b)) { return GetOutputSizeOfFusible(*a) < GetOutputSizeOfFusible(*b); } else if (GetInstrCountOfFusible(*a) != GetInstrCountOfFusible(*b)) { return GetInstrCountOfFusible(*a) < GetInstrCountOfFusible(*b); } else { return ShapeUtil::ElementsIn(GetOutputsOfFusible(*a)[0]->shape()) < ShapeUtil::ElementsIn(GetOutputsOfFusible(*b)[0]->shape()); } }); } absl::Span<HloInstruction*> HorizontalLoopFusionImpl::FusionCandidates::GetNextSpanOfFusions() { if (pos_ >= fusible_instrs_.size()) { return absl::Span<HloInstruction*>(); } const auto kMaxFusionBatchSize = [&]() -> int64_t { if (sliced_input_fusion_) { return 32; } else { if (fusible_instrs_[pos_]->opcode() == HloOpcode::kFusion) { return 32; } else { return 64; } } }(); size_t left = pos_; size_t right = pos_ + 1; size_t first_output_size = GetOutputSizeOfFusible(*fusible_instrs_[left]); PrimitiveType first_output_type = GetUniqueOutputTypeOfFusible(*fusible_instrs_[left]); constexpr int64_t kMaxCudaParamSize = 4000; size_t accum_io_size = 0; size_t accum_num_outputs = 0; for (; right < fusible_instrs_.size(); ++right) { PrimitiveType cur_output_type = GetUniqueOutputTypeOfFusible(*fusible_instrs_[right]); if (first_output_type != cur_output_type) { break; } if (first_output_size != GetOutputSizeOfFusible(*fusible_instrs_[right])) { break; } if (GetInstrCountOfFusible(*fusible_instrs_[left]) != GetInstrCountOfFusible(*fusible_instrs_[right])) { break; } if (!sliced_input_fusion_ && !ShapeUtil::EqualIgnoringElementType( GetOutputsOfFusible(*fusible_instrs_[left])[0]->shape(), GetOutputsOfFusible(*fusible_instrs_[right])[0]->shape())) { break; } size_t num_outputs = GetOutputSizeOfFusible(*fusible_instrs_[right]); accum_num_outputs += num_outputs; if (accum_num_outputs >= kMaxFusionBatchSize) { break; } accum_io_size += fusible_instrs_.at(right)->operand_count() + num_outputs; if (accum_io_size * 8 >= kMaxCudaParamSize) { break; } } VLOG(2) << "horizontal fuse get instruction span with " << (right - left) << " instructions for sliced_input_fusion=" << sliced_input_fusion_ << " fusion"; pos_ = right; return absl::MakeSpan(fusible_instrs_).subspan(left, right - left); } absl::StatusOr<bool> HorizontalLoopFusionImpl::FuseConsumerOperands( HloInstruction* consumer, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates) { bool changed = false; FusionCandidates loop_fusion_candidates(consumer, sliced_input_fusion); while (true) { auto fusibles = loop_fusion_candidates.GetNextSpanOfFusions(); if (fusibles.empty()) { break; } else if (fusibles.size() == 1) { continue; } changed = true; std::vector<HloInstruction*> fusion_instrs; for (HloInstruction* instr : fusibles) { if (instr->opcode() == HloOpcode::kFusion) { fusion_instrs.push_back(instr); } else { TF_ASSIGN_OR_RETURN( HloInstruction * fusion_instr, MakeFusionInstruction(instr, HloInstruction::FusionKind::kLoop)); fusion_instrs.push_back(fusion_instr); } } TF_RETURN_IF_ERROR(Fuse(absl::MakeSpan(fusion_instrs), sliced_input_fusion, to_fuse_candidates)); } return changed; } absl::Status HorizontalLoopFusionImpl::CreateFusedComputation( absl::Span<HloInstruction*> fused_fusion_instrs, std::unique_ptr<HloComputation>* uniq_computation, std::vector<HloInstruction*>* bound_operands, bool sliced_input_fusion) { HloComputation::Builder b(prefix_ + "horizontally_fused_computation"); size_t fused_comp_param_id = 0; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { auto old_params = fused_fusion_instrs[i]->fused_parameters(); for (size_t j = 0; j < old_params.size(); ++j) { HloInstruction* bound_opnd = fused_fusion_instrs[i]->mutable_operand(j); b.AddInstruction(HloInstruction::CreateParameter( fused_comp_param_id++, bound_opnd->shape(), absl::StrCat("param_", i, "_", j))); bound_operands->push_back(bound_opnd); } } HloInstruction* dummy_root = b.AddInstruction( HloInstruction::CreateTuple(std::vector<HloInstruction*>{})); *uniq_computation = b.Build(dummy_root); HloComputation* comp = uniq_computation->get(); absl::flat_hash_map<const HloInstruction*, HloInstruction*> clone_map; size_t new_param_id = 0; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { auto old_params = fused_fusion_instrs[i]->fused_parameters(); for (size_t j = 0; j < old_params.size(); ++j) { HloInstruction* old_param = old_params[j]; HloInstruction* new_param = comp->parameter_instruction(new_param_id++); clone_map.insert({old_param, new_param}); } } const OpMetadata* metadata = nullptr; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { auto def_to_use_order = fused_fusion_instrs[i] ->fused_instructions_computation() ->MakeInstructionPostOrder(); for (HloInstruction* old_instr : def_to_use_order) { if (old_instr->opcode() == HloOpcode::kParameter || (sliced_input_fusion && old_instr->opcode() == HloOpcode::kTuple && old_instr == fused_fusion_instrs[i]->fused_expression_root())) { continue; } std::vector<HloInstruction*> new_opnds; const auto& old_opnds = old_instr->operands(); new_opnds.reserve(old_opnds.size()); for (HloInstruction* old_opnd : old_opnds) { CHECK(clone_map.find(old_opnd) != clone_map.end()); new_opnds.push_back(clone_map[old_opnd]); } HloInstruction* new_instr = comp->AddInstruction( old_instr->CloneWithNewOperands(old_instr->shape(), new_opnds)); clone_map.insert({old_instr, new_instr}); metadata = &old_instr->metadata(); } } size_t fused_instr_output_size = GetOutputSizeOfFusible(*fused_fusion_instrs[0]); if (sliced_input_fusion) { std::vector<HloInstruction*> concated_outputs; for (size_t i = 0; i < fused_instr_output_size; ++i) { std::vector<HloInstruction*> instr_outputs(fused_fusion_instrs.size()); for (size_t j = 0; j < fused_fusion_instrs.size(); ++j) { const HloInstruction* old_output = GetOutputsOfFusible(*fused_fusion_instrs[j])[i]; HloInstruction* new_output = clone_map[old_output]; if (new_output->shape().dimensions_size() == 1) { instr_outputs[j] = new_output; } else { Shape new_shape = ShapeUtil::MakeShapeWithDenseLayout( new_output->shape().element_type(), {ShapeUtil::ElementsIn(new_output->shape())}, std::vector<int64_t>(1, 0)); TF_ASSIGN_OR_RETURN(instr_outputs[j], MakeReshapeHlo(new_shape, new_output)); } } TF_ASSIGN_OR_RETURN(HloInstruction * concated_output, MakeConcatHlo(instr_outputs, 0)); concated_outputs.push_back(concated_output); } std::vector<HloInstruction*> output_slices(concated_outputs.size() * fused_fusion_instrs.size()); for (size_t i = 0; i < concated_outputs.size(); ++i) { HloInstruction* concated_output = concated_outputs[i]; int64_t slice_start = 0; for (size_t j = 0; j < fused_fusion_instrs.size(); ++j) { const HloInstruction* old_output = GetOutputsOfFusible(*fused_fusion_instrs[j])[i]; Shape shape = old_output->shape(); int64_t slice_limit = slice_start + ShapeUtil::ElementsIn(shape); TF_ASSIGN_OR_RETURN( output_slices[concated_outputs.size() * j + i], MakeSliceHlo(concated_output, {slice_start}, {slice_limit}, {1})); slice_start = slice_limit; } } HloInstruction* tuple = comp->AddInstruction( HloInstruction::CreateTuple(output_slices), metadata); comp->set_root_instruction(tuple, true); TF_RETURN_IF_ERROR(comp->RemoveInstruction(dummy_root)); } else { std::vector<HloInstruction*> tuple_operands(fused_instr_output_size * fused_fusion_instrs.size()); for (size_t i = 0; i < fused_instr_output_size; ++i) { for (size_t j = 0; j < fused_fusion_instrs.size(); ++j) { const HloInstruction* old_output = GetOutputsOfFusible(*fused_fusion_instrs[j])[i]; HloInstruction* new_output = clone_map[old_output]; tuple_operands[fused_instr_output_size * j + i] = new_output; } } HloInstruction* tuple = comp->AddInstruction(HloInstruction::CreateTuple(tuple_operands)); comp->set_root_instruction(tuple, true); TF_RETURN_IF_ERROR(comp->RemoveInstruction(dummy_root)); } return absl::OkStatus(); } absl::Status HorizontalLoopFusionImpl::Fuse( absl::Span<HloInstruction*> fused_fusion_instrs, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates) { std::unique_ptr<HloComputation> uniq_computation; std::vector<HloInstruction*> bound_operands; TF_RETURN_IF_ERROR(CreateFusedComputation(fused_fusion_instrs, &uniq_computation, &bound_operands, sliced_input_fusion)); HloComputation* fused_comp = computation_->parent()->AddEmbeddedComputation( std::move(uniq_computation)); HloInstruction* hori_fusion_instr = computation_->AddInstruction( HloInstruction::CreateFusion(fused_comp->root_instruction()->shape(), sliced_input_fusion ? HloInstruction::FusionKind::kInput : HloInstruction::FusionKind::kLoop, bound_operands, fused_comp, prefix_), &fused_comp->root_instruction()->metadata()); fused_comp->SetFusionInstruction(hori_fusion_instr); to_fuse_candidates.push_back(hori_fusion_instr); size_t total_output_id = 0; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { std::vector<HloInstruction*> bitcasts_or_gte; HloInstruction* fused_instr = fused_fusion_instrs[i]; size_t num_out
#include "xla/service/gpu/horizontal_loop_fusion.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/instruction_fusion.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class HorizontalLoopFusionTest : public HloTestBase { public: static bool IsFusion(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kFusion; } }; TEST_F(HorizontalLoopFusionTest, BasicTest) { auto module = ParseAndReturnVerifiedModule(R"( HloModule BasicTest fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) ROOT mul.1 = f16[1024]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) arg.4 = f16[123]{0} parameter(3) fusion.1 = f16[1024]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = f16[123]{0} fusion(arg.3, arg.4), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[1024]{0}, f16[123]{0}) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_TRUE(GpuHorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); EXPECT_FALSE(HloDCE().Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement(m::Fusion())))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Slice(m::Concatenate()), m::Slice(m::Concatenate())))); } TEST_F(HorizontalLoopFusionTest, NegativeTestForCycle) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NegativeTestForCycle fused_computation.1 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT mul.1 = f16[123]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) arg.4 = f16[123]{0} parameter(3) fusion.1 = f16[123]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 add.2 = f16[123]{0} add(fusion.1, arg.4) fusion.2 = f16[123]{0} fusion(add.2, arg.3), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[123]{0}, f16[123]{0}, f16[123]{0}) tuple(fusion.1, fusion.2, add.2) } )") .value(); EXPECT_FALSE(GpuHorizontalLoopFusion().Run(module.get()).value()); } TEST_F(HorizontalLoopFusionTest, NegativeTestForIncompatibleTypes) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NegativeTestForIncompatibleTypes fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) ROOT mul.1 = f16[1024]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = s32[123]{0} parameter(0) arg.2 = s32[123]{0} parameter(1) ROOT add.1 = s32[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = s32[123]{0} parameter(2) arg.4 = s32[123]{0} parameter(3) fusion.1 = f16[1024]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = s32[123]{0} fusion(arg.3, arg.4), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[1024]{0}, s32[123]{0}) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_FALSE(GpuHorizontalLoopFusion().Run(module.get()).value()); } TEST_F(HorizontalLoopFusionTest, FusingIntoKLoopAndKInputTogether) { auto module = ParseAndReturnVerifiedModule(R"( HloModule FusingIntoKLoopAndKInputTogether fused_computation.1 { arg.1 = f16[129, 2048]{1, 0} parameter(0) arg.2 = f16[129, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[129,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[129, 2048]{1, 0} parameter(0) arg.2 = f16[129, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[129,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.3 { arg.1 = f16[130, 2048]{1, 0} parameter(0) arg.2 = f16[130, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[130,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.4 { arg.1 = f16[130, 2048]{1, 0} parameter(0) arg.2 = f16[130, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[130,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.5 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } fused_computation.6 { arg.1 = f16[128]{0} parameter(0) arg.2 = f16[128]{0} parameter(1) ROOT add.1 = f16[128]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[129, 2048]{1, 0} parameter(0) arg.2 = f16[129, 2048]{1, 0} parameter(1) arg.3 = f16[129, 2048]{1, 0} parameter(2) arg.4 = f16[129, 2048]{1, 0} parameter(3) arg.5 = f16[130, 2048]{1, 0} parameter(4) arg.6 = f16[130, 2048]{1, 0} parameter(5) arg.7 = f16[130, 2048]{1, 0} parameter(6) arg.8 = f16[130, 2048]{1, 0} parameter(7) arg.9 = f16[123]{0} parameter(8) arg.10 = f16[123]{0} parameter(9) arg.11 = f16[128]{0} parameter(10) arg.12 = f16[128]{0} parameter(11) fusion.1 = f16[129,2048]{1, 0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = f16[129,2048]{1, 0} fusion(arg.3, arg.4), kind=kLoop, calls=fused_computation.2 fusion.3 = f16[130,2048]{1, 0} fusion(arg.5, arg.6), kind=kLoop, calls=fused_computation.3 fusion.4 = f16[130,2048]{1, 0} fusion(arg.7, arg.8), kind=kLoop, calls=fused_computation.4 fusion.5 = f16[123]{0} fusion(arg.9, arg.10), kind=kLoop, calls=fused_computation.5 fusion.6 = f16[128]{0} fusion(arg.11, arg.12), kind=kLoop, calls=fused_computation.6 ROOT tuple.1 = (f16[129,2048]{1, 0}, f16[129,2048]{1, 0}, f16[130,2048]{1, 0}, f16[130,2048]{1, 0}, f16[123]{0}, f16[128]{0}) tuple(fusion.1, fusion.2, fusion.3, fusion.4, fusion.5, fusion.6) } )") .value(); EXPECT_TRUE(GpuHorizontalLoopFusion().Run(module.get()).value()); int input_fusion_count = 0; int loop_fusion_count = 0; for (auto inst : module->entry_computation()->MakeInstructionPostOrder()) { if (inst->opcode() == HloOpcode::kFusion) { input_fusion_count += (inst->fusion_kind() == HloInstruction::FusionKind::kInput) ? 1 : 0; loop_fusion_count += (inst->fusion_kind() == HloInstruction::FusionKind::kLoop) ? 1 : 0; } } EXPECT_EQ(input_fusion_count, 1); EXPECT_EQ(loop_fusion_count, 2); } TEST_F(HorizontalLoopFusionTest, HorizontalLoopFusionAfterVerticalFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule MergeSharedFusionInstruction ENTRY MergeSharedFusionInstruction.Computation0 { param.1.1 = f32[4,1024]{1,0} parameter(0) param.1.2 = f32[4,1024]{1,0} parameter(1) param.1.3 = f32[4,1024]{1,0} parameter(2) param.2.1 = f32[321,5]{1,0} parameter(3) param.2.2 = f32[321,5]{1,0} parameter(4) param.2.3 = f32[321,5]{1,0} parameter(5) const.1 = f32[] constant(3) const.2 = f32[] constant(3) broadcast.1 = f32[4,1024]{1,0} broadcast(const.1), dimensions={} broadcast.2 = f32[321,5]{1,0} broadcast(const.2), dimensions={} mul.1.1 = f32[4,1024]{1,0} multiply(param.1.1, param.1.2) mul.1.2 = f32[4,1024]{1,0} multiply(param.1.3, broadcast.1) add.1 = f32[4,1024]{1,0} add(mul.1.1, mul.1.2) mul.2.1 = f32[321,5]{1,0} multiply(param.2.1, param.2.2) mul.2.2 = f32[321,5]{1,0} multiply(param.2.3, broadcast.2) add.2 = f32[321,5]{1,0} add(mul.2.1, mul.2.2) ROOT tuple = (f32[4,1024]{1,0}, f32[321,5]{1,0}) tuple(add.1, add.2) })") .value(); HloPassPipeline fusion("fusion"); const se::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); fusion.AddPass<xla::gpu::GpuInstructionFusion>(false, device_info); fusion.AddPass<xla::gpu::GpuInstructionFusion>(true, device_info); EXPECT_TRUE(fusion.Run(module.get()).value()); EXPECT_TRUE(GpuHorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); VLOG(2) << "Dump after horizontal fusion:"; VLOG(2) << module->ToString(); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion_instr = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple( m::Bitcast(m::GetTupleElement(m::Fusion(&fusion_instr))), m::Bitcast(m::GetTupleElement(m::Fusion()))))); ASSERT_TRUE(fusion_instr->IsMultiOutputFusion()); EXPECT_THAT(fusion_instr->fused_expression_root(), GmockMatch(m::Tuple( m::Slice(m::Concatenate(m::Reshape(), m::Reshape())), m::Slice(m::Concatenate(m::Reshape(), m::Reshape()))))); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, GradientDescentOptimizerLike) { HloComputation::Builder builder(TestName()); std::vector<HloInstruction*> var_outs; for (int64_t i = 0; i < 128; ++i) { Shape shape = ShapeUtil::MakeShape(F32, {i + 1, 1024}); HloInstruction* param_var_in = builder.AddInstruction( HloInstruction::CreateParameter(i * 3 + 0, shape, "var.in")); HloInstruction* param_alpha = builder.AddInstruction(HloInstruction::CreateParameter( i * 3 + 1, ShapeUtil::MakeShape(F32, {}), "alpha")); HloInstruction* param_delta = builder.AddInstruction( HloInstruction::CreateParameter(i * 3 + 2, shape, "delta")); HloInstruction* alpha_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(shape, param_alpha, {})); HloInstruction* alpha_delta = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, alpha_broadcasted, param_delta)); HloInstruction* var_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kSubtract, param_var_in, alpha_delta)); var_outs.push_back(var_out); } builder.AddInstruction(HloInstruction::CreateTuple(var_outs)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, FusingDifferentOutputs) { auto module = ParseAndReturnVerifiedModule(R"( HloModule HeterogeneousMultiOutputFusions fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = f16[1024]{0} parameter(2) arg.4 = f16[1024]{0} parameter(3) mul.1 = f16[1024]{0} multiply(arg.1, arg.2) mul.2 = f16[1024]{0} multiply(arg.3, arg.4) add.1 = f16[1024]{0} add(mul.1, mul.2) ROOT tuple.1 = (f16[1024]{0}, f16[1024]{0}) tuple(add.1, mul.1) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) arg.4 = f16[123]{0} parameter(3) add.1 = f16[123]{0} add(arg.1, arg.2) add.2 = f16[123]{0} add(arg.3, arg.4) mul.1 = f16[123]{0} multiply(add.1, add.2) ROOT tuple.1 = (f16[123]{0}, f16[123]{0}) tuple(mul.1, add.1) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = f16[1024]{0} parameter(2) arg.4 = f16[1024]{0} parameter(3) arg.5 = f16[123]{0} parameter(4) arg.6 = f16[123]{0} parameter(5) arg.7 = f16[123]{0} parameter(6) arg.8 = f16[123]{0} parameter(7) fusion.1 = (f16[1024]{0}, f16[1024]{0}) fusion(arg.1, arg.2, arg.3, arg.4), kind=kLoop, calls=fused_computation.1 fusion.2 = (f16[123]{0}, f16[123]{0}) fusion(arg.5, arg.6, arg.7, arg.8), kind=kLoop, calls=fused_computation.2 gte.1 = f16[1024]{0} get-tuple-element(fusion.1), index=0 gte.2 = f16[1024]{0} get-tuple-element(fusion.1), index=1 gte.3 = f16[123]{0} get-tuple-element(fusion.2), index=0 gte.4 = f16[123]{0} get-tuple-element(fusion.2), index=1 ROOT tuple.1 = (f16[1024]{0}, f16[1024]{0}, f16[123]{0}, f16[123]{0}) tuple(gte.1, gte.2, gte.3, gte.4) } )") .value(); EXPECT_TRUE(GpuHorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); EXPECT_FALSE(HloDCE().Run(module.get()).value()); VLOG(2) << "Dump after horizontal fusion:"; VLOG(2) << module->ToString(); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, RMSPropLike) { HloComputation::Builder builder(TestName()); std::vector<HloInstruction*> all_outputs; for (int64_t i = 0; i < 48; ++i) { Shape shape = ShapeUtil::MakeShape(F32, {2, 1024 + i}); HloInstruction* grad = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 0, shape, "grad")); HloInstruction* ms = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 1, shape, "ms")); HloInstruction* rho = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 2, ShapeUtil::MakeShape(F32, {}), "rho")); HloInstruction* one_minus_rho = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 3, ShapeUtil::MakeShape(F32, {}), "one_minus_rho")); HloInstruction* rho_broadcasted = builder.AddInstruction(HloInstruction::CreateBroadcast(shape, rho, {})); HloInstruction* one_mins_rho_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(shape, one_minus_rho, {})); HloInstruction* grad_squared = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, grad, grad)); HloInstruction* ms_1st_term = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, grad_squared, one_mins_rho_broadcasted)); HloInstruction* ms_2nd_term = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, ms, rho_broadcasted)); HloInstruction* ms_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, ms_1st_term, ms_2nd_term)); HloInstruction* momentum = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 4, shape, "momemtum")); HloInstruction* mom = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 5, shape, "mom")); HloInstruction* lr = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 6, ShapeUtil::MakeShape(F32, {}), "lr")); HloInstruction* epsilon = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 7, ShapeUtil::MakeShape(F32, {}), "epsilon")); HloInstruction* lr_broadcasted = builder.AddInstruction(HloInstruction::CreateBroadcast(shape, lr, {})); HloInstruction* epsilon_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(shape, epsilon, {})); HloInstruction* mom_1st_term = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, momentum, mom)); HloInstruction* ms_eps = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, ms_out, epsilon_broadcasted)); HloInstruction* ms_eps_rsq = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kRsqrt, ms_eps)); HloInstruction* grad_ms_eps_rsq = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, grad, ms_eps_rsq)); HloInstruction* mom_2nd_term = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, lr_broadcasted, grad_ms_eps_rsq)); HloInstruction* mom_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, mom_1st_term, mom_2nd_term)); HloInstruction* var = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 8, shape, "var")); HloInstruction* var_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kSubtract, var, mom_out)); all_outputs.push_back(ms_out); all_outputs.push_back(mom_out); all_outputs.push_back(var_out); } builder.AddInstruction(HloInstruction::CreateTuple(all_outputs)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{1.0e-5, 1.0e-5})); } TEST_F(HorizontalLoopFusionTest, DynamicUpdateSlice) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NegativeTestForDynamicUpdateSlice fusion.1 { p.0 = f16[5,9,10]{2,1,0} parameter(0) p.1 = s32[] parameter(1) p.2 = f16[1,9,10]{2,1,0} parameter(2) c.0 = s32[] constant(0) ROOT %dynamic-update-slice = f16[5,9,10]{2,1,0} dynamic-update-slice(p.0, p.2, p.1, c.0, c.0) } fusion.2 { p.0 = f16[5,9,10]{2,1,0} parameter(0) p.1 = s32[] parameter(1) p.2 = f16[1,9,10]{2,1,0} parameter(2) c.0 = s32[] constant(0) ROOT %dynamic-update-slice = f16[5,9,10]{2,1,0} dynamic-update-slice(p.0, p.2, p.1, c.0, c.0) } ENTRY entry { p.00 = f16[5,9,10]{2,1,0} parameter(0) p.01 = f16[5,9,10]{2,1,0} parameter(1) p.10 = s32[] parameter(2) p.11 = s32[] parameter(3) p.20 = f16[1,9,10]{2,1,0} parameter(4) p.21 = f16[1,9,10]{2,1,0} parameter(5) f1 = f16[5,9,10] fusion(p.00, p.10, p.20), kind=kLoop, calls=fusion.1 f2 = f16[5,9,10] fusion(p.01, p.11, p.21), kind=kLoop, calls=fusion.2 ROOT tuple = (f16[5,9,10],f16[5,9,10]) tuple(f1, f2) })") .value(); EXPECT_TRUE(GpuHorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); EXPECT_FALSE(HloDCE().Run(module.get()).value()); VLOG(2) << "Dump after horizontal fusion:"; VLOG(2) << module->ToString(); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, NegativeTestForSharedParam) { auto module = ParseAndReturnVerifiedModule(R"( HloModule BasicTest fused_computation.1 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT mul.1 = f16[123]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) fusion.1 = f16[123]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = f16[123]{0} fusion(arg.3, arg.2), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[123]{0}, f16[123]{0}) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_FALSE(GpuHorizontalLoopFusion().Run(module.get()).value()); } TEST_F(HorizontalLoopFusionTest, IterativeHorizontalFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NonfusionInstrs fused_computation.0 { arg.0 = f16[] parameter(0) arg.1 = f16[123]{0} parameter(1) broadcast.0 = f16[123]{0} broadcast(arg.0), dimensions={} ROOT mul.1 = f16[123]{0} multiply(broadcast.0, arg.1) } fused_computation.1 { arg.0 = f16[] parameter(0) arg.1 = f16[456]{0} parameter(1) broadcast.0 = f16[456]{0} broadcast(arg.0), dimensions={} ROOT add.1 = f16[456]{0} add(broadcast.0, arg.1) } ENTRY entry_computation { arg.0 = f16[] parameter(0) arg.1 = f16[] parameter(1) arg.2 = f16[123]{0} parameter(2) arg.3 = f16[456]{0} parameter(3) sqrt.0 = f16[] sqrt(arg.0) sqrt.1 = f16[] sqrt(arg.1) fusion.0 = f16[123]{0} fusion(sqrt.0, arg.2), kind=kLoop, calls=fused_computation.0 fusion.1 = f16[456]{0} fusion(sqrt.1, arg.3), kind=kLoop, calls=fused_computation.1 ROOT tuple.1 = (f16[123]{0}, f16[456]{0}) tuple(fusion.0, fusion.1) } )") .value(); HloPassFix<HloPassPipeline> iterative_h_fusion("iterative_h_fusion"); iterative_h_fusion.AddPass<GpuHorizontalLoopFusion>(); iterative_h_fusion.AddPass<HloDCE>(); EXPECT_TRUE(iterative_h_fusion.Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement(m::Fusion())))); EXPECT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_EQ( absl::c_count_if(module->entry_computation()->instructions(), IsFusion), 2); } TEST_F(HorizontalLoopFusionTest, TraversalOrder) { auto module = ParseAndReturnVerifiedModule(R"( HloModule cluster %fused_computation (param_0: f32[256,256], param_1: f32[], param_2: f32[]) -> f32[256,256] { %param_0 = f32[256,256]{1,0} parameter(0) %param_1 = f32[] parameter(1) %param_2 = f32[] parameter(2) %multiply.0 = f32[] multiply(f32[] %param_1, f32[] %param_2) %broadcast.0 = f32[256,256]{1,0} broadcast(f32[] %multiply.0), dimensions={} ROOT %multiply.1 = f32[256,256]{1,0} multiply(f32[256,256]{1,0} %param_0, f32[256,256]{1,0} %broadcast.0) } %fused_computation.1 (param_0: f32[256,256], param_1: f32[], param_2: f32[]) -> f32[256,256] { %param_0 = f32[256,256]{1,0} parameter(0) %param_1 = f32[] parameter(1) %param_2 = f32[] parameter(2) %multiply.0 = f32[] multiply(f32[] %param_1, f32[] %param_2) %broadcast.0 = f32[256,256]{1,0} broadcast(f32[] %multiply.0), dimensions={} ROOT %multiply.1 = f32[256,256]{1,0} multiply(f32[256,256]{1,0} %param_0, f32[256,256]{1,0} %broadcast.0) } ENTRY %entry_computation (arg0: f32[256,256], arg1: f32[256,256], arg2: f32[], arg3: f32[], arg4: f32[], arg5: f32[]) -> (f32[256,256], f32[256,256]) { %arg0 = f32[256,256]{1,0} parameter(0), parameter_replication={false} %arg1 = f32[256,256]{1,0} parameter(1), parameter_replication={false} %arg2 = f32[] parameter(2), parameter_replication={false} %arg3 = f32[] parameter(3), parameter_replication={false} %arg4 = f32[] parameter(4), parameter_replication={false} %arg5 = f32[] parameter(5), parameter_replication={false} %sqrt = f32[] sqrt(f32[] %arg2) %sqrt.1 = f32[] sqrt(f32[] %arg3) %fusion = f32[256,256]{1,0} fusion(f32[256,256]{1,0} %arg0, f32[] %sqrt, f32[] %sqrt.1), kind=kLoop, calls=%fused_computation %sqrt.2 = f32[] sqrt(f32[] %arg4) %sqrt.3 = f32[] sqrt(f32[] %arg5) %fusion.1 = f32[256,256]{1,0} fusion(f32[256,256]{1,0} %arg1, f32[] %sqrt.2, f32[] %sqrt.3), kind=kLoop, calls=%fused_computation.1 ROOT %tuple.163 = (f32[256,256]{1,0}, f32[256,256]{1,0}) tuple(f32[256,256]{1,0} %fusion.1, f32[256,256]{1,0} %fusion) } )") .value(); HloPassFix<HloPassPipeline> iterative_h_fusion("iterative_h_fusion"); iterative_h_fusion.AddPass<GpuHorizontalLoopFusion>(); EXPECT_TRUE(iterative_h_fusion.Run(module.get()).value()); EXPECT_EQ( absl::c_count_if(module->entry_computation()->instructions(), IsFusion), 2); } TEST_F(HorizontalLoopFusionTest, NoBufferAliasingOfDuplicateParameter) { const char* hlo_text = R"( HloModule m branch_a { p0 = s32[] parameter(0) c0 = s32[] constant(1) c1 = s32[] constant(2) b0 = s32[4096] broadcast(c0), dimensions={} b1 = s32[4096] broadcast(c1), dimensions={} ROOT r = (s32[4096], s32[4096]) tuple(b0, b1) } branch_b { p0 = s32[] parameter(0) c0 = s32[] constant(1) c1 = s32[] constant(2) b0 = s32[4096] broadcast(c0), dimensions={} b1 = s32[4096] broadcast(c1), dimensions={} ROOT r = (s32[4096], s32[4096]) tuple(b0, b1) } ENTRY e { p0 = s32[] parameter(0) c0 = s32[] constant(0) cond = (s32[4096], s32[4096]) conditional(p0, c0, c0), branch_computations={branch_a, branch_b} p1 = s32[4096] parameter(1) gte0 = s32[4096] get-tuple-element(cond), index=0 gte1 = s32[4096] get-tuple-element(cond), index=1 a0 = s32[4096] add(gte1, gte0) m0 = s32[4096] multiply(gte1, gte0) ROOT r = (s32[4096], s32[4096]) tuple(m0, a0) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, std::nullopt)); } TEST_F(HorizontalLoopFusionTest, CopyInsertionFusionControlFlow) { const char* hlo_text = R"( HloModule cluster ENTRY main { cst = f32[1]{0} constant({0}) cp1 = f32[1]{0} copy(cst) cp2 = f32[1]{0} copy(cst) cp3 = f32[1]{0} copy(cst) cp4 = f32[1]{0} copy(cst), control-predecessors={cp1} ROOT tuple_out = (f32[1]{0}, f32[1]{0}, f32[1]{0}, f32[1]{0}) tuple(cp1, cp2, cp3, cp4) } )"; auto module = ParseAndReturnUnverifiedModule(hlo_text).value(); EXPECT_TRUE(GpuHorizontalLoopFusion().Run(module.get()).value()); VLOG(2) << module->ToString(); EXPECT_EQ( absl::c_count_if(module->entry_computation()->instructions(), IsFusion), 1); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); EXPECT_THAT(entry_root, GmockMatch(m::Tuple(m::Copy(), m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion()), m::Copy()))); } TEST_F(HorizontalLoopFusionTest, DoNotMergeVariadicReductions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m fused_computation.94 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(1) tmp_2 = pred[] compare(tmp_0, tmp_1), direction=GE tmp_3 = f32[] select(tmp_2, tmp_0, tmp_1) tmp_4 = pred[] compare(tmp_0, tmp_1), direction=EQ tmp_5 = s32[] parameter(2) tmp_6 = s32[] parameter(3) tmp_7 = s32[] minimum(tmp_5, tmp_6) tmp_8 = s32[] select(tmp_2, tmp_5, tmp_6) tmp_9 = s32[] select(tmp_4, tmp_7, tmp_8) ROOT tmp_10 = (f32[], s32[]) tuple(tmp_3, tmp_9) } minmax_func.1536 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(2) tmp_2 = s32[] parameter(1) tmp_3 = s32[] parameter(3) ROOT tmp_4 = (f32[], s32[]) fusion(tmp_0, tmp_1, tmp_2, tmp_3), kind=kLoop, calls=fused_computation.94 } fused_computation { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(-inf) tmp_3 = s32[] constant(0) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } fused_computation2 { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(inf) tmp_3 = s32[] constant(1) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } ENTRY e { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_0), kind=kLoop, calls=fused_computation tmp_2 = s32[554112]{0} get-tuple-element(tmp_1), index=1 tmp_3 = f32[554112,10]{1,0} parameter(1) tmp_4 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_3), kind=kLoop, calls=fused_computation2 tmp_5 = s32[554112]{0} get-tuple-element(tmp_4), index=1 ROOT tmp_6 = s32[554112]{0} add(tmp_2, tmp_5) })") .value(); EXPECT_FALSE(GpuHorizontalLoopFusion().Run(module.get()).value()); } } } }
2,070
cpp
tensorflow/tensorflow
triton_fusion_numerics_verifier
third_party/xla/xla/service/gpu/transforms/triton_fusion_numerics_verifier.cc
third_party/xla/xla/service/gpu/transforms/triton_fusion_numerics_verifier_test.cc
#ifndef XLA_SERVICE_GPU_TRITON_FUSION_NUMERICS_VERIFIER_H_ #define XLA_SERVICE_GPU_TRITON_FUSION_NUMERICS_VERIFIER_H_ #include "absl/container/flat_hash_set.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_interface.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/stream_executor/stream.h" namespace xla::gpu { class TritonFusionNumericsVerifier : public HloModulePass { public: explicit TritonFusionNumericsVerifier(const AutotuneConfig& config) : config_(config) {} static absl::string_view Name() { return "triton-numerics-verifier"; } absl::string_view name() const override { return Name(); } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: AutotuneConfig config_; }; namespace triton_fusion_numerics_pass_internal { absl::StatusOr<ScopedShapedBuffer> CompileAndRunFusion( AutotunerCompileUtil& util, const HloFusionInstruction& fusion, const AutotuneConfig& config, const DebugOptions& debug_opts, bool clear_backend_config); absl::Status CompareBuffers(const ScopedShapedBuffer& current, const ScopedShapedBuffer& expected, const Shape& shape, const HloModuleConfig& config, se::Stream* stream); absl::Status ForAllTritonFusions( const HloModule& module, const absl::flat_hash_set<absl::string_view>& execution_threads, absl::AnyInvocable<absl::Status(const HloFusionInstruction&)> fn); } } #endif #include "xla/service/gpu/triton_fusion_numerics_verifier.h" #include <memory> #include <optional> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/buffer_comparator.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shaped_buffer.h" #include "xla/shape.h" #include "xla/status_macros.h" #include "xla/stream_executor/stream.h" #include "xla/tools/hlo_decomposer.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { using ProfilingOutput = AutotunerCompileUtil::ProfilingOutput; absl::StatusOr<const HloFusionInstruction*> AsTritonFusion( const HloInstruction* hlo) { if (hlo->opcode() != HloOpcode::kFusion) { return nullptr; } const HloFusionInstruction* fusion = Cast<HloFusionInstruction>(hlo); TF_ASSIGN_OR_RETURN(auto gpu_config, fusion->backend_config<GpuBackendConfig>()); const FusionBackendConfig& backend_config = gpu_config.fusion_backend_config(); if (backend_config.kind() == kTritonFusionKind) { return fusion; } return nullptr; } std::unique_ptr<HloModule> NewHloModuleFromFusion( const HloFusionInstruction& fusion, const DebugOptions& debug_opts, bool clear_backend_config) { std::unique_ptr<HloModule> new_module = ExtractInstructionIntoNewModule(fusion); if (clear_backend_config) { new_module->entry_computation()->root_instruction()->clear_backend_config(); } new_module->mutable_config().set_debug_options(debug_opts); return new_module; } } namespace triton_fusion_numerics_pass_internal { absl::StatusOr<ScopedShapedBuffer> CompileAndRunFusion( AutotunerCompileUtil& util, const HloFusionInstruction& fusion, const AutotuneConfig& config, const DebugOptions& debug_opts, bool clear_backend_config) { TF_ASSIGN_OR_RETURN(std::unique_ptr<Executable> executable, util.Compile([&](const DebugOptions& opts) { return NewHloModuleFromFusion(fusion, opts, clear_backend_config); })); TF_ASSIGN_OR_RETURN(auto rz_buffers, RedzoneBuffers::FromInstruction( fusion, config, debug_opts, RedzoneBuffers::kAllInputs)); TF_ASSIGN_OR_RETURN(auto stream, config.GetStream()); TF_ASSIGN_OR_RETURN(std::optional<ProfilingOutput> profiling_output, util.ProfileExecutable(executable.get(), stream, rz_buffers.input_buffers(), rz_buffers.input_shapes())); if (!profiling_output.has_value()) { return Internal("No output after a successful verification run."); } return std::move(profiling_output->output); } absl::Status CompareBuffers(const ScopedShapedBuffer& current, const ScopedShapedBuffer& expected, const Shape& shape, const HloModuleConfig& config, se::Stream* stream) { BufferComparator comparator(shape, config); TF_ASSIGN_OR_RETURN(bool outputs_match, comparator.CompareEqual(stream, current.root_buffer(), expected.root_buffer())); if (!outputs_match) { return Internal("Triton fusion output does not match emitters output."); } return absl::OkStatus(); } absl::Status ForAllTritonFusions( const HloModule& module, const absl::flat_hash_set<absl::string_view>& execution_threads, absl::AnyInvocable<absl::Status(const HloFusionInstruction&)> fn) { for (HloComputation* computation : module.MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { TF_ASSIGN_OR_RETURN(auto triton_fusion, AsTritonFusion(instruction)); if (triton_fusion != nullptr) { TF_RETURN_IF_ERROR(fn(*triton_fusion)); } } } return absl::OkStatus(); } } namespace { absl::Status VerifyTritonFusion(AutotunerCompileUtil& util, const HloFusionInstruction& fusion, const AutotuneConfig& config, const DebugOptions& debug_opts) { TF_ASSIGN_OR_RETURN(auto triton_result, triton_fusion_numerics_pass_internal::CompileAndRunFusion( util, fusion, config, debug_opts, false)); TF_ASSIGN_OR_RETURN(auto emitters_result, triton_fusion_numerics_pass_internal::CompileAndRunFusion( util, fusion, config, debug_opts, true)); TF_ASSIGN_OR_RETURN(auto stream, config.GetStream()); return triton_fusion_numerics_pass_internal::CompareBuffers( triton_result, emitters_result, fusion.shape(), fusion.GetModule()->config(), stream); } } absl::StatusOr<bool> TritonFusionNumericsVerifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (config_.IsDeviceless()) { return absl::InternalError( "Cannot run TritonFusionNumericsVerifier on a deviceless compilation."); } const DebugOptions& debug_options = module->config().debug_options(); TF_ASSIGN_OR_RETURN(std::optional<AutotunerCompileUtil> opt_compile_util, AutotunerCompileUtil::Create(config_, debug_options)); TF_RET_CHECK(opt_compile_util.has_value()); TF_RETURN_IF_ERROR(triton_fusion_numerics_pass_internal::ForAllTritonFusions( *module, execution_threads, [&](const HloFusionInstruction& fusion) { return VerifyTritonFusion(*opt_compile_util, fusion, config_, debug_options); })); return false; } }
#include "xla/service/gpu/triton_fusion_numerics_verifier.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/primitive_util.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/platform.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla::gpu { namespace { class TritonFusionNumericsVerifierTest : public HloTestBase, public ::testing::WithParamInterface<PrimitiveType> { public: DebugOptions GetDebugOptionsForTest() override { auto options = HloTestBase::GetDebugOptionsForTest(); options.set_xla_gpu_enable_triton_softmax_fusion(true); options.set_xla_gpu_verify_triton_fusion_numerics(true); return options; } protected: std::unique_ptr<xla::HloModule> Module(absl::string_view hlo_text_template, absl::string_view type) { auto m = GetOptimizedModule(absl::Substitute(hlo_text_template, type)); TF_EXPECT_OK(m); return std::move(m.value()); } const HloFusionInstruction* TritonFusion(const xla::HloModule& module) { const HloFusionInstruction* fusion_result = nullptr; absl::Status res = triton_fusion_numerics_pass_internal::ForAllTritonFusions( module, {}, [&](const HloFusionInstruction& fusion) -> absl::Status { EXPECT_EQ(fusion_result, nullptr); fusion_result = &fusion; return absl::OkStatus(); }); return fusion_result; } AutotuneConfig CreateAutotuneConfig() { se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); auto executors_or = PlatformUtil::GetStreamExecutors(platform); TF_EXPECT_OK(executors_or); return AutotuneConfig{DeviceConfig{executors_or->at(0), nullptr}, GetDebugOptionsForTest()}; } AutotunerCompileUtil CreateAutotunerCompileUtil(AutotuneConfig& config) { auto opt_compile_util_or = AutotunerCompileUtil::Create(config, GetDebugOptionsForTest()); TF_EXPECT_OK(opt_compile_util_or); EXPECT_TRUE(opt_compile_util_or->has_value()); return std::move(opt_compile_util_or->value()); } }; constexpr absl::string_view kSoftmaxHlo = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = $0[] parameter(0) arg_1.1 = $0[] parameter(1) ROOT add = $0[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) exponential = $0[127,125]{1,0} exponential(subtract) constant_zero = $0[] constant(0) second_reduce = $0[127]{0} reduce(exponential, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = $0[127,125]{1,0} broadcast(second_reduce), dimensions={0} ROOT divide = $0[127,125]{1,0} divide(exponential, second_broadcast) } )"; bool HloPassHasRun(const HloModule& module, absl::string_view pass_name) { for (const auto& pass_metadata : module.metadata().proto().pass_metadata()) { if (pass_metadata.pass_name() == pass_name) { return true; } } return false; } TEST_P(TritonFusionNumericsVerifierTest, VerifyExactSoftmaxFusionNumerics) { PrimitiveType data_type = GetParam(); auto module = Module(kSoftmaxHlo, primitive_util::LowercasePrimitiveTypeName(data_type)); EXPECT_TRUE(HloPassHasRun(*module, TritonFusionNumericsVerifier::Name())); auto fusion = TritonFusion(*module); EXPECT_NE(fusion, nullptr); } TEST_F(TritonFusionNumericsVerifierTest, CheckMismatch) { auto module_f16 = Module(kSoftmaxHlo, "f16"); auto fusion_f16 = TritonFusion(*module_f16); EXPECT_NE(fusion_f16, nullptr); auto module_f32 = Module(kSoftmaxHlo, "f32"); auto fusion_f32 = TritonFusion(*module_f32); EXPECT_NE(fusion_f32, nullptr); AutotuneConfig autotune_config = CreateAutotuneConfig(); AutotunerCompileUtil compile_util = CreateAutotunerCompileUtil(autotune_config); const DebugOptions& debug_options = GetDebugOptionsForTest(); auto f16_result = triton_fusion_numerics_pass_internal::CompileAndRunFusion( compile_util, *fusion_f16, autotune_config, debug_options, false); TF_EXPECT_OK(f16_result); auto f32_result = triton_fusion_numerics_pass_internal::CompileAndRunFusion( compile_util, *fusion_f32, autotune_config, debug_options, false); TF_EXPECT_OK(f32_result); auto stream = autotune_config.GetStream(); TF_EXPECT_OK(stream); auto cmp = triton_fusion_numerics_pass_internal::CompareBuffers( *f16_result, *f32_result, fusion_f16->shape(), fusion_f16->GetModule()->config(), *stream); EXPECT_FALSE(cmp.ok()); } INSTANTIATE_TEST_SUITE_P(TritonFusionNumericsVerifierTestSuite, TritonFusionNumericsVerifierTest, ::testing::Values(F32, F16, BF16)); } }
2,071
cpp
tensorflow/tensorflow
cublas_pad_for_gemms
third_party/xla/xla/service/gpu/transforms/cublas_pad_for_gemms.cc
third_party/xla/xla/service/gpu/transforms/cublas_pad_for_gemms_test.cc
#ifndef XLA_SERVICE_GPU_CUBLAS_PAD_FOR_GEMMS_H_ #define XLA_SERVICE_GPU_CUBLAS_PAD_FOR_GEMMS_H_ #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class CublasPadForGemms : public HloModulePass { public: CublasPadForGemms(const se::GpuComputeCapability gpu_compute_capability, PrimitiveType datatype, int32_t pad_to_multiple_of) : gpu_compute_capability_(gpu_compute_capability), datatype_(datatype), pad_to_multiple_of_(pad_to_multiple_of) {} absl::string_view name() const override { return "cublas-pad-for-gemms"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const se::GpuComputeCapability gpu_compute_capability_; PrimitiveType datatype_; int32_t pad_to_multiple_of_; }; } } #endif #include "xla/service/gpu/cublas_pad_for_gemms.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal_util.h" #include "xla/service/gpu/gemm_fusion.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/triton_support.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { static absl::StatusOr<bool> PadForGemm(HloDotInstruction* dot, PrimitiveType datatype, int pad_to_multiple_of) { auto* lhs = dot->mutable_operand(0); auto* rhs = dot->mutable_operand(1); Shape lshape = lhs->shape(); Shape rshape = rhs->shape(); Shape result_shape = dot->shape(); if (lshape.element_type() != datatype || rshape.element_type() != datatype) { return false; } auto pad_dim = [&](Shape& s, int dim) { s.set_dimensions(dim, RoundUpTo<int64_t>(s.dimensions(dim), pad_to_multiple_of)); }; auto pad_matrix_dims = [&pad_dim](Shape s) { pad_dim(s, s.rank() - 2); pad_dim(s, s.rank() - 1); return s; }; Shape new_lshape = pad_matrix_dims(lshape); Shape new_rshape = pad_matrix_dims(rshape); Shape new_result_shape = pad_matrix_dims(result_shape); if (new_lshape == lshape && new_rshape == rshape) { return false; } VLOG(3) << "old shape: " << lshape << " " << rshape << " " << result_shape; VLOG(3) << "new shape: " << new_lshape << " " << new_rshape << " " << new_result_shape; auto create_padding_config = [](Shape& shape, Shape& new_shape) { PaddingConfig padding_config; for (int i = 0; i < shape.rank(); ++i) { auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_high(new_shape.dimensions()[i] - shape.dimensions()[i]); dimension->set_edge_padding_low(0); dimension->set_interior_padding(0); } return padding_config; }; auto l_padding_config = create_padding_config(lshape, new_lshape); auto r_padding_config = create_padding_config(rshape, new_rshape); HloComputation* parent = dot->parent(); HloInstruction* zero_float = parent->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(datatype))); zero_float->set_metadata(dot->metadata()); HloInstruction* lpad = parent->AddInstruction( HloInstruction::CreatePad(new_lshape, lhs, zero_float, l_padding_config)); lpad->set_metadata(dot->metadata()); HloInstruction* rpad = parent->AddInstruction( HloInstruction::CreatePad(new_rshape, rhs, zero_float, r_padding_config)); rpad->set_metadata(dot->metadata()); HloInstruction* new_dot = parent->AddInstruction( dot->CloneWithNewOperands(new_result_shape, {lpad, rpad})); std::vector<int64_t> start_indices(result_shape.rank(), 0); std::vector<int64_t> strides(result_shape.rank(), 1); HloInstruction* slice = parent->AddInstruction( HloInstruction::CreateSlice(result_shape, new_dot, start_indices, result_shape.dimensions(), strides)); slice->set_metadata(dot->metadata()); bool is_root = dot->user_count() == 0; TF_CHECK_OK(parent->ReplaceInstruction(dot, slice)); if (is_root) { parent->set_root_instruction(slice); } return true; } namespace { bool CheckCanonical(HloDotInstruction* dot) { const auto& dimension_numbers = dot->dot_dimension_numbers(); if (dimension_numbers.lhs_batch_dimensions_size() + 2 != dot->operand(0)->shape().rank() || dimension_numbers.rhs_batch_dimensions_size() + 2 != dot->operand(1)->shape().rank()) { VLOG(2) << dot->ToString() << " is not canonical: Expected all dimensions but 2 to be " "batch_dimensions. Hence, this dot is not a candidate for padding."; return false; } std::vector<int64_t> canonical_batch_dims( dimension_numbers.lhs_batch_dimensions_size()); absl::c_iota(canonical_batch_dims, 0); if (!absl::c_equal(dimension_numbers.lhs_batch_dimensions(), canonical_batch_dims) || !absl::c_equal(dimension_numbers.rhs_batch_dimensions(), canonical_batch_dims)) { VLOG(2) << dot->ToString() << " is not canonical: Expected batch dimensions to be all " "dimensions except for the last 2 ones. Hence, this dot is not a " "candidate for padding."; return false; } return true; } } static std::vector<HloDotInstruction*> GetRelevantDots( const se::GpuComputeCapability& gpu_compute_capability, HloComputation* comp, PrimitiveType datatype) { std::vector<HloDotInstruction*> gemms; for (HloInstruction* instr : comp->instructions()) { if (IsMatrixMultiplication(*instr)) { HloDotInstruction* dot = Cast<HloDotInstruction>(instr); if (instr->operand(0)->shape().element_type() == datatype && CheckCanonical(dot) && !(instr->GetModule() ->config() .debug_options() .xla_gpu_enable_triton_gemm() && legacy_triton::IsTritonSupportedInstruction( *dot, gpu_compute_capability) && ShouldTritonHandleGEMM(*dot, gpu_compute_capability))) { gemms.push_back(dot); } } } return gemms; } absl::StatusOr<bool> CublasPadForGemms::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloDotInstruction* dot : GetRelevantDots(gpu_compute_capability_, comp, datatype_)) { TF_ASSIGN_OR_RETURN(bool result, PadForGemm(dot, datatype_, pad_to_multiple_of_)); changed |= result; } } return changed; } } }
#include "xla/service/gpu/cublas_pad_for_gemms.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" namespace m = ::xla::match; namespace xla { namespace gpu { namespace { class CublasGemmPadForTensorCoresTest : public HloTestBase { protected: bool PadForF16Gemms(HloModule* module) { return CublasPadForGemms(se::CudaComputeCapability(7, 0), PrimitiveType::F16, 8) .Run(module) .value(); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_triton_gemm_any(false); return debug_options; } }; TEST_F(CublasGemmPadForTensorCoresTest, OneDotRootComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f16[2048,1024] parameter(0) %param2 = f16[1024,33708] parameter(1) ROOT %dot.2309 = f16[2048,33708]{1,0} dot(f16[2048,1024]{1,0} %param1, f16[1024,33708]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); EXPECT_TRUE(PadForF16Gemms(module.get())); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch( m::Slice(m::Dot(m::Pad(m::Parameter().WithShape(F16, {2048, 1024}), m::Constant().WithShape(F16, {})) .WithShape(F16, {2048, 1024}), m::Pad(m::Parameter().WithShape(F16, {1024, 33708}), m::Constant().WithShape(F16, {})) .WithShape(F16, {1024, 33712})) .WithShape(F16, {2048, 33712}) .WithContractingDims({1}, {0})) .WithShape(F16, {2048, 33708}))); } TEST_F(CublasGemmPadForTensorCoresTest, OneDotS8RootComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = s8[2047,1023] parameter(0) %param2 = s8[1023,33707] parameter(1) ROOT %dot.2309 = s32[2047,33707]{1,0} dot(s8[2047,1023]{1,0} %param1, s8[1023,33707]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); EXPECT_TRUE( CublasPadForGemms(se::CudaComputeCapability(7, 0), PrimitiveType::S8, 4) .Run(module.get()) .value()); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch( m::Slice(m::Dot(m::Pad(m::Parameter().WithShape(S8, {2047, 1023}), m::Constant().WithShape(S8, {})) .WithShape(S8, {2048, 1024}), m::Pad(m::Parameter().WithShape(S8, {1023, 33707}), m::Constant().WithShape(S8, {})) .WithShape(S8, {1024, 33708})) .WithShape(S32, {2048, 33708}) .WithContractingDims({1}, {0})) .WithShape(S32, {2047, 33707}))); } TEST_F(CublasGemmPadForTensorCoresTest, TwoDotsComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f16[2048, 1024] parameter(0) %param2 = f16[1024, 33708] parameter(1) %param3 = f16[33708, 1] parameter(2) %dot1 = f16[2048, 33708]{1,0} dot(f16[2048, 1024]{1,0} %param1, f16[1024, 33708]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT %dot2 = f16[2048, 1]{1,0} dot(f16[2048, 33708]{1,0} %dot1, f16[33708, 1]{0,1} %param3), lhs_contracting_dims={1}, rhs_contracting_dims={0} })") .value(); EXPECT_TRUE(PadForF16Gemms(module.get())); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); const HloInstruction* dot2 = nullptr; ASSERT_THAT( root, GmockMatch( m::Slice( m::Dot( m::Pad(m::Slice(m::Dot(&dot2, m::Pad().WithShape(F16, {2048, 1024}), m::Pad().WithShape(F16, {1024, 33712})) .WithContractingDims( {1}, {0}) .WithShape(F16, {2048, 33712})) .WithShape(F16, {2048, 33708}), m::Constant().WithShape(F16, {})) .WithShape(F16, {2048, 33712}), m::Pad(m::Parameter().WithShape(F16, {33708, 1}), m::Constant().WithShape(F16, {})) .WithShape(F16, {33712, 8})) .WithShape(F16, {2048, 8}) .WithContractingDims({1}, {0})) .WithShape(F16, {2048, 1}))); EXPECT_THAT( dot2, GmockMatch(m::Dot(m::Pad(m::Parameter().WithShape(F16, {2048, 1024}), m::Constant().WithShape(F16, {})) .WithShape(F16, {2048, 1024}), m::Pad(m::Parameter().WithShape(F16, {1024, 33708}), m::Constant().WithShape(F16, {})) .WithShape(F16, {1024, 33712})) .WithContractingDims({1}, {0}))); } TEST_F(CublasGemmPadForTensorCoresTest, DotWithBatchDimensions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f16[3, 5, 2048, 1024] parameter(0) %param2 = f16[3, 5, 1024, 33708] parameter(1) ROOT %dot.2309 = f16[3, 5, 2048, 33708]{3, 2, 1,0} dot(f16[3, 5, 2048, 1024]{3, 2, 1,0} %param1, f16[3, 5, 1024, 33708]{2, 3, 0,1} %param2), lhs_batch_dims={0, 1}, rhs_batch_dims={0, 1}, lhs_contracting_dims={3}, rhs_contracting_dims={2}})") .value(); EXPECT_TRUE(PadForF16Gemms(module.get())); SCOPED_TRACE(module->ToString()); auto* root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, GmockMatch( m::Slice( m::Dot(m::Pad(m::Parameter().WithShape(F16, {3, 5, 2048, 1024}), m::Constant().WithShape(F16, {})) .WithShape(F16, {3, 5, 2048, 1024}), m::Pad(m::Parameter().WithShape(F16, {3, 5, 1024, 33708}), m::Constant().WithShape(F16, {})) .WithShape(F16, {3, 5, 1024, 33712})) .WithShape(F16, {3, 5, 2048, 33712}) .WithContractingDims({3}, {2})) .WithShape(F16, {3, 5, 2048, 33708}))); } TEST_F(CublasGemmPadForTensorCoresTest, NoDotComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %x = f32[] parameter(0) %y = f32[] parameter(1) ROOT %maximum = f32[] maximum(f32[] %x, f32[] %y) })") .value(); EXPECT_FALSE(PadForF16Gemms(module.get())); } TEST_F(CublasGemmPadForTensorCoresTest, F32DotComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f32[2048,1024] parameter(0) %param2 = f32[1024,33708] parameter(1) ROOT %dot.2309 = f32[2048,33708]{1,0} dot(f32[2048,1024]{1,0} %param1, f32[1024,33708]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0}})") .value(); EXPECT_FALSE(PadForF16Gemms(module.get())); } TEST_F(CublasGemmPadForTensorCoresTest, F64DotComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f64[2048,1024] parameter(0) %param2 = f64[1024,33708] parameter(1) ROOT %dot.2309 = f64[2048,33708]{1,0} dot(f64[2048,1024]{1,0} %param1, f64[1024,33708]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0}})") .value(); EXPECT_FALSE(PadForF16Gemms(module.get())); } TEST_F(CublasGemmPadForTensorCoresTest, MultiplesOf8DotComputation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f16[2048,1024] parameter(0) %param2 = f16[1024,33712] parameter(1) ROOT %dot.2309 = f16[2048,33712]{1,0} dot(f16[2048,1024]{1,0} %param1, f16[1024,33712]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0}})") .value(); EXPECT_FALSE(PadForF16Gemms(module.get())); } TEST_F(CublasGemmPadForTensorCoresTest, CheckSavingMetadata) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f16[2048,1024] parameter(0) %param2 = f16[1024,33708] parameter(1) ROOT %dot.2309 = f16[2048,33708]{1,0} dot(f16[2048,1024]{1,0} %param1, f16[1024,33708]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0}, metadata={op_type="MatMul" op_name="transformer_v2/Transformer/decode/embedding_shared_weights_1/presoftmax_linear/MatMul"} })") .value(); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(PadForF16Gemms(module.get())); auto metadata = module->entry_computation()->root_instruction()->metadata(); EXPECT_EQ("MatMul", metadata.op_type()); EXPECT_EQ( "transformer_v2/Transformer/decode/embedding_shared_weights_1/" "presoftmax_linear/MatMul", metadata.op_name()); } TEST_F(CublasGemmPadForTensorCoresTest, NotCanonicalizedDot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { %param1 = f16[3, 5, 2048, 1024] parameter(0) %param2 = f16[3, 5, 1024, 33708] parameter(1) ROOT %dot.2309 = f16[3,2048, 33708]{2, 1, 0} dot(f16[3, 5, 2048, 1024]{3, 2, 1, 0} %param1, f16[3, 5, 1024, 33708]{3, 2, 1, 0} %param2), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={3, 1}, rhs_contracting_dims={2, 1}})") .value(); EXPECT_FALSE(PadForF16Gemms(module.get())); } } } }
2,072
cpp
tensorflow/tensorflow
collective_permute_cycle_decomposer
third_party/xla/xla/service/gpu/transforms/collective_permute_cycle_decomposer.cc
third_party/xla/xla/service/gpu/transforms/collective_permute_cycle_decomposer_test.cc
#ifndef XLA_SERVICE_GPU_COLLECTIVE_PERMUTE_CYCLE_DECOMPOSER_H_ #define XLA_SERVICE_GPU_COLLECTIVE_PERMUTE_CYCLE_DECOMPOSER_H_ #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class CollectivePermuteCycleDecomposer : public HloModulePass { public: explicit CollectivePermuteCycleDecomposer(int64_t threshold_in_bytes) : threshold_in_bytes_(threshold_in_bytes) {} absl::string_view name() const override { return "collective-permute-cycle-decomposer"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: int64_t threshold_in_bytes_; }; } #endif #include "xla/service/gpu/collective_permute_cycle_decomposer.h" #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { using SourceTargetPair = std::pair<int64_t, int64_t>; using SourceTargetPairs = std::vector<SourceTargetPair>; enum class CycleType { kUnknown, kForward, kBackward }; CycleType ShouldDecomposeWithCycleType( const HloCollectivePermuteInstruction& collective_permute, int64_t threshold_in_bytes) { if (!collective_permute.channel_id().has_value()) { return CycleType::kUnknown; } if (collective_permute.operand_count() != 1) { return CycleType::kUnknown; } const Shape& result_shape = collective_permute.shape(); if (result_shape.IsTuple()) { return CycleType::kUnknown; } CHECK(result_shape.IsArray()); if (ShapeUtil::ByteSizeOf(result_shape) < threshold_in_bytes) { return CycleType::kUnknown; } const SourceTargetPairs& pairs = collective_permute.source_target_pairs(); if (pairs.size() == 1) { return CycleType::kUnknown; } return IsForwardCycle(pairs) ? CycleType::kForward : IsBackwardCycle(pairs) ? CycleType::kBackward : CycleType::kUnknown; } absl::Status GetFrontendAttributes(HloCollectivePermuteInstruction* cp, CycleType cycle_type, xla::FrontendAttributes& cp1_attr, xla::FrontendAttributes& cp2_attr) { cp1_attr = cp->frontend_attributes(); cp2_attr = cp->frontend_attributes(); auto validation_it = cp->frontend_attributes().map().find(kSendRecvValidationAttr); if (validation_it == cp->frontend_attributes().map().end() || validation_it->second == "invalid") { return absl::OkStatus(); } auto statusor_bounds = ParseReplicaGroupsOnly(validation_it->second); if (!statusor_bounds.ok()) { return statusor_bounds.status(); } const std::vector<ReplicaGroup>& bounds = statusor_bounds.value(); if (bounds.size() < 2) { return Internal("Invalid number of replica groups"); } int64_t num_pairs = bounds.size(); auto backedge_start = cycle_type == CycleType::kBackward ? bounds.begin() : bounds.begin() + num_pairs - 1; auto other_edges_start = cycle_type == CycleType::kBackward ? bounds.begin() + 1 : bounds.begin(); std::vector<ReplicaGroup> cp1_bounds(backedge_start, backedge_start + 1); std::vector<ReplicaGroup> cp2_bounds(other_edges_start, other_edges_start + num_pairs - 1); auto bounds_to_string = [](const std::vector<ReplicaGroup> groups) { return "{" + absl::StrJoin(groups, ",", [](std::string* out, const ReplicaGroup& value) { absl::StrAppend(out, "{", value.replica_ids(0), ",", value.replica_ids(1), "}"); }) + "}"; }; std::string cp1_validation_str = bounds_to_string(cp1_bounds); std::string cp2_validation_str = bounds_to_string(cp2_bounds); (*cp1_attr.mutable_map())[kSendRecvValidationAttr] = cp1_validation_str; (*cp2_attr.mutable_map())[kSendRecvValidationAttr] = cp2_validation_str; return absl::OkStatus(); } absl::Status DecomposeCollectivePermuteCycle( HloCollectivePermuteInstruction* cp, HloComputation* computation, HloModule* module, int64_t next_channel_id, CycleType cycle_type) { const SourceTargetPairs& pairs = cp->source_target_pairs(); int64_t num_pairs = pairs.size(); auto backedge_start = cycle_type == CycleType::kBackward ? pairs.begin() : pairs.begin() + num_pairs - 1; auto other_edges_start = cycle_type == CycleType::kBackward ? pairs.begin() + 1 : pairs.begin(); SourceTargetPairs backedge(backedge_start, backedge_start + 1); SourceTargetPairs other_edges(other_edges_start, other_edges_start + num_pairs - 1); const OpMetadata& metadata = cp->metadata(); xla::FrontendAttributes cp1_attr, cp2_attr; TF_RETURN_IF_ERROR(GetFrontendAttributes(cp, cycle_type, cp1_attr, cp2_attr)); HloInstruction* cp1 = computation->AddInstruction(HloInstruction::CreateCollectivePermute( cp->shape(), cp->mutable_operand(0), backedge, cp->channel_id().value())); cp1->set_metadata(metadata); cp1->set_frontend_attributes(cp1_attr); int64_t cp1_receiver = backedge.back().second; HloInstruction* cp2 = computation->AddInstruction(HloInstruction::CreateCollectivePermute( cp->shape(), cp->mutable_operand(0), other_edges, next_channel_id)); cp2->set_metadata(metadata); cp2->set_frontend_attributes(cp2_attr); HloInstruction* partition = computation->AddInstruction(HloInstruction::CreatePartitionId()); HloInstruction* constant = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0(U32, cp1_receiver))); HloInstruction* compare0 = computation->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), partition, constant, Comparison::Direction::kEq)); HloInstruction* compare = computation->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeShape(PRED, cp1->shape().dimensions()), compare0, {})); HloInstruction* recv_data = computation->AddInstruction(HloInstruction::CreateTernary( cp1->shape(), HloOpcode::kSelect, compare, cp1, cp2)); TF_RETURN_IF_ERROR(cp->ReplaceAllUsesWith(recv_data)); TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands(cp)); return absl::OkStatus(); } } absl::StatusOr<bool> CollectivePermuteCycleDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; int64_t next_channel_id; for (auto comp : module->computations(execution_threads)) { for (auto hlo : comp->MakeInstructionPostOrder()) { if (hlo->opcode() != HloOpcode::kCollectivePermute) { continue; } auto collective_permute = Cast<HloCollectivePermuteInstruction>(hlo); CycleType cycle_type = ShouldDecomposeWithCycleType(*collective_permute, threshold_in_bytes_); if (cycle_type != CycleType::kUnknown) { if (changed == false) { next_channel_id = hlo_query::NextChannelId(*module); changed = true; } TF_RETURN_IF_ERROR(DecomposeCollectivePermuteCycle( collective_permute, comp, module, next_channel_id++, cycle_type)); } } } return changed; } }
#include "xla/service/gpu/collective_permute_cycle_decomposer.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::HasSubstr; using CollectivePermuteCycleDecomposerTest = HloTestBase; using ::testing::HasSubstr; using CollectivePermuteDecomposerTest = HloTestBase; TEST_F(CollectivePermuteDecomposerTest, DefaultChannelNotTransformed) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] replica-id() ROOT start = u32[] collective-permute(p), source_target_pairs={{0,1},{1,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteCycleDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteCycleDecomposerTest, TrivialNotTransformed) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] partition-id() ROOT start = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteCycleDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteCycleDecomposerTest, BelowThresholdNotTransformed) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] partition-id() ROOT start = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,0}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteCycleDecomposer decomposer(33); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(CollectivePermuteCycleDecomposerTest, ForwardCycle) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] partition-id() ROOT start = u32[3,2] collective-permute(p), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,0}}, frontend_attributes={_xla_send_recv_validation="{{0,7},{1,8},{2,9},{3,10}}"}, metadata={op_name="op1/op2/add" source_file="foo/bar/mysource.py" source_line=35} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteCycleDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto check_metadata = [](const HloInstruction* inst) { EXPECT_EQ(inst->metadata().op_name(), "op1/op2/add"); EXPECT_EQ(inst->metadata().source_file(), "foo/bar/mysource.py"); EXPECT_EQ(inst->metadata().source_line(), 35); }; HloCollectivePermuteInstruction* cp1 = DynCast<HloCollectivePermuteInstruction>( FindInstruction(module.get(), "collective-permute")); HloCollectivePermuteInstruction* cp2 = DynCast<HloCollectivePermuteInstruction>( FindInstruction(module.get(), "collective-permute.1")); EXPECT_NE(cp1, nullptr); EXPECT_NE(cp2, nullptr); EXPECT_EQ(cp1->operand(0), cp2->operand(0)); EXPECT_GT(cp2->channel_id().value(), cp1->channel_id().value()); EXPECT_THAT(cp1->ToString(), HasSubstr("source_target_pairs={{3,0}}")); EXPECT_THAT(cp1->ToString(), HasSubstr("_xla_send_recv_validation=\"{{3,10}}\"")); EXPECT_THAT(cp2->ToString(), HasSubstr("source_target_pairs={{0,1},{1,2},{2,3}}")); EXPECT_THAT(cp2->ToString(), HasSubstr("_xla_send_recv_validation=\"{{0,7},{1,8},{2,9}}\"")); check_metadata(cp1); check_metadata(cp2); } TEST_F(CollectivePermuteCycleDecomposerTest, BackwardCycle) { const absl::string_view kModuleStr = R"( HloModule test ENTRY test_computation { p = u32[] partition-id() ROOT start = u32[] collective-permute(p), channel_id=1, source_target_pairs={{0,3},{1,0},{2,1},{3,2}}, frontend_attributes={_xla_send_recv_validation="{{0,7},{1,8},{2,9},{3,10}}"}, metadata={op_name="op1/op2/add" source_file="foo/bar/mysource.py" source_line=35} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kModuleStr))); CollectivePermuteCycleDecomposer decomposer(0); TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto check_metadata = [](const HloInstruction* inst) { EXPECT_EQ(inst->metadata().op_name(), "op1/op2/add"); EXPECT_EQ(inst->metadata().source_file(), "foo/bar/mysource.py"); EXPECT_EQ(inst->metadata().source_line(), 35); }; HloCollectivePermuteInstruction* cp1 = DynCast<HloCollectivePermuteInstruction>( FindInstruction(module.get(), "collective-permute")); HloCollectivePermuteInstruction* cp2 = DynCast<HloCollectivePermuteInstruction>( FindInstruction(module.get(), "collective-permute.1")); EXPECT_NE(cp1, nullptr); EXPECT_NE(cp2, nullptr); EXPECT_EQ(cp1->operand(0), cp2->operand(0)); EXPECT_GT(cp2->channel_id().value(), cp1->channel_id().value()); EXPECT_THAT(cp1->ToString(), HasSubstr("source_target_pairs={{0,3}}")); EXPECT_THAT(cp1->ToString(), HasSubstr("_xla_send_recv_validation=\"{{0,7}}\"")); EXPECT_THAT(cp2->ToString(), HasSubstr("source_target_pairs={{1,0},{2,1},{3,2}}")); EXPECT_THAT(cp2->ToString(), HasSubstr("_xla_send_recv_validation=\"{{1,8},{2,9},{3,10}}\"")); check_metadata(cp1); check_metadata(cp2); } } }
2,073
cpp
tensorflow/tensorflow
cudnn_fused_conv_rewriter
third_party/xla/xla/service/gpu/transforms/cudnn_fused_conv_rewriter.cc
third_party/xla/xla/service/gpu/transforms/cudnn_fused_conv_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_CUDNN_FUSED_CONV_REWRITER_H_ #define XLA_SERVICE_GPU_CUDNN_FUSED_CONV_REWRITER_H_ #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" namespace xla { namespace gpu { class CudnnFusedConvRewriter : public HloModulePass { public: CudnnFusedConvRewriter(se::CudaComputeCapability cc, se::dnn::VersionInfo dnn_version, int32_t toolkit_version) : compute_capability_(cc), dnn_version_(dnn_version), toolkit_version_(toolkit_version) {} CudnnFusedConvRewriter(se::RocmComputeCapability cc, se::dnn::VersionInfo dnn_version, int32_t toolkit_version) : compute_capability_(cc), dnn_version_(dnn_version), toolkit_version_(toolkit_version) {} absl::string_view name() const override { return "cudnn-fused-convolution-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const se::GpuComputeCapability compute_capability_; const se::dnn::VersionInfo dnn_version_; const int32_t toolkit_version_; }; } } #endif #include "xla/service/gpu/cudnn_fused_conv_rewriter.h" #include <algorithm> #include <array> #include <cstdint> #include <functional> #include <limits> #include <optional> #include <string> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = match; bool IsConvCustomCall(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kCustomCall && (instr->custom_call_target() == kCudnnConvForwardCallTarget || instr->custom_call_target() == kCudnnConvBiasActivationForwardCallTarget); } bool IsConvDepthwise(const HloInstruction* instr) { int64_t feature_group_count = instr->feature_group_count(); if (feature_group_count == 1) { return false; } const HloInstruction* input = instr->operand(0); int64_t input_feature_dimension = instr->convolution_dimension_numbers().input_feature_dimension(); int64_t input_feature_count = input->shape().dimensions(input_feature_dimension); return input_feature_count == feature_group_count; } bool IsNonDepthwiseConvCustomCall(const HloInstruction* instr) { return IsConvCustomCall(instr) && !IsConvDepthwise(instr); } bool IsROCm(se::GpuComputeCapability cc) { return std::holds_alternative<se::RocmComputeCapability>(cc); } bool ShouldUseCudnnRuntimeFusion(const DebugOptions& debug_opts, se::GpuComputeCapability cc) { const auto* cuda_cc = std::get_if<se::CudaComputeCapability>(&cc); if (cuda_cc != nullptr) return debug_opts.xla_gpu_use_runtime_fusion() && cuda_cc->IsAtLeast(7, 5); else return true; } bool IsSuitableForCudnnRuntimeFusion(HloInstruction* conv) { if (conv->operands().size() > 3) { return false; } if (conv->operand(0)->shape().element_type() != F16) { return false; } const Shape& shape = conv->operand(1)->shape(); int64_t num_input_features = shape.dimensions( conv->convolution_dimension_numbers().kernel_input_feature_dimension()); int64_t num_output_features = shape.dimensions( conv->convolution_dimension_numbers().kernel_output_feature_dimension()); if (num_input_features % 2 != 0 || num_output_features % 2 != 0) { return false; } return true; } bool IsLosslesslyConvertibleTo(const HloInstruction* instr, PrimitiveType dst_ty) { if (instr->shape().element_type() == dst_ty) { return true; } if (Match(instr, m::Convert(m::Op().WithElementType(dst_ty)))) { return primitive_util::CastPreservesValues(dst_ty, instr->shape().element_type()); } if (instr->opcode() == HloOpcode::kConstant) { if (!instr->shape().IsArray()) { return false; } PrimitiveType orig_ty = instr->shape().element_type(); absl::StatusOr<Literal> converted1 = instr->literal().Convert(dst_ty); if (!converted1.ok()) { return false; } absl::StatusOr<Literal> converted2 = converted1->Convert(orig_ty); if (!converted2.ok()) { return false; } return instr->literal() == *converted2; } if (instr->opcode() == HloOpcode::kBroadcast || instr->opcode() == HloOpcode::kReshape || instr->opcode() == HloOpcode::kTranspose) { return IsLosslesslyConvertibleTo(instr->operand(0), dst_ty); } return false; } bool IsLosslesslyConvertibleToS8(const HloInstruction* instr) { return IsLosslesslyConvertibleTo(instr, S8); } bool IsLosslesslyConvertibleToF16(const HloInstruction* instr) { return IsLosslesslyConvertibleTo(instr, F16); } absl::StatusOr<HloInstruction*> EnsureIsConvBiasActivation( HloInstruction* conv) { CHECK_EQ(conv->opcode(), HloOpcode::kCustomCall); if (conv->custom_call_target() == kCudnnConvBiasActivationForwardCallTarget) { return conv; } if (conv->custom_call_target() == kCudnnConvForwardCallTarget) { HloComputation* comp = conv->parent(); const Shape& shape = conv->shape().tuple_shapes(0); int64_t num_output_features = shape.dimensions( conv->convolution_dimension_numbers().output_feature_dimension()); PrimitiveType bias_ty; if (primitive_util::IsIntegralType(shape.element_type())) { bias_ty = F32; } else { bias_ty = shape.element_type(); } auto bias = BroadcastZeros(comp, bias_ty, {num_output_features}); absl::InlinedVector<HloInstruction*, 3> new_operands( conv->operands().begin(), conv->operands().end()); new_operands.push_back(bias); HloInstruction* new_conv = comp->AddInstruction( conv->CloneWithNewOperands(conv->shape(), new_operands)); TF_RETURN_IF_ERROR(comp->ReplaceInstruction(conv, new_conv)); new_conv->set_custom_call_target(kCudnnConvBiasActivationForwardCallTarget); comp->parent()->SetAndUniquifyInstrName(new_conv, "cudnn-conv-bias-activation"); return new_conv; } return FailedPrecondition("Unsupported conv: %s", conv->ToString()); } absl::StatusOr<bool> FuseConvertTypeIntoConv(HloComputation* comp, PrimitiveType conv_type, PrimitiveType cvt_type) { bool changed = false; for (auto instr : comp->MakeInstructionPostOrder()) { HloInstruction* conv = nullptr; auto tuple_elem = m::GetTupleElement(m::Op(&conv).WithPredicate(IsConvCustomCall), 0) .WithElementType(conv_type); auto pattern = m::Convert(tuple_elem.WithOneUser()).WithElementType(cvt_type); if (!Match(instr, pattern)) { continue; } if (!ConsumeFuel("cudnn-fused-convolution-rewriter", [&] { return absl::StrCat("FuseConvertTypeIntoConv: ", conv->ToString()); })) { continue; } Shape new_shape = conv->shape(); new_shape.mutable_tuple_shapes(0)->set_element_type(cvt_type); HloInstruction* new_conv = comp->AddInstruction(conv->CloneWithNewShape(new_shape)); comp->parent()->SetAndUniquifyInstrName(new_conv, conv->name()); TF_ASSIGN_OR_RETURN(HloInstruction * new_gte, MakeGetTupleElementHlo(new_conv, 0)); TF_RETURN_IF_ERROR(comp->ReplaceInstruction(instr, new_gte)); changed = true; } return changed; } struct ConvConvertTypes { PrimitiveType convolution_type; PrimitiveType conversion_type; }; absl::StatusOr<bool> FuseRemoveConvertInConv(HloComputation* comp) { bool changed = false; std::array<ConvConvertTypes, 3> types{{ {S32, F32}, {S8, F32}, {F32, S8}, }}; for (auto [conv_type, cvt_type] : types) { TF_ASSIGN_OR_RETURN(bool curr_change, FuseConvertTypeIntoConv(comp, conv_type, cvt_type)); changed |= curr_change; } return changed; } absl::StatusOr<bool> FuseConvAlpha(HloComputation* comp) { bool changed = false; for (auto instr : comp->MakeInstructionPostOrder()) { HloInstruction* conv = nullptr; HloInstruction* gte = nullptr; HloInstruction* alpha = nullptr; auto pattern = m::MultiplyAnyOrder( m::GetTupleElement( &gte, m::Op(&conv).WithPredicate(IsNonDepthwiseConvCustomCall), 0) .WithOneUse(), m::Broadcast(m::ConstantEffectiveScalar(&alpha))); if (!Match(instr, pattern)) { continue; } PrimitiveType alpha_ty = gte->shape().element_type() == F64 ? F64 : F32; if (!IsLosslesslyConvertibleTo(alpha, alpha_ty)) { continue; } TF_ASSIGN_OR_RETURN(auto gpu_config, conv->backend_config<GpuBackendConfig>()); CudnnConvBackendConfig& config = *gpu_config.mutable_cudnn_conv_backend_config(); if (config.conv_result_scale() != 1) { continue; } if (!ConsumeFuel("cudnn-fused-convolution-rewriter", [&] { return absl::StrCat("FuseConvAlpha: ", conv->ToString()); })) { continue; } TF_ASSIGN_OR_RETURN(conv, EnsureIsConvBiasActivation(conv)); TF_ASSIGN_OR_RETURN(Literal alpha_f64, alpha->literal().Convert(F64)); config.set_conv_result_scale(alpha_f64.GetFirstElement<double>()); TF_RETURN_IF_ERROR(conv->set_backend_config(gpu_config)); TF_RETURN_IF_ERROR(conv->parent()->ReplaceInstruction(instr, gte)); changed = true; } return changed; } class GraphString { public: GraphString() = default; bool AppendOp(std::string op_name, HloInstruction* op, std::vector<HloInstruction*> operands = {}) { std::optional<int64_t> operand_uid; int num_operands_in_graph = 0; for (HloInstruction* operand : operands) { if (OpInGraph(operand->unique_id())) { num_operands_in_graph++; if (num_operands_in_graph > 1) { return false; } operand_uid = operand->unique_id(); } } graph_.emplace_back(OpDescriptor( {op->unique_id(), op->shape().element_type(), op_name, operand_uid})); return true; } void ChangeDataType(PrimitiveType type) { DCHECK(!graph_.empty()); graph_.back().output_type = type; } std::string Graph() const { std::string graph; for (OpDescriptor op : graph_) { graph.append(std::to_string(op.uid)); graph.append(":[" + primitive_util::LowercasePrimitiveTypeName(op.output_type) + "]"); graph.append(op.name); graph.append("("); if (op.operand.has_value()) { graph.append(std::to_string(*op.operand)); } graph.append(");"); } return graph; } bool OpInGraph(int64_t uid, std::string op_name = "") const { auto op_filter = [&](OpDescriptor op) -> bool { if (op_name.empty()) { return op.uid == uid; } else { return op.uid == uid && op.name == op_name; } }; return std::find_if(graph_.begin(), graph_.end(), op_filter) != graph_.end(); } private: struct OpDescriptor { int64_t uid; PrimitiveType output_type; std::string name; std::optional<int64_t> operand; }; std::vector<OpDescriptor> graph_; }; bool IsF8Type(const HloInstruction* instr) { return primitive_util::IsF8Type(instr->shape().element_type()); } bool IsScalar(const HloInstruction* instr) { return ShapeUtil::IsScalar(instr->shape()); } std::optional<PrimitiveType> IsSaturatingCastToF8(HloInstruction* instr) { HloInstruction *op, *clamp_lower, *clamp_upper; if (Match(instr, m::Convert( &op, m::Clamp(m::Broadcast(m::ConstantScalar(&clamp_lower)), m::Op(), m::Broadcast(m::ConstantScalar(&clamp_upper))))) && ((op->shape().element_type() == F8E4M3FN && clamp_lower->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e4m3fn>::lowest())) && clamp_upper->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e4m3fn>::max()))) || (op->shape().element_type() == F8E5M2 && clamp_lower->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e5m2>::lowest())) && clamp_upper->literal().IsAllFloat(static_cast<float>( std::numeric_limits<tsl::float8_e5m2>::max()))))) { return op->shape().element_type(); } return std::nullopt; } bool AppliesMaxReduce(HloInstruction* op) { HloComputation* reduce_comp = op->to_apply(); HloInstruction* reduce_comp_root = reduce_comp->root_instruction(); return ShapeUtil::IsScalar(op->shape()) && ShapeUtil::IsScalar(op->operand(1)->shape()) && op->operand(1)->IsConstant() && op->operand(1)->literal().GetAsDouble({}) <= 0. && reduce_comp_root->opcode() == HloOpcode::kMaximum && reduce_comp_root->operand(0)->opcode() == HloOpcode::kParameter && reduce_comp_root->operand(1)->opcode() == HloOpcode::kParameter; } void CaptureConvGraphRecursive(HloInstruction* instr, std::vector<HloInstruction*>& operands, std::vector<HloInstruction*>& aux_outputs, GraphString& graph_string, absl::flat_hash_set<int>& visited_instrs, HloInstruction*& final_instr) { if (!visited_instrs.emplace(instr->unique_id()).second) { return; } final_instr = instr; GraphString init_graph_string = graph_string; std::vector<HloInstruction*> init_operands = operands, init_aux_outputs = aux_outputs; int num_linear_users = 0, num_nonlinear_users = 0; for (HloInstruction* user : instr->users()) { HloInstruction *op, *operand0, *operand1; if (Match(user, m::AddAnyOrder(&op, m::Op(&operand0), m::Op(&operand1)))) { if (graph_string.AppendOp("add", op, {operand0, operand1})) { operands.push_back(operand0 == instr ? operand1 : operand0); num_linear_users++; CaptureConvGraphRecursive(user, operands, aux_outputs, graph_string, visited_instrs, final_instr); } continue; } if (Match(user, m::MultiplyAnyOrder(&op, m::Op(&operand0), m::Broadcast(m::Op(&operand1)))) && ShapeUtil::IsScalar(operand1->shape())) { if (graph_string.AppendOp("scale", op, {operand0, operand1})) { operands.push_back(operand1); num_linear_users++; CaptureConvGraphRecursive(user, operands, aux_outputs, graph_string, visited_instrs, final_instr); } continue; } if (Match(user, m::Divide(&op, m::Op(&operand0), m::Broadcast(m::Op(&operand1)))) && ShapeUtil::IsScalar(operand1->shape())) { if (graph_string.AppendOp("invscale", op, {operand0, operand1})) { operands.push_back(operand1); num_linear_users++; CaptureConvGraphRecursive(user, operands, aux_outputs, graph_string, visited_instrs, final_instr); } continue; } if (Match(user, m::MaximumAnyOrder(&op, m::Op(&operand0), m::Broadcast(m::ConstantScalar(0))))) { if (graph_string.AppendOp("relu", op, {operand0})) { num_linear_users++; CaptureConvGraphRecursive(user, operands, aux_outputs, graph_string, visited_instrs, final_instr); } continue; } if (Match(user, m::Reduce(&op, m::Op(&operand0), m::Op())) && graph_string.OpInGraph(operand0->unique_id(), "relu") && AppliesMaxReduce(op)) { if (graph_string.AppendOp("amax", op, {operand0})) { aux_outputs.emplace_back(op); num_nonlinear_users++; } continue; } if (!user->users().empty()) { HloInstruction* users_user = user->users()[0]; std::optional<PrimitiveType> f8_type = IsSaturatingCastToF8(users_user); if (f8_type.has_value()) { graph_string.ChangeDataType(f8_type.value()); num_linear_users++; CaptureConvGraphRecursive(users_user, operands, aux_outputs, graph_string, visited_instrs, final_instr); continue; } if (Match(users_user, m::Reduce(&op, m::Abs(m::Op(&operand0)), m::Op())) && AppliesMaxReduce(op)) { if (graph_string.AppendOp("amax", op, {operand0})) { aux_outputs.emplace_back(op); num_nonlinear_users++; } continue; } } } if (num_linear_users > 1 || num_nonlinear_users > 1 || num_linear_users + num_nonlinear_users < instr->user_count()) { graph_string = init_graph_string; operands = init_operands; aux_outputs = init_aux_outputs; final_instr = instr; } } absl::StatusOr< std::tuple<std::vector<HloInstruction*>, std::vector<HloInstruction*>, GraphString, HloInstruction*>> CaptureConvGraph(HloInstruction* instr, HloInstruction* convolution, HloInstruction* wide_input, HloInstruction* wide_filter, HloInstruction* input_scale, HloInstruction* filter_scale, bool x_mult_scale, bool w_mult_scale) { GraphString graph_string; graph_string.AppendOp("conv", instr); HloInstruction *input_scaled_conv, *filter_scaled_conv; if (input_scale) { TF_RETURN_IF_ERROR(convolution->ReplaceOperandWith(0, wide_input)); HloInstruction* bcast_input_scale = instr->AddInstruction( HloInstruction::CreateBroadcast(instr->shape(), input_scale, {})); input_scaled_conv = instr->AddInstruction(HloInstruction::CreateBinary( instr->shape(), x_mult_scale ? HloOpcode::kMultiply : HloOpcode::kDivide, instr, bcast_input_scale)); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(input_scaled_conv)); } if (filter_scale) { TF_RETURN_IF_ERROR(convolution->ReplaceOperandWith(1, wide_filter)); HloInstruction* bcast_filter_scale = instr->AddInstruction( HloInstruction::CreateBroadcast(instr->shape(), filter_scale, {})); filter_scaled_conv = instr->AddInstruction(HloInstruction::CreateBinary( instr->shape(), w_mult_scale ? HloOpcode::kMultiply : HloOpcode::kDivide, input_scale ? input_scaled_conv : instr, bcast_filter_scale)); TF_RETURN_IF_ERROR((input_scale ? input_scaled_conv : instr) ->ReplaceAllUsesWith(filter_scaled_conv)); } std::vector<HloInstruction*> operands, aux_outputs; absl::flat_hash_set<int> visited_instrs; HloInstruction* final_instr; CaptureConvGraphRecursive(instr, operands, aux_outputs, graph_string, visited_instrs, final_instr); return std::make_tuple(operands, aux_outputs, graph_string, final_instr); } absl::StatusOr<bool> F8GraphConv(HloComputation* comp, se::CudaComputeCapability cc, se::dnn::VersionInfo dnn_version, int32_t toolkit_version) { bool changed = false; if (dnn_version < se::dnn::VersionInfo(8, 9, 0)) { return false; } if (toolkit_version < 12000) { return false; } if (!cc.IsAtLeast(se::CudaComputeCapability::HOPPER)) { return false; } for (auto instr : comp->MakeInstructionPostOrder()) { HloInstruction *convolution, *gte, *input, *filter, *input_scale = nullptr, *filter_scale = nullptr, *input_scale_op = nullptr, *filter_scale_op = nullptr, *wide_input = nullptr, *wide_filter = nullptr; auto conv_operand_maybe_scaled = [](HloInstruction** operand, HloInstruction** wide_operand, HloInstruction** scale_op, HloInstruction** scale) { return m::AnyOf<HloInstruction>( m::Op(operand).WithPredicate(IsF8Type), m::Convert(wide_operand, m::Op(operand).WithPredicate(IsF8Type)), m::Divide( scale_op, m::Convert(wide_operand, m::Op(operand).WithPredicate(IsF8Type)), m::Broadcast(m::Op(scale).WithPredicate(IsScalar))), m::MultiplyAnyOrder( scale_op, m::Convert(wide_operand, m::Op(operand).WithPredicate(IsF8Type)), m::Broadcast(m::Op(scale).WithPredicate(IsScalar)))); }; auto pattern = m::GetTupleElement( &gte,
#include "xla/service/gpu/cudnn_fused_conv_rewriter.h" #include <array> #include <memory> #include <string> #include <string_view> #include <thread> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #elif TENSORFLOW_USE_ROCM #include "rocm/rocm_config.h" #endif #include "xla/service/algebraic_simplifier.h" #include "xla/service/convert_mover.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/gpu_conv_rewriter.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/reshape_mover.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace gpu { namespace { namespace m = match; using ::testing::HasSubstr; using ::testing::Not; const auto* kf16f32f64 = new std::vector<std::string>({"f16", "f32", "f64"}); const auto* kf16f32 = new std::vector<std::string>({"f16", "f32"}); class CudnnFusedConvRewriterHloTest : public HloTestBase { public: bool IsCuda() { return std::holds_alternative<se::CudaComputeCapability>( backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability()); } se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } stream_executor::dnn::VersionInfo GetDnnVersion() { return GetDnnVersionInfoOrDefault(backend().default_stream_executor()); } int32_t GetToolkitVersion() const { #if GOOGLE_CUDA return CUDA_VERSION; #elif TENSORFLOW_USE_ROCM return TF_ROCM_VERSION; #endif return 0; } CudnnFusedConvRewriterHloTest() : HloTestBase(false, false, {}) {} }; class CudnnFusedConvRewriterTest : public GpuCodegenTest { public: bool IsCuda() { return std::holds_alternative<se::CudaComputeCapability>( backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability()); } se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } stream_executor::dnn::VersionInfo GetDnnVersion() { return GetDnnVersionInfoOrDefault(backend().default_stream_executor()); } int32_t GetToolkitVersion() const { #if GOOGLE_CUDA return CUDA_VERSION; #elif TENSORFLOW_USE_ROCM return TF_ROCM_VERSION; #endif return 0; } protected: std::string GetOptimizedHlo(absl::string_view hlo_string) { HloModuleConfig config = GetModuleConfigForTest(); DebugOptions debug_opts = config.debug_options(); debug_opts.add_xla_disable_hlo_passes("cudnn_vectorize_convolutions"); debug_opts.set_xla_gpu_use_runtime_fusion(true); config.set_debug_options(debug_opts); auto result = backend().compiler()->RunHloPasses( ParseAndReturnVerifiedModule(hlo_string, config).value(), backend().default_stream_executor(), backend().memory_allocator()); if (!result.status().ok()) { TF_EXPECT_OK(result.status()) << "HLO compilation failed: " << result.status(); return ""; } HloPrintOptions print_opts; print_opts.set_print_operand_shape(false); return (*result)->ToString(print_opts); } void TestMatchWithAllTypes(absl::string_view hlo_string) { for (absl::string_view type : *(IsCuda() ? kf16f32f64 : kf16f32)) { const std::string hlo_with_new_type = absl::StrReplaceAll(hlo_string, {{"TYPE", type}}); std::string optimized_hlo_string = GetOptimizedHlo(hlo_with_new_type); EXPECT_THAT(optimized_hlo_string, Not(HasSubstr(kCudnnConvForwardCallTarget))) << optimized_hlo_string; EXPECT_THAT(optimized_hlo_string, HasSubstr(kCudnnConvBiasActivationForwardCallTarget)); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_with_new_type)); DebugOptions debug_opts = module->config().debug_options(); debug_opts.set_xla_gpu_use_runtime_fusion(true); module->mutable_config().set_debug_options(debug_opts); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{0.01})) << optimized_hlo_string; } } void TestClamp(absl::string_view pre_hlo_string, absl::string_view post_hlo_string) { std::string alpha_conv_scalar, alpha_side_input_scalar; std::string elementwise_type; std::string optimized_hlo_string = GetOptimizedHlo(pre_hlo_string); EXPECT_THAT(optimized_hlo_string, Not(HasSubstr("Convert"))); EXPECT_THAT(optimized_hlo_string, HasSubstr("__cudnn$conv")); EXPECT_TRUE(RunAndCompare(pre_hlo_string, ErrorSpec{0.01})) << pre_hlo_string; absl::StatusOr<bool> filecheck_result = RunFileCheck(optimized_hlo_string, post_hlo_string); ASSERT_TRUE(filecheck_result.ok()) << filecheck_result.status(); EXPECT_TRUE(*filecheck_result); } void TestNotMatchWithAllTypes(absl::string_view hlo_string) { for (absl::string_view type : *(IsCuda() ? kf16f32f64 : kf16f32)) { const std::string hlo_with_new_type = absl::StrReplaceAll(hlo_string, {{"TYPE", type}}); std::string optimized_hlo_string = GetOptimizedHlo(hlo_with_new_type); SCOPED_TRACE(optimized_hlo_string); EXPECT_THAT(optimized_hlo_string, HasSubstr(kCudnnConvForwardCallTarget)); EXPECT_THAT(optimized_hlo_string, Not(HasSubstr(kCudnnConvBiasActivationForwardCallTarget))); } } void TestF8(std::string pre_hlo_string, std::string custom_call_string, std::string serialized_graph_string) { if (!IsCuda()) return; if (GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::HOPPER)) { std::string optimized_hlo_string = GetOptimizedHlo(pre_hlo_string); EXPECT_THAT(optimized_hlo_string, Not(HasSubstr("Convert"))); EXPECT_THAT(optimized_hlo_string, HasSubstr("__cudnn$conv")); EXPECT_TRUE(RunAndCompare(pre_hlo_string, ErrorSpec{0.15, 0.15})) << pre_hlo_string; absl::StatusOr<bool> filecheck_result = RunFileCheck(optimized_hlo_string, custom_call_string); ASSERT_TRUE(filecheck_result.ok()) << filecheck_result.status(); EXPECT_TRUE(*filecheck_result); filecheck_result = RunFileCheck(optimized_hlo_string, serialized_graph_string); ASSERT_TRUE(filecheck_result.ok()) << filecheck_result.status(); EXPECT_TRUE(*filecheck_result); } else { std::string::size_type p0 = custom_call_string.find(':'); std::string::size_type p1 = custom_call_string.find("custom-call"); custom_call_string.erase(p0 + 1, p1 - p0 - 2); p0 = custom_call_string.find(", dim_labels"); custom_call_string.erase(p0); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(pre_hlo_string)); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHloPass(GpuConvRewriter(GetCudaComputeCapability()), module.get())); EXPECT_TRUE(changed); RunAndFilecheckHloRewrite( module->ToString(HloPrintOptions{}.set_print_operand_shape(false)), CudnnFusedConvRewriter( se::CudaComputeCapability{se::CudaComputeCapability::HOPPER, 0}, GetDnnVersion(), GetToolkitVersion()), custom_call_string); RunAndFilecheckHloRewrite( module->ToString(HloPrintOptions{}.set_print_operand_shape(false)), CudnnFusedConvRewriter( se::CudaComputeCapability{se::CudaComputeCapability::HOPPER, 0}, GetDnnVersion(), GetToolkitVersion()), serialized_graph_string); } } void TestF8Parameterized(std::string template_pre_hlo_string, std::string template_custom_call_string, std::string template_serialized_graph_string) { std::array<absl::string_view, 2> types = {"f8e4m3fn", "f8e5m2"}; std::array<absl::string_view, 2> clamp_lower = {"-448.", "-57344."}; std::array<absl::string_view, 2> clamp_upper = {"448.", "57344."}; absl::flat_hash_map<absl::string_view, absl::string_view> replacements; for (int i = 0; i < 2; ++i) { replacements["<<InputType>>"] = types[i]; for (int j = 0; j < 2; ++j) { replacements["<<FilterType>>"] = types[j]; for (int k = 0; k < 2; ++k) { replacements["<<OutputType>>"] = types[k]; replacements["<<ClampLower>>"] = clamp_lower[k]; replacements["<<ClampUpper>>"] = clamp_upper[k]; TestF8(absl::StrReplaceAll(template_pre_hlo_string, replacements), absl::StrReplaceAll(template_custom_call_string, replacements), absl::StrReplaceAll(template_serialized_graph_string, replacements)); } } } } }; #if GOOGLE_CUDA #if (CUDA_VERSION < 12000 || CUDNN_VERSION < 8900) #define MAYBE_SKIP_TEST(CAUSE) \ do { \ if (absl::string_view(CAUSE) == "F8") \ GTEST_SKIP() << "FP8 convolutions require CUDA 12 and cuDNN 8.9."; \ } while (0) #else #define MAYBE_SKIP_TEST(CAUSE) #endif #else #define MAYBE_SKIP_TEST(CAUSE) \ do { \ GTEST_SKIP() << "ROCm does not support " CAUSE " fusion"; \ } while (0) #endif TEST_F(CudnnFusedConvRewriterTest, TestConvOnly) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,32,9,9] broadcast(zero), dimensions={} input = TYPE[1,17,9,9] parameter(0) filter = TYPE[3,3,17,32] parameter(1) conv = TYPE[1,32,9,9] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=1 ROOT relu = TYPE[1,32,9,9] maximum(zeros, conv) })"); } TEST_F(CudnnFusedConvRewriterTest, DontFuseReluWithDepthwiseConv) { TestNotMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,17,9,9] broadcast(zero), dimensions={} input = TYPE[1,17,9,9] parameter(0) filter = TYPE[3,3,1,17] parameter(1) conv = TYPE[1,17,9,9] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=17 ROOT relu = TYPE[1,17,9,9] maximum(zeros, conv) })"); } TEST_F(CudnnFusedConvRewriterTest, TestBias) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} add1 = TYPE[1,3,3,64] add(conv, broadcasted_bias) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add1) })"); } TEST_F(CudnnFusedConvRewriterTest, Test3D) { std::string body = R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,5,7,64] broadcast(zero), dimensions={} input = TYPE[1,3,5,7,64] parameter(0) filter = TYPE[3,3,3,64,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,5,7,64] convolution(input, filter), window={size=3x3x3 pad=1_1x1_1x1_1}, dim_labels=b012f_012io->b012f, feature_group_count=1 broadcasted_bias = TYPE[1,3,5,7,64] broadcast(bias), dimensions={4} add1 = TYPE[1,3,5,7,64] add(conv, broadcasted_bias) )"; std::string relu = R"( ROOT relu = TYPE[1,3,5,7,64] maximum(zeros, add1) })"; std::string elu = R"( cmp = pred[1,3,5,7,64] compare(add1, zeros), direction=GT expm1 = TYPE[1,3,5,7,64] exponential-minus-one(add1) ROOT elu = TYPE[1,3,5,7,64] select(cmp, add1, expm1) })"; TestMatchWithAllTypes(body + relu); if (!IsCuda()) TestMatchWithAllTypes(body + elu); } TEST_F(CudnnFusedConvRewriterTest, TestBiasMultiCall) { std::string code = R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,<<<format>>>,64] broadcast(zero), dimensions={} input = TYPE[1,<<<format>>>,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,<<<format>>>,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 broadcasted_bias = TYPE[1,<<<format>>>,64] broadcast(bias), dimensions={3} add1 = TYPE[1,<<<format>>>,64] add(conv, broadcasted_bias) ROOT relu = TYPE[1,<<<format>>>,64] maximum(zeros, add1) })"; absl::flat_hash_map<absl::string_view, absl::string_view> replacements; replacements["<<<format>>>"] = "3,3"; TestMatchWithAllTypes(absl::StrReplaceAll(code, replacements)); replacements["<<<format>>>"] = "5,5"; TestMatchWithAllTypes(absl::StrReplaceAll(code, replacements)); replacements["<<<format>>>"] = "3,3"; TestMatchWithAllTypes(absl::StrReplaceAll(code, replacements)); } TEST_F(CudnnFusedConvRewriterTest, TestBiasNoRelu) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} ROOT add1 = TYPE[1,3,3,64] add(conv, broadcasted_bias) })"); } TEST_F(CudnnFusedConvRewriterTest, DontFuseBiasWithDepthwiseConv) { TestNotMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,1,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=64 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} add1 = TYPE[1,3,3,64] add(conv, broadcasted_bias) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add1) })"); } TEST_F(CudnnFusedConvRewriterTest, TestElu) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} sum = TYPE[1,3,3,64] add(conv, broadcasted_bias) cmp = pred[1,3,3,64] compare(sum, zeros), direction=GT expm1 = TYPE[1,3,3,64] exponential-minus-one(sum) ROOT elu = TYPE[1,3,3,64] select(cmp, sum, expm1) })"); } TEST_F(CudnnFusedConvRewriterTest, DontFuseEluWithDepthwiseConv) { TestNotMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,1,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=64 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} sum = TYPE[1,3,3,64] add(conv, broadcasted_bias) cmp = pred[1,3,3,64] compare(sum, zeros), direction=GT expm1 = TYPE[1,3,3,64] exponential-minus-one(sum) ROOT elu = TYPE[1,3,3,64] select(cmp, sum, expm1) })"); } TEST_F(CudnnFusedConvRewriterTest, TestRelu6) { if (IsCuda() && !GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::AMPERE)) { GTEST_SKIP() << "Conv-Bias-Relu6 fusion is supported and recommended with " "the Nvidia Ampere+ GPUs."; } TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} six = TYPE[] constant(6) sixes = TYPE[1,3,3,64] broadcast(six), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} sum = TYPE[1,3,3,64] add(conv, broadcasted_bias) ROOT relu6 = TYPE[1,3,3,64] clamp(zeros, sum, sixes) })"); } TEST_F(CudnnFusedConvRewriterTest, TestRelu6OddChannels) { if (IsCuda() && !GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::AMPERE)) { GTEST_SKIP() << "Conv-Bias-Relu6 fusion is supported and recommended with " "the Nvidia Ampere+ GPUs."; } TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zeros = TYPE[1,384,1024,32] broadcast(TYPE[] constant(0)), dimensions={} sixes = TYPE[1,384,1024,32] broadcast(TYPE[] constant(6)), dimensions={} input = TYPE[1,769,2049,3] parameter(0) filter = TYPE[32,3,3,3] parameter(1) bias = TYPE[32] parameter(2) conv = TYPE[1,384,1024,32] convolution(input, filter), window={size=3x3 stride=2x2}, dim_labels=b01f_o01i->b01f broadcasted_bias = TYPE[1,384,1024,32] broadcast(bias), dimensions={3} sum = add(conv, broadcasted_bias) ROOT relu6 = clamp(zeros, sum, sixes) })"); } TEST_F(CudnnFusedConvRewriterTest, TestLeakyRelu) { if (IsCuda() && !GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::AMPERE)) { GTEST_SKIP() << "Conv-Bias-LeakyRelu fusion is supported and recommended with " "the Nvidia Ampere+ GPUs."; } TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} alpha = TYPE[] constant(0.2) alphas = TYPE[1,3,3,64] broadcast(alpha), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) bias = TYPE[64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} sum = TYPE[1,3,3,64] add(conv, broadcasted_bias) cmp = pred[1,3,3,64] compare(sum, zeros), direction=GT mul = TYPE[1,3,3,64] multiply(sum, alphas) ROOT elu = TYPE[1,3,3,64] select(cmp, sum, mul) })"); } TEST_F(CudnnFusedConvRewriterTest, TestSideInputOnly) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) side_input = TYPE[1,3,3,64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 add1 = TYPE[1,3,3,64] add(conv, side_input) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add1) })"); } TEST_F(CudnnFusedConvRewriterTest, DontFuseSideInputWithDepthwiseConv) { TestNotMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,1,64] parameter(1) side_input = TYPE[1,3,3,64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=64 add1 = TYPE[1,3,3,64] add(conv, side_input) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add1) })"); } TEST_F(CudnnFusedConvRewriterTest, TestBiasAndSideInput) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) side_input = TYPE[1,3,3,64] parameter(2) bias = TYPE[64] parameter(3) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} add1 = TYPE[1,3,3,64] add(conv, broadcasted_bias) add2 = TYPE[1,3,3,64] add(add1, side_input) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add2) })"); } TEST_F(CudnnFusedConvRewriterTest, TestScaledConv) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,32,9,9] broadcast(zero), dimensions={} alpha_conv_scalar = TYPE[] constant(0.999994934) input = TYPE[1,17,9,9] parameter(0) filter = TYPE[3,3,17,32] parameter(1) conv = TYPE[1,32,9,9] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=1 alpha_conv = TYPE[1,32,9,9] broadcast(alpha_conv_scalar), dimensions={} scaled_conv = TYPE[1,32,9,9] multiply(conv, alpha_conv) ROOT relu = TYPE[1,32,9,9] maximum(zeros, scaled_conv) })"); } TEST_F(CudnnFusedConvRewriterTest, DontFuseScaledDepthwiseConv) { TestNotMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,17,9,9] broadcast(zero), dimensions={} alpha_conv_scalar = TYPE[] constant(0.999994934) input = TYPE[1,17,9,9] parameter(0) filter = TYPE[3,3,1,17] parameter(1) conv = TYPE[1,17,9,9] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=17 alpha_conv = TYPE[1,17,9,9] broadcast(alpha_conv_scalar), dimensions={} scaled_conv = TYPE[1,17,9,9] multiply(conv, alpha_conv) ROOT relu = TYPE[1,17,9,9] maximum(zeros, scaled_conv) })"); } TEST_F(CudnnFusedConvRewriterTest, TestNoCrashOnInf) { EXPECT_TRUE(RunAndCompare(R"( HloModule Test ENTRY Test { zero = f32[] constant(inf) zeros = f32[1,32,9,9] broadcast(zero), dimensions={} alpha_conv_scalar = f32[] constant(0.999994934) input = f32[1,17,9,9] parameter(0) filter = f32[3,3,17,32] parameter(1) conv = f32[1,32,9,9] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=1 alpha_conv = f32[1,32,9,9] broadcast(alpha_conv_scalar), dimensions={} scaled_conv = f32[1,32,9,9] multiply(conv, alpha_conv) ROOT relu = f32[1,32,9,9] maximum(zeros, scaled_conv) })", ErrorSpec{0.01})); } TEST_F(CudnnFusedConvRewriterTest, TestConvAndScaledSideInput) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} alpha_side_input_scalar = TYPE[] constant(0.899994934) alpha_side_input = TYPE[1,3,3,64] broadcast(alpha_side_input_scalar), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) side_input = TYPE[1,3,3,64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 scaled_side_input = TYPE[1,3,3,64] multiply(side_input, alpha_side_input) add1 = TYPE[1,3,3,64] add(conv, scaled_side_input) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add1) })"); } TEST_F(CudnnFusedConvRewriterTest, DontFuseDepthwiseConvWithScaledSideInput) { TestNotMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} alpha_side_input_scalar = TYPE[] constant(0.899994934) alpha_side_input = TYPE[1,3,3,64] broadcast(alpha_side_input_scalar), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,1,64] parameter(1) side_input = TYPE[1,3,3,64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=64 scaled_side_input = TYPE[1,3,3,64] multiply(side_input, alpha_side_input) add1 = TYPE[1,3,3,64] add(conv, scaled_side_input) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add1) })"); } TEST_F(CudnnFusedConvRewriterTest, TestScaledConvAndScaledSideInput) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} alpha_conv_scalar = TYPE[] constant(0.999994934) alpha_conv = TYPE[1,3,3,64] broadcast(alpha_conv_scalar), dimensions={} alpha_side_input_scalar = TYPE[] constant(0.899994934) alpha_side_input = TYPE[1,3,3,64] broadcast(alpha_side_input_scalar), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) side_input = TYPE[1,3,3,64] parameter(2) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 scaled_conv = TYPE[1,3,3,64] multiply(conv, alpha_conv) scaled_side_input = TYPE[1,3,3,64] multiply(side_input, alpha_side_input) add1 = TYPE[1,3,3,64] add(scaled_conv, scaled_side_input) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add1) })"); } TEST_F(CudnnFusedConvRewriterTest, TestScaledConvAndScaledSideInputWithBias) { TestMatchWithAllTypes(R"( HloModule Test ENTRY Test { zero = TYPE[] constant(0) zeros = TYPE[1,3,3,64] broadcast(zero), dimensions={} alpha_conv_scalar = TYPE[] constant(0.999994934) alpha_conv = TYPE[1,3,3,64] broadcast(alpha_conv_scalar), dimensions={} alpha_side_input_scalar = TYPE[] constant(0.899994934) alpha_side_input = TYPE[1,3,3,64] broadcast(alpha_side_input_scalar), dimensions={} input = TYPE[1,3,3,64] parameter(0) filter = TYPE[3,3,64,64] parameter(1) side_input = TYPE[1,3,3,64] parameter(2) bias = TYPE[64] parameter(3) conv = TYPE[1,3,3,64] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->b01f, feature_group_count=1 scaled_conv = TYPE[1,3,3,64] multiply(conv, alpha_conv) scaled_side_input = TYPE[1,3,3,64] multiply(side_input, alpha_side_input) broadcasted_bias = TYPE[1,3,3,64] broadcast(bias), dimensions={3} add1 = TYPE[1,3,3,64] add(scaled_conv, broadcasted_bias) add2 = TYPE[1,3,3,64] add(add1, scaled_side_input) ROOT relu = TYPE[1,3,3,64] maximum(zeros, add2) })"); } TEST_F(CudnnFusedConvRewriterTest, TestMatchMaxZeroOnly) { TestNotMatchWithAllTypes(R"( HloModule Test ENTRY Test { point_one = TYPE[] constant(0.1) point_ones = TYPE[1,32,9,9] broadcast(point_one), dimensions={} input = TYPE[1,17,9,9] parameter(0) filter = TYPE[3,3,17,32] parameter(1) conv = TYPE[1,32,9,9] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=1 ROOT relu = TYPE[1,32,9,9] maximum(point_ones, conv) })"); } TEST_F(CudnnFusedConvRewriterTest, PreservesMetadata) { const char* kHloString = R"( HloModule Test ENTRY Test { zero = f32[] constant(0) zeros = f32[1,32,9,9] broadcast(zero), dimensions={} input = f32[1,17,9,9] parameter(0) filter = f32[3,3,17,32] parameter(1) conv = f32[1,32,9,9] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01, feature_group_count=1, metadata={op_type="foo" op_name="bar"} ROOT relu = f32[1,32,9,9] maximum(zeros, conv) })"; const std::string optimized_hlo_string = backend() .compiler() ->RunHloPasses( ParseAndReturnVer
2,074
cpp
tensorflow/tensorflow
kernel_reuse_cache
third_party/xla/xla/service/gpu/kernel_reuse_cache.cc
third_party/xla/xla/service/gpu/kernel_reuse_cache_test.cc
#ifndef XLA_SERVICE_GPU_KERNEL_REUSE_CACHE_H_ #define XLA_SERVICE_GPU_KERNEL_REUSE_CACHE_H_ #include <cstdint> #include <functional> #include <optional> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/service/gpu/executable.pb.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/stream_executor/launch_dim.h" namespace xla { namespace gpu { class KernelReuseCache { public: struct Entry { std::string kernel_name; LaunchDimensions launch_dimensions; std::optional<se::ClusterDim> cluster_dim; int64_t shmem_bytes = 0; std::string binary; }; struct NamedBinary { std::string name; std::vector<uint8_t> binary; }; absl::Status Load(const CompilationCacheProto& proto); CompilationCacheProto Export() const; bool IsEmpty() const { return cache_.empty(); } void Clear() { cache_.clear(); hits_.clear(); } std::pair<absl::StatusOr<const Entry*>, bool > GetWithStatus( const HloComputation* fused_computation, absl::Span<const KernelArgument> kernel_arguments, absl::string_view discriminator, const std::function<absl::StatusOr<Entry>()>& generator); std::pair<absl::StatusOr<const Entry*>, bool > GetWithStatus( std::string fingerprint, const std::function<absl::StatusOr<Entry>()>& generator); private: absl::flat_hash_map<std::string , Entry> cache_; absl::flat_hash_set<std::string> hits_; }; absl::Status UpdateDiskKernelCache( absl::string_view path, bool do_append, const CompilationCacheProto& current_cache, absl::Span<const KernelReuseCache::NamedBinary> binaries_to_cache); std::string GetComputationFingerprint( const HloComputation* fused_computation, absl::Span<const KernelArgument> kernel_arguments, absl::string_view discriminator = ""); } } #endif #include "xla/service/gpu/kernel_reuse_cache.h" #include <functional> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/kernel_arguments.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { std::string GetArgumentFingerprint( absl::Span<const KernelArgument> kernel_arguments) { return absl::StrJoin( kernel_arguments, ",", [](std::string* s, const KernelArgument& arg) { if (arg.first_with_same_slice().has_value()) { absl::StrAppend(s, "=", arg.first_with_same_slice().value()); return; } absl::StrAppend(s, arg.alignment()); if (arg.aliased()) { absl::StrAppend(s, "a"); } if (arg.written()) { absl::StrAppend(s, "w"); } }); } } std::string GetComputationFingerprint( const HloComputation* fused_computation, absl::Span<const KernelArgument> kernel_arguments, absl::string_view discriminator) { auto print_options = HloPrintOptions::Fingerprint() .set_print_only_essential_constants(false) .set_print_operand_shape(false); return absl::StrCat(discriminator, "(", GetArgumentFingerprint(kernel_arguments), ")", fused_computation->ToString(print_options)); } absl::Status KernelReuseCache::Load(const CompilationCacheProto& proto) { for (const auto& [name, entry] : proto.entries()) { std::optional<se::ClusterDim> cluster_dim; if (entry.has_cluster_dim()) { cluster_dim = se::ClusterDim{entry.cluster_dim().x(), entry.cluster_dim().y(), entry.cluster_dim().z()}; } TF_RET_CHECK( cache_ .insert( {entry.fingerprint(), Entry{name, LaunchDimensions{ entry.launch_dimensions().num_blocks(), entry.launch_dimensions().num_threads_per_block()}, cluster_dim, entry.shmem_bytes(), entry.binary()}}) .second); } return absl::OkStatus(); } CompilationCacheProto KernelReuseCache::Export() const { CompilationCacheProto proto; for (const auto& [fingerprint, cache_entry] : cache_) { if (!hits_.contains(fingerprint)) { VLOG(5) << "Not exporting unused " << cache_entry.kernel_name; continue; } auto [it, inserted] = proto.mutable_entries()->emplace( cache_entry.kernel_name, CompilationCacheEntryProto{}); CHECK(inserted) << cache_entry.kernel_name; CompilationCacheEntryProto& proto_entry = it->second; proto_entry.set_fingerprint(fingerprint); LaunchDimensionsProto launch_dimensions_proto; launch_dimensions_proto.set_num_blocks( cache_entry.launch_dimensions.num_blocks()); launch_dimensions_proto.set_num_threads_per_block( cache_entry.launch_dimensions.num_threads_per_block()); *proto_entry.mutable_launch_dimensions() = launch_dimensions_proto; if (cache_entry.cluster_dim.has_value()) { ClusterDimProto cluster_dim_proto; cluster_dim_proto.set_x(cache_entry.cluster_dim->x); cluster_dim_proto.set_y(cache_entry.cluster_dim->y); cluster_dim_proto.set_z(cache_entry.cluster_dim->z); *proto_entry.mutable_cluster_dim() = cluster_dim_proto; } proto_entry.set_shmem_bytes(cache_entry.shmem_bytes); proto_entry.set_binary(cache_entry.binary); } return proto; } absl::Status UpdateDiskKernelCache( absl::string_view path, const bool do_append, const CompilationCacheProto& current_cache, absl::Span<const KernelReuseCache::NamedBinary> binaries_to_cache) { CompilationCacheProto disk_cache; if (do_append) { std::string serialized; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), std::string(path), &serialized)); if (!disk_cache.ParseFromString(std::string(serialized))) { return Internal("Failed to parse serialized CompilationCacheProto."); } } auto entries = disk_cache.mutable_entries(); int stored_kernel_count = 0; for (const auto& [name, binary] : binaries_to_cache) { auto it_current = current_cache.entries().find(name); TF_RET_CHECK(it_current != current_cache.entries().end()); auto [it_disk, inserted] = entries->insert({name, it_current->second}); TF_RET_CHECK(inserted); TF_RET_CHECK(!binary.empty()); it_disk->second.set_binary(reinterpret_cast<const char*>(binary.data()), binary.size()); VLOG(5) << "Cached kernel: " << name << ": " << binary.size(); ++stored_kernel_count; } if (stored_kernel_count > 0) { TF_RETURN_IF_ERROR(tsl::WriteStringToFile(tsl::Env::Default(), std::string(path), disk_cache.SerializeAsString())); VLOG(2) << "Stored " << stored_kernel_count << " / " << binaries_to_cache.size() << " kernels in the cache file."; } return absl::OkStatus(); } std::pair<absl::StatusOr<const KernelReuseCache::Entry*>, bool> KernelReuseCache::GetWithStatus( const HloComputation* fused_computation, absl::Span<const KernelArgument> kernel_arguments, absl::string_view discriminator, const std::function<absl::StatusOr<KernelReuseCache::Entry>()>& generator) { std::string fingerprint = GetComputationFingerprint( fused_computation, kernel_arguments, discriminator); VLOG(4) << "Fingerprint: "; XLA_VLOG_LINES(4, fingerprint); return GetWithStatus(std::move(fingerprint), generator); } std::pair<absl::StatusOr<const KernelReuseCache::Entry*>, bool> KernelReuseCache::GetWithStatus( std::string fingerprint, const std::function<absl::StatusOr<KernelReuseCache::Entry>()>& generator) { hits_.insert(fingerprint); auto it = cache_.find(fingerprint); if (it != cache_.end()) { return {&it->second, true}; } absl::StatusOr<Entry> entry = generator(); if (entry.ok()) { it = cache_.insert({std::move(fingerprint), std::move(entry.value())}).first; return {&it->second, false}; } return {entry.status(), false}; } } }
#include "xla/service/gpu/kernel_reuse_cache.h" #include <gtest/gtest.h> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" namespace xla { namespace gpu { namespace { using KernelReuseTest = ::testing::Test; TEST_F(KernelReuseTest, ExportAndLoadWork) { KernelReuseCache cache; EXPECT_TRUE(cache.IsEmpty()); auto [result, was_cached] = cache.GetWithStatus( "fingerprint", []() { return KernelReuseCache::Entry{}; }); TF_EXPECT_OK(result); EXPECT_NE(result.value(), nullptr); EXPECT_FALSE(was_cached); EXPECT_FALSE(cache.IsEmpty()); const CompilationCacheProto proto = cache.Export(); cache.Clear(); EXPECT_TRUE(cache.IsEmpty()); TF_EXPECT_OK(cache.Load(proto)); EXPECT_FALSE(cache.IsEmpty()); } TEST_F(KernelReuseTest, UpdatingDiskKernelCacheWorks) { std::string cache_file_path; CHECK(tsl::Env::Default()->LocalTempFilename(&cache_file_path)); { const CompilationCacheProto proto = [](std::string kernel_name) { KernelReuseCache cache; auto [result, was_cached] = cache.GetWithStatus("fingerprint", [&]() { return KernelReuseCache::Entry{.kernel_name = kernel_name}; }); return cache.Export(); }("k1"); TF_EXPECT_OK(UpdateDiskKernelCache(cache_file_path, false, proto, {{.name = "k1", .binary = {5, 6}}})); } { const CompilationCacheProto proto = [](std::string kernel_name) { KernelReuseCache cache; auto [result, was_cached] = cache.GetWithStatus("fingerprint", [&]() { return KernelReuseCache::Entry{.kernel_name = kernel_name}; }); return cache.Export(); }("k2"); TF_EXPECT_OK(UpdateDiskKernelCache(cache_file_path, true, proto, {{.name = "k2", .binary = {7, 8}}})); } std::string serialized; TF_EXPECT_OK( tsl::ReadFileToString(tsl::Env::Default(), cache_file_path, &serialized)); CompilationCacheProto proto; EXPECT_TRUE(proto.ParseFromString(std::string(serialized))); EXPECT_EQ(proto.entries_size(), 2); } } } }
2,075
cpp
tensorflow/tensorflow
conv_algorithm_picker
third_party/xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc
third_party/xla/xla/service/gpu/autotuning/conv_algorithm_picker_test.cc
#ifndef XLA_SERVICE_GPU_CONV_ALGORITHM_PICKER_H_ #define XLA_SERVICE_GPU_CONV_ALGORITHM_PICKER_H_ #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/autotune_results.pb.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_interface.h" #include "xla/shape.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/stream_executor.h" #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) #include "xla/stream_executor/gpu/redzone_allocator.h" #endif namespace xla { namespace gpu { class GpuConvAlgorithmPicker : public HloModulePass { public: explicit GpuConvAlgorithmPicker(AutotuneConfig config) : config_(config) {} absl::string_view name() const override { return "gpu-conv-algorithm-picker"; } static bool IsEnabled(const HloModule* module) { return module->config().debug_options().xla_gpu_autotune_level() != 0; } static bool IsCandidate(const HloInstruction* instr) { return IsCustomCallToDnnConvolution(*instr); } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: absl::StatusOr<bool> RunOnComputation(HloComputation* computation); absl::StatusOr<bool> RunOnInstruction(HloInstruction* instr); absl::StatusOr<AutotuneResult> PickBestAlgorithm( const HloCustomCallInstruction* instr); absl::StatusOr<AutotuneResult> PickBestAlgorithmNoCache( const HloCustomCallInstruction* instr); #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) struct ReferenceResult { stream_executor::dnn::AlgorithmDesc algorithm; std::vector<stream_executor::DeviceMemoryBase> buffers; }; struct AutotuneRuntimeArguments { const HloModuleConfig hlo_module_config; RedzoneBuffers rz_buffers; const GpuConvConfig gpu_conv_config; std::optional<std::string> canonical_hlo; static absl::StatusOr<AutotuneRuntimeArguments> FromInstruction( const HloCustomCallInstruction* instr, const AutotuneConfig& config, const DebugOptions& debug_options); }; absl::StatusOr<AutotuneResult> AutotuneOneConvRunner( GenericConvRunner* runner, std::optional<ReferenceResult>* reference_result, absl::Span<const stream_executor::dnn::AlgorithmDesc> disabled_algos, std::optional<AutotuneCacheKey> instruction_info, const AutotuneRuntimeArguments& runtime_arguments); absl::StatusOr<AutotuneResult> PickBestAlgorithmNoCacheCuda( const HloCustomCallInstruction* instr); #endif absl::StatusOr<AutotuneResult> PickBestAlgorithmNoCacheRocm( const HloCustomCallInstruction* instr); private: AutotuneConfig config_; }; } } #endif #include "xla/service/gpu/conv_algorithm_picker.h" #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal_util.h" #include "xla/service/gpu/autotuner_compile_util.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/gpu_autotuning.pb.h" #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/hlo_algorithm_denylist.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/slow_operation_alarm.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/lazy_op_runner.h" #include "xla/stream_executor/numeric_options.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/rocm/rocm_platform_id.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/util/env_var.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/numbers.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) #include "third_party/gpus/cudnn/cudnn.h" #include "third_party/gpus/cudnn/cudnn_version.h" #if CUDNN_VERSION >= 90000 #include "third_party/gpus/cudnn/cudnn_ops.h" #else #include "third_party/gpus/cudnn/cudnn_ops_infer.h" #endif #include "xla/service/gpu/buffer_comparator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #endif namespace xla { namespace gpu { namespace { using se::DeviceMemoryBase; using se::dnn::AlgorithmDesc; using std::optional; class ScratchAllocator : public se::ScratchAllocator { public: ScratchAllocator(int device_ordinal, se::DeviceMemoryAllocator* memory_allocator) : device_ordinal_(device_ordinal), memory_allocator_(memory_allocator) {} int64_t GetMemoryLimitInBytes() override { return ScratchAllocator::GetDefaultMemoryLimitInBytes(); } int64_t TotalAllocatedBytes() { return total_allocated_bytes_; } static int64_t GetDefaultMemoryLimitInBytes() { int64_t value; TF_CHECK_OK(tsl::ReadInt64FromEnvVar("TF_CUDNN_WORKSPACE_LIMIT_IN_MB", 1LL << 12, &value)); return value * (1LL << 20); } absl::StatusOr<se::DeviceMemory<uint8_t>> AllocateBytes( int64_t byte_size) override; template <typename T> absl::StatusOr<se::DeviceMemory<T>> Allocate(int64_t num_elements) { TF_ASSIGN_OR_RETURN(se::DeviceMemory<uint8_t> bytes, AllocateBytes(num_elements * sizeof(T))); return se::DeviceMemory<T>(bytes); } private: const int device_ordinal_; se::DeviceMemoryAllocator* memory_allocator_; std::vector<se::OwningDeviceMemory> allocated_buffers_; int64_t total_allocated_bytes_ = 0; }; absl::StatusOr<se::DeviceMemory<uint8_t>> ScratchAllocator::AllocateBytes( int64_t byte_size) { CHECK_GE(byte_size, 0) << "byte_size must be positive."; if (byte_size > GetMemoryLimitInBytes()) { return absl::ResourceExhaustedError(absl::StrFormat( "Allocating %d bytes exceeds the memory limit of %d bytes.", byte_size, GetMemoryLimitInBytes())); } TF_ASSIGN_OR_RETURN(se::OwningDeviceMemory allocated_buffer, memory_allocator_->Allocate(device_ordinal_, byte_size, false)); total_allocated_bytes_ += byte_size; se::DeviceMemoryBase buffer_addr = *allocated_buffer; allocated_buffers_.push_back(std::move(allocated_buffer)); return se::DeviceMemory<uint8_t>(buffer_addr); } absl::StatusOr<std::vector<GenericConvRunner>> GetAlgorithms( const GpuConvConfig& config, se::Stream* stream, bool use_cudnn_frontend, bool use_fallback, const se::NumericOptions& numeric_options) { TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType input_type, GetDNNDataTypeFromPrimitiveType(config.input_type)); TF_ASSIGN_OR_RETURN(se::dnn::DataType output_type, GetDNNDataTypeFromPrimitiveType(config.output_type)); se::StreamExecutor* stream_exec = stream->parent(); std::vector<GenericConvRunner> result; auto dnn = stream_exec->AsDnn(); if (dnn == nullptr) { return absl::InvalidArgumentError("No DNN in stream executor."); } switch (kind) { default: return Internal("Unknown ConvolutionKind %d", kind); case se::dnn::ConvolutionKind::FORWARD_BIAS_ACTIVATION: { if (!config.fusion) { return Internal( "GpuConvConfig had fusion ConvolutionKind but no FusionConfig."); } std::vector<std::unique_ptr<const se::dnn::FusedConvRunner>> runners; TF_RETURN_IF_ERROR(dnn->GetFusedConvolveRunners( use_cudnn_frontend, se::dnn::ConvolutionKind::FORWARD, input_type, BiasTypeForInputType(input_type), output_type, config.conv_result_scale, config.fusion->side_input_scale, config.fusion->leakyrelu_alpha, stream, config.input_descriptor, config.filter_descriptor, config.bias_descriptor, config.output_descriptor, config.conv_desc, use_fallback, config.fusion->mode, numeric_options, &runners)); for (auto& runner : runners) { TF_ASSIGN_OR_RETURN( auto runner_cache, se::dnn::LazyOpRunner<se::dnn::FusedConvOp>::FromOpRunner( std::move(runner))); result.emplace_back(std::move(runner_cache)); } break; } case se::dnn::ConvolutionKind::FORWARD_GRAPH: { std::vector<std::unique_ptr<const se::dnn::GraphConvRunner>> runners; TF_RETURN_IF_ERROR(dnn->GetGraphConvolveRunners( kind, input_type, output_type, stream, config.input_descriptor, config.filter_descriptor, config.output_descriptor, config.conv_desc, use_fallback, numeric_options, &runners, config.serialized_graph)); for (auto& runner : runners) { TF_ASSIGN_OR_RETURN( auto runner_cache, se::dnn::LazyOpRunner<se::dnn::GraphConvOp>::FromOpRunner( std::move(runner))); result.emplace_back(std::move(runner_cache)); } break; } case se::dnn::ConvolutionKind::FORWARD: case se::dnn::ConvolutionKind::BACKWARD_DATA: case se::dnn::ConvolutionKind::BACKWARD_FILTER: { std::vector<std::unique_ptr<const se::dnn::ConvRunner>> runners; TF_RETURN_IF_ERROR(dnn->GetConvolveRunners( use_cudnn_frontend, kind, input_type, output_type, stream, config.input_descriptor, DeviceMemoryBase(nullptr), config.filter_descriptor, DeviceMemoryBase(nullptr), config.output_descriptor, DeviceMemoryBase(nullptr), config.conv_desc, use_fallback, nullptr, numeric_options, &runners)); for (auto& runner : runners) { TF_ASSIGN_OR_RETURN( auto runner_cache, se::dnn::LazyOpRunner<se::dnn::ConvOp>::FromOpRunner( std::move(runner))); result.emplace_back(std::move(runner_cache)); } break; } } return result; } absl::StatusOr<std::vector<std::unique_ptr<const se::dnn::ConvRunner>>> GetMIOpenAlgorithms(const HloCustomCallInstruction* instr, absl::Span<se::DeviceMemoryBase> operand_buffers, absl::Span<se::DeviceMemoryBase> result_buffers, se::StreamExecutor* stream_exec, ScratchAllocator* scratch_allocator, se::Stream* stream, const se::NumericOptions& numeric_options) { TF_ASSIGN_OR_RETURN(GpuConvConfig config, GetGpuConvConfig(instr)); TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType dtype, GetDNNDataTypeFromPrimitiveType(config.output_type)); TF_ASSIGN_OR_RETURN( GpuConvParams params, GetGpuConvParams(config, operand_buffers, result_buffers)); std::vector<std::unique_ptr<const se::dnn::ConvRunner>> runners; auto dnn = stream_exec->AsDnn(); if (dnn == nullptr) { return absl::InvalidArgumentError("No DNN in stream executor."); } TF_RETURN_IF_ERROR(dnn->GetConvolveRunners( false, kind, dtype, dtype, stream, params.config->input_descriptor, params.input_buf, params.config->filter_descriptor, params.filter_buf, params.config->output_descriptor, params.output_buf, params.config->conv_desc, false, scratch_allocator, numeric_options, &runners)); return runners; } std::string NumBytesToString(int64_t bytes) { return absl::StrCat(tsl::strings::HumanReadableNumBytes(bytes), " (", bytes, "B)"); } CudnnVersion GetCudnnVersion(se::StreamExecutor* stream_executor) { se::dnn::VersionInfo version = GetDnnVersionInfoOrDefault(stream_executor); CudnnVersion cudnn_version; cudnn_version.set_major(version.major_version()); cudnn_version.set_minor(version.minor_version()); cudnn_version.set_patch(version.patch()); return cudnn_version; } ComputeCapability GetComputeCapability(se::StreamExecutor* stream_executor) { ComputeCapability cc; se::CudaComputeCapability se_cc = stream_executor->GetDeviceDescription().cuda_compute_capability(); cc.set_major(se_cc.major); cc.set_minor(se_cc.minor); return cc; } void PrintPlatformInfo(const se::Stream* stream) { auto* se = stream->parent(); const auto& desc = se->GetDeviceDescription(); LOG(ERROR) << "Device: " << desc.name(); LOG(ERROR) << "Platform: " << desc.platform_version(); LOG(ERROR) << "Driver: " << desc.driver_version(); LOG(ERROR) << "Runtime: " << desc.runtime_version(); auto dnn_version = GetDnnVersionInfo(se); if (dnn_version.ok()) { auto v = dnn_version.value(); LOG(ERROR) << "cudnn version: " << v.major_version() << "." << v.minor_version() << "." << v.patch(); } } absl::StatusOr<bool> CheckRedzones(const se::RedzoneAllocator& allocator, se::Stream* stream, absl::string_view name, std::string_view instr_str, AutotuneResult* result) { XLA_SCOPED_LOGGING_TIMER_LEVEL("CudnnConvAlgorithmPicker checking redzones", 2); using RedzoneCheckStatus = se::RedzoneAllocator::RedzoneCheckStatus; TF_ASSIGN_OR_RETURN(RedzoneCheckStatus redzone_check, allocator.CheckRedzones()); if (redzone_check.ok()) { return true; } auto* fail = result->mutable_failure(); fail->set_kind(AutotuneResult::REDZONE_MODIFIED); *fail->mutable_msg() = redzone_check.RedzoneFailureMsg(); fail->set_buffer_address( reinterpret_cast<uint64_t>(redzone_check.user_buffer_address)); LOG(ERROR) << absl::StreamFormat( "Detected cudnn out-of-bounds write in conv %s buffer! This is likely a " "cudnn bug. We will skip this algorithm in the future, but your GPU " "state may already be corrupted, leading to incorrect results. Within " "Google, no action is needed on your part. Outside of Google, please " "ensure you're running the latest version of cudnn. If that doesn't fix " "the problem, please file a bug with this full error message and we'll " "contact nvidia.", name); LOG(ERROR) << redzone_check.RedzoneFailureMsg(); LOG(ERROR) << "HloInstruction " << instr_str; PrintPlatformInfo(stream); return false; } } bool ShouldInitConvData(const HloModuleConfig& hlo_module_config) { const int32_t conv_autotune_level = hlo_module_config.debug_options().xla_gpu_autotune_level(); return conv_autotune_level >= 2; } bool ShouldCheckConv(const HloModuleConfig& hlo_module_config) { const int32_t conv_autotune_level = hlo_module_config.debug_options().xla_gpu_autotune_level(); return conv_autotune_level >= 4; } absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::PickBestAlgorithm( const HloCustomCallInstruction* instr) { return AutotunerUtil::Autotune( instr, config_, [&] { return PickBestAlgorithmNoCache(instr); }); } absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::PickBestAlgorithmNoCache( const HloCustomCallInstruction* instr) { if (config_.IsDeviceless()) { AutotuneResult result; result.mutable_algorithm()->set_algo_id(-1); return result; } se::StreamExecutor* stream_exec = config_.GetExecutor(); absl::MutexLock lock(&GetGpuMutex(stream_exec)); if (!stream_exec->SynchronizeAllActivity()) { return Internal( "Failed to synchronize GPU for autotuning conv instruction"); } absl::StatusOr<AutotuneResult> result_or(Internal("Unknown platform.")); se::Platform::Id platform_id = stream_exec->GetPlatform()->id(); if (platform_id == se::rocm::kROCmPlatformId) { result_or = PickBestAlgorithmNoCacheRocm(instr); } else if (platform_id == se::cuda::kCudaPlatformId) { #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) result_or = PickBestAlgorithmNoCacheCuda(instr); #endif } return result_or; } #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) absl::StatusOr<GpuConvAlgorithmPicker::AutotuneRuntimeArguments> GpuConvAlgorithmPicker::AutotuneRuntimeArguments::FromInstruction( const HloCustomCallInstruction* instr, const AutotuneConfig& config, const DebugOptions& debug_options) { TF_ASSIGN_OR_RETURN(auto rz_buffers, RedzoneBuffers::FromInstruction( *instr, config, debug_options, RedzoneBuffers::kAllInputsOutputsNoScratch)); std::string canonical_hlo( AutotuneCacheKey(config.GetExecutor()->GetDeviceDescription().model_str(), *instr) .GetHlo()); TF_ASSIGN_OR_RETURN(GpuConvConfig gpu_conv_config, GetGpuConvConfig(instr)); GpuConvAlgorithmPicker::AutotuneRuntimeArguments runtime_arguments = { instr->GetModule()->config(), std::move(rz_buffers), std::move(gpu_conv_config), {canonical_hlo}}; return runtime_arguments; } struct CudnnVersionRange { using TupleVersion = std::tuple<int, int, int>; TupleVersion begin; TupleVersion end; bool IsInRange(const CudnnVersion& other) const { TupleVersion other_version{other.major(), other.minor(), other.patch()}; return begin <= other_version && other_version < end; } CudnnVersionRange(const CudnnVersion& begin, const CudnnVersion& end) : begin(begin.major(), begin.minor(), begin.patch()), end(end.major(), end.minor(), end.patch()) {} CudnnVersionRange(const TupleVersion& begin, const TupleVersion& end) : begin(begin), end(end) {} }; struct ComputeCapabilityRange { using TupleComputeCapability = std::tuple<int, int>; TupleComputeCapability begin; TupleComputeCapability end; bool IsInRange(const ComputeCapability& other) const { TupleComputeCapability other_cc{other.major(), other.minor()}; return begin <= other_cc && other_cc < end; } }; struct DisabledAlgorithm { CudnnVersionRange cudnn_version_range; ComputeCapabilityRange compute_capability_range; int algo_id; }; static const DisabledAlgorithm kDisabledAlgorithms[] = { {{{9, 0, 0}, {10, 0, 0}}, {{6, 0}, {8, 0}}, 14}}; absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::AutotuneOneConvRunner( GenericConvRunner* const runner, std::optional<ReferenceResult>* reference_result, absl::Span<const AlgorithmDesc> disabled_algos, std::optional<AutotuneCacheKey> instruction_info, const AutotuneRuntimeArguments& runtime_arguments) { auto alg = runner->ToAlgorithmDesc(); se::StreamExecutor* stream_exec = config_.GetExecutor(); XLA_SCOPED_LOGGING_TIMER_LEVEL( absl::StrCat("CudnnConvAlgorithmPicker::PickBestAlgorithm algo ", alg.ToString()), 2); auto make_failure = [&alg](AutotuneResult::FailureKind kind, absl::string_view msg) { AutotuneResult result; *result.mutable_algorithm() = alg.ToProto(); result.mutable_failure()->set_kind(kind); result.mutable_failure()->set_msg( msg.data(), msg.size()); return result; }; AlgorithmDesc alg_key(alg.algo_id(), alg.tensor_ops_enabled(), std::nullopt); std::string instr_str = instruction_info.has_value() ? std::string(instruction_info->GetHlo()) : "<unknown>"; for (const auto& disabled_algo : kDisabledAlgorithms) { if (disabled_algo.cudnn_version_range.IsInRange( GetCudnnVersion(stream_exec)) && disabled_algo.compute_capability_range.IsInRange( GetComputeCapability(stream_exec)) && disabled_algo.algo_id == alg.algo_id()) { LOG(INFO) << "Omitted potentially buggy algorithm " << alg.ToString() << " for conv " << instr_str; return make_failure(AutotuneResult::DISQUALIFIED, "Disqualified for being known-buggy."); } } if (absl::c_linear_search(disabled_algos, alg_key)) { LOG(INFO) << "Omitted potentially buggy algorithm " << alg.ToString() << " for conv " << instr_str; return make_failure(AutotuneResult::DISQUALIFIED, "Disqualified for being known-buggy."); } GpuConvConfig config = runtime_arguments.gpu_conv_config; auto activation_mode = config.fusion ? config.fusion->mode : se::dnn::ActivationMode::kNone; if (!alg.is_cudnn_frontend() && config.kind == CudnnConvKind::kForwardActivation && activation_mode == se::dnn::ActivationMode::kNone && alg.algo_id() != CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) { return make_failure(AutotuneResult::DISQUALIFIED, "Disqualified for implicit RELU."); } TF_ASSIGN_OR_RETURN( se::RedzoneAllocator scratch_allocator, AutotunerUtil::CreateRedzoneAllocator( config_, runtime_arguments.hlo_module_config.debug_options())); se::dnn::ProfileResult profile_result; VLOG(4) << "Trying algorithm " << alg.ToString() << " for " << instr_str; SlowOperationAlarm alarm(absl::Seconds(1), [&] { return absl::StrFormat( "Trying algorithm %s for conv %s is taking a while...", alg.ToString(), instr_str); }); std::optional<size_t> workspace_size = runner->ToAlgorithmDesc().workspace_size(); if (!workspace_size) { return make_failure(AutotuneResult::UNKNOWN, "Internal error: missing workspace size from " "OpRunner::ToAlgorithmDesc()"); } auto scratch_or = scratch_allocator.AllocateBytes(*workspace_size); if (!scratch_or.ok()) { return make_failure(AutotuneResult::DISQUALIFIED, absl::StrCat("Scratch allocation failed: ", scratch_or.status().ToString())); } se::DeviceMemoryBase scratch_memory = scratch_or.value(); RunConvOptions options; options.runner_cache = runner; float max_time = 0; float min_time = std::numeric_limits<float>::max(); absl::Status launch_status; std::vector<se::DeviceMemoryBase> operand_buffers = runtime_arguments.rz_buffers.input_buffers(); std::vector<se::DeviceMemoryBase> result_buffers = runtime_arguments.rz_buffers.output_buffers(); TF_ASSIGN_OR_RETURN(se::Stream* const stream, config_.GetStream()); launch_status = RunGpuConv(config, operand_buffers, result_buffers, scratch_memory, stream, options); options.profile_result = &profile_result; profile_result.set_warmup_run_executed(true); constexpr int kMaxIter = 10; int num_iters = 0; for (; num_iters < kMaxIter && launch_status.ok(); ++num_iters) { launch_status = RunGpuConv(config, operand_buffers, result_buffers, scratch_memory, stream, options); if (!profile_result.is_valid()) { break; } float old_min_time = min_time; min_time = std::min(min_time, profile_result.elapsed_time_in_ms()); max_time = std::max(max_time, profile_result.elapsed_time_in_ms()); constexpr float kThreshold = 0.05f; if (std::abs(profile_result.elapsed_time_in_ms() - old_min_time) / old_min_time < kThreshold) { break; } } if (!launch_status.ok()) { VLOG(5) << "Launch failed: " << launch_status; return make_failure( AutotuneResult::DISQUALIFIED, absl::StrCat("Profiling failure on cuDNN engine ", alg.ToString(), ": ", launch_status.ToString())); } if (!profile_result.is_valid()) { VLOG(5) << "Launch succeeded but profile result is invalid."; return make_failure( AutotuneResult::UNKNOWN, absl::StrCat("Launch succeeded but profile result is invalid, " "with cuDNN engine ", alg.ToString(), ": ", launch_sta
#include "xla/service/gpu/conv_algorithm_picker.h" #include <cstdint> #include <variant> #include <vector> #include "absl/strings/string_view.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/gpu_conv_rewriter.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/platform_util.h" #include "xla/service/tuple_simplifier.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/platform.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::gpu { namespace { namespace m = ::xla::match; class GpuConvAlgorithmPickerTest : public HloTestBase { public: GpuConvAlgorithmPickerTest() { AutotunerUtil::ClearAutotuneResults(); } }; TEST_F(GpuConvAlgorithmPickerTest, SetAlgorithm) { constexpr absl::string_view kHlo = R"( HloModule module ENTRY main { %arg0 = f32[3,56,56,16]{2,1,0,3} parameter(0) %arg1 = f32[3,3,3,64]{2,1,0,3} parameter(1) ROOT %conv = f32[54,54,16,64]{1,0,3,2} convolution(%arg0, %arg1), window={size=3x3}, dim_labels=f01b_i01o->01bf })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kHlo)); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); ASSERT_GT(executors.size(), 0); se::StreamExecutor* stream_exec = executors[0]; const se::GpuComputeCapability& cc = backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); bool changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GpuConvRewriter(cc), m.get())); changed = false; DebugOptions opts = DefaultDebugOptionsIgnoringFlags(); AutotuneConfig cfg{DeviceConfig{stream_exec, nullptr}, opts}; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GpuConvAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); AutotuneResults results; TF_ASSERT_OK(AutotunerUtil::SerializeAutotuneResults(&results)); ASSERT_EQ(results.results_size(), 1); auto& result = *results.mutable_results(0)->mutable_result(); int64_t old_scratch_bytes = result.scratch_bytes(); int64_t new_scratch_bytes = old_scratch_bytes + 1; result.set_scratch_bytes(new_scratch_bytes); AutotunerUtil::ClearAutotuneResults(); TF_ASSERT_OK(AutotunerUtil::LoadAutotuneResults(results)); TF_ASSERT_OK_AND_ASSIGN(m, ParseAndReturnVerifiedModule(kHlo)); changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GpuConvRewriter(cc), m.get())); changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GpuConvAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK(RunHloPass(TupleSimplifier(), m.get()).status()); SCOPED_TRACE(m->ToString()); HloInstruction* conv; ASSERT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(&conv)))); EXPECT_THAT( conv->shape(), GmockMatch(m::Shape().WithSubshape( {1}, m::Shape().WithElementType(U8).WithDims({new_scratch_bytes})))); TF_ASSERT_OK_AND_ASSIGN(auto dnn_version, GetDnnVersionInfo(stream_exec)); if (dnn_version.major_version() >= 9 && dnn_version.major_version() < 10 && std::holds_alternative<stream_executor::CudaComputeCapability>(cc) && std::get<stream_executor::CudaComputeCapability>(cc).major == 7 && std::get<stream_executor::CudaComputeCapability>(cc).minor == 0) { EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->has_cudnn_conv_backend_config() && conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .algorithm() .algo_id() != 14); } } } }
2,076
cpp
tensorflow/tensorflow
scatter_slice_simplifier
third_party/xla/xla/service/gpu/transforms/scatter_slice_simplifier.cc
third_party/xla/xla/service/gpu/transforms/scatter_slice_simplifier_test.cc
#ifndef XLA_SERVICE_GPU_SCATTER_SLICE_SIMPLIFIER_H_ #define XLA_SERVICE_GPU_SCATTER_SLICE_SIMPLIFIER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class ScatterSliceSimplifier : public HloModulePass { public: absl::string_view name() const override { return "scatter-slice-simplifier"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/gpu/scatter_slice_simplifier.h" #include <cstdint> #include <iterator> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { bool IsValidIntermediaryUser(const HloInstruction* instruction) { return instruction->IsElementwise() || instruction->opcode() == HloOpcode::kGetTupleElement; } class ScatterSliceMatcher { public: explicit ScatterSliceMatcher(const HloScatterInstruction* scatter) : scatter_(scatter), operand_dimensions_( scatter->scatter_operands()[0]->shape().dimensions()), result_dimensions_(operand_dimensions_.begin(), operand_dimensions_.end()) {} std::optional<Shape> InferShape() { VLOG(10) << "Evaluating scatter " << scatter_->name(); if (!AreAllUsersValid(scatter_)) { return std::nullopt; } std::vector<Shape> result_shapes; absl::c_transform(scatter_->scatter_operands(), std::back_inserter(result_shapes), [&](const HloInstruction* op) { return ShapeUtil::MakeShape(op->shape().element_type(), result_dimensions_); }); return ShapeUtil::MakeMaybeTupleShape(result_shapes); } private: bool UpdateDimensions(const HloSliceInstruction* slice) { int64_t rank = slice->shape().rank(); for (int64_t i = 0; i < rank; ++i) { if (slice->slice_starts(i) != 0 || slice->slice_strides(i) != 1) { return false; } if (slice->slice_limits(i) != result_dimensions_[i]) { if (result_dimensions_[i] != operand_dimensions_[i]) { return false; } auto& update_window_dims = scatter_->scatter_dimension_numbers().update_window_dims(); if (absl::c_binary_search(update_window_dims, i)) { return false; } result_dimensions_[i] = slice->slice_limits(i); VLOG(10) << "Dimension " << i << " truncated to size " << result_dimensions_[i]; } } return true; } bool IsUserValid(const HloInstruction* op) { VLOG(10) << "Visiting user " << op->name(); if (auto* slice = DynCast<HloSliceInstruction>(op)) { return UpdateDimensions(slice); } bool is_valid = visited_set_.contains(op) || (IsValidIntermediaryUser(op) && AreAllUsersValid(op)); if (is_valid) { visited_set_.emplace(op); } return is_valid; } bool AreAllUsersValid(const HloInstruction* op) { if (op->user_count() == 0) { return !op->IsRoot(); } return absl::c_all_of(op->users(), [this](const HloInstruction* user) { return IsUserValid(user); }); } const HloScatterInstruction* scatter_; absl::flat_hash_set<const HloInstruction*> visited_set_; absl::Span<const int64_t> operand_dimensions_; DimensionVector result_dimensions_; }; HloInstruction* CreateSliceFrom(HloInstruction* operand, const Shape& shape) { std::vector<int64_t> start_indices(shape.rank(), 0); std::vector<int64_t> limit_indices(shape.rank()); std::vector<int64_t> strides(shape.rank(), 1); for (int64_t i = 0; i < shape.rank(); ++i) { limit_indices[i] = shape.dimensions(i); } return operand->AddInstruction(HloInstruction::CreateSlice( shape, operand, start_indices, limit_indices, strides)); } HloInstruction* CreateScatterFrom(HloScatterInstruction* scatter, const Shape& shape) { std::vector<HloInstruction*> operands(scatter->scatter_operand_count()); for (int64_t i = 0; i < operands.size(); ++i) { operands[i] = CreateSliceFrom(scatter->scatter_operands()[i], shape.IsTuple() ? shape.tuple_shapes(i) : shape); } return scatter->AddInstruction(HloInstruction::CreateScatter( shape, absl::MakeSpan(operands), scatter->scatter_indices(), scatter->scatter_updates(), scatter->called_computations()[0], scatter->scatter_dimension_numbers(), scatter->indices_are_sorted(), scatter->unique_indices())); } class ScatterSliceSimplifierVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleScatter(HloInstruction* instruction) override { auto* scatter = Cast<HloScatterInstruction>(instruction); std::optional<Shape> result_shape = ScatterSliceMatcher(scatter).InferShape(); if (!result_shape.has_value()) { return absl::OkStatus(); } VLOG(2) << "Matched scatter " << scatter->name() << " with shape " << scatter->shape().ToString() << ", inferred result shape " << result_shape->ToString() << " (from the slice users)"; HloInstruction* new_scatter = CreateScatterFrom(scatter, *result_shape); return ReplaceAllUsersRecursive(scatter, new_scatter); } private: absl::Status ReplaceAllUsersRecursive(HloInstruction* old_instruction, HloInstruction* new_instruction) { replacements_[old_instruction] = new_instruction; std::vector<HloInstruction*> users = old_instruction->users(); for (HloInstruction* user : users) { if (user->parent() == nullptr) { VLOG(3) << "Skipping user " << user->name() << " (already replaced)"; continue; } TF_RETURN_IF_ERROR(ReplaceUserRecursive(user, new_instruction)); } return absl::OkStatus(); } absl::Status ReplaceUserRecursive(HloInstruction* user, HloInstruction* operand) { VLOG(3) << "Replacing scatter user " << user->name(); if (user->opcode() == HloOpcode::kSlice) { return ReplaceInstruction(user, operand); } HloInstruction* new_user = nullptr; if (user->IsElementwise()) { auto new_shape = [operand](HloInstruction* from) { return ShapeUtil::MakeShape(from->shape().element_type(), operand->shape().dimensions()); }; std::vector<HloInstruction*> new_operands; absl::c_transform(user->operands(), std::back_inserter(new_operands), [&](HloInstruction* op) { auto it = replacements_.find(op); return it != replacements_.end() ? it->second : CreateSliceFrom(op, new_shape(op)); }); new_user = user->AddInstruction( user->CloneWithNewOperands(new_shape(user), new_operands)); } else { auto* gte = Cast<HloGetTupleElementInstruction>(user); TF_ASSIGN_OR_RETURN(new_user, MakeGetTupleElementHlo(operand, gte->tuple_index(), &user->metadata())); } return ReplaceAllUsersRecursive(user, new_user); } absl::flat_hash_map<HloInstruction*, HloInstruction*> replacements_; }; } absl::StatusOr<bool> ScatterSliceSimplifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return ScatterSliceSimplifierVisitor{}.RunOnModule(module, execution_threads); } }
#include "xla/service/gpu/scatter_slice_simplifier.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace m = ::xla::match; using ScatterSliceSimplifierTest = HloTestBase; TEST_F(ScatterSliceSimplifierTest, Scatter1D) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32 { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(%lhs, %rhs) } ENTRY main { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[9] constant(0) %scatter = f32[9] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 ROOT %slice = f32[8] slice(%scatter), slice={[0:8]} } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_TRUE(RunHloPass(&test_pass, module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Scatter(m::Slice(m::Constant()), m::Parameter(0), m::Parameter(1)) .WithShape(F32, {8}))); } TEST_F(ScatterSliceSimplifierTest, Scatter3D) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32 { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(%lhs, %rhs) } ENTRY main { %indices = s32[2] parameter(0) %updates = f32[2,4,4] parameter(1) %operands = f32[5,4,4] constant(0) %scatter = f32[5,4,4] scatter(%operands, %indices, %updates), update_window_dims={1,2}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 ROOT %slice = f32[4,4,4] slice(%scatter), slice={[0:4], [0:4], [0:4]} } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_TRUE(RunHloPass(&test_pass, module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Scatter(m::Slice(m::Constant()), m::Parameter(0), m::Parameter(1)) .WithShape(F32, {4, 4, 4}))); } TEST_F(ScatterSliceSimplifierTest, ScatterMultiOutput) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32_add_F16 { %lhs.0 = f32[] parameter(0) %rhs.0 = f32[] parameter(2) %add.0 = f32[] add(%lhs.0, %rhs.0) %lhs.1 = f16[] parameter(1) %rhs.1 = f16[] parameter(3) %add.1 = f16[] add(%lhs.1, %rhs.1) ROOT %tuple = (f32[], f16[]) tuple(%add.0, %add.1) } ENTRY main { %indices = s32[4] parameter(0) %updates.0 = f32[4] parameter(1) %updates.1 = f16[4] parameter(2) %operands.0 = f32[9] constant(0) %operands.1 = f16[9] constant(0) %scatter = (f32[9], f16[9]) scatter(%operands.0, %operands.1, %indices, %updates.0, %updates.1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32_add_F16 %gte.0 = f32[9] get-tuple-element(%scatter), index=0 %slice.0 = f32[8] slice(%gte.0), slice={[0:8]} %gte.1 = f16[9] get-tuple-element(%scatter), index=1 %slice.1 = f16[8] slice(%gte.1), slice={[0:8]} ROOT %tuple = (f32[8], f16[8]) tuple(%slice.0, %slice.1) } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_TRUE(RunHloPass(&test_pass, module.get()).value()); auto expected_scatter = m::Scatter(m::Slice(m::Constant()), m::Slice(m::Constant()), m::Parameter(0), m::Parameter(1), m::Parameter(2)); Shape expected_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {8}), ShapeUtil::MakeShape(F16, {8})}); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::GetTupleElement(expected_scatter), m::GetTupleElement(expected_scatter)) .WithShapeEqualTo(&expected_shape))); } TEST_F(ScatterSliceSimplifierTest, NotMatching) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32 { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(%lhs, %rhs) } slice_not_truncation { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[9] constant(0) %scatter = f32[9] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 ROOT %slice = f32[8] slice(%scatter), slice={[1:9]} } slice_with_stride { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[9] constant(0) %scatter = f32[9] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 ROOT %slice = f32[4] slice(%scatter), slice={[0:8:2]} } scatter_multiple_users { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[9] constant(0) %scatter = f32[9] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 %slice = f32[8] slice(%scatter), slice={[0:8]} ROOT %tuple = (f32[9], f32[8]) tuple(%scatter, %slice) } scatter_incompatible_slices { %indices = s32[2] parameter(0) %updates = f32[2,4] parameter(1) %operands = f32[4,4] constant(0) %scatter = f32[4,4] scatter(%operands, %indices, %updates), update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 %slice.0 = f32[3,4] slice(%scatter), slice={[0:3], [0:4]} %slice.1 = f32[4,3] slice(%scatter), slice={[0:4], [0:3]} ROOT %tuple = (f32[3,4], f32[4,3]) tuple(%slice.0, %slice.1) } slice_not_found { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[8] constant(0) %scatter = f32[8] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 ROOT %exp = f32[8] exponential(%scatter) } slice_update_dimensions { %indices = s32[10] parameter(0) %updates = f32[10,1,128] parameter(1) %operands = f32[100,128] constant(0) %scatter = f32[100,128] scatter(%operands, %indices, %updates), update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 ROOT %slice = f32[100,64] slice(%scatter), slice={[0:100], [0:64]} } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_FALSE(RunHloPass(&test_pass, module.get()).value()); } TEST_F(ScatterSliceSimplifierTest, IntermediaryUsers) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32 { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(%lhs, %rhs) } ENTRY main { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[9] constant(0) %scatter = f32[9] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 %unary = f32[9] abs(%scatter) %slice.0 = f32[8] slice(%unary), slice={[0:8]} %binary = f32[9] maximum(%scatter, %operands) %slice.1 = f32[8] slice(%binary), slice={[0:8]} ROOT %tuple = (f32[8], f32[8]) tuple(%slice.0, %slice.1) } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_TRUE(RunHloPass(&test_pass, module.get()).value()); auto expected_scatter = m::Scatter(m::Slice(m::Constant()), m::Parameter(0), m::Parameter(1)); Shape expected_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {8}), ShapeUtil::MakeShape(F32, {8})}); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Abs(expected_scatter), m::Maximum(expected_scatter, m::Slice(m::Constant()))) .WithShapeEqualTo(&expected_shape))); } TEST_F(ScatterSliceSimplifierTest, IntermediaryChain) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32 { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(%lhs, %rhs) } ENTRY main { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[9] constant(0) %scatter = f32[9] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 %elementwise.0 = f32[9] abs(%scatter) %elementwise.1 = f32[9] exponential(%elementwise.0) %elementwise.2 = f32[9] add(%elementwise.0, %elementwise.1) ROOT %result = f32[8] slice(%elementwise.2), slice={[0:8]} } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_TRUE(RunHloPass(&test_pass, module.get()).value()); auto expected_scatter = m::Scatter(m::Slice(m::Constant()), m::Parameter(0), m::Parameter(1)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Add(m::Abs(expected_scatter), m::Exp(m::Abs(expected_scatter))) .WithShape(F32, {8}))); } TEST_F(ScatterSliceSimplifierTest, DiamondShape) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32_mul_F32 { %lhs.0 = f32[] parameter(0) %rhs.0 = f32[] parameter(2) %add.0 = f32[] add(%lhs.0, %rhs.0) %lhs.1 = f32[] parameter(1) %rhs.1 = f32[] parameter(3) %mul.1 = f32[] multiply(%lhs.1, %rhs.1) ROOT %tuple = (f32[], f32[]) tuple(%add.0, %mul.1) } ENTRY main { %indices = s32[4] parameter(0) %updates.0 = f32[4] parameter(1) %updates.1 = f32[4] parameter(2) %operands.0 = f32[9] constant(0) %operands.1 = f32[9] constant(0) %scatter = (f32[9], f32[9]) scatter(%operands.0, %operands.1, %indices, %updates.0, %updates.1), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32_mul_F32 %gte.0 = f32[9] get-tuple-element(%scatter), index=0 %gte.1 = f32[9] get-tuple-element(%scatter), index=1 %consumer = f32[9] add(%gte.0, %gte.1) ROOT %slice = f32[8] slice(%consumer), slice={[0:8]} } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_TRUE(RunHloPass(&test_pass, module.get()).value()); auto expected_scatter = m::Scatter(m::Slice(m::Constant()), m::Slice(m::Constant()), m::Parameter(0), m::Parameter(1), m::Parameter(2)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Add(m::GetTupleElement(expected_scatter), m::GetTupleElement(expected_scatter)) .WithShape(F32, {8}))); } TEST_F(ScatterSliceSimplifierTest, ElementwiseSelect) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module %add_F32 { %lhs = f32[] parameter(0) %rhs = f32[] parameter(1) ROOT %add = f32[] add(%lhs, %rhs) } ENTRY main { %indices = s32[4] parameter(0) %updates = f32[4] parameter(1) %operands = f32[9] constant(0) %scatter = f32[9] scatter(%operands, %indices, %updates), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=%add_F32 %pred_ = pred[9] parameter(2) %select = f32[9] select(%pred_, %scatter, %operands) ROOT %slice = f32[8] slice(%select), slice={[0:8]} } )") .value(); ScatterSliceSimplifier test_pass; ASSERT_TRUE(RunHloPass(&test_pass, module.get()).value()); auto expected_scatter = m::Scatter(m::Slice(m::Constant()), m::Parameter(0), m::Parameter(1)); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Select(m::Slice(m::Parameter(2)), expected_scatter, m::Slice(m::Constant())) .WithShape(F32, {8}))); } } }
2,077
cpp
tensorflow/tensorflow
gpu_compiler
third_party/xla/xla/service/gpu/gpu_compiler.cc
third_party/xla/xla/service/gpu/gpu_compiler_test.cc
#ifndef XLA_SERVICE_GPU_GPU_COMPILER_H_ #define XLA_SERVICE_GPU_GPU_COMPILER_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include <vector> #include "absl/status/status.h" #include "llvm/IR/Module.h" #include "xla/autotune_results.pb.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/buffer_assignment.h" #include "xla/service/compiler.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/buffer_sharing.h" #include "xla/service/gpu/compile_module_to_llvm_ir.h" #include "xla/service/gpu/executable.pb.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/llvm_compiler.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/threadpool.h" namespace xla { namespace gpu { class GpuCompiler : public LLVMCompiler { public: GpuCompiler(se::Platform::Id platform_id, const char* target_triple, const char* data_layout); using LLVMCompiler::Compile; absl::StatusOr<std::unique_ptr<HloModule>> RunHloPasses( std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec, const CompileOptions& options) override; absl::StatusOr<std::unique_ptr<Executable>> RunBackend( std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec, const CompileOptions& options) override; absl::StatusOr<std::vector<std::unique_ptr<AotCompilationResult>>> CompileAheadOfTime(std::unique_ptr<HloModuleGroup> module_group, AotCompilationOptions const& options) override; se::Platform::Id PlatformId() const override { return platform_id_; } HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const override; absl::StatusOr<std::unique_ptr<AotCompilationResult>> LoadAotCompilationResult(const std::string& serialized_aot_result) override; static absl::StatusOr<std::unique_ptr<AotCompilationResult>> LoadAotCompilationResultStatic(const std::string& serialized_aot_result); absl::StatusOr<std::unique_ptr<AotCompilationResult>> Export( Executable* executable) const override; absl::Status RunPostSchedulingPipelines( HloModule* module, int64_t scheduler_mem_limit, const se::DeviceDescription& gpu_device_info) const; std::string target_triple() const { return target_triple_; } std::string data_layout() const { return data_layout_; } const char* GetDataLayout() const { return data_layout_; } const char* GetTargetTriple() const { return target_triple_; } int64_t GetPointerSize() const { return pointer_size_; } static absl::StatusOr<Compiler::TargetConfig> GetTargetConfig( const Compiler::CompileOptions& options, const DebugOptions& debug_opts, se::StreamExecutor* executor); virtual HloDataflowAnalysis::CanShareBuffer GetCanShareBuffer() const { return &FusionCanShareBufferHint; } virtual int32_t GetToolkitVersion() const = 0; virtual absl::StatusOr<bool> CanUseLinkModules( const HloModuleConfig& config) { return false; } protected: struct BackendCompileResult { std::string asm_text; std::vector<uint8_t> binary; Thunk::BinaryMap dnn_compiled_graphs; }; virtual absl::Status OptimizeHloPostLayoutAssignment( HloModule* hlo_module, se::StreamExecutor* stream_exec, const CompileOptions& options, const TargetConfig& gpu_target_config, tsl::thread::ThreadPool* thread_pool); virtual bool RequiresCollectiveScheduleLinearizer( const HloModule* module, se::StreamExecutor* stream_exec) { return false; } virtual absl::Status AddConvAndGemmAutotuningPasses( HloPassPipeline* pipeline, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool) { return absl::OkStatus(); } virtual absl::Status AddGemmFusionAutotuningPasses( HloPassPipeline* pipeline, HloModule* hlo_module, AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool, const MultiProcessKeyValueStore& key_value_store) { return absl::OkStatus(); } virtual absl::Status AddCustomKernelReplacementPasses( HloPassPipeline* pipeline, const DebugOptions& debug_options) { return absl::OkStatus(); } virtual absl::Status RunCudnnFusionCompilerPass( HloModule* module, se::StreamExecutor* stream_exec, Thunk::BinaryMap* dnn_compiled_graphs) { return absl::OkStatus(); } AlgebraicSimplifierOptions GetAlgebraicSimplifierOptions( const HloModuleConfig& config); private: struct CompileResultWithMetadata { BackendCompileResult backend_result; CompileModuleResults compile_module_results; }; absl::StatusOr<CompileResultWithMetadata> CompileToBackendResult( HloModule* module, llvm::LLVMContext* llvm_context, se::StreamExecutor* executor, const CompileOptions& options, const se::DeviceDescription& gpu_device_info); absl::StatusOr<BackendCompileResult> CompileAndLink( const HloModuleConfig& module_config, CompileModuleResults& compile_module_results, se::GpuComputeCapability gpu_version, se::StreamExecutor* stream_exec, const CompileOptions& options, const HloModule* debug_module); absl::StatusOr<BackendCompileResult> CompileSingleModule( const HloModuleConfig& module_config, se::GpuComputeCapability gpu_version, const HloModule* debug_module, llvm::Module* llvm_module, bool relocatable, const CompileOptions& options, std::optional<int> shard_number); absl::Status LoadAutotuneResultsFromFile(const DebugOptions& debug_options); absl::Status SerializeAutotuneResultsToFile( const DebugOptions& debug_options); absl::Status RunPreSchedulingPasses(HloModule* module, se::StreamExecutor* stream_exec); absl::Status OptimizeHloModule(HloModule* hlo_module, se::StreamExecutor* stream_exec, const CompileOptions& options, const TargetConfig& gpu_target_config); virtual absl::Status OptimizeHloConvolutionCanonicalization( HloModule* hlo_module, se::GpuComputeCapability gpu_version, se::dnn::VersionInfo dnn_version, se::DeviceMemoryAllocator* device_allocator) = 0; virtual absl::StatusOr<BackendCompileResult> CompileTargetBinary( const HloModuleConfig& module_config, llvm::Module* llvm_module, se::GpuComputeCapability gpu_version, bool relocatable, const HloModule* debug_module, const CompileOptions& options) = 0; absl::Status PrepareHloModuleForIrEmitting(HloModule* hlo_module); virtual absl::StatusOr<std::vector<uint8_t>> LinkModules( se::StreamExecutor* stream_exec, std::vector<std::vector<uint8_t>> modules, const DebugOptions& debug_options) { return Unimplemented("LinkModules is not implemented."); } se::Platform::Id platform_id_; const char* target_triple_; const char* data_layout_; const int64_t pointer_size_; GpuCompiler(const GpuCompiler&) = delete; GpuCompiler& operator=(const GpuCompiler&) = delete; }; } } #endif #include "xla/service/gpu/gpu_compiler.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/base/call_once.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/AsmParser/Parser.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/SplitModule.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/Support/LLVM.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_module_group.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/maybe_owning.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/all_gather_broadcast_reorder.h" #include "xla/service/all_gather_combiner.h" #include "xla/service/all_reduce_combiner.h" #include "xla/service/all_reduce_contiguous.h" #include "xla/service/all_reduce_folder.h" #include "xla/service/all_reduce_promotion.h" #include "xla/service/all_reduce_reassociate.h" #include "xla/service/all_reduce_splitter.h" #include "xla/service/async_collective_creator.h" #include "xla/service/batchnorm_expander.h" #include "xla/service/bitcast_dtypes_expander.h" #include "xla/service/broadcast_canonicalizer.h" #include "xla/service/buffer_assignment.h" #include "xla/service/call_inliner.h" #include "xla/service/collective_permute_decomposer.h" #include "xla/service/collective_pipeliner.h" #include "xla/service/collectives_schedule_linearizer.h" #include "xla/service/comparison_expander.h" #include "xla/service/compiler.h" #include "xla/service/conditional_canonicalizer.h" #include "xla/service/conditional_simplifier.h" #include "xla/service/convert_memory_placement_to_internal_annotations.h" #include "xla/service/convert_mover.h" #include "xla/service/convolution_4d_expander.h" #include "xla/service/convolution_pred_expander.h" #include "xla/service/copy_insertion.h" #include "xla/service/cpu_gpu_shape_verifier.h" #include "xla/service/dot_decomposer.h" #include "xla/service/dot_merger.h" #include "xla/service/dump.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/dynamic_dimension_simplifier.h" #include "xla/service/dynamic_index_splitter.h" #include "xla/service/dynamic_padder.h" #include "xla/service/eigh_expander.h" #include "xla/service/executable.h" #include "xla/service/export_hlo.h" #include "xla/service/flatten_call_graph.h" #include "xla/service/float_normalization.h" #include "xla/service/float_support.h" #include "xla/service/gather_expander.h" #include "xla/service/gather_simplifier.h" #include "xla/service/gpu/algorithm_checker.h" #include "xla/service/gpu/all_reduce_blueconnect.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/collective_permute_cycle_decomposer.h" #include "xla/service/gpu/command_buffer_scheduling.h" #include "xla/service/gpu/compile_module_to_llvm_ir.h" #include "xla/service/gpu/conv_layout_normalization.h" #include "xla/service/gpu/custom_kernel_fusion_rewriter.h" #include "xla/service/gpu/dot_dimension_sorter.h" #include "xla/service/gpu/dot_operand_converter.h" #include "xla/service/gpu/double_buffer_loop_unrolling.h" #include "xla/service/gpu/dynamic_slice_fusion_rewriter.h" #include "xla/service/gpu/execution_stream_assignment.h" #include "xla/service/gpu/fusion_pipeline.h" #include "xla/service/gpu/fusion_wrapper.h" #include "xla/service/gpu/gemm_broadcast_folding_rewriter.h" #include "xla/service/gpu/gemm_fusion.h" #include "xla/service/gpu/gemm_rewriter.h" #include "xla/service/gpu/gemv_rewriter.h" #include "xla/service/gpu/gpu_algebraic_simplifier.h" #include "xla/service/gpu/gpu_all_gather_optimizer.h" #include "xla/service/gpu/gpu_async_collective_annotator.h" #include "xla/service/gpu/gpu_conv_rewriter.h" #include "xla/service/gpu/gpu_convert_async_collectives_to_sync.h" #include "xla/service/gpu/gpu_executable.h" #include "xla/service/gpu/gpu_float_support.h" #include "xla/service/gpu/gpu_hlo_schedule.h" #include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include "xla/service/gpu/gpu_layout_assignment.h" #include "xla/service/gpu/gpu_p2p_pipeliner.h" #include "xla/service/gpu/gpu_reduce_scatter_creator.h" #include "xla/service/gpu/gpu_sanitize_constant_names.h" #include "xla/service/gpu/gpu_scatter_expander.h" #include "xla/service/gpu/gpu_spmd_pipeline.h" #include "xla/service/gpu/gpu_windowed_einsum_handler.h" #include "xla/service/gpu/hlo_fusion_stats.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/ir_emitter_unnested.h" #include "xla/service/gpu/kernel_reuse_cache.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/metrics.h" #include "xla/service/gpu/model/gpu_cost_model_stats_collection.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/move_copy_to_users.h" #include "xla/service/gpu/pipelined_p2p_rewriter.h" #include "xla/service/gpu/prepare_hlo_for_ir_emitting_pipeline.h" #include "xla/service/gpu/reduction_degenerate_dim_remover.h" #include "xla/service/gpu/reduction_dimension_grouper.h" #include "xla/service/gpu/reduction_layout_normalizer.h" #include "xla/service/gpu/reduction_splitter.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/service/gpu/rename_fusions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/runtime_intrinsics.h" #include "xla/service/gpu/scatter_slice_simplifier.h" #include "xla/service/gpu/softmax_rewriter_triton.h" #include "xla/service/gpu/stream_attribute_annotator.h" #include "xla/service/gpu/stream_attribute_async_wrapper.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/gpu/topk_specializer.h" #include "xla/service/gpu/topk_splitter.h" #include "xla/service/gpu/tree_reduction_rewriter.h" #include "xla/service/gpu/triton_fusion_numerics_verifier.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_computation_deduplicator.h" #include "xla/service/hlo_constant_folding.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_pass_fix.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_rematerialization.h" #include "xla/service/hlo_verifier.h" #include "xla/service/host_memory_transfer_asyncifier.h" #include "xla/service/host_offload_legalize.h" #include "xla/service/host_offloader.h" #include "xla/service/layout_assignment.h" #include "xla/service/layout_normalization.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/logistic_expander.h" #include "xla/service/operand_upcaster.h" #include "xla/service/optimization_barrier_expander.h" #include "xla/service/optimize_input_output_buffer_alias.h" #include "xla/service/qr_expander.h" #include "xla/service/real_imag_expander.h" #include "xla/service/reduce_decomposer.h" #include "xla/service/reduce_scatter_combiner.h" #include "xla/service/reduce_scatter_reassociate.h" #include "xla/service/reduce_window_rewriter.h" #include "xla/service/reshape_decomposer.h" #include "xla/service/reshape_mover.h" #include "xla/service/result_caster.h" #include "xla/service/rng_bit_generator_expander.h" #include "xla/service/rng_expander.h" #include "xla/service/scatter_expander.h" #include "xla/service/scatter_simplifier.h" #include "xla/service/sharding_remover.h" #include "xla/service/simplify_fp_conversions.h" #include "xla/service/slice_sinker.h" #include "xla/service/slow_operation_alarm.h" #include "xla/service/sort_simplifier.h" #include "xla/service/stable_sort_expander.h" #include "xla/service/stochastic_convert_decomposer.h" #include "xla/service/sub_byte_normalization.h" #include "xla/service/topk_rewriter.h" #include "xla/service/transpose_folding.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_all_reduce_code_motion.h" #include "xla/service/while_loop_constant_sinking.h" #include "xla/service/while_loop_simplifier.h" #include "xla/service/while_loop_trip_count_annotator.h" #include "xla/service/zero_sized_hlo_elimination.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/integrations/device_mem_allocator.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/blocking_counter.h" #include "tsl/platform/casts.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/numbers.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/traceme.h" #ifdef PLATFORM_GOOGLE #include "xla/hlo/experimental/auto_sharding/auto_sharding.h" #endif namespace xla { namespace gpu { namespace { using MaybeOwningThreadPool = MaybeOwning<tsl::thread::ThreadPool>; MaybeOwningThreadPool CreateMaybeOwningThreadPool( int parallelism, tsl::thread::ThreadPool* default_thread_pool, int default_parallelism) { CHECK_GE(parallelism, 0); CHECK_GE(default_parallelism, 1); CHECK(default_thread_pool == nullptr || default_thread_pool->CurrentThreadId() == -1); auto create_thread_pool = [&](int num_threads) { CHECK_GE(num_threads, 1); return std::make_unique<tsl::thread::ThreadPool>(tsl::Env::Default(), "", num_threads); }; switch (parallelism) { case 0: if (default_thread_pool == nullptr && default_parallelism > 1) { return MaybeOwningThreadPool(create_thread_pool(default_parallelism)); } return MaybeOwningThreadPool(default_thread_pool); case 1: return MaybeOwningThreadPool(nullptr); default: return MaybeOwningThreadPool(create_thread_pool(parallelism)); } } absl::StatusOr<AutotuneConfig> GetAutotuneConfig( se::StreamExecutor* stream_exec, const DebugOptions& debug_options, const GpuCompiler::CompileOptions& options, const Compiler::TargetConfig& gpu_target_config) { if (stream_exec) { return AutotuneConfig{DeviceConfig{stream_exec, options.device_allocator}, debug_options}; } return AutotuneConfig{ DevicelessConfig{gpu_target_config.device_description_str}, debug_options}; } se::GpuComputeCapability GetGpuVersion(const se::StreamExecutor* stream_exec) { return stream_exec->GetDeviceDescription().gpu_compute_capability(); } class GpuThunkAotCompilationResult : public AotCompilationResult { public: static absl::StatusOr<std::unique_ptr<GpuThunkAotCompilationResult>> FromModule(const HloModule* hlo_module, const BufferAssignment* buffer_assignment, std::string_view asm_text, absl::Span<const uint8_t> binary, const Thunk::BinaryMap& dnn_compiled_graphs) { CompilationResultProto proto; *proto.mutable_hlo_module_with_config() = hlo_module->ToProtoWithConfig(); *proto.mutable_buffer_assignment() = buffer_assignment->ToProto(); proto.set_asm_text(std::string(asm_text)); proto.set_binary(binary.data(), binary.size()); proto.mutable_dnn_compiled_graphs()->insert(dnn_compiled_graphs.cbegin(), dnn_compiled_graphs.cend()); return std::unique_ptr<GpuThunkAotCompilationResult>( new GpuThunkAotCompilationResult(hlo_module->Clone(), std::move(proto))); } static absl::StatusOr<std::unique_ptr<GpuThunkAotCompilationResult>> FromString(const std::string& serialized) { CompilationResultProto proto; if (!proto.ParseFromString(serialized)) { return Internal( "Failed to parse serialized GpuThunkAotCompilationResult."); } TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> module, HloModule::CreateFromProtoWithConfig(proto.hlo_module_with_config())); return std::unique_ptr<GpuThunkAotCompilationResult>( new GpuThunkAotCompilationResult(std::move(module), std::move(proto))); } absl::StatusOr<std::string> SerializeAsString() const override { return proto_.SerializeAsString(); } absl::StatusOr<std::unique_ptr<Executable>> LoadExecutable( Compiler* compiler, const se::StreamExecutor* stream_exec) const override; const HloModule* optimized_module() const override { return module_.get(); } std::unique_ptr<HloModule> consume_optimized_module() override { return std::move(module_); } private: GpuThunkAotCompilationResult(std::unique_ptr<HloModule> module, CompilationResultProto proto) : module_(std::move(module)), proto_(std::move(proto)) {} std::unique_ptr<HloModule> module_; CompilationResultProto proto_; }; } absl::StatusOr<std::unique_ptr<Executable>> GpuThunkAotCompilationResult::LoadExecutable( Compiler* compiler, const se::StreamExecutor* stream_exec) const { TF_ASSIGN_OR_RETURN( std::unique_ptr<HloModule> hlo_module, HloModule::CreateFromProtoWithConfig(proto_.hlo_module_with_config())); TF_ASSIGN_OR_RETURN( std::unique_ptr<BufferAssignment> buffer_assignment, BufferAssignment::FromProto(proto_.buffer_assignment(), hlo_module.get(), compiler->BufferSizeBytesFunction(), nullptr)); ExecutionStreamAssignment execution_stream_assignment(hlo_module.get()); std::vector<uint8_t> binary(proto_.binary().begin(), proto_.binary().end()); TF_ASSIGN_OR_RETURN( se::Platform * platform, se::PlatformManager::PlatformWithId(compiler->PlatformId())); std::string platform_name = platform->Name(); const se::DeviceDescription& gpu_device_info = stream_exec->GetDeviceDescription(); mlir::DialectRegistry registry; auto mlir_context = std::make_unique<mlir::MLIRContext>(registry); llvm::LLVMContext llvm_context; auto* gpu_compiler = dynamic_cast<GpuCompiler*>(compiler); if (gpu_compiler == nullptr) { return Internal("Compiler is not a GpuCompiler."); } auto llvm_module = std::make_unique<llvm::Module>("", llvm_context); llvm_module->setTargetTriple(gpu_compiler->target_triple()); llvm_module->setDataLayout(gpu_compiler->data_layout()); IrEmitterContext ir_emitter_context( hlo_module.get(), buffer_assignment.get(), &execution_stream_assignment, platform_name, gpu_device_info, mlir_context.get(), llvm_module.get(), nullptr, false); auto ir_emitter = IrEmitterUnnested::Create(&ir_emitter_context); TF_RETURN_IF_ERROR( ir_emitter->EmitHloComputation(hlo_module->entry_computation())); std::vector<GpuExecutable::ConstantInfo> constants = std::move(ir_emitter_context.constants()); TF_ASSIGN_OR_RETURN(auto output_info, GetOutputInfo(*hlo_module, *buffer_assignment)); const Shape& output_shape = hlo_module->result_shape(); int64_t debug_buffer_assignment_show_max = hlo_module->config() .debug_options() .xla_debug_buffer_assignment_show_max(); TF_ASSIGN_OR_RETURN( std::unique_ptr<GpuExecutable> executable, GpuExecutable::Create(GpuExecutable::Params{ proto_.asm_text(), binary, Thunk::BinaryMap(proto_.dnn_compiled_graphs().cbegin(), proto_.dnn_compiled_graphs().cend()), gpu_device_info.gpu_compute_capability(), ir_emitter->ConsumeThunkSequence(), std::move(constants), std::move(output_info), std::move(hlo_module->name()), std::move(output_shape), std::nullopt, std::move(buffer_assignment), debug_buffer_assignment_show_max, std::move(hlo_module), true})); return executable; } GpuCompiler::GpuCompiler(se::Platform::Id platform_id, const char* target_triple, const char* data_layout) : platform_id_(platform_id), target_triple_(target_triple), data_layout_(data_layout), pointer_size_(llvm::DataLayout(data_layout) .getPointerSize(0 )) {} namespace { void AddHloVerifier(HloPassPipeline* pipeline, HloVerifierOpts&& opts = {}, bool debug_only = false) { std::unique_ptr<TargetVerifierMetadata> verifier_metadata = std::make_unique<CpuGpuVerifierMetadata>(std::move(opts)); if (debug_only) { pipeline->AddInvariantCheckerDebug<HloVerifier>( std::move(verifier_metadata), "hlo verifier (debug)"); } else { pipeline->AddInvariantChecker<HloVerifier>(std::move(verifier_metadata), "hlo verifier"); } } void CheckNotScheduled(HloModule* hlo_module) { if (hlo_module->has_schedule() && !hlo_module->config().debug_options().xla_disable_all_hlo_passes()) { LOG(WARNING) << "\nThe current HLO module " << hlo_module->name() << " is scheduled and optimized. \n" << "It is not expected to run optimization passes again.\n" "Use a test method like RunAndCompareNoHloPasses() or " << "the xla_disable_all_hlo_passes flag."; } } void LogDebugOptions(HloModule* hlo_module) { XLA_VLOG_LINES( 1, absl::StrFormat("GpuCompilationEnvironment of hlo_module %s:\n%s", hlo_module->name(), hlo_module->config().debug_options().DebugString())); } AlgebraicSimplifierOptions LayoutInsensitiveAlgebraicSimplifierOptions( const HloModuleConfig& hlo_module_config, const Compiler::TargetConfig& gpu_target_config, AlgebraicSimplifierOptions opts_from_compiler) { AlgebraicSimplifierOptions layout_insensitive_algsimp_opts = opts_from_compiler; layout_insensitive_algsimp_opts.set_conv_is_lowerable_callback( GpuConvRewriter::ConvIsLowerable); layout_insensitive_algsimp_opts.set_enable_dot_strength_reduction( hlo_module_config.debug_options() .xla_gpu_enable_dot_strength_reduction()); layout_insensitive_algsimp_opts.set_supports_non_canonical_dots(false); layout_insensitive_algsimp_opts.set_minmax_propagate_nan( !hlo_module_config.debug_options().xla_gpu_enable_fast_min_max()); layout_insensitive_algsimp_opts .set_unconditionally_simplify_reduce_of_transpose_or_reshape(true); if (gpu_target_config.platform_name == "ROCM") { layout_insensitive_algsimp_opts.set_enable_conv_operand_swap(false); } layout_insensitive_algsimp_opts .set_enable_unconditional_reduce_of_concat_replacement(false); return layout_insensitive_algsimp_opts; } absl::Status RunPreSPMDPartitionerPasses(HloModule* hlo_module) { HloPassPipeline pre_spmd_pipeline("pre-spmd-partitioner");
#include "xla/service/gpu/gpu_compiler.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/autotune_results.pb.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/executable.h" #include "xla/service/gpu/autotuner_util.h" #include "xla/service/gpu/gpu_hlo_schedule.h" #include "xla/service/gpu/metrics.h" #include "xla/service/hlo_module_config.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/xla_debug_info_manager.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/casts.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using ::testing::IsEmpty; using ::testing::Not; using ::testing::TempDir; using ::tsl::testing::StatusIs; class GpuCompilerTest : public HloTestBase { public: absl::Status Schedule(HloModule* module) { auto compiler = backend().compiler(); const se::DeviceDescription& gpu_device_info = backend().default_stream_executor()->GetDeviceDescription(); TF_RETURN_IF_ERROR(ScheduleGpuModule(module, 4, gpu_device_info).status()); return tensorflow::down_cast<GpuCompiler*>(compiler) ->RunPostSchedulingPipelines(module, 4 * 1024 * 1024, gpu_device_info); } }; TEST_F(GpuCompilerTest, CompiledProgramsCount) { const char* hlo_text = R"( HloModule test ENTRY main { p = f32[10]{0} parameter(0) ROOT neg = f32[10]{0} negate(p) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); ResetCompiledProgramsCountForTesting(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, false}) .value(); EXPECT_EQ(GetCompiledProgramsCount(), 1); } TEST_F(GpuCompilerTest, GenerateDebugInfoForNonAutotuningCompilations) { const char* hlo_text = R"( HloModule test ENTRY main { p = f32[10]{0} parameter(0) ROOT neg = f32[10]{0} negate(p) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, false}) .value(); EXPECT_TRUE(XlaDebugInfoManager::Get()->TracksModule( executable->module().unique_id())); } TEST_F(GpuCompilerTest, DoesNotGenerateDebugInfoForAutotuningCompilations) { const char* hlo_text = R"( HloModule test ENTRY main { p = f32[10]{0} parameter(0) ROOT neg = f32[10]{0} negate(p) } )"; auto module = ParseAndReturnVerifiedModule(hlo_text).value(); int module_id = module->unique_id(); std::unique_ptr<Executable> executable = backend() .compiler() ->RunBackend(std::move(module), backend().default_stream_executor(), {nullptr, nullptr, {}, true}) .value(); EXPECT_FALSE(XlaDebugInfoManager::Get()->TracksModule(module_id)); } TEST_F(GpuCompilerTest, CopyInsertionFusion) { const char* hlo_text = R"( HloModule cluster ENTRY main { cst = f32[1]{0} constant({0}) ROOT tuple_out = (f32[1]{0}, f32[1]{0}, f32[1]{0}, f32[1]{0}) tuple(cst, cst, cst, cst) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{0, 0})); auto module = ParseAndReturnVerifiedModule(hlo_text).value(); std::unique_ptr<HloModule> compiled_module = backend() .compiler() ->RunHloPasses(module->Clone(), backend().default_stream_executor(), nullptr) .value(); VLOG(2) << compiled_module->ToString(); size_t total_fusion_instrs = 0; for (const HloInstruction* instr : compiled_module->entry_computation()->instructions()) { if (instr->opcode() == HloOpcode::kFusion) { ++total_fusion_instrs; } } EXPECT_EQ(total_fusion_instrs, 1); const HloInstruction* entry_root = compiled_module->entry_computation()->root_instruction(); EXPECT_THAT( entry_root, GmockMatch(m::Tuple( m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion())))); } TEST_F(GpuCompilerTest, CanRunScheduledModules) { HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_disable_all_hlo_passes(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(R"( HloModule m, is_scheduled=true w { p = s8[] parameter(0) ROOT n = s8[] negate(p) } ENTRY e { p = s8[] parameter(0) ROOT _ = s8[] fusion(p), kind=kLoop, calls=w })", config)); EXPECT_TRUE(Run(std::move(module), true)); } class PersistedAutotuningTest : public HloTestBase { protected: static constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { p0 = f16[1,16,17,3] parameter(0) p1 = s8[16,17,3] parameter(1) cp1 = f16[16,17,3] convert(p1) ROOT _ = f16[1,16,16] dot(p0, cp1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} })"; std::string GetUniqueTempFilePath(absl::string_view suffix) { std::string filename = TempDir(); CHECK(tsl::Env::Default()->CreateUniqueFileName(&filename, std::string(suffix))); return filename; } std::string ExpectToReadNonEmptyFile(absl::string_view file_path) { std::string str; tsl::Env* env = tsl::Env::Default(); TF_EXPECT_OK(tsl::ReadFileToString(env, std::string(file_path), &str)); EXPECT_THAT(str, Not(IsEmpty())); return str; } DebugOptions GetDebugOptionsForTest() override { DebugOptions options = HloTestBase::GetDebugOptionsForTest(); options.set_xla_gpu_dump_autotune_results_to( xla_gpu_dump_autotune_results_to_); options.set_xla_gpu_load_autotune_results_from( xla_gpu_load_autotune_results_from_); return options; } std::string xla_gpu_dump_autotune_results_to_; std::string xla_gpu_load_autotune_results_from_; }; TEST_F(PersistedAutotuningTest, WriteResultsOnEachCompilation) { constexpr absl::string_view kInvalidTextProto = "Invalid!"; xla_gpu_dump_autotune_results_to_ = GetUniqueTempFilePath(".txt"); TF_EXPECT_OK(GetOptimizedModule(kHloText).status()); { std::string autotune_results_str = ExpectToReadNonEmptyFile(xla_gpu_dump_autotune_results_to_); AutotuneResults results; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString(autotune_results_str, &results)); } tsl::Env* env = tsl::Env::Default(); TF_EXPECT_OK(tsl::WriteStringToFile(env, xla_gpu_dump_autotune_results_to_, kInvalidTextProto)); TF_EXPECT_OK(GetOptimizedModule(kHloText).status()); { std::string autotune_results_str = ExpectToReadNonEmptyFile(xla_gpu_dump_autotune_results_to_); AutotuneResults results; EXPECT_TRUE(tsl::protobuf::TextFormat::ParseFromString(autotune_results_str, &results)); } } int64_t CountCopies(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { count++; } } return count; } int64_t CountCopies(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountCopies(*computation); } return count; } TEST_F(GpuCompilerTest, RemovesUnnecessaryCopyAfterScheduling) { const absl::string_view hlo_string = R"( HloModule all_gather_overlapping condition { input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=2 } body { input_tuple = (f32[1,128], f32[2,128], pred[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[2,128] get-tuple-element(input_tuple), index=1 cond = pred[] get-tuple-element(input_tuple), index=2 c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} add = f32[1,128] add(splat_c0, param_0) all-gather-start = (f32[1,128], f32[2,128]) all-gather-start(add), channel_id=1337, replica_groups={{0,1}}, dimensions={0}, use_global_device_ids=true c1_s32 = s32[] constant(1) c0_s32 = s32[] constant(0) dynamic-slice = f32[1,128] dynamic-slice(param_1, c1_s32, c0_s32), dynamic_slice_sizes={1,128} all-gather-done = f32[2,128] all-gather-done(all-gather-start) ROOT output_tuple = (f32[1,128], f32[2,128], pred[]) tuple(dynamic-slice, all-gather-done, cond) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[2,128] parameter(1) param_2 = pred[] parameter(2) tuple = (f32[1,128], f32[2,128], pred[]) tuple(param_0, param_1, param_2) ROOT while = (f32[1,128], f32[2,128], pred[]) while(tuple), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, GetOptimizedModule(hlo_string)); EXPECT_EQ(CountCopies(*module), 5); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* while_op = root->operand(0)->operand(0); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kCopy); TF_ASSERT_OK(Schedule(module.get())); EXPECT_EQ(CountCopies(*module), 4); module->entry_computation()->root_instruction(); while_op = root->operand(0)->operand(0); EXPECT_EQ(while_op->while_body()->root_instruction()->operand(1)->opcode(), HloOpcode::kAllGatherDone); } TEST_F(GpuCompilerTest, GemmFusionIsNoOpWhenGemmFusionAutotunerFallsBackToCublas) { GTEST_SKIP() << "TODO(b/344573710): this test is flaky, disable it " << " until flakiness is fixed."; auto cc = backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); if (!cc.IsAtLeastAmpere()) { GTEST_SKIP() << "Autotuning results have only been generated for Ampere " << "and Hopper GPUs"; } const absl::string_view hlo_string = R"( HloModule test ENTRY main { param_0 = bf16[3,32,1024,4,1024]{4,3,2,1,0} parameter(0) param_1 = bf16[4,3,32,1024]{3,2,1,0} parameter(1) param_2 = s32[] parameter(2) constant_0 = s32[] constant(0) dynamic-slice_0 = bf16[1,3,32,1024]{3,2,1,0} dynamic-slice(param_1, param_2, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,3,32,1024} reshape_0 = bf16[3,32,1024]{2,1,0} reshape(dynamic-slice_0) broadcast_0 = bf16[3,32,1024,4,1024]{2,1,4,3,0} broadcast(reshape_0), dimensions={0,1,2} add_0 = bf16[3,32,1024,4,1024]{4,3,2,1,0} add(param_0, broadcast_0) transpose_0 = bf16[3,4,1024,32,1024]{2,1,4,3,0} transpose(add_0), dimensions={0,3,4,1,2} slice_0 = bf16[1,4,1024,32,1024]{4,3,2,1,0} slice(transpose_0), slice={[0:1], [0:4], [0:1024], [0:32], [0:1024]} reshape_1 = bf16[4,1024,32,1024]{3,2,1,0} reshape(slice_0) copy_0 = bf16[4,1024,32,1024]{3,2,1,0} copy(reshape_1) constant_1 = bf16[] constant(0.08838) broadcast_1 = bf16[4,1024,32,1024]{3,2,1,0} broadcast(constant_1), dimensions={} multiply_0 = bf16[4,1024,32,1024]{3,2,1,0} multiply(copy_0, broadcast_1) slice_1 = bf16[1,4,1024,32,1024]{4,3,2,1,0} slice(transpose_0), slice={[1:2], [0:4], [0:1024], [0:32], [0:1024]} reshape_2 = bf16[4,1024,32,1024]{3,2,1,0} reshape(slice_1) copy_1 = bf16[4,1024,32,1024]{3,2,1,0} copy(reshape_2) ROOT dot_0 = bf16[4,32,1024,1024]{3,2,1,0} dot(multiply_0, copy_1), lhs_batch_dims={0,2}, lhs_contracting_dims={3}, rhs_batch_dims={0,2}, rhs_contracting_dims={3} } )"; HloModuleConfig config; DebugOptions triton_enabled_debug_options = GetDebugOptionsForTest(); triton_enabled_debug_options.set_xla_gpu_enable_address_computation_fusion( false); triton_enabled_debug_options .set_xla_gpu_require_complete_aot_autotune_results(true); config.set_debug_options(triton_enabled_debug_options); config.set_replica_count(1); config.set_num_partitions(1); std::string path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "gpu", "gpu_compiler_test_autotune_db.textproto"); TF_EXPECT_OK(AutotunerUtil::LoadAutotuneResultsFromFile(path)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> triton_enabled_module, GetOptimizedModule(std::move(module))); AutotunerUtil::ClearAutotuneResults(); DebugOptions triton_disabled_debug_options = GetDebugOptionsForTest(); triton_disabled_debug_options.set_xla_gpu_enable_address_computation_fusion( false); triton_disabled_debug_options.set_xla_gpu_enable_triton_gemm(false); config.set_debug_options(triton_disabled_debug_options); TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnVerifiedModule(hlo_string, config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> triton_disabled_module, GetOptimizedModule(std::move(module))); const HloInstruction* root = triton_enabled_module->entry_computation()->root_instruction(); const HloInstruction* custom_op = root->operand(0)->operand(0); EXPECT_TRUE(custom_op->IsCustomCall("__cublas$gemm")); EXPECT_EQ(triton_enabled_module->computation_count(), triton_disabled_module->computation_count()); } TEST_F(GpuCompilerTest, CollectivePermuteDecompositionAndPipelining) { const char* kModuleStr = R"( HloModule cp cond { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 ub = u32[] constant(11) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], f32[1, 1024, 1024]) parameter(0) count = get-tuple-element(%param), index=0 send-data = get-tuple-element(%param), index=1 recv-data = f32[1, 1024, 1024] collective-permute(send-data), source_target_pairs={{0,1}, {1,2}, {2,3}, {3,4}}, channel_id=1 c1 = u32[] constant(1) new_count = u32[] add(count, c1) replica = u32[] replica-id() c10 = u32[] constant(10) sum = u32[] add(replica, c10) sum2 = u32[] add(sum, count) conv = f32[] convert(sum2) p = f32[1, 1024, 1024] broadcast(conv), dimensions={} b = f32[1, 1024, 1024] add(p, recv-data) c = f32[1, 1024, 1024] multiply(b, b) d = f32[1, 1024, 1024] tan(c) s = f32[1, 1024, 1024] dot(c, d), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} ROOT result = (u32[], f32[1, 1024, 1024]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} while_init = (u32[], f32[1, 1024, 1024]) tuple(c0, init) while_result = (u32[], f32[1, 1024, 1024]) while(while_init), body=body, condition=cond ROOT result = f32[1, 1024, 1024] get-tuple-element(while_result), index=1 } )"; const char* kExpected = R"( CHECK: recv-done CHECK-SAME: channel_id=[[CHANNEL_ID:[0-9]+]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: send-done CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: %[[CUSTOM_CALL:.*]] = custom-call CHECK: %[[AFTER_ALL:.*]] = after-all CHECK: %[[RESULT_RECV:.*]] = recv(%[[AFTER_ALL]]) CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs="{{0,1},{1,2},{2,3},{3,4}}"}, CHECK-SAME: control-predecessors={%[[CUSTOM_CALL]]} CHECK: %[[RESULT_SEND:.*]] = send(%[[SOME_SEND_ARG:.*]], %[[AFTER_ALL]]) CHECK-SAME: channel_id=1 CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs="{{0,1},{1,2},{2,3},{3,4}}"}, CHECK-SAME: control-predecessors={%[[RESULT_RECV]]} CHECK: ROOT CHECK-SAME: %[[RESULT_RECV]] CHECK: ENTRY CHECK: %[[ENTRY_AFTER_ALL:.*]] = after-all CHECK: %[[ENTRY_RECV:.*]] = recv(%[[ENTRY_AFTER_ALL]]) CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs="{{0,1},{1,2},{2,3},{3,4}}"} CHECK: %[[ENTRY_SEND:.*]] = send(%[[SOME_SEND_ARG:.*]], %[[ENTRY_AFTER_ALL]]) CHECK-SAME: channel_id=1 CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0", CHECK-SAME{LITERAL}: _xla_send_recv_source_target_pairs="{{0,1},{1,2},{2,3},{3,4}}"}, CHECK-SAME: control-predecessors={%[[ENTRY_RECV]]} CHECK: %[[WHILE_INIT:.*]] = tuple CHECK-SAME: %[[ENTRY_SEND]] CHECK: while(%[[WHILE_INIT]]) CHECK: recv-done CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} CHECK: send-done CHECK-SAME: channel_id=[[CHANNEL_ID]] CHECK-SAME: frontend_attributes={_xla_send_recv_pipeline="0"} )"; HloModuleConfig config; DebugOptions debug_options = GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_latency_hiding_scheduler(true); debug_options.set_xla_gpu_collective_permute_decomposer_threshold(1); debug_options.set_xla_gpu_enable_pipelined_p2p(true); debug_options.set_xla_gpu_enable_triton_gemm(false); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kModuleStr, config)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module, GetOptimizedModule(std::move(module))); TF_ASSERT_OK(Schedule(optimized_module.get())); HloPrintOptions options; options.set_print_operand_shape(false); options.set_print_result_shape(false); TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matched, RunFileCheck(optimized_module->ToString(options), kExpected)); EXPECT_TRUE(filecheck_matched); } class KernelCacheTest : public HloTestBase { public: void SetUp() override { CHECK(tsl::Env::Default()->LocalTempFilename(&cache_file_name_)); HloModuleConfig config; config.set_debug_options(GetDebugOptionsForTest()); TF_ASSERT_OK_AND_ASSIGN(bool can_use_link_modules, dynamic_cast<GpuCompiler*>(backend().compiler()) ->CanUseLinkModules(config)); if (!can_use_link_modules) { GTEST_SKIP() << "Caching compiled kernels requires support of linking."; } } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_kernel_cache_file(cache_file_name_); debug_options.set_xla_gpu_enable_llvm_module_compilation_parallelism(true); return debug_options; } bool CacheFileExists() { if (!tsl::Env::Default()->FileExists(cache_file_name_).ok()) { return false; } return true; } int CacheEntryCount() { if (!CacheFileExists()) { return 0; } std::string serialized; TF_EXPECT_OK(tsl::ReadFileToString(tsl::Env::Default(), cache_file_name_, &serialized)); CompilationCacheProto proto; EXPECT_TRUE(proto.ParseFromString(std::string(serialized))); return proto.entries_size(); } std::string cache_file_name_; static constexpr absl::string_view kHloText = R"( ENTRY e { p = s8[] parameter(0) c = s8[] constant(8) ROOT _ = s8[] add(p, c) })"; }; TEST_F(KernelCacheTest, CacheIsGenerated) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); } TEST_F(KernelCacheTest, NoCacheIsGeneratedWithoutCompiledKernels) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(R"( ENTRY e { a = f32[5,5] parameter(0) ROOT _ = f32[5,5] custom-call(a, a), custom_call_target="__cublas$gemm", backend_config="{ \"gemm_backend_config\": {\"alpha_real\":1,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"alpha_imag\":0,\"precision_config\":{\"operand_precision\":[\"DEFAULT\",\"DEFAULT\"]},\"epilogue\":\"DEFAULT\"}}" })", false)); EXPECT_FALSE(CacheFileExists()); } TEST_F(KernelCacheTest, CacheGrowsWithNewKernels) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); EXPECT_TRUE(Run(R"( ENTRY e { p = s8[] parameter(0) ROOT _ = s8[] multiply(p, p) })", false)); EXPECT_EQ(CacheEntryCount(), 2); } class KernelCacheTestSingleThreaded : public KernelCacheTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = KernelCacheTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_force_compilation_parallelism(1); return debug_options; } }; TEST_F(KernelCacheTestSingleThreaded, CacheIsGenerated) { EXPECT_FALSE(CacheFileExists()); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); EXPECT_TRUE(Run(kHloText, false)); EXPECT_EQ(CacheEntryCount(), 1); } class NoKernelCacheTest : public KernelCacheTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = KernelCacheTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_llvm_module_compilation_parallelism(false); return debug_options; } }; TEST_F(NoKernelCacheTest, NoCacheWithoutCompilationParallelism) { EXPECT_TRUE(Run(kHloText, false)); EXPECT_FALSE(CacheFileExists()); } } } }
2,078
cpp
tensorflow/tensorflow
hlo_fusion_stats
third_party/xla/xla/service/gpu/hlo_fusion_stats.cc
third_party/xla/xla/service/gpu/hlo_fusion_stats_test.cc
#ifndef XLA_SERVICE_GPU_HLO_FUSION_STATS_H_ #define XLA_SERVICE_GPU_HLO_FUSION_STATS_H_ #include <cstdint> #include <map> #include <set> #include <string> #include "absl/status/status.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" namespace xla { namespace gpu { class HloOpcodeHistogram : public std::map<std::set<std::string>, int64_t> { public: std::string ToString(); }; class HloFusionStatsVisitor : public ConstDfsHloVisitorWithDefault { public: absl::Status RunOnModule(HloModule* module); std::string ToString(); protected: absl::Status DefaultAction(const xla::HloInstruction* instr) final; absl::Status HandleFusion(const HloInstruction* fusion) override; private: int64_t num_fusions_ = 0; int64_t num_loop_fusions_ = 0; int64_t num_input_fusions_ = 0; HloOpcodeHistogram loop_fusion_opcode_histogram_; HloOpcodeHistogram input_fusion_opcode_histogram_; }; } } #endif #include "xla/service/gpu/hlo_fusion_stats.h" #include <set> #include <string> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { namespace { class OpcodeCollector : public ConstDfsHloVisitorWithDefault { public: std::set<std::string> GetUniqueOpcodes() { return opcodes_; } protected: absl::Status DefaultAction(const xla::HloInstruction* instr) final { switch (instr->opcode()) { case HloOpcode::kConstant: break; case HloOpcode::kParameter: break; case HloOpcode::kAbs: case HloOpcode::kCbrt: case HloOpcode::kCeil: case HloOpcode::kCos: case HloOpcode::kErf: case HloOpcode::kExp: case HloOpcode::kExpm1: case HloOpcode::kFloor: case HloOpcode::kLog: case HloOpcode::kLog1p: case HloOpcode::kLogistic: case HloOpcode::kNegate: case HloOpcode::kRoundNearestAfz: case HloOpcode::kRoundNearestEven: case HloOpcode::kRsqrt: case HloOpcode::kSign: case HloOpcode::kSin: case HloOpcode::kSqrt: case HloOpcode::kTan: case HloOpcode::kTanh: case HloOpcode::kAdd: case HloOpcode::kAtan2: case HloOpcode::kDivide: case HloOpcode::kMultiply: case HloOpcode::kSubtract: opcodes_.insert("cwise"); break; default: opcodes_.insert(std::string(HloOpcodeString(instr->opcode()))); } return absl::OkStatus(); } private: std::set<std::string> opcodes_; }; std::set<std::string> GetUniqueOpcodes(HloComputation* computation) { OpcodeCollector collector; if (!computation->Accept(&collector).ok()) { return {}; } return collector.GetUniqueOpcodes(); } } std::string HloOpcodeHistogram::ToString() { std::string result; for (const auto& entry : *this) { absl::StrAppend(&result, "{", absl::StrJoin(entry.first, ", "), "}: ", entry.second, "\n"); } return result; } absl::Status HloFusionStatsVisitor::RunOnModule(HloModule* module) { TF_RETURN_IF_ERROR(module->entry_computation()->Accept(this)); return absl::OkStatus(); } std::string HloFusionStatsVisitor::ToString() { return absl::StrCat("HLO Fusion Stats:\n", "Number of fusion ops: ", num_fusions_, "\n", "Number of kLoop fusions: ", num_loop_fusions_, "\n", loop_fusion_opcode_histogram_.ToString(), "\n", "Number of kInput fusions: ", num_input_fusions_, "\n", input_fusion_opcode_histogram_.ToString()); } absl::Status HloFusionStatsVisitor::DefaultAction( const xla::HloInstruction* instr) { return absl::OkStatus(); } absl::Status HloFusionStatsVisitor::HandleFusion(const HloInstruction* fusion) { num_fusions_++; std::set<std::string> opcodes = GetUniqueOpcodes(fusion->fused_instructions_computation()); if (fusion->fusion_kind() == HloInstruction::FusionKind::kLoop) { num_loop_fusions_++; loop_fusion_opcode_histogram_[opcodes]++; } else if (fusion->fusion_kind() == HloInstruction::FusionKind::kInput) { num_input_fusions_++; input_fusion_opcode_histogram_[opcodes]++; } return absl::OkStatus(); } } }
#include "xla/service/gpu/hlo_fusion_stats.h" #include <string> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" namespace xla { namespace gpu { namespace { using HloFusionStatsTest = HloTestBase; TEST_F(HloFusionStatsTest, LoopFusionAndReduceFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module scalar_add_computation { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) ROOT add.0 = f32[] add(scalar_lhs.0, scalar_rhs.0) } fused_select { p1.1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) broadcast = f32[32,32,32]{2,1,0} broadcast(f32[] c0), dimensions={} greater-than = pred[32,32,32]{2,1,0} compare(f32[32,32,32]{2,1,0} p1.1, f32[32,32,32]{2,1,0} broadcast), direction=GT p0.1 = f32[32,32,32]{2,1,0} parameter(0) ROOT select = f32[32,32,32]{2,1,0} select(pred[32,32,32]{2,1,0} greater-than, f32[32,32,32]{2,1,0} p0.1, f32[32,32,32]{2,1,0} broadcast) } another_fused_select { p1.1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) broadcast = f32[32,32,32]{2,1,0} broadcast(f32[] c0), dimensions={} greater-than = pred[32,32,32]{2,1,0} compare(f32[32,32,32]{2,1,0} p1.1, f32[32,32,32]{2,1,0} broadcast), direction=GT p0.1 = f32[32,32,32]{2,1,0} parameter(0) ROOT select = f32[32,32,32]{2,1,0} select(pred[32,32,32]{2,1,0} greater-than, f32[32,32,32]{2,1,0} p0.1, f32[32,32,32]{2,1,0} broadcast) } fused_reduce { p0.2 = f32[32,32,32]{2,1,0} parameter(0) c1 = f32[] constant(0) r1 = f32[32,32]{1,0} reduce(p0.2, c1), dimensions={2}, to_apply=scalar_add_computation mul = f32[32,32,32]{2,1,0} multiply(p0.2, p0.2) r2 = f32[32,32]{1,0} reduce(mul, c1), dimensions={2}, to_apply=scalar_add_computation ROOT tuple = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(r1, r2) } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) select = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_select select_2 = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=another_fused_select fusion = (f32[32,32]{1,0}, f32[32,32]{1,0}) fusion(select), kind=kInput, calls=fused_reduce gte0 = f32[32,32]{1,0} get-tuple-element(fusion), index=0 gte1 = f32[32,32]{1,0} get-tuple-element(fusion), index=1 ROOT root = (f32[32,32]{1,0}, f32[32,32]{1,0}, f32[32,32,32]{2,1,0}, f32[32,32,32]{2,1,0}) tuple(gte1, gte1, select, select_2) })") .value(); HloFusionStatsVisitor fusion_stats_visitor; TF_ASSERT_OK( module.get()->entry_computation()->Accept(&fusion_stats_visitor)); SCOPED_TRACE(module->ToString()); std::string stats = fusion_stats_visitor.ToString(); ASSERT_TRUE(absl::StrContains(stats, "Number of fusion ops: 3")); ASSERT_TRUE(absl::StrContains(stats, "Number of kLoop fusions: 2")); ASSERT_TRUE(absl::StrContains(stats, "{broadcast, compare, select}: 2")); ASSERT_TRUE(absl::StrContains(stats, "Number of kInput fusions: 1")); ASSERT_TRUE(absl::StrContains(stats, "{cwise, reduce, tuple}: 1")); } TEST_F(HloFusionStatsTest, AggregateCwiseOps) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { p0.1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,2]{5,4,3,2,1,0} multiply(p0.1, p0.1) ROOT exp = f32[8,1,5,16,1,2]{5,4,3,2,1,0} exponential(mul) } ENTRY entry { p0 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) ROOT fusion = f32[8,1,5,16,1,2]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation })") .value(); HloFusionStatsVisitor fusion_stats_visitor; TF_ASSERT_OK( module.get()->entry_computation()->Accept(&fusion_stats_visitor)); SCOPED_TRACE(module->ToString()); std::string stats = fusion_stats_visitor.ToString(); ASSERT_TRUE(absl::StrContains(stats, "{cwise}: 1")) << stats; } } } }
2,079
cpp
tensorflow/tensorflow
hlo_algorithm_denylist
third_party/xla/xla/service/gpu/hlo_algorithm_denylist.cc
third_party/xla/xla/service/gpu/hlo_algorithm_denylist_test.cc
#ifndef XLA_SERVICE_GPU_HLO_ALGORITHM_DENYLIST_H_ #define XLA_SERVICE_GPU_HLO_ALGORITHM_DENYLIST_H_ #include <string> #include <vector> #include "xla/autotuning.pb.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/stream_executor/dnn.h" namespace xla { namespace gpu { std::vector<stream_executor::dnn::AlgorithmDesc> GetDisabledConvAlgorithms( ComputeCapability cc, CudnnVersion cudnn_version, const std::string& blas_version, const std::string& hlo); std::string HloStringWithGpuBackendConfig(const std::string& hlo, GpuBackendConfig config); } } #endif #include "xla/service/gpu/hlo_algorithm_denylist.h" #include <optional> #include <string> #include <tuple> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/backend_config.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_autotuning.pb.h" #include "xla/stream_executor/dnn.h" #include "tsl/platform/env.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" namespace xla { namespace gpu { constexpr char kDefaultDenylist[] = R"pb( entries { hlo: "(f32[512,512,7,7]{3,2,1,0}, u8[0]{0}) custom-call(f32[512,512,7,7]{3,2,1,0}, f32[512,512,3,3]{3,2,1,0}, f32[512]{0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 0 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 } algos { id: 14 } } entries { hlo: "(f32[512,512,7,7]{3,2,1,0}, u8[0]{0}) custom-call(f32[512,512,7,7]{3,2,1,0}, f32[512,512,3,3]{3,2,1,0}, f32[512]{0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 0 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 minor: 1 patch: 1 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1, leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 minor: 5 } cudnn_version { major: 9 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 } cudnn_version { major: 9 minor: 1 patch: 1 } algos { id: 14 } } entries { hlo: "(f32[27,256,32,32]{3,2,1,0}, u8[0]{0}) custom-call(f32[27,256,32,32]{3,2,1,0}, f32[256,256,3,3]{3,2,1,0}, f32[256]{0}, f32[27,256,32,32]{3,2,1,0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\"" backend_config { operation_queue_id: 0 wait_on_operation_queues: [] cudnn_conv_backend_config: { activation_mode: kNone conv_result_scale: 1 side_input_scale: 1 leakyrelu_alpha: 0 }, force_earliest_schedule: false } cc { major: 7 minor: 5 } cudnn_version { major: 9 minor: 1 patch: 1 } algos { id: 14 } } )pb"; std::vector<stream_executor::dnn::AlgorithmDesc> GetDisabledConvAlgorithms( ComputeCapability cc, CudnnVersion cudnn_version, const std::string& blas_version, const std::string& hlo) { using MapType = absl::flat_hash_map< std::tuple<std::string, int, int, int, int, int, std::string>, std::vector<stream_executor::dnn::AlgorithmDesc>>; static MapType* denylist = [] { auto* list = new MapType(); AlgorithmDenylist proto; auto process_denylist = [list](const AlgorithmDenylist& proto) { for (const auto& entry : proto.entries()) { for (const auto& algo : entry.algos()) { (*list)[std::make_tuple(HloStringWithGpuBackendConfig( entry.hlo(), entry.backend_config()), entry.cc().major(), entry.cc().minor(), entry.cudnn_version().major(), entry.cudnn_version().minor(), entry.cudnn_version().patch(), entry.blas_version())] .emplace_back(algo.id(), algo.tensor_ops(), std::nullopt); } } }; std::string file_path = GetDebugOptionsFromFlags().xla_gpu_algorithm_denylist_path(); if (!file_path.empty()) { TF_CHECK_OK(tsl::ReadTextProto(tsl::Env::Default(), file_path, &proto)); process_denylist(proto); } CHECK(tsl::protobuf::TextFormat::ParseFromString( std::string(kDefaultDenylist), &proto)); process_denylist(proto); return list; }(); std::vector<stream_executor::dnn::AlgorithmDesc> algorithms; auto add_matching_disabled_algorithms_to_result = [&](const auto& key) { auto iter = denylist->find(key); if (iter != denylist->end()) { algorithms.insert(algorithms.end(), iter->second.begin(), iter->second.end()); } }; auto key = std::make_tuple(hlo, cc.major(), cc.minor(), cudnn_version.major(), cudnn_version.minor(), cudnn_version.patch(), blas_version); add_matching_disabled_algorithms_to_result(key); std::get<6>(key) = std::string{}; add_matching_disabled_algorithms_to_result(key); return algorithms; } std::string HloStringWithGpuBackendConfig(const std::string& hlo, GpuBackendConfig config) { BackendConfigWrapper backend_config(config); return absl::StrCat(hlo, ", backend_config=", backend_config.GetRawString()); } } }
#include "xla/service/gpu/hlo_algorithm_denylist.h" #include <cstdlib> #include <string> #include "absl/strings/str_cat.h" #include "xla/stream_executor/dnn.h" #include "xla/tests/test_utils.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { class DenylistTest : public testing::Test { protected: DenylistTest() { std::string existing_xla_flags; const char* env = std::getenv("XLA_FLAGS"); if (env != nullptr) { existing_xla_flags = absl::StrCat(env, " "); } tsl::setenv( "XLA_FLAGS", absl::StrCat( existing_xla_flags, "--xla_gpu_algorithm_denylist_path=", tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "gpu", "data", "hlo_algorithm_denylist.pbtxt")) .data(), 1); config_ = ParseTextProto<GpuBackendConfig>( "operation_queue_id: 0 wait_on_operation_queues: [] " "cudnn_conv_backend_config: { activation_mode: kNone " "conv_result_scale: 1 side_input_scale: 0 leakyrelu_alpha: 0} " "force_earliest_schedule: false") .value(); } GpuBackendConfig config_; }; TEST_F(DenylistTest, DefaultTest) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(7); cudnn_version.set_minor(6); cudnn_version.set_patch(2); auto list = GetDisabledConvAlgorithms( cc, cudnn_version, "9000", HloStringWithGpuBackendConfig( R"((f16[256,112,112,64]{3,2,1,0}, u8[0]{0}) custom-call(f16[256,224,224,4]{3,2,1,0}, f16[7,7,4,64]{2,1,0,3}), window={size=7x7 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward")", config_)); EXPECT_THAT(list, testing::UnorderedElementsAre( stream_executor::dnn::AlgorithmDesc{0, true}, stream_executor::dnn::AlgorithmDesc{0, false}, stream_executor::dnn::AlgorithmDesc{1, true}, stream_executor::dnn::AlgorithmDesc{1, false}, stream_executor::dnn::AlgorithmDesc{42, true}, stream_executor::dnn::AlgorithmDesc{42, false})); } TEST_F(DenylistTest, NegativeTest) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(7); cudnn_version.set_minor(6); cudnn_version.set_minor(2); auto list = GetDisabledConvAlgorithms(cc, cudnn_version, "9000", R"(invalid hlo)"); EXPECT_THAT(list, testing::IsEmpty()); } TEST_F(DenylistTest, NoBlasVersionSet) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(7); cudnn_version.set_minor(6); cudnn_version.set_patch(2); auto list = GetDisabledConvAlgorithms( cc, cudnn_version, "120301", HloStringWithGpuBackendConfig( R"((f16[256,112,112,64]{3,2,1,0}, u8[0]{0}) custom-call(f16[256,224,224,4]{3,2,1,0}, f16[7,7,4,64]{2,1,0,3}), window={size=7x7 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward")", config_)); EXPECT_THAT(list, testing::UnorderedElementsAre( stream_executor::dnn::AlgorithmDesc{42, true}, stream_executor::dnn::AlgorithmDesc{42, false})); } TEST_F(DenylistTest, EntryFromHardcodedList) { ComputeCapability cc; cc.set_major(7); cc.set_minor(0); CudnnVersion cudnn_version; cudnn_version.set_major(9); cudnn_version.set_minor(0); cudnn_version.set_patch(0); auto list = GetDisabledConvAlgorithms( cc, cudnn_version, "9000", HloStringWithGpuBackendConfig( R"((f32[512,512,7,7]{3,2,1,0}, u8[0]{0}) custom-call(f32[512,512,7,7]{3,2,1,0}, f32[512,512,3,3]{3,2,1,0}, f32[512]{0}), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_oi01->bf01, custom_call_target="__cudnn$convBiasActivationForward")", config_)); EXPECT_THAT(list, testing::ElementsAre( stream_executor::dnn::AlgorithmDesc{14, false})); } } } }
2,080
cpp
tensorflow/tensorflow
reduction_utils
third_party/xla/xla/service/gpu/reduction_utils.cc
third_party/xla/xla/service/gpu/reduction_utils_test.cc
#ifndef XLA_SERVICE_GPU_REDUCTION_UTILS_H_ #define XLA_SERVICE_GPU_REDUCTION_UTILS_H_ #include <cstdint> #include <ostream> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_module_config.h" #include "xla/util.h" namespace xla { namespace gpu { int64_t MinThreadsXRowReduction(const HloModuleConfig& hlo_module_config); inline constexpr int64_t BatchedReductionRaceFreeBound() { return 8; } struct ReductionDimensions { constexpr static int kRowMajorReducedDimension = 0; constexpr static int kRowKeptDimension = 1; constexpr static int kRowMinorReducedDimension = 2; constexpr static int kColMajorKeptDimension = 0; constexpr static int kColReducedDimension = 1; constexpr static int kColMinorKeptDimension = 2; bool is_row_reduction; Vector3 dimensions; bool operator==(const ReductionDimensions& other) const { return is_row_reduction == other.is_row_reduction && dimensions == other.dimensions; } }; std::ostream& operator<<(std::ostream& os, const ReductionDimensions& reduction_dimensions); bool IsUnnestedReductionFasterThanElemental( const ReductionDimensions& reduction_dimensions); bool IsReductionFromOrToContiguousDimensions(const HloInstruction& reduce); ReductionDimensions GetReductionKindAndContiguousComponents( const HloInstruction& reduce); Vector3 GetReductionTiling(const ReductionDimensions& reduction_dimensions); int64_t ReductionDimensionRaceFreeBound( const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions); bool ReductionIsRaceFree(const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions); bool IsRealReductionHero(const HloInstruction& root, const HloInstruction& hero); bool AreReductionsMultiOutputFusionCompatible( const HloInstruction* reduce_hero, const HloInstruction* first_reduce); } } #endif #include "xla/service/gpu/reduction_utils.h" #include <algorithm> #include <array> #include <cstdint> #include <ostream> #include "absl/algorithm/container.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/logging.h" #ifdef GOOGLE_CUDA #include "xla/service/gpu/gpu_asm_opts_util.h" #include "xla/stream_executor/cuda/cuda_asm_compiler.h" #endif namespace xla { namespace gpu { namespace { Vector3 PartitionShapeByMiddleDimensions( const Shape& shape, absl::Span<const int64_t> dims_middle) { CHECK(LayoutUtil::AreDimensionsConsecutive(shape.layout(), dims_middle)); Vector3 values = {1, 1, 1}; enum Segment { kMajor = 0, kMiddle = 1, kMinor = 2 }; Segment cur_segment = kMinor; for (int64_t cur_dim : LayoutUtil::MinorToMajor(shape)) { if (cur_segment != kMajor) { bool cur_dim_in_middle = absl::c_linear_search(dims_middle, cur_dim); if (cur_segment == kMinor) { if (cur_dim_in_middle) { cur_segment = kMiddle; } } else if (cur_segment == kMiddle) { if (!cur_dim_in_middle) { cur_segment = kMajor; } } } values[cur_segment] *= shape.dimensions(cur_dim); } return values; } } int64_t MinThreadsXRowReduction(const HloModuleConfig& hlo_module_config) { #ifdef GOOGLE_CUDA auto ptxas_config = PtxOptsFromDebugOptions(hlo_module_config.debug_options()); auto ptxas_version_tuple = se::GetAsmCompilerVersion(ptxas_config.preferred_cuda_dir); if (!ptxas_version_tuple.ok() || ptxas_version_tuple.value() < std::array<int64_t, 3>{12, 2, 0}) { return 512; } #endif return 1024; } Vector3 GetReductionTiling(const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { int64_t tile_z = std::min(reduction_dimensions.dimensions[0], BatchedReductionRaceFreeBound()); return {tile_z, 1, 16}; } return {1, 128, 1}; } int64_t ReductionDimensionRaceFreeBound( const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions) { Vector3 reduction_tiling = GetReductionTiling(reduction_dimensions); if (reduction_dimensions.is_row_reduction) { return MinThreadsXRowReduction(hlo_module_config) * reduction_tiling[2]; } return WarpSize() * reduction_tiling[1]; } bool IsUnnestedReductionFasterThanElemental( const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { return (reduction_dimensions.dimensions[2] >= WarpSize()) || ((WarpSize() % reduction_dimensions.dimensions[2]) == 0); } int64_t major_size = reduction_dimensions.dimensions[1]; int64_t minor_size = reduction_dimensions.dimensions[2]; bool prefer_elemental_emitter = (major_size < WarpSize()) || (major_size < 2 * WarpSize() && minor_size < WarpSize()) || (major_size < 4 * WarpSize() && minor_size < 8) || (major_size < 8 * WarpSize() && minor_size < 3); return !prefer_elemental_emitter; } bool IsReductionFromOrToContiguousDimensions(const HloInstruction& reduce) { if (reduce.opcode() != HloOpcode::kReduce) { return false; } const Shape& operand_shape = reduce.operand(0)->shape(); absl::Span<const int64_t> dims_to_reduce = reduce.dimensions(); DimensionVector dims_to_keep; for (int64_t dim = 0; dim < operand_shape.dimensions().size(); ++dim) { if (!absl::c_linear_search(dims_to_reduce, dim)) { dims_to_keep.push_back(dim); } } return (LayoutUtil::AreDimensionsConsecutive(operand_shape.layout(), dims_to_keep) || LayoutUtil::AreDimensionsConsecutive(operand_shape.layout(), dims_to_reduce)) && IsUnnestedReductionFasterThanElemental( GetReductionKindAndContiguousComponents(reduce)); } bool ReductionIsRaceFree(const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { return reduction_dimensions.dimensions[2] <= ReductionDimensionRaceFreeBound(hlo_module_config, reduction_dimensions) && reduction_dimensions.dimensions[0] <= BatchedReductionRaceFreeBound(); } return reduction_dimensions.dimensions[1] <= ReductionDimensionRaceFreeBound(hlo_module_config, reduction_dimensions); } std::ostream& operator<<(std::ostream& os, const ReductionDimensions& reduction_dimensions) { bool is_row_reduction = reduction_dimensions.is_row_reduction; os << (is_row_reduction ? "row " : "column ") << "reduction [" << absl::StrJoin(reduction_dimensions.dimensions, ",") << "] -> [" << reduction_dimensions.dimensions[0] << ", " << reduction_dimensions .dimensions[is_row_reduction ? ReductionDimensions::kRowKeptDimension : ReductionDimensions::kColMinorKeptDimension] << "]"; return os; } ReductionDimensions GetReductionKindAndContiguousComponents( const HloInstruction& reduce) { Shape input_shape = reduce.operand(0)->shape(); absl::Span<const int64_t> dims_to_reduce = reduce.dimensions(); DimensionVector dims_to_keep; for (int64_t dim = 0; dim < input_shape.rank(); ++dim) { if (!absl::c_linear_search(dims_to_reduce, dim)) { dims_to_keep.push_back(dim); } } if (dims_to_keep.empty()) { return {true, {1, 1, ShapeUtil::ElementsIn(input_shape)}}; } if (LayoutUtil::AreDimensionsConsecutive(input_shape.layout(), dims_to_keep)) { Vector3 shape_partition = PartitionShapeByMiddleDimensions(input_shape, dims_to_keep); if (shape_partition[1] == 1) { return {true, {1, 1, shape_partition[0] * shape_partition[2]}}; } if (shape_partition[2] == 1) { return {false, {1, shape_partition[0], shape_partition[1]}}; } return {true, shape_partition}; } Vector3 shape_partition = PartitionShapeByMiddleDimensions(input_shape, dims_to_reduce); if (shape_partition[2] == 1) { return {true, {1, shape_partition[0], shape_partition[1]}}; } return {false, shape_partition}; } bool IsRealReductionHero(const HloInstruction& root, const HloInstruction& hero) { if (!IsReductionFromOrToContiguousDimensions(hero)) { return false; } return &root == &hero || ReductionIsRaceFree(hero.GetModule()->config(), GetReductionKindAndContiguousComponents(hero)); } bool AreReductionsMultiOutputFusionCompatible( const HloInstruction* reduce_hero, const HloInstruction* first_reduce) { return GetReductionKindAndContiguousComponents(*reduce_hero) == GetReductionKindAndContiguousComponents(*first_reduce); } } }
#include "xla/service/gpu/reduction_utils.h" #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using ReductionUtilsTest = HloTestBase; const char kModulePrefix[] = R"( HloModule test_module scalar_add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) })"; TEST_F(ReductionUtilsTest, ReductionsAreMultioutputFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,64]{1,0} parameter(0) neg = f32[32,64]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_TRUE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsWithSameCanonicalizedDimsAreMultioutputFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,64]{1,0} parameter(0) bitcast = f32[32,8,8]{2,1,0} bitcast(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(bitcast, constant), dimensions={1,2}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_TRUE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentOperandShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={0}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) p_1 = f32[64,32]{1,0} parameter(1) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_1), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentOutputShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[64]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) p_1 = f32[64,32]{1,0} parameter(1) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[64]{0} fusion(p_1), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[64]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentReduceDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,32]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={0}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,32]{1,0} parameter(0) neg = f32[32,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,32]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } } } }
2,081
cpp
tensorflow/tensorflow
gpu_p2p_pipeliner
third_party/xla/xla/service/gpu/gpu_p2p_pipeliner.cc
third_party/xla/xla/service/gpu/gpu_p2p_pipeliner_test.cc
#ifndef XLA_SERVICE_GPU_GPU_P2P_PIPELINER_H_ #define XLA_SERVICE_GPU_GPU_P2P_PIPELINER_H_ #include "xla/service/hlo_pass_pipeline.h" namespace xla { namespace gpu { void AddP2PPipeliner(HloPassPipeline& pipeline); } } #endif #include "xla/service/gpu/gpu_p2p_pipeliner.h" #include <cstdint> #include <functional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/collective_pipeliner.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { bool ShouldPipeline(const HloInstruction* instr) { if (!HloPredicateIsOp<HloOpcode::kRecvDone, HloOpcode::kSendDone>(instr)) { return false; } auto it = instr->frontend_attributes().map().find(kSendRecvPipelineAttr); if (it == instr->frontend_attributes().map().end()) { return false; } auto allowed_predecessor = [&]() { return instr->opcode() == HloOpcode::kRecvDone && instr->control_predecessors().size() == 1 && instr->control_predecessors()[0]->opcode() == HloOpcode::kSend; }; if (!instr->control_successors().empty() || (!instr->control_predecessors().empty() && !allowed_predecessor())) { return false; } bool is_pipelined = (instr->user_count() == 1 && instr->parent() != nullptr && instr->users()[0] == instr->parent()->root_instruction()); return !is_pipelined; } bool ShouldAllowLoopVariantParameterInChain(const HloInstruction* instr) { CHECK(instr->opcode() == HloOpcode::kGetTupleElement && instr->operand(0)->opcode() == HloOpcode::kParameter); return true; } absl::Status PostprocessP2PImpl( HloInstruction* instr, std::function<std::string(std::vector<ReplicaGroup>&)> transformer) { if (!HloPredicateIsOp<HloOpcode::kRecvDone, HloOpcode::kSendDone>(instr)) { return Internal("Expected SendDone/RecvDone as the pipelined collective"); } instr = instr->mutable_operand(0); if (!HloPredicateIsOp<HloOpcode::kRecv, HloOpcode::kSend>(instr)) { return Internal("Expected Send/Recv as the SendDone/RecvDone operand"); } auto validation_it = instr->frontend_attributes().map().find(kSendRecvValidationAttr); if (validation_it == instr->frontend_attributes().map().end() || validation_it->second == "invalid") { return absl::OkStatus(); } auto statusor_bounds = ParseReplicaGroupsOnly(validation_it->second); if (!statusor_bounds.ok()) { return statusor_bounds.status(); } std::string validation_attr = transformer(statusor_bounds.value()); xla::FrontendAttributes attributes = instr->frontend_attributes(); (*attributes.mutable_map())[kSendRecvValidationAttr] = validation_attr; instr->set_frontend_attributes(attributes); return absl::OkStatus(); } absl::Status PostprocessPeeledP2P(HloInstruction* instr) { auto transform_bounds = [&](std::vector<ReplicaGroup>& replica_groups) { std::vector<std::pair<int64_t, int64_t>> bounds; bounds.reserve(replica_groups.size()); bool all_invalid = true; for (const auto& replica_group : replica_groups) { int64_t lower_bound = replica_group.replica_ids(0); int64_t upper_bound = replica_group.replica_ids(1); if (lower_bound <= 0 && upper_bound >= 0) { all_invalid = false; bounds.push_back({0, 0}); } else { bounds.push_back({1, 0}); } } std::string validation_attr; if (all_invalid) { validation_attr = "invalid"; } else { validation_attr = "{" + absl::StrJoin(bounds, ",", absl::PairFormatter( [](std::string* out, int64_t value) { absl::StrAppend(out, "{", value); }, ",", [](std::string* out, int64_t value) { absl::StrAppend(out, value, "}"); })) + "}"; } return validation_attr; }; return PostprocessP2PImpl(instr, transform_bounds); }; absl::Status PostprocessRotatedP2P(HloInstruction* instr) { auto transform_bounds = [&](std::vector<ReplicaGroup>& replica_groups) { std::vector<std::pair<int64_t, int64_t>> bounds; bounds.reserve(replica_groups.size()); bool all_invalid = true; for (const auto& replica_group : replica_groups) { int64_t lower_bound = replica_group.replica_ids(0); int64_t upper_bound = replica_group.replica_ids(1); if (lower_bound <= upper_bound) { if (lower_bound >= 1) { --lower_bound; } if (upper_bound >= 1) { --upper_bound; } if (lower_bound <= upper_bound) { all_invalid = false; bounds.push_back({lower_bound, upper_bound}); } else { bounds.push_back({1, 0}); } } else { bounds.push_back({lower_bound, upper_bound}); } } std::string validation_attr; if (all_invalid) { validation_attr = "invalid"; } else { validation_attr = "{" + absl::StrJoin(bounds, ",", absl::PairFormatter( [](std::string* out, int64_t value) { absl::StrAppend(out, "{", value); }, ",", [](std::string* out, int64_t value) { absl::StrAppend(out, value, "}"); })) + "}"; } return validation_attr; }; return PostprocessP2PImpl(instr, transform_bounds); } } void AddP2PPipeliner(HloPassPipeline& pipeline) { CollectivePipeliner::Config config{ 0, INT64_MAX, true, false, true, CollectivePipeliner::PipeliningDirection::kBackward, ShouldPipeline, HloPredicateTrue, HloPredicateTrue, ShouldAllowLoopVariantParameterInChain, true, PostprocessPeeledP2P, PostprocessRotatedP2P}; pipeline.AddPass<CollectivePipeliner>(config); } } }
#include "xla/service/gpu/gpu_p2p_pipeliner.h" #include <cstdint> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/hlo_verifier.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" namespace xla { namespace gpu { namespace { class GpuP2PPipelinerTest : public HloTestBase { public: GpuP2PPipelinerTest() { const int64_t kNumReplicas = 1; const int64_t kNumComputations = 4; config_ = GetModuleConfigForTest(kNumReplicas, kNumComputations); } absl::StatusOr<bool> RunOptimizer(HloModule* module) { HloPassPipeline pipeline("optimizer"); pipeline.AddPass<HloVerifier>(false, false); AddP2PPipeliner(pipeline); pipeline.AddPass<HloVerifier>(false, false); return pipeline.Run(module); } protected: HloModuleConfig config_; }; TEST_F(GpuP2PPipelinerTest, TransformRecvSendBackwardsWithMetaDataPostProcessing) { const char* kHloStr = R"( HloModule module cond { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 ub = u32[] constant(10) ROOT result = pred[] compare(count, ub), direction=LT } body { param = (u32[], u32[2]) parameter(0) count = get-tuple-element(param), index=0 send-data = get-tuple-element(param), index=1 after-all.0 = token[] after-all() recv.0 = (u32[2], u32[], token[]) recv(after-all.0), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0", _xla_send_recv_validation="{{1,7}}" } after-all.0.s = token[] after-all() send.0 = (u32[2], u32[], token[]) send(send-data, after-all.0.s), channel_id=1, frontend_attributes={ _xla_send_recv_source_target_pairs="{{1,0}}", _xla_send_recv_pipeline="0", _xla_send_recv_validation="{{1,7}}" } recv-done.0 = (u32[2], token[]) recv-done(recv.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" }, control-predecessors={send.0} recv-data = u32[2] get-tuple-element(recv-done.0), index=0 c1 = u32[] constant(1) new_count = u32[] add(count, c1) r = u32[2] broadcast(c1), dimensions={} s = u32[2] add(r, recv-data) send-done.0 = token[] send-done(send.0), channel_id=1, frontend_attributes={ _xla_send_recv_pipeline="0" } ROOT result = (u32[], u32[2]) tuple(new_count, s) } ENTRY test_computation { c0 = u32[] constant(0) c1 = u32[] constant(1) r = u32[] replica-id() a = u32[] add(c1, r) init = u32[2] broadcast(a), dimensions={} while_init = (u32[], u32[2]) tuple(c0, init) while_result = (u32[], u32[2]) while(while_init), body=body, condition=cond ROOT result = u32[2] get-tuple-element(while_result), index=1 })"; auto module = ParseAndReturnUnverifiedModule(kHloStr, config_).value(); EXPECT_TRUE(RunOptimizer(module.get()).value()); XLA_VLOG_LINES(10, module->ToString()); auto while_op = FindInstruction(module.get(), "while"); EXPECT_EQ(while_op->opcode(), HloOpcode::kWhile); EXPECT_EQ(while_op->shape().tuple_shapes().size(), 5); auto recv1 = DynCast<HloRecvInstruction>(FindInstruction(module.get(), "recv.1")); EXPECT_NE(recv1, nullptr); auto recv2 = DynCast<HloRecvInstruction>(FindInstruction(module.get(), "recv.2")); EXPECT_NE(recv2, nullptr); EXPECT_EQ(recv1->channel_id(), recv2->channel_id()); auto send1 = DynCast<HloSendInstruction>(FindInstruction(module.get(), "send.1")); EXPECT_NE(send1, nullptr); auto send2 = DynCast<HloSendInstruction>(FindInstruction(module.get(), "send.2")); EXPECT_NE(send2, nullptr); EXPECT_EQ(send1->channel_id(), send2->channel_id()); const char* kPeeledAttr = "_xla_send_recv_validation=\"invalid\""; const char* kRotatedAttr = "_xla_send_recv_validation=\"{{0,6}}\""; EXPECT_THAT(send1->ToString(), ::testing::HasSubstr(kPeeledAttr)); EXPECT_THAT(recv1->ToString(), ::testing::HasSubstr(kPeeledAttr)); EXPECT_THAT(send2->ToString(), ::testing::HasSubstr(kRotatedAttr)); EXPECT_THAT(recv2->ToString(), ::testing::HasSubstr(kRotatedAttr)); } } } }
2,082
cpp
tensorflow/tensorflow
cudnn_support_utils
third_party/xla/xla/service/gpu/cudnn_support_utils.cc
third_party/xla/xla/service/gpu/cudnn_support_utils_test.cc
#ifndef XLA_SERVICE_GPU_CUDNN_SUPPORT_UTILS_H_ #define XLA_SERVICE_GPU_CUDNN_SUPPORT_UTILS_H_ #include <cstdint> #include <vector> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { absl::StatusOr<bool> CudnnSupportsOptimizedIntegerConvolution( const se::CudaComputeCapability& compute_capability, HloCustomCallInstruction& conv, int vector_size); struct CudnnReorderTransposeConfig { Shape transpose_shape; Shape result_shape; std::vector<int64_t> permutation; }; absl::StatusOr<CudnnReorderTransposeConfig> CudnnInferTransposeForFilterReordering( const Shape& shape, const ConvolutionDimensionNumbers& dimension_numbers); absl::StatusOr<CudnnReorderTransposeConfig> CudnnInferTransposeForBiasReordering(const Shape& shape); inline constexpr absl::string_view kWorkspaceAllocationCustomCallTarget = "__nop"; bool IsWorkspaceAllocationRoot(const HloInstruction& root); } } #endif #include "xla/service/gpu/cudnn_support_utils.h" #include <cstdint> #include <vector> #include "xla/hlo/ir/hlo_instructions.h" #include "xla/primitive_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/window_util.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::StatusOr<bool> CudnnSupportsOptimizedIntegerConvolution( const se::CudaComputeCapability& compute_capability, HloCustomCallInstruction& conv, int vector_size) { TF_ASSIGN_OR_RETURN(auto kind, GetCudnnConvKind(&conv)); const Shape& input_shape = conv.operand(0)->shape(); const Shape& kernel_shape = conv.operand(1)->shape(); const Shape& result_shape = conv.shape().tuple_shapes(0); const auto& dnums = conv.convolution_dimension_numbers(); if (vector_size != 4 && vector_size != 32) { VLOG(3) << "Unsupported vector size for integer convolution: " << vector_size; return false; } if ((vector_size == 32 && !compute_capability.IsAtLeast(7, 5)) || !compute_capability.IsAtLeast(6, 1)) { VLOG(3) << "Compute capability " << compute_capability.ToString() << " is not sufficent for int8x" << vector_size << " vectorization."; return false; } if (kind != CudnnConvKind::kForward && kind != CudnnConvKind::kForwardActivation) { VLOG(3) << "Convolution kind is not forward or foward-activation: " << conv.ToString(); return false; } if (!primitive_util::IsIntegralType(input_shape.element_type()) || !primitive_util::IsIntegralType(kernel_shape.element_type())) { VLOG(3) << "Convolution does not accept integer inputs/weights: " << conv.ToString(); return false; } if (dnums.input_spatial_dimensions().size() != 2 || dnums.kernel_spatial_dimensions().size() != 2 || dnums.output_spatial_dimensions().size() != 2) { VLOG(3) << "Convolution is not 2D: " << conv.ToString(); return false; } if (vector_size == 32 && !primitive_util::IsIntegralType(result_shape.element_type())) { VLOG(3) << "int8x32 convolutions only support integer output: " << conv.ToString(); return false; } if (vector_size == 32) { int64_t W = input_shape.dimensions(dnums.input_spatial_dimensions()[0]); int64_t H = input_shape.dimensions(dnums.input_spatial_dimensions()[1]); int64_t R = kernel_shape.dimensions(dnums.kernel_spatial_dimensions()[0]); int64_t S = kernel_shape.dimensions(dnums.kernel_spatial_dimensions()[1]); const int64_t dilationW = conv.window().dimensions()[0].base_dilation(); const int64_t dilationH = conv.window().dimensions()[1].base_dilation(); if ((W <= (R - 1) * dilationW) || (H <= (S - 1) * dilationH)) { VLOG(3) << "Conv spatial filter/input dimensions are too small for " "vecotrized int8x32 convolution: " << conv.ToString(); return false; } } if (window_util::HasDilation(conv.window())) { VLOG(3) << "Vectorized integer convolutions do not support dilation: " << conv.ToString(); return false; } return true; } absl::StatusOr<CudnnReorderTransposeConfig> CudnnInferTransposeForFilterReordering( const Shape& shape, const ConvolutionDimensionNumbers& dimension_numbers) { if (shape.rank() != 4 && shape.rank() != 5) { return Internal("Filter shape has unexpected rank."); } const int64_t dO = dimension_numbers.kernel_output_feature_dimension(); const int64_t dI = dimension_numbers.kernel_input_feature_dimension(); const int64_t dH = dimension_numbers.kernel_spatial_dimensions().at(0); const int64_t dW = dimension_numbers.kernel_spatial_dimensions().at(1); bool revectorize = shape.rank() == 5; const int64_t dZ = revectorize ? 10 - dO - dI - dH - dW : -1; const int64_t vsize = revectorize ? shape.dimensions(dZ) : 1; if (shape.dimensions(dO) % 32 != 0 || shape.dimensions(dI) % (32 / vsize) != 0 || (revectorize && vsize != 4 && vsize != 32)) { return Internal("Filter shape is not vectorizable."); } std::vector<int64_t> output = { shape.dimensions(dO), shape.dimensions(dI) / (32 / vsize), shape.dimensions(dH), shape.dimensions(dW), 32}; Shape output_shape = ShapeUtil::MakeShape(shape.element_type(), output); auto calc_index = [&](int dim) { bool split_v = vsize == 32; return (revectorize ? (dI < dim ? 2 - split_v : 0) + (dZ < dim ? 1 + split_v : 0) : (dI < dim ? 3 : 0)) + (dO < dim ? 3 : 0) + (dH < dim) + (dW < dim); }; int idx_O = calc_index(dO); int idx_I = calc_index(dI); int idx_H = calc_index(dH); int idx_W = calc_index(dW); int idx_Y = vsize == 32 ? calc_index(dZ) : idx_I + 1; int idx_Z = vsize == 4 ? calc_index(dZ) : vsize == 32 ? idx_Y + 1 : idx_I + 2; std::vector<int64_t> dims(8); dims[idx_O] = shape.dimensions(dO) / 8; dims[idx_O + 1] = 4; dims[idx_O + 2] = 2; dims[idx_I] = shape.dimensions(dI) / (32 / vsize); dims[idx_Y] = 8; dims[idx_Z] = 4; dims[idx_H] = shape.dimensions(dH); dims[idx_W] = shape.dimensions(dW); Shape split_shape = ShapeUtil::MakeShape(shape.element_type(), dims); std::vector<int64_t> permutation = {idx_I, idx_H, idx_W, idx_O, idx_O + 2, idx_Y, idx_O + 1, idx_Z}; return CudnnReorderTransposeConfig{split_shape, output_shape, permutation}; } absl::StatusOr<CudnnReorderTransposeConfig> CudnnInferTransposeForBiasReordering(const Shape& shape) { if (shape.rank() != 1) { return Internal("Bias shape has unexpected rank."); } if (shape.dimensions(0) % 32 != 0) { return Internal("Bias shape is not vectorizable."); } std::vector<int64_t> dims = {shape.dimensions(0) / 32, 4, 2, 4}; Shape split_shape = ShapeUtil::MakeShape(shape.element_type(), dims); std::vector<int64_t> permutation = {0, 2, 1, 3}; return CudnnReorderTransposeConfig{split_shape, shape, permutation}; } bool IsWorkspaceAllocationRoot(const HloInstruction& root) { return root.IsRoot() && root.opcode() == HloOpcode::kTuple && root.operand_count() == 2 && root.operand(1)->IsCustomCall(kWorkspaceAllocationCustomCallTarget) && root.operand(1)->operand_count() == 0; } } }
#include "xla/service/gpu/cudnn_support_utils.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <tuple> #include <vector> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::tsl::testing::IsOkAndHolds; class CudnnSupportUtilsTest : public HloTestBase { public: absl::StatusOr<HloCustomCallInstruction*> GetCustomCall( xla::VerifiedHloModule* module, absl::string_view target) { HloCustomCallInstruction* call = nullptr; for (HloComputation* comp : module->MakeNonfusionComputations()) { for (HloInstruction* inst : comp->instructions()) { if (inst->IsCustomCall(target)) { VLOG(1) << inst->ToString(); if (call != nullptr) { return tsl::errors::FailedPrecondition( "Found more than one custom call."); } call = Cast<HloCustomCallInstruction>(inst); } } } if (call == nullptr) { return tsl::errors::FailedPrecondition( "Did not find any matching custom call."); } return call; } }; TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedIntegerConvolutionCheckVectorSize) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[8,10,10,128] parameter(0) filter = s8[2,2,128,128] parameter(1) ROOT result = (s8[8,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 7), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 1), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedIntegerConvolutionCheckComputeCapability) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[8,10,10,128] parameter(0) filter = s8[2,2,128,128] parameter(1) ROOT result = (s8[8,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({6, 0}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({6, 1}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 4}, *conv, 32), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedIntegerConvolutionCheckKind) { auto moduleFwd = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleFwd.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); auto moduleBwdFilter = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f16[10,20,30,41] parameter(0) output = f16[10,20,30,40] parameter(1) result = (f16[2,2,41,40], u8[0]) custom-call(input, output), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardFilter" ROOT gte = f16[2,2,41,40] get-tuple-element(result), index=0 })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleBwdFilter.get(), "__cudnn$convBackwardFilter")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); auto moduleBwdInput = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { output = f16[10,20,30,40] parameter(0) filter = f16[2,2,41,40] parameter(1) result = (f16[10,20,30,41], u8[0]) custom-call(output, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convBackwardInput" ROOT gte = f16[10,20,30,41] get-tuple-element(result), index=0 })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleBwdInput.get(), "__cudnn$convBackwardInput")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckTypes) { auto moduleS8InOut = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleS8InOut.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); auto moduleS8InF32Out = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (f32[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleS8InF32Out.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); auto moduleF32InF32Out = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = f32[32,10,10,64] parameter(0) filter = f32[2,2,64,128] parameter(1) ROOT result = (f32[32,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN( conv, GetCustomCall(moduleF32InF32Out.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckDims) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,10,64] parameter(0) filter = s8[2,2,2,64,128] parameter(1) ROOT result = (s8[32,10,10,10,128], u8[0]) custom-call(input, filter), window={size=2x2}, dim_labels=b012f_012io->b012f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckDilation) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,10,10,64] parameter(0) filter = s8[2,2,64,128] parameter(1) ROOT result = (s8[32,20,20,128], u8[0]) custom-call(input, filter), window={size=2x2 rhs_dilate=2x2}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(module.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(false)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); } TEST_F(CudnnSupportUtilsTest, CudnnSupportsOptimizedVectorizedIntegerConvolutionCheckAlgo1Dims) { auto moduleFilterCoversInput = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,2,2,64] parameter(0) filter = s8[3,3,64,128] parameter(1) ROOT result = (s8[32,2,2,128], u8[0]) custom-call(input, filter), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); HloCustomCallInstruction* conv; TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(moduleFilterCoversInput.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(false)); auto moduleFilterAlmostCoversInput = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { input = s8[32,3,3,64] parameter(0) filter = s8[3,3,64,128] parameter(1) ROOT result = (s8[32,3,3,128], u8[0]) custom-call(input, filter), window={size=3x3}, dim_labels=b01f_01io->b01f, custom_call_target="__cudnn$convForward" })") .value(); TF_ASSERT_OK_AND_ASSIGN(conv, GetCustomCall(moduleFilterAlmostCoversInput.get(), "__cudnn$convForward")); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 4), IsOkAndHolds(true)); EXPECT_THAT(CudnnSupportsOptimizedIntegerConvolution({7, 5}, *conv, 32), IsOkAndHolds(true)); } class ReorderFilterRank4Test : public ::testing::TestWithParam<std::string> {}; TEST_P(ReorderFilterRank4Test, InferTransposeRank4) { auto input_dims = GetParam(); size_t dI = input_dims.find('i'); size_t dO = input_dims.find('o'); size_t dH = input_dims.find('0'); size_t dW = input_dims.find('1'); ConvolutionDimensionNumbers dnums; dnums.set_kernel_input_feature_dimension(dI); dnums.set_kernel_output_feature_dimension(dO); dnums.add_kernel_spatial_dimensions(dH); dnums.add_kernel_spatial_dimensions(dW); int64_t shape_dims[4] = {0, 0, 0, 0}; shape_dims[dI] = 224; shape_dims[dO] = 96; shape_dims[dH] = 5; shape_dims[dW] = 3; Shape shape = ShapeUtil::MakeShape(U8, absl::MakeSpan(shape_dims)); auto input = HloInstruction::CreateParameter(0, shape, "input"); auto filter = HloInstruction::CreateParameter(1, shape, "filter"); TF_ASSERT_OK_AND_ASSIGN(CudnnReorderTransposeConfig inferred_config, CudnnInferTransposeForFilterReordering(shape, dnums)); EXPECT_THAT(inferred_config.result_shape.dimensions(), ::testing::ElementsAre(96, 7, 5, 3, 32)); Shape reshaped = ShapeUtil::PermuteDimensions( inferred_config.permutation, inferred_config.transpose_shape); EXPECT_THAT(reshaped.dimensions(), ::testing::ElementsAre(7, 5, 3, 12, 2, 8, 4, 4)); EXPECT_EQ(inferred_config.permutation[6], inferred_config.permutation[4] - 1); EXPECT_EQ(inferred_config.permutation[7], inferred_config.permutation[5] + 1); } std::vector<std::string> GeneratePermutations(std::string input_dims) { std::sort(input_dims.begin(), input_dims.end()); std::vector<std::string> permutations; do { permutations.push_back(input_dims); } while (std::next_permutation(input_dims.begin(), input_dims.end())); return permutations; } INSTANTIATE_TEST_SUITE_P(ReorderTestSuite, ReorderFilterRank4Test, ::testing::ValuesIn(GeneratePermutations("01io"))); class ReorderFilterRank5Test : public ::testing::TestWithParam<std::tuple<std::string, int>> {}; TEST_P(ReorderFilterRank5Test, InferTransposeRank5) { auto [input_dims, vsize] = GetParam(); size_t dI = input_dims.find('i'); size_t dO = input_dims.find('o'); size_t dH = input_dims.find('0'); size_t dW = input_dims.find('1'); ConvolutionDimensionNumbers dnums; dnums.set_kernel_input_feature_dimension(dI); dnums.set_kernel_output_feature_dimension(dO); dnums.add_kernel_spatial_dimensions(dH); dnums.add_kernel_spatial_dimensions(dW); int64_t shape_dims[5] = {vsize, vsize, vsize, vsize, vsize}; shape_dims[dI] = 224 / vsize; shape_dims[dO] = 96; shape_dims[dH] = 5; shape_dims[dW] = 3; Shape shape = ShapeUtil::MakeShape(U8, absl::MakeSpan(shape_dims)); auto input = HloInstruction::CreateParameter(0, shape, "input"); auto filter = HloInstruction::CreateParameter(1, shape, "filter"); TF_ASSERT_OK_AND_ASSIGN(CudnnReorderTransposeConfig inferred_config, CudnnInferTransposeForFilterReordering(shape, dnums)); EXPECT_THAT(inferred_config.result_shape.dimensions(), ::testing::ElementsAre(96, 7, 5, 3, 32)); Shape reshaped = ShapeUtil::PermuteDimensions( inferred_config.permutation, inferred_config.transpose_shape); EXPECT_THAT(reshaped.dimensions(), ::testing::ElementsAre(7, 5, 3, 12, 2, 8, 4, 4)); EXPECT_EQ(inferred_config.permutation[6], inferred_config.permutation[4] - 1); } INSTANTIATE_TEST_SUITE_P( ReorderTestSuite, ReorderFilterRank5Test, ::testing::Combine(::testing::ValuesIn(GeneratePermutations("01?io")), ::testing::Values(4, 32))); class ReorderBiasTest : public ::testing::Test {}; TEST_F(ReorderBiasTest, InferTranspose) { Shape shape = ShapeUtil::MakeShape(U8, {96}); auto bias = HloInstruction::CreateParameter(2, shape, "bias"); Shape unused = ShapeUtil::MakeNil(); auto input = HloInstruction::CreateParameter(0, unused, "input"); auto filter = HloInstruction::CreateParameter(1, unused, "filter"); TF_ASSERT_OK_AND_ASSIGN(CudnnReorderTransposeConfig inferred_config, CudnnInferTransposeForBiasReordering(shape)); Shape reshaped = ShapeUtil::PermuteDimensions( inferred_config.permutation, inferred_config.transpose_shape); EXPECT_THAT(reshaped.dimensions(), ::testing::ElementsAre(3, 2, 4, 4)); EXPECT_EQ(inferred_config.permutation[2], 1); EXPECT_EQ(inferred_config.permutation[3], 3); } } } }
2,083
cpp
tensorflow/tensorflow
target_util
third_party/xla/xla/service/gpu/target_util.cc
third_party/xla/xla/service/gpu/target_util_test.cc
#ifndef XLA_SERVICE_GPU_TARGET_UTIL_H_ #define XLA_SERVICE_GPU_TARGET_UTIL_H_ #include <string> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Value.h" #include "llvm/TargetParser/Triple.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { enum class TargetIntrinsicID { kThreadIdx = 0, kThreadIdy, kThreadIdz, kBlockIdx, kBlockIdy, kBlockIdz, kBarrierId, kBlockDimx, kBlockDimy, kBlockDimz, kGroupBarrierId, }; enum class TargetDeviceFunctionID { kAtan2 = 0, kCbrt, kCos, kExp, kExpm1, kFmod, kHypot, kLog, kLog1p, kPow, kRsqrt, kSin, kSqrt, kTan, kTanh, kErf, }; absl::StatusOr<TargetDeviceFunctionID> GetTargetDeviceFunctionID(HloOpcode); llvm::CallInst* EmitDeviceFunctionCall( const std::string& callee_name, absl::Span<llvm::Value* const> operands, absl::Span<const PrimitiveType> input_type, PrimitiveType output_type, const llvm::AttrBuilder& attributes, llvm::IRBuilder<>* b, absl::string_view name = ""); llvm::CallInst* EmitCallToTargetIntrinsic( TargetIntrinsicID intrinsic_id, absl::Span<llvm::Value* const> operands, absl::Span<llvm::Type* const> overloaded_types, llvm::IRBuilder<>* b); void AnnotateFunctionAsGpuKernel(llvm::Module* module, llvm::Function* func, llvm::IRBuilder<>* b); std::string ObtainDeviceFunctionName(TargetDeviceFunctionID func_id, PrimitiveType output_type, llvm::Triple target_triple); } } #endif #include "xla/service/gpu/target_util.h" #include <functional> #include <string> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/FPEnv.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/TargetParser/Triple.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/llvm_ir/llvm_type_conversion_util.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { using absl::StrCat; struct TargetIntrinsics { llvm::Intrinsic::ID nvptx_intrinsic; std::variant<llvm::Intrinsic::ID, std::function<llvm::CallInst*(llvm::IRBuilder<>*)>> amdgpu_intrinsic_or_function; std::variant<llvm::Intrinsic::ID, std::function<llvm::CallInst*(llvm::IRBuilder<>*)>> spir_intrinsic_or_function; }; struct TargetIntrinsics GetIntrinsic(TargetIntrinsicID intrin) { switch (intrin) { case TargetIntrinsicID::kThreadIdx: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x, llvm::Intrinsic::amdgcn_workitem_id_x, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z32__spirv_BuiltInLocalInvocationIdi", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kThreadIdy: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_tid_y, llvm::Intrinsic::amdgcn_workitem_id_y, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z32__spirv_BuiltInLocalInvocationIdi", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kThreadIdz: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_tid_z, llvm::Intrinsic::amdgcn_workitem_id_z, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z32__spirv_BuiltInLocalInvocationIdi", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBlockIdx: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_x, llvm::Intrinsic::amdgcn_workgroup_id_x, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("_Z26__spirv_BuiltInWorkgroupIdi", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBlockIdy: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_y, llvm::Intrinsic::amdgcn_workgroup_id_y, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("_Z26__spirv_BuiltInWorkgroupIdi", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBlockIdz: { return { llvm::Intrinsic::nvvm_read_ptx_sreg_ctaid_z, llvm::Intrinsic::amdgcn_workgroup_id_z, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("_Z26__spirv_BuiltInWorkgroupIdi", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }, }; } case TargetIntrinsicID::kBarrierId: { return {llvm::Intrinsic::nvvm_barrier0, llvm::Intrinsic::amdgcn_s_barrier, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z22__spirv_ControlBarrierjjj", {b_->getInt32(2), b_->getInt32(2), b_->getInt32(272)}, {U32, U32, U32}, U32, llvm::AttrBuilder(b_->getContext()) .addAttribute(llvm::Attribute::Convergent), b_); }}; } case TargetIntrinsicID::kBlockDimx: { return {llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("__ockl_get_local_size", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z28__spirv_BuiltInWorkgroupSizei", {b_->getInt32(0)}, {U32}, U64, {b_->getContext()}, b_); }}; } case TargetIntrinsicID::kBlockDimy: { return {llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_y, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("__ockl_get_local_size", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z28__spirv_BuiltInWorkgroupSizei", {b_->getInt32(1)}, {U32}, U64, {b_->getContext()}, b_); }}; } case TargetIntrinsicID::kBlockDimz: { return {llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_z, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall("__ockl_get_local_size", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z28__spirv_BuiltInWorkgroupSizei", {b_->getInt32(2)}, {U32}, U64, {b_->getContext()}, b_); }}; } case TargetIntrinsicID::kGroupBarrierId: { return {llvm::Intrinsic::nvvm_bar_warp_sync, llvm::Intrinsic::amdgcn_wave_barrier, [](llvm::IRBuilder<>* b_) -> llvm::CallInst* { return EmitDeviceFunctionCall( "_Z22__spirv_ControlBarrierjjj", {b_->getInt32(2), b_->getInt32(2), b_->getInt32(272)}, {U32, U32, U32}, U32, llvm::AttrBuilder(b_->getContext()) .addAttribute(llvm::Attribute::Convergent), b_); }}; } } } struct TargetDeviceFunction { const std::string nvptx_root; const std::string amdgpu_root; const std::string spir_root; }; struct TargetDeviceFunction GetDeviceFunctionRoot( TargetDeviceFunctionID func_id) { switch (func_id) { case TargetDeviceFunctionID::kAtan2: { return {"__nv_atan2", "__ocml_atan2", "_Z17__spirv_ocl_atan2"}; } case TargetDeviceFunctionID::kCos: { return {"__nv_cos", "__ocml_cos", "_Z15__spirv_ocl_cos"}; } case TargetDeviceFunctionID::kErf: { return {"__nv_erf", "__ocml_erf", "_Z15__spirv_ocl_erf"}; } case TargetDeviceFunctionID::kExp: { return {"__nv_exp", "__ocml_exp", "_Z15__spirv_ocl_exp"}; } case TargetDeviceFunctionID::kExpm1: { return {"__nv_expm1", "__ocml_expm1", "_Z17__spirv_ocl_expm1"}; } case TargetDeviceFunctionID::kFmod: { return {"__nv_fmod", "__ocml_fmod", "_Z16__spirv_ocl_fmod"}; } case TargetDeviceFunctionID::kHypot: { return {"__nv_hypot", "__ocml_hypot", "_Z17__spirv_ocl_hypot"}; } case TargetDeviceFunctionID::kLog: { return {"__nv_log", "__ocml_log", "_Z15__spirv_ocl_log"}; } case TargetDeviceFunctionID::kLog1p: { return {"__nv_log1p", "__ocml_log1p", "_Z17__spirv_ocl_log1p"}; } case TargetDeviceFunctionID::kPow: { return {"__nv_pow", "__ocml_pow", "_Z15__spirv_ocl_pow"}; } case TargetDeviceFunctionID::kRsqrt: { return {"__nv_rsqrt", "__ocml_rsqrt", "_Z17__spirv_ocl_rsqrt"}; } case TargetDeviceFunctionID::kSin: { return {"__nv_sin", "__ocml_sin", "_Z15__spirv_ocl_sin"}; } case TargetDeviceFunctionID::kSqrt: { return {"__nv_sqrt", "__ocml_sqrt", "_Z16__spirv_ocl_sqrt"}; } case TargetDeviceFunctionID::kTan: { return {"__nv_tan", "__ocml_tan", "_Z15__spirv_ocl_tan"}; } case TargetDeviceFunctionID::kTanh: { return {"__nv_tanh", "__ocml_tanh", "_Z16__spirv_ocl_tanh"}; } case TargetDeviceFunctionID::kCbrt: { return {"__nv_cbrt", "__ocml_cbrt", "_Z16__spirv_ocl_cbrt"}; } } } } absl::StatusOr<TargetDeviceFunctionID> GetTargetDeviceFunctionID(HloOpcode op) { switch (op) { case HloOpcode::kAtan2: return TargetDeviceFunctionID::kAtan2; case HloOpcode::kCos: return TargetDeviceFunctionID::kCos; case HloOpcode::kExp: return TargetDeviceFunctionID::kExp; case HloOpcode::kErf: return TargetDeviceFunctionID::kErf; case HloOpcode::kExpm1: return TargetDeviceFunctionID::kExpm1; case HloOpcode::kLog: return TargetDeviceFunctionID::kLog; case HloOpcode::kLog1p: return TargetDeviceFunctionID::kLog1p; case HloOpcode::kPower: return TargetDeviceFunctionID::kPow; case HloOpcode::kRemainder: return TargetDeviceFunctionID::kFmod; case HloOpcode::kRsqrt: return TargetDeviceFunctionID::kRsqrt; case HloOpcode::kSin: return TargetDeviceFunctionID::kSin; case HloOpcode::kSqrt: return TargetDeviceFunctionID::kSqrt; case HloOpcode::kTan: return TargetDeviceFunctionID::kTan; case HloOpcode::kTanh: return TargetDeviceFunctionID::kTanh; case HloOpcode::kCbrt: return TargetDeviceFunctionID::kCbrt; default: break; } return NotFound("The HLO opcode %s is not mapped to a device function", HloOpcodeString(op)); } std::string ObtainDeviceFunctionName(TargetDeviceFunctionID func_id, PrimitiveType output_type, llvm::Triple target_triple) { struct TargetDeviceFunction gpu_root_names = GetDeviceFunctionRoot(func_id); if (target_triple.isNVPTX()) { if (output_type == F32) { return StrCat(gpu_root_names.nvptx_root, "f"); } else if (output_type == F64) { return gpu_root_names.nvptx_root; } else { LOG(FATAL) << "Unexpected type while getting device function name: " << primitive_util::LowercasePrimitiveTypeName(output_type); } } else if (target_triple.getArch() == llvm::Triple::amdgcn) { if (output_type == F32) { return StrCat(gpu_root_names.amdgpu_root, "_f32"); } else if (output_type == F64) { return StrCat(gpu_root_names.amdgpu_root, "_f64"); } else { LOG(FATAL) << "Unexpected type while getting device function name."; } } else if (target_triple.isSPIR()) { if (output_type == F32) { if (gpu_root_names.spir_root == "_Z17__spirv_ocl_hypot" || gpu_root_names.spir_root == "_Z15__spirv_ocl_pow" || gpu_root_names.spir_root == "_Z17__spirv_ocl_atan2" || gpu_root_names.spir_root == "_Z16__spirv_ocl_fmod") { return StrCat(gpu_root_names.spir_root, "ff"); } else { return StrCat(gpu_root_names.spir_root, "f"); } } else if (output_type == F64) { if (gpu_root_names.spir_root == "_Z17__spirv_ocl_hypot" || gpu_root_names.spir_root == "_Z15__spirv_ocl_pow" || gpu_root_names.spir_root == "_Z17__spirv_ocl_atan2" || gpu_root_names.spir_root == "_Z16__spirv_ocl_fmod") { return StrCat(gpu_root_names.spir_root, "dd"); } else { return StrCat(gpu_root_names.spir_root, "d"); } } else { LOG(FATAL) << "Unexpected type while getting device function name."; } } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } } llvm::CallInst* EmitDeviceFunctionCall( const std::string& callee_name, absl::Span<llvm::Value* const> operands, absl::Span<const PrimitiveType> input_types, PrimitiveType output_type, const llvm::AttrBuilder& attributes, llvm::IRBuilder<>* b, absl::string_view name) { std::vector<llvm::Type*> ir_input_types; llvm::Module* module = b->GetInsertBlock()->getModule(); llvm::Triple target_triple = llvm::Triple(module->getTargetTriple()); for (PrimitiveType input_type : input_types) { ir_input_types.push_back( llvm_ir::PrimitiveTypeToIrType(input_type, module)); } llvm::FunctionType* callee_type = llvm::FunctionType::get( llvm_ir::PrimitiveTypeToIrType(output_type, module), ir_input_types, false); llvm::Function* callee = llvm::dyn_cast<llvm::Function>( b->GetInsertBlock() ->getModule() ->getOrInsertFunction(callee_name, callee_type) .getCallee()); callee->addFnAttrs(attributes); if (target_triple.isSPIR()) callee->setCallingConv(llvm::CallingConv::SPIR_FUNC); return b->CreateCall(callee, llvm_ir::AsArrayRef(operands), name.data()); } llvm::CallInst* EmitCallToTargetIntrinsic( TargetIntrinsicID intrinsic_id, absl::Span<llvm::Value* const> operands, absl::Span<llvm::Type* const> overloaded_types, llvm::IRBuilder<>* b) { llvm::Module* module = b->GetInsertBlock()->getModule(); struct TargetIntrinsics gpu_intrinsic_id = GetIntrinsic(intrinsic_id); llvm::Triple target_triple = llvm::Triple(module->getTargetTriple()); llvm::Intrinsic::ID llvm_intrinsic_id = llvm::Intrinsic::not_intrinsic; if (target_triple.isNVPTX()) { llvm_intrinsic_id = gpu_intrinsic_id.nvptx_intrinsic; } else if (target_triple.getArch() == llvm::Triple::amdgcn) { llvm::Intrinsic::ID* llvm_intrinsic_id_ptr = std::get_if<llvm::Intrinsic::ID>( &gpu_intrinsic_id.amdgpu_intrinsic_or_function); if (llvm_intrinsic_id_ptr) { llvm_intrinsic_id = *llvm_intrinsic_id_ptr; } else { std::function<llvm::CallInst*(llvm::IRBuilder<>*)>* builder_func = std::get_if<std::function<llvm::CallInst*(llvm::IRBuilder<>*)>>( &gpu_intrinsic_id.amdgpu_intrinsic_or_function); return (*builder_func)(b); } } else if (target_triple.isSPIR()) { llvm::Intrinsic::ID* llvm_intrinsic_id_ptr = std::get_if<llvm::Intrinsic::ID>( &gpu_intrinsic_id.spir_intrinsic_or_function); if (llvm_intrinsic_id_ptr) { llvm_intrinsic_id = *llvm_intrinsic_id_ptr; } else { std::function<llvm::CallInst*(llvm::IRBuilder<>*)>* builder_func = std::get_if<std::function<llvm::CallInst*(llvm::IRBuilder<>*)>>( &gpu_intrinsic_id.spir_intrinsic_or_function); return (*builder_func)(b); } } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } llvm::Function* intrinsic = llvm::Intrinsic::getDeclaration( module, llvm_intrinsic_id, llvm_ir::AsArrayRef(overloaded_types)); return b->CreateCall(intrinsic, llvm_ir::AsArrayRef(operands)); } void AnnotateFunctionAsGpuKernel(llvm::Module* module, llvm::Function* func, llvm::IRBuilder<>* b) { llvm::Triple target_triple = llvm::Triple(module->getTargetTriple()); if (target_triple.isNVPTX()) { llvm::LLVMContext& context = module->getContext(); llvm::NamedMDNode* nvvm_annotations_node = module->getOrInsertNamedMetadata("nvvm.annotations"); nvvm_annotations_node->addOperand(llvm::MDNode::get( context, {llvm::ConstantAsMetadata::get(func), llvm::MDString::get(context, "kernel"), llvm::ConstantAsMetadata::get(b->getInt32(1))})); } else if (target_triple.getArch() == llvm::Triple::amdgcn) { func->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL); func->addFnAttr("amdgpu-flat-work-group-size", "1, 1024"); } else if (target_triple.isSPIR()) { func->setCallingConv(llvm::CallingConv::SPIR_KERNEL); } else { LOG(FATAL) << "Invalid triple " << target_triple.str(); } } } }
#include "xla/service/gpu/target_util.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/raw_ostream.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { class TargetUtilTest : public testing::Test { public: TargetUtilTest() : module_("test", ctx_), builder_(ctx_) {} protected: void SetUp() override { auto fn = llvm::Function::Create( llvm::FunctionType::get(llvm::Type::getVoidTy(ctx_), {}), llvm::Function::LinkageTypes::ExternalLinkage, "fn", module_); auto block = llvm::BasicBlock::Create(ctx_, "blk", fn); builder_.SetInsertPoint(block); } llvm::LLVMContext ctx_; llvm::Module module_; llvm::IRBuilder<> builder_; }; TEST_F(TargetUtilTest, NVPTXGroupBarrier) { module_.setTargetTriple("nvptx"); EmitCallToTargetIntrinsic(TargetIntrinsicID::kGroupBarrierId, {builder_.getInt32(-1)}, {}, &builder_); builder_.CreateRetVoid(); EXPECT_FALSE(llvm::verifyModule(module_, &llvm::errs())); } TEST_F(TargetUtilTest, AMDGCNGroupBarrier) { module_.setTargetTriple("amdgcn"); EmitCallToTargetIntrinsic(TargetIntrinsicID::kGroupBarrierId, {}, {}, &builder_); builder_.CreateRetVoid(); EXPECT_FALSE(llvm::verifyModule(module_, &llvm::errs())); } } } }
2,084
cpp
tensorflow/tensorflow
collective_permute_valid_iteration_annotator
third_party/xla/xla/service/gpu/transforms/collective_permute_valid_iteration_annotator.cc
third_party/xla/xla/service/gpu/transforms/collective_permute_valid_iteration_annotator_test.cc
#ifndef XLA_SERVICE_GPU_COLLECTIVE_PERMUTE_VALID_ITERATION_ANNOTATOR_H_ #define XLA_SERVICE_GPU_COLLECTIVE_PERMUTE_VALID_ITERATION_ANNOTATOR_H_ #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class CollectivePermuteValidIterationAnnotator : public HloModulePass { public: CollectivePermuteValidIterationAnnotator() = default; absl::string_view name() const override { return "collective-permute-valid-iteration-annotator"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/gpu/collective_permute_valid_iteration_annotator.h" #include "xla/literal_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/while_loop_analysis.h" namespace xla { static const HloInstruction* NonConstantOperand(const HloInstruction* instr) { const HloInstruction* result = nullptr; for (const HloInstruction* operand : instr->operands()) { if (!operand->IsConstant()) { if (result != nullptr) { CHECK_EQ(result, operand); } result = operand; } } CHECK_NE(result, nullptr); return result; } std::optional<int64_t> GetStep(HloInstruction* while_inst) { std::optional<int64_t> indvar_tuple_idx = GetLoopInductionVarTupleIdx(while_inst); if (!indvar_tuple_idx) { return std::nullopt; }; auto* while_body_indvar_update = while_inst->while_body()->root_instruction()->mutable_operand( *indvar_tuple_idx); auto* while_body_indvar = NonConstantOperand(while_body_indvar_update); HloInstruction* trip_count_increase_step_instr = nullptr; if (!Match(while_body_indvar_update, match::AddAnyOrder(match::Op().Is(while_body_indvar), match::Op(&trip_count_increase_step_instr)))) { return std::nullopt; } return LiteralUtil::LiteralAsScalarInt64( trip_count_increase_step_instr->literal()); } absl::StatusOr<bool> CollectivePermuteValidIterationAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->computations(execution_threads)) { for (HloInstruction* inst : comp->instructions()) { if (inst->opcode() != HloOpcode::kCollectivePermute) { continue; } if (inst->frontend_attributes().map().find(kSendRecvValidationAttr) != inst->frontend_attributes().map().end()) { continue; } auto sourceTargetPairs = inst->source_target_pairs(); if (!IsForwardCycle(sourceTargetPairs) && !IsBackwardCycle(sourceTargetPairs)) { continue; } VLOG(2) << "Collective permute with cycle: " << inst->ToString(); int64_t max_device_num = -1; for (auto [source, target] : sourceTargetPairs) { max_device_num = std::max(std::max(source, target), max_device_num); } int64_t num_devices = max_device_num + 1; HloInstruction* whileOp = inst->parent()->WhileCallInstruction(); if (whileOp == nullptr) { VLOG(2) << "No surrounding while op found. Ignoring " << inst->name(); continue; } if (!whileOp->frontend_attributes().map().contains( "is_pipelined_while_loop")) continue; TF_ASSIGN_OR_RETURN(WhileLoopBackendConfig config, whileOp->backend_config<WhileLoopBackendConfig>()); if (!config.has_known_trip_count()) { VLOG(2) << "Trip count for while loop (" << whileOp->name() << "): unknown"; continue; } int64_t trip_count = config.known_trip_count().n(); std::optional<int64_t> step = GetStep(whileOp); VLOG(2) << "Trip count for while loop (" << whileOp->name() << "): " << trip_count; if (!step) { VLOG(2) << "Could not find step for while operation"; continue; } VLOG(2) << "Step for while loop (" << whileOp->name() << "): " << *step; if (*step != 1) { VLOG(2) << "Step is not 1. Skipping..."; continue; } int64_t offset = trip_count - num_devices; std::vector<std::pair<int64_t, int64_t>> sendRecvValidation( sourceTargetPairs.size()); for (size_t currIdx = 0; currIdx < sourceTargetPairs.size(); currIdx++) { sendRecvValidation[currIdx] = {currIdx, currIdx + offset}; } if (IsBackwardCycle(sourceTargetPairs)) { std::reverse(sendRecvValidation.begin(), sendRecvValidation.end()); } xla::FrontendAttributes attributes; std::string iteration_instances = "{" + absl::StrJoin(sendRecvValidation, ",", [](std::string* out, std::pair<int64_t, int64_t> item) { absl::StrAppend(out, "{", item.first, ",", item.second, "}"); }) + "}"; (*attributes.mutable_map())[kSendRecvValidationAttr] = iteration_instances; inst->add_frontend_attributes(attributes); VLOG(1) << "Adding " << kSendRecvValidationAttr << " to " << inst->name() << ": " << iteration_instances; changed = true; } } return changed; } }
#include "xla/service/gpu/collective_permute_valid_iteration_annotator.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_pass_pipeline.h" #include "xla/service/while_loop_trip_count_annotator.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { using CollectivePermuteValidIterationAnnotatorTest = HloTestBase; TEST_F(CollectivePermuteValidIterationAnnotatorTest, NoChange) { absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={()->(s32[], s32[])} %Body (param: (s32[], s32[])) -> (s32[], s32[]) { %param = (s32[], s32[]) parameter(0) %i = s32[] get-tuple-element((s32[], s32[]) %param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %permute = s32[] collective-permute(%i_plus_one), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,0}} ROOT %tuple = (s32[], s32[]) tuple(s32[] %permute, s32[] %permute) } %Cond (param.1: (s32[], s32[])) -> pred[] { %param.1 = (s32[], s32[]) parameter(0) %i.1 = s32[] get-tuple-element((s32[], s32[]) %param.1), index=1 %trip_count = s32[] constant(10) ROOT %done = pred[] compare(s32[] %i.1, s32[] %trip_count), direction=LT } ENTRY %test () -> (s32[], s32[]) { %i_start = s32[] constant(0) %p_start = s32[] constant(0) %initial_tuple = (s32[], s32[]) tuple(s32[] %i_start, s32[] %p_start) ROOT %while = (s32[], s32[]) while((s32[], s32[]) %initial_tuple), condition=%Cond, body=%Body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, 1, 4)); HloPassPipeline pipeline("my-pass-pipeline"); pipeline.AddPass<WhileLoopTripCountAnnotator>(); pipeline.AddPass<CollectivePermuteValidIterationAnnotator>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_FALSE(changed); HloCollectivePermuteInstruction* cp = DynCastOrNull<HloCollectivePermuteInstruction>( FindInstruction(module.get(), HloOpcode::kCollectivePermute)); ASSERT_NE(cp, nullptr); auto sendRecvValidationIt = cp->frontend_attributes().map().find(kSendRecvValidationAttr); ASSERT_EQ(sendRecvValidationIt, cp->frontend_attributes().map().end()); } TEST_F(CollectivePermuteValidIterationAnnotatorTest, ForwardCycle) { absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={()->(s32[], s32[])} %Body (param: (s32[], s32[])) -> (s32[], s32[]) { %param = (s32[], s32[]) parameter(0) %i = s32[] get-tuple-element((s32[], s32[]) %param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %permute = s32[] collective-permute(%i_plus_one), channel_id=1, source_target_pairs={{0,1},{1,2},{2,3},{3,0}} ROOT %tuple = (s32[], s32[]) tuple(s32[] %permute, s32[] %i_plus_one) } %Cond (param.1: (s32[], s32[])) -> pred[] { %param.1 = (s32[], s32[]) parameter(0) %i.1 = s32[] get-tuple-element((s32[], s32[]) %param.1), index=1 %trip_count = s32[] constant(10) ROOT %done = pred[] compare(s32[] %i.1, s32[] %trip_count), direction=LT } ENTRY %test () -> (s32[], s32[]) { %i_start = s32[] constant(0) %p_start = s32[] constant(0) %initial_tuple = (s32[], s32[]) tuple(s32[] %i_start, s32[] %p_start) ROOT %while = (s32[], s32[]) while((s32[], s32[]) %initial_tuple), condition=%Cond, body=%Body, frontend_attributes={is_pipelined_while_loop="true"} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, 1, 4)); HloPassPipeline pipeline("my-pass-pipeline"); pipeline.AddPass<WhileLoopTripCountAnnotator>(); pipeline.AddPass<CollectivePermuteValidIterationAnnotator>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_TRUE(changed); HloCollectivePermuteInstruction* cp = DynCastOrNull<HloCollectivePermuteInstruction>( FindInstruction(module.get(), HloOpcode::kCollectivePermute)); ASSERT_NE(cp, nullptr); auto sendRecvValidationIt = cp->frontend_attributes().map().find(kSendRecvValidationAttr); ASSERT_NE(sendRecvValidationIt, cp->frontend_attributes().map().end()); std::string sendRecvValidationAttr = sendRecvValidationIt->second; EXPECT_EQ(sendRecvValidationAttr, "{{0,6},{1,7},{2,8},{3,9}}"); } TEST_F(CollectivePermuteValidIterationAnnotatorTest, BackwardCycle) { absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={()->(s32[], s32[])} %Body (param: (s32[], s32[])) -> (s32[], s32[]) { %param = (s32[], s32[]) parameter(0) %i = s32[] get-tuple-element((s32[], s32[]) %param), index=1 %one = s32[] constant(1) %i_plus_one = s32[] add(s32[] %i, s32[] %one) %permute = s32[] collective-permute(%i_plus_one), channel_id=1, source_target_pairs={{0,3},{1,0},{2,1},{3,2}} ROOT %tuple = (s32[], s32[]) tuple(s32[] %permute, s32[] %i_plus_one) } %Cond (param.1: (s32[], s32[])) -> pred[] { %param.1 = (s32[], s32[]) parameter(0) %i.1 = s32[] get-tuple-element((s32[], s32[]) %param.1), index=1 %trip_count = s32[] constant(10) ROOT %done = pred[] compare(s32[] %i.1, s32[] %trip_count), direction=LT } ENTRY %test () -> (s32[], s32[]) { %i_start = s32[] constant(0) %p_start = s32[] constant(0) %initial_tuple = (s32[], s32[]) tuple(s32[] %i_start, s32[] %p_start) ROOT %while = (s32[], s32[]) while((s32[], s32[]) %initial_tuple), condition=%Cond, body=%Body, frontend_attributes={is_pipelined_while_loop="true"} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string, 1, 4)); HloPassPipeline pipeline("my-pass-pipeline"); pipeline.AddPass<WhileLoopTripCountAnnotator>(); pipeline.AddPass<CollectivePermuteValidIterationAnnotator>(); TF_ASSERT_OK_AND_ASSIGN(bool changed, pipeline.Run(module.get())); EXPECT_TRUE(changed); HloCollectivePermuteInstruction* cp = DynCastOrNull<HloCollectivePermuteInstruction>( FindInstruction(module.get(), HloOpcode::kCollectivePermute)); ASSERT_NE(cp, nullptr); auto sendRecvValidationIt = cp->frontend_attributes().map().find(kSendRecvValidationAttr); ASSERT_NE(sendRecvValidationIt, cp->frontend_attributes().map().end()); std::string sendRecvValidationAttr = sendRecvValidationIt->second; EXPECT_EQ(sendRecvValidationAttr, "{{3,9},{2,8},{1,7},{0,6}}"); } } }
2,085
cpp
tensorflow/tensorflow
gemv_rewriter
third_party/xla/xla/service/gpu/transforms/gemv_rewriter.cc
third_party/xla/xla/service/gpu/transforms/gemv_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_GEMV_REWRITER_H_ #define XLA_SERVICE_GPU_GEMV_REWRITER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class GemvRewriter : public HloModulePass { public: absl::string_view name() const override { return "gemv-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/gemv_rewriter.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { absl::StatusOr<Layout> GetLayoutWithNewMinorMostDimension( const Layout& layout) { if (!LayoutUtil::IsMonotonicWithDim0Major(layout)) { return absl::InvalidArgumentError("Layout is not normalized."); } return LayoutUtil::MakeDescendingLayout(layout.minor_to_major_size() + 1); } class GemvRewriterVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleDot(HloInstruction* instr) override { HloDotInstruction* dot = Cast<HloDotInstruction>(instr); const DotDimensionNumbers& dim_numbers = dot->dot_dimension_numbers(); HloInstruction* lhs = dot->mutable_operand(0); HloInstruction* rhs = dot->mutable_operand(1); bool lhs_has_non_contracting_dim = lhs->shape().rank() == dim_numbers.lhs_batch_dimensions_size() + dim_numbers.lhs_contracting_dimensions_size() + 1; bool rhs_has_non_contracting_dim = rhs->shape().rank() == dim_numbers.rhs_batch_dimensions_size() + dim_numbers.rhs_contracting_dimensions_size() + 1; if (lhs_has_non_contracting_dim && rhs_has_non_contracting_dim) { return absl::OkStatus(); } if (!lhs_has_non_contracting_dim && !rhs_has_non_contracting_dim) { return absl::OkStatus(); } if (dot->shape().is_dynamic()) { return absl::OkStatus(); } changed_ = true; HloComputation* computation = dot->parent(); HloInstruction* new_lhs = lhs; if (!lhs_has_non_contracting_dim) { const Shape& lhs_shape = lhs->shape(); absl::Span<const int64_t> lhs_dimensions = lhs_shape.dimensions(); std::vector<int64_t> new_lhs_dimensions(lhs_dimensions.begin(), lhs_dimensions.end()); new_lhs_dimensions.push_back(1); Shape new_lhs_shape( lhs_shape.element_type(), new_lhs_dimensions, absl::InlinedVector<bool, 4>(new_lhs_dimensions.size(), false), {}); TF_ASSIGN_OR_RETURN( *new_lhs_shape.mutable_layout(), GetLayoutWithNewMinorMostDimension(lhs_shape.layout())); new_lhs = computation->AddInstruction( HloInstruction::CreateBitcast(new_lhs_shape, lhs)); } HloInstruction* new_rhs = rhs; if (!rhs_has_non_contracting_dim) { const Shape& rhs_shape = rhs->shape(); absl::Span<const int64_t> rhs_dimensions = rhs_shape.dimensions(); std::vector<int64_t> new_rhs_dimensions(rhs_dimensions.begin(), rhs_dimensions.end()); new_rhs_dimensions.push_back(1); Shape new_rhs_shape( rhs_shape.element_type(), new_rhs_dimensions, absl::InlinedVector<bool, 4>(new_rhs_dimensions.size(), false), {}); TF_ASSIGN_OR_RETURN( *new_rhs_shape.mutable_layout(), GetLayoutWithNewMinorMostDimension(rhs_shape.layout())); new_rhs = computation->AddInstruction( HloInstruction::CreateBitcast(new_rhs_shape, rhs)); } std::vector<int64_t> new_out_dimensions; new_out_dimensions.reserve(dot->shape().dimensions().size() + 1); for (int64_t dim_size : dot->shape().dimensions()) { new_out_dimensions.push_back(dim_size); } if (!lhs_has_non_contracting_dim) { int non_contracting_dim_size = new_out_dimensions.back(); new_out_dimensions[new_out_dimensions.size() - 1] = 1; new_out_dimensions.push_back(non_contracting_dim_size); } else { new_out_dimensions.push_back(1); } Shape new_out_shape( dot->shape().element_type(), new_out_dimensions, absl::InlinedVector<bool, 4>(new_out_dimensions.size(), false), {}); TF_ASSIGN_OR_RETURN( *new_out_shape.mutable_layout(), GetLayoutWithNewMinorMostDimension(dot->shape().layout())); HloInstruction* new_dot = computation->AddInstruction(HloInstruction::CreateDot( new_out_shape, new_lhs, new_rhs, dot->dot_dimension_numbers(), dot->precision_config())); HloInstruction* bitcast = computation->AddInstruction( HloInstruction::CreateBitcast(dot->shape(), new_dot)); return computation->ReplaceInstruction(dot, bitcast); } bool changed() const { return changed_; } private: bool changed_ = false; }; } absl::StatusOr<bool> GemvRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { GemvRewriterVisitor gemv_rewriter; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_RETURN_IF_ERROR(computation->Accept(&gemv_rewriter)); } return gemv_rewriter.changed(); } } }
#include "xla/service/gpu/gemv_rewriter.h" #include <memory> #include <optional> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class GemvRewriterTest : public HloTestBase {}; TEST_F(GemvRewriterTest, RewriteMatrixVectorMultiplicationToGemm) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[32,7] parameter(0) p1 = f32[7] parameter(1) ROOT d = f32[32] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), expected); } TEST_F(GemvRewriterTest, RewriteVectorMatrixMultiplicationToGemm) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[7] parameter(0) p1 = f32[7,32] parameter(1) ROOT d = f32[32] dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), expected); } TEST_F(GemvRewriterTest, RewriteMatrixVectorMultiplicationWithBatch) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[2,5,32,7] parameter(0) p1 = f32[2,5,7] parameter(1) ROOT d = f32[2,5,32] dot(p0, p1), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_contracting_dims={2} })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), expected); } TEST_F(GemvRewriterTest, DotNotRewriteVectorVectorMultiplication) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[7] parameter(0) p1 = f32[7] parameter(1) ROOT d = f32[] dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), std::nullopt); } TEST_F(GemvRewriterTest, DotNotRewriteMatrixMatrixMultiplication) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[5,7] parameter(0) p1 = f32[7,32] parameter(1) ROOT d = f32[5,32] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), std::nullopt); } TEST_F(GemvRewriterTest, DoNotRewriteDotsWithNonNormalizedLayout) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[5,32,7]{2,1,0} parameter(0) p1 = f32[5,7]{0,1} parameter(1) ROOT d = f32[5,32]{0,1} dot(p0, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); GemvRewriter rewriter; absl::StatusOr<bool> result = this->RunHloPass(&rewriter, module.get()); EXPECT_FALSE(result.ok()); EXPECT_EQ(result.status().message(), "Layout is not normalized."); } } }
2,086
cpp
tensorflow/tensorflow
stream_attribute_async_wrapper
third_party/xla/xla/service/gpu/transforms/stream_attribute_async_wrapper.cc
third_party/xla/xla/service/gpu/transforms/stream_attribute_async_wrapper_test.cc
#ifndef XLA_SERVICE_GPU_STREAM_ATTRIBUTE_ASYNC_WRAPPER_H_ #define XLA_SERVICE_GPU_STREAM_ATTRIBUTE_ASYNC_WRAPPER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla::gpu { class StreamAttributeAsyncWrapper : public HloModulePass { public: inline static constexpr char kParallelExecutionThread[] = "parallel"; absl::string_view name() const override { return "async-stream-attribute-wrapper"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/gpu/stream_attribute_async_wrapper.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { static absl::StatusOr<bool> AsynchronizeInstruction(HloInstruction* instr) { auto instr_gpu_config = instr->backend_config<GpuBackendConfig>(); if (!instr_gpu_config.ok() || instr_gpu_config->operation_queue_id() == Thunk::kDefaultExecutionStreamId.value()) { return false; } HloComputation* computation = instr->parent(); TF_ASSIGN_OR_RETURN( HloInstruction * done, computation->CreateAsyncInstructions( instr, {}, StreamAttributeAsyncWrapper::kParallelExecutionThread, true)); TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, done->backend_config<GpuBackendConfig>()); gpu_config.set_force_earliest_schedule(false); TF_RETURN_IF_ERROR(done->set_backend_config(gpu_config)); VLOG(5) << "Created async instruction: " << done->ToString(); return true; } } absl::StatusOr<bool> StreamAttributeAsyncWrapper::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 2, "StreamAttributeAsyncWrapper::Run(), before:\n" + module->ToString()); bool changed = false; for (const HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instr : comp->instructions()) { TF_ASSIGN_OR_RETURN(bool result, AsynchronizeInstruction(instr)); changed |= result; } } XLA_VLOG_LINES( 2, "StreamAttributeAsyncWrapper::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/gpu/stream_attribute_async_wrapper.h" #include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { using StreamAttributeAsyncWrapperTest = HloTestBase; TEST_F(StreamAttributeAsyncWrapperTest, NonDefaultOpIsWrapped) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync ENTRY entry { p1_32 = f32[1] parameter(0) p2_32 = f32[1] parameter(1) add_32 = f32[1] add(p1_32, p2_32), backend_config={"operation_queue_id":"1", "wait_on_operation_queues":[], "force_earliest_schedule":true} ROOT exp_32 = f32[1] exponential(add_32), backend_config={"operation_queue_id":"0", "wait_on_operation_queues":[1]} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAsyncWrapper async_wrapper; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, async_wrapper.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* producer = module->entry_computation()->root_instruction()->operand(0); EXPECT_EQ(producer->opcode(), HloOpcode::kAsyncDone); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig done_gpu_config, producer->backend_config<GpuBackendConfig>()); EXPECT_EQ(done_gpu_config.force_earliest_schedule(), false); const HloInstruction* producer_start = producer->operand(0); EXPECT_EQ(producer_start->opcode(), HloOpcode::kAsyncStart); const xla::HloAsyncInstruction* async = Cast<HloAsyncInstruction>(producer_start); EXPECT_EQ(async->async_wrapped_opcode(), HloOpcode::kAdd); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, async->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); EXPECT_EQ(gpu_config.force_earliest_schedule(), true); EXPECT_EQ(async->async_execution_thread(), "parallel"); } } }
2,087
cpp
tensorflow/tensorflow
fusion_process_dump
third_party/xla/xla/service/gpu/fusion_process_dump.cc
third_party/xla/xla/service/gpu/fusion_process_dump_test.cc
#ifndef XLA_SERVICE_GPU_FUSION_PROCESS_DUMP_H_ #define XLA_SERVICE_GPU_FUSION_PROCESS_DUMP_H_ #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class FusionProcessDump { public: static absl::StatusOr<FusionProcessDump> LoadFromFile( const std::string& path); static absl::StatusOr<FusionProcessDump> LoadFromData( const std::string& data, absl::string_view format); static absl::StatusOr<FusionProcessDump> LoadFromProto( const FusionProcessDumpProto& fusion_process_dump_proto); const FusionProcessDumpProto& proto() { return fusion_process_dump_proto_; } HloModule* module() { return hlo_module_.get(); } const se::DeviceDescription& device_info() { return device_info_; } int64_t current_step_idx() { return current_step_idx_; } HloComputation* GetCurrentComputation(); HloInstruction* GetInstructionWithName(absl::string_view name); HloInstruction* GetProducer(); absl::InlinedVector<HloInstruction*, 2> GetConsumers(); HloInstruction* GetLastFusion() { return last_fusion_; } const FusionStep& CurrentStep(); bool HasNext(); void Advance(); private: FusionProcessDump(FusionProcessDumpProto fusion_process_dump_proto, std::unique_ptr<HloModule> hlo_module, se::DeviceDescription device_info, absl::flat_hash_map<std::string, HloComputation*> instruction_name_to_computation_map) : fusion_process_dump_proto_(std::move(fusion_process_dump_proto)), hlo_module_(std::move(hlo_module)), device_info_(std::move(device_info)), instruction_name_to_computation_map_( std::move(instruction_name_to_computation_map)) {} FusionProcessDumpProto fusion_process_dump_proto_; std::unique_ptr<HloModule> hlo_module_; se::DeviceDescription device_info_; absl::flat_hash_map<std::string, HloComputation*> instruction_name_to_computation_map_; int64_t current_step_idx_ = 0; HloInstruction* last_fusion_ = nullptr; }; } } #endif #include "xla/service/gpu/fusion_process_dump.h" #include <string> #include <string_view> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/stream_executor/device_description.h" #include "xla/tools/hlo_module_loader.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { HloInstruction* AddFusionInstruction(HloInstruction* producer, HloInstruction* consumer, HloComputation* computation, std::string_view fusion_name) { if (consumer->opcode() == HloOpcode::kFusion) { return consumer; } auto kind = HloInstruction::FusionKind::kLoop; auto fusion_instruction = computation->AddInstruction( HloInstruction::CreateFusion(consumer->shape(), kind, consumer), fusion_name); TF_CHECK_OK(computation->ReplaceInstruction(consumer, fusion_instruction)); return fusion_instruction; } HloInstruction* Fuse(HloInstruction* producer, HloInstruction* consumer, HloComputation* computation, std::string_view fusion_name) { HloInstruction* fusion_instruction = AddFusionInstruction(producer, consumer, computation, fusion_name); if (producer->opcode() == HloOpcode::kFusion) { fusion_instruction->MergeFusionInstruction(producer); } else { fusion_instruction->FuseInstruction(producer); } if (producer->user_count() == 0) { TF_CHECK_OK(computation->RemoveInstruction(producer)); } return fusion_instruction; } absl::string_view GetProducerName(const FusionStep& step) { if (step.has_fusion()) { return step.fusion().producer_name(); } if (step.has_update_priority()) { return step.update_priority().producer_name(); } if (step.has_producer_ineligible()) { return step.producer_ineligible().producer_name(); } LOG(FATAL) << "Producer name not found in the current step."; } } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromFile( const std::string& path) { std::string format = std::string(tsl::io::Extension(path)); std::string data; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return FusionProcessDump::LoadFromData(data, format); } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromData( const std::string& data, absl::string_view format) { FusionProcessDumpProto fusion_process_dump_proto; if (format == "txt" || format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString( data, &fusion_process_dump_proto)) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else if (format == "pb") { if (!fusion_process_dump_proto.ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: txt, pb, or pbtxt", format); } return FusionProcessDump::LoadFromProto(fusion_process_dump_proto); } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromProto( const FusionProcessDumpProto& fusion_process_dump_proto) { TF_ASSIGN_OR_RETURN( auto module, LoadModuleFromData(fusion_process_dump_proto.hlo_module_before_fusion(), "txt")); se::DeviceDescription gpu_device_info( fusion_process_dump_proto.gpu_device_info()); absl::flat_hash_map<std::string, HloComputation*> instruction_name_to_computation_map; for (HloComputation* computation : module->MakeNonfusionComputations()) { for (HloInstruction* instr : computation->instructions()) { instruction_name_to_computation_map[instr->name()] = computation; } } return FusionProcessDump(std::move(fusion_process_dump_proto), std::move(module), std::move(gpu_device_info), std::move(instruction_name_to_computation_map)); } HloComputation* FusionProcessDump::GetCurrentComputation() { return instruction_name_to_computation_map_.at( GetProducerName(CurrentStep())); } HloInstruction* FusionProcessDump::GetInstructionWithName( absl::string_view name) { return instruction_name_to_computation_map_[name]->GetInstructionWithName( name); } HloInstruction* FusionProcessDump::GetProducer() { return GetInstructionWithName(GetProducerName(CurrentStep())); } absl::InlinedVector<HloInstruction*, 2> FusionProcessDump::GetConsumers() { auto& step = CurrentStep(); if (step.has_fusion()) { return {GetInstructionWithName(step.fusion().consumer_name())}; } if (step.has_update_priority()) { absl::InlinedVector<HloInstruction*, 2> consumers; for (const auto& consumer_name : step.update_priority().consumer_names()) { consumers.push_back(GetInstructionWithName(consumer_name)); } return consumers; } return {}; } const FusionStep& FusionProcessDump::CurrentStep() { CHECK(HasNext()); return fusion_process_dump_proto_.fusion_steps(current_step_idx_); } bool FusionProcessDump::HasNext() { return current_step_idx_ < fusion_process_dump_proto_.fusion_steps_size(); } void FusionProcessDump::Advance() { auto step = CurrentStep(); if (step.has_fusion()) { const auto& fusion_step = step.fusion(); auto* computation = GetCurrentComputation(); HloInstruction* producer = computation->GetInstructionWithName(fusion_step.producer_name()); HloInstruction* consumer = computation->GetInstructionWithName(fusion_step.consumer_name()); HloInstruction* fusion = Fuse(producer, consumer, computation, fusion_step.fusion_name()); instruction_name_to_computation_map_[fusion->name()] = computation; last_fusion_ = fusion; } ++current_step_idx_; } } }
#include "xla/service/gpu/fusion_process_dump.h" #include <string> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace m = ::xla::match; namespace xla { namespace gpu { namespace { using FusionProcessDumpTest = HloTestBase; void AddFusion(FusionProcessDumpProto& dump_proto, const std::string& fusion_name, const std::string& producer_name, const std::string& consumer_name) { auto step = dump_proto.add_fusion_steps(); auto fusion_step = step->mutable_fusion(); fusion_step->set_fusion_name(fusion_name); fusion_step->set_producer_name(producer_name); fusion_step->set_consumer_name(consumer_name); } TEST_F(FusionProcessDumpTest, MultipleFusionSteps) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { p0 = f32[] parameter(0) p1 = f32[] parameter(1) add = f32[] add(p0, p1) subtract = f32[] subtract(p0, p1) abs = f32[] abs(subtract) ROOT multiply = f32[] multiply(add, abs) })")); FusionProcessDumpProto dump_proto; *dump_proto.mutable_gpu_device_info() = TestGpuDeviceInfo::RTXA6000DeviceInfo().ToGpuProto(); dump_proto.set_hlo_module_before_fusion( module->ToString(HloPrintOptions::ShortParsable())); AddFusion(dump_proto, "fusion.1", "subtract", "abs"); AddFusion(dump_proto, "fusion.2", "fusion.1", "multiply"); AddFusion(dump_proto, "fusion.2", "add", "fusion.2"); TF_ASSERT_OK_AND_ASSIGN(auto fusion_process_dump, FusionProcessDump::LoadFromProto(dump_proto)); fusion_process_dump.Advance(); fusion_process_dump.Advance(); fusion_process_dump.Advance(); EXPECT_FALSE(fusion_process_dump.HasNext()); auto root = fusion_process_dump.module()->entry_computation()->root_instruction(); EXPECT_EQ(root->name(), "fusion.2"); ASSERT_THAT(root, GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Multiply( m::Add(m::Parameter(), m::Parameter()), m::Abs(m::Subtract(m::Parameter(), m::Parameter()))))); } } } }
2,088
cpp
tensorflow/tensorflow
rename_fusions
third_party/xla/xla/service/gpu/transforms/rename_fusions.cc
third_party/xla/xla/service/gpu/transforms/rename_fusions_test.cc
#ifndef XLA_SERVICE_GPU_RENAME_FUSIONS_H_ #define XLA_SERVICE_GPU_RENAME_FUSIONS_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class RenameFusions : public HloModulePass { absl::string_view name() const override { return "rename_fusions"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/rename_fusions.h" #include <memory> #include <string> #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" namespace xla { namespace gpu { namespace { constexpr absl::string_view FusionKindToString( HloInstruction::FusionKind kind) { switch (kind) { case HloInstruction::FusionKind::kCustom: return "custom"; case HloInstruction::FusionKind::kLoop: return "loop"; case HloInstruction::FusionKind::kInput: return "input"; case HloInstruction::FusionKind::kOutput: return "output"; } } std::string MakeFusionHeroNames(const HloInstruction* instruction) { std::unique_ptr<HloFusionAdaptor> fusion_adaptor = HloFusionAdaptor::ForInstruction(instruction); absl::btree_set<absl::string_view> heroes; for (auto root : fusion_adaptor->GetRoots()) { heroes.insert(HloOpcodeString(FindNonTrivialHero(root).opcode())); } return absl::StrReplaceAll(absl::StrJoin(heroes, "_"), {{"-", "_"}}); } void RenameFusion(HloModule* module, HloInstruction* instruction) { std::string hero_names = MakeFusionHeroNames(instruction); module->SetAndUniquifyInstrName( instruction, absl::StrCat(FusionKindToString(instruction->fusion_kind()), "_", hero_names, "_fusion")); module->SetAndUniquifyComputationName( instruction->fused_instructions_computation(), absl::StrCat("fused_", hero_names)); } } absl::StatusOr<bool> RenameFusions::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { for (HloComputation* computation : module->MakeNonfusionComputations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kFusion || instruction->fusion_kind() == HloInstruction::FusionKind::kCustom) { continue; } RenameFusion(module, instruction); } } return true; } } }
#include "xla/service/gpu/rename_fusions.h" #include <utility> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { class RenameFusionsTest : public HloTestBase { protected: RenameFusions rename_fusions_; }; TEST_F(RenameFusionsTest, FusionInstructionNames) { absl::string_view kHlo = R"( HloModule test_module square { p = f32[16384] parameter(0) ROOT m = f32[16384] multiply(p, p) } exp { p = f32[16384] parameter(0) ROOT e = f32[16384] exponential(p) } log { p = f32[16384] parameter(0) ROOT l = f32[16384] log(p) } add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY main { p0 = bf16[1024,8192] parameter(0) p1 = f32[8192] parameter(1) p2 = f32[16384] parameter(2) convert = f32[1024,8192] convert(p0) broadcast = f32[1024,8192] broadcast(p1), dimensions={1} c0 = f32[] constant(0) multiply = f32[1024,8192] multiply(broadcast, convert) reduce = f32[1024] reduce(multiply, c0), dimensions={1}, to_apply=add convert.1 = bf16[1024] convert(reduce) s = f32[16384] fusion(p2), kind=kLoop, calls=square e = f32[16384] fusion(s), kind=kLoop, calls=exp l = f32[16384] fusion(s), kind=kInput, calls=log ROOT result = (bf16[1024]{0}, f32[16384]{0}, f32[16384]{0}) tuple(convert.1, l, e) })"; RunAndFilecheckHloRewrite(kHlo, std::move(rename_fusions_), R"( CHECK: ENTRY %main CHECK: %loop_multiply_fusion{{.*}} calls=%fused_multiply CHECK: %input_log_fusion{{.*}} calls=%fused_log CHECK: %loop_exponential_fusion{{.*}} calls=%fused_exponential CHECK: ROOT %result )"); } } }
2,089
cpp
tensorflow/tensorflow
gpu_conv_rewriter
null
null
#ifndef XLA_SERVICE_GPU_GPU_CONV_REWRITER_H_ #define XLA_SERVICE_GPU_GPU_CONV_REWRITER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class GpuConvRewriter : public HloModulePass { public: explicit GpuConvRewriter(const se::GpuComputeCapability& compute_capability) : compute_capability_(compute_capability) {}; absl::string_view name() const override { return "gpu-conv-rewriter"; } static bool ConvIsLowerable(HloInstruction* conv); using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: se::GpuComputeCapability compute_capability_; }; } } #endif #include "xla/service/gpu/gpu_conv_rewriter.h" #include <cstdint> #include <cstdlib> #include <memory> #include <numeric> #include <optional> #include <string> #include <string_view> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { absl::Status CheckTypes(HloInstruction* conv, const se::GpuComputeCapability cc) { auto valid_shape = [conv, &cc](const Shape& shape) -> absl::Status { PrimitiveType type = shape.element_type(); if (!primitive_util::IsFloatingPointType(type) && !primitive_util::IsIntegralType(type)) { return Unimplemented( "Convolutions must have floating-point or integral operands/outputs, " "but got convolution with type %s: %s", primitive_util::LowercasePrimitiveTypeName(type), conv->ToString()); } if (primitive_util::IsF8Type(type)) { if (type != F8E4M3FN && type != F8E5M2) { return Unimplemented( "The only FP8 types supported in convolutions are f8e5m2 and " "f8e4m3, " "but got convolution with FP8 type %s: %s", primitive_util::LowercasePrimitiveTypeName(type), conv->ToString()); } if (!std::holds_alternative<se::CudaComputeCapability>(cc)) { return Unimplemented( "FP8 convolutions are only supported on CUDA GPUs, but got " "FP8 convolution on ROCm GPU: %s", conv->ToString()); } else if (!std::get<se::CudaComputeCapability>(cc).IsAtLeastHopper()) { return Unimplemented( "FP8 convolutions are only supported on CUDA GPUs with compute " "capability at least 9.0, but got " "FP8 convolution on GPU with compute capability %s: %s", std::get<se::CudaComputeCapability>(cc).ToString(), conv->ToString()); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(valid_shape(conv->shape())); TF_RETURN_IF_ERROR(valid_shape(conv->operand(0)->shape())); TF_RETURN_IF_ERROR(valid_shape(conv->operand(1)->shape())); return absl::OkStatus(); } using ConvolutionMatch = std::optional< std::tuple<Window, ConvolutionDimensionNumbers, HloInstruction*>>; bool MaybeConv1dToConv2d(HloInstruction* conv) { if (conv->window().dimensions().size() != 2) { return false; } if (conv->operand(1)->opcode() != HloOpcode::kReshape) { return false; } auto filter = conv->operand(1); std::optional<ShapeUtil::ShapeEqualityDescriptor> reshape_degenerate = filter->ReshapeMerelyInsertsOrDeletes1SizedDimensions(); if (reshape_degenerate.has_value() && reshape_degenerate->deleted_dimensions.empty() && reshape_degenerate->inserted_dimensions.size() == 1) { const auto& dnums = conv->convolution_dimension_numbers(); for (auto dim : dnums.kernel_spatial_dimensions()) { if (dim == reshape_degenerate->inserted_dimensions[0]) { return true; } } } return false; } bool CanImplementAsGpuForwardConv(HloInstruction* conv) { const ConvolutionDimensionNumbers& dnums = conv->convolution_dimension_numbers(); if (dnums.input_spatial_dimensions_size() > 3) { return false; } if (ShapeUtil::IsZeroElementArray(conv->operand(0)->shape()) || ShapeUtil::IsZeroElementArray(conv->operand(1)->shape())) { return false; } if (dnums.input_spatial_dimensions_size() == 2 ? !window_util::AllOrNoneReversed(conv->window()) : window_util::HasWindowReversal(conv->window())) { return false; } return true; } ConvolutionMatch MatchBackwardFilter(HloInstruction* conv) { VLOG(2) << "Trying to match convolution backward filter."; if (conv->feature_group_count() > 1) { VLOG(1) << conv->ToString() << " is a forward convolution. All grouped backward filters are " "mapped to batch grouped convolutions in tf2xla bridge. Hence " "backward filter " "convolutions cannot have feature groups greater than 1 at this " "point. No need to fold to backward filter."; return std::nullopt; } CHECK_EQ(HloOpcode::kConvolution, conv->opcode()); const ConvolutionDimensionNumbers& conv_dnums = conv->convolution_dimension_numbers(); auto input_batch_dim = conv_dnums.input_batch_dimension(); auto input_feature_dim = conv_dnums.input_feature_dimension(); auto input_spatial_dims = conv_dnums.input_spatial_dimensions(); auto kernel_input_feature_dim = conv_dnums.kernel_input_feature_dimension(); auto kernel_output_feature_dim = conv_dnums.kernel_output_feature_dimension(); auto kernel_spatial_dims = conv_dnums.kernel_spatial_dimensions(); auto output_batch_dim = conv_dnums.output_batch_dimension(); auto output_feature_dim = conv_dnums.output_feature_dimension(); auto output_spatial_dims = conv_dnums.output_spatial_dimensions(); for (const WindowDimension& window_dim : conv->window().dimensions()) { if (window_dim.stride() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have stride of 1."; return std::nullopt; } if (window_dim.base_dilation() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have no base (LHS) dilation."; return std::nullopt; } if (window_dim.padding_low() < 0) { VLOG(1) << "Padding low should be non-negative."; return std::nullopt; } if (window_dim.window_reversal()) { VLOG(1) << "Window reversal field not supported"; return std::nullopt; } } int small_kernel_dimension_num = 0; for (int i = 0; i < kernel_spatial_dims.size(); ++i) { if (conv->operand(1)->shape().dimensions(kernel_spatial_dims[i]) <= conv->shape().dimensions(output_spatial_dims[i])) { small_kernel_dimension_num += 1; } } if ((kernel_spatial_dims.empty() || small_kernel_dimension_num > 1 || (!MaybeConv1dToConv2d(conv) && small_kernel_dimension_num == 1)) && !window_util::HasWindowDilation(conv->window())) { VLOG(1) << conv->ToString() << " is a regular forward convolution. No need " "to fold it to a backward filter convolution...."; return std::nullopt; } Window backward_conv_window; for (int i = 0; i < input_spatial_dims.size(); ++i) { WindowDimension* dim = backward_conv_window.add_dimensions(); int64_t filter_size = conv->shape().dimensions(output_spatial_dims[i]); dim->set_size(filter_size); dim->set_stride(conv->window().dimensions(i).window_dilation()); dim->set_padding_low(conv->window().dimensions(i).padding_low()); dim->set_base_dilation(1); dim->set_window_dilation(1); int64_t input_size = conv->operand(0)->shape().dimensions(input_spatial_dims[i]); int64_t output_size = conv->window().dimensions(i).size(); int64_t padded_input_size = filter_size + (output_size - 1) * dim->stride(); int64_t min_padding_high = padded_input_size - input_size - dim->padding_low(); int64_t max_padding_high = min_padding_high + dim->stride() - 1; CHECK_GE(dim->padding_low(), 0); if (dim->padding_low() >= min_padding_high && dim->padding_low() <= max_padding_high) { dim->set_padding_high(dim->padding_low()); } else { if (dim->padding_low() < min_padding_high) { dim->set_padding_high(min_padding_high); } else { dim->set_padding_high(max_padding_high); } } if (dim->padding_high() < 0) { LOG(WARNING) << "Fusing this pattern to backward filter convolution would cause " "negative padding (" << dim->padding_high() << ") on right/bottom of the weight gradients, which is not " "supported by GpuConvPaddingLegalization (b/32744257). " "Falling back to " "unfused convolution for instruction: " << conv->ToString(); return std::nullopt; } } ConvolutionDimensionNumbers backward_conv_dnums; backward_conv_dnums.set_input_batch_dimension(input_feature_dim); backward_conv_dnums.set_input_feature_dimension(input_batch_dim); for (int i = 0; i < input_spatial_dims.size(); ++i) { backward_conv_dnums.add_input_spatial_dimensions(input_spatial_dims[i]); } backward_conv_dnums.set_output_batch_dimension(kernel_input_feature_dim); backward_conv_dnums.set_output_feature_dimension(kernel_output_feature_dim); for (int i = 0; i < kernel_spatial_dims.size(); ++i) { backward_conv_dnums.add_output_spatial_dimensions(kernel_spatial_dims[i]); } backward_conv_dnums.set_kernel_input_feature_dimension(output_batch_dim); backward_conv_dnums.set_kernel_output_feature_dimension(output_feature_dim); for (int i = 0; i < output_spatial_dims.size(); ++i) { backward_conv_dnums.add_kernel_spatial_dimensions(output_spatial_dims[i]); } HloInstruction* lhs = conv->mutable_operand(0); return std::make_tuple(backward_conv_window, backward_conv_dnums, lhs); } ConvolutionMatch MatchBackwardInput(HloInstruction* conv) { VLOG(2) << "Trying to match convolution backward input."; if (conv->feature_group_count() > 1) { return std::nullopt; } CHECK_EQ(HloOpcode::kConvolution, conv->opcode()); HloInstruction* reverse_filter = conv->mutable_operand(1); ConvolutionDimensionNumbers dnums = conv->convolution_dimension_numbers(); auto kernel_out_feature_dim = dnums.kernel_output_feature_dimension(); auto kernel_out_features = reverse_filter->shape().dimensions(kernel_out_feature_dim); if (conv->feature_group_count() > 1 && kernel_out_features == conv->feature_group_count()) { return std::nullopt; } bool is_reversed_filter = reverse_filter->opcode() == HloOpcode::kReverse && absl::c_is_permutation(dnums.kernel_spatial_dimensions(), reverse_filter->dimensions()); bool is_reversed_conv1d_filter = MaybeConv1dToConv2d(conv) && reverse_filter->operand(0)->opcode() == HloOpcode::kReverse; bool is_1x1_filter = absl::c_all_of(conv->window().dimensions(), [](const WindowDimension& d) { return d.size() == 1; }); if (!is_reversed_filter && !is_reversed_conv1d_filter && !(window_util::HasBaseDilation(conv->window()) && (reverse_filter->IsConstant() || is_1x1_filter))) { VLOG(1) << "Can't match to backwards convolution. Either filter is not " "kReverse, or it's not a base-dilated conv with a 1x1 or " "constant filter."; return std::nullopt; } for (const WindowDimension& window_dim : conv->window().dimensions()) { if (window_dim.stride() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have stride of 1."; return std::nullopt; } if (window_dim.window_dilation() != 1) { VLOG(1) << "Forward convolution's window " << conv->window().ShortDebugString() << " should have no window dilation."; return std::nullopt; } if (window_dim.window_reversal()) { VLOG(1) << "Window reversal field not supported"; return std::nullopt; } } const auto& input_spatial_dims = dnums.input_spatial_dimensions(); const auto& output_spatial_dims = dnums.output_spatial_dimensions(); CHECK_EQ(conv->window().dimensions().size(), input_spatial_dims.size()); CHECK_EQ(output_spatial_dims.size(), input_spatial_dims.size()); const Window& old_window = conv->window(); Window new_window = old_window; for (size_t i = 0; i < input_spatial_dims.size(); ++i) { auto dim = new_window.mutable_dimensions(i); dim->set_stride(old_window.dimensions(i).base_dilation()); dim->set_base_dilation(1); auto kernel_size = old_window.dimensions(i).size(); auto backward_padding_low = kernel_size - 1 - old_window.dimensions(i).padding_low(); if (backward_padding_low < 0) { LOG(WARNING) << "The low padding of the backward convolution would be negative (" << backward_padding_low << "), which isn't supported by GpuConvPaddingLegalization " "for now (b/32744257)."; return std::nullopt; } dim->set_padding_low(backward_padding_low); auto unpadded_input_size = conv->shape().dimensions(output_spatial_dims[i]); auto output_size = conv->operand(0)->shape().dimensions(input_spatial_dims[i]); auto padded_input_size = kernel_size + dim->stride() * (output_size - 1); auto total_pad_size = padded_input_size - unpadded_input_size; auto min_padding_high = total_pad_size - backward_padding_low; auto max_padding_high = min_padding_high + dim->stride() - 1; if (backward_padding_low >= min_padding_high && backward_padding_low <= max_padding_high) { dim->set_padding_high(backward_padding_low); } else { if (backward_padding_low < min_padding_high) { dim->set_padding_high(min_padding_high); } else { dim->set_padding_high(max_padding_high); } } if (dim->padding_high() < 0) { LOG(WARNING) << "Fusing this pattern to backward convolution would cause " "negative padding (" << dim->padding_high() << ") on right/bottom of the activations, which is not " "supported by GpuConvPaddingLegalization (b/32744257). " "Falling back to unfused convolution for instruction: " << conv->ToString(); return std::nullopt; } } auto conv_dnums = conv->convolution_dimension_numbers(); dnums.set_kernel_input_feature_dimension( conv_dnums.kernel_output_feature_dimension()); dnums.set_kernel_output_feature_dimension( conv_dnums.kernel_input_feature_dimension()); for (int i = 0; i < input_spatial_dims.size(); ++i) { dnums.set_input_spatial_dimensions(i, conv_dnums.output_spatial_dimensions(i)); dnums.set_output_spatial_dimensions(i, conv_dnums.input_spatial_dimensions(i)); } dnums.set_input_feature_dimension(conv_dnums.output_feature_dimension()); dnums.set_input_batch_dimension(conv_dnums.output_batch_dimension()); dnums.set_output_feature_dimension(conv_dnums.input_feature_dimension()); dnums.set_output_batch_dimension(conv_dnums.input_batch_dimension()); if (reverse_filter->opcode() != HloOpcode::kReverse && reverse_filter->IsConstant()) { HloComputation* c = conv->parent(); reverse_filter = c->AddInstruction( HloInstruction::CreateReverse(reverse_filter->shape(), reverse_filter, dnums.kernel_spatial_dimensions())); reverse_filter = c->AddInstruction( HloInstruction::CreateReverse(reverse_filter->shape(), reverse_filter, dnums.kernel_spatial_dimensions())); TF_CHECK_OK(conv->ReplaceOperandWith(1, reverse_filter)); } HloInstruction* rhs = reverse_filter; if (rhs->opcode() == HloOpcode::kReverse) { rhs = rhs->mutable_operand(0); } else if (is_reversed_conv1d_filter) { auto src = rhs->mutable_operand(0)->mutable_operand(0); rhs = conv->parent()->AddInstruction( HloInstruction::CreateReshape(rhs->shape(), src)); } if (conv->feature_group_count() == 1) { return std::make_tuple(new_window, dnums, rhs); } int64_t input_feature_dimension = dnums.kernel_input_feature_dimension(); int64_t output_feature_dimension = dnums.kernel_output_feature_dimension(); if (std::abs(input_feature_dimension - output_feature_dimension) != 1) { return std::nullopt; } int64_t input_features = rhs->shape().dimensions(input_feature_dimension); int64_t output_features = rhs->shape().dimensions(output_feature_dimension); std::vector<int64_t> reshape_dims = SpanToVector(rhs->shape().dimensions()); auto num_groups = conv->feature_group_count(); CHECK_EQ(input_features % num_groups, 0) << "Input feature count should be an exact multiple of feature group " "count"; reshape_dims[input_feature_dimension] = reshape_dims[input_feature_dimension] / num_groups; reshape_dims.insert(reshape_dims.begin() + input_feature_dimension, num_groups); HloComputation* c = conv->parent(); rhs = c->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(rhs->shape().element_type(), reshape_dims), rhs)); std::vector<int64_t> transpose_dims(rhs->shape().dimensions_size()); std::iota(transpose_dims.begin(), transpose_dims.end(), 0); transpose_dims.erase(transpose_dims.begin() + input_feature_dimension); transpose_dims.insert(transpose_dims.begin() + output_feature_dimension, input_feature_dimension); std::vector<int64_t> transpose_reshape_dims = SpanToVector(rhs->shape().dimensions()); transpose_reshape_dims.erase(transpose_reshape_dims.begin() + input_feature_dimension); transpose_reshape_dims.insert( transpose_reshape_dims.begin() + output_feature_dimension, num_groups); rhs = c->AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(rhs->shape().element_type(), transpose_reshape_dims), rhs, transpose_dims)); Shape new_shape = rhs->shape(); new_shape.DeleteDimension(output_feature_dimension); new_shape.set_dimensions(output_feature_dimension, output_features * num_groups); rhs = c->AddInstruction(HloInstruction::CreateReshape(new_shape, rhs)); return std::make_tuple(new_window, dnums, rhs); } HloInstruction* CreateGpuConv(absl::string_view call_target, const Shape& shape, HloInstruction* lhs, HloInstruction* rhs, const Window& window, const ConvolutionDimensionNumbers& dnums, int64_t feature_group_count, const PrecisionConfig& precision_config, const OpMetadata& metadata) { HloComputation* computation = lhs->parent();
#include "xla/service/gpu/gpu_conv_rewriter.h" #include <optional> #include <string> #include "absl/log/check.h" #include "absl/strings/str_format.h" #include "xla/array4d.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal_util.h" #include "xla/protobuf_util.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/shape_inference.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class GpuConvRewriterTest : public HloTestBase { public: GpuConvRewriterTest() : HloTestBase(true, false) { for (int i = 0; i < 2; ++i) { WindowDimension* window_dim = default_conv_window_.add_dimensions(); window_dim->set_size(1); window_dim->set_stride(1); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_dilation(1); window_dim->set_base_dilation(1); } tf_default_dnums_for_backward_filter_.set_input_batch_dimension(3); tf_default_dnums_for_backward_filter_.set_input_feature_dimension(0); tf_default_dnums_for_backward_filter_.add_input_spatial_dimensions(1); tf_default_dnums_for_backward_filter_.add_input_spatial_dimensions(2); tf_default_dnums_for_backward_filter_.set_kernel_input_feature_dimension(0); tf_default_dnums_for_backward_filter_.set_kernel_output_feature_dimension( 3); tf_default_dnums_for_backward_filter_.add_kernel_spatial_dimensions(1); tf_default_dnums_for_backward_filter_.add_kernel_spatial_dimensions(2); tf_default_dnums_for_backward_filter_.add_output_spatial_dimensions(0); tf_default_dnums_for_backward_filter_.add_output_spatial_dimensions(1); tf_default_dnums_for_backward_filter_.set_output_batch_dimension(2); tf_default_dnums_for_backward_filter_.set_output_feature_dimension(3); tf_default_dnums_for_backward_input_.set_input_batch_dimension(0); tf_default_dnums_for_backward_input_.set_output_batch_dimension(0); tf_default_dnums_for_backward_input_.set_input_feature_dimension(3); tf_default_dnums_for_backward_input_.set_output_feature_dimension(3); tf_default_dnums_for_backward_input_.add_input_spatial_dimensions(1); tf_default_dnums_for_backward_input_.add_output_spatial_dimensions(1); tf_default_dnums_for_backward_input_.add_input_spatial_dimensions(2); tf_default_dnums_for_backward_input_.add_output_spatial_dimensions(2); tf_default_dnums_for_backward_input_.set_kernel_input_feature_dimension(3); tf_default_dnums_for_backward_input_.set_kernel_output_feature_dimension(2); tf_default_dnums_for_backward_input_.add_kernel_spatial_dimensions(0); tf_default_dnums_for_backward_input_.add_kernel_spatial_dimensions(1); } protected: const se::GpuComputeCapability& GetComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); } bool RunPass(HloModule* module) { return GpuConvRewriter(GetComputeCapability()).Run(module).value(); } Window default_conv_window_; ConvolutionDimensionNumbers tf_default_dnums_for_backward_filter_; ConvolutionDimensionNumbers tf_default_dnums_for_backward_input_; }; TEST_F(GpuConvRewriterTest, BackwardFilterConvolve) { HloComputation::Builder builder(TestName()); HloInstruction* activations = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1, 1, 3, 1}), "activations")); HloInstruction* gradients = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {1, 1, 2, 1}), "gradients")); Window conv_window = default_conv_window_; conv_window.mutable_dimensions(1)->set_size(2); conv_window.mutable_dimensions(1)->set_window_dilation(2); auto* conv = builder.AddInstruction(HloInstruction::CreateConvolve( ShapeInference::InferConvolveShape( activations->shape(), gradients->shape(), 1, 1, conv_window, tf_default_dnums_for_backward_filter_, std::nullopt) .value(), activations, gradients, 1, 1, conv_window, tf_default_dnums_for_backward_filter_, DefaultPrecisionConfig(2))); OpMetadata metadata; metadata.set_op_name("foo"); conv->set_metadata(metadata); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); ASSERT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardFilterCallTarget}), 0))); const auto& md_after_opt = entry_computation->root_instruction()->operand(0)->metadata(); EXPECT_TRUE(protobuf_util::ProtobufEquals(md_after_opt, metadata)) << md_after_opt.DebugString() << " vs " << metadata.DebugString(); } TEST_F(GpuConvRewriterTest, BackwardFilterConvolveEquivalentToForwardConvolution) { HloComputation::Builder builder(TestName()); HloInstruction* activations = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1, 1, 3, 1}), "activations")); HloInstruction* gradients = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {1, 1, 3, 1}), "gradients")); Window conv_window = default_conv_window_; conv_window.mutable_dimensions(1)->set_size(3); builder.AddInstruction(HloInstruction::CreateConvolve( ShapeInference::InferConvolveShape( activations->shape(), gradients->shape(), 1, 1, conv_window, tf_default_dnums_for_backward_filter_, std::nullopt) .value(), activations, gradients, 1, 1, conv_window, tf_default_dnums_for_backward_filter_, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvForwardCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardFilterConvolveWithPaddedActivations) { auto builder = HloComputation::Builder(TestName()); HloInstruction* activations = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {20, 35, 35, 32}), "activations")); HloInstruction* gradients = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {20, 35, 35, 32}), "gradients")); Window conv_window = default_conv_window_; for (int i = 0; i < 2; ++i) { conv_window.mutable_dimensions(i)->set_size(35); conv_window.mutable_dimensions(i)->set_padding_low(1); conv_window.mutable_dimensions(i)->set_padding_high(1); } builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {32, 3, 3, 32}), activations, gradients, 1, 1, conv_window, tf_default_dnums_for_backward_filter_, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardFilterCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardFilterConvolveWithPaddedGradients) { auto builder = HloComputation::Builder(TestName()); HloInstruction* activations = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {20, 10, 10, 192}), "activations")); HloInstruction* gradients = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {20, 4, 4, 320}), "gradients")); Window conv_window = default_conv_window_; for (int i = 0; i < 2; ++i) { conv_window.mutable_dimensions(i)->set_size(4); conv_window.mutable_dimensions(i)->set_padding_high(-1); conv_window.mutable_dimensions(i)->set_window_dilation(2); } builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {320, 3, 3, 192}), activations, gradients, 1, 1, conv_window, tf_default_dnums_for_backward_filter_, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardFilterCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardFilterConvolveWithUnevenPadding) { auto builder = HloComputation::Builder(TestName()); HloInstruction* activations = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {20, 35, 35, 32}), "activations")); HloInstruction* gradients = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {20, 35, 35, 32}), "gradients")); Window conv_window = default_conv_window_; for (int i = 0; i < 2; ++i) { conv_window.mutable_dimensions(i)->set_size(35); conv_window.mutable_dimensions(i)->set_padding_high(1); } builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {32, 2, 2, 32}), activations, gradients, 1, 1, conv_window, tf_default_dnums_for_backward_filter_, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardFilterCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardInputConvolveEvenPadding) { auto builder = HloComputation::Builder(TestName()); HloInstruction* output = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {4, 5, 16, 16}), "output")); HloInstruction* kernel = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {5, 3, 7, 7}), "kernel")); HloInstruction* reverse_kernel = builder.AddInstruction( HloInstruction::CreateReverse(kernel->shape(), kernel, {2, 3})); Window conv_window = default_conv_window_; for (int i = 0; i < 2; ++i) { conv_window.mutable_dimensions(i)->set_size(7); conv_window.mutable_dimensions(i)->set_padding_low(3); conv_window.mutable_dimensions(i)->set_padding_high(3); } ConvolutionDimensionNumbers conv_dnums; conv_dnums.set_input_batch_dimension(0); conv_dnums.set_output_batch_dimension(0); conv_dnums.set_input_feature_dimension(1); conv_dnums.set_output_feature_dimension(1); conv_dnums.add_input_spatial_dimensions(2); conv_dnums.add_output_spatial_dimensions(2); conv_dnums.add_input_spatial_dimensions(3); conv_dnums.add_output_spatial_dimensions(3); conv_dnums.set_kernel_input_feature_dimension(0); conv_dnums.set_kernel_output_feature_dimension(1); conv_dnums.add_kernel_spatial_dimensions(2); conv_dnums.add_kernel_spatial_dimensions(3); HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {4, 3, 16, 16}), output, reverse_kernel, 1, 1, conv_window, conv_dnums, DefaultPrecisionConfig(2))); CHECK(ShapeUtil::Compatible( conv->shape(), ShapeInference::InferConvolveShape( output->shape(), reverse_kernel->shape(), 1, 1, conv_window, conv_dnums, std::nullopt) .value())); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); ASSERT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardInputCallTarget}), 0))); const HloInstruction* custom_call = entry_computation->root_instruction()->operand(0); for (int i = 0; i < 2; ++i) { const WindowDimension& window_dim = custom_call->window().dimensions(i); EXPECT_EQ(3, window_dim.padding_low()); EXPECT_EQ(3, window_dim.padding_high()); EXPECT_EQ(1, window_dim.stride()); EXPECT_EQ(1, window_dim.base_dilation()); } } TEST_F(GpuConvRewriterTest, BackwardInputConvolve1x1Filter) { auto builder = HloComputation::Builder(TestName()); HloInstruction* output = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1, 1, 3, 1}), "output")); HloInstruction* kernel = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {1, 1, 1, 1}), "kernel")); Window conv_window = default_conv_window_; conv_window.mutable_dimensions(1)->set_base_dilation(2); builder.AddInstruction(HloInstruction::CreateConvolve( ShapeInference::InferConvolveShape( output->shape(), kernel->shape(), 1, 1, conv_window, tf_default_dnums_for_backward_input_, std::nullopt) .value(), output, kernel, 1, 1, conv_window, tf_default_dnums_for_backward_input_, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardInputCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardInputConvolve1x1FilterEquivalentToForwardConvolve) { auto builder = HloComputation::Builder(TestName()); HloInstruction* output = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1, 1, 3, 1}), "output")); HloInstruction* kernel = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {1, 1, 1, 1}), "kernel")); builder.AddInstruction(HloInstruction::CreateConvolve( ShapeInference::InferConvolveShape( output->shape(), kernel->shape(), 1, 1, default_conv_window_, tf_default_dnums_for_backward_input_, std::nullopt) .value(), output, kernel, 1, 1, default_conv_window_, tf_default_dnums_for_backward_input_, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvForwardCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardInputConvolveUnevenPaddingOnGradients) { auto builder = HloComputation::Builder(TestName()); HloInstruction* output = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {20, 4, 4, 320}), "output")); HloInstruction* kernel = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {3, 3, 192, 320}), "kernel")); HloInstruction* reverse_kernel = builder.AddInstruction( HloInstruction::CreateReverse(kernel->shape(), kernel, {0, 1})); Window conv_window = default_conv_window_; for (int i = 0; i < 2; ++i) { conv_window.mutable_dimensions(i)->set_size(3); conv_window.mutable_dimensions(i)->set_padding_low(2); conv_window.mutable_dimensions(i)->set_padding_high(3); conv_window.mutable_dimensions(i)->set_base_dilation(2); } HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {20, 10, 10, 192}), output, reverse_kernel, 1, 1, conv_window, tf_default_dnums_for_backward_input_, DefaultPrecisionConfig(2))); CHECK(ShapeUtil::Compatible( conv->shape(), ShapeInference::InferConvolveShape( output->shape(), reverse_kernel->shape(), 1, 1, conv_window, tf_default_dnums_for_backward_input_, std::nullopt) .value())); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); ASSERT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardInputCallTarget}), 0))); const HloInstruction* custom_call = entry_computation->root_instruction()->operand(0); for (int i = 0; i < 2; ++i) { const WindowDimension& window_dim = custom_call->window().dimensions(i); EXPECT_EQ(0, window_dim.padding_low()); EXPECT_EQ(0, window_dim.padding_high()); EXPECT_EQ(2, window_dim.stride()); EXPECT_EQ(1, window_dim.base_dilation()); } } TEST_F(GpuConvRewriterTest, BackwardInputConvolveLowPaddingTooLarge) { auto builder = HloComputation::Builder(TestName()); HloInstruction* output = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {20, 4, 4, 320}), "output")); HloInstruction* kernel = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {3, 3, 192, 320}), "kernel")); HloInstruction* reverse_kernel = builder.AddInstruction( HloInstruction::CreateReverse(kernel->shape(), kernel, {0, 1})); Window conv_window = default_conv_window_; for (int i = 0; i < 2; ++i) { conv_window.mutable_dimensions(i)->set_size(3); conv_window.mutable_dimensions(i)->set_padding_low(3); conv_window.mutable_dimensions(i)->set_padding_high(2); conv_window.mutable_dimensions(i)->set_base_dilation(2); } HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {20, 10, 10, 192}), output, reverse_kernel, 1, 1, conv_window, tf_default_dnums_for_backward_input_, DefaultPrecisionConfig(2))); CHECK(ShapeUtil::Compatible( conv->shape(), ShapeInference::InferConvolveShape( output->shape(), reverse_kernel->shape(), 1, 1, conv_window, tf_default_dnums_for_backward_input_, std::nullopt) .value())); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvForwardCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardInputConvolveUnevenPaddingOnActivations) { auto builder = HloComputation::Builder(TestName()); HloInstruction* output = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1, 1, 7, 1}), "output")); HloInstruction* kernel = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {1, 3, 1, 1}), "kernel")); HloInstruction* reverse_kernel = builder.AddInstruction( HloInstruction::CreateReverse(kernel->shape(), kernel, {0, 1})); Window conv_window = default_conv_window_; WindowDimension* forward_conv_col_dim = conv_window.mutable_dimensions(1); forward_conv_col_dim->set_size(3); forward_conv_col_dim->set_padding_low(2); forward_conv_col_dim->set_padding_high(1); forward_conv_col_dim->set_base_dilation(2); HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {1, 1, 14, 1}), output, reverse_kernel, 1, 1, conv_window, tf_default_dnums_for_backward_input_, DefaultPrecisionConfig(2))); CHECK(ShapeUtil::Compatible( conv->shape(), ShapeInference::InferConvolveShape( output->shape(), reverse_kernel->shape(), 1, 1, conv_window, tf_default_dnums_for_backward_input_, std::nullopt) .value())); auto module = CreateNewVerifiedModule(); const HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); ASSERT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardInputCallTarget}), 0))); const WindowDimension& backward_conv_col_dim = entry_computation->root_instruction()->operand(0)->window().dimensions(1); EXPECT_EQ(0, backward_conv_col_dim.padding_low()); EXPECT_EQ(1, backward_conv_col_dim.padding_high()); } TEST_F(GpuConvRewriterTest, BackwardInputConvolveNegativePaddingHighOnActivations) { auto builder = HloComputation::Builder(TestName()); HloInstruction* output = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {1, 1, 3, 1}), "output")); HloInstruction* kernel = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {1, 2, 1, 1}), "kernel")); HloInstruction* reverse_kernel = builder.AddInstruction( HloInstruction::CreateReverse(kernel->shape(), kernel, {0, 1})); Window conv_window = default_conv_window_; WindowDimension* forward_conv_col_dim = conv_window.mutable_dimensions(1); forward_conv_col_dim->set_size(2); forward_conv_col_dim->set_padding_high(2); HloInstruction* conv = builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape(F32, {1, 1, 4, 1}), output, reverse_kernel, 1, 1, conv_window, tf_default_dnums_for_backward_input_, DefaultPrecisionConfig(2))); CHECK(ShapeUtil::Compatible( conv->shape(), ShapeInference::InferConvolveShape( output->shape(), reverse_kernel->shape(), 1, 1, conv_window, tf_default_dnums_for_backward_input_, std::nullopt) .value())); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunPass(module.get())); EXPECT_THAT(entry_computation->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvForwardCallTarget}), 0))); } TEST_F(GpuConvRewriterTest, BackwardInputConvolveConstantFilter) { Array4D<float> constant_arr(4, 4, 2, 2); constant_arr.FillIota(0); std::string constant_str = LiteralUtil::CreateR4FromArray4D(constant_arr).ToStringWithoutShape(); const std::string module_str = absl::StrFormat(R"( HloModule test ENTRY entry_computation { param0 = f32[128,2,16,16]{3,2,1,0} parameter(0) constant = f32[4,4,2,2]{3,2,1,0} constant(%s) ROOT convolution = f32[128,2,32,32]{3,2,1,0} convolution(param0, constant), window={size=4x4 pad=2_2x2_2 lhs_dilate=2x2}, dim_labels=bf01_01oi->bf01, feature_group_count=1 })", constant_str); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); EXPECT_TRUE(RunPass(m.get())); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardInputCallTarget}, m::Parameter(), m::Reverse(m::Constant())), 0))); } TEST_F(GpuConvRewriterTest, TestBackwardFilterPatternMatch) { const std::string module_str = absl::StrFormat(R"( HloModule Test ENTRY Test { input = f32[8,120,256,256] parameter(0) filter = f32[8,120,256,256] parameter(1) ROOT conv = f32[120,120,3,3] convolution(input, filter), window={size=256x256 pad=1_1x1_1}, dim_labels=fb01_io01->fb01 })"); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); EXPECT_TRUE(RunPass(m.get())); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardFilterCallTarget}, m::Parameter(0), m::Parameter(1)), 0))); } TEST_F(GpuConvRewriterTest, TestBackwardFilterPatternNoMatch) { const std::string module_str = absl::StrFormat(R"( HloModule Test ENTRY Test { input = f32[8,128,2,32] parameter(0) filter = f32[3,3,128,128] parameter(1) ROOT conv = f32[8,128,2,32] convolution(input, filter), window={size=3x3 pad=1_1x1_1}, dim_labels=bf01_01io->bf01 })"); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); EXPECT_TRUE(RunPass(m.get())); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvForwardCallTarget}, m::Parameter(0), m::Parameter(1)), 0))); } TEST_F(GpuConvRewriterTest, TestConv1dBackwardFilterPatternMatch) { const std::string module_str = absl::StrFormat(R"( HloModule Test ENTRY Test { input = f32[8,256,128] parameter(0) filter = f32[8,254,128] parameter(1) reshape.1 = f32[8,1,256,128] reshape(input) reshape.2 = f32[8,1,254,128] reshape(filter) ROOT conv = f32[1,3,128,128] convolution(reshape.1, reshape.2), window={size=1x254}, dim_labels=f01b_i01o->01bf })"); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); EXPECT_TRUE(RunPass(m.get())); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall({kCudnnConvBackwardFilterCallTarget}, m::Reshape(), m::Reshape()), 0))); } TEST_F(GpuConvRewriterTest, Tes
2,090
cpp
tensorflow/tensorflow
hlo_fusion_analysis
third_party/xla/xla/service/gpu/hlo_fusion_analysis.cc
third_party/xla/xla/service/gpu/hlo_fusion_analysis_test.cc
#ifndef XLA_SERVICE_GPU_HLO_FUSION_ANALYSIS_H_ #define XLA_SERVICE_GPU_HLO_FUSION_ANALYSIS_H_ #include <cstdint> #include <memory> #include <optional> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { class HloFusionAnalysis { public: enum class EmitterFusionKind { kLoop, kCustomFusion, kTriton, kReduction, kTranspose, kConcatenate, kInputSlices, kScatter, kCuDnn, }; struct InputOutputInfo { int smallest_input_dtype_bits; int smallest_output_dtype_bits; }; static HloFusionAnalysis Create(FusionBackendConfig backend_config, std::unique_ptr<HloFusionAdaptor> fusion, const se::DeviceDescription* device_info); static HloFusionAnalysis Create(const HloFusionInstruction* fusion, const se::DeviceDescription* device_info); const HloFusionAdaptor& fusion() const { return *fusion_; } const absl::InlinedVector<HloInstructionAdaptor, 2>& fusion_roots() const { return fusion_roots_; } HloInstructionAdaptor fusion_root(int64_t i) const { return fusion_roots_[i]; } int64_t fusion_root_count() const { return fusion_roots_.size(); } const absl::InlinedVector<HloInstructionAdaptor, 2>& fusion_heroes() const { return fusion_heroes_; } HloInstructionAdaptor fusion_hero(int64_t i) const { return fusion_heroes_[i]; } int64_t fusion_hero_count() const { return fusion_heroes_.size(); } EmitterFusionKind GetEmitterFusionKind() const; const HloInstruction* FindHeroReduction() const; const se::DeviceDescription& device_info() const { return *device_info_; } const FusionBackendConfig& fusion_backend_config() const { return fusion_backend_config_; } const TransposeDescription& tiled_transpose() const { CHECK(tiled_transpose_.has_value()); return *tiled_transpose_; } const InputOutputInfo& input_output_info() const { return input_output_info_; } private: HloFusionAnalysis(FusionBackendConfig fusion_backend_config, std::unique_ptr<HloFusionAdaptor> fusion, absl::InlinedVector<HloInstructionAdaptor, 2> fusion_roots, absl::InlinedVector<HloInstructionAdaptor, 2> fusion_heroes, const se::DeviceDescription* device_info, std::optional<TransposeDescription> tiled_transpose, InputOutputInfo input_output_info); bool HasConsistentTransposeHeros() const; FusionBackendConfig fusion_backend_config_; std::unique_ptr<HloFusionAdaptor> fusion_; absl::InlinedVector<HloInstructionAdaptor, 2> fusion_roots_; absl::InlinedVector<HloInstructionAdaptor, 2> fusion_heroes_; const se::DeviceDescription* device_info_; std::optional<TransposeDescription> tiled_transpose_; InputOutputInfo input_output_info_; }; HloFusionAnalysis AnalyzeProducerConsumerFusion( const HloInstruction& producer, const HloInstruction& consumer, const se::DeviceDescription& device_info); HloFusionAnalysis AnalyzeFusion(const HloInstruction& consumer, const se::DeviceDescription& device_info); } } #endif #include "xla/service/gpu/hlo_fusion_analysis.h" #include <algorithm> #include <limits> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { namespace { bool IsInputFusibleNonStridedSlices( const absl::Span<const HloInstructionAdaptor> fusion_roots) { return absl::c_all_of(fusion_roots, [&](const HloInstructionAdaptor& root) { return IsSliceWithUnitStrides(&root.instruction()); }); } bool AllSliceInputsAreCompatible( const absl::Span<const HloInstructionAdaptor> fusion_roots) { const Shape& first_slice_operand_shape = fusion_roots[0].GetOperand(0).shape(); return absl::c_all_of(fusion_roots, [&](const HloInstructionAdaptor& slice) { return ShapeUtil::EqualIgnoringElementType(slice.GetOperand(0).shape(), first_slice_operand_shape); }); } std::optional<TransposeDescription> FindConsistentTransposeHero( const absl::InlinedVector<HloInstructionAdaptor, 2>& hlo_roots, const absl::InlinedVector<HloInstructionAdaptor, 2>& heroes) { std::optional<TransposeDescription> tiled_transpose_hero; std::vector<const HloInstruction*> non_transpose_roots; for (auto [root, hero] : llvm::zip(hlo_roots, heroes)) { if (auto tr = GetDescriptionForTiledTransposeEmitter(root.instruction(), hero.instruction())) { if (!tiled_transpose_hero) { tiled_transpose_hero = tr; } else if (!tiled_transpose_hero->IsEquivalent(*tr)) { return std::nullopt; } } else { non_transpose_roots.push_back(&root.instruction()); } } if (!tiled_transpose_hero) return std::nullopt; for (auto* root : non_transpose_roots) { if (!ShapeUtil::IsReshapeOrTransposeBitcast( root->shape(), tiled_transpose_hero->input_shape(), true)) { return std::nullopt; } } return tiled_transpose_hero; } const Shape& GetShape(const HloInstructionAdaptor& adaptor) { return adaptor.shape(); } const Shape& GetShape(const HloInstruction* instruction) { return instruction->shape(); } template <typename Container> int SmallestBitWidth(const Container& args) { int bits = std::numeric_limits<int>::max(); for (const auto& operand : args) { const Shape& shape = GetShape(operand); if (!shape.IsArray()) continue; bits = std::min(bits, shape.element_type() == PRED ? 8 : primitive_util::BitWidth(shape.element_type())); } return bits; } } HloFusionAnalysis::HloFusionAnalysis( FusionBackendConfig fusion_backend_config, std::unique_ptr<HloFusionAdaptor> fusion, absl::InlinedVector<HloInstructionAdaptor, 2> fusion_roots, absl::InlinedVector<HloInstructionAdaptor, 2> fusion_heroes, const se::DeviceDescription* device_info, std::optional<TransposeDescription> tiled_transpose, HloFusionAnalysis::InputOutputInfo input_output_info) : fusion_backend_config_(std::move(fusion_backend_config)), fusion_(std::move(fusion)), fusion_roots_(std::move(fusion_roots)), fusion_heroes_(std::move(fusion_heroes)), device_info_(device_info), tiled_transpose_(tiled_transpose), input_output_info_(std::move(input_output_info)) {} HloFusionAnalysis HloFusionAnalysis::Create( FusionBackendConfig backend_config, std::unique_ptr<HloFusionAdaptor> fusion, const se::DeviceDescription* device_info) { absl::InlinedVector<HloInstructionAdaptor, 2> roots = fusion->GetRoots(); absl::InlinedVector<HloInstructionAdaptor, 2> heroes; for (auto root : roots) { heroes.push_back(FindNonTrivialHero(root)); } InputOutputInfo input_output_info{ SmallestBitWidth(fusion->GetParameters()), SmallestBitWidth(roots), }; std::optional<TransposeDescription> tiled_transpose_hero = FindConsistentTransposeHero(roots, heroes); return HloFusionAnalysis(std::move(backend_config), std::move(fusion), std::move(roots), std::move(heroes), device_info, tiled_transpose_hero, std::move(input_output_info)); } HloFusionAnalysis HloFusionAnalysis::Create( const HloFusionInstruction* fusion, const se::DeviceDescription* device_info) { CHECK(device_info != nullptr); FusionBackendConfig backend_config = fusion->has_backend_config() ? fusion->backend_config<GpuBackendConfig>()->fusion_backend_config() : FusionBackendConfig::default_instance(); return Create(std::move(backend_config), HloFusionAdaptor::ForInstruction(fusion), device_info); } bool HloFusionAnalysis::HasConsistentTransposeHeros() const { return tiled_transpose_.has_value(); } static bool UseConcatenateFusion( absl::Span<const HloInstructionAdaptor> roots, absl::Span<const HloInstructionAdaptor> heroes) { if (heroes.size() != 1) return false; if (heroes.front().opcode() != HloOpcode::kConcatenate) return false; if (roots.front().shape().IsTuple()) return false; if (heroes.front().instruction().operand_count() > 4) return false; return true; } HloFusionAnalysis::EmitterFusionKind HloFusionAnalysis::GetEmitterFusionKind() const { if (fusion_backend_config_.kind() == kCustomFusionKind) { return EmitterFusionKind::kCustomFusion; } if (fusion_backend_config_.kind() == kTritonFusionKind || fusion_backend_config_.kind() == kTritonGemmFusionKind) { return EmitterFusionKind::kTriton; } if (fusion_backend_config_.kind() == kCuDnnFusionKind) { return EmitterFusionKind::kCuDnn; } if (input_output_info_.smallest_input_dtype_bits < 8 || input_output_info_.smallest_output_dtype_bits < 8) { if (fusion_roots_.size() > 1 && IsInputFusibleNonStridedSlices(fusion_roots_) && AllSliceInputsAreCompatible(fusion_roots_)) { return EmitterFusionKind::kInputSlices; } return EmitterFusionKind::kLoop; } std::optional<HloInstructionAdaptor> first_reduce_hero; for (auto [root, hero] : llvm::zip(fusion_roots_, fusion_heroes_)) { if (IsRealReductionHero(root.instruction(), hero.instruction())) { first_reduce_hero = hero; break; } } if (first_reduce_hero.has_value()) { bool valid_shapes = true; Shape hero_operand_shape = first_reduce_hero->GetOperand(0).shape(); for (auto [root, hero] : llvm::zip(fusion_roots_, fusion_heroes_)) { if (root == *first_reduce_hero) { continue; } if (!IsRealReductionHero(root.instruction(), hero.instruction())) { if (ShapeUtil::ElementsIn(root.shape()) != ShapeUtil::ElementsIn(hero_operand_shape)) { valid_shapes = false; break; } } else if (!AreReductionsMultiOutputFusionCompatible( &hero.instruction(), &first_reduce_hero->instruction())) { valid_shapes = false; break; } } if (valid_shapes) { return EmitterFusionKind::kReduction; } } if (HasConsistentTransposeHeros() && tiled_transpose_->permutation[2] != 2) { return EmitterFusionKind::kTranspose; } if (fusion_roots_.size() > 1) { if (IsInputFusibleNonStridedSlices(fusion_roots_) && AllSliceInputsAreCompatible(fusion_roots_)) { return EmitterFusionKind::kInputSlices; } return EmitterFusionKind::kLoop; } if (fusion_roots_[0].opcode() == HloOpcode::kScatter) { return EmitterFusionKind::kScatter; } if (UseConcatenateFusion(fusion_roots_, fusion_heroes_)) { return EmitterFusionKind::kConcatenate; } return EmitterFusionKind::kLoop; } const HloInstruction* HloFusionAnalysis::FindHeroReduction() const { if (GetEmitterFusionKind() != EmitterFusionKind::kReduction) { return nullptr; } const auto& roots = fusion_roots(); CHECK(!roots.empty()); for (auto [root, hero] : llvm::zip(roots, fusion_heroes_)) { if (IsRealReductionHero(root.instruction(), hero.instruction())) { return &hero.instruction(); } } LOG(FATAL) << "Did not find a hero reduction"; } HloFusionAnalysis AnalyzeProducerConsumerFusion( const HloInstruction& producer, const HloInstruction& consumer, const se::DeviceDescription& device_info) { return HloFusionAnalysis::Create( consumer.has_backend_config() ? consumer.backend_config<GpuBackendConfig>()->fusion_backend_config() : producer.backend_config<GpuBackendConfig>() ->fusion_backend_config(), HloFusionAdaptor::ForProducerConsumer(&producer, &consumer), &device_info); } HloFusionAnalysis AnalyzeFusion(const HloInstruction& consumer, const se::DeviceDescription& device_info) { return HloFusionAnalysis::Create( consumer.backend_config<GpuBackendConfig>()->fusion_backend_config(), HloFusionAdaptor::ForInstruction(&consumer), &device_info); } } }
#include "xla/service/gpu/hlo_fusion_analysis.h" #include <gtest/gtest.h> #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class HloFusionAnalysisTest : public HloTestBase {}; TEST_F(HloFusionAnalysisTest, DoesNotPeekOutsideBoundary) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %bitcast = s32[] bitcast(%reduce) })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kLoop); auto analysis_fused = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info); EXPECT_EQ(analysis_fused.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionWithMultipleUsers) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fused_computation { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add %negate = f32[] negate(%reduce) %log = f32[] log(%reduce) ROOT %tuple = (f32[], f32[]) tuple(%negate, %log) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = (f32[], f32[]) fusion(%p0, %p1), kind=kLoop, calls=fused_computation })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto analysis = HloFusionAnalysis::Create( FusionBackendConfig::default_instance(), HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()), &device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusion) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fused_computation { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %negate = f32[] negate(%reduce) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = f32[] fusion(%p0, %p1), kind=kInput, calls=fused_computation })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create( FusionBackendConfig::default_instance(), HloFusionAdaptor::ForInstruction(root), &device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusionPartiallyFused) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %fusion = f32[] fusion(%p0, %p1), kind=kInput, calls=fusion ROOT %negate = f32[] negate(%fusion) })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusionPartiallyFusedInConsumer) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[] parameter(0) ROOT %negate = f32[] negate(%p0) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %fusion = f32[] fusion(%reduce), kind=kInput, calls=fusion })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusionPartiallyFusedInBoth) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion.1 { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add } fusion.2 { %p0 = f32[] parameter(0) ROOT %negate = f32[] negate(%p0) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %fusion.1 = f32[] fusion(%p0, %p1), kind=kInput, calls=fusion.1 ROOT %fusion.2 = f32[] fusion(%fusion.1), kind=kInput, calls=fusion.2 })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReduceMultiOutputFusionWithTransposeBitcast) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[1024, 512]{1,0} parameter(0) %p1 = f32[] parameter(1) %reduce = f32[1024]{0} reduce(%p0, %p1), dimensions={1}, to_apply=add %bitcast = f32[512, 1024]{0,1} bitcast(%p0) ROOT res = (f32[1024]{0}, f32[512, 1024]{0,1}) tuple(%reduce, %bitcast) } ENTRY main { %p0 = f32[1024, 512]{1,0} parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = (f32[1024]{0}, f32[512, 1024]{0,1}) fusion(%p0, %p1), kind=kInput, calls=fusion })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, InvalidReduceMultiOutputFusion) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[1024, 1024]{1,0} parameter(0) %p1 = f32[] parameter(1) %reduce = f32[1024]{0} reduce(%p0, %p1), dimensions={0}, to_apply=add %reduce2 = f32[1024]{0} reduce(%p0, %p1), dimensions={1}, to_apply=add ROOT res = (f32[1024]{0}, f32[1024]{0}) tuple(reduce, reduce2) } ENTRY main { %p0 = f32[1024, 1024]{1,0} parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = (f32[1024]{0}, f32[1024]{0}) fusion(%p0, %p1), kind=kInput, calls=fusion })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = AnalyzeFusion(*root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kLoop); } TEST_F(HloFusionAnalysisTest, InvalidDevice) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY main { %p0 = f32[1024,128] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[128] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %bitcast = s32[128] bitcast(%reduce) })")); stream_executor::GpuDeviceInfoProto device_info_proto; stream_executor::DeviceDescription device_info(device_info_proto); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = AnalyzeProducerConsumerFusion(*root->operand(0), *root, device_info); EXPECT_EQ(analysis_fused.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ConcatFusion) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %p0 = f32[128] parameter(0) %p1 = f32[128] parameter(1) %add = f32[128] add(p0, p0) %concat = f32[256] concatenate(%add, %p1), dimensions={0} ROOT %negate = f32[256] negate(%concat) } ENTRY main { %p0 = f32[128] parameter(0) %p1 = f32[128] parameter(1) ROOT %fusion = f32[256] fusion(%p0, %p1), kind=kInput, calls=fused_computation })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create( FusionBackendConfig::default_instance(), HloFusionAdaptor::ForInstruction(root), &device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kConcatenate); } } }
2,091
cpp
tensorflow/tensorflow
softmax_rewriter_triton
third_party/xla/xla/service/gpu/transforms/softmax_rewriter_triton.cc
third_party/xla/xla/service/gpu/transforms/softmax_rewriter_triton_test.cc
#ifndef XLA_SERVICE_GPU_SOFTMAX_REWRITER_TRITON_H_ #define XLA_SERVICE_GPU_SOFTMAX_REWRITER_TRITON_H_ #include <variant> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_pass_interface.h" #include "xla/service/instruction_fusion.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { struct DiamondChainDescriptor { HloInstruction* root = nullptr; HloInstruction* producer = nullptr; }; using DiamondMatchingDecision = std::variant<FusionDecision, HloInstruction*>; class SoftmaxRewriterTriton : public HloModulePass { public: explicit SoftmaxRewriterTriton(const se::DeviceDescription& device_info, HloCostAnalysis::ShapeSizeFunction shape_size) : device_info_(device_info), shape_size_(shape_size) {} absl::string_view name() const override { return "triton-softmax-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; absl::StatusOr<std::vector<DiamondChainDescriptor>> FindAllFusibleDiamondChains( HloModule& module, const absl::flat_hash_set<absl::string_view>& execution_threads) const; absl::Status FuseDiamondChain(const DiamondChainDescriptor& diamond_chain); DiamondMatchingDecision MatchesTritonCompatibleClosedReductionDiamond( HloInstruction* instr) const; private: const se::DeviceDescription& device_info_; const HloCostAnalysis::ShapeSizeFunction shape_size_; mlir::MLIRContext mlir_context_; }; } } #endif #include "xla/service/gpu/softmax_rewriter_triton.h" #include <functional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/layout_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/triton_support.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { using hlo_query::IsBroadcastOfParameter; using hlo_query::IsBroadcastOfScalarConstant; bool HasDefaultLayout(const Shape& shape) { return shape.has_layout() && LayoutUtil::IsMonotonicWithDim0Major(shape.layout()); } bool TrivialEdge(HloInstruction** producer, HloInstruction* consumer, HloOpcode opcode, const se::GpuComputeCapability& gpu_version); bool BitcastIsTilingNoop(HloInstruction* bitcast, const se::GpuComputeCapability& gpu_version) { CHECK_EQ(bitcast->opcode(), HloOpcode::kBitcast); if (ShapeUtil::IsEffectiveScalar(bitcast->shape())) { return true; } auto last_dimension = [](const HloInstruction* instr) { return instr->shape().dimensions().back(); }; HloInstruction* reduce = nullptr; TrivialEdge(&reduce, bitcast->mutable_operand(0), HloOpcode::kReduce, gpu_version); return (HasDefaultLayout(bitcast->shape()) && HasDefaultLayout(bitcast->operand(0)->shape()) && (reduce != nullptr || last_dimension(bitcast->operand(0)) == last_dimension(bitcast))); } inline bool HasOneUse(const HloInstruction* instr) { return instr->user_count() == 1; } bool IsBatchOrReductionDimBroadcast(const HloInstruction& hlo) { CHECK_EQ(hlo.opcode(), HloOpcode::kBroadcast) << "Expected broadcast " << hlo.ToShortString(); CHECK_EQ(hlo.operand(0)->opcode(), HloOpcode::kParameter) << "Expected parameter " << hlo.operand(0)->ToShortString(); const HloBroadcastInstruction* broadcast = Cast<HloBroadcastInstruction>(&hlo); const HloParameterInstruction* parameter = Cast<HloParameterInstruction>(hlo.operand(0)); if (parameter->shape().dimensions_size() + 1 != broadcast->shape().dimensions_size()) { return false; } bool preserve_first_dim = broadcast->dimensions().front() == 0; bool preserve_last_dim = broadcast->dimensions().back() == broadcast->shape().dimensions_size() - 1; return !(preserve_first_dim && preserve_last_dim); } bool IsBroadcastOfAScalar(const HloInstruction& hlo) { CHECK_EQ(hlo.opcode(), HloOpcode::kBroadcast) << "Expected broadcast " << hlo.ToShortString(); return ShapeUtil::IsScalar(hlo.operand(0)->shape()); } bool IsSingleRowParameterBroadcast(const HloInstruction& hlo) { CHECK_EQ(hlo.opcode(), HloOpcode::kBroadcast) << "Expected broadcast " << hlo.ToShortString(); CHECK_EQ(hlo.operand(0)->opcode(), HloOpcode::kParameter) << "Expected parameter " << hlo.operand(0)->ToShortString(); const HloBroadcastInstruction* broadcast = Cast<HloBroadcastInstruction>(&hlo); const HloParameterInstruction* parameter = Cast<HloParameterInstruction>(hlo.operand(0)); if (parameter->shape().dimensions_size() != 1) { return false; } return broadcast->dimensions()[0] == broadcast->shape().dimensions_size() - 1; } bool IsSupportedBroadcastOfParameter(const HloInstruction& hlo) { return IsBroadcastOfParameter(hlo) && (IsBatchOrReductionDimBroadcast(hlo) || IsBroadcastOfAScalar(hlo) || IsSingleRowParameterBroadcast(hlo)); } HloInstruction* ChooseOperandForFusionProcessing(HloInstruction* instr) { CHECK_GT(instr->operand_count(), 0); CHECK_LE(instr->operand_count(), 2); if (instr->operand_count() > 1 && (IsBroadcastOfScalarConstant(*instr->operand(0)) || IsSupportedBroadcastOfParameter(*instr->operand(0)))) { return instr->mutable_operand(1); } return instr->mutable_operand(0); } bool IsTriviallyFusible(HloInstruction* instr, const se::GpuComputeCapability& gpu_version, int num_allowed_users = 1) { if (instr->user_count() > num_allowed_users || !HasDefaultLayout(instr->shape())) { return false; } if (instr->opcode() == HloOpcode::kBitcast && BitcastIsTilingNoop(instr, gpu_version)) { return true; } if (instr->IsElementwise() && instr->operand_count() == 1) { return static_cast<bool>( legacy_triton::IsTritonSupportedInstruction(*instr, gpu_version)); } if (instr->IsElementwiseBinary()) { const HloInstruction* operand_0 = instr->operand(0); const HloInstruction* operand_1 = instr->operand(1); if (operand_0 == operand_1) { return static_cast<bool>( legacy_triton::IsTritonSupportedInstruction(*instr, gpu_version)); } if ((IsBroadcastOfScalarConstant(*operand_0) || IsSupportedBroadcastOfParameter(*operand_0)) ^ (IsBroadcastOfScalarConstant(*operand_1) || IsSupportedBroadcastOfParameter(*operand_1))) { return static_cast<bool>( legacy_triton::IsTritonSupportedInstruction(*instr, gpu_version)); } } return false; } bool TrivialEdge(HloInstruction** producer, HloInstruction* consumer, HloOpcode opcode, const se::GpuComputeCapability& gpu_version) { while (consumer->opcode() != opcode) { if (IsTriviallyFusible(consumer, gpu_version)) { consumer = ChooseOperandForFusionProcessing(consumer); } else { return false; } } *producer = consumer; return true; } bool IsTriviallyConnectedProducerOf( HloInstruction* producer, HloInstruction* consumer, const se::GpuComputeCapability& gpu_version) { if (producer == consumer) { return true; } HloInstruction* found_producer = consumer; while ( TrivialEdge(&found_producer, consumer, producer->opcode(), gpu_version)) { if (found_producer == producer) { return true; } if (!IsTriviallyFusible(found_producer, gpu_version)) { return false; } consumer = found_producer->mutable_operand(0); } return false; } HloInstruction* FindFirstNonFusibleDiamondProducer( HloInstruction* diamond_producer, const se::GpuComputeCapability& gpu_version) { if (IsTriviallyFusible(diamond_producer, gpu_version, 2)) { diamond_producer = ChooseOperandForFusionProcessing(diamond_producer); while (IsTriviallyFusible(diamond_producer, gpu_version)) { diamond_producer = ChooseOperandForFusionProcessing(diamond_producer); } } return diamond_producer; } absl::StatusOr<HloFusionInstruction*> MakeFusionForDiamondChain( const DiamondChainDescriptor& diamond_chain) { auto [root, producer] = diamond_chain; std::string suggested_name = "triton_softmax"; HloComputation::Builder builder(absl::StrCat(suggested_name, "_computation")); absl::flat_hash_map<const HloInstruction*, HloInstruction*> old_to_new_mapping; int param = 0; old_to_new_mapping[producer] = builder.AddInstruction(HloInstruction::CreateParameter( param, producer->shape(), absl::StrCat("parameter_", param))); param++; std::vector<HloInstruction*> parameters = {producer}; std::function<void(HloInstruction*)> create_computation = [&](HloInstruction* instr) -> void { if (old_to_new_mapping.contains(instr)) { return; } std::vector<HloInstruction*> new_operands; for (HloInstruction* operand : instr->mutable_operands()) { create_computation(operand); new_operands.push_back(old_to_new_mapping[operand]); } if (instr->opcode() == HloOpcode::kParameter) { old_to_new_mapping[instr] = builder.AddInstruction(HloInstruction::CreateParameter( param, instr->shape(), absl::StrCat("parameter_", param))); parameters.push_back(instr); param++; } else { old_to_new_mapping[instr] = builder.AddInstruction( instr->CloneWithNewOperands(instr->shape(), new_operands)); } }; create_computation(root); HloComputation* computation = root->GetModule()->AddComputationAndUnifyNamesAndIds(builder.Build(), false); HloInstruction* softmax_fusion = root->parent()->AddInstruction(HloInstruction::CreateFusion( root->shape(), HloInstruction::FusionKind::kCustom, parameters, computation)); softmax_fusion->GetModule()->SetAndUniquifyInstrName(softmax_fusion, "triton_softmax"); TF_ASSIGN_OR_RETURN(auto gpu_config, softmax_fusion->backend_config<GpuBackendConfig>()); FusionBackendConfig& backend_config = *gpu_config.mutable_fusion_backend_config(); backend_config.set_kind(std::string(kTritonFusionKind)); TF_RETURN_IF_ERROR(softmax_fusion->set_backend_config(gpu_config)); return xla::Cast<HloFusionInstruction>(softmax_fusion); } absl::Status FuseDiamondChainImpl( const DiamondChainDescriptor& diamond_chain, GpuPerformanceModelWithIndexingAnalysis& indexing_performance_model) { TF_ASSIGN_OR_RETURN(HloFusionInstruction * softmax_fusion, MakeFusionForDiamondChain(diamond_chain)); HloInstruction* root = diamond_chain.root; auto fusion_adaptor = HloFusionAdaptor::ForInstruction(softmax_fusion); TF_ASSIGN_OR_RETURN( TiledRunTimeDataOrError tiled_runtime_data_or, indexing_performance_model.TryFindBestTilingForFusion(*fusion_adaptor)); if (const auto* fusion_decision = std::get_if<FusionDecision>(&tiled_runtime_data_or)) { return absl::FailedPreconditionError(absl::StrCat( "SymbolicTileAnalysis failed. ", fusion_decision->Explain())); } TiledRunTimeData tiled_runtime_data = std::get<TiledRunTimeData>(std::move(tiled_runtime_data_or)); TF_ASSIGN_OR_RETURN(auto backend_config, softmax_fusion->backend_config<GpuBackendConfig>()); *backend_config.mutable_fusion_backend_config() ->mutable_block_level_fusion_config() = tiled_runtime_data.block_level_parameters.ToBlockLevelFusionConfig(); TF_RETURN_IF_ERROR(softmax_fusion->set_backend_config(backend_config)); if (root->IsRoot()) { root->parent()->set_root_instruction(softmax_fusion); TF_RETURN_IF_ERROR( root->parent()->RemoveInstructionAndUnusedOperands(root)); } else { TF_RETURN_IF_ERROR( root->parent()->ReplaceInstruction(root, softmax_fusion)); } VLOG(5) << softmax_fusion->ToString(); return absl::OkStatus(); } absl::StatusOr<bool> CanSymbolicTileAnalysisTileDiamondChain( const DiamondChainDescriptor& diamond_chain) { TF_ASSIGN_OR_RETURN(HloFusionInstruction * softmax_fusion, MakeFusionForDiamondChain(diamond_chain)); mlir::MLIRContext context; SymbolicTileAnalysisOrError symbolic_tile_analysis_or_error = SymbolicTileAnalysis::AnalyzeComputation( *softmax_fusion->called_computation(), &context); bool can_tile = std::holds_alternative<SymbolicTileAnalysis>( symbolic_tile_analysis_or_error); TF_RETURN_IF_ERROR(diamond_chain.root->GetModule()->RemoveEmbeddedComputation( softmax_fusion->called_computation())); TF_RETURN_IF_ERROR( diamond_chain.root->parent()->RemoveInstruction(softmax_fusion)); return can_tile; } } DiamondMatchingDecision SoftmaxRewriterTriton::MatchesTritonCompatibleClosedReductionDiamond( HloInstruction* instr) const { if (!instr->IsElementwiseBinary()) { return "Root is not elementwise binary."; } if (!legacy_triton::IsTritonSupportedInstruction( *instr, device_info_.gpu_compute_capability())) { return "Root is not supported for Triton instruction."; } HloInstruction* producer; HloInstruction* broadcast; HloInstruction* reduce; if (!TrivialEdge(&broadcast, instr->mutable_operand(1), HloOpcode::kBroadcast, device_info_.gpu_compute_capability())) { return "Could not find a trivial connection from root to a broadcast."; } if (!TrivialEdge(&reduce, broadcast->mutable_operand(0), HloOpcode::kReduce, device_info_.gpu_compute_capability())) { return "Could not find a trivial connection from matched broadcast to a " "reduction."; } if (!(HasDefaultLayout(broadcast->shape()) && HasDefaultLayout(reduce->shape()))) { return "Broadcast or reduce have non-default layouts."; } if (CodegenDecision is_supported = legacy_triton::IsTritonSupportedInstruction( *reduce, device_info_.gpu_compute_capability()); !is_supported) { VLOG(3) << is_supported.Explain(); return is_supported; } if (!HasOneUse(broadcast) || !HasOneUse(reduce)) { return "More than one use of broadcast or reduce."; } producer = reduce->mutable_operand(0); if (absl::c_linear_search(broadcast->dimensions(), broadcast->shape().rank() - 1)) { return "Broadcast is not along the reduction dimension."; } while (IsTriviallyFusible(producer, device_info_.gpu_compute_capability())) { producer = ChooseOperandForFusionProcessing(producer); } if (!HasDefaultLayout(producer->shape())) { return "Producer has non-default layout."; } if (!IsTriviallyConnectedProducerOf(producer, instr->mutable_operand(0), device_info_.gpu_compute_capability())) { return "Producer is not trivially connected."; } if (producer != instr->operand(0) && instr->operand(0)->user_count() != 1) { return "Unsupported root-producer connection."; } VLOG(5) << "Matched Softmax diamond with: "; VLOG(5) << "root: " << instr->ToString(); VLOG(5) << "producer: " << producer->ToString(); VLOG(5) << "broadcast: " << broadcast->ToString(); VLOG(5) << "reduce: " << reduce->ToString(); return producer; } absl::StatusOr<std::vector<DiamondChainDescriptor>> SoftmaxRewriterTriton::FindAllFusibleDiamondChains( HloModule& module, const absl::flat_hash_set<absl::string_view>& execution_threads) const { std::vector<DiamondChainDescriptor> matched_diamonds; for (HloComputation* comp : module.MakeNonfusionComputations(execution_threads)) { if (comp->IsCustomCallComputation()) { continue; } for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { PrimitiveType element_ty = instr->shape().element_type(); if (element_ty != F16 && element_ty != F32 && element_ty != BF16) { continue; } auto producer = MatchesTritonCompatibleClosedReductionDiamond(instr); if (std::holds_alternative<HloInstruction*>(producer)) { DiamondChainDescriptor diamond_chain{ instr, std::get<HloInstruction*>(producer)}; TF_ASSIGN_OR_RETURN( bool can_tile_diamond_chain, CanSymbolicTileAnalysisTileDiamondChain(diamond_chain)); if (can_tile_diamond_chain) { matched_diamonds.push_back(diamond_chain); } else { VLOG(5) << "Cannot tile the diamond pattern described by " << "instructions " << instr->ToString() << " and " << std::get<HloInstruction*>(producer)->ToString() << "."; continue; } } else { VLOG(5) << "Cannot match the diamond pattern for instruction " << instr->ToString() << ". Reason: " << std::get<FusionDecision>(producer).Explain(); } } } if (matched_diamonds.empty()) { return std::vector<DiamondChainDescriptor>(); } auto reduction_dimension_size_from_diamond_root = [](HloInstruction* diamond_root) { HloInstruction* instr = diamond_root->mutable_operand(1); while (instr->opcode() != HloOpcode::kReduce) { instr = ChooseOperandForFusionProcessing(instr); } int operand_rank = instr->operand(0)->shape().rank(); CHECK_EQ(instr->dimensions().size(), 1); CHECK_EQ(instr->dimensions(0), operand_rank - 1); return instr->operand(0)->shape().dimensions(operand_rank - 1); }; auto last_trivially_fusible_user = [&](HloInstruction* instr) { while (HasOneUse(instr) && !instr->IsRoot() && IsTriviallyFusible(instr->users().front(), device_info_.gpu_compute_capability())) { instr = instr->users().front(); } if (HasOneUse(instr) && !instr->IsRoot() && IsTriviallyFusible( instr->users().front(), device_info_.gpu_compute_capability(), instr->users().front()->user_count())) { instr = instr->users().front(); } return instr; }; std::vector<DiamondChainDescriptor> diamond_chains; diamond_chains.reserve(matched_diamonds.size()); HloInstruction* current_fusion_producer = FindFirstNonFusibleDiamondProducer( matched_diamonds.front().producer, device_info_.gpu_compute_capability()); int current_reduce_dimension_size = reduction_dimension_size_from_diamond_root(matched_diamonds.front().root); for (int diamond_idx = 1; diamond_idx < matched_diamonds.size(); ++diamond_idx) { auto [diamond_root, diamond_producer] = matched_diamonds[diamond_idx]; HloInstruction* previous_diamond_root = matched_diamonds[diamond_idx - 1].root; HloInstruction* first_non_fusible_diamond_producer = FindFirstNonFusibleDiamondProducer( diamond_producer, device_info_.gpu_compute_capability()); int diamond_reduce_dimension_size = reduction_dimension_size_from_diamond_root(diamond_root); if (first_non_fusible_diamond_producer == previous_diamond_root && ((first_non_fusible_diamond_producer != diamond_producer && HasOneUse(first_non_fusible_diamond_producer)) || (first_non_fusible_diamond_producer == diamond_producer && first_non_fusible_diamond_producer->user_count() == 2)) && diamond_reduce_dimension_size == current_reduce_dimension_size) { continue; } diamond_chains.push_back(DiamondChainDescriptor{ last_trivially_fusible_user(previous_diamond_root), current_fusion_producer, }); current_fusion_producer = first_non_fusible_diamond_producer; current_reduce_dimension_size = diamond_reduce_dimension_size; } diamond_chains.push_back(DiamondChainDescriptor{ last_trivially_fusible_user(matched_diamonds.back().root), current_fusion_producer}); std::vector<DiamondChainDescriptor> filtered_diamond_chains; for (const DiamondChainDescriptor& diamond_chain : diamond_chains) { TF_ASSIGN_OR_RETURN(bool can_tile_diamond_chain, CanSymbolicTileAnalysisTileDiamondChain(diamond_chain)); if (can_tile_diamond_chain) { filtered_diamond_chains.push_back(diamond_chain); } } return filtered_diamond_chains; } absl::Status SoftmaxRewriterTriton::FuseDiamondChain( const DiamondChainDescriptor& diamond_chain) { HloFusionAnalysisCache fusion_analysis_cache(device_info_); GpuPerformanceModelWithIndexingAnalysis indexing_performance_model( &device_info_, &fusion_analysis_cache, shape_size_, &mlir_context_); return FuseDiamondChainImpl(diamond_chain, indexing_performance_model); } absl::StatusOr<bool> SoftmaxRewriterTriton::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto cuda_compute_capability = std::get_if<se::CudaComputeCapability>( &device_info_.gpu_compute_capability()); if (!cuda_compute_capability) { return absl::FailedPreconditionError( "Triton support is only enabled for CUDA GPUs."); } else if (!cuda_compute_capability->IsAtLeastAmpere()) { return absl::FailedPreconditionError( absl::StrCat("Triton support is only enabled for Ampere GPUs (compute ", "capability 8.0) and up, but got compute capability ", cuda_compute_capability->major, ".", cuda_compute_capability->minor, ".")); } TF_ASSIGN_OR_RETURN(std::vector<DiamondChainDescriptor> diamond_chains, FindAllFusibleDiamondChains(*module, execution_threads)); if (diamond_chains.empty()) { return false; }
#include "xla/service/gpu/softmax_rewriter_triton.h" #include <cstdint> #include <memory> #include <string> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/optimization.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/instruction_fusion.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; using ::testing::HasSubstr; GpuHloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } bool HasBlockLevelFusionConfig(const HloInstruction* fusion) { return fusion->opcode() == HloOpcode::kFusion && fusion->has_backend_config() && fusion->backend_config<GpuBackendConfig>().ok() && fusion->backend_config<GpuBackendConfig>() ->fusion_backend_config() .has_block_level_fusion_config(); } absl::StatusOr<bool> SoftmaxRewriterTritonMatchAndRewrite( const se::DeviceDescription& device_info, HloModule* module) { CHECK_NE(module, nullptr); SoftmaxRewriterTriton softmax_rewriter_triton(device_info, ShapeSizeBytesFunction()); TF_ASSIGN_OR_RETURN(std::vector<DiamondChainDescriptor> diamond_chains, softmax_rewriter_triton.FindAllFusibleDiamondChains( *module, {})); for (auto diamond_chain = diamond_chains.rbegin(); diamond_chain != diamond_chains.rend(); ++diamond_chain) { TF_RETURN_IF_ERROR( softmax_rewriter_triton.FuseDiamondChain(*diamond_chain)); } return !diamond_chains.empty(); } class SoftmaxRewriterTritonTest : public HloTestBase, public ::testing::WithParamInterface<PrimitiveType> { protected: se::DeviceDescription device_info_{TestGpuDeviceInfo::RTXA6000DeviceInfo()}; }; TEST_P(SoftmaxRewriterTritonTest, CanFuseExactSoftmax) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = $0[] parameter(0) arg_1.1 = $0[] parameter(1) ROOT add = $0[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) exponential = $0[127,125]{1,0} exponential(subtract) constant_zero = $0[] constant(0) second_reduce = $0[127]{0} reduce(exponential, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = $0[127,125]{1,0} broadcast(second_reduce), dimensions={0} ROOT divide = $0[127,125]{1,0} divide(exponential, second_broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); VLOG(2) << module->ToString(); switch (data_type) { case F32: case BF16: EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter()) .WithPredicate(HasBlockLevelFusionConfig))); break; case F16: EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Divide(m::Exp(), m::Broadcast()))); break; default: ABSL_UNREACHABLE(); } } TEST_P(SoftmaxRewriterTritonTest, CanFuseFirstSoftmaxDiamond) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = $0[127,125]{1,0} subtract(param_0, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); VLOG(2) << module->ToString(); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Fusion(m::Parameter()).WithPredicate(HasBlockLevelFusionConfig))); } TEST_F(SoftmaxRewriterTritonTest, CanNotFuseExactSoftmaxF64) { const std::string hlo_string = R"( HloModule softmax max_computation { arg_0 = f64[] parameter(0) arg_1 = f64[] parameter(1) ROOT maximum = f64[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = f64[] parameter(0) arg_1.1 = f64[] parameter(1) ROOT add = f64[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = f64[127,125]{1,0} parameter(0) constant_neg_inf = f64[] constant(-inf) reduce = f64[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = f64[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = f64[127,125]{1,0} subtract(param_0, broadcast) exponential = f64[127,125]{1,0} exponential(subtract) constant_zero = f64[] constant(0) second_reduce = f64[127]{0} reduce(exponential, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = f64[127,125]{1,0} broadcast(second_reduce), dimensions={0} ROOT divide = f64[127,125]{1,0} divide(exponential, second_broadcast) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_F(SoftmaxRewriterTritonTest, CanFuseExactSoftmaxBF16) { const std::string hlo_string = R"( HloModule softmax max_computation { arg_0 = bf16[] parameter(0) arg_1 = bf16[] parameter(1) ROOT maximum = bf16[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = bf16[] parameter(0) arg_1.1 = bf16[] parameter(1) ROOT add = bf16[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = bf16[127,125]{1,0} parameter(0) constant_neg_inf = bf16[] constant(-inf) reduce = bf16[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = bf16[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = bf16[127,125]{1,0} subtract(param_0, broadcast) exponential = bf16[127,125]{1,0} exponential(subtract) constant_zero = bf16[] constant(0) second_reduce = bf16[127]{0} reduce(exponential, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = bf16[127,125]{1,0} broadcast(second_reduce), dimensions={0} ROOT divide = bf16[127,125]{1,0} divide(exponential, second_broadcast) } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Fusion(m::Parameter()).WithPredicate(HasBlockLevelFusionConfig))); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithWrongLayout) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{0,1} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = $0[127,125]{1,0} subtract(param_0, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithWrongReduceDimension) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[125]{0} reduce(param_0, constant_neg_inf), dimensions={0}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={1} ROOT subtract = $0[127,125]{1,0} subtract(param_0, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithWrongBroadcastDimension) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[125,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[125]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[125,125]{1,0} broadcast(reduce), dimensions={1} ROOT subtract = $0[125,125]{1,0} subtract(param_0, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithExtraBroadcastUsage) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) ROOT multiply = $0[127,125]{1,0} multiply(broadcast, subtract) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanFuseSoftmaxWithIntermediateUnaryElementwise) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = $0[] parameter(0) arg_1.1 = $0[] parameter(1) ROOT add = $0[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) abs = $0[127,125]{1,0} abs(subtract) exponential = $0[127,125]{1,0} exponential(abs) constant_zero = $0[] constant(0) second_reduce = $0[127]{0} reduce(exponential, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = $0[127,125]{1,0} broadcast(second_reduce), dimensions={0} ROOT divide = $0[127,125]{1,0} divide(exponential, second_broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); switch (data_type) { case F32: case BF16: EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter()) .WithPredicate(HasBlockLevelFusionConfig))); break; case F16: EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Divide())); break; default: ABSL_UNREACHABLE(); } } TEST_P(SoftmaxRewriterTritonTest, CanFuseTwoDiamondsWithSecondDiamondProducerEqualToFirstDiamondRoot) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = $0[] parameter(0) arg_1.1 = $0[] parameter(1) ROOT add = $0[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) constant_zero = $0[] constant(0) second_reduce = $0[127]{0} reduce(subtract, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = $0[127,125]{1,0} broadcast(second_reduce), dimensions={0} ROOT divide = $0[127,125]{1,0} divide(subtract, second_broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); switch (data_type) { case F32: case BF16: EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Parameter()) .WithPredicate(HasBlockLevelFusionConfig))); break; case F16: EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Divide())); break; default: ABSL_UNREACHABLE(); } } TEST_P(SoftmaxRewriterTritonTest, CanFuseDiamondWithTrailingUnaryElementwiseAtTheRoot) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) ROOT abs = $0[127,125]{1,0} abs(subtract) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Fusion(m::Parameter()).WithPredicate(HasBlockLevelFusionConfig))); } TEST_P(SoftmaxRewriterTritonTest, CanFuseDiamondWithUnaryElementwisePrefix) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) abs = $0[127,125]{1,0} abs(param_0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(abs, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = $0[127,125]{1,0} subtract(param_0, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Fusion(m::Parameter()).WithPredicate(HasBlockLevelFusionConfig))); } TEST_P(SoftmaxRewriterTritonTest, CanFuseDiamondWithMultipleBroadcastDimensions) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[1,3,125,125]{3,2,1,0} parameter(0) bitcast = $0[3,125,125]{2,1,0} bitcast($0[1,3,125,125]{3,2,1,0} param_0) constant_neg_inf = $0[] constant(-inf) reduce = $0[3,125]{1,0} reduce($0[3,125,125]{2,1,0} bitcast, $0[] constant_neg_inf), dimensions={2}, to_apply=max_computation broadcast = $0[1,3,125,125]{3,2,1,0} broadcast($0[3,125]{1,0} reduce), dimensions={1,2} ROOT subtract = $0[1,3,125,125]{3,2,1,0} subtract($0[1,3,125,125]{3,2,1,0} param_0, $0[1,3,125,125]{3,2,1,0} broadcast) })"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Fusion(m::Parameter()).WithPredicate(HasBlockLevelFusionConfig))); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithNonConstantReducerIdentity) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) identity = $0[] parameter(1) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, identity), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = $0[127,125]{1,0} subtract(param_0, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithTritonIncompatibleRoot) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} divide = $0[127,125]{1,0} divide(param_0, broadcast) ROOT remainder = $0[127,125]{1,0} remainder(divide, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithTritonIncompatibleReducer) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) if_0 = pred[] is-finite(arg_0) c = $0[] convert(if_0) ROOT maximum = $0[] maximum(c, arg_1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = $0[127,125]{1,0} subtract(param_0, broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanFuseSoftmaxDiamondWithLastDimensionBitcastAfterReduce) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[3,127,125]{2,1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[3,127]{1,0} reduce(param_0, constant_neg_inf), dimensions={2}, to_apply=max_computation bitcasted_reduce = $0[381]{0} bitcast(reduce) broadcast = $0[381,125]{1,0} broadcast(bitcasted_reduce), dimensions={0} bitcasted_broadcast = $0[3,127,125]{2,1,0} bitcast(broadcast) ROOT subtract = $0[3,127,125]{2,1,0} subtract(param_0, bitcasted_broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Fusion(m::Parameter()).WithPredicate(HasBlockLevelFusionConfig))); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseSoftmaxDiamondWithTransposeBitcast) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } ENTRY main { param_0 = $0[1,127,125]{2,1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) bitcasted_param_0 = $0[127,1,125]{2,0,1} bitcast(param_0) reduce = $0[127,1]{0,1} reduce(bitcasted_param_0, constant_neg_inf), dimensions={2}, to_apply=max_computation broadcast = $0[127,1,125]{2,0,1} broadcast(reduce), dimensions={0,1} bitcasted_broadcast = $0[1,127,125]{2,1,0} bitcast(broadcast) ROOT subtract = $0[1,127,125]{2,1,0} subtract(param_0, bitcasted_broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_FALSE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseTwoDiamondsWithDifferentReductionAxisSizeTogether) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = $0[] parameter(0) arg_1.1 = $0[] parameter(1) ROOT add = $0[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = $0[127,625]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,625]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,625]{1,0} subtract(param_0, broadcast) bitcasted_subtract = $0[127,5,125] bitcast(subtract) exponential = $0[127,5,125] exponential(bitcasted_subtract) constant_zero = $0[] constant(0) second_reduce = $0[127,5] reduce(exponential, constant_zero), dimensions={2}, to_apply=add_computation second_broadcast = $0[127,5,125] broadcast(second_reduce), dimensions={0,1} ROOT divide = $0[127,5,125] divide(exponential, second_broadcast) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); switch (data_type) { case F32: case BF16: EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Fusion(m::Bitcast(m::Fusion(m::Parameter()) .WithPredicate( HasBlockLevelFusionConfig))) .WithPredicate(HasBlockLevelFusionConfig))); break; case F16: EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Divide(m::Exp(), m::Broadcast()))); break; default: ABSL_UNREACHABLE(); } } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseTwoDiamondsWithExtraUsageForFirstDiamondRoot) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = $0[] parameter(0) arg_1.1 = $0[] parameter(1) ROOT add = $0[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) exponential = $0[127,125]{1,0} exponential(subtract) constant_zero = $0[] constant(0) second_reduce = $0[127]{0} reduce(exponential, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = $0[127,125]{1,0} broadcast(second_reduce), dimensions={0} divide = $0[127,125]{1,0} divide(exponential, second_broadcast) ROOT tuple = ($0[127,125]{1,0}, $0[127,125]{1,0}) tuple(divide, subtract) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); switch (data_type) { case F32: case BF16: EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Fusion(m::Fusion()).WithPredicate(HasBlockLevelFusionConfig), m::Fusion(m::Parameter()) .WithPredicate(HasBlockLevelFusionConfig)))); break; case F16: EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Divide(), m::Fusion(m::Parameter()) .WithPredicate(HasBlockLevelFusionConfig)))); break; default: ABSL_UNREACHABLE(); } } TEST_P(SoftmaxRewriterTritonTest, CanNotFuseTwoDiamondsWithExtraUsageForSecondDiamondProducer) { PrimitiveType data_type = GetParam(); const std::string hlo_string_template = R"( HloModule softmax max_computation { arg_0 = $0[] parameter(0) arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(arg_0, arg_1) } add_computation { arg_0.1 = $0[] parameter(0) arg_1.1 = $0[] parameter(1) ROOT add = $0[] add(arg_0.1, arg_1.1) } ENTRY main { param_0 = $0[127,125]{1,0} parameter(0) constant_neg_inf = $0[] constant(-inf) reduce = $0[127]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = $0[127,125]{1,0} broadcast(reduce), dimensions={0} subtract = $0[127,125]{1,0} subtract(param_0, broadcast) exponential = $0[127,125]{1,0} exponential(subtract) constant_zero = $0[] constant(0) second_reduce = $0[127]{0} reduce(exponential, constant_zero), dimensions={1}, to_apply=add_computation second_broadcast = $0[127,125]{1,0} broadcast(second_reduce), dimensions={0} divide = $0[127,125]{1,0} divide(exponential, second_broadcast) ROOT tuple = ($0[127,125]{1,0}, $0[127,125]{1,0}) tuple(divide, exponential) } )"; const std::string hlo_string = absl::Substitute(hlo_string_template, primitive_util::LowercasePrimitiveTypeName(data_type)); auto module = ParseAndReturnVerifiedModule(hlo_string).value(); EXPECT_TRUE( SoftmaxRewriterTritonMatchAndRewrite(device_info_, module.get()).value()); EXPECT_TRUE(verifier().Run(module.get()).status().ok()); switch (data_type) { case F32: case BF16: EXPECT_THAT(
2,092
cpp
tensorflow/tensorflow
gpu_latency_hiding_scheduler
third_party/xla/xla/service/gpu/gpu_latency_hiding_scheduler.cc
third_party/xla/xla/service/gpu/gpu_latency_hiding_scheduler_test.cc
#ifndef XLA_SERVICE_GPU_GPU_LATENCY_HIDING_SCHEDULER_H_ #define XLA_SERVICE_GPU_GPU_LATENCY_HIDING_SCHEDULER_H_ #include <cstdint> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/shape.h" namespace xla { namespace gpu { CanonicalAsyncOp GpuGetCanonicalAsyncOp(const HloInstruction& hlo); int64_t GetSizeOfShape(const Shape& shape, int pointer_size); enum class GpuResourceType { kGpuAsyncStreamSend0 = 0, kGpuAsyncStreamSend1 = 1, kGpuAsyncStreamRecv0 = 2, kGpuAsyncStreamRecv1 = 3, kGpuAsyncStreamCollectives = 4, kGpuAsyncStreamComputes = 5, kNumTargetResources = 6, }; class GpuAsyncTrackerBase : public AsyncTracker { public: explicit GpuAsyncTrackerBase( const SchedulerConfig& config, GetCanonicalAsyncOpFunc func = GpuGetCanonicalAsyncOp); bool IsSupportedAsyncDone(const HloInstruction& hlo) const override; bool IsSupportedAsyncStart(const HloInstruction& hlo) const override; void PostProcessScheduleGraph( HloScheduleGraph* schedule_graph, const LatencyEstimator* latency_estimator) const override; }; class GpuAsyncTracker : public GpuAsyncTrackerBase { public: explicit GpuAsyncTracker(const SchedulerConfig& config); ResourcesVector GetResourcesFromInstruction( const HloInstruction& instr) const override; int64_t GetNumTargetDefinedResources() const override; int64_t GetNumAvailableResources(int64_t resource_type) const override; absl::string_view GetResourceName(int64_t resource_type) const override; ResourceHazardType GetResourceHazardType( int64_t resource_type) const override; int64_t GetNumResourcesPerInstruction( int64_t resource_type, const HloInstruction& instr) const override; }; class GpuLatencyEstimator : public ApproximateLatencyEstimator { public: explicit GpuLatencyEstimator( int64_t pointer_size, GetCanonicalAsyncOpFunc func = GpuGetCanonicalAsyncOp); TimeCost NodeCost(const HloInstruction* instr) const override; TimeCost GetLatencyBetween(const HloGraphNode& from, const HloGraphNode& to) const override; private: int64_t pointer_size_; }; } } #endif #include "xla/service/gpu/gpu_latency_hiding_scheduler.h" #include <cstdint> #include <tuple> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/latency_hiding_scheduler.h" #include "xla/shape.h" #include "xla/shape_util.h" namespace xla { namespace gpu { namespace { static constexpr int64_t kCostlyAllReduceThreshold = 30 * 1024 * 1024; static constexpr int64_t kCostlyAllReduceMultiplier = 4; bool IsNopInstruction(const HloInstruction& hlo) { HloOpcode op = hlo.opcode(); return op == HloOpcode::kGetTupleElement || op == HloOpcode::kBitcast || op == HloOpcode::kConstant || op == HloOpcode::kParameter || hlo.IsEffectiveBitcast(); } bool IsAsyncComputeOp(const HloInstruction& hlo) { return (hlo.opcode() == HloOpcode::kAsyncStart || hlo.opcode() == HloOpcode::kAsyncDone) && !hlo_query::IsCollectiveCommunicationOp(hlo.async_wrapped_opcode()) && hlo.async_execution_thread() != hlo.parent()->execution_thread(); } int64_t GetPipelineStream(const HloInstruction& start) { auto it = start.frontend_attributes().map().find(kSendRecvPipelineAttr); if (it != start.frontend_attributes().map().end() && it->second == "1") { return 1; } return 0; } std::pair<GpuResourceType, ResourceUsageType> GetP2PResourceAndUsage( const HloInstruction& instr, const CanonicalAsyncOp& op) { ResourceUsageType usage = op.outer == HloOpcode::kAsyncStart ? ResourceUsageType::kResourceRelease : ResourceUsageType::kResourceOccupy; int64_t pipeline = GetPipelineStream(instr); HloOpcode opcode = op.inner; GpuResourceType resource; if (pipeline == 0) { resource = opcode == HloOpcode::kSend ? GpuResourceType::kGpuAsyncStreamSend0 : GpuResourceType::kGpuAsyncStreamRecv0; } else { resource = opcode == HloOpcode::kSend ? GpuResourceType::kGpuAsyncStreamSend1 : GpuResourceType::kGpuAsyncStreamRecv1; } return {resource, usage}; } } int64_t GetSizeOfShape(const Shape& shape, int pointer_size) { int64_t size = ShapeUtil::ByteSizeOf(shape, pointer_size); if (shape.IsTuple() || shape.is_static()) { return size; } int64_t metadata_size = sizeof(int32_t) * shape.dimensions_size(); return size + metadata_size; } CanonicalAsyncOp GpuGetCanonicalAsyncOp(const HloInstruction& hlo) { switch (hlo.opcode()) { case HloOpcode::kSend: return {HloOpcode::kAsyncStart, HloOpcode::kSend}; case HloOpcode::kSendDone: return {HloOpcode::kAsyncDone, HloOpcode::kSend}; case HloOpcode::kRecv: return {HloOpcode::kAsyncStart, HloOpcode::kRecv}; case HloOpcode::kRecvDone: return {HloOpcode::kAsyncDone, HloOpcode::kRecv}; default: return DefaultGetCanonicalAsyncOp(hlo); } } GpuAsyncTrackerBase::GpuAsyncTrackerBase(const SchedulerConfig& config, GetCanonicalAsyncOpFunc func) : AsyncTracker(config, func) {} bool GpuAsyncTrackerBase::IsSupportedAsyncDone( const HloInstruction& hlo) const { return (hlo_query::IsAsyncCollectiveDoneOp(&hlo, true) && !IsSyncCollective(hlo.operand(0))) || IsAsyncComputeOp(hlo); } bool GpuAsyncTrackerBase::IsSupportedAsyncStart( const HloInstruction& hlo) const { return (hlo_query::IsAsyncCollectiveStartOp(&hlo, true) && !IsSyncCollective(&hlo)) || IsAsyncComputeOp(hlo); } void GpuAsyncTrackerBase::PostProcessScheduleGraph( HloScheduleGraph* schedule_graph, const LatencyEstimator* latency_estimator) const { for (auto inst : schedule_graph->GetOriginalInstrList()) { if (inst->opcode() == HloOpcode::kRecv) { if (inst->frontend_attributes().map().count(kSendRecvPipelineAttr) > 0) { HloGraphNode& node = schedule_graph->GetNode(inst); node.SetForceEarly(true); VLOG(5) << "Setting force early for instruction: " << inst->ToString(); } } if (inst->has_backend_config()) { auto gpu_config = inst->backend_config<GpuBackendConfig>(); if (gpu_config.ok()) { HloGraphNode& node = schedule_graph->GetNode(inst); node.SetForceDelay(gpu_config->force_earliest_schedule()); VLOG(5) << "Setting force delay for instruction: " << inst->ToString(); } } } } GpuAsyncTracker::GpuAsyncTracker(const SchedulerConfig& config) : GpuAsyncTrackerBase(config) {} ResourcesVector GpuAsyncTracker::GetResourcesFromInstruction( const HloInstruction& instr) const { CanonicalAsyncOp op = GetCanonicalAsyncOp(instr); if (op.outer == HloOpcode::kAsyncStart || op.outer == HloOpcode::kAsyncDone) { ResourceUsageType usage; GpuResourceType resource; if (op.inner == HloOpcode::kSend || op.inner == HloOpcode::kRecv) { std::tie(resource, usage) = GetP2PResourceAndUsage(instr, op); } else { usage = op.outer == HloOpcode::kAsyncStart ? ResourceUsageType::kResourceRelease : ResourceUsageType::kResourceOccupy; resource = hlo_query::IsCollectiveCommunicationOp(op.inner) ? GpuResourceType::kGpuAsyncStreamCollectives : GpuResourceType::kGpuAsyncStreamComputes; } return {std::make_pair( GetFirstTargetDefinedResource() + static_cast<int64_t>(resource), usage)}; } return GpuAsyncTrackerBase::GetResourcesFromInstruction(instr); } int64_t GpuAsyncTracker::GetNumTargetDefinedResources() const { return static_cast<int64_t>(GpuResourceType::kNumTargetResources); }; int64_t GpuAsyncTracker::GetNumAvailableResources(int64_t resource_type) const { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return GpuAsyncTrackerBase::GetNumAvailableResources(resource_type); } CHECK_LT(resource_type, first_target_resource + static_cast<int64_t>(GpuResourceType::kNumTargetResources)); if ((resource_type - first_target_resource) == static_cast<int64_t>(GpuResourceType::kGpuAsyncStreamComputes)) { return 2; } return 1; } absl::string_view GpuAsyncTracker::GetResourceName( int64_t resource_type) const { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return GpuAsyncTrackerBase::GetResourceName(resource_type); } CHECK_LE(resource_type, first_target_resource + GetNumTargetDefinedResources()); switch (static_cast<GpuResourceType>(resource_type - first_target_resource)) { case GpuResourceType::kGpuAsyncStreamSend0: return "kGpuAsyncStreamSend0"; case GpuResourceType::kGpuAsyncStreamSend1: return "kGpuAsyncStreamSend1"; case GpuResourceType::kGpuAsyncStreamRecv0: return "kGpuAsyncStreamRecv0"; case GpuResourceType::kGpuAsyncStreamRecv1: return "kGpuAsyncStreamRecv1"; case GpuResourceType::kGpuAsyncStreamCollectives: return "kGpuAsyncStreamCollectives"; case GpuResourceType::kGpuAsyncStreamComputes: return "kGpuAsyncStreamComputes"; default: return "kUnsupportedResource"; } } ResourceHazardType GpuAsyncTracker::GetResourceHazardType( int64_t resource_type) const { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return GpuAsyncTrackerBase::GetResourceHazardType(resource_type); } CHECK_LE(resource_type, first_target_resource + GetNumTargetDefinedResources()); return ResourceHazardType::kUnshareable; } int64_t GpuAsyncTracker::GetNumResourcesPerInstruction( int64_t resource_type, const HloInstruction& instr) const { int64_t num_resources = GpuAsyncTrackerBase::GetNumResourcesPerInstruction(resource_type, instr); if (num_resources <= 0 || instr.opcode() != HloOpcode::kWhile) { return num_resources; } int64_t first_p2p_resource = GetFirstTargetDefinedResource() + static_cast<int64_t>(GpuResourceType::kGpuAsyncStreamSend0); if (resource_type < first_p2p_resource || resource_type > first_p2p_resource + 4) { return num_resources; } auto find_instruction_for_pipeline = [&](HloOpcode opcode, int64_t pipeline) { for (auto user1 : instr.users()) { if (user1->opcode() == HloOpcode::kGetTupleElement) { for (auto user2 : user1->users()) { if (user2->opcode() == opcode) { if (GetPipelineStream(*user2) == pipeline) { return true; } } } } } return false; }; bool found; if (resource_type == first_p2p_resource) { found = find_instruction_for_pipeline(HloOpcode::kSendDone, 0); } else if (resource_type == first_p2p_resource + 1) { found = find_instruction_for_pipeline(HloOpcode::kSendDone, 1); } else if (resource_type == first_p2p_resource + 2) { found = find_instruction_for_pipeline(HloOpcode::kRecvDone, 0); } else { found = find_instruction_for_pipeline(HloOpcode::kRecvDone, 1); } return num_resources - (found ? 1 : 0); } GpuLatencyEstimator::GpuLatencyEstimator(int64_t pointer_size, GetCanonicalAsyncOpFunc func) : ApproximateLatencyEstimator(func), pointer_size_(pointer_size) {} ApproximateLatencyEstimator::TimeCost GpuLatencyEstimator::NodeCost( const HloInstruction* instr) const { if (IsNopInstruction(*instr)) { return 0.0; } if (instr->opcode() == HloOpcode::kCustomCall) { if (IsCublasGemm(*instr) || IsCustomCallToDnnConvolution(*instr)) { return ApproximateLatencyEstimator::kMediumCost; } return ApproximateLatencyEstimator::kMediumCost; } return ApproximateLatencyEstimator::NodeCost(instr); } ApproximateLatencyEstimator::TimeCost GpuLatencyEstimator::GetLatencyBetween( const HloGraphNode& from, const HloGraphNode& to) const { if (IsAsyncPair(from, to)) { if (from.GetInstr().opcode() == HloOpcode::kRecv) { return ApproximateLatencyEstimator::kLowLatency; } else if (from.GetInstr().opcode() == HloOpcode::kSend) { return ApproximateLatencyEstimator::kHighLatency * 10; } bool enable_approx_collectives = from.GetInstr() .GetModule() ->config() .debug_options() .xla_gpu_enable_approx_costly_collectives(); bool is_all_reduce = from.GetInstr().opcode() == HloOpcode::kAllReduceStart; bool collective_size_exceeds_threshold = GetSizeOfShape(from.GetInstr().shape(), pointer_size_) > kCostlyAllReduceThreshold; if (enable_approx_collectives && is_all_reduce && collective_size_exceeds_threshold) { return ApproximateLatencyEstimator::kHighLatency * kCostlyAllReduceMultiplier; } return ApproximateLatencyEstimator::kHighLatency; } return ApproximateLatencyEstimator::kLowLatency; } } }
namespace xla::gpu { namespace { } }
2,093
cpp
tensorflow/tensorflow
gpu_convert_async_collectives_to_sync
null
null
#ifndef XLA_SERVICE_GPU_GPU_CONVERT_ASYNC_COLLECTIVES_TO_SYNC_H_ #define XLA_SERVICE_GPU_GPU_CONVERT_ASYNC_COLLECTIVES_TO_SYNC_H_ #include <utility> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/convert_async_collectives_to_sync.h" namespace xla { namespace gpu { class GpuConvertAsyncCollectivesToSync : public ConvertAsyncCollectivesToSync { public: using ConvertAsyncCollectivesToSync::ConvertAsyncCollectivesToSync; absl::string_view name() const override { return "gpu-convert-async-collectives-to-sync"; } absl::Status ConvertAsyncInstructionsToSync( HloComputation* computation, absl::Span<const std::pair<HloInstruction*, HloInstruction*>> async_pairs) const override; }; } } #endif #include "xla/service/gpu/gpu_convert_async_collectives_to_sync.h" #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::Status GpuConvertAsyncCollectivesToSync::ConvertAsyncInstructionsToSync( HloComputation* computation, absl::Span<const std::pair<HloInstruction*, HloInstruction*>> async_pairs) const { absl::flat_hash_map<HloInstruction*, HloInstruction*> replaced_ops; CollectiveBackendConfig sync_config; sync_config.set_is_sync(true); for (auto& [async_start, async_done] : async_pairs) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, async_start->backend_config<GpuBackendConfig>()); *gpu_config.mutable_collective_backend_config() = sync_config; TF_RETURN_IF_ERROR(async_start->set_backend_config(gpu_config)); replaced_ops[async_start] = nullptr; replaced_ops[async_done] = async_start; } HloModule* module = computation->parent(); const HloInstructionSequence& sequence = module->schedule().sequence(computation); std::vector<HloInstruction*> new_sequence; new_sequence.reserve(sequence.size()); for (HloInstruction* instr : sequence.instructions()) { auto it = replaced_ops.find(instr); if (it == replaced_ops.end()) { new_sequence.push_back(instr); continue; } if (it->second == nullptr) { continue; } new_sequence.push_back(it->second); new_sequence.push_back(instr); } module->schedule().set_sequence(computation, new_sequence); return absl::OkStatus(); } } }
#include "xla/service/gpu/gpu_convert_async_collectives_to_sync.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::IsFalse; using ::testing::IsTrue; class GpuConvertAsyncCollectivesToSyncTest : public HloTestBase { public: absl::Status RunPass(HloModule *module, bool expect_change, HloPredicate is_nop = {}) { TF_ASSIGN_OR_RETURN(bool changed, GpuConvertAsyncCollectivesToSync{is_nop}.Run(module)); EXPECT_EQ(changed, expect_change); return absl::OkStatus(); } bool IsSync(HloModule *module, std::string_view name) { const HloInstruction *inst = FindInstruction(module, name); if (inst == nullptr) { return false; } auto backend_config = inst->backend_config<GpuBackendConfig>() .value() .collective_backend_config(); return backend_config.is_sync(); } HloPredicate is_nop_simple_ = HloPredicateIsOp<HloOpcode::kBitcast, HloOpcode::kGetTupleElement, HloOpcode::kParameter>; }; TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduce) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3, replica_groups={{0,1}, {2,3}} id2 = f32[] bitcast(id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true, is_nop_simple_)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleCollectiveBroadcast) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true collective_broadcast { p0 = u32[8] parameter(0) ROOT result = u32[8] collective-broadcast(p0), replica_groups={{0,1}, {2,3}} } ENTRY main { data = u32[8] parameter(0) cb-start = ((u32[8]{0}), u32[8]{0}) async-start(u32[8]{0} %data), calls=collective_broadcast ROOT %ars = u32[8]{0} async-done(((u32[8]{0}), u32[8]{0}) %cb-start), calls=collective_broadcast } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "cb-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNonNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 id2 = u32[] add(id, id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), false)); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllGather) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { a1 = u32[1, 2] parameter(0) ags = (u32[1, 2], u32[2, 2]) all-gather-start(a1), dimensions={0}, channel_id=3 ROOT allgather = u32[2,2] all-gather-done(ags) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "ags"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleCollectivePermute) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { p = u32[2] parameter(0) start = (u32[2], u32[2], u32[], u32[]) collective-permute-start(p), source_target_pairs={{0,1}, {1,0}} ROOT done = u32[2] collective-permute-done(start) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleReduceScatter) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } reduce_scatter { p0 = u32[8] parameter(0) ROOT result = u32[4] reduce-scatter(p0), replica_groups={{0,3}, {1,2}}, dimensions={0}, to_apply=add } ENTRY main { data = u32[8] parameter(0) rs-start = ((u32[8]{0}), u32[4]{0}) async-start(u32[8]{0} %data), calls=reduce_scatter ROOT %ars = u32[4]{0} async-done(((u32[8]{0}), u32[4]{0}) %rs-start), calls=reduce_scatter } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "rs-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllToAll) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true all_to_all { p0 = u32[2] parameter(0) ROOT result = u32[2] all-to-all(p0), dimensions={0}, replica_groups={{0,1},{2,3}} } ENTRY test_computation { a1 = u32[2] parameter(0) a2a-start = ((u32[2]), u32[2]) async-start(u32[2] a1), calls=all_to_all ROOT a2s = u32[2] async-done(a2a-start), calls=all_to_all } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "a2a-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, ControlDeps) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 done1 = u32[] all-reduce-done(start1) start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4, control-predecessors={done1} done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightStreaming) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done1 = u32[] all-reduce-done(start1) done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightNested) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightNestedPartial) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) id2 = u32[] add(done2, done2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsFalse()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } } } }
2,094
cpp
tensorflow/tensorflow
topk_splitter
third_party/xla/xla/service/gpu/transforms/topk_splitter.cc
third_party/xla/xla/service/gpu/transforms/topk_splitter_test.cc
#ifndef XLA_SERVICE_GPU_TOPK_SPLITTER_H_ #define XLA_SERVICE_GPU_TOPK_SPLITTER_H_ #include <cstddef> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class TopKSplitter : public HloModulePass { public: explicit TopKSplitter(size_t split_threshold = 1024 * 1024) : split_threshold_(split_threshold) {} absl::string_view name() const override { return "topk-splitter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const size_t split_threshold_; }; } } #endif #include "xla/service/gpu/topk_splitter.h" #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { constexpr size_t kRequiredAlignment = 1024; constexpr size_t kMaximumBatchSize = 1024; class TopkSplitterVisitor : public DfsHloRewriteVisitor { public: explicit TopkSplitterVisitor(size_t split_threshold) : split_threshold_(split_threshold) {} absl::Status HandleCustomCall(HloInstruction* inst) override { HloCustomCallInstruction* topk = DynCast<HloCustomCallInstruction>(inst); if (topk == nullptr || topk->custom_call_target() != "TopK") { return absl::OkStatus(); } HloComputation* comp = inst->parent(); Shape data_shape = topk->operand(0)->shape(); bool has_batch = data_shape.dimensions_size() == 2; if (has_batch && data_shape.dimensions(0) != 1) { return absl::OkStatus(); } size_t n = data_shape.dimensions(has_batch ? 1 : 0); int64_t k = topk->shape().tuple_shapes(0).dimensions(has_batch ? 1 : 0); if (k > sqrt(n)) { return absl::OkStatus(); } if (n % kRequiredAlignment != 0) { return absl::OkStatus(); } if (n < split_threshold_) return absl::OkStatus(); int new_batch = std::min(absl::bit_floor(n / split_threshold_), kMaximumBatchSize); int new_n = n / new_batch; Shape split_input_shape = ShapeUtil::MakeShape(data_shape.element_type(), {new_batch, new_n}); TF_ASSIGN_OR_RETURN( HloInstruction * reshaped, MakeReshapeHlo(split_input_shape, topk->mutable_operand(0))); Shape batch_topk_shape = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(data_shape.element_type(), {new_batch, k}), ShapeUtil::MakeShape(S32, {new_batch, k})}); HloInstruction* batch_topk = comp->AddInstruction(HloInstruction::CreateCustomCall( batch_topk_shape, {reshaped}, topk->to_apply(), "TopK", "")); TF_ASSIGN_OR_RETURN(HloInstruction * indices, MakeGetTupleElementHlo(batch_topk, 1)); TF_ASSIGN_OR_RETURN(HloInstruction * values, MakeGetTupleElementHlo(batch_topk, 0)); Shape iota_shape = ShapeUtil::MakeShape(S32, {new_batch}); TF_ASSIGN_OR_RETURN( HloInstruction * fix, MakeBinaryHlo( HloOpcode::kMultiply, MakeIotaHlo(comp, iota_shape, 0), MakeBroadcastHlo(MakeR0ConstantHlo<int32_t>(comp, new_n), {}, iota_shape))); TF_ASSIGN_OR_RETURN( indices, MakeBinaryHlo(HloOpcode::kAdd, indices, MakeBroadcastHlo(fix, {0}, indices->shape()))); Shape linear_index_shape = ShapeUtil::MakeShape(S32, {k * new_batch}); Shape linear_shape = ShapeUtil::ChangeElementType( linear_index_shape, data_shape.element_type()); Shape linear_sort_shape = ShapeUtil::MakeTupleShape({linear_shape, linear_index_shape}); HloInstruction* aggregated_sort = comp->AddInstruction(HloInstruction::CreateSort( linear_sort_shape, 0, {*MakeReshapeHlo(linear_shape, values), *MakeReshapeHlo(linear_index_shape, indices)}, topk->to_apply(), true)); auto slice_tuple = [&](HloInstruction* sort, const size_t index) { return *MakeReshapeHlo( topk->shape().tuple_shapes(index), *MakeSliceHlo(*MakeGetTupleElementHlo(sort, index), {0}, {k}, {1})); }; return ReplaceInstruction(topk, comp->AddInstruction(HloInstruction::CreateTuple({ slice_tuple(aggregated_sort, 0), slice_tuple(aggregated_sort, 1), }))); } private: size_t split_threshold_; }; } absl::StatusOr<bool> TopKSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return TopkSplitterVisitor(split_threshold_) .RunOnModule(module, execution_threads); } } }
#include "xla/service/gpu/topk_splitter.h" #include <stdint.h> #include <cstddef> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_dce.h" #include "xla/service/pattern_matcher.h" #include "xla/service/topk_rewriter.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace m = ::xla::match; namespace xla { namespace gpu { namespace { using ::tsl::testing::IsOkAndHolds; using TopkSplitterTest = HloTestBase; constexpr absl::string_view kComparator = R"( %compare { %p.1.lhs.40628 = s32[] parameter(2) %p.1.rhs.40629 = s32[] parameter(3) %constant.40630 = pred[] constant(true) %broadcast.40631 = pred[] broadcast(pred[] %constant.40630), dimensions={} %p.0.lhs.40626 = f32[] parameter(0) %p.0.rhs.40627 = f32[] parameter(1) %compare.40632 = pred[] compare(f32[] %p.0.lhs.40626, f32[] %p.0.rhs.40627), direction=GT, type=TOTALORDER ROOT %select.40633 = pred[] select(pred[] %broadcast.40631, pred[] %compare.40632, pred[] %broadcast.40631) })"; TEST_F(TopkSplitterTest, SplitsTopK) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,1073741824] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(), module.get()), IsOkAndHolds(true)); auto first_topk = m::CustomCall(m::Reshape(m::Parameter(0))); auto slice_result = [&](auto input, size_t i) { return m::Reshape(m::Slice(m::GetTupleElement(input, i))); }; auto index_correction = m::Broadcast(m::Multiply(m::Iota(), m::Broadcast(m::Constant()))); auto sorted = m::Sort( m::Reshape(m::GetTupleElement(first_topk, 0)), m::Reshape(m::Add(m::GetTupleElement(first_topk, 1), index_correction))); EXPECT_TRUE( Match(module->entry_computation()->root_instruction(), m::Tuple(slice_result(sorted, 0), slice_result(sorted, 1)))); } TEST_F(TopkSplitterTest, SplitsTopKNoBatchDimension) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1073741824] parameter(0) ROOT %cc.2 = (f32[5], s32[5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(), module.get()), IsOkAndHolds(true)); auto first_topk = m::CustomCall(m::Reshape(m::Parameter(0))); auto slice_result = [&](auto input, size_t i) { return m::Reshape(m::Slice(m::GetTupleElement(input, i))); }; auto index_correction = m::Broadcast(m::Multiply(m::Iota(), m::Broadcast(m::Constant()))); auto sorted = m::Sort( m::Reshape(m::GetTupleElement(first_topk, 0)), m::Reshape(m::Add(m::GetTupleElement(first_topk, 1), index_correction))); EXPECT_TRUE( Match(module->entry_computation()->root_instruction(), m::Tuple(slice_result(sorted, 0), slice_result(sorted, 1)))); } TEST_F(TopkSplitterTest, SplitFailsUnderThreshold) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,524288] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT( RunHloPass(TopKSplitter(1048576), module.get()), IsOkAndHolds(false)); } TEST_F(TopkSplitterTest, SplitFailsUnaligned) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,524289] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(1024), module.get()), IsOkAndHolds(false)); } TEST_F(TopkSplitterTest, SplitFailsLargeK) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,524288] parameter(0) ROOT %cc.2 = (f32[1,1024], s32[1,1024]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(RunHloPass(TopKSplitter(1024), module.get()), IsOkAndHolds(false)); } TEST_F(TopkSplitterTest, Equivalent) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %arg.1 = f32[1,16384] parameter(0) ROOT %cc.2 = (f32[1,5], s32[1,5]) custom-call(%arg.1), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(TopkDecomposer().Run(module.get()), IsOkAndHolds(true)); auto round_trip = [](HloModule* module) { EXPECT_THAT(TopkRewriter([](const HloSortInstruction*, int64_t) { return true; }).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopKSplitter(1024).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopkDecomposer().Run(module), IsOkAndHolds(true)); EXPECT_TRUE(HloDCE().Run(module).status().ok()); }; EXPECT_TRUE(RunAndCompare(std::move(module), std::nullopt, round_trip)); } TEST_F(TopkSplitterTest, StableSorts) { const std::string hlo_string = absl::Substitute(R"( HloModule module $0 ENTRY cluster { %constant.1 = f32[] constant(42) %broadcast.2= f32[1,16384] broadcast(f32[] %constant.1), dimensions={} ROOT %cc.3 = (f32[1,5], s32[1,5]) custom-call(%broadcast.2), custom_call_target= "TopK", to_apply=%compare })", kComparator); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_THAT(TopkDecomposer().Run(module.get()), IsOkAndHolds(true)); auto round_trip = [](HloModule* module) { EXPECT_THAT(TopkRewriter([](const HloSortInstruction*, int64_t) { return true; }).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopKSplitter(1024).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopkDecomposer().Run(module), IsOkAndHolds(true)); EXPECT_TRUE(HloDCE().Run(module).status().ok()); }; EXPECT_TRUE(RunAndCompare(std::move(module), std::nullopt, round_trip)); } } } }
2,095
cpp
tensorflow/tensorflow
cudnn_fused_mha_rewriter
third_party/xla/xla/service/gpu/transforms/cudnn_fused_mha_rewriter.cc
third_party/xla/xla/service/gpu/transforms/cudnn_fused_mha_rewriter_test.cc
#ifndef XLA_SERVICE_GPU_CUDNN_FUSED_MHA_REWRITER_H_ #define XLA_SERVICE_GPU_CUDNN_FUSED_MHA_REWRITER_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" namespace xla { namespace gpu { class CudnnFusedMHARewriter : public HloModulePass { public: explicit CudnnFusedMHARewriter(se::CudaComputeCapability cc, se::StreamExecutor* stream_executor) : compute_capability_(cc), stream_executor_(stream_executor) {} explicit CudnnFusedMHARewriter(se::CudaComputeCapability cc, se::dnn::VersionInfo cudnn_version) : compute_capability_(cc), cudnn_version_(cudnn_version) {} absl::string_view name() const override { return "cudnn-fused-multi-headed-attention-rewriter"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const se::CudaComputeCapability compute_capability_; se::StreamExecutor* stream_executor_ = nullptr; const se::dnn::VersionInfo cudnn_version_; }; } } #endif #include "xla/service/gpu/cudnn_fused_mha_rewriter.h" #include <algorithm> #include <cstdint> #include <numeric> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/permutation_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #endif namespace xla { namespace gpu { namespace { namespace m = match; struct MatchFwdResult { HloInstruction* matched_bmm_1 = nullptr; HloInstruction* matched_bmm_2 = nullptr; HloInstruction* matched_bias = nullptr; HloInstruction* matched_scale = nullptr; HloInstruction* matched_softmax_input = nullptr; HloInstruction* matched_reduce_sum = nullptr; double matched_dropout_rate = 0.0; bool need_canonicalization = false; bool is_training = false; bool is_causal_mask = false; bool has_match = false; std::string matched_custom_call_name; }; struct MatchBwdResult { HloInstruction* matched_bmm_1_grad_1 = nullptr; HloInstruction* matched_bmm_1_grad_2 = nullptr; HloInstruction* matched_bmm_2_grad_1 = nullptr; HloInstruction* matched_bmm_2_grad_2 = nullptr; HloInstruction* matched_dbias = nullptr; bool bmm_1_grad_1_need_canonicalization = false; bool bmm_1_grad_2_need_canonicalization = false; bool bmm_2_grad_1_need_canonicalization = false; bool bmm_2_grad_2_need_canonicalization = false; bool has_match = false; std::string matched_custom_call_name; }; template <typename Pattern> auto OptionalReshape(Pattern pattern) { auto shared = m::SharedSubpattern(pattern); return m::AnyOf<HloInstruction>(m::Reshape(shared), shared); } template <typename Pattern> auto OptionalConvert(Pattern pattern) { auto shared = m::SharedSubpattern(pattern); return m::AnyOf<HloInstruction>(m::Convert(shared), shared); } template <typename Pattern> auto OptionalBitcast(Pattern pattern) { auto shared = m::SharedSubpattern(pattern); return m::AnyOf<HloInstruction>(m::Bitcast(shared), shared); } template <typename Pattern> auto OptionalBroadcast(Pattern pattern) { auto shared = m::SharedSubpattern(pattern); return m::AnyOf<HloInstruction>(m::Broadcast(shared), shared); } bool IsBatchedMatmul(const HloInstruction* instr) { if (instr->opcode() != HloOpcode::kDot) return false; if (Cast<HloDotInstruction>(instr)->sparse_operands()) return false; const DotDimensionNumbers& dot_dims = instr->dot_dimension_numbers(); bool is_batch_dot = !dot_dims.lhs_batch_dimensions().empty() || !dot_dims.rhs_batch_dimensions().empty(); return is_batch_dot; } bool IsSharingOperandWithFwdMha(HloInstruction* gemm) { for (int64_t i = 0; i < gemm->operands().size(); i++) { std::queue<HloInstruction*> visit_list; visit_list.push(gemm->mutable_operand(i)); while (!visit_list.empty()) { HloInstruction* current_instr = visit_list.front(); for (auto user : current_instr->users()) { switch (user->opcode()) { case HloOpcode::kBitcast: case HloOpcode::kReshape: case HloOpcode::kTranspose: { visit_list.push(user); break; } case HloOpcode::kCustomCall: { if (IsFwdCustomCallTofMHA(*user)) { return true; } } break; default: break; } } visit_list.pop(); } } return false; } bool IsFirstFwdMatmul(HloInstruction* gemm) { return IsBatchedMatmul(gemm) && !IsFwdCustomCallTofMHA(*gemm->operand(0)) && !IsFwdCustomCallTofMHA(*gemm->operand(1)) && !IsSharingOperandWithFwdMha(gemm); } bool IsScalar(const HloInstruction* instr) { return ShapeUtil::IsEffectiveScalar(instr->shape()); } bool IsReduceMax(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kReduce && instr->to_apply()->root_instruction()->opcode() == HloOpcode::kMaximum; } bool IsReduceSum(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kReduce && instr->to_apply()->root_instruction()->opcode() == HloOpcode::kAdd; } auto GetUnfusedReduceMaxSumSoftmaxPattern( HloInstruction** softmax_input = nullptr, HloInstruction** softmax_reduce_sum = nullptr, HloInstruction** softmax_reduce_sum_bcast = nullptr) { auto unfused_softmax_max_subpattern = m::SharedSubpattern( m::Subtract( m::Op(), m::Broadcast(OptionalConvert( m::Op() .WithPredicate(IsReduceMax) .WithOneUse() .WithOperand(0, OptionalBitcast(OptionalConvert( m::Op(softmax_input).WithNumUser(2))))))) .WithOneUse()); auto unfused_softmax_sum_subpattern = m::SharedSubpattern(m::Divide( OptionalBitcast(m::Exp(unfused_softmax_max_subpattern)), m::Broadcast( softmax_reduce_sum_bcast, OptionalConvert( m::Op(softmax_reduce_sum) .WithOperand(0, OptionalBitcast(OptionalConvert( m::Exp(unfused_softmax_max_subpattern)))) .WithPredicate(IsReduceSum) .WithAtMostNumUser(2))) .WithAtMostNumUser(2))); return unfused_softmax_sum_subpattern; } std::optional<double> GetConstantValue(const HloInstruction* inst) { if (!IsScalar(inst)) { return std::nullopt; } switch (inst->shape().element_type()) { case F16: return static_cast<float>(inst->literal().GetFirstElement<half>()); case BF16: return static_cast<float>(inst->literal().GetFirstElement<bfloat16>()); case F32: return inst->literal().GetFirstElement<float>(); case F64: return inst->literal().GetFirstElement<double>(); default: return std::nullopt; } } double GetDropoutRateFromHlo(HloInstruction* dropout) { std::optional<double> dropout_rate_inv; dropout_rate_inv = GetConstantValue(dropout); if (!dropout_rate_inv.has_value()) { return 0.0; } return (1.0 - (1.0 / *dropout_rate_inv)); } bool IsComputeCapabilityAndCudnnSupported( stream_executor::CudaComputeCapability cc, stream_executor::dnn::VersionInfo cudnn_version, stream_executor::dnn::VersionInfo supported_cudnn_version) { if (cc.IsAtLeastAmpere() && cc.minor == 0 && cudnn_version >= supported_cudnn_version) { return true; } VLOG(2) << absl::StrFormat( "CudnnFusedMHARewriter did not run. Unsupported compute " "capability(%s; major should be >= 8, minor should be 0) or cudnn version" "(%s; should be >= %s)", cc.ToString(), cudnn_version.ToString(), supported_cudnn_version.ToString()); return false; } bool IsSupportedPrimitiveType(const HloInstruction* bmm) { PrimitiveType dtype = bmm->shape().element_type(); return dtype == BF16 || dtype == F16; } std::vector<int64_t> GetDimensionVector(absl::Span<const int64_t> dimensions, absl::Span<const int64_t> dim_nums) { std::vector<int64_t> vec(dim_nums.size()); for (int i = 0; i < dim_nums.size(); i++) { vec[i] = dimensions.at(dim_nums.at(i)); } return vec; } struct QKVLayout { int64_t batch; int64_t num_heads; int64_t seqlen_q; int64_t seqlen_kv; int64_t hidden_dim; }; absl::StatusOr<std::optional<QKVLayout>> GetQKVLayout( HloInstruction* bmm_1, HloInstruction* bmm_2, bool need_canonicalization) { const DotDimensionNumbers& bmm1_dnums = bmm_1->dot_dimension_numbers(); TF_ASSIGN_OR_RETURN( std::vector<int64_t> bmm1_s_q_dims, GetNonContractingDims(bmm_1->operand(0)->shape(), bmm1_dnums.lhs_batch_dimensions(), bmm1_dnums.lhs_contracting_dimensions())); TF_ASSIGN_OR_RETURN( std::vector<int64_t> bmm1_s_kv_dims, GetNonContractingDims(bmm_1->operand(1)->shape(), bmm1_dnums.rhs_batch_dimensions(), bmm1_dnums.rhs_contracting_dimensions())); std::vector<int64_t> bmm1_bh = GetDimensionVector(bmm_1->operand(0)->shape().dimensions(), bmm1_dnums.lhs_batch_dimensions()); std::vector<int64_t> bmm1_s_q = GetDimensionVector( bmm_1->operand(0)->shape().dimensions(), bmm1_s_q_dims); std::vector<int64_t> bmm1_s_kv = GetDimensionVector( bmm_1->operand(1)->shape().dimensions(), bmm1_s_kv_dims); std::vector<int64_t> bmm1_d = GetDimensionVector(bmm_1->operand(0)->shape().dimensions(), bmm1_dnums.lhs_contracting_dimensions()); TF_RET_CHECK(bmm1_bh.size() == 2); TF_RET_CHECK(bmm1_s_q.size() == 1); TF_RET_CHECK(bmm1_s_kv.size() == 1); TF_RET_CHECK(bmm1_d.size() == 1); const DotDimensionNumbers& bmm2_dnums = bmm_2->dot_dimension_numbers(); TF_ASSIGN_OR_RETURN( std::vector<int64_t> bmm2_lhs_non_contracting_dims, GetNonContractingDims(bmm_2->operand(0)->shape(), bmm2_dnums.lhs_batch_dimensions(), bmm2_dnums.lhs_contracting_dimensions())); TF_ASSIGN_OR_RETURN( std::vector<int64_t> bmm2_rhs_non_contracting_dims, GetNonContractingDims(bmm_2->operand(1)->shape(), bmm2_dnums.rhs_batch_dimensions(), bmm2_dnums.rhs_contracting_dimensions())); std::vector<int64_t> bmm2_bh = GetDimensionVector(bmm_2->operand(0)->shape().dimensions(), bmm2_dnums.lhs_batch_dimensions()); std::vector<int64_t> bmm2_s_kv = GetDimensionVector(bmm_2->operand(0)->shape().dimensions(), bmm2_dnums.lhs_contracting_dimensions()); std::vector<int64_t> bmm2_s_q = need_canonicalization ? GetDimensionVector(bmm_2->operand(1)->shape().dimensions(), bmm2_rhs_non_contracting_dims) : GetDimensionVector(bmm_2->operand(0)->shape().dimensions(), bmm2_lhs_non_contracting_dims); std::vector<int64_t> bmm2_d = need_canonicalization ? GetDimensionVector(bmm_2->operand(0)->shape().dimensions(), bmm2_lhs_non_contracting_dims) : GetDimensionVector(bmm_2->operand(1)->shape().dimensions(), bmm2_rhs_non_contracting_dims); TF_RET_CHECK(bmm2_bh.size() == 2); TF_RET_CHECK(bmm2_s_q.size() == 1); TF_RET_CHECK(bmm2_s_kv.size() == 1); TF_RET_CHECK(bmm2_d.size() == 1); if (bmm1_bh[0] != bmm2_bh[0] || bmm1_bh[1] != bmm2_bh[1] || bmm1_s_q[0] != bmm2_s_q[0] || bmm1_s_kv[0] != bmm2_s_kv[0] || bmm1_d[0] != bmm2_d[0]) { return std::nullopt; } QKVLayout qkv_layout; qkv_layout.batch = bmm1_bh[0]; qkv_layout.num_heads = bmm1_bh[1]; qkv_layout.seqlen_q = bmm1_s_q[0]; qkv_layout.seqlen_kv = bmm1_s_kv[0]; qkv_layout.hidden_dim = bmm1_d[0]; return qkv_layout; } absl::StatusOr<bool> IsFlashAttention( QKVLayout qkv_layout, bool is_training, stream_executor::CudaComputeCapability cc, stream_executor::dnn::VersionInfo cudnn_version) { int64_t s_q = qkv_layout.seqlen_q; int64_t s_kv = qkv_layout.seqlen_kv; int64_t hidden_dim = qkv_layout.hidden_dim; bool is_seqlen_supported = (!is_training || (s_q % 2 == 0 && s_kv % 2 == 0)); bool is_hidden_dim_supported = hidden_dim <= 128 && hidden_dim % 8 == 0; bool is_flash_attention = is_seqlen_supported && is_hidden_dim_supported; if (!is_flash_attention) return false; if ((is_training && (s_q < 64 || s_kv < 64)) && !IsComputeCapabilityAndCudnnSupported( cc, cudnn_version, stream_executor::dnn::VersionInfo(9, 0, 0))) { VLOG(2) << "Flash attention training with seq < 64 not supported cuDNN < " "9.0.0."; return false; } if ((hidden_dim != 64 && hidden_dim != 128) && !IsComputeCapabilityAndCudnnSupported( cc, cudnn_version, stream_executor::dnn::VersionInfo(8, 9, 6))) { VLOG(2) << "Flash attention head dim != 64 or 128 not supported with cuDNN " "< 8.9.6."; return false; } if ((is_training && s_kv % 64 != 0) && !IsComputeCapabilityAndCudnnSupported( cc, cudnn_version, stream_executor::dnn::VersionInfo(8, 9, 5))) { VLOG(2) << "Flash attention training with seq kv % 64 != 0 not supported " "with cuDNN < 8.9.5."; return false; } if (!IsComputeCapabilityAndCudnnSupported( cc, cudnn_version, stream_executor::dnn::VersionInfo(8, 9, 4))) { VLOG(2) << "Require cuDNN 8.9.4 to run flash attention."; return false; } return is_flash_attention; } bool IsCausalMaskPattern(HloInstruction* mask) { auto causal_mask = m::Select(m::Compare(m::Iota(), m::Iota()), m::Broadcast(m::Constant()), m::Broadcast(m::Constant())); auto causal_mask_pattern_fwd_remat = m::Broadcast(OptionalBitcast(causal_mask)); auto causal_mask_pattern_bwd = m::Broadcast(m::Convert(OptionalBitcast( m::Minimum(m::Op(), m::Broadcast(OptionalBitcast(causal_mask)))))); HloInstruction* param = nullptr; HloInstruction* gte = nullptr; auto causal_mask_pattern_fwd = m::Broadcast( OptionalBitcast(m::GetTupleElement(&gte, m::Parameter(&param)))); auto causal_mask_pattern = m::AnyOf<HloInstruction>( causal_mask_pattern_fwd_remat, causal_mask_pattern_fwd, causal_mask_pattern_bwd); if (Match(mask, causal_mask_pattern)) { if (param != nullptr && param->parent()->IsWhileBodyComputation()) { auto while_instr = param->parent()->WhileCallInstruction(); auto mask_index = gte->tuple_index(); auto actual_mask = while_instr->mutable_operand(0)->mutable_operand(mask_index); auto causal_mask_pattern_fwd = OptionalBitcast(m::Convert(m::MinimumAnyOrder( m::Op(), OptionalBitcast(m::MinimumAnyOrder( m::Op(), m::Broadcast(OptionalBitcast(causal_mask))))))); return Match(actual_mask, causal_mask_pattern_fwd); } return true; } return false; } MatchFwdResult MatchSoftmaxDropoutBmm(MatchFwdResult previous_result, int64_t bmm2_operand_position, HloInstruction* instr) { MatchFwdResult match_result = previous_result; HloInstruction* softmax_reduce_sum; HloInstruction* softmax_reduce_sum_bcast; HloInstruction* bmm_2; HloInstruction* softmax_input; HloInstruction* dropout = nullptr; auto dropout_softmax_pattern_form_1 = m::Select( m::Op(), OptionalConvert(m::MultiplyAnyOrder( OptionalBitcast(OptionalReshape( OptionalConvert(GetUnfusedReduceMaxSumSoftmaxPattern( &softmax_input, &softmax_reduce_sum, &softmax_reduce_sum_bcast)))), m::Broadcast( OptionalConvert(m::Constant(&dropout).WithPredicate(IsScalar))))), m::Op()); auto dropout_softmax_pattern_form_2 = OptionalBitcast(OptionalBitcast(OptionalConvert(m::MultiplyAnyOrder( OptionalReshape(OptionalConvert(GetUnfusedReduceMaxSumSoftmaxPattern( &softmax_input, &softmax_reduce_sum, &softmax_reduce_sum_bcast))), m::Broadcast( OptionalConvert(OptionalBitcast(OptionalReshape(m::Select( m::Op(), m::Broadcast(m::Constant(&dropout).WithPredicate(IsScalar)), m::Op()))))))))); auto dropout_softmax_pattern_form_3 = m::MultiplyAnyOrder( m::MultiplyAnyOrder( OptionalConvert(GetUnfusedReduceMaxSumSoftmaxPattern( &softmax_input, &softmax_reduce_sum, &softmax_reduce_sum_bcast)), m::Op()), m::Broadcast(m::Constant(&dropout).WithPredicate(IsScalar))); auto softmax_dropout_bmm2_pattern = m::Op(&bmm_2) .WithPredicate(IsBatchedMatmul) .WithOperand(bmm2_operand_position, m::AnyOf<HloInstruction>( OptionalBitcast(OptionalConvert( GetUnfusedReduceMaxSumSoftmaxPattern( &softmax_input, &softmax_reduce_sum, &softmax_reduce_sum_bcast))), dropout_softmax_pattern_form_1, dropout_softmax_pattern_form_2, dropout_softmax_pattern_form_3)); if (!Match(instr, softmax_dropout_bmm2_pattern) || !IsSupportedPrimitiveType(bmm_2)) { match_result.has_match = false; return match_result; } if (softmax_reduce_sum->users()[0]->opcode() == HloOpcode::kConvert) { softmax_reduce_sum = softmax_reduce_sum->users()[0]; } match_result.is_training = softmax_reduce_sum->user_count() == 2 && softmax_reduce_sum_bcast->user_count() == 2; match_result.matched_bmm_2 = bmm_2; if (dropout) { match_result.matched_dropout_rate = GetDropoutRateFromHlo(dropout); } match_result.matched_softmax_input = softmax_input; match_result.matched_reduce_sum = softmax_reduce_sum; match_result.has_match = true; return match_result; } MatchFwdResult MatchBmm1UnfusedBiasSoftmaxBmm2(MatchFwdResult previous_result, HloInstruction* softmax_input, bool has_dropout) { MatchFwdResult match_result = previous_result; HloInstruction* bmm_1; HloInstruction* bias = nullptr; HloInstruction* scale = nullptr; auto first_bmm_pattern = m::SharedSubpattern(m::Op(&bmm_1).WithPredicate(IsBatchedMatmul)); auto unfused_scaled_bmm_subpattern = m::MultiplyAnyOrder( OptionalConvert(first_bmm_pattern.WithOneUse()), OptionalConvert( m::Broadcast(m::Constant(&scale).WithPredicate(IsScalar)))); if (Match(softmax_input, OptionalConvert(OptionalBitcast(m::AnyOf<HloInstruction>( first_bmm_pattern, unfused_scaled_bmm_subpattern))))) { match_result.matched_bmm_1 = bmm_1; match_result.matched_scale = scale; match_result.matched_custom_call_name = has_dropout ? kCudnnfMHASoftmaxDropoutCallTarget : kCudnnfMHASoftmaxCallTarget; match_result.has_match = true; } else if (Match(softmax_input, OptionalBitcast(m::AddAnyOrder( OptionalConvert(OptionalBitcast(m::AnyOf<HloInstruction>( unfused_scaled_bmm_subpattern.WithOneUse(), first_bmm_pattern.WithOneUse()))), m::Op(&bias))))) { match_result.matched_bmm_1 = bmm_1; match_result.matched_scale = scale; match_result.matched_custom_call_name = has_dropout ? kCudnnfMHAScaleBiasSoftmaxDropoutCallTarget : kCudnnfMHAScaleBiasSoftmaxCallTarget; match_result.is_causal_mask |= IsCausalMaskPattern(bias); if (!match_result.is_causal_mask && bias->opcode() == HloOpcode::kBroadcast) { auto dims = Cast<HloBroadcastInstruction>(bias)->dimensions(); if (dims == std::vector<int64_t>{2, 3} || dims == std::vector<int64_t>{0, 2, 3} || dims == std::vector<int64_t>{1, 2, 3}) { HloInstruction* bias_bc = bias->mutable_operand(0); std::vector<int64_t> bitcast_dims(bias->shape().rank(), 1); for (int dim : dims) { bitcast_dims[dim] = bias->shape().dimensions()[dim]; } bias = bias_bc->AddInstruction(HloInstruction::CreateBitcast( ShapeUtil::MakeShape(bias->shape().element_type(), bitcast_dims), bias_bc)); } } match_result.matched_bias = bias; match_result.has_match = true; } else { match_result.has_match = false; } return match_result; } MatchFwdResult MatchFwdMHAPatternsForCanonicalization(HloInstruction* instr) { MatchFwdResult match_result; for (auto bmm2_operand_pos : {0, 1}) { if (bmm2_operand_pos == 1) { match_result.need_canonicalization = true; } bool has_dropout = false; match_result = MatchSoftmaxDropoutBmm(match_result, bmm2_operand_pos, instr); if (!match_result.has_match) { continue; } has_dropout = match_result.matched_dropout_rate > 0.0; match_result = MatchBmm1UnfusedBiasSoftmaxBmm2( match_result, match_result.matched_softmax_input, has_dropout); if (match_result.has_match) { return match_result; } } match_result.need_canonicalization = false; return match_result; } bool IsBmm2GradGemm2(HloInstruction* instr) { return (instr->user_count() == 1) || (instr->user_count() == 2); } MatchBwdResult MatchBmm1GradGemm1(MatchBwdResult previous_result, HloInstruction* bmm_1) { MatchBwdResult match_result = previous_result; match_result.has_match = false; const HloInstruction* q_tensor = bmm_1->operand(0); for (int64_t i = 0; i < q_tensor->user_count(); i++) { HloInstruction* q_tensor_user_i = q_tensor->users()[i]; if (IsBatchedMatmul(q_tensor_user_i) && q_tensor_user_i != bmm_1) { match_result.matched_bmm_1_grad_1 = q_tensor_user_i; if (match_result.matched_bmm_1_grad_1->operand_index(q_tensor) != 1) { match_result.bmm_1_grad_1_need_canonicalization = true; } match_result.has_match = true; } } return match_result; } MatchBwdResult MatchBmm1GradGemm2(MatchBwdResult previous_result, HloInstruction* fwd_fmha_call) { HloInstruction* bmm_1_grad_2 = nullptr; MatchBwdResult match_result = previous_result; match_result.has_match = false; int64_t d_s_index = match_result.bmm_1_grad_1_need_canonicalization ? 1 : 0; HloInstruction* d_s_user_0 = match_result.matched_bmm_1_grad_1; HloInstruction* d_s = d_s_user_0->mutable_operand(d_s_index); if (d_s->opcode() == HloOpcode::kBitcast && d_s->user_count() == 1) { d_s = d_s->mutable_operand(0); } auto bmm_1_grad_2_it = std::find_if( d_s->users().begin(), d_s->users().end(), [&](HloInstruction* instr) { return instr != match_result.matched_bmm_1_grad_1 && instr->opcode() == HloOpcode::kDot; }); if (bmm_1_grad_2_it != d_s->users().end()) { bmm_1_grad_2 = *bmm_1_grad_2_it; } else { return match_result; } match_result.matched_bmm_1_grad_2 = bmm_1_grad_2; if (match_result.matched_bmm_1_grad_2->operand_index(d_s) != 0) { match_result.bmm_1_grad_2_need_canonicalization = true; } match_result.has_match = true; return match_result; } MatchBwdResult MatchBmm2GradGemm1(HloInstruction* fwd_fmha_call) { HloInstruction* bmm_2_grad_1 = nullptr; MatchBwdResult matched_result; int64_t activation_out_gte_index = 1; if (fwd_fmha_call->user_count() < 2 || fwd_fmha_call->users()[activation_out_gte_index]->opcode() != HloOpcode::kGetTupleElement || fwd_fmha_call->users()[activation_out_gte_index]->user_count() > 1 || !IsBatchedMatmul( fwd_fmha_call->users()[activation_out_gte_index]->users()[0])) { matched_result.has_match = false; return matched_result; } bmm_2_grad_1 = fwd_fmha_call->users()[activation_out_gte_index]->users()[0]; matched_result.matched_bmm_2_grad_1 = bmm_2_grad_1; if (bmm_2_grad_1->operand_index( fwd_fmha_call->users()[activation_out_gte_index]) != 0) { matched_result.bmm_
#include "xla/service/gpu/cudnn_fused_mha_rewriter.h" #include <cstddef> #include <memory> #include <optional> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/computation_layout.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/cudnn_fused_mha_transpose_fusion.h" #include "xla/service/hlo_cse.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/service/hlo_verifier.h" #include "xla/service/layout_normalization.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/reshape_decomposer.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #if GOOGLE_CUDA #include "third_party/gpus/cuda/include/cuda.h" #include "third_party/gpus/cudnn/cudnn.h" #endif namespace xla { namespace gpu { namespace { namespace m = xla::match; class CudnnFusedMhaRewriterTestHloTest : public HloTestBase { public: se::CudaComputeCapability GetCudaComputeCapability() { return se::CudaComputeCapability(8, 0); } se::CudaComputeCapability GetRealCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } se::dnn::VersionInfo GetCudnnVersion() { return se::dnn::VersionInfo(8, 9, 4); } CudnnFusedMhaRewriterTestHloTest() : HloTestBase(false, false, {}) { #if !defined(GOOGLE_CUDA) || CUDA_VERSION < 12000 skip_reason_ = "cuDNN fused MHA requires CUDA 12 or later."; return; #endif } protected: size_t CountFusedAttentionCall(HloModule* module, bool is_backward = false) { return absl::c_count_if(module->entry_computation()->instructions(), [&](const HloInstruction* instr) { if (is_backward) { return IsBwdCustomCallTofMHA(*instr); } else { return IsFwdCustomCallTofMHA(*instr); } }); } DebugOptions GetDebugOptionsForTest() override { auto debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_cudnn_fmha(true); debug_options.set_xla_gpu_fused_attention_use_cudnn_rng(true); return debug_options; } HloModuleConfig GetModuleConfig() { DebugOptions debug_options = GetDebugOptionsForTest(); HloModuleConfig config_with_fmha; config_with_fmha.set_debug_options(debug_options); return config_with_fmha; } std::optional<absl::string_view> skip_reason_; }; class CudnnFusedMhaRewriterPipelineTest : public CudnnFusedMhaRewriterTestHloTest { public: CudnnFusedMhaRewriterPipelineTest() { if (skip_reason_) return; #if !defined(GOOGLE_CUDA) || CUDNN_VERSION < 8800 skip_reason_ = "Pipeline test requires cuDNN 8.8.0 or later."; return; #endif stream_executor::CudaComputeCapability cc = GetRealCudaComputeCapability(); if (!cc.IsAtLeastAmpere() || cc.minor != 0) { skip_reason_ = "Pipeline test requires Nvidia AMPERE+ GPUs with minor " "compute capability == 0."; return; } } }; constexpr absl::string_view hlo_BF16Bmm1SoftmaxBmm2Pattern_k_hidden_not_most_minor = R"( HloModule fmha_test, entry_computation_layout={(bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0})->bf16[16,16,256,64]{3,2,1,0}} region_0.7 { Arg_0.8 = bf16[] parameter(0) Arg_1.9 = bf16[] parameter(1) ROOT maximum = bf16[] maximum(Arg_0.8, Arg_1.9) } region_1.19 { Arg_0.20 = f32[] parameter(0) Arg_1.21 = f32[] parameter(1) ROOT add = f32[] add(Arg_0.20, Arg_1.21) } ENTRY main.6 { Arg_2.3 = bf16[16,16,256,64]{3,2,1,0} parameter(2) Arg_0.1 = bf16[16,16,256,64]{3,2,1,0} parameter(0) Arg_1.2 = bf16[16,16,256,64]{2,3,1,0} parameter(1) dot.0 = bf16[16,16,256,256]{3,2,1,0} dot(Arg_0.1, Arg_1.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3}, metadata={} constant = bf16[] constant(-inf) reduce.11 = bf16[16,16,256]{2,1,0} reduce(dot.0, constant), dimensions={3}, to_apply=region_0.7 broadcast.3 = bf16[16,16,256,256]{3,2,1,0} broadcast(reduce.11), dimensions={0,1,2} subtract.1 = bf16[16,16,256,256]{3,2,1,0} subtract(dot.0, broadcast.3) exponential.1 = bf16[16,16,256,256]{3,2,1,0} exponential(subtract.1) convert.1 = f32[16,16,256,256]{3,2,1,0} convert(exponential.1) constant.1 = f32[] constant(0) reduce.23 = f32[16,16,256]{2,1,0} reduce(convert.1, constant.1), dimensions={3}, to_apply=region_1.19 convert.2 = bf16[16,16,256]{2,1,0} convert(reduce.23) broadcast.4 = bf16[16,16,256,256]{3,2,1,0} broadcast(convert.2), dimensions={0,1,2} divide = bf16[16,16,256,256]{3,2,1,0} divide(exponential.1, broadcast.4) ROOT dot.1 = bf16[16,16,256,64]{3,2,1,0} dot(divide, Arg_2.3), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2}, metadata={} })"; TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1SoftmaxBmm2Pattern_bmm1_rhs_contracting_dim_not_most_minor) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; TF_ASSERT_OK_AND_ASSIGN( auto m, ParseAndReturnVerifiedModule( hlo_BF16Bmm1SoftmaxBmm2Pattern_k_hidden_not_most_minor)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&fusedMhaRewriter, m.get())); EXPECT_TRUE(result); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(&fmha, {kCudnnfMHASoftmaxCallTarget}), 0) .WithShape(BF16, {16, 16, 256, 64}))); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, fmha->backend_config<GpuBackendConfig>()); const CudnnfMHABackendConfig& config = gpu_config.cudnn_fmha_backend_config(); EXPECT_EQ(config.bmm1_dot_dimension_numbers().rhs_contracting_dimensions()[0], 2); } constexpr absl::string_view hlo_BF16Bmm1SoftmaxBmm2Pattern_q_hidden_not_most_minor = R"( HloModule fmha_test, entry_computation_layout={(bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0})->bf16[16,16,256,64]{3,2,1,0}} region_0.7 { Arg_0.8 = bf16[] parameter(0) Arg_1.9 = bf16[] parameter(1) ROOT maximum = bf16[] maximum(Arg_0.8, Arg_1.9) } region_1.19 { Arg_0.20 = f32[] parameter(0) Arg_1.21 = f32[] parameter(1) ROOT add = f32[] add(Arg_0.20, Arg_1.21) } ENTRY main.6 { Arg_2.3 = bf16[16,16,256,64]{3,2,1,0} parameter(2) Arg_0.1 = bf16[16,16,256,64]{2,3,1,0} parameter(0) Arg_1.2 = bf16[16,16,256,64]{2,3,1,0} parameter(1) dot.0 = bf16[16,16,256,256]{3,2,1,0} dot(Arg_0.1, Arg_1.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3}, metadata={} constant = bf16[] constant(-inf) reduce.11 = bf16[16,16,256]{2,1,0} reduce(dot.0, constant), dimensions={3}, to_apply=region_0.7 broadcast.3 = bf16[16,16,256,256]{3,2,1,0} broadcast(reduce.11), dimensions={0,1,2} subtract.1 = bf16[16,16,256,256]{3,2,1,0} subtract(dot.0, broadcast.3) exponential.1 = bf16[16,16,256,256]{3,2,1,0} exponential(subtract.1) convert.1 = f32[16,16,256,256]{3,2,1,0} convert(exponential.1) constant.1 = f32[] constant(0) reduce.23 = f32[16,16,256]{2,1,0} reduce(convert.1, constant.1), dimensions={3}, to_apply=region_1.19 convert.2 = bf16[16,16,256]{2,1,0} convert(reduce.23) broadcast.4 = bf16[16,16,256,256]{3,2,1,0} broadcast(convert.2), dimensions={0,1,2} divide = bf16[16,16,256,256]{3,2,1,0} divide(exponential.1, broadcast.4) ROOT dot.1 = bf16[16,16,256,64]{3,2,1,0} dot(divide, Arg_2.3), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2}, metadata={} })"; TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1SoftmaxBmm2Pattern_bmm1_lhs_contracting_dim_not_most_minor) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; TF_ASSERT_OK_AND_ASSIGN( auto m, ParseAndReturnVerifiedModule( hlo_BF16Bmm1SoftmaxBmm2Pattern_q_hidden_not_most_minor)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&fusedMhaRewriter, m.get())); EXPECT_TRUE(result); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(&fmha, {kCudnnfMHASoftmaxCallTarget}), 0) .WithShape(BF16, {16, 16, 256, 64}))); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, fmha->backend_config<GpuBackendConfig>()); const CudnnfMHABackendConfig& config = gpu_config.cudnn_fmha_backend_config(); EXPECT_EQ(config.bmm1_dot_dimension_numbers().lhs_contracting_dimensions()[0], 2); EXPECT_EQ(config.bmm1_dot_dimension_numbers().rhs_contracting_dimensions()[0], 2); } constexpr absl::string_view hlo_BF16Bmm1SoftmaxBmm2Pattern_v_hidden_dim_not_most_minor = R"( HloModule fmha_test, entry_computation_layout={(bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0})->bf16[16,16,256,64]{3,2,1,0}} region_0.7 { Arg_0.8 = bf16[] parameter(0) Arg_1.9 = bf16[] parameter(1) ROOT maximum = bf16[] maximum(Arg_0.8, Arg_1.9) } region_1.19 { Arg_0.20 = f32[] parameter(0) Arg_1.21 = f32[] parameter(1) ROOT add = f32[] add(Arg_0.20, Arg_1.21) } ENTRY main.6 { Arg_2.3 = bf16[16,16,256,64]{2,3,1,0} parameter(2) Arg_0.1 = bf16[16,16,256,64]{2,3,1,0} parameter(0) Arg_1.2 = bf16[16,16,256,64]{2,3,1,0} parameter(1) dot.0 = bf16[16,16,256,256]{3,2,1,0} dot(Arg_0.1, Arg_1.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3}, metadata={} constant = bf16[] constant(-inf) reduce.11 = bf16[16,16,256]{2,1,0} reduce(dot.0, constant), dimensions={3}, to_apply=region_0.7 broadcast.3 = bf16[16,16,256,256]{3,2,1,0} broadcast(reduce.11), dimensions={0,1,2} subtract.1 = bf16[16,16,256,256]{3,2,1,0} subtract(dot.0, broadcast.3) exponential.1 = bf16[16,16,256,256]{3,2,1,0} exponential(subtract.1) convert.1 = f32[16,16,256,256]{3,2,1,0} convert(exponential.1) constant.1 = f32[] constant(0) reduce.23 = f32[16,16,256]{2,1,0} reduce(convert.1, constant.1), dimensions={3}, to_apply=region_1.19 convert.2 = bf16[16,16,256]{2,1,0} convert(reduce.23) broadcast.4 = bf16[16,16,256,256]{3,2,1,0} broadcast(convert.2), dimensions={0,1,2} divide = bf16[16,16,256,256]{3,2,1,0} divide(exponential.1, broadcast.4) ROOT dot.1 = bf16[16,16,256,64]{3,2,1,0} dot(divide, Arg_2.3), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2}, metadata={} })"; TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1SoftmaxBmm2Pattern_bmm2_non_contracting_dim_not_most_minor) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; TF_ASSERT_OK_AND_ASSIGN( auto m, ParseAndReturnVerifiedModule( hlo_BF16Bmm1SoftmaxBmm2Pattern_v_hidden_dim_not_most_minor)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&fusedMhaRewriter, m.get())); EXPECT_TRUE(result); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(&fmha, {kCudnnfMHASoftmaxCallTarget}), 0) .WithShape(BF16, {16, 16, 256, 64}))); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, fmha->backend_config<GpuBackendConfig>()); const CudnnfMHABackendConfig& config = gpu_config.cudnn_fmha_backend_config(); EXPECT_EQ(config.bmm2_dot_dimension_numbers().lhs_contracting_dimensions()[0], 3); EXPECT_EQ(config.bmm2_dot_dimension_numbers().rhs_contracting_dimensions()[0], 3); } TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1CombinedMaskBiasSoftmaxBmm2) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; const char* module_str = R"( HloModule jit__unnamed_wrapped_function_, entry_computation_layout={(bf16[16,256,16,64]{3,2,1,0},bf16[16,256,16,64]{3,2,1,0},bf16[16,256,16,64]{3,2,1,0},bf16[1,16,256,256]{3,2,1,0},pred[16,1,256,256]{3,2,1,0})->bf16[16,256,16,64]{3,2,1,0}} region_0.32.clone { Arg_0.0 = f32[] parameter(0) Arg_1.0 = f32[] parameter(1) ROOT maximum.1 = f32[] maximum(Arg_0.0, Arg_1.0) } region_1.44 { Arg_0.45 = f32[] parameter(0) Arg_1.46 = f32[] parameter(1) ROOT add = f32[] add(Arg_0.45, Arg_1.46) } ENTRY main.61 { Arg_2.3 = bf16[16,256,16,64]{3,2,1,0} parameter(2), sharding={replicated} transpose.5 = bf16[16,16,64,256]{3,2,1,0} transpose(Arg_2.3), dimensions={0,2,3,1} Arg_0.1 = bf16[16,256,16,64]{3,2,1,0} parameter(0), sharding={replicated} transpose.6 = bf16[16,16,256,64]{3,2,1,0} transpose(Arg_0.1), dimensions={0,2,1,3} Arg_1.2 = bf16[16,256,16,64]{3,2,1,0} parameter(1), sharding={replicated} transpose.7 = bf16[16,16,64,256]{3,2,1,0} transpose(Arg_1.2), dimensions={0,2,3,1} Arg_4.5 = pred[16,1,256,256]{3,2,1,0} parameter(4), sharding={replicated} bitcast.35 = pred[16,256,256]{2,1,0} bitcast(Arg_4.5) convert.49 = s32[16,256,256]{2,1,0} convert(bitcast.35) constant.5 = s32[] constant(0) broadcast.10 = s32[16,256,256]{2,1,0} broadcast(constant.5), dimensions={} compare = pred[16,256,256]{2,1,0} compare(convert.49, broadcast.10), direction=GT constant.7 = bf16[] constant(0) broadcast.12 = bf16[16,256,256]{2,1,0} broadcast(constant.7), dimensions={} constant.9 = bf16[] constant(-9.999e+09) broadcast.13 = bf16[16,256,256]{2,1,0} broadcast(constant.9), dimensions={} select = bf16[16,256,256]{2,1,0} select(compare, broadcast.12, broadcast.13) convert.51 = f32[16,256,256]{2,1,0} convert(select) broadcast.14 = f32[16,16,256,256]{3,2,1,0} broadcast(convert.51), dimensions={0,2,3} Arg_3.4 = bf16[1,16,256,256]{3,2,1,0} parameter(3), sharding={replicated} bitcast.52 = bf16[16,256,256]{2,1,0} bitcast(Arg_3.4) convert.52 = f32[16,256,256]{2,1,0} convert(bitcast.52) broadcast.15 = f32[16,16,256,256]{3,2,1,0} broadcast(convert.52), dimensions={1,2,3} add.1 = f32[16,16,256,256]{3,2,1,0} add(broadcast.14, broadcast.15) dot.2 = bf16[16,16,256,256]{3,2,1,0} dot(transpose.6, transpose.7), lhs_contracting_dims={3}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} convert.55 = f32[16,16,256,256]{3,2,1,0} convert(dot.2) add.18 = f32[16,16,256,256]{3,2,1,0} add(convert.55, add.1) constant.11 = f32[] constant(-inf) reduce.36 = f32[16,16,256]{2,1,0} reduce(add.18, constant.11), dimensions={3}, to_apply=region_0.32.clone broadcast.17 = f32[16,16,256,256]{3,2,1,0} broadcast(reduce.36), dimensions={0,1,2} subtract.1 = f32[16,16,256,256]{3,2,1,0} subtract(add.18, broadcast.17) exponential.1 = f32[16,16,256,256]{3,2,1,0} exponential(subtract.1) constant.14 = f32[] constant(0) reduce.48 = f32[16,16,256]{2,1,0} reduce(exponential.1, constant.14), dimensions={3}, to_apply=region_1.44 broadcast.18 = f32[16,16,256,256]{3,2,1,0} broadcast(reduce.48), dimensions={0,1,2} divide = f32[16,16,256,256]{3,2,1,0} divide(exponential.1, broadcast.18) convert.68 = bf16[16,16,256,256]{3,2,1,0} convert(divide) dot.1 = bf16[16,16,64,256]{3,2,1,0} dot(transpose.5, convert.68), lhs_contracting_dims={3}, rhs_contracting_dims={3}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} ROOT transpose.8 = bf16[16,256,16,64]{3,2,1,0} transpose(dot.1), dimensions={0,3,1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK(RunHloPass(&fusedMhaRewriter, m.get()).status()); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch( m::Transpose( m::Transpose(m::GetTupleElement( m::CustomCall(&fmha, {kCudnnfMHAScaleBiasSoftmaxCallTarget}), 0))) .WithShape(BF16, {16, 256, 16, 64}))); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, fmha->backend_config<GpuBackendConfig>()); EXPECT_EQ(fmha->operands().size(), 4); } TEST_F(CudnnFusedMhaRewriterTestHloTest, F16Bmm1UnfusedSoftmaxBmm2) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; const char* module_str = R"( HloModule jit__unnamed_wrapped_function_, entry_computation_layout={(f16[2,6,40,64]{3,2,1,0},f16[2,6,64,40]{3,2,1,0},f16[2,6,40,64]{3,2,1,0})->f16[2,6,40,64]{3,2,1,0}} region_0.7 { Arg_0.8 = f16[] parameter(0) Arg_1.9 = f16[] parameter(1) ROOT maximum = f16[] maximum(Arg_0.8, Arg_1.9) } region_1.19 { Arg_0.20 = f32[] parameter(0) Arg_1.21 = f32[] parameter(1) ROOT add = f32[] add(Arg_0.20, Arg_1.21) } ENTRY main.31 { Arg_0.1 = f16[2,6,40,64]{3,2,1,0} parameter(0), sharding={replicated} Arg_1.2 = f16[2,6,64,40]{3,2,1,0} parameter(1), sharding={replicated} dot = f16[2,6,40,40]{3,2,1,0} dot(Arg_0.1, Arg_1.2), lhs_contracting_dims={3}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} constant = f16[] constant(-inf) reduce.11 = f16[2,6,40]{2,1,0} reduce(dot, constant), dimensions={3}, to_apply=region_0.7 broadcast.3 = f16[2,6,40,40]{3,2,1,0} broadcast(reduce.11), dimensions={0,1,2} subtract.1 = f16[2,6,40,40]{3,2,1,0} subtract(dot, broadcast.3) exponential.1 = f16[2,6,40,40]{3,2,1,0} exponential(subtract.1) convert.1 = f32[2,6,40,40]{3,2,1,0} convert(exponential.1) constant.1 = f32[] constant(0) reduce.23 = f32[2,6,40]{2,1,0} reduce(convert.1, constant.1), dimensions={3}, to_apply=region_1.19 convert.2 = f16[2,6,40]{2,1,0} convert(reduce.23) broadcast.4 = f16[2,6,40,40]{3,2,1,0} broadcast(convert.2), dimensions={0,1,2} divide = f16[2,6,40,40]{3,2,1,0} divide(exponential.1, broadcast.4) Arg_2.3 = f16[2,6,40,64]{3,2,1,0} parameter(2), sharding={replicated} ROOT dot.1 = f16[2,6,40,64]{3,2,1,0} dot(divide, Arg_2.3), lhs_contracting_dims={3}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK(RunHloPass(&fusedMhaRewriter, m.get()).status()); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement( m::CustomCall(&fmha, {kCudnnfMHASoftmaxCallTarget}), 0) .WithShape(F16, {2, 6, 40, 64}))); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, fmha->backend_config<GpuBackendConfig>()); const CudnnfMHABackendConfig& config = gpu_config.cudnn_fmha_backend_config(); EXPECT_FLOAT_EQ(config.fmha_scale(), 1.0); EXPECT_FLOAT_EQ(config.dropout_rate(), 0.0); EXPECT_EQ(fmha->operands().size(), 3); } TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1ConvertedMaskAddedAfterFirstGemmSoftmaxBmm2) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; const char* module_str = R"( HloModule jit__unnamed_wrapped_function_, entry_computation_layout={(bf16[16,256,16,64]{3,2,1,0},bf16[16,256,16,64]{3,2,1,0},bf16[16,256,16,64]{3,2,1,0},pred[16,1,256,256]{3,2,1,0})->bf16[16,256,16,64]{3,2,1,0}} region_0.27.clone { Arg_0.0 = f32[] parameter(0) Arg_1.0 = f32[] parameter(1) ROOT maximum.1 = f32[] maximum(Arg_0.0, Arg_1.0) } region_1.39 { Arg_0.40 = f32[] parameter(0) Arg_1.41 = f32[] parameter(1) ROOT add = f32[] add(Arg_0.40, Arg_1.41) } ENTRY main.56 { Arg_2.3 = bf16[16,256,16,64]{3,2,1,0} parameter(2), sharding={replicated} transpose.5 = bf16[16,16,64,256]{3,2,1,0} transpose(Arg_2.3), dimensions={0,2,3,1} Arg_0.1 = bf16[16,256,16,64]{3,2,1,0} parameter(0), sharding={replicated} transpose.6 = bf16[16,16,256,64]{3,2,1,0} transpose(Arg_0.1), dimensions={0,2,1,3} Arg_1.2 = bf16[16,256,16,64]{3,2,1,0} parameter(1), sharding={replicated} transpose.7 = bf16[16,16,64,256]{3,2,1,0} transpose(Arg_1.2), dimensions={0,2,3,1} dot = bf16[16,16,256,256]{3,2,1,0} dot(transpose.6, transpose.7), lhs_contracting_dims={3}, rhs_contracting_dims={2}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} convert.47 = f32[16,16,256,256]{3,2,1,0} convert(dot) Arg_3.4 = pred[16,1,256,256]{3,2,1,0} parameter(3), sharding={replicated} bitcast.37 = pred[16,256,256]{2,1,0} bitcast(Arg_3.4) convert.42 = s32[16,256,256]{2,1,0} convert(bitcast.37) constant.6 = s32[] constant(0) broadcast.9 = s32[16,256,256]{2,1,0} broadcast(constant.6), dimensions={} compare = pred[16,256,256]{2,1,0} compare(convert.42, broadcast.9), direction=GT constant.8 = bf16[] constant(0) broadcast.11 = bf16[16,256,256]{2,1,0} broadcast(constant.8), dimensions={} constant.10 = bf16[] constant(-9.999e+09) broadcast.12 = bf16[16,256,256]{2,1,0} broadcast(constant.10), dimensions={} select = bf16[16,256,256]{2,1,0} select(compare, broadcast.11, broadcast.12) convert.48 = f32[16,256,256]{2,1,0} convert(select) broadcast.14 = f32[16,16,256,256]{3,2,1,0} broadcast(convert.48), dimensions={0,2,3} add.2 = f32[16,16,256,256]{3,2,1,0} add(convert.47, broadcast.14) constant.13 = f32[] constant(-inf) reduce.31 = f32[16,16,256]{2,1,0} reduce(add.2, constant.13), dimensions={3}, to_apply=region_0.27.clone broadcast.16 = f32[16,16,256,256]{3,2,1,0} broadcast(reduce.31), dimensions={0,1,2} subtract.1 = f32[16,16,256,256]{3,2,1,0} subtract(add.2, broadcast.16) exponential.1 = f32[16,16,256,256]{3,2,1,0} exponential(subtract.1) constant.14 = f32[] constant(0) reduce.43 = f32[16,16,256]{2,1,0} reduce(exponential.1, constant.14), dimensions={3}, to_apply=region_1.39 broadcast.17 = f32[16,16,256,256]{3,2,1,0} broadcast(reduce.43), dimensions={0,1,2} divide = f32[16,16,256,256]{3,2,1,0} divide(exponential.1, broadcast.17) convert.63 = bf16[16,16,256,256]{3,2,1,0} convert(divide) dot.1 = bf16[16,16,64,256]{3,2,1,0} dot(transpose.5, convert.63), lhs_contracting_dims={3}, rhs_contracting_dims={3}, lhs_batch_dims={0,1}, rhs_batch_dims={0,1} ROOT transpose.8 = bf16[16,256,16,64]{3,2,1,0} transpose(dot.1), dimensions={0,3,1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK(RunHloPass(&fusedMhaRewriter, m.get()).status()); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT( m->entry_computation()->root_instruction(), GmockMatch( m::Transpose( m::Transpose(m::GetTupleElement( m::CustomCall(&fmha, {kCudnnfMHAScaleBiasSoftmaxCallTarget}), 0))) .WithShape(BF16, {16, 256, 16, 64}))); TF_ASSERT_OK_AND_ASSIGN(auto gpu_config, fmha->backend_config<GpuBackendConfig>()); EXPECT_EQ(fmha->operands().size(), 4); } TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1Bmm2Pattern_bmm1_contracting_dim_not_equal_64) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; const char* module_str = R"( HloModule fmha_test, entry_computation_layout={(bf16[16,16,256,32]{3,2,1,0},bf16[16,16,256,32]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0})->bf16[16,16,256,64]{3,2,1,0}} ENTRY main.6 { Arg_2.3 = bf16[16,16,256,64]{3,2,1,0} parameter(2) Arg_0.1 = bf16[16,16,256,32]{3,2,1,0} parameter(0) Arg_1.2 = bf16[16,16,256,32]{3,2,1,0} parameter(1) dot.0 = bf16[16,16,256,256]{3,2,1,0} dot(Arg_0.1, Arg_1.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3}, metadata={} ROOT dot.1 = bf16[16,16,256,64]{3,2,1,0} dot(dot.0, Arg_2.3), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2}, metadata={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK(RunHloPass(&fusedMhaRewriter, m.get()).status()); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Dot(&fmha, m::Dot(m::Parameter(0), m::Parameter(1)), m::Parameter(2)) .WithShape(BF16, {16, 16, 256, 64}))); } TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1Bmm2Pattern_bmm2_rhs_non_contracting_dim_not_equal_64) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; const char* module_str = R"( HloModule fmha_test, entry_computation_layout={(bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0},bf16[16,16,256,32]{3,2,1,0})->bf16[16,16,256,32]{3,2,1,0}} ENTRY main.6 { Arg_2.3 = bf16[16,16,256,32]{3,2,1,0} parameter(2) Arg_0.1 = bf16[16,16,256,64]{3,2,1,0} parameter(0) Arg_1.2 = bf16[16,16,256,64]{3,2,1,0} parameter(1) dot.0 = bf16[16,16,256,256]{3,2,1,0} dot(Arg_0.1, Arg_1.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3}, metadata={} ROOT dot.1 = bf16[16,16,256,32]{3,2,1,0} dot(dot.0, Arg_2.3), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2}, metadata={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK(RunHloPass(&fusedMhaRewriter, m.get()).status()); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Dot(&fmha, m::Op(), m::Parameter(2)) .WithShape(BF16, {16, 16, 256, 32}))); } TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1Bmm2PatternUncanonicalized_bmm1_contracting_dim_not_equal_64) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; const char* module_str = R"( HloModule fmha_test, entry_computation_layout={(bf16[16,16,256,32]{3,2,1,0},bf16[16,16,256,32]{3,2,1,0},bf16[16,16,256,64]{3,2,1,0})->bf16[16,16,64,256]{3,2,1,0}} ENTRY main.6 { Arg_2.3 = bf16[16,16,256,64]{3,2,1,0} parameter(2) Arg_0.1 = bf16[16,16,256,32]{3,2,1,0} parameter(0) Arg_1.2 = bf16[16,16,256,32]{3,2,1,0} parameter(1) dot.0 = bf16[16,16,256,256]{3,2,1,0} dot(Arg_0.1, Arg_1.2), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={3}, metadata={} ROOT dot.1 = bf16[16,16,64,256]{3,2,1,0} dot(Arg_2.3, dot.0), lhs_batch_dims={0,1}, lhs_contracting_dims={2}, rhs_batch_dims={0,1}, rhs_contracting_dims={3}, metadata={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(module_str)); CudnnFusedMHARewriter fusedMhaRewriter{GetCudaComputeCapability(), GetCudnnVersion()}; TF_ASSERT_OK(RunHloPass(&fusedMhaRewriter, m.get()).status()); const HloInstruction* fmha; SCOPED_TRACE(m->ToString()); EXPECT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::Dot(&fmha, m::Parameter(2), m::Op()) .WithShape(BF16, {16, 16, 64, 256}))); } TEST_F(CudnnFusedMhaRewriterTestHloTest, BF16Bmm1BiasSoftmaxDropoutBmm2) { if (skip_reason_) GTEST_SKIP() << *skip_reason_; const char* module_str = R"( HloModule jit__unnamed_wrapped_function_, entry_computation_layout={(bf16[16,256,16,64]{3,2,1,0},bf16[16,256,16,64]{3,2,1,0},bf16[16,256,16,64]{3,2,1,0},bf16[1,16,256,256]{3,2,1,0})->bf16[16,256,16,64]{3,2,1,0}} region_0.34 { Arg_0.35 = bf16[] parameter(0) Arg_1.36 = bf16[] parameter(1) ROOT maximum.37 = bf16[] maximum(Arg_0.35, Arg_1.36) } region_1.46 { Arg_0.47 = f32[] parameter(0) Arg_1.48 = f32[] parameter(1) ROOT add.49 = f32[] add(Arg_0.47, Arg_1.48) } ENTRY main.82 { Arg_2.3 = bf16[16,256,16,64]{3,2,1,0} parameter(2), sharding={replicated} copy = bf16[16,256,16,64]{1,3,2,0} copy(Arg_2.3), sharding={replicated} transpose.2 = bf16[16,16,64,256]{3,2,1,0} transpose(copy), dimensions={0,2,3,1} Arg_0.1 = bf16[16,256,16,64]{3,2,1,0} parameter(0), sharding={replicated} copy.1 = bf16[16,256,16,64]{3,1,2,0} copy(Arg_0.1), sharding={replicated} transpose = bf16[16,16,256,64]{3,2,1,0} transpose(copy.1), dimensions={0,2,1,3} Arg_1.2 = bf16[16,256,16,64]{3,2,1,0} parameter(1), sharding={replicated} copy.2 = bf16[16,256,16,64]{1,3,2,0} copy(Arg_1.2), sharding={replicated} transpose.1 = bf16[16,16,64,256]{3,2,1,0} transpose(copy.2), dimensions={0,2,3,1} dot = bf16[16,16,256,256]{3,2,1,0} dot(transpose, transpose.1), lhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_batch_dims={0,1}, rhs_contracting_dims={2} Arg_3.4 = bf16[1,16,256,256]{3,2,1,0} parameter(3), sharding={replicated} reshape.31 = bf16[16,256,256]{2,1,0} reshape(Arg_3.4) broadcast.32 = bf16[16,16,256,256]{3,2,1,0} broadcast(reshape.31), dimensions={1,2,3} add.33 = bf16[16,16,256,256]{3,2,1,0} add(dot, broadcast.32) constant.21 = bf16[] constant(-inf) reduce.38 = bf16[16,16,256]{2,1,0} reduce(add.33, constant.21), dimensions={3}, to_apply=region_0.34 broadcast.42 = bf16[16,16,256,256]{3,2,1,0} broadcast(reduce.38), dimensions={0,1,2} subtract.43 = bf16[16,16,256,256]{3,2,1,0} subtract(add.33, broadcast.42) exponential.44 = bf16[16,16,256,256]{3,2,1,0} exponential(subtract.43) convert.45 = f32[16,16,256,256]{3,2,1,0} convert(exponential.44) constant.9 = f32[] constant(0) reduce.50 = f32[16,16,256]{2,1,0} reduce(convert.45, constant.9), dimensions={3}, to_apply=region_1.46 convert.1 = bf16[16,16,256]{2,1,0} convert(reduce.50) broadcast.55 = bf16[16,16,256,256]{3,2,1,0} broadcast(convert.1), dimensions={0,1,2} divide.56 = bf16[16,16,256,256]{3,2,1,0} divide(exponential.44, broadcast.55) constant.18 = u32[
2,096
cpp
tensorflow/tensorflow
alias_passthrough_params
third_party/xla/xla/service/gpu/transforms/alias_passthrough_params.cc
third_party/xla/xla/service/gpu/transforms/alias_passthrough_params_test.cc
#ifndef XLA_SERVICE_GPU_ALIAS_PASSTHROUGH_PARAMS_H_ #define XLA_SERVICE_GPU_ALIAS_PASSTHROUGH_PARAMS_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_pass_interface.h" namespace xla { namespace gpu { class AliasPassthroughParams : public HloModulePass { public: AliasPassthroughParams() = default; ~AliasPassthroughParams() override = default; absl::string_view name() const override { return "alias_passthrough_params"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } } #endif #include "xla/service/gpu/alias_passthrough_params.h" #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { absl::StatusOr<bool> AliasPassthroughParams::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { const HloInstruction* root = module->entry_computation()->root_instruction(); if (module->entry_computation()->num_parameters() == 0 || root->opcode() != HloOpcode::kTuple) { return false; } bool changed = false; absl::flat_hash_set<int64_t> used_params; for (int64_t i = 0; i < root->operand_count(); ++i) { if (root->operand(i)->opcode() == HloOpcode::kParameter && used_params.count(root->operand(i)->parameter_number()) == 0) { VLOG(2) << "Parameter " << root->operand(i)->parameter_number() << " with shape " << root->operand(i)->shape().ToString() << " in module " << module->name() << " is passed-through to root tuple element " << i << ": " << root->shape().ToString(); if (module->input_output_alias_config().OutputHasAlias({i}) || module->input_output_alias_config().ParameterHasAlias( root->operand(i)->parameter_number(), {})) { VLOG(2) << "Skip setting the above pass-through alias as an alias may" << " have been set up for alising resource update."; continue; } TF_RETURN_IF_ERROR(module->input_output_alias_config().SetUpAlias( {i}, root->operand(i)->parameter_number(), {})); used_params.insert(root->operand(i)->parameter_number()); changed = true; } } return changed; } } }
#include "xla/service/gpu/alias_passthrough_params.h" #include "xla/tests/hlo_test_base.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { class AliasPassthroughParamsTest : public HloTestBase {}; TEST_F(AliasPassthroughParamsTest, AliasPassThroughParams) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) sum = f16[2048,1024] add(p0, p1) ROOT root = (f16[2048,1024], f16[2048,1024], f16[2048,1024]) tuple(p0, sum, p1) })") .value(); EXPECT_TRUE(AliasPassthroughParams().Run(module.get()).value()); const auto& alias_config = module->input_output_alias_config(); EXPECT_EQ(0, alias_config.GetAliasedParameter({0})->parameter_number); EXPECT_FALSE(alias_config.OutputHasAlias({1})); EXPECT_EQ(1, alias_config.GetAliasedParameter({2})->parameter_number); } TEST_F(AliasPassthroughParamsTest, DoNotAliasPassThroughParamsMoreThanOnce) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) ROOT root = (f16[2048,1024], f16[2048,1024]) tuple(p0, p0) })") .value(); EXPECT_TRUE(AliasPassthroughParams().Run(module.get()).value()); const auto& alias_config = module->input_output_alias_config(); EXPECT_EQ(0, alias_config.GetAliasedParameter({0})->parameter_number); EXPECT_FALSE(alias_config.OutputHasAlias({1})); } TEST_F(AliasPassthroughParamsTest, PresetAliases) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[2048,1024] parameter(0) p1 = f16[2048,1024] parameter(1) sum = f16[2048,1024] add(p0, p1) ROOT root = (f16[2048,1024], f16[2048,1024], f16[2048,1024]) tuple(p0, sum, p1) })") .value(); auto& preset_alias = module->input_output_alias_config(); TF_EXPECT_OK(preset_alias.SetUpAlias({1}, 0, {})); EXPECT_TRUE(AliasPassthroughParams().Run(module.get()).value()); const auto& alias_result = module->input_output_alias_config(); EXPECT_EQ(1, alias_result.GetAliasedParameter({2})->parameter_number); EXPECT_FALSE(alias_result.OutputHasAlias({0})); } } }
2,097
cpp
tensorflow/tensorflow
dot_operand_converter
third_party/xla/xla/service/gpu/transforms/dot_operand_converter.cc
third_party/xla/xla/service/gpu/transforms/dot_operand_converter_test.cc
#ifndef XLA_SERVICE_GPU_DOT_OPERAND_CONVERTER_H_ #define XLA_SERVICE_GPU_DOT_OPERAND_CONVERTER_H_ #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/op_expander_pass.h" #include "xla/util.h" namespace xla::gpu { class DotOperandConverter : public OpExpanderPass { public: explicit DotOperandConverter(HloPredicate extra_filter = nullptr) : OpExpanderPass(std::move(extra_filter)) {} absl::string_view name() const override { return "operand_converter"; } protected: bool InstructionMatchesPattern(HloInstruction* instruction) override; absl::StatusOr<HloInstruction*> ExpandInstruction( HloInstruction* instruction) override; }; } #endif #include "xla/service/gpu/dot_operand_converter.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" namespace xla::gpu { bool DotOperandConverter::InstructionMatchesPattern( HloInstruction* instruction) { if (instruction->opcode() != HloOpcode::kDot) { return false; } HloInstruction* lhs = instruction->mutable_operand(0); HloInstruction* rhs = instruction->mutable_operand(1); PrimitiveType lhs_type = lhs->shape().element_type(); PrimitiveType rhs_type = rhs->shape().element_type(); if (lhs_type == rhs_type) { return false; } absl::flat_hash_set<PrimitiveType> non_converting = {F8E4M3FN, F8E5M2}; if (non_converting.contains(lhs_type) && non_converting.contains(rhs_type)) { return false; } PrimitiveType desired_type = ShapeUtil::HigherPrecisionElementType(lhs->shape(), rhs->shape()); return desired_type == lhs_type || desired_type == rhs_type; } absl::StatusOr<HloInstruction*> DotOperandConverter::ExpandInstruction( HloInstruction* instruction) { HloInstruction* lhs = instruction->mutable_operand(0); HloInstruction* rhs = instruction->mutable_operand(1); PrimitiveType desired_type = ShapeUtil::HigherPrecisionElementType(lhs->shape(), rhs->shape()); int operand_index = desired_type == lhs->shape().element_type() ? 1 : 0; HloInstruction* inst_to_replace = desired_type == lhs->shape().element_type() ? rhs : lhs; auto upcast_shape = inst_to_replace->shape(); upcast_shape.set_element_type(desired_type); auto* convert_inst = instruction->AddInstruction( HloInstruction::CreateConvert(upcast_shape, inst_to_replace)); TF_RETURN_IF_ERROR(instruction->ReplaceOperandWithDifferentShape( operand_index, convert_inst)); return nullptr; } }
#include "xla/service/gpu/dot_operand_converter.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/primitive_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { namespace op = ::xla::testing::opcode_matchers; class DotOperandConverterTest : public HloTestBase { public: void TestConvert(bool left_less_precise, PrimitiveType lhs_type, PrimitiveType rhs_type, PrimitiveType result_type) { absl::string_view module_tmpl = R"( HloModule module ENTRY main { p0 = $0[2,3]{1,0} parameter(0) p1 = $1[3,2]{1,0} parameter(1) ROOT dot = $2[2,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; auto module_string = absl::Substitute( module_tmpl, primitive_util::LowercasePrimitiveTypeName(lhs_type), primitive_util::LowercasePrimitiveTypeName(rhs_type), primitive_util::LowercasePrimitiveTypeName(result_type)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool upcasted, DotOperandConverter().Run(module.get())); EXPECT_TRUE(upcasted); if (left_less_precise) { auto original_lhs = op::Parameter(0); auto upcasted_lhs = AllOf(op::Convert(original_lhs), op::Shape(absl::Substitute( "$0[2,3]{1,0}", primitive_util::LowercasePrimitiveTypeName(rhs_type)))); EXPECT_THAT( module->entry_computation()->root_instruction(), AllOf(op::Dot(upcasted_lhs, op::Parameter(1)), op::Shape(absl::Substitute( "$0[2,2]{1,0}", primitive_util::LowercasePrimitiveTypeName(result_type))))); } else { auto original_rhs = op::Parameter(1); auto upcasted_rhs = AllOf(op::Convert(original_rhs), op::Shape(absl::Substitute( "$0[3,2]{1,0}", primitive_util::LowercasePrimitiveTypeName(lhs_type)))); EXPECT_THAT( module->entry_computation()->root_instruction(), AllOf(op::Dot(op::Parameter(0), upcasted_rhs), op::Shape(absl::Substitute( "$0[2,2]{1,0}", primitive_util::LowercasePrimitiveTypeName(result_type))))); } } }; TEST_F(DotOperandConverterTest, ConvertsLeftAndRight) { TestConvert(true, S8, BF16, F32); TestConvert(false, BF16, S8, F32); } TEST_F(DotOperandConverterTest, NoConvertHappensWithSameTypes) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = s8[2,3]{1,0} parameter(0) p1 = s8[3,2]{1,0} parameter(1) ROOT dot = bf16[2,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool upcasted, DotOperandConverter().Run(module.get())); EXPECT_FALSE(upcasted); } TEST_F(DotOperandConverterTest, NoConvertFromF8toF8) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f8e4m3fn[2,3]{1,0} parameter(0) p1 = f8e5m2[3,2]{1,0} parameter(1) ROOT dot = bf16[2,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool upcasted, DotOperandConverter().Run(module.get())); EXPECT_FALSE(upcasted); } TEST_F(DotOperandConverterTest, CompilerOptimizesUsingDotOperandConverter) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = s8[2,3]{1,0} parameter(0) p1 = bf16[3,2]{1,0} parameter(1) ROOT dot = bf16[2,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, GetOptimizedModule(module_string)); } } }
2,098
cpp
tensorflow/tensorflow
all_reduce_blueconnect
third_party/xla/xla/service/gpu/transforms/all_reduce_blueconnect.cc
third_party/xla/xla/service/gpu/transforms/all_reduce_blueconnect_test.cc
#ifndef XLA_SERVICE_GPU_ALL_REDUCE_BLUECONNECT_H_ #define XLA_SERVICE_GPU_ALL_REDUCE_BLUECONNECT_H_ #include <cstddef> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class AllReduceBlueConnect : public HloModulePass { public: explicit AllReduceBlueConnect(size_t num_devices_per_host) : num_devices_per_host_(num_devices_per_host) {} absl::string_view name() const override { return "all-reduce-blueconnect"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: size_t num_devices_per_host_; }; } #endif #include "xla/service/gpu/all_reduce_blueconnect.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { std::vector<HloInstruction*> GetOutputs(HloInstruction& instruction) { if (!instruction.shape().IsTuple()) { return {&instruction}; } std::vector<HloInstruction*> outputs; outputs.reserve(instruction.shape().tuple_shapes_size()); HloComputation& computation = *instruction.parent(); for (int i = 0; i < instruction.shape().tuple_shapes_size(); ++i) { outputs.push_back(computation.AddInstruction( HloInstruction::CreateGetTupleElement(&instruction, i))); } return outputs; } struct DecomposedReplicaGroups { std::vector<ReplicaGroup> scatter_gather_groups; std::vector<ReplicaGroup> new_all_reduce_groups; }; absl::StatusOr<std::optional<DecomposedReplicaGroups>> TryDecomposeReplicaGroup( const ReplicaGroup& replica_group, const DeviceAssignment& device_assignment, size_t num_devices_per_host) { int group_size = replica_group.replica_ids_size(); TF_RET_CHECK(group_size > 0); absl::btree_map<int, std::vector<int64_t>> replica_ids_by_host; for (int64_t replica_id : replica_group.replica_ids()) { int device_id = device_assignment(replica_id, 0); TF_RET_CHECK(device_id >= 0); int host_id = device_id / num_devices_per_host; replica_ids_by_host[host_id].push_back(replica_id); } size_t num_local_devices = replica_ids_by_host.begin()->second.size(); bool same_num_devices_on_each_host = absl::c_all_of(replica_ids_by_host, [&](const auto& entry) { return entry.second.size() == num_local_devices; }); if (!same_num_devices_on_each_host) { return {std::nullopt}; } std::vector<int64_t> sorted_replica_group; sorted_replica_group.reserve(group_size); for (const auto& entry : replica_ids_by_host) { absl::c_copy(entry.second, std::back_inserter(sorted_replica_group)); } size_t scatter_group_size = std::max(num_local_devices, size_t(2)); size_t num_scatter_groups = group_size / scatter_group_size; if ((group_size % scatter_group_size != 0) || (num_scatter_groups < 2)) { return {std::nullopt}; } std::vector<ReplicaGroup> scatter_gather_groups(num_scatter_groups); std::vector<ReplicaGroup> new_all_reduce_groups(scatter_group_size); for (size_t i = 0; i < group_size; ++i) { int64_t replica_id = sorted_replica_group[i]; scatter_gather_groups[i / scatter_group_size].add_replica_ids(replica_id); new_all_reduce_groups[i % scatter_group_size].add_replica_ids(replica_id); } return {DecomposedReplicaGroups{std::move(scatter_gather_groups), std::move(new_all_reduce_groups)}}; } absl::StatusOr<std::optional<DecomposedReplicaGroups>> TryDecomposeReplicaGroups(const HloAllReduceInstruction& all_reduce, size_t num_devices_per_host) { const DeviceAssignment& device_assignment = all_reduce.GetModule()->config().static_device_assignment(); absl::Span<const ReplicaGroup> replica_groups = all_reduce.replica_groups(); ReplicaGroup all_replicas; if (replica_groups.empty()) { for (int i = 0; i < device_assignment.replica_count(); ++i) { all_replicas.add_replica_ids(i); } replica_groups = absl::MakeSpan(&all_replicas, 1); } std::vector<ReplicaGroup> scatter_gather_groups; std::vector<ReplicaGroup> new_all_reduce_groups; for (const ReplicaGroup& replica_group : replica_groups) { TF_ASSIGN_OR_RETURN( std::optional<DecomposedReplicaGroups> decomposed_groups, TryDecomposeReplicaGroup(replica_group, device_assignment, num_devices_per_host)); if (!decomposed_groups) return {std::nullopt}; int scatter_group_size = decomposed_groups->scatter_gather_groups[0].replica_ids_size(); if (scatter_gather_groups.empty()) { for (const HloInstruction* operand : all_reduce.operands()) { TF_RET_CHECK(operand->shape().IsArray()); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); if (num_elements % scatter_group_size != 0) { return {std::nullopt}; } } scatter_gather_groups.reserve( replica_groups.size() * decomposed_groups->scatter_gather_groups.size()); new_all_reduce_groups.reserve( replica_groups.size() * decomposed_groups->new_all_reduce_groups.size()); } else if (scatter_group_size != scatter_gather_groups[0].replica_ids_size()) { return {std::nullopt}; } absl::c_move(decomposed_groups->scatter_gather_groups, std::back_inserter(scatter_gather_groups)); absl::c_move(decomposed_groups->new_all_reduce_groups, std::back_inserter(new_all_reduce_groups)); } return {DecomposedReplicaGroups{std::move(scatter_gather_groups), std::move(new_all_reduce_groups)}}; } absl::StatusOr<bool> TryDecomposeAllReduce(HloAllReduceInstruction* all_reduce, size_t num_devices_per_host) { TF_RET_CHECK(all_reduce); TF_RET_CHECK(!all_reduce->has_sharding()); HloComputation& computation = *all_reduce->parent(); PrimitiveType element_type = all_reduce->operand(0)->shape().element_type(); TF_ASSIGN_OR_RETURN( std::optional<DecomposedReplicaGroups> decomposed_groups, TryDecomposeReplicaGroups(*all_reduce, num_devices_per_host)); if (!decomposed_groups) return false; std::vector<HloInstruction*> flat_operands; flat_operands.reserve(all_reduce->operand_count()); std::vector<Shape> flat_shapes; flat_shapes.reserve(all_reduce->operand_count()); std::vector<Shape> scattered_shapes; scattered_shapes.reserve(all_reduce->operand_count()); int scatter_group_size = decomposed_groups->scatter_gather_groups[0].replica_ids_size(); for (HloInstruction* operand : all_reduce->operands()) { TF_RET_CHECK(operand->shape().IsArray()); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); Shape flat_shape = ShapeUtil::MakeShape(element_type, {num_elements}); flat_operands.push_back(computation.AddInstruction( HloInstruction::CreateBitcast(flat_shape, operand))); flat_shapes.push_back(std::move(flat_shape)); scattered_shapes.push_back(ShapeUtil::MakeShape( element_type, {num_elements / scatter_group_size})); } Shape reduce_scatter_shape = ShapeUtil::MakeMaybeTupleShape(scattered_shapes); HloInstruction* reduce_scatter = computation.AddInstruction(HloInstruction::CreateReduceScatter( reduce_scatter_shape, flat_operands, all_reduce->to_apply(), CollectiveDeviceList(decomposed_groups->scatter_gather_groups), false, all_reduce->channel_id(), all_reduce->use_global_device_ids(), 0)); HloInstruction* new_all_reduce = computation.AddInstruction(HloInstruction::CreateAllReduce( reduce_scatter_shape, GetOutputs(*reduce_scatter), all_reduce->to_apply(), CollectiveDeviceList(decomposed_groups->new_all_reduce_groups), false, all_reduce->channel_id(), all_reduce->use_global_device_ids())); HloInstruction* all_gather = computation.AddInstruction(HloInstruction::CreateAllGather( ShapeUtil::MakeMaybeTupleShape(flat_shapes), GetOutputs(*new_all_reduce), 0, CollectiveDeviceList(decomposed_groups->scatter_gather_groups), false, all_reduce->channel_id(), all_reduce->use_global_device_ids())); std::vector<HloInstruction*> outputs = GetOutputs(*all_gather); for (int64_t i = 0; i < outputs.size(); ++i) { outputs[i] = computation.AddInstruction(HloInstruction::CreateBitcast( all_reduce->operand(i)->shape(), outputs[i])); } HloInstruction* replacement = MaybeMakeTuple(outputs); TF_RETURN_IF_ERROR( all_reduce->CopyAllControlDepsTo(reduce_scatter, replacement)); TF_RETURN_IF_ERROR(all_reduce->DropAllControlDeps()); TF_RETURN_IF_ERROR(computation.ReplaceInstruction(all_reduce, replacement)); TF_RETURN_IF_ERROR( TryDecomposeAllReduce(Cast<HloAllReduceInstruction>(new_all_reduce), num_devices_per_host) .status()); return true; } } absl::StatusOr<bool> AllReduceBlueConnect::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(1) << "Running AllReduceBlueConnect"; if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceBlueConnect because the module contains all-reduce " "with constrained layouts"; return false; } if (!module->config().has_static_device_assignment()) { VLOG(1) << "Skip AllReduceBlueConnect because the module doesn't have static " "device assignment"; return false; } std::vector<HloAllReduceInstruction*> all_reduces; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kAllReduce) { all_reduces.push_back(Cast<HloAllReduceInstruction>(instruction)); } } } bool changed = false; for (HloAllReduceInstruction* all_reduce : all_reduces) { TF_ASSIGN_OR_RETURN( bool all_reduce_changed, TryDecomposeAllReduce(all_reduce, num_devices_per_host_)); changed |= all_reduce_changed; } return changed; } }
#include "xla/service/gpu/all_reduce_blueconnect.h" #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/computation_placer.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::tsl::testing::IsOkAndHolds; namespace m = ::xla::match; using AllReduceBlueConnectTest = HloTestBase; void SetModuleConfig(HloModule& module, size_t replica_count) { DeviceAssignment device_assignment(replica_count, 1); device_assignment.FillIota(0); auto& module_config = module.mutable_config(); module_config.set_replica_count(replica_count); module_config.set_static_device_assignment(device_assignment); } TEST_F(AllReduceBlueConnectTest, OneStage) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; auto bitcast = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter = m::ReduceScatter(bitcast).WithShape(F32, {4}).WithReplicaGroups( scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter) .WithShape(F32, {4}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(all_reduce) .WithShape(F32, {16}) .WithReplicaGroups(scatter_gather_groups); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(all_gather).WithShape(F32, {4, 4}))); } TEST_F(AllReduceBlueConnectTest, TwoStage) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 16); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> outer_scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}}; std::vector<std::vector<int64_t>> inner_scatter_gather_groups = { {0, 4}, {8, 12}, {1, 5}, {9, 13}, {2, 6}, {10, 14}, {3, 7}, {11, 15}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 8}, {4, 12}, {1, 9}, {5, 13}, {2, 10}, {6, 14}, {3, 11}, {7, 15}}; auto bitcast0 = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter0 = m::ReduceScatter(bitcast0).WithShape(F32, {4}).WithReplicaGroups( outer_scatter_gather_groups); auto bitcast1 = m::Bitcast(reduce_scatter0).WithShape(F32, {4}); auto reduce_scatter1 = m::ReduceScatter(bitcast1).WithShape(F32, {2}).WithReplicaGroups( inner_scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter1) .WithShape(F32, {2}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather0 = m::AllGather(all_reduce) .WithShape(F32, {4}) .WithReplicaGroups(inner_scatter_gather_groups); auto bitcast2 = m::Bitcast(all_gather0).WithShape(F32, {4}); auto all_gather1 = m::AllGather(bitcast2).WithShape(F32, {16}).WithReplicaGroups( outer_scatter_gather_groups); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Bitcast(all_gather1).WithShape(F32, {4, 4}))); } TEST_F(AllReduceBlueConnectTest, TwoOperands) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[4,4,2] parameter(1) ROOT crs = (f32[4,4], f32[4,4,2]) all-reduce(p0, p1), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; auto bitcast0 = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto bitcast1 = m::Bitcast(m::Parameter(1)).WithShape(F32, {32}); Shape expected0 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {4}), ShapeUtil::MakeShape(F32, {8})}); Shape expected1 = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F32, {16}), ShapeUtil::MakeShape(F32, {32})}); auto reduce_scatter = m::ReduceScatter(bitcast0, bitcast1) .WithShapeEqualTo(&expected0) .WithReplicaGroups(scatter_gather_groups); auto all_reduce = m::AllReduce(m::GetTupleElement(reduce_scatter, 0), m::GetTupleElement(reduce_scatter, 1)) .WithShapeEqualTo(&expected0) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(m::GetTupleElement(all_reduce, 0), m::GetTupleElement(all_reduce, 1)) .WithShapeEqualTo(&expected1) .WithReplicaGroups(scatter_gather_groups); auto bitcast2 = m::Bitcast(m::GetTupleElement(all_gather, 0)).WithShape(F32, {4, 4}); auto bitcast3 = m::Bitcast(m::GetTupleElement(all_gather, 1)).WithShape(F32, {4, 4, 2}); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(bitcast2, bitcast3))); } TEST_F(AllReduceBlueConnectTest, DifferentNumLocalDevicesWithinReplicaGroup) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), replica_groups={{0,1,2,7},{3,4,5,6}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, DifferentNumLocalDevicesAcrossReplicaGroups) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) ROOT crs = f32[4,4] all-reduce(p0), replica_groups={{0,1,4,5},{2,3,6,7},{8,9,10,11},{12,13,14,15}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 16); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, OperandIndivisible) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[9] parameter(1) ROOT crs = (f32[4,4], f32[9]) all-reduce(p0, p1), to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(false)); } TEST_F(AllReduceBlueConnectTest, ControlDeps) { constexpr absl::string_view hlo_string = R"( HloModule module %add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY %comp { p0 = f32[4,4] parameter(0) p1 = f32[4,4] parameter(1) add = f32[4,4] add(p0, p1) crs = f32[4,4] all-reduce(p0), to_apply=add, control-predecessors={add} ROOT add1 = f32[4,4] add(crs, add), control-predecessors={crs} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SetModuleConfig(*module, 8); const HloInstruction* ar = module->entry_computation()->root_instruction()->operand(0); auto expected_preds = ar->control_predecessors(); auto expected_succs = ar->control_successors(); AllReduceBlueConnect pass(4); EXPECT_THAT(pass.Run(module.get()), IsOkAndHolds(true)); std::vector<std::vector<int64_t>> scatter_gather_groups = { {0, 1, 2, 3}, {4, 5, 6, 7}}; std::vector<std::vector<int64_t>> new_all_reduce_groups = { {0, 4}, {1, 5}, {2, 6}, {3, 7}}; const HloInstruction *matched_rs, *matched_bitcast; auto bitcast = m::Bitcast(m::Parameter(0)).WithShape(F32, {16}); auto reduce_scatter = m::ReduceScatter(&matched_rs, bitcast) .WithShape(F32, {4}) .WithReplicaGroups(scatter_gather_groups); auto all_reduce = m::AllReduce(reduce_scatter) .WithShape(F32, {4}) .WithReplicaGroups(new_all_reduce_groups); auto all_gather = m::AllGather(all_reduce) .WithShape(F32, {16}) .WithReplicaGroups(scatter_gather_groups); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_THAT(root, GmockMatch(m::Add())); EXPECT_THAT( root->operand(0), GmockMatch( m::Bitcast(&matched_bitcast, all_gather).WithShape(F32, {4, 4}))); EXPECT_THAT(matched_rs, GmockMatch(m::Op().WithControlDeps( absl::MakeSpan(expected_preds), {}))); EXPECT_THAT(matched_bitcast, GmockMatch(m::Op().WithControlDeps( {}, absl::MakeSpan(expected_succs)))); } } }
2,099
cpp
tensorflow/tensorflow
move_copy_to_users
third_party/xla/xla/service/gpu/transforms/move_copy_to_users.cc
third_party/xla/xla/service/gpu/transforms/move_copy_to_users_test.cc
#ifndef XLA_SERVICE_GPU_MOVE_COPY_TO_USERS_H_ #define XLA_SERVICE_GPU_MOVE_COPY_TO_USERS_H_ #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class MoveCopyToUsers : public HloModulePass { public: absl::string_view name() const override { return "move_copy_to_users"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; }; } #endif #include "xla/service/gpu/move_copy_to_users.h" #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/hlo_creation_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class MoveCopyToUsersVisitor : public DfsHloRewriteVisitor { absl::Status HandlePad(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); HloInstruction* c = hlo->mutable_operand(1); if (operand->opcode() == HloOpcode::kCopy) { HloInstruction* copied = operand->mutable_operand(0); TF_ASSIGN_OR_RETURN( HloInstruction * earlier_pad, MakePadHlo(copied, c, hlo->padding_config(), &hlo->metadata())); *earlier_pad->mutable_shape()->mutable_layout() = copied->shape().layout(); HloInstruction* later_copy = MakeCopyHlo(earlier_pad, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } return absl::OkStatus(); } absl::Status HandleSlice(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); if (operand->opcode() == HloOpcode::kCopy) { HloInstruction* copied = operand->mutable_operand(0); TF_ASSIGN_OR_RETURN( HloInstruction * earlier_slice, MakeSliceHlo(copied, hlo->slice_starts(), hlo->slice_limits(), hlo->slice_strides(), &hlo->metadata())); *earlier_slice->mutable_shape()->mutable_layout() = copied->shape().layout(); HloInstruction* later_copy = MakeCopyHlo(earlier_slice, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } return absl::OkStatus(); } absl::Status HandleDynamicSlice(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); if (operand->opcode() == HloOpcode::kCopy) { HloInstruction* copied = operand->mutable_operand(0); TF_ASSIGN_OR_RETURN( HloInstruction * earlier_slice, MakeDynamicSliceHlo( copied, absl::Span<HloInstruction* const>(hlo->operands()).subspan(1), hlo->dynamic_slice_sizes(), &hlo->metadata())); *earlier_slice->mutable_shape()->mutable_layout() = copied->shape().layout(); HloInstruction* later_copy = MakeCopyHlo(earlier_slice, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } return absl::OkStatus(); } absl::Status HandleReduceWindow(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); if (operand->opcode() == HloOpcode::kCopy) { HloInstruction* copied = operand->mutable_operand(0); TF_ASSIGN_OR_RETURN( HloInstruction * earlier_reduce_window, MakeReduceWindowHlo(copied, hlo->mutable_operand(1), hlo->window(), hlo->called_computations()[0], &hlo->metadata())); *earlier_reduce_window->mutable_shape()->mutable_layout() = copied->shape().layout(); HloInstruction* later_copy = MakeCopyHlo(earlier_reduce_window, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } return absl::OkStatus(); } absl::Status HandleReduce(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); if (operand->opcode() == HloOpcode::kCopy && !hlo->shape().IsTuple()) { HloInstruction* new_reduce = hlo->AddInstruction( hlo->CloneWithNewOperands(hlo->shape(), {operand->mutable_operand(0), hlo->mutable_operand(1)})); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, new_reduce)); } return absl::OkStatus(); } absl::Status HandleBitcastConvert(HloInstruction* hlo) override { return absl::OkStatus(); } absl::Status HandleElementwiseUnary(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); if (hlo->opcode() == HloOpcode::kReducePrecision) { return absl::OkStatus(); } if (operand->opcode() == HloOpcode::kCopy) { HloInstruction* copied = operand->mutable_operand(0); TF_ASSIGN_OR_RETURN( HloInstruction * earlier_elementwise, MakeUnaryHlo(hlo->opcode(), copied, &hlo->metadata())); HloInstruction* later_copy = MakeCopyHlo(earlier_elementwise, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } return absl::OkStatus(); } absl::Status HandleReverse(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); if (operand->opcode() == HloOpcode::kCopy) { HloInstruction* copied = operand->mutable_operand(0); TF_ASSIGN_OR_RETURN( HloInstruction * earlier_reverse, MakeReverseHlo(copied, hlo->dimensions(), &hlo->metadata())); HloInstruction* later_copy = MakeCopyHlo(earlier_reverse, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } return absl::OkStatus(); } absl::Status HandleConvert(HloInstruction* hlo) override { HloInstruction* operand = hlo->mutable_operand(0); if (operand->opcode() == HloOpcode::kCopy) { HloInstruction* copied = operand->mutable_operand(0); HloInstruction* earlier_convert = MakeConvertToHlo( copied, hlo->shape().element_type(), &hlo->metadata()); HloInstruction* later_copy = MakeCopyHlo(earlier_convert, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } return absl::OkStatus(); } absl::Status HandleElementwiseBinary(HloInstruction* hlo) override { HloInstruction* a = hlo->mutable_operand(0); HloInstruction* b = hlo->mutable_operand(1); if (a->opcode() == HloOpcode::kCopy && b->opcode() == HloOpcode::kCopy) { HloInstruction* copied_a = a->mutable_operand(0); HloInstruction* copied_b = b->mutable_operand(0); if (copied_a->shape() == copied_b->shape()) { HloInstruction* earlier_elementwise; if (hlo->opcode() == HloOpcode::kCompare) { TF_ASSIGN_OR_RETURN( earlier_elementwise, MakeCompareHlo(hlo->comparison_direction(), copied_a, copied_b, &hlo->metadata())); } else { TF_ASSIGN_OR_RETURN(earlier_elementwise, MakeBinaryHlo(hlo->opcode(), copied_a, copied_b, &hlo->metadata())); } HloInstruction* later_copy = MakeCopyHlo(earlier_elementwise, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, later_copy)); } } return absl::OkStatus(); } absl::Status HandleConcatenate(HloInstruction* hlo) override { const HloInstruction* first = hlo->operand(0); if (first->opcode() != HloOpcode::kCopy) { return absl::OkStatus(); } const HloInstruction* inner_op = first->operand(0); const Layout& inner_op_layout = inner_op->shape().layout(); std::vector<HloInstruction*> new_operands; new_operands.reserve(hlo->operand_count()); for (HloInstruction* op : hlo->mutable_operands()) { if (op->opcode() != HloOpcode::kCopy || op->operand(0)->shape().layout() != inner_op_layout) { VLOG(3) << "Mismatch between " << op->ToString() << " and expected op layout " << inner_op_layout.ToString(); return absl::OkStatus(); } new_operands.push_back(op->mutable_operand(0)); } TF_ASSIGN_OR_RETURN( HloInstruction * new_concat, MakeConcatHlo(new_operands, hlo->concatenate_dimension())); *new_concat->mutable_shape()->mutable_layout() = inner_op_layout; HloInstruction* new_copy = MakeCopyHlo(new_concat, hlo->shape()); TF_RETURN_IF_ERROR(ReplaceInstruction(hlo, new_copy)); return absl::OkStatus(); } }; } absl::StatusOr<bool> MoveCopyToUsers::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return MoveCopyToUsersVisitor{}.RunOnModule(module, execution_threads); } }
#include "xla/service/gpu/move_copy_to_users.h" #include <optional> #include "absl/strings/string_view.h" #include "xla/service/layout_assignment.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla { namespace { class MoveCopyToUsersTest : public HloTestBase { public: MoveCopyToUsersTest() : HloTestBase(true, true, LayoutAssignment::InstructionCanChangeLayout) {} void CheckMoveCopyToUsers(absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite(hlo, MoveCopyToUsers{}, expected); } }; TEST_F(MoveCopyToUsersTest, Pad) { const char* hlo = R"( HloModule module ENTRY main { input = s8[1,17,9,9]{3,1,2,0} parameter(0) copy = s8[1,17,9,9]{1,3,2,0} copy(input) constant = s8[] constant(0) ROOT pad = s8[1,32,9,9]{1,3,2,0} pad(copy, constant), padding=0_0x0_15x0_0x0_0 } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, Unary) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,1,0} parameter(0) copy = f32[1,17,9,9]{1,3,2,0} copy(input) ROOT pad = f32[1,17,9,9]{1,3,2,0} sqrt(copy) } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, Reverse) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,1,0} parameter(0) copy = f32[1,17,9,9]{1,3,2,0} copy(input) ROOT pad = f32[1,17,9,9]{1,3,2,0} reverse(copy), dimensions={1,2} } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, Convert) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,1,0} parameter(0) copy = f32[1,17,9,9]{1,3,2,0} copy(input) ROOT converted = f16[1,17,9,9]{1,3,2,0} convert(copy) } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, Slice) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,1,0} parameter(0) copy = f32[1,17,9,9]{1,3,2,0} copy(input) ROOT slice = f32[1,4,6,6]{1,3,2,0} slice(copy), slice={[0:1],[0:4],[0:6],[0:6]} } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, DynamicSlice) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,1,0} parameter(0) copy = f32[1,17,9,9]{1,3,2,0} copy(input) p0 = s32[] parameter(1) p1 = s32[] parameter(2) p2 = s32[] parameter(3) p3 = s32[] parameter(4) ROOT ds = f32[1,4,6,6]{1,3,2,0} dynamic-slice(copy, p0, p1, p2, p3), dynamic_slice_sizes={1,4,6,6} } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, ReduceWindow) { const char* hlo = R"( HloModule R2Window mul { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT mul = f32[] multiply(lhs, rhs) } ENTRY R2Window { operand = f32[256,384]{1,0} parameter(0) c = f32[256,384]{0,1} copy(operand) constant = f32[] constant(1) ROOT reduce-window = f32[256,384]{0,1} reduce-window(c, constant), window={size=2x3 pad=0_1x1_1}, to_apply=mul } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, Reduce) { const char* hlo = R"( HloModule R2 mul { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT mul = f32[] multiply(lhs, rhs) } ENTRY R2 { operand = f32[256,384,10]{2,1,0} parameter(0) c = f32[256,384,10]{0,1,2} copy(operand) constant = f32[] constant(1) ROOT reduce = f32[384,10]{0,1} reduce(c, constant), dimensions={0}, to_apply=mul } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, Binary) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,1,0} parameter(0) input2 = f32[1,17,9,9]{3,2,1,0} parameter(1) copy = f32[1,17,9,9]{1,3,2,0} copy(input) copy2 = f32[1,17,9,9]{1,3,2,0} copy(input2) ROOT add = f32[1,17,9,9]{1,3,2,0} add(copy, copy2) } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, BinaryDifferentLayoutNoChange) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,0,1} parameter(0) input2 = f32[1,17,9,9]{3,2,1,0} parameter(1) copy = f32[1,17,9,9]{1,3,2,0} copy(input) copy2 = f32[1,17,9,9]{1,3,2,0} copy(input2) ROOT add = f32[1,17,9,9]{1,3,2,0} add(copy, copy2) } )"; CheckMoveCopyToUsers(hlo, std::nullopt); } TEST_F(MoveCopyToUsersTest, Concat) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,1,0} parameter(0) input2 = f32[5,17,9,9]{3,2,1,0} parameter(1) copy = f32[1,17,9,9]{1,3,2,0} copy(input) copy2 = f32[5,17,9,9]{1,3,2,0} copy(input2) ROOT add = f32[6,17,9,9]{1,3,2,0} concatenate(copy, copy2), dimensions={0} } )"; CheckMoveCopyToUsers(hlo, R"( )"); } TEST_F(MoveCopyToUsersTest, ConcatDifferentLayoutNoChange) { const char* hlo = R"( HloModule module ENTRY main { input = f32[1,17,9,9]{3,2,0,1} parameter(0) input2 = f32[1,17,9,9]{3,2,1,0} parameter(1) copy = f32[1,17,9,9]{1,3,2,0} copy(input) copy2 = f32[1,17,9,9]{1,3,2,0} copy(input2) ROOT add = f32[2,17,9,9]{1,3,2,0} concatenate(copy, copy2), dimensions={0} } )"; CheckMoveCopyToUsers(hlo, std::nullopt); } } }